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Abstract 
 
Under correlated heterogeneity, the commonly used two-way fixed effects estimator is biased and 
can lead to misleading inference. This paper proposes a new trimmed mean group (TMG) 
estimator which is consistent at the irregular rate of n 1/3 even if the time dimension of the panel 
is as small as the number of its regressors. Extensions to panels with time effects are provided, 
and a Hausman-type test of correlated heterogeneity is proposed. Small sample properties of the 
TMG estimator (with and without time effects) are investigated by Monte Carlo experiments and 
shown to be satisfactory and perform better than other trimmed estimators proposed in the 
literature. The proposed test of correlated heterogeneity is also shown to have the correct size and 
satisfactory power. The utility of the TMG approach is illustrated with an empirical application. 
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1 Introduction

Fixed effects estimation of average treatment effects has been predominantly utilized for

program and policy evaluation. For static panel data models where slope heterogeneity is

uncorrelated with treatment effects, standard fixed and time effects (FE-TE) estimators are

consistent and if used in conjunction with robust standard errors lead to valid inference

in short T (time dimension) panels when the number of cross sections (n) is sufficiently

large. However, when the slope heterogeneity is correlated with the treatment and/or control

variables the FE-TE estimators (also known as two-way fixed effects) become inconsistent

even if both T and n → ∞.1 Such correlated heterogeneity arises endogenously in the case

of dynamic panel data models considered by Pesaran and Smith (1995) even if the slope

heterogeneity itself is purely random.

In the case of static panels, correlated heterogeneity could arise when treatment effects

are correlated with the treatment itself and/or the control variables. For example, in es-

timation of returns to education, the choice of educational level is likely to be correlated

with expected returns to education. In a review of active policies in labor markets, Crépon

and Van Den Berg (2016) emphasize that when estimating the average impacts on work-

ers’ productivity and earnings, correlated heterogeneity should be accounted for, to better

encourage enrollment in training programs. Banerjee et al. (2015) also consider identifica-

tion and estimation of heterogeneous treatment effects in the case of micro-credit evaluation

programs, and Bastagli et al. (2019) consider similar issues in studies of anti-poverty cash

transfer programs.2 In a recent survey de Chaisemartin and D’Haultfoeuille (2023) highlight

the importance of allowing for correlated heterogeneity and draw attention to the misleading

inferences that can result when FE-TE estimates are used in the case of heterogeneous policy

effects.

Pesaran and Smith (1995) proposed mean group (MG) estimation for dynamic heteroge-

neous panel data models, where by construction represent examples of correlated heterogene-

ity. It was later shown that for panels with strictly exogenous regressors, the MG estimator is
√
n-consistent in the presence of correlated heterogeneity even if T is fixed as n→∞, so long

as T is sufficiently large such that at least second order moment of the MG estimator exists.

However, when T is ultra short such that T is close to the number of regressors, k, the MG

estimator could fail. As shown by Chamberlain (1992) one needs T to be strictly larger than

1The concept of the correlated random coefficient model is due to Heckman and Vytlacil (1998).
Wooldridge (2005) shows that FE-TE estimators continue to be consistent if slope heterogeneity is mean-
independent of all the de-trended covariates. See also condition (2.19) given below.

2Reviews of recent advances in econometric methods for heterogeneous treatment effects of binary variables
can be found in Athey and Imbens (2017) and Abadie and Cattaneo (2018).

1



k for regular identification of average effects under correlated heterogeneity.3 Chamberlain

(1992) calculated efficiency bounds for models defined by conditional moment restrictions

with a nonparametric component, and proposed a
√
n-consistent Generalized Method of Mo-

ments (GMM) estimator for the mean of correlated random coefficients in panel data models

provided that certain rank and moment conditions hold.4 See also Bonhomme (2012) and

Arellano and Bonhomme (2012). Assuming the errors follow autoregressive moving average

processes, Arellano and Bonhomme (2012) provide rank conditions under which the GMM

estimators they propose for variances and densities of correlated random coefficients can be

regularly identified.

The above papers adopt the GMM approach to address identification and estimation of

average treatment effects. Some researchers consider other regular estimators by imposing

additional restrictions on the correlation between heterogeneous coefficients and regressors.

Wooldridge (2005) proposes an alternative estimator for models with nonlinear individual-

specific unobserved effects, where he imposes a condition that random coefficients are mean

independent of the idiosyncratic deviations in regressors. To estimate the average effects of

binary treatment variables for the sub-population with no time variations in treatment status,

Verdier (2020) explicitly models selection into treatment. Assuming random coefficients are

independent of regressors, Lee and Sul (2022) apply a double-sided trimming scheme to the

MG estimators for static panels with common correlated effects developed by Chudik and

Pesaran (2015), so as to eliminate effects of outlying individual estimates with too small or

too large regressor sample variances.

This paper considers identification and estimation of average treatment effects in ultra

short linear panel data models with continuous covariates, where T could be as small as k.

Building on the pioneering work of Chamberlain (1992), Graham and Powell (2012) focus on

panels with T = k, where identification issues of time effects and the mean coefficients arise

especially when there are insufficient within-individual variations for some regressors. They

derive an irregular estimator of the mean coefficients by excluding individual estimates from

the estimation of the average treatment effects if the sample variance of regressor in question

is smaller than a given threshold.5 Exploiting the sub-population of “stayers”with no time

variations in regressors, they then propose an estimator of time effects.6 More recently Sasaki

3An unknown parameter, β0, is said to be regularly identified if there exists an estimator that converges
to β0 in probability at the rate of

√
n. Any estimator that converges to its true value at a rate slower than√

n is said to be irregularly identified.
4The GMM estimator proposed by Chamberlain (1992) turns out to be the same as the MG estimator.

See equation (4.8b) in Chamberlain (1992).
5The trimming idea of Graham and Powell has also been used recently by de Chaisemartin et al. (2023)

for identification of the average slopes of switchers’ potential outcomes with many “near stayers”.
6Graham and Powell (2012) establish identification results based on moment equations conditional on the

sub-population of “stayers”, namely individuals with no time variations in their realized covariates. But in
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and Ura (2021) propose an alternative procedure to deal with the possibility of many stayers

and/or slow movers in the panel. They consider various distributions of within-variations

and use local polynomial regressions to provide robust inference.

In this paper, we first derive asymptotic properties of MG and FE estimators in large n

and short T heterogeneous static panel data models, and provide sufficient conditions under

which MG and FE estimators are regular, in the sense that they are
√
n-consistent. In cases

where these conditions are not met, we propose a new trimmed mean group (TMG) estimator

which makes use of additional information on trimmed units not exploited by Graham and

Powell (2012). In effect, information on all units (whether subject to trimming or not) are

included in the computation of the average treatment effect. Following the literature, the

decision on whether a unit i is subject to trimming is made with respect to the determinant

of the sample covariance matrix of the regressors, denoted by di, and the individual estimates

for unit i are trimmed uniformly if di < an = d̄nn
−α, where d̄n = n−1Σn

i=1di, and α measures

the rate of trade-off between bias and variance of TMG. Our asymptotic derivations suggest

setting α close to 1/3. Also noting that di/d̄n is scale free, our choice of trimming threshold,

an, does not involve any other tuning parameters.

We also consider heterogeneous panels with time effects and develop two new estimators

of the average treatment effects in two-way fixed effects regressions, which we denote by

TMG-TE and TMG-C, corresponding to cases where T ≥ k and T > k, respectively. The

TMG-TE estimator is based on joint estimation of time and average effects, whilst the TMG-

C estimator follows Chamberlain (1992) and eliminates the time effects before estimating the

average treatments, which is possible only if T > k. We derive the asymptotic distributions of

TMG-TE and TMG-C estimators under fairly general assumptions but require the identifying

condition that the non-zero dependence between heterogeneous slope coefficients and the

regressors is time-invariant. Note that this condition trivially holds in the case of FE-TE

estimators whose validity requires zero dependence between the slope coefficients and the

regressors.

As noted above the presence of heterogeneity by itself does not invalidate the use of the

FE-TE estimator which continues to have the regular convergence rate of
√
n. The prob-

lem arises when slope heterogeneity is correlated with the covariates, such as the treatment

variable. It is, therefore, important that before using the FE-TE estimator the assumption

of uncorrelated heterogeneity is tested. To this end, we also propose Hausman-type tests

of correlated heterogeneity by comparing the FE and FE-TE estimators with the associated

TMG estimators, and derive their asymptotic distributions under fairly general conditions.

The earlier Hausman tests of slope homogeneity developed by Pesaran et al. (1996) and Pe-

estimation, a sub-sample of “near stayers”is used instead.
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saran and Yamagata (2008) are based on the difference between FE and MG estimators and

do not apply when T is ultra short.

We also carry out an extensive set of Monte Carlo (MC) simulations to investigate the

small sample properties of the TMG, TMG-TE and TMG-C estimators and how they compare

with other estimators, including the trimmed estimators proposed by Graham and Powell

(GP) and Sasaki and Ura (SU). The MC evidence on the size and empirical power of the

Hausman-type tests of correlated heterogeneity in panel data models without and with time

effects is provided, and the sensitivity of estimation results to the choice of the trimming

threshold parameter, α, is also investigated. The MC and theoretical results of the paper

are all in agreement. The TMG and TMG-TE estimators not only have the correct size but

also achieve better finite sample properties compared with other trimmed estimators across

a number of experiments with different data generating processes, allowing for heteroskedas-

ticity (random and correlated), error serial correlations, and regressors with heterogeneous

dynamics and interactive effects. The simulation results also confirm that the Hausman-type

tests based on the difference between FE (FE-TE) and TMG (TMG-TE) estimators have

the correct size and power against the alternative of correlated heterogeneity.

As an empirical illustration, we re-visit the example considered by GP who provide es-

timates of the average effect of household expenditures on calorie demand using a balanced

panel of n = 1, 358 households in poor rural communities in Nicaragua over the years 2001–

2002 (T = 2) and 2000–2002 (T = 3). Comparing the FE and TMG estimates, for panels

with and without time effects, we find that the Hausman tests reject the null of uncorrelated

heterogeneity, thus shedding doubt on the use of FE or FE-TE estimates for this application.

For the ultra short panel with T = 2, the FE and TMG estimates of the average treatment

effects are 0.6568 (0.0287) and 0.5623 (0.0425). The figures in brackets are standard errors.

Given the result of the Hausman test, most likely the FE estimate is biased upward, with a

much lower standard error. These results do not change if we allow for time effects. Turn-

ing to the other trimmed estimators, the GP and SU estimates, 0.4549 (0.1003) and 0.6974

(0.1689), respectively, are wide apart, and both have larger standard errors as compared to

the TMG estimate. Again these estimates are not much affected by allowing for time effects.

But once we consider the panel with T = 3 the TMG and GP estimates (with or without

time effects) become very similar, although the TMG estimates continue to be more pre-

cisely estimated. The gap between FE and TMG estimates also becomes closer but remains

statistically highly significant.

The rest of the paper is organized as follows. Section 2 sets out the heterogeneous panel

data model and investigates the asymptotic properties of the MG and FE estimators. Section

3 considers ultra short T panels and discusses the need for trimming as suggested by GP.
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The proposed TMG estimator is introduced in Section 4, and its asymptotic properties are

established in Section 5. Section 6 extends the TMG estimation to ultra short panel data

models with time effects, distinguishing between cases where T ≥ k and T > k. Section

7 sets out the Hausman-type test of correlated heterogeneous slope coefficients. Section 8

describes the Monte Carlo experiments and reports the simulation results. Section 9 presents

the empirical illustration. Section 10 concludes. The online supplement develops the test of

correlated heterogeneity for panels with time effects, and provides supplementary information

on Monte Carlo designs and additional Monte Carlo evidence.

2 Heterogeneous linear panel data models

Consider the panel data model where the outcome variable yit for unit i at time t is explained

linearly in terms of the k × 1 vector of covariates wit

yit = θ′iwit + uit, for i = 1, 2, ..., n, and t = 1, 2, ..., T, (2.1)

where θi is a k × 1 vector of unknown unit-specific coefficients and uit is the error terms.

Stacking by time we have

yi = W iθi + ui, for i = 1, 2, ..., n, (2.2)

where yi = (yi1, yi2, ..., yiT )′, W i = (wi1,wi2, ...,wiT )′, and ui = (ui1, ui2, ..., uiT )′. The

parameter of interest is the k × 1 vector of average treatment effects, θ0, defined by

θ0 = plim
n→∞

(
n−1

n∑
i=1

θi

)
. (2.3)

When T ≥ k, θ0 can be estimated by the mean group estimator, θ̂MG, computed as a simple

average of the least squares estimates of θi, namely (see Pesaran and Smith (1995))

θ̂MG =
1

n

n∑
i=1

θ̂i, (2.4)

where

θ̂i = (W ′
iW i)

−1
(W ′

iyi) . (2.5)

To investigate the asymptotic properties of the MG estimator when T is short and n→∞,

we make the following assumptions:
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Assumption 1 (Errors) Conditional onW i, (a) the errors, uit, in (2.1) are cross-sectionally

independent, (b) E(ui |W i ) = 0, for i = 1, 2, ..., n, and (c) E(uiu
′
i |W i ) = H i(W i) = H i,

where H i is a T × T bounded matrix with 0 < c < infi λmin (H i) < supi λmax (H i) < C.

Assumption 2 (Regression coefficients) The k × 1 vector of coefficients, θi, is allowed

to depend on the distribution of W i with rank(W i) = k. This dependence could be (a)

deterministic with θi fixed and bounded or (b) stochastic, with θi jointly determined with

W i.

(a) θi are deterministic with supi ‖θi‖ < C for i = 1, 2, ..., n, such that θ̄n = n−1
∑n

i=1 θi →
θ0, with ‖θ0‖ < C.

