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Abstract 
 
This paper uses a seasonal long-memory model to capture the behaviour of the US Industrial 
Production Index (IPI) over the period 1919Q1-2022Q4. This series is found to display a large 
value of the periodogram at the zero, long-run frequency, and to exhibit an order of integration 
around 1. When first differences (of either the original data or their logged values) are taken, 
evidence of seasonality is obtained; more specifically, deterministic seasonality is rejected in 
favour of a seasonal fractional integration model with an order of integration equal to 0.14 for the 
original data and 0.29 for their logged values, which implies the presence of a seasonal long-
memory mean reverting pattern. 
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1.  Introduction 

Understanding economic fluctuations is crucial for the design of effective 

macroeconomic policies. Policy makers use a variety of demand and supply indicators to 

monitor economic activity and to identify trends and seasonal patterns (The Economist, 

2007). On the demand side, these include private consumption, retail sales, car 

registrations, electricity consumption, etc.; on the supply side, the most informative series 

are gross capital formation, which is available at a quarterly frequency, as well as 

industrial production, electricity production, and capacity utilisation in the industrial 

sector, which are released at a monthly frequency (Poza, 2020).  

 The present study focuses on the Industrial Production Index (IPI), which is 

normally thought to be a good proxy for aggregate production and also to be informative 

about seasonality in the economy. According to Bulligan et al. (2010): “The index of 

industrial production (IPI) is probably the most important and widely analyzed high-

frequency indicator, given the relevance of manufacturing activity as a driver of the whole 

business cycle”. In this paper a long-memory seasonal model is estimated to capture the 

behaviour of the IPI and to obtain evidence on both its degree of persistence and seasonal 

patterns. 

The rest of the paper is organised as follows: Section 2 provides a brief review of 

the relevant literature; Section 3 presents the empirical analysis; Section 4 offers some 

concluding comments.  

 

2. Literature Review 

Numerous studies have analysed the behaviour of the IPI because of its usefulness as an 

indicator of economic activity. For instance, Bulligan et al. (2010) assessed the 
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forecasting performance of various models for the Italian IPI including a univariate 

ARIMA model, a dynamic single-equation model with a few indicators, a dynamic 

multiple-equation model disaggregated by sector, an average of bivariate autoregressive 

distributed lag model forecasts, h-step forecasts and sequential one-step forecasts of a 

static factor model, and generalized dynamic factor models with fixed rules and optimal 

criteria respectively to determine the number of factors. Bruno and Lupi (2003) instead 

analysed business survey data for France, Germany, and Italy and estimated dynamic 

factor and unobserved components models. Öksüz Narinç (2018) modelled monthly IPI 

in Turkey, Brazil, and the G7 economies over the period from 1990 to 2017 using linear, 

quadratic, cubic, and hyperbolic specifications as well as non-linear ones (Weibull, 

Negative Exponential, Brody, Gompertz, Logistic, Von Bertalanffy, Richards), while 

Dua and Mishra (1999) examined persistence in the Indian IPI by carrying out augmented 

Dickey-Fuller (ADF), Phillips Perron (PP), and KPSS tests.   

An important feature of the IPI often overlooked in the existing literature is its 

seasonality. Lildholdt (2002) showed that cross-sectional aggregation or structural 

changes can result in fractional orders of integration at the seasonal frequencies. 

Therefore Candelon and Gil-Alana (2004) proposed a framework allowing for unit and 

fractional roots at both the seasonal and long-run frequencies. In particular, they analysed 

the behaviour of the IPI in four Latin American countries, namely Brazil, Argentina, 

Colombia, and Mexico, and found evidence of long-memory behaviour in the seasonal 

component in the two former economies.  The present study also uses a framework 

allowing for long memory in the seasonal component, as explained below. 1 

 

                                                            
1 Note that seasonal long-memory models have also been used for GDP (Gil-Alana, 2002), M1 (Gil-Alana, 
2001), tourism series (Gil-Alana et al., 2004), inflation (Arteche, 2007, 2012), climatological series (Yaya 
et al., 2015), and energy consumption (Adekoya, 2020). 



4 
 

 

 

3. Empirical Analysis 

We use quarterly, seasonally unadjusted data on the US Industrial Production Index, for 

the sample period from 1919Q1 to 2022Q4, which have been obtained from the St. Louis 

Federal Reserve Bank database.  

FIGURES 1 AND 2 ABOUT HERE 

 Figure 1 displays both the original data and their logged values together with their 

respective correlograms and periodograms, the latter exhibiting a large value at the zero, 

long-run frequency. Figure 2 shows instead the first differenced series, a seasonal pattern 

being clearly visible.  

Given the large value of the periodogram at the long-run, zero frequency we focus 

first on the degree of integration of the series at this frequency. Standard unit root tests 

(Dickey and Fuller, ADF, 1979; Phillips and Perron, PP, 1988; Elliot et al., ERS, 1996) 

provide evidence of unit roots in all cases (these results are not reported). However, it is 

well known that such tests have very low power if the true Data Generating Process 

(DGP) is in fact fractionally integrated (see, e.g., Dickey and Rudebusch, 1991; Hassler 

and Wolters, 1994; Lee and Schmidt, 1996; etc.); therefore we allow for the possibility 

of fractional degrees of integration by estimating a model of the following form: 

    ...,2,1t,ux)L1(,xty tt
d

t10t ==−++= ββ ,  (1) 

where yt stands for the observed time series, β0 and β1 are the intercept and the coefficient 

on a linear time trend respectively, and xt is assumed to be I(d), where d is another 

parameter to be estimated from the data. As for the error term ut, this is assumed to be in 

turn a white noise and a (weakly) autocorrelated process, where the non-parametric 

approach of Bloomfield (1973) (which is an approximation to AR structures based on the 



5 
 

spectral density function) is used first, and then, given the quarterly frequency of the data, 

a seasonal AR(1) process is also considered of the following form: 

     𝑢𝑢𝑡𝑡 =  𝜌𝜌𝑢𝑢𝑡𝑡−12  +    𝜀𝜀𝑡𝑡 ,         𝑡𝑡  =   1, 2, ….      (2) 

where εt is a white noise process. The estimated values of d together with their 95% 

confidence bands are reported in Table 1 for three different specifications, namely: i) 

without deterministic terms, ii) with a constant, and iii) with both a constant and a linear 

time trend. 