(b) θi are independent draws from a distribution with E(θi) = θ0 and bounded variances

for i = 1, 2, ..., n, where ‖θ0‖ < C, and supiE ‖θi‖
4 < C.

Remark 1 Under Assumption 1, the k × 1 vector of covariates, wit, for i = 1, 2, ..., n are

strictly exogenous, but it allows the conditional variance of ui to depend on W i, and for the

errors, uit, to be serially (over time t) correlated.

Remark 2 Part (c) of Assumption 1 rules out the possibility of unbounded random vari-

ations in H i, but can be relaxed if instead it is assumed that 0 < c < infi λ
2
min (H i) <

supi λ
2
max (H i) < C, with higher order moment conditions on di = det(W′

iWi) and ‖(W ′
iW i)

∗‖.

Remark 3 Assumption 2 is an identification condition for θ0. Under Assumption 2(b)

where θi follows a random coefficients model, E(θ̄n) = θ0, and n−1
∑n

i=1 θi →p θ0.

2.1 Properties of mean group estimator in short T panels

Substituting (2.2) in (2.5) we have

θ̂i = θi + ξiT , (2.6)

where

ξiT = R′iui, (2.7)

and Ri = W i (W
′
iW i)

−1
. Averaging both sides of (2.6) over i, we have

θ̂MG = θ̄n + ξ̄nT , (2.8)

where

θ̄n = n−1

n∑
i=1

θi, and ξ̄nT = n−1

n∑
i=1

ξiT . (2.9)
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Then under Assumption 1, E (ui |W i ) = 0, and hence E
(
ξ̄nT
)

= E (n−1
∑n

i=1 ξiT ) =

n−1
∑n

i=1E [R′iE (ui |W i )] = 0. Then using (2.8) E
(
θ̂MG

)
= E(θ̄n) + E

(
ξ̄nT
)

= θ0,

namely θ̂MG is an unbiased estimator of θ0 irrespective of the possible dependence of θi on

W i. However, the MG estimator is likely to have a large variance when T is too small. This

arises, for example, when the variance of ξ̄nT does not exist or is very large. The condi-

tions under which θ̂MG converges to θ0 at the regular n1/2 rate are given in the following

proposition:

Proposition 1 (Sufficient conditions for
√
n-consistency of θ̂MG) Suppose that yit for

i = 1, 2, ..., n and t = 1, 2, ..., T are generated by model (2.2), and Assumptions 1-2 hold.

Then as n→∞, the MG estimator given by (2.4) is
√
n-consistent for fixed T panels if

sup
i
E
(
d−2
i

)
< C, and sup

i
E
[
‖(W ′

iW i)
∗‖2

1

]
< C, (2.10)

where di = det(W ′
iW i), and (W ′

iW i)
∗ is the adjoint of W ′

iW i.

For a proof see A.2.1 in the Appendix.

Example 1 In the simple case where k = 2, wit = (1, xit)
′, and θi = (αi, βi)

′. Suppose

E(uiu
′
i|xi) = σ2

i IT for t = 1, 2, ..., T and i = 1, 2, ..., n with xi = (xi1, xi2, ..., xiT )′, then

the individual OLS estimator of the slope coefficient, β̂i = (x′iMTxi)
−1x′iMTyi, has first

and second order moments if E (u2
it) < C and E

(
d−2
ix

)
< C, where dix = det(x′iMTxi),

MT = IT − T−1τ Tτ
′
T , and τ T = (1, 1, ..., 1)′. In the case where xit are Gaussian distributed

with mean zeros and a finite variance, σ2
x, it follows that 1

dix
= σ2

x

χ2
T−1

, where χ2
T−1 is a Chi-

squared variable with T − 1 degrees of freedom. Hence, E
(
d−2
ix

)
exists if T − 1 > 4, or if

T > 5. For panels with T ≤ 5, the MG estimator would be irregular when first and/or second

order moments of some individual estimates do not exist.

2.2 A comparison of MG and FE estimators

Consider a panel data model with individual fixed effects, αi, and heterogeneous slope coef-

ficients, βi,

yit = αi + β′ixit + uit, for i = 1, 2, ..., n, and t = 1, 2, ..., T, (2.11)

where xit is a k′ × 1 vector of regressors (k′ = k − 1). In matrix notations

yi = αiτ T +X iβi + ui, (2.12)

7



where X i = (xi1,xi2, ...,xiT )′. The FE and MG estimators of β0 are given by

β̂FE =

(
n−1

n∑
i=1

X ′iMTX i

)−1(
n−1

n∑
i=1

X ′iMTyi

)
, (2.13)

and

β̂MG = n−1

n∑
i=1

β̂i, (2.14)

where β̂i = (X ′iMTX i)
−1X ′iMTyi. In this setting the parameter of interest is given by β0 =

plimn→∞ (n−1
∑n

i=1 βi). One of the main advantages of the FE estimator is its robustness

to the dependence between αi and the regressors. β̂FE is also well defined even if T = k so

long as the following standard assumption is met:

Assumption 3 (Data pooling assumption) Let Ψ̄n = n−1
∑n

i=1 Ψix, where

Ψix = X ′iMTX i. For T ≥ k, there exists n0 such that for all n > n0, Ψ̄n is positive definite,

Ψ̄n →p lim
n→∞

n−1

n∑
i=1

E (Ψix) = Ψ̄ � 0, (2.15)

and

Ψ̄
−1
n = Ψ̄

−1
+ op(1). (2.16)

2.2.1 Conditions for
√
n−consistency of FE estimator

Under the heterogeneous specification (2.11) and noting that MTτ T = 0, we have

β̂FE − β0 = Ψ̄
−1
n

[
n−1

n∑
i=1

X ′iMTX i(βi − β0)

]
+ Ψ̄

−1
n

(
n−1

n∑
i=1

X ′iMTui

)
. (2.17)

Then by Assumption 1, E (ui |X i ) = 0, and hence E (X ′iMTui) = E [E (X ′iMTui|X i)] =

E [X ′iMTE (ui |X i )] = 0. Under Assumptions 1, 2 and 3,

β̂FE − β0 →p Ψ̄
−1

lim
n→∞

n−1

n∑
i=1

E
(
X ′iMTX iηiβ

)
,

where ηiβ = βi − β0, and β̂FE is a consistent estimator of the average treatment effect, β0,

if

lim
n→∞

n−1

n∑
i=1

E
(
X ′iMTX iηiβ

)
= 0. (2.18)

This condition is clearly met if

8



E
[
(X ′iMTX i)ηiβ

]
= 0, (2.19)

for all i = 1, 2, ..., n, and has been already derived by Wooldridge (2005).7 But it is too

restrictive, since it is possible for the average condition in (2.18) to hold even though condition

(2.19) is violated for some units as n → ∞. What is required is that a sufficiently large

number of units satisfy the condition (2.19). Specifically, denote the number of units that

do not satisfy (2.19) by mn = 	(naη) and note that n−1
∑n

i=1 E
(
X ′iMTX iηiβ

)
= 	(naη−1),

and condition (2.18) is met if aη < 1. But for β̂FE to be a regular
√
n-consistent estimator

of β0 a much more restrictive condition on aη is required. Using (2.17) note that

√
n
(
β̂FE − β0

)
= Ψ̄

−1
n

(
n−1/2

n∑
i=1

X ′iMTX iηiβ

)
+ Ψ̄

−1
n

(
n−1/2

n∑
i=1

X ′iMTui

)
,

and
√
n(β̂FE −β0)→p 0 if n−1/2

∑n
i=1X

′
iMTX iηiβ →p 0. The bias term can be written as

n−1/2

n∑
i=1

X ′iMTX iηiβ = n−1/2

n∑
i=1

[
X ′iMTX iηiβ − E

(
X ′iMTX iηiβ

)]
+n−1/2

n∑
i=1

E
(
X ′iMTX iηiβ

)
.

The first term tends to zero in probability if X ′iMTX iηiβ are weakly cross-correlated over

i. For the second term to tend to zero we must have mnn
−1/2 → 0, or if aη < 1/2.

Proposition 2 (Condition for
√
n−consistency of the FE estimator) Suppose that

yit for i = 1, 2, ..., n and t = 1, 2, ..., T are generated by the heterogeneous panel data model

(2.12), and Assumptions 1, 2 and 3 hold. Then the FE estimator given by (2.13) is
√
n-

consistent if

n−1/2

n∑
i=1

E [X ′iMTX i(βi − β0)]→ 0, (2.20)

and this condition is met if aη < 1/2, with aη defined by mn = 	(naη), where mn denotes the

number of units that are subject to correlated heterogeneity.

2.2.2 Relative efficiency of FE and MG estimators

Suppose now that conditions (2.20) and (2.10) hold and both FE and MG estimators are
√
n-consistent. The choice between the two estimators will then depend on their relative

7See equation (12) on page 387 of Wooldridge (2005).
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efficiency, which we measure in terms of their asymptotic covariances, given by

V ar
(√

nβ̂MG |X
)

= Ωβ + n−1

n∑
i=1

Ψ−1
ix X

′
iMTH iMTX iΨ

−1
ix ,

and

V ar
(√

nβ̂FE |X
)

= Ψ̄
−1
n

(
n−1

n∑
i=1

ΨixΩβΨix

)
Ψ̄
−1
n

+Ψ̄
−1
n

(
n−1

n∑
i=1

X ′iMTH iMTX i

)
Ψ̄
−1
n ,

where X = (X1,X2, ...,Xn), Ωβ = V ar(βi|X i) � 0, H i = E (uiu
′
i|X i), and as before

Ψix = X ′iMTX i, and Ψ̄n = n−1
∑n

i=1 Ψix. Hence

V ar
(√

nβ̂MG |X
)
− V ar

(√
nβ̂FE |X

)
= An +Bn, (2.21)

where

An = Ωβ − Ψ̄
−1
n

(
n−1

n∑
i=1

ΨixΩβΨix

)
Ψ̄
−1
n , (2.22)

and

Bn =

(
n−1

n∑
i=1

Ψ−1
ix X

′
iMTH iMTX iΨ

−1
ix

)
− Ψ̄

−1
n

(
n−1

n∑
i=1

X ′iMTH iMTX i

)
Ψ̄
−1
n .

(2.23)

An and Bn capture the effects of two different types of heterogeneity, namely slope hetero-

geneity and regressors/errors heterogeneity. The superiority of the FE over MG is readily

established when the slope coefficients and error variances are homogeneous across i, and

the errors are serially uncorrelated, namely if Ωβ = 0 and H i = σ2IT for all i. In this case

An = 0, and we have

V ar
(√

nβ̂MG |X
)
− V ar

(√
nβ̂FE |X

)
σ2

= n−1

n∑
i=1

Ψ−1
ix − Ψ̄

−1
n ,

which is the difference between the harmonic mean of Ψix and the inverse of its arithmetic

mean, which is a non-negative definite matrix.8 However, this result may be reversed when we

allow for heterogeneous Ωβ � 0, and/or ifH i 6= σ2IT . The following proposition summarizes

8For a proof see the Appendix to Pesaran et al. (1996).
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the results of the comparison between the FE and MG estimators.

Proposition 3 (Relative efficiency of MG and FE estimators) Suppose that yit for

i = 1, 2, ..., n and t = 1, 2, ..., T are generated by the heterogeneous panel data model (2.12),

and Assumptions 1, 2 and 3 hold, and the uncorrelated heterogeneity condition (2.20) is met.

Then V ar
(√

nβ̂MG |X
)
− V ar

(√
nβ̂FE |X

)
= An +Bn, where An and Bn are given by

(2.22) and (2.23), respectively. An is a non-positive definite matrix, and the sign of Bn is

indeterminate. Under uncorrelated heterogeneity, the FE estimator, β̂FE, is asymptotically

more efficient than the MG estimator if the benefit from pooling (i.e. when Bn � 0) outweighs

the loss in efficiency due to slope heterogeneity (since An � 0).

For a proof see Section A.2.2 of the Appendix.

Example 2 Consider a simple case where k′ = 1, Ψix = ψix and Ωβ = σ2
β are scalars, and

suppose that H i(X i) = E (uiu
′
i |W i ) = σ2ψixIT . then

V ar
(√

nβ̂MG |X
)
− V ar

(√
nβ̂FE |X

)
= −

(
σ2
β + σ2

) [
n−1

∑n
i=1

(
ψix − ψ̄n

)2

ψ̄
2
n

]
,

where ψ̄n = n−1
∑n

i=1 ψix. In this simple case the MG estimator is more efficient than the

FE estimator even if σ2
β = 0.

In general, with uncorrelated heterogeneous coefficients, the relative efficiency of the MG

and FE estimators depends on the relative magnitude of the two components in (2.21). Since

An � 0, the outcome depends on the sign and the magnitude of Bn, which in turn depends

on the heterogeneity of error variances, H i(X i) and Ψix over i.

3 Irregular mean group estimators

So far we have argued that the MG estimator is robust to correlated heterogeneity, and

its performance is comparable to the FE estimator even under uncorrelated heterogeneity.

However, since the MG estimator is based on the individual estimates, θ̂i for i = 1, 2, ..., n,

its optimality and robustness critically depend on how well the individual coefficients can be

estimated. This is particularly important when T is ultra short, which is the primary concern

of this paper. In cases where T is small and/or the observations on wit are highly correlated,

or are slowly moving, di = det (W ′
iW i) is likely to be close to zero in finite samples for a

large number of units i = 1, 2, ..., n. As a result, θ̂i is likely to be a poor estimate of θi for

11



some i, and including it in θ̂MG could be problematic, rendering the MG estimator inefficient

and unreliable.