TABLE 1 ABOUT HERE 

 In the majority of cases the unit root null hypothesis cannot be rejected. The only 

exception is the logged series with white noise and seasonal AR disturbances when 

deterministic terms are included in the model. Given the overwhelming evidence in 

favour of the presence of unit roots, first differences are then taken of both the raw data 

and their logged values, the latter being a measure of the growth rate. 

After removing the long-run frequency, seasonality is still present in the data as 

shown by the correlograms and periodograms of the first differenced series displayed in 

Figure 2. To capture it, we adopt the following specification: 

𝑦𝑦𝑡𝑡 =  𝛽𝛽  +    ∑ 4 
𝑠𝑠 = 1 𝛾𝛾

 
𝑖𝑖𝐷𝐷

 
𝑖𝑖𝑡𝑡   +  𝑥𝑥𝑡𝑡 ,       �1 −   𝐿𝐿4 � 𝑑𝑑 𝑥𝑥𝑡𝑡   =     𝑢𝑢𝑡𝑡 ,     (3) 

where ut is again a seasonal AR(1) process.  

Table 2 reports the estimated coefficients. It can be seen that, for both the original 

and logged values, the deterministic terms are statistically insignificant in all cases, which 

represents evidence against deterministic seasonality. The seasonal AR coefficient is 

insignificant for the original data (0.0006) while significant for the logged ones (-0.2456); 

also, the seasonal fractional parameter d is positive and below 0.5 in both cases (0.14 for 

the original series and 0.29 for the logged one), which implies the presence of stationary 
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seasonal long-memory in both series, the effects of shocks being mean reverting with a 

hyperbolic rate of decay to zero. 

 

4. Conclusions 

This paper uses a seasonal long-memory model to capture the behaviour of the US 

Industrial Production Index (IPI) over the period 1919Q1-2022Q4. This series is found 

to display a large value of the periodogram at the zero, long-run frequency, and to exhibit 

an order of integration around 1. When first differences (of either the original data or their 

logged values) are taken, evidence of seasonality is obtained; more specifically, 

deterministic seasonality is rejected in favour of a seasonal fractional integration model 

with an order of integration equal to 0.14 for the original data and 0.29 for their logged 

values, which implies the presence of a seasonal long-memory mean reverting pattern. 

These findings confirm the importance of allowing for (stochastic) seasonality when 

modelling IPI, which is a very useful proxy for aggregate economic activity often used 

by policy makers and agents to monitor developments in the economy. 
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Figure 1: Plots of IPI and log IPI with their correlograms and periodograms 

Industrial Production Index Industrial Production Index (log) 

  
First 100 values of the correlogram of IPI First 100 values of the correlogram of Log IPI 

  
Periodogram of IPI Periodogram of Log IPI 

  
The red lines in the correlograms refer to the 95% confidence bands for no autocorrelation. 
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Figure 2: First differences of IPI and log IPI with their correlograms and 
periodograms 

Industrial Production Index Industrial Production Index (log) 

  
First 50 values of the correlogram of (1 – L) IPI First 50 values of the correlogram of (1 – L)Log IPI 

  
Periodogram of (1 – L) IPI Periodogram of (1 – L) Log IPI 

  
The red lines in the correlograms refer to the 95% confidence bands for no autocorrelation. 
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Table 1: Estimates at the long-run or zero frequency 

i)    Original data 

Type of errors No deterministic terms An intercept An intercept and a time trend 

White noise 1.03   (0.96,  1.10) 1.03   (0.97,  1.11) 1.03   (0.97,  1.11) 

Bloomfield 1.07   (0.97,  1.25) 1.07   (0.96,  1.24) 1.08   (0.97,  1.25) 

Seasonal AR1 1.03   (0.97,  1.10) 1.03   (0.96,  1.11) 1.04   (0.96,  1.12) 

ii)    Logged values 

Type of errors No deterministic terms An intercept An intercept and a time trend 

White noise 1.04   (0.96,  1.13) 1.20   (1.10,  1.31) 1.19   (1.10,  1.30) 

Bloomfield 0.98   (0.84,  1.14) 0.90   (0.80,  1.08) 0.90   (0.80,  1.08) 

Seasonal AR1 1.02   (0.96,  1.13) 1.20   (1.11,  1.30) 1.19   (1.10,  1.30) 
In bold, evidence of unit roots at the 95% level. 

 

 

Table 2: Estimated coefficients for a seasonally fractionally integrated process 

Series d β γ1 γ2 γ3 γ4 

Original 0.14 
(0.04,  0.32) 

-0.05768 
(-0.30) 

-0.05701 
(-0.30) 

0.17705 
(0.93) 

-0.09637 
(-0.50) 

0.00005 
(0.16) 

Logged values 0.29 
(0.02,  0.65) 

-0.00719 
(-0.67) 

0.00314 
(0.32) 

-0.00107 
(-0.10) 

0.00632 
(0.64) 

-0.00001 
(-0.44) 

The values in parenthesis are the t-values of the estimated coefficients. 