However, as discussed above, θ̂MG continues to be an unbiased estimator of θ0, even if θi

are correlated with W i so long as the stochastic component of wit is strictly exogenous with

respect to uit. By averaging over θ̂i for i = 1, 2, ..., n, as n→∞, the MG estimator converges

to θ0 if T is sufficiently large such that θ̂i have at least second order moments for all i. The

existence of first order moments of θ̂i is required for the MG estimator to be unbiased, and

we need θ̂i to have second order moments for
√
n-consistent estimation and valid inference

about the average effects, θ0. Accordingly, we need to distinguish between cases where θ̂i

have first and second order moments for all i, as compared to cases where some θ̂i may not

even have first order moments. We refer to the MG estimator based on individual estimates

without first or second order moments as the “irregular MG estimator”, which is the focus

of our analysis. We consider the irregular MG estimator both for models with and without

time effects and show how our proposed estimator relates to the literature.

3.1 Graham and Powell estimator

For panels with T = k, Graham and Powell (2012) propose a trimmed GMM estimator (de-

noted as “GP”) whereby individual estimates with | det(W i)| smaller than a given threshold

value, hn, are omitted from the estimation of θ0. For now, abstracting from time effects, the

GP estimator can be viewed as a trimmed MG estimator given by

θ̂GP =

∑n
i=1 1{di > h2

n}θ̂i∑n
i=1 1{di > h2

n}
. (3.1)

In the special case where T = k, di = |det(W i)|2, and the trimming procedure based on

| det(W i)| > hn is algebraically the same as the one used in (3.1). GP show that to correctly

center the limiting distribution of θ̂GP , hn must be set such that (nhn)1/2hn → 0, as n→∞.

For example, for the choice of hn = CGPn
−αGP , it is required that αGP > 1/3.9 The GP

approach can be viewed as trimming by exclusion and overlooks the information that might

be contained in (W ′
iW i)

∗ when di ≤ h2
n. In what follows we propose an alternative trimmed

MG (TMG) estimator that makes use of this information.

9See Section 2 of GP and page 2125 where the use of hn = C0n
−1/3 is recommended.
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4 Trimmed mean group estimators

To motivate the TMG estimator we first introduce the following trimmed estimator of θi,

θ̃i = θ̂i, if di > an, and θ̃i = θ̂
∗
i , if di ≤ an,

where as before θ̂i = (W ′
iW i)

−1W ′
iyi, di = det(W ′

iW i), θ̂
∗
i = a−1

n (W ′
iW i)

∗W ′
iyi, and

an = Cnn
−α, (4.1)

with α > 0, and Cn > 0 bounded in n. The choice of α and Cn will be discussed below.

Written more compactly, we have

θ̃i = 1{di > an}θ̂i + 1{di ≤ an}θ̂
∗
i = (1 + δi)θ̂i, (4.2)

where δi is given by

δi =

(
di − an
an

)
1{di ≤ an} ≤ 0. (4.3)

We considered two versions of TMG estimators depending on how individual trimmed esti-

mators, θ̃i, are combined. An obvious choice was to use a simple average of θ̃i, namely

θ̃n = n−1

n∑
i=1

θ̃i = n−1

n∑
i=1

(1 + δi)θ̂i, (4.4)

which can also be viewed as a weighted average estimator with the weights wi = (1+ δi)/n <

1/n. But it is easily seen that these weights do not add up to unity, and it might be desirable

to use the scaled weights wi/(1 + δ̄n) = n−1(1 + δi)/(1 + δ̄n), where δ̄n = n−1
∑n

i=1 δi. Using

these modified weights we consider

θ̂TMG = n−1

n∑
i=1

(
1 + δi
1 + δ̄n

)
θ̂i =

θ̃n
1 + δ̄n

. (4.5)

Although the difference between the two TMG estimators is small for sufficiently large n,

it turns out that θ̂TMG behaves much better in small samples and will be the focus of this

paper.

To relate θ̃n to the GP estimator given by (3.1), using the above results we note that

θ̃n = (1− πn)

(∑n
i=1 1{di > an}θ̂i∑n
i=1 1{di > an}

)
+ πn

(∑n
i=1 1{di ≤ an}θ̂

∗
i∑n

i=1 1{di ≤ an}

)
, (4.6)
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where πn is the fraction of the estimates being trimmed

πn =

∑n
i=1 1{di ≤ an}

n
. (4.7)

Compared to θ̃n, the GP estimator ignores the second term in (4.6), and hence places zero

weights on the estimates with di ≤ an. In contrast, both θ̃n and hence θ̂TMG place non-zero

weights on all the individual estimates, θ̃i.

5 Asymptotic properties of the TMG estimator

To investigate the asymptotic properties of the TMG estimator, θ̂TMG, we introduce the

following additional assumptions:

Assumption 4 For i = 1, 2, ..., n, denote by di = det (W ′
iW i) whereW i = (wi1,wi2, ...,wiT )′

is the T × k matrix of observations on wit in the heterogeneous panel data model (2.2).

infi (di) > 0, infi λmin (W ′
iW i)

∗
> c > 0, and supiE

[∥∥(W ′
iW i)

∗∥∥2
]
< C, where (W ′

iW i)
∗

=

di (W
′
iW i)

−1
is the adjoint of W ′

iW i.

Assumption 5 (Distribution of di) For i = 1, 2, ..., n, di are random draws from the

probability distribution function, Fd(u), with the continuously differentiable density function,

fd(u), over u ∈ (0,∞), such that Fd(0) = 0, fd(ān) < C, and
∣∣f ′d(ān)

∣∣ < C, where f ′d(ān) is

the first derivative of fd(u) evaluated at ān ∈ (0, an).

Assumption 6 (Characterization of correlation between θi and di) For i = 1, 2, ..., n,

the dependence of θi = (θi1, θi2, ..., θik)
′ on di is characterized by (a):

θi = E(θi|di) + εi, (5.1)

where E(εi|di) = 0, and supiE ‖εi‖
4 < C. (b): Denote

ηi = θi − θ0, (5.2)

and

ψi = E (ηi|di) = Bi {g(di)− E [g(di)]} , (5.3)

where g(u) = (g1(u), g2(u), ..., gk(u))′ and gj(u) for j = 1, 2, ..., k are bounded and contin-

uously differentiable functions of u on (0,∞), and Bi are bounded k × k matrices of fixed

constants with supi ‖Bi‖ < C. (c) ηi are distributed independently over i.
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Remark 4 Under Assumption 4, by imposing infi (di) > 0 and Fd(0) = 0, we do not consider

the case where there is a positive mass of “stayers”in the population, which is the focus of

Sasaki and Ura (2021).

Remark 5 Under Assumption 5, di are distributed independently over i, which also implies

that δi, defined by (4.3), are also distributed independently over i.

Remark 6 Under Assumption 6, ηi can be written as

ηi = ψi + εi, (5.4)

where ψi represents the part of the heterogeneity of θi that is correlated with di, and εi

represents random or idiosyncratic heterogeneity which is distributed independently of di,

with E(εi) = 0, for all i.

Remark 7 Assumptions 5 and 6 can be relaxed by requiring that ηi and δi to be weakly

cross-sectionally correlated. The cross-sectional independence assumption is maintained to

simplify the mathematical exposition.

Remark 8 Under Assumption 6, it also follows that (1 + δi)ηi are distributed independently

over i, although in general E(δiηi) 6= 0.

Using (2.6) and (5.2) in (4.2) we have θ̃i = (1+δi)θ0+ζiT , where ζiT = (1+δi) (ηi + ξiT ),

and θ̂TMG defined by (4.5) can be written as

θ̂TMG − θ0 =

(
1

1 + δ̄n

)
ζ̄nT , (5.5)

where ζ̄nT = n−1
∑n

i=1 ζiT . (5.5) can be written equivalently as

θ̂TMG − θ0 =

(
1 + E

(
δ̄n
)

1 + δ̄n

)(
bn + n−1

n∑
i=1

[pi − E (pi)] + q̄nT

)
, (5.6)

where

bn = n−1

n∑
i=1

E (pi) = n−1

n∑
i=1

E(δiηi)

1 + E
(
δ̄n
) , and q̄nT = n−1

n∑
i=1

qiT , (5.7)

with

pi =
(1 + δi)ηi
1 + E

(
δ̄n
) , and qiT =

(1 + δi) ξiT
1 + E

(
δ̄n
) . (5.8)
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Under Assumptions 4, 5 and 6 δi−E (δi) and pi−E (pi) are distributed independently over

i with zero means and bounded variances, and we have

δ̄n − E
(
δ̄n
)

= n−1

n∑
i=1

[δi − E(δi)] = Op(n
−1/2), and n−1

n∑
i=1

[pi − E (pi)] = Op(n
−1/2).

Furthermore by Lemma A.1, E(δi) = O(an), E (δiηi) = O(an), and it follows that

bn =
1

1 + E
(
δ̄n
) [n−1

n∑
i=1

E(δiηi)

]
=

O(an)

1 +O(an)
= O(an), (5.9)

and
1 + E

(
δ̄n
)

1 + δ̄n
= 1−

δ̄n − E
(
δ̄n
)

1 + E
(
δ̄n
)

+
(
δ̄n − E

(
δ̄n
)) = 1 +Op(n

−1/2). (5.10)

Also conditional on W i, qiT are distributed independently with mean zeros, and since q̄nt =

n−1
∑n

i=1 qiT =

(
1

1+E(δ̄n)

)
ξ̄δ,nT , where ξ̄δ,nT = n−1

∑n
i=1 (1 + δi) ξiT , using results in

Lemma A.2 we have E (q̄nt) = 0 and

V ar (q̄nt) =

(
1

1 + E
(
δ̄n
))2

V ar
(
ξ̄δ,nT

)
= O(n−1+α).

Hence, q̄nt = Op

(
n−1/2+α/2

)
. Using these results in (5.6) we have

θ̂TMG − θ0 = O(n−α) +Op

(
n−

(1−α)
2

)
. (5.11)

Hence θ̂TMG asymptotically converges to θ0, so long as 0 < α < 1 as n → ∞. The con-

vergence rate of θ̂TMG to θ0 will depend on the trade-off between the asymptotic bias and

variance of θ̂TMG. Though it is possible to reduce the bias of θ̂TMG by choosing a value of

α close to unity, it will be at the expense of a large variance. In what follows we shed light

on the choice of α by considering the conditions under which the asymptotic distribution of

θ̂TMG is centered around θ0 so that V ar(θ̂TMG) also tends to zero at a reasonably fast rate.

5.1 The choice of the trimming threshold

We begin by assuming that the rate at which θ̂TMG converges to θ0 is given by nγ, where

γ is set in relation to α. Given the irregular nature of the individual estimators of θi when

T is ultra short (for example T = k), we expect the rate, nγ, to be below the standard rate

16



of n1/2.10 Using (5.6) and (5.10) and noting that γ ≤ 1/2 (with equality holding only under

regular convergence), we have

nγ
(
θ̂TMG − θ0

)
= nγbn+nγ−(1−α)/2

[
n−(1+α)/2

n∑
i=1

[pi − E (pi)] + n−(1+α)/2

n∑
i=1

qiT

]
+op(1).

(5.12)

To ensure that the asymptotic distribution of θ̂TMG is correctly centered, we must have

nγbn → 0 as n → ∞. Since nγbn = O(nγan) = O(nγ−α), this condition is ensured if γ < α.

Turning to the second term of the above, we also note that to obtain a non-degenerate

distribution we also need to set γ = (1− α) /2. Combining these two requirements yields(
1− α

2

)
< α, or α > 1/3, (5.13)

which implies that at most the convergence rate of θ̂TMG can be n1/3, well below the standard

convergence rate, n1/2, which is achieved only if individual estimators of θi have at least

second order moments for all i. In practice, we suggest setting α at the boundary value of

1/3 or just above 1/3, which yields the familiar non-parametric convergent rate of 1/3.

5.2 Trimming condition

The condition α > 1/3 whilst necessary, it is not sufficient. It is also required that the

asymptotic variance of nγ
(
θ̂TMG − θ0

)
tends to a positive definite matrix. To this end,

setting γ = (1− α)/2 we first write (5.12) as

n(1−α)/2
(
θ̂TMG − θ0

)
= n(1−α)/2bn + zp,n + zq,nT + op(1),

where zp,n = n−(1+α)/2
∑n

i=1 [pi − E (pi)], and zq,nT = n−(1+α)/2
∑n

i=1 qiT . Recall also that

n(1−α)/2bn = O
(
n(1−3α)/2

)
which becomes negligible since α > 1/3, and under Assumption

6, pi are cross-sectionally independent and we have V ar (zp,n) = n−α [n−1
∑n

i=1 V ar (pi)] =

O(n−α). Since E (zp,n) = 0, it follows that zp,n →p 0 at the rate of a
1/2
n as n→∞, and hence

n(1−α)/2
(
θ̂TMG − θ0

)
= zq,nT +Op(n

−α/2) + op(1).

The first term can be written as zq,nT = n(1−α)/2

(
1

1+E(δ̄n)

)
ξ̄δ,nT . By (A.1.14) of Lemma

A.2 and recalling that E
(
δ̄n
)

= O(an), we have V ar (zq,nT ) = n(1−α)
(

1
1+O(an)

)2

O(n−1+α)

10This issue has also been addressed by Graham and Powell (2012) and Sasaki and Ura (2021).
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= O(1), and the asymptotic distribution of θ̂TMG is determined by that of zq,nT . Under

Assumption 1, conditional on W i, qiT are independently distributed over i with zero means

and zq,nT tends to a normal distribution if limn→∞ V ar (zq,nT ) is a positive definite matrix.

Using (A.1.13) of Lemma A.2 we note that

V ar (zq,nT ) =

(
1

1 + E
(
δ̄n
))2{

n−1−α
n∑
i=1

E [1{di > an}R′iH iRi]

}

+

(
1

1 + E
(
δ̄n
))2{

n−1−α
n∑
i=1

a−2
n E

[
d2
i1{di ≤ an}R′iH iRi

]}
, (5.14)

which can be written equivalently as

V ar (zq,nT ) = C−1
n

[
1 + E

(
δ̄n
)]−2

[
n−1

n∑
i=1

E [an1{di > an}R′iH iRi]

]

+C−1
n

[
1 + E

(
δ̄n
)]−2

[
n−1

n∑
i=1

a−1
n E

[
d2
i1{di ≤ an}R′iH iRi

]]
. (5.15)

By (A.1.15) in Lemma A.2 E [n−1
∑n

i=1 a
−1
n d2

i1{di ≤ an}R′iH iRi] = O
(
a

1/2
n

)
, and since

E
(
δ̄n
)

= O(an) it then follows that (recall that 0 < Cn < C)

lim
n→∞

V ar (zq,nT ) = C−1 lim
n→∞

[
n−1

n∑
i=1

E (an1{di > an}R′iH iRi)

]
.

To establish conditions under which limn→∞ V ar (zq,nT ) � 0, note that a k × k symmetric

matrix A is positive definite if p′Ap > 0, for all non-zero vectors p ∈ Rk. Accordingly,

consider

p′

[
n−1

n∑
i=1

an1{di > an}R′iH iRi

]
p = n−1

n∑
i=1

an1{di > an}p′R′iH iRip,

for some p such that p′p > 0. Note that

n−1

n∑
i=1

an1{di > an}p′R′iH iRip ≥ n−1

n∑
i=1

an1{di > an} (p′R′iRip)λmin (H i) ,
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and since R′iRi = (W ′
iW i)

−1
= d−1

i (W ′
iW i)

∗, then

p′

[
1

n

n∑
i=1

an1{di > an}R′iH iRi

]
p ≥ (p′p)

1

n

n∑
i=1

(
an
di

)
1{di > an}λmin [(W ′

iW i)
∗]λmin (H i) .

But by assumption infi λmin (H i) > c > 0, and infi λmin [(W ′
iW i)

∗] > c > 0, (see Assump-

tions 1 and 4). Hence, a necessary and sufficient condition for V ar (zq,nT ) to tend to a

positive definite matrix is given by

lim
n→∞

[
n−1

n∑
i=1

(
an
di

)
1{di > an}

]
> 0. (5.16)

Assumption 7 (Trimming condition) di and (W ′
iW i)

∗ are jointly distributed such that

lim
n→∞

n−1

n∑
i=1

E

[(
an
di

)
1{di > an}

]
> 0 (5.17)

where an = Cnn
−α, for α > 1/3 and 0 < Cn < C.

Theorem 1 (Asymptotic distribution of TMG estimator) Suppose for i = 1, 2, ..., n

and t = 1, 2, ..., T , yit are generated by the heterogeneous panel data model (2.2), and As-

sumptions 1-7 hold. Then as n→∞, for α > 1/3, we have

n(1−α)/2
(
θ̂TMG − θ0

)
→d N (0k,V θ) , (5.18)

where θ̂TMG is given by (4.5), and

V θ = lim
n→∞

(
1

1 + E
(
δ̄n
))2

n−(1+α)

n∑
i=1

E
[
(1 + δi)

2R′iH iRi

]
, (5.19)

where H i = H i(W i) = E (uiu
′
i |W i ), Ri = W i (W

′
iW i)

−1
, E

(
δ̄n
)

= n−1
∑n

i=1E(δi),

(1 + δi)
2 = 1{di > an}+ a−2

n d2
i1{di ≤ an}, and di = det (W ′

iW i).

5.3 Robust estimation of the covariance matrix of the trimmed

MG estimator

As with standard MG estimation, consistent estimation of V θ using (5.19) requires knowledge

of H i which cannot be estimated consistently when T is short. Here we follow the literature

and propose a robust covariance estimator of V θ which is asymptotically unbiased for a wide
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class of error variances, E (uiu
′
i |W i ) = H i(W i), thus allowing for serially correlated and

conditionally heteroskedastic errors. The main result is summarized in the following theorem.

Theorem 2 (Robust covariance matrix of TMG estimator) Suppose Assumptions 4-7

hold, and θ0 is estimated by θ̂TMG given by (4.5). Then as n→∞, for α > 1/3,

lim
n→∞

[
nV ar

(
θ̂TMG

)]
= plim

n→∞

[
n−1

n∑
i=1

(
θ̃i − θ̂TMG

)(
θ̃i − θ̂TMG

)′]
, (5.20)

and V ar
(
θ̂TMG

)
can be consistently estimated by n−2

∑n
i=1

(
θ̃i − θ̂TMG

)(
θ̃i − θ̂TMG

)′
.

See Section A.2.3 of the Appendix for a proof.

Remark 9 Following the literature on MG estimation here we also consider the following

bias-adjusted and scaled version

̂V ar(θ̂TMG) =
1

n(n− 1)(1 + δ̄n)2

n∑
i=1

(
θ̃i − θ̂TMG

)(
θ̃i − θ̂TMG

)′
. (5.21)

The above results can be readily extended to panel data models with time effects.

6 Ultra short panels with time effects

Allowing for time effects the panel data model (2.11) can be written as

yit = αi + φt + x′itβi + uit, (6.1)

where φt for t = 1, 2, ..., T are the time effects. Without loss of generality we adopt the

normalization τ ′Tφ = 0,11 where φ = (φ1, φ2, ..., φT )′, and make the following additional

assumption:

Assumption 8

E
(
x′itηiβ

)
= E

(
x′isηiβ

)
, for all t, s = 1, 2, ..., T, (6.2)

where ηiβ = βi − β0, and ‖β0‖ < C.

Remark 10 Assumption 8 allows for dependence between xit and ηiβ, but requires this de-

pendence to be time-invariant.

11Graham and Powell (2012) use the normalization φ1 = 0. The choice of normalization is innocuous for
the estimation of the average treatment effects, β0.
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Remark 11 The irregular identification of φ when T = k in Graham and Powell (2012)

is based on moments conditional on the sub-population of “stayers”. Under Assumption 4

di > 0 for all i, i.e., there are no “stayers”in the population, this identification strategy

cannot be used. Moreover, GP assume that the joint distribution of (uit,θ
′
i)
′ given W i does

not depend on t, which is similar to Assumption 8. See interpretations of Assumption 1.1

part (ii) on page 2111 in Graham and Powell (2012).

To estimate θ0 = (α0,β
′
0)
′
, initially we suppose φ is known. Let

Qi = (1 + δi)W i (W
′
iW i)

−1
. (6.3)

Then the trimmed estimator of θi = (αi,β
′
i)
′ is given by θ̃i(φ) = Q′i(yi − φ) = θ̃i −Q′iφ,

and the associated TMG-TE estimator of θ0 follows as

θ̂TMG−TE(φ) = n−1

n∑
i=1

(
1 + δ̄n

)−1
θ̃i(φ) = θ̂TMG − Q̄

′
nφ,

where θ̂TMG is given by (4.5), and

Q̄n =
1

1 + δ̄n

(
n−1

n∑
i=1

Qi

)
. (6.4)

From our earlier analysis, it is clear that for a known φ, θ̂TMG−TE(φ) has the same asymptotic

distribution as θ̂TMG with yi replaced by yi − φ. We first propose an estimator of φ for

the case where T ≥ k, and then following Chamberlain (1992) we consider an alternative

estimator of φ with better small sample properties when T > k.

6.1 TMG-TE estimator with T ≥ k

Averaging (6.1) over i,

ȳ◦t = ᾱn + φt + x̄′◦tβ0 + ν̄◦t, (6.5)

where ν̄◦t = n−1
∑n

i=1 νit, νit = x′itηiβ + uit, ȳ◦t = n−1
∑n

i=1 yit, x̄◦t = n−1
∑n

i=1 xit, ū◦t =

n−1
∑n

i=1 uit, and ᾱn = n−1
∑n

i=1 αi. Averaging over t, under the normalization
∑T

t=1 φt = 0,

ȳ◦◦ = ᾱ + x̄′◦◦β0 + n−1

n∑
i=1

x̄′i◦ηiβ + ū◦◦, (6.6)
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where ȳ◦◦ = T−1
∑T

t=1 ȳ◦t, x̄◦◦ = T−1
∑T

t=1 x̄◦t and ū◦◦ = T−1
∑T

t=1 ū◦t. Subtracting (6.6)

from (6.5), yields (noting that (x̄◦t − x̄◦◦)′ β0 = (w̄◦t − w̄◦◦)′ θ0)

φt = (ȳ◦t − ȳ◦◦)− (w̄◦t − w̄◦◦)′ θ0 − (ν̄◦t − ν̄◦◦) , for t = 1, 2, ..., T, (6.7)

where ν̄◦t − ν̄◦◦ = (ū◦t − ū◦◦) + n−1
∑n

i=1 (xit − x̄i◦)′ ηiβ. Under Assumptions 1, 6 and 8,

ν̄◦t − ν̄◦◦ = Op(n
−1/2),12 which suggests the following estimator of φt

φ̂t = (ȳ◦t − ȳ◦◦)− (w̄◦t − w̄◦◦)′ θ̂TMG−TE, for t = 1, 2, ..., T, (6.8)

where

θ̂TMG−TE = θ̂TMG − Q̄
′
nφ̂. (6.9)

Stacking the equations in (6.8) over t = 1, 2, ..., T we have

φ̂ = MT

(
ȳ − W̄ θ̂TMG−TE

)
, (6.10)

where MT = IT − T−1τ Tτ
′
T , ȳ = n−1

∑n
i=1 yi, and W̄ = n−1

∑n
i=1W i. The above system

of equations can now be solved in terms of θ̂TMG if (IT −MTW̄ Q̄
′
n) is non-singular. Under

this condition we have

φ̂ =
(
IT −MTW̄ Q̄

′
n

)−1

MT

(
ȳ − W̄ θ̂TMG

)
(6.11)

and substituting φ̂ from (6.10) in (6.9) we have

θ̂TMG−TE =
(
Ik − Q̄

′
nMTW̄

)−1 (
θ̂TMG − Q̄

′
nMT ȳ

)
. (6.12)

Remark 12 Note that
(
MTW̄

)
Q̄
′
n and Q̄

′
n

(
MTW̄

)
have the same k (k ≤ T ) non-zero

eigenvalues, det
(
IT −MTW̄ Q̄

′
n

)
= det

(
Ik − Q̄

′
nMTW̄

)
, and if

(
IT −MTW̄ Q̄

′
n

)
is

invertible so will
(
Ik − Q̄

′
nMTW̄

)
.

The following theorem provides a summary of the results for estimation of φ0 and θ0,

and their asymptotic distributions.

Theorem 3 (Asymptotic distribution of θ̂TMG−TE and the time effects φ̂ when

T ≥ k) Suppose that for i = 1, 2, ..., n and t = 1, 2, ..., T , yit are generated by (6.1), T ≥ k,

Assumptions 1-8 hold, and Ik − Q̄
′
nMTW̄ is invertible where Q̄n is given by (6.4), and

12For a proof see Lemma A.3.
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W̄ = n−1
∑n

i=1W i. Then as n→∞, for α > 1/3,

n(1−α)/2
(
θ̂TMG−TE − θ0

)
→d N (0k,V θ,TMG−TE) , (6.13)

where θ̂TMG−TE is given by (6.12),

V θ,TMG−TE = (Ik −Gw)−1 V θ(φ) (Ik −G′w)
−1
,

Gw = limn→∞

(
Q̄
′
nMTW̄

)
, and V θ(φ) = limn→∞ V ar

[
n(1−α)/2θ̂TMG−TE(φ)

]
. Also

φ̂ = MT

(
ȳ − W̄ θ̂TMG−TE

)
= MT

(
ȳ − X̄β̂TMG−TE

)
.

(a) If plimn→∞MTX̄ = 0, we have

√
n
(
φ̂− φ0

)
→d N(0T ,MTΩνMT ), (6.14)

where Ων = limn→∞ n
−1
∑n

i=1E (νiν
′
i), νi = (νi1, νi2, ..., νiT )′, and νit = uit + x′itηiβ.

(b) If plimn→∞MTX̄ 6= 0, for α > 1/3, we have

n(1−α)/2
(
φ̂− φ0

)
→d N (0T ,V φ) , (6.15)

where V φ = plimn→∞MTX̄V ar
(
n(1−α)/2β̂TMG−TE

)
X̄
′
MT .

A proof is given in Section A.3 of the Appendix. Using results similar to the ones employed

to establish Theorem 2, robust covariance matrices for θ̂TMG−TE and φ̂ are given by (A.3.4)

and (A.3.7), respectively, in Section A.3 of the Appendix. In particular, the asymptotic

covariance of φ̂ is applicable to both cases (a) and (b) of Theorem 3, and does not require

knowing if plimn→∞MTX̄ = 0, or not.

Example 3 As an example of case (a) in Theorem 3, suppose xit = αix + ux,it, where ux,it

are distributed independently over i with zero means. Then x̄◦t−x̄◦◦ = ūx,◦t−ūx,◦◦ →p 0, and

we have plimn→∞MTX̄ = 0. An example of case (b) arises when xit contains an interactive

effect, namely xit = αix + Γif t + ux,it. In this case x̄◦t − x̄◦◦ = Γ̄
(
f t − f̄

)
+ ūx,◦t − ūx,◦◦,

where Γ̄ = n−1
∑n

i=1 Γi →p Γ, and it follows that x̄◦t− x̄◦◦ →p Γ
(
f t − f̄

)
which is non-zero

if f t varies over time and Γ 6= 0, namely at least one of the factors has loadings with non-zero

means.

23



6.2 TMG-C estimator when T > k

When T > k, we can follow Chamberlain (1992) and eliminate the time effects by the de-

meaning transformation M i = IT −MTX i(X
′
iMTX i)

−1X ′iMT . Under the normalization

τ ′Tφ = 0, MTφ = φ, and we have MTyi = MTX iβi + φ + MTui. Then M iMTyi =

M iφ+M iMTui, and averaging over i we obtain

n−1

n∑
i=1

M iMTyi =

(
n−1

n∑
i=1

M i

)
φ+ n−1

n∑
i=1

M iMTui. (6.16)

Hence, φ can be estimated if M̄n = n−1
∑n

i=1M i is a positive definite matrix, without

knowing θ0. This requires T > k, since M̄n is singular if T = k. Therefore, to implement

the Chamberlain estimation approach we require the following additional assumption:

Assumption 9 For T > k, M̄n = n−1
∑n

i=1M i →p M � 0, where

M i = IT −MTX i(X
′
iMTX i)

−1X ′iMT .

Under this Assumption φ can be estimated by

φ̂C =

(
n−1

n∑
i=1

M i

)−1(
n−1

n∑
i=1

M iMTyi

)
, (6.17)

and its asymptotic distribution follows straightforwardly. Specifically, using (6.16) we have

√
n
(
φ̂C − φ

)
= M̄

−1
n

(
n−1/2

n∑
i=1

M iMTui

)
, (6.18)

and
√
n
(
φ̂C − φ0

)
→d N(0,V φ,C), where

V φ,C = M−1 lim
n→∞

E

(
n−1

n∑
i=1

M iMTuiu
′
iMTM i

)
M−1.

Since M iMTui = M iMT (yi − φ), V ar
(
φ̂C

)
can be consistently estimated by

̂
V ar

(
φ̂C

)
= n−1M̄

−1
n

[
n−1

n∑
i=1

M iMT (yi − φ̂C)(yi − φ̂C)′MTM i

]
M̄
−1
n . (6.19)
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Using φ̂C , the TMG-C estimator of θ0 is now given by

θ̂TMG−C =
1

1 + δ̄n

[
n−1

n∑
i=1

Q′i(yi − φ̂C)

]
. (6.20)

Also since θ̂TMG−C = θ̂TMG−C(φ) − Q̄′n(φ̂C − φ), the asymptotic variance of θ̂TMG−C can

be consistently estimated by

̂
V ar

(
θ̂TMG−C

)
=

̂
V ar

(
θ̂TMG−C(φ)

)
+ Q̄

′
n

̂
V ar

(
φ̂C

)
Q̄n, (6.21)

where
̂

V ar
(
θ̂TMG−C(φ)

)
= n−1(n−1)−1(1+δ̄n)−2

∑n
i=1

(
θ̃i,C − θ̂TMG−C

)(
θ̃i,C − θ̂TMG−C

)′
,

and θ̃i,C = Q′i(yi − φ̂C).

7 A Hausman-type test of the validity of the FE esti-

mator

As summarized by Proposition 2, the validity of the FE estimator depends on the indepen-

dence of slope heterogeneity, ηiβ = βi − β0, from the covariates, X i = (xi1,xi2, ...,xiT )′.

Here we propose a Hausman-type test of this condition when T is ultra short, under the null

hypothesis

H0 : E
(
ηiβ |xit

)
= 0, for all i and t. (7.1)

It is clear that the homogeneous alternative, ηiβ = 0, for all i, and the uncorrelated alter-

native, E
[
(X ′iMTX i)ηiβ

]
= 0, for all i, are both implied by H0. But a less restrictive null

can also be entertained by allowing E
(
ηiβ |X i

)
6= 0, for i = 1, 2, ..., naη , so long as aη < 1/2,

namely the number of violations of the null over the units i = 1, 2, ..., n is relatively few. This

is in line with condition (2.20) that requires n−1/2
∑n

i=1E
(
X ′iMTX iηiβ

)
→ 0, which is the

implicit null of the Hausman-type test. But to simplify the derivations we derive the tests

under H0.

Consider the FE and TMG estimators defined by (2.13) and (4.5) respectively. Then a

Hausman-type test of H0 can be constructed based on the difference ∆̂β = β̂FE − β̂TMG.

Such a test has been considered by Pesaran et al. (1996) and Pesaran and Yamagata (2008),

assuming the MG estimator has at least the second order moment.13 Here we extend this

test to cover cases when T is ultra short. Also, the earlier tests were derived under the null

of homogeneity (namely ηiβ = 0, for all i), whilst the null that we are considering is more

13See pages 160–162 of Pesaran et al. (1996), and page 53 of Pesaran and Yamagata (2008).
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general and covers the null of homogeneity as a special case.

First recall from (2.17) and (4.5) that β̂FE − β0 = Ψ̄
−1
n

(
1
n

∑n
i=1X

′
iMTνi

)
and β̂TMG −

β0 = 1
n

∑n
i=1

(
1+δi
1+δ̄n

)
Ψ−1
ix X

′
iMTνi, where Ψ̄n = n−1

∑n
i=1 Ψix, Ψix = X ′iMTX i, δi is given

by (4.3), and νi = ui +X iηiβ. Also by Assumption 3, Ψ̄n →p limn→∞ n
−1
∑n

i=1 E (Ψix) =

Ψ̄ � 0, and Ψ̄
−1
n − Ψ̄

−1
= op(1). Using these results it follows that

√
n∆̂β =

1√
n

n∑
i=1

G′iMTνi + op(1),

where G′i =
[
Ψ̄
−1 −

(
1+δi
1+δ̄n

)
Ψ−1
ix

]
X ′i. Under H0 and Assumption 1, E(νit|Gi) = 0 for all

i and t, and since by Assumptions 1 and part (c) of Assumption 6 uit and ηiβ are cross-

sectionally independent, then conditional on X i, νi are also cross-sectionally independent

and we have
√
n∆̂β →d N(0,V ∆) as n→∞, so long as

V ∆ = lim
n→∞

1

n

n∑
i=1

E (G′iMTE (νiν
′
i |X i )MTGi) = lim

n→∞

1

n

n∑
i=1

E (G′iMTV iνMTGi) � 0,

where V iν = H i+X iΩβX
′
i, and Ωβ = E

(
ηiβη

′
iβ

)
. Hence Hβ = n∆̂

′
βV
−1
∆ ∆̂β →d χ

2
k′ , where

χ2
k′ is a chi-squared distribution with k′ = dim(β) degree of freedom. Note that V ∆ can be

written equivalently as V ∆ = n−1
∑n

i=1

∑T
t=1

∑T
t′=1E (gitg

′
it′ ν̃itν̃it′) , where ν̃it = νit − ν̄i◦,

and git is the tth column of G′i. For fixed T , a consistent estimator of V ∆, which is robust to

the choices of H i and Ωβ, can be obtained given by V̂ ∆ = 1
n

∑n
i=1

∑T
t=1

∑T
t′=1 ĝitĝ

′
it′

ˆ̃νitˆ̃νit′ ,

where ˆ̃νit = (yit − ȳi◦) − β̂
′
FE(xit − x̄i◦), ȳi◦ = T−1

∑T
t=1 yit, x̄i◦ = T−1

∑T
t=1 xit, with ĝit

being the tth column of Ĝ
′
i given by

Ĝ
′
i =

(n−1

n∑
i=1

X ′iMTX i

)−1

−
(

1 + δi
1 + δ̄n

)
(X ′iMTX i)

−1

X ′i. (7.2)

Using the above estimator of V ∆, the Hausman-type test statistic for correlated slope het-

erogeneity is given by

Ĥβ = n
(
β̂FE − β̂TMG

)′
V̂
−1

∆

(
β̂FE − β̂TMG

)
. (7.3)

Under the alternative hypothesis that H1 : limn→∞ n
−1
∑n

i=1E
(
X ′iMTX iηiβ

)
= Qη � 0,

Ĥβ →p ∞, as n→∞, and the test is consistent. The extension of the Ĥβ test to panel data

models with time effects are provided in Section S.2 of the online supplement.
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8 Monte Carlo evidence on small sample properties

Using Monte Carlo (MC) techniques, we now consider the small-sample properties of the

TMG estimator and compare its performance with the FE, MG and GP estimators, as well

as the recent estimator proposed by Sasaki and Ura (SU).14 We also provide MC evidence on

the estimation of panels with time effects. The finite-sample performance of the Hausman-

type test of correlated slope heterogeneity is also examined.

8.1 Monte Carlo designs

8.1.1 Data generating processes (DGP)

The outcome variable, yit, is generated as

yit = αi + φt + βixit + κσiteit, for i = 1, 2, ..., n, and t = 1, 2, ..., T, (8.1)

where we allow for heteroskedastic and serially correlated errors. We generate eit as first

order autoregressive (AR(1)) processes

eit = ρieei,t−1 +
(
1− ρ2

ie

)1/2
ς it, (8.2)

and consider two scenarios for ς it, namely Gaussian ς it ∼ IIDN(0, 1), and chi-squared, ς it ∼
IID 1

2
(χ2

2 − 2). We also allow the shocks in the outcome equation, denoted by uit = σiteit,

to be cross-sectionally heteroskedastic. In the baseline model we generate σit = σiu for all t

where σ2
iu ∼ IID 1

2
(1 + z2

iu) , with ziu ∼ IIDN(0, 1). We also consider the robustness of the

MC results to cases where σ2
it also varies with xit, as detailed below in Section 8.1.3.

The regressors, xit, are generated as factor-augmented AR processes

xit = αix(1− ρix) + γixft + ρixxi,t−1 +
(
1− ρ2

ix

)1/2
ux,it, (8.3)

where ux,it = σixex,it, for i = 1, 2, ..., n, and t = 1, 2, ..., T . We generate the individual

effects in xit, αix, as αix ∼ IIDN(1, 1), with ex,it ∼ IID(0, 1), σ2
ix = 1

2
(1 + z2

ix), and zix ∼
IIDN(0, 1). When time effects are included in the model, we set φt = t, for t = 1, 2, ..., T−1,

and φT = −T (T − 1)/2, so that τ ′Tφ = 0.

14Perhaps it should be noted that the SU estimator is intended for a more general setup that allows for
many stayers (units with xit = xit′ for some t 6= t′) which we do not allow in our analysis. We are grateful
to Sasaki and Ura for providing us with their codes written specifically for the case when T = k = 2.
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8.1.2 Generation of the heterogeneous coefficients

We consider both correlated and uncorrelated effects specifications and generate θi = (αi, βi)
′

as

θi =

(
α0

β0

)
+

(
ηiα

ηiβ

)
= θ0 + ηi, (8.4)

where ηi = ψλi + εi, with ψ = (ψα, ψβ)′ and εi = (εiα, εiβ)′. To generate correlated effects

we set λi to be a function of the innovations to the xit process:

λi =
e′ixMTeix − E (e′ixMTeix)√

V ar (e′ixMTeix)
. (8.5)

Since eix = (ex,i1, ex,i2, ..., ex,iT )′ ∼ IID(0, IT ), it follows that λi is IID(0, 1).15 The ran-

dom components of ηi, namely εi, are generated independently of W i = (τ T ,xi), as εi ∼
IIDN (0,V ε) , where V ε = Diag(σ2

εα, σ
2
εβ). Namely,

E(ηi) = 0, and V η = E(ηiη
′
i) =

(
σ2
α σαβ

σαβ σ2
β

)
= ψψ′ + V ε.

The degree of correlated heterogeneity is determined by ψψ′, and it is zero if ψ = 0. Also

Cov(αi, βi) = σαβ will be non-zero when both ψα and ψβ are non-zero. Specifically σ2
α =

ψ2
α + σ2

εα, σαβ = ψαψβ, and σ2
β = ψ2

β + σ2
εβ. Therefore, the correlation coefficients of θi and

λi are given by ραλ = Corr(αi, λi) = ψα/
√
ψ2
α + σ2

εα, and

ρβ = ρβλ = Corr(βi, λi) =
ψβ√

ψ2
β + σ2

εβ

. (8.6)

Solving the above equations for ψα and ψβ, we have

ψα =

(
ρ2
αλ

1− ρ2
αλ

)1/2

σεα, and ψβ =

(
ρ2
βλ

1− ρ2
βλ

)1/2

σεβ. (8.7)

Also recall that σ2
α = ψ2

α + σ2
εα, and σ2

β = ψ2
β + σ2

εβ, then σ2
εα = (1 − ρ2

αλ)σ
2
α, and σ2

εβ =

(1 − ρ2
βλ)σ

2
β. Hence, the key drivers of heterogeneity are σ2

α, σ2
β, ρ2

αλ, and ρ2
βλ. The scaling

parameter κ in (8.1) is set to achieve a given level of overall fit, PR2, given by (S.3.3) in

Section S.3.2 of the online supplement.

Section 8.1.3 summarizes parameters and details of the baseline model and the other ex-

15In Section S.3.1 of the online supplement, we show that when xit is serially independent with no interactive
effects (ρix = 0 and γix = 0), then λi can be written as a standardized version of di = det(W ′

iW i).
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periments where we allow for heterogeneity in the autoregressive processes assumed for {uit}
and {xit}. We also consider cases where {xit} is generated with and without an interactive

factor.16 All estimations are based on R simulated observations
(
y

(r)
it , x

(r)
it

)
, for r = 1, 2, ..., R;

i = 1, 2, ..., n; and t = 1, 2, ..., T .

8.1.3 Baseline and other experiments

For all experiments we set α0 = β0 = 1, σ2
α = 0.2, and σ2

β = 0.5, with Corr(αi, βi) = 0.25,

and experiment with two levels of fit: PR2 = 0.2 and 0.4. We also consider two options

when generating ex,it, the shocks to the xit process, namely Gaussian, ex,it ∼ IIDN(0, 1),

and uniformly distributed errors, ex,it =
√

12(zit − 1/2), with zit ∼ IIDU(0, 1).

For the baseline experiments, we set PR2 = 0.2, generate the errors in the outcome

equation as chi-squared without serial correlation (ρie = 0 in (8.2)). For xit, we allow for

heterogeneous serial correlation, with ρix ∼ IIDU(0, 0.95), but did not include the interac-

tive effects in xit (setting γix = 0 in (8.3)). We consider both uncorrelated and correlated

heterogeneity and set ρβ, defined by (8.6), to (a) zero correlation, ρβ = 0, (b) a medium level

of correlation, ρβ = 0.25, and (c) a high level of correlation, ρβ = 0.5. For each choice of

ρβ, the scalar variable, κ, in the outcome equation, (8.1), is set such that PR2
T = 0.2, on

average. This is achieved by stochastic simulation for each T , as described in Section S.3.2

of the online supplement.

To check the robustness of the TMG estimator, the following variations in the DGP of the

errors and regressors are considered. When the errors in yit are serially correlated, we generate

ρie ∼ IIDU(0, 0.95), and ei0 ∼ IIDN(0, 1) for all i. When there is an interactive effect in

{xit}, γix ∼ IIDU(0, 2) and ft = 0.9ft−1 + (1− 0.92)1/2vt, for t = −49,−48, ...,−1, 0, 1, ..., T ,

where vt ∼ IIDN(0, 1), with f−50 = 0.

To examine the relative efficiency of TMG and FE estimators, we set ρβ = 0 (uncorre-

lated heterogeneity) but allow for error heteroskedasticity to be correlated with the processes

generating xit. We consider the following two scenarios: (a) cross-sectional heteroskedastic-

ity, σ2
it = λ2

i , for all i and t, where λi is given by (8.5); and (b) cross-sectional and time

series heteroskedasticity, σ2
it = e2

x,it, for all i and t, where ex,it is the innovation to the xit

process. In both cases we have E(σ2
it) = 1, which match the case of randomly generated

heteroskedasticity.

To investigate the small sample properties of the Hausman-type test, we allow individual

effects, αi, to be correlated with xit, irrespective of whether xit and βi are correlated. Recall

that FE and MG estimators are both robust to the correlation of xit and αi. The focus of

16When there are feedbacks, we generate xit or eit for t = −49,−48, ...,−1, 0, 1, ..., T , then drop the first
50 observations.
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the Hausman-type test is on the degree of heterogeneity of βi and the nature of correlation

between βi and xit. We carry out R = 2, 000 replications for all experiments.

8.2 Monte Carlo findings

8.2.1 Comparison of TMG, FE, and MG estimators

We first compare the performance of the TMG estimator with FE and MG estimators un-

der both uncorrelated and correlated heterogeneity for the sample size combinations n =

1, 000, 2, 000, 5, 000, 10, 000 and T = 2, 3, 4, 5, 6, 8. The TMG estimator depends on the indi-

cator, 1{di > an}, where an = Cnn
−α. In view of the discussion in Section 5.1 on the choice of

α, we consider the values of α = 1/3, 0.35 and 1/2, and set Cn = d̄n = n−1
∑n

i=1 di > 0, where

di = det(W ′
iW i). This choice of Cn ensures that the value of 1{di > an} = 1{di/d̄n > n−α}

is unaffected by the scale of xit. In what follows we report the results for the TMG estima-

tor with α = 1/3, but discuss the sensitivity of the TMG estimator to the choice of α in

sub-section 8.2.4.

Table 1 reports bias, root mean squared errors (RMSE) and size for estimation of β0. The

first column of the table gives estimates of the fraction of individual estimates being trimmed

as defined by (4.7). The left panel gives the estimates under uncorrelated heterogeneity, with

ρβ = 0, and the right panel reports the results for the case of correlated heterogeneity, with

ρβ = 0.5. The estimates of πn tend to be quite large for the case of ultra short T but fall

quite rapidly as T is increased. For example, for T = 2 and n = 1, 000 as many as 31.2 per

cent of the individual estimates are trimmed when computing the TMG estimates, but it

falls to 3.2 per cent when T is increased to T = 8. However, recall that the TMG estimator

continues to make use of the trimmed estimates, as can be seen from (4.6), and the TMG

estimator shows little bias compared to the untrimmed MG estimator. The TMG and MG

estimators converge as T is increased and they are almost identical for the panels with T = 8.

The results in Table 1 clearly show the effectiveness of trimming in dealing with outlying

individual estimates.

Comparing TMG and FE estimators, we first note that in line with the theory, the FE

estimator performs very well under uncorrelated heterogeneity but is badly biased when

heterogeneity is correlated, and this bias does not diminish if n and T are increased. When

heterogeneity is correlated, the FE estimator also exhibits substantial size distortions which

tend to get accentuated as n is increased for a given T . In contrast, the TMG estimator is

robust to the correlation between βi and di, and delivers size around the 5 per cent nominal

level in all cases.17

17Increasing PR2 from 0.2 to 0.4 does not affect the bias and RMSE of the FE estimator, but results in a
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Figure 1: Empirical power functions for FE and TMG estimators of β0 (E(βi) = β0 = 1) in
the baseline model without time effects for n = 10, 000 and T = 2, 3, 4, 5

Notes: For details of the baseline model without time effects, see footnote (i) to Table 1. For the FE estimator,

see footnote (ii) to Table 1. For the TMG estimator, see footnotes (ii) and (iii) to Table 1.

higher degree of size distortion under correlated heterogeneity. Compare the results summarized in the right
panel of Table 1 and Table S.4, respectively, in the online supplement.
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Figure 1 shows the plots of the empirical power functions for TMG and FE estimators for

n = 10, 000 and T = 2, 3, 4 and 5. The left panel gives the power functions for the case of un-

correlated heterogeneity (ρβ = 0), and as can be seen, both estimators are centered correctly

around β0 = 1, with the FE estimator having better power properties. But the differences

between the power of FE and TMG estimators shrink rapidly and become negligible as T is

increased from T = 2 to T = 5.18 The right panel of the figure provides the same results but

under correlated heterogeneity with ρβ = 0.5. In this case, the empirical power functions of

the FE estimator now shift dramatically to the right, away from the true value, an outcome

that becomes more concentrated as T is increased. In contrast, the empirical power functions

for the TMG estimator tend to be reasonably robust to the choice of ρβ.

To summarize, in the case of uncorrelated heterogeneity, the FE estimator performs well

despite of the heterogeneity and is more efficient than the TMG estimator in the case of base-

line model used in our MCs, but in general the relative efficiency of TMG and FE estimators

depends on the underlying DGP. The situation is markedly different when heterogeneity is

correlated, and the FE estimator can be badly biased, leading to incorrect inference, whilst

the TMG estimator provides valid inference with size around the nominal five per cent level

and reasonable power, irrespective of whether βi is correlated with xit or not.

8.2.2 Comparison of TMG, GP, and SU estimators

Focusing on the case of correlated heterogeneity, we now compare the performance of the

TMG estimator with GP and SU estimators. To implement the GP estimator, defined by

(3.1), for T = 2 we follow GP and set hn = CGPn
−αGP , with αGP = 1/3, and CGP =

1
2

min (σ̂D, r̂D/1.34), where σ̂D and r̂D are the respective sample standard deviation and

interquartile range of det(W i). See page 2138 in Graham and Powell (2012).19 There is no

clear guidance in GP as to the choice of hn when T = 3.20 For consistency, for GP estimates

we continue to use their bandwidth, hn = CGPn
−αGP with αGP = 1/3, but set CGP = (d̄n)1/2

and trim if di = det(W′
iWi) < h2

n. The sensitivity of the results to the other choices of αGP

is considered below. For SU we use the code made available to us by the authors, which is

applicable only when T = 2.

The bias, RMSE and size for all three estimators are summarized in Table 2 for T = 2,

18But see the left panel of Table S.3 and Figure S.1 in the online supplement where it is shown that it does
not necessarily follow that the FE estimator will dominate the TMG estimator in terms of efficiency even
when T is ultra short.

19However, GP seem to be using the larger scaling value of CGP = min (σ̂D, r̂D/1.34), when they generate
the histograms in Figure 1, on page 2137.

20For T = 3, GP do not use the bandwidth parameter, hn, but directly select the “percent trimmed”, πn.
In their empirical application for T = 3 they report estimates with 4 per cent being trimmed. See the last
column of Table 3 on page 2136 of GP.
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and n = 1, 000, 2, 000, 5, 000, 10, 000. For T = 3 the results are provided for TMG and GP

estimators only. The associated empirical power functions are provided in Figure 2.

Table 2: Bias, RMSE and size of TMG, GP and SU estimators of β0 (E(βi) = β0 = 1) in
the baseline model without time effects and with correlated heterogeneity, ρβ = 0.5

T = 2 T = 3
π̂ Size π̂ Size

Estimator (×100) Bias RMSE (×100) (×100) Bias RMSE (×100)
n = 1, 000

TMG 31.2 0.048 0.35 4.9 16.5 0.023 0.20 5.2
GP 4.2 -0.029 0.83 4.5 2.0 -0.002 0.27 4.6
SU 4.2 -0.045 1.62 4.9 ... ... ... ...

n = 2, 000
TMG 28.5 0.044 0.27 5.3 14.1 0.018 0.16 5.4
GP 3.4 0.031 0.70 5.8 1.3 0.003 0.22 4.4
SU 3.4 0.008 1.39 5.5 ... ... ... ...

n = 5, 000
TMG 24.7 0.037 0.18 4.7 10.8 0.016 0.11 5.3
GP 2.5 0.009 0.52 5.2 0.7 -0.001 0.15 5.2
SU 2.5 0.003 1.01 4.9 ... ... ... ...

n = 10, 000
TMG 22.1 0.029 0.14 5.6 8.8 0.013 0.08 5.3
GP 2.0 0.002 0.41 4.3 0.5 -0.002 0.11 4.9
SU 2.0 0.007 0.82 5.2 ... ... ... ...

Notes: (i) GP and SU estimators are proposed by Graham and Powell (2012) and Sasaki and Ura (2021),

respectively. The GP estimator is given by (3.1). For T = 2, GP compare d
1/2
i with the bandwidth hn =

CGPn
−αGP . αGP is set to 1/3. CGP = 1

2 min (σ̂D, r̂D/1.34), where σ̂D and r̂D are the respective sample

standard deviation and interquartile range of det(W i). For T = 3, we continue using the bandwidth hn with

CGP = (d̄n)1/2. See Section 8.2.2 for details. When T = 2, the SU estimator uses the same bandwidth as

GP. (ii) For details of the baseline model without time effects, see footnote (i) to Table 1. For the TMG

estimator and its trimming threshold, see footnotes (ii) and (iii) to Table 1. π̂ is the simulated fraction of

individual estimates being trimmed, defined by (4.7). The estimation algorithm for the SU estimator is not

available for T = 3, denoted by “...”.

The fraction of the trimmed estimates, πn, defined by (4.7), for the TMG estimator is

quite high when T = 2, but declines markedly when T is raised to 3, and to a lesser extent as

n is increased. This is not the case for the other two estimators. For example, when T = 2

and n = 1, 000, the fraction of trimmed estimates for the TMG estimator is around 31.2 per

cent as compared to 4.2 per cent for GP and SU estimators, and falls to 22.1 per cent as n

is increased to 10, 000. Increasing T from 2 to 3 with n = 1, 000 reduces this fraction to 16.5

per cent as compared to 2 per cent for the GP estimator.21 The heavy trimming causes the

TMG estimator to have a much larger bias than GP and SU estimators, particularly when

T = 2 and n is sufficiently large. However, the TMG estimator continues to have better

21Recall that the codes released by SU do not allow us to compute their estimator when T = 3.
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Figure 2: Empirical power functions for TMG, GP and SU estimators of β0 (E(βi) = β0 = 1)
in the baseline model without time effects and with correlated heterogeneity, ρβ = 0.5, for
n = 1, 000, 2, 000, 5, 000, 10, 000 and T = 2, 3

Notes: For details of the baseline model without time effects, see footnote (i) to Table 1. For the TMG

estimator, see footnote (ii) to Table 1. For GP and SU estimators, see footnote (i) to Table 2.
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overall small sample performance due to its higher efficiency. Recall that the TMG estimator

makes use of the trimmed estimates, as set out in the second term of (4.6), but the trimmed

estimates are not used in the GP estimator. This difference in the way trimmed estimates

are treated is reflected in the lower RMSE of the TMG estimator as compared to the other

two estimators for all T and n combinations. For example, when T = 2 and n = 1, 000, the

RMSE of the TMG is 0.35 as compared to 0.83 and 1.62 for GP and SU estimators. The

relative advantage of the TMG estimator continues when T is increased from 2 to 3, but its

relative advantage declines. For T = 3, the RMSE of the TMG estimator stands at 0.20

compared to 0.27 for the GP estimator. The larger the value of T , the less important the

trimming becomes.

The empirical power functions for all three estimators are shown in Figure 2. As can be

seen, the TMG estimator is uniformly more powerful than the GP estimator and the GP

estimator is more powerful than the SU estimator.

8.2.3 Models with time effects

Adding time effects to the panel regressions does not alter the above conclusions. The MC

results for estimation of β0 and the time effects φ = (φ1, φ2)′ are summarized in Tables 3

and 4, respectively. The small sample properties of the TMG-TE estimator of β0 are very

close to those reported for the TMG estimator in Table 2. Interestingly, there are also little

differences between TMG-TE and TMG-C estimators of β0 when T = 3, as can be seen from

the right panel of Table 3. Also, the time effects are precisely estimated. Bias, RMSE and

size for TMG-TE and GP estimators of φ = (φ1, φ2)′ are summarized in Table 4. The bias of

TMG-TE and GP estimators of φ1 are similar, but the TMG-TE estimator has much lower

RMSEs and higher power when T = 2. A comparison of the empirical powers of these two

estimators is given in Figures S.9–S.11 in the online supplement.

8.2.4 Sensitivity of TMG and GP estimators to the choice of the threshold

values

Finally, we consider the sensitivity of TMG and GP estimators to the choice of threshold

values. The baseline value of the threshold value for the GP estimator, αGP = 1/3 as

recommended by GP.22 But for the purpose of comparison with the TMG estimator computed

for α = 1/3, 0.35 and 1/2, we also consider αGP = 0.35/2 and 1/4. Recall that the bandwidth,

h2
n, used by GP corresponds to an used in the specification of TMG. Hence, 2αGP corresponds

to α. For comparability, we decided to consider values of αGP below 1/3 required by GP’s

22See equation (3.1) and the related discussion for the implementation of the GP estimator in sub-section
8.2.2.
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Table 3: Bias, RMSE and size of TMG-TE, TMG-C, GP and SU estimators of β0 (E(βi) =
β0 = 1) in the baseline model with time effects and correlated heterogeneity, ρβ = 0.5

T = 2 T = 3
π̂ Size π̂ Size

Estimator (×100) Bias RMSE (×100) (×100) Bias RMSE (×100)
n = 1, 000

TMG-TE 31.2 0.048 0.35 5.0 16.5 0.023 0.20 5.4
TMG-C ... ... ... ... 16.5 0.023 0.20 5.2
GP 4.2 -0.034 0.84 3.9 2.0 -0.002 0.27 4.6
SU 4.2 -0.052 1.67 5.3 ... ... ... ...

n = 2, 000
TMG-TE 28.5 0.044 0.27 5.6 14.1 0.018 0.16 5.5
TMG-C ... ... ... ... 14.1 0.018 0.16 5.6
GP 3.4 0.032 0.71 5.2 1.3 0.003 0.22 4.6
SU 3.4 0.012 1.40 5.8 ... ... ... ...

n = 5, 000
TMG-TE 24.7 0.037 0.18 4.7 10.8 0.016 0.11 5.3
TMG-C ... ... ... ... 10.8 0.016 0.11 5.3
GP 2.5 0.008 0.53 5.0 0.7 -0.001 0.15 5.1
SU 2.5 0.006 1.02 4.7 ... ... ... ...

n = 10, 000
TMG-TE 22.1 0.028 0.14 5.7 8.8 0.013 0.08 5.3
TMG-C ... ... ... ... 8.8 0.013 0.08 5.3
GP 2.0 0.003 0.41 4.4 0.5 -0.002 0.11 5.0
SU 2.0 0.011 0.82 5.5 ... ... ... ...

Notes: (i) The baseline model is generated as yit = αi +φt +βixit +uit, with time effects given by φt = t for

t = 1, 2, ..., T − 1, and φT = −T (T − 1)/2. The errors processes for yit and xit equations are chi-squared and

Gaussian, respectively, xit are generated as heterogeneous AR(1) processes, and ρβ (the degree of correlated

heterogeneity) is defined by (8.6). For further details see Section 8.1.3. (ii) The TMG-TE estimators of θ0
and φ are given by (6.9) and (6.11), respectively, and their asymptotic variances are estimated by (A.3.4)

and (A.3.7), respectively, in the Appendix. The TMG-C estimators of θ0 and φ are given by (6.20) and

(6.17), respectively, and their asymptotic variances are estimated by (6.21) and (6.19), respectively. For the

trimming threshold, see footnote (iii) to Table 1. (iii) For GP and SU estimators, see footnote (i) to Table

2. π̂ is the simulated fraction of individual estimates being trimmed, defined by (4.7). “...” denotes the

estimation algorithms are not available or not applicable.

Table 4: Bias, RMSE and size of TMG-TE and GP estimators of the time effects, φ1 and φ2,
in the baseline model with correlated heterogeneity, ρβ = 0.5

n = 1, 000 n = 5, 000
Estimator Bias RMSE Size (×100) Bias RMSE Size (×100)

T = 2 T = 2
φ1 = 1 TMG-TE 0.002 0.09 6.1 -0.001 0.04 4.8

GP 0.001 0.54 7.1 -0.008 0.35 6.9
T = 3 T = 3

φ1 = 1 TMG-TE -0.002 0.10 5.6 0.001 0.05 4.9
GP 0.004 0.15 5.7 0.001 0.07 5.0

φ2 = 2 TMG-TE -0.006 0.10 5.7 0.000 0.05 4.9
GP -0.010 0.13 5.3 0.000 0.06 4.2

Notes: For the baseline model with time effects, see footnote (i) to Table 3. For the TMG-TE estimator, see

footnote (ii) to Table 3. For the GP estimator, see footnote (i) to Table 2.
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theory. This allows us to compare GP and TMG focusing on the utility of including both

trimmed and untrimmed estimates of θi in estimation of average treatment effects.

The results are summarized in Section S.4.2 of the online supplement. As can be seen

from Table S.5 there is a clear trade-off between bias and variance as α and αGP are increased.

For T = 2, the TMG estimator is biased when α = 1/3 (as predicted by the theory), but has

a lower variance with its RMSE declining as α is increased from 1/3 to 1/2. This trade-off is

less consequential when T is increased to T = 3. The same is also true for the GP estimator.

But for all choices of α and αGP the TMG performs better in terms of RMSE when T = 2. For

T = 3, TMG and GP estimators share the same trimming threshold when α = 2αGP , resulting

in identical trimmed fractions for α = 2αGP ∈ {0.35, 1/2}. While RMSEs are similar, the

GP estimator exhibits significantly higher bias than the TMG estimator as observations of

the trimmed units are not exploited by the GP estimator.

Figure S.2 compares power functions of TMG and GP estimators with α = 2αGP = 0.35.

For T = 2, a higher trimmed fraction results in a steeper power function for the TMG

estimator as compared to that of the GP estimator. When T = 3, with the same trimmed

fraction, the power function of the GP estimator shifts to the right, away from the true value.

The substantial differences in power performance of the TMG estimator with α = 1/3 and

the GP estimator with αGP = 1/3 are also illustrated in Figure S.3.

The power comparisons of TMG and GP estimators for different values of α and αGP are

given in Figures S.4 and S.5, respectively, and convey the same message, suggesting that for

the TMG estimator the boundary choice of α = 1/3 tends to produce the best bias-variance

trade-off. Increasing α reduces the bias but increases the variance, and the boundary value

derived theoretically seems to strike a sensible balance and is recommended.

8.2.5 MC evidence on the Hausman-type test of correlated heterogeneity

Table 5 reports empirical size and power of the Hausman-type test of correlated heterogeneity

given by (7.3). The left, middle and right panels report the results under homogeneity,

uncorrelated heterogeneity and correlated heterogeneity in slope coefficients. In the left and

middle panels, the size of the test is around the nominal level of 5 per cent. As shown in

the paper, when xit is strictly exogenous and βi is mean independent of X i, FE, MG and

TMG estimators are all consistent under homogeneity and uncorrelated heterogeneity, and

in this case the Hausman-type test does not have power against uncorrelated heterogeneity.

However, in the case where slope coefficients are heterogeneous and correlated with the

regressors, the MG and TMG estimators are consistent when they have at least finite second

moments, while the FE estimator is biased for all T . In this case, we would expect the

proposed test to have power, and this is indeed evident in the right panel of Table 5. Also
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the power of the test rises with increases in n even when T = 2, illustrating the (ultra) small

T consistency of the proposed test.

The MC evidence on the performance of our proposed test of correlated heterogeneity

in the case of panels with time effects is given in Table S.15 of the online supplement. We

consider two versions of the test, depending on how time effects are filtered out, namely

TMG-TE and TMG-C estimators (see equations (S.2.15) and (S.2.21)).23 The empirical size

and power of these two test statistics are comparable for T > 2. More importantly, allowing

for time effects has negligible effects on the small sample performance of the test, while the

power of the test is slightly lower than the power reported in Table 5 for models without time

effects. Increases in n and/or T result in a rapid rise in power, illustrating the consistent

property of the proposed test.

9 Empirical illustration

In this section, we re-visit the empirical application in Graham and Powell (2012) who pro-

vide estimates of the average effect of household expenditures on calorie demand, based on a

sample of households from poor rural communities in Nicaragua that participated in a con-

ditional cash transfer program Red de Proteccion Social (RPS). The data set is a balanced

panel with n = 1, 358 households observed from 2000 to 2002. We present estimates of the

average treatment effects using the following panel data model with time effects:

ln(Calit) = αi + φt + βi ln(Expit) + uit, (9.1)

where ln(Calit) denotes the logarithm of household calorie availability per capita in year

t of household i, and ln(Expit) denotes the logarithm of real household expenditures per

capita (in thousands of 2001 cordobas) of household i in year t. The parameter of interest

is the average treatment effect defined by β0 = E(βi), allowing for possible dependence

between βi and ln(Expit). Correlated heterogeneity could arise for a number of reasons, such

as model misspecification, individuals responding strategically to treatments, and common

factors that simultaneously affect βi and the treatment, ln(Expit). It is, therefore, prudent

to first test for correlated heterogeneity before estimating β0 by fixed effects, which is the

standard approach when T is ultra short. We provide test statistics and estimates of β0 for

the panels of 2001–2002 (T = 2) and 2000–2002 (T = 3) with and without time effects.

Table 6 reports results of the Hausman-type test of correlated heterogeneity in the effects

of household expenditures on calorie demand. The null hypothesis is rejected for both panels

23For further details, see Section S.2 in the online supplement.
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covering the periods 2001–2002 and 2000–2002, and irrespective of whether time effects are

allowed. As shown in the Monte Carlo experiments, the test only has power against the

alternative of correlated heterogeneity. Therefore, these results provide strong evidence of

heterogeneity in the treatment effects that are correlated with the level of household ex-

penditures, which in turn sheds doubt on the validity of the FE estimation of the average

treatment effect for this application.

Table 6: Hausman-type statistics for testing correlated heterogeneity in the effects of house-
hold expenditures on calorie demand in Nicaragua

Without time effects With time effects
2001–2002 2000–2002 2001–2002 2000–2002

TMG-TE TMG-TE TMG-C
Statistics 5.918 7.626 5.959 6.772 7.653
p-value 0.015 0.006 0.015 0.009 0.006
T 2 3 2 3 3

Notes: The test is applied to the average effect β0 = E(βi) in the model (9.1) based on the RPS panel of

1, 358 households. The test statistic for panels without time effects is described in footnote (iii) to Table 5.

The test statistics for panels with time effects are based on the difference between the FE-TE and TMG-TE

estimators given by (S.2.15) with T ≥ 2, and the difference between the FE-TE and TMG-C estimators given

by (S.2.21) with T > 2. For further details see Section S.2 in the online supplement.

Table 7: Alternative estimates of the average effect of household expenditures on calorie
demand in Nicaragua over the period 2001–2002 (T = 2)

Without time effects With time effects
(1) (2) (3) (4) (5) (6) (7) (8)
FE GP SU TMG FE-TE GP SU TMG-TE

β̂0 0.6568 0.4549 0.6974 0.5623 0.6554 0.4629 0.6952 0.5612
(0.0287) (0.1003) (0.1689) (0.0425) (0.0284) (0.1025) (0.1650) (0.0424)

φ̂2002 ... ... ... ... 0.0172 -0.0181 ... 0.0178
... ... ... ... (0.0063) (0.0296) ... (0.0064)

π̂ (×100) ... 3.8 3.8 27.1 ... 3.8 3.8 27.1

Notes: The estimates of β0 = E(βi) and φ2002 in the model (9.1) are based on the RPS panel of 1, 358

households. The FE estimator is described in the footnote (ii) to Table 1. GP and SU estimators are

described in footnote (i) to Table 2. The TMG estimator is described in footnotes (ii) and (iii) to Table

1. The FE-TE estimator is the two-way fixed effects estimator given by (S.2.1) in the online supplement.

TMG-TE and TMG-C estimators are described in footnote (ii) to Table 3. π̂ is the estimated fraction of

individual estimates being trimmed, defined by (4.7). The numbers in brackets are standard errors. “...”

denotes the estimation algorithms are not available or not applicable.

Table 7 presents the estimates of β0 based on the panel of 2001–2002 (with T = 2) without

time effects (left panel), and with time effects (right panel). The estimates are not affected
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by the inclusion of time effects but differ considerably across different methods.24 Based on

the test results reported in Table 6, the FE estimates are most likely biased. Turning to the

trimmed estimators, we find that only the TMG estimator is heavily trimmed with 27.1 per

cent of the estimates being trimmed, whilst the rate of trimming is only around 3.8 per cent

for GP and SU estimators.25 Focussing on the estimates without time effects, we find the

FE estimate, 0.6568 (0.0287), is much larger and more precisely estimated than either the

GP or TMG estimates, given by 0.4549 (0.1003) and 0.5623 (0.0425), respectively.26 Judging

by the standard errors, it is also noticeable that the TMG is more precisely estimated than

the GP estimate and lies somewhere between the FE and GP estimates. In contrast, the

SU estimate of 0.6974 (0.1689) is close to the FE estimate but with a much larger degree of

uncertainty. These estimates are in line with the MC results reported in the previous section,

where we found that in the presence of correlated heterogeneity FE estimates are biased with

smaller standard errors (thus leading to incorrect inference), whilst GP and TMG estimators

are correctly centered with the TMG estimator being more efficient.

Table 8: Alternative estimates of the average effect of household expenditures on calorie
demand in Nicaragua over the period 2000–2002 (T = 3)

Without time effects With time effects
(1) (2) (3) (4) (5) (6) (7)
FE GP TMG FE-TE GP TMG-TE TMG-C

β̂0 0.6588 0.6034 0.5900 0.6968 0.6448 0.6370 0.6338
(0.0233) (0.0350) (0.0284) (0.0211) (0.0330) (0.0263) (0.0261)

φ̂2001 ... ... ... 0.0727 0.0682 0.0708 0.0682
... ... ... (0.0087) (0.0123) (0.0088) (0.0123)

φ̂2002 ... ... ... 0.1066 0.0954 0.1054 0.0682
... ... ... (0.0080) (0.0108) (0.0080) (0.0123)

π̂ (×100) ... 1.2 10.9 ... 1.2 10.9 10.9

Notes: The estimates of β0 = E(βi) and (φ2001, φ2002)′ in the model (9.1) are based on the RPS panel of

1, 358 households. π̂ is the estimated fraction of individual estimates being trimmed, defined by (4.7). See

also footnotes to Table 7.

Table 8 gives the estimates of β0 for the extended panel, 2000–2002 (with T = 3), both

with and without time effects. When time effects are included we provide two versions of

the TMG estimates (TMG-TE and TMG-C), depending on how time effects are estimated.

24When T = 2, φ̂2002 is not significant, and adding time effects does not change the estimated average
effect.

25For the 2001–2002 panel, π̂ of the GP estimator is identical to the one reported in Table 3 of Graham
and Powell (2012). Graham and Powell (2012) estimated a model with time-varying coefficients, yit =
αi + φt +

(
βi + φt,β

)
xit + uit, where

(
φ,φβ

)
are identified by stayers but estimated by near stayers. While

φβ is not included in (9.1), the GP estimates we compute are close to the trimmed estimates in Table 3 of
Graham and Powell (2012).

26The bracketed figures are standard errors.
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As in the case of the 2001–2002 panel, the FE estimates are larger than the GP and TMG

estimates, but these differences are reduced somewhat, particularly when time effects are

included in the panel regressions. Further, as expected, increasing T reduces the rate of

trimming and brings the GP and TMG estimators closer to one another. The trimming rate

for the GP estimator is very small indeed (only 1.2 per cent), as compared to around 11 per

cent for the TMG estimator in the case of the 2000–2002 panel. The TMG-TE and TMG-C

estimates of the time effects (φ2001 and φ2002) are quite close and are both highly statistically

significant and positive, capturing the upward trend in the calorie intake.

10 Conclusions

This paper studies estimation of average treatment effects in panel data models with possibly

correlated heterogeneous coefficients, when the number of cross-sectional units is large, but

the number of time periods can be as small as the number of regressors. We recall that

the FE estimator is inconsistent under correlated heterogeneity, and the MG estimator can

have unbounded first or second moments when applied to ultra short panels. Thus, the

TMG estimator is proposed, where the trimming process is derived by a careful examination

of the bias/efficiency trade-off in the asymptotic distribution. Conditions under which the

TMG estimator is consistent and asymptotically normally distributed are provided. We also

propose new estimators for ultra short panel data models with time effects, distinguishing

between cases where T > k and T ≥ k, and derive their asymptotic distributions under

the identifying condition that the dependence between heterogeneous slope coefficients and

the regressors is time-invariant. Moreover, based on differences between the TMG and FE

estimators (without and with time effects), we propose Hausman-type tests of correlated

slope heterogeneity which must be applied before using FE or FE-TE estimators in practice.

Using Monte Carlo experiments, we highlight the bias and size distortion properties of

the FE and FE-TE estimators under correlated heterogeneity. In contrast, the TMG and

TMG-TE estimators are shown to have desirable finite sample performance under a num-

ber of different MC designs, allowing for Gaussian and non-Gaussian heteroskedastic error

processes, dynamic heterogeneity and interactive time effects in the covariates, and different

choices of the trimming threshold parameter, α. In particular, since the TMG and TMG-

TE estimators exploit information on untrimmed and trimmed estimates alike, they have

the smallest RMSE, and tests based on them have the correct size and are more powerful

compared with the other trimmed estimators currently proposed in the literature.

The Hausman-type tests based on TMG and TMG-TE estimators are also shown to

have very good small sample properties, with their size controlled and their power rising
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strongly with n even when T = k = 2. It is hoped that the new Hausman test provides

empirical investigators with a diagnostic test that can be used before the application of the

FE-TE estimators that are commonly used in the empirical literature. It is hoped that

the use of this diagnostic test can help researchers in avoiding biased estimates and possibly

misleading inferences. When the TMG and TMG-TE estimators and the Hausman-type tests

of correlated heterogeneity are applied to a panel of households in poor rural communities

in Nicaragua, the results provide clear evidence of correlated heterogeneity in the average

effect of household expenditures on calorie demand, which sheds doubt on the application of

FE-TE estimators to this data set.

Finally, we would like to end by acknowledging that, similarly to the FE-TE estimators,

the validity of the TMG-TE and TMG-C estimators requires the so-called parallel trends

assumption where time effects are assumed to have homogeneous effects across all individual

units in the panel. Relaxing the parallel trends assumption in short T panels has been an

important area of active research, but most of these contributions either assume homogeneous

slopes or restricted forms of slope heterogeneity, or place restrictions on the time effects. The

development of techniques for estimation and inference in ultra short panels with correlated

heterogeneous slopes and interactive effects is a topic for future research.
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Appendix

Notations: Generic positive finite constants are denoted by C when large, and c when

small. They can take different values at different instances. λmax (A) and λmin (A) denote

the maximum and minimum eigenvalues of matrix A. A � 0 and A � 0 denote that A

is a positive definite and a non-negative definite matrix, respectively. ‖A‖ = λ1/2
max(A′A)

and ‖A‖1 denote the spectral and column norms of matrix A, respectively. A∗ denotes the

adjoint of A, such that A−1 = d−1A∗, and d = det(A). ‖x‖p = [E (‖x‖p)]1/p. If {fn}∞n=1 is

any real sequence and {gn}∞n=1 is a sequences of positive real numbers, then fn = O(gn), if

there exists C such that |fn| /gn ≤ C for all n. fn = o(gn) if fn/gn → 0 as n→∞. Similarly,

fn = Op(gn) if fn/gn is stochastically bounded, and fn = op(gn), if fn/gn →p 0. The operator

→p denotes convergence in probability, and →d denotes convergence in distribution.

A.1 Lemmas

Lemma A.1 Suppose that Assumptions 2, 5 and 6 hold. Then for each i, we have

E [dsi1{di ≤ an}] = O(as+1
n ), for s = 1, 2, ..., (A.1.1)

E(δi) = O(an), and E(δ2
i ) = O(an), (A.1.2)

E (δiηi) = O(an), and E
(
δ2
iηi
)

= O(an), (A.1.3)

n−1

n∑
i=1

{
E
[
d2
i1{di ≤ an}

]}1/2
= O(a3/2

n ), (A.1.4)

n−1

n∑
i=1

{
E
[
d−2
i 1{di > an}

]}1/2
= O(a−1

n ). (A.1.5)

Proof. By mean value theorem (MVT), under Assumption 5, we have

Fd(an) = Fd(0) + fd(ān)an = fd(ān)an = O(an), (A.1.6)

where ān lies on the line segment between 0 and an. Similarly, let ψ(an) =
∫ an

0
usfd(u)du

and note that ψ′(an) = asnfd(an). Then by MVT ψ(an) = ψ(0) + [āsnfd(ān)] an, and we have

E [dsi1{di ≤ an}] =

∫ an

0

usfd(u)du = āsnfd(ān)an = O(as+1
n ), for s = 1, 2, .... (A.1.7)
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Using the above results

E(δi) =E

[(
di − an
an

)
1{di ≤ an}

]
= a−1

n E [di1{di ≤ an}]− E [1{di ≤ an}]

=a−1
n O(a2

n)− Fd(an) = O(an), (A.1.8)

and

E(δ2
i ) = E

[(
di − an
an

)2

1{di ≤ an}

]
= a−2

n E
[
d2
i1{di ≤ an}

]
+ E [1{di ≤ an}]− 2a−1

n E [di1{di ≤ an}]

= a−2
n O(a3

n) + Fd(an)− 2a−1
n O(a2

n) = O(an). (A.1.9)

Consider now the terms involving the products of δi and ηi

E (δiηi) = BiE

[(
di − an
an

)
1{di ≤ an} [g(di)− E [g(di)]]

]
. (A.1.10)

Since Bi is bounded and does not depend on di, without loss of generality we set Bi = Ik

and consider the the jth term of (A.1.10), namely

sj(an) =E

{(
di − an
an

)
1{di ≤ an} [gj(di)− E [gj(di)]]

}
=

1

an

∫ an

0

ugj(u)fd(u)du−
∫ an

0

gj(u)fd(u)du

− E [gj(di)]

[
1

an

∫ an

0

ufd(u)du

]
+ E [gj(di)]

[∫ an

0

fd(u)du

]
.

By Assumption 6 E [gj(di)] < C, and using (A.1.6) and (A.1.1) we have∫ an

0

fd(u)du = O(an), and a−1
n

∫ an

0

ufd(u)du = O(an).

Also by the mean value theorem∫ an

u=0

gj(u)fd(u)du = gj(ān)fd(ān)an = O(an),

1

an

∫ an

u=0

ugj(u)fd(u)du =
1

an
[āngj(ān)fd(ān)an] = O(an).
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Hence, E (δiηi) = O(an). Similarly the jth term of E
(
δ2
iηi
)

(setting Bi = Ik) is given by

sj2(an) = E

{(
di − an
an

)2

1{di ≤ an} [gj(di)− E [gj(di)]]

}

= E

{(
d2
i

a2
n

− 1− 2
di − an
an

)
1{di ≤ an} [gj(di)− E [gj(di)]]

}
. (A.1.11)

Consider the first term

E

{
d2
i

a2
n

1{di ≤ an} [gj(di)− E [gj(di)]]

}
=

1

a2
n

∫ an

0

u2gj(u)fd(u)du− 1

a2
n

E [gj(di)]E
[
d2
i1{di ≤ an}

]
,

and again by mean value theorem a−2
n

∫ an
0
u2gj(u)fd(u)du = O(an), E [gj(di)] < C, and using

(A.1.7) E [d2
i1{di ≤ an}] = O(a3

n). Hence, the first term of (A.1.11) is O(an). For its second

term, we have

E {1{di ≤ an} [gj(di)− E [gj(di)]]} =

∫ an

0

gj(u)fd(u)du− E [gj(di)]

∫ an

0

fd(u)du = O(an),

and the order of the third term is already established to be O(an). Hence, it follows that

E
(
δ2
iηi
)

= O(an). Finally, result (A.1.4) follows from (A.1.1) and (A.1.5) follows noting that

d−2
i 1{di > an} ≤ a−2

n .

Lemma A.2 Suppose that Assumptions 1, 2, 4, 5 and 6, hold. Let

ξ̄δ,nT = n−1

n∑
i=1

(1 + δi) ξiT ,

where δi =
(
di−an
an

)
1{di ≤ an}, an = Cnn

−α, Cn < C, di = det(W ′
iW i), and ξiT =

(W ′
iW i)

−1
W ′

iui = R′iui. Then

E
(
ξ̄δ,nT

)
= 0, (A.1.12)

V ar
(
ξ̄δ,nT

)
= n−2

n∑
i=1

E [1{di > an}R′iH iRi] + n−2

n∑
i=1

a−2
n E

[
d2
i1{di ≤ an}R′iH iRi

]
,

(A.1.13)

V ar
(
ξ̄δ,nT

)
= O

(
n−1+α

)
, (A.1.14)

and

E

[
n−1

n∑
i=1

a−1
n d2

i1{di ≤ an}R′iH i(W i)Ri

]
= O

(
a1/2
n

)
. (A.1.15)
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Proof. Under Assumptions 1 and conditional on W i (and hence on di), (1 + δi) ξiT are

distributed independently over i and

E
(
ξ̄δ,nT |W i

)
= n−1

n∑
i=1

(1 + δi)R
′
iE (ui |W i ) = 0,

V ar
(
ξ̄δ,nT |W i

)
= n−2

n∑
i=1

(1 + δi)
2E (ξiTξ

′
iT |W i )

= n−2

n∑
i=1

(1 + δi)
2R′iE (uiu

′
i |W i )Ri = n−2

n∑
i=1

(1 + δi)
2R′iH iRi,

where H i = E (uiu
′
i |W i ). We have suppressed the dependence of H i on W i to simplify

the exposition. Hence, E
(
ξ̄δ,nT

)
= 0, and V ar

(
ξ̄δ,nT

)
= E

[
V ar

(
ξ̄δ,nT |W i

)]
. To establish

(A.1.13) note that

(1 + δi)
2 = 1{di > an}+ a−2

n d2
i1{di ≤ an}, (A.1.16)

and

V ar
(
ξ̄δ,nT

)
= n−2

n∑
i=1

E [1{di > an}R′iH iRi] + n−2E

[
n∑
i=1

a−2
n d2

i1{di ≤ an}R′iH iRi

]
.

Since H i is positive definite and by Assumption 1 supi λmax (H i) < C,

‖R′iH iRi‖ ≤ λmax (H i) ‖R′iRi‖ = λmax (H i)
∥∥(W ′

iW i)
−1
∥∥ < Cd−1

i ‖(W ′
iW i)

∗‖ (A.1.17)

and

∥∥V ar (ξ̄δ,nT )∥∥ ≤ Cn−2

n∑
i=1

E
[
1{di > an}d−1

i ‖(W ′
iW i)

∗‖
]

+Cn−2E

[
n∑
i=1

a−2
n di1{di ≤ an} ‖(W ′

iW i)
∗‖

]
.

By Cauchy-Schwarz inequality

E
[
1{di > an}d−1

i ‖(W ′
iW i)

∗‖
]
≤
{
E
[
d−2
i 1{di > an}

]}1/2
{
E
[∥∥(W ′

iW i)
∗∥∥2
]}1/2

,

E [di1{di ≤ an}λmax (H i) ‖(W ′
iW i)

∗‖] ≤
{
E
[
d2
i1{di ≤ an}

]}1/2
{
E
[∥∥(W ′

iW i)
∗∥∥2
]}1/2

,
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and since by Assumption 4 supiE
[∥∥(W ′

iW i)
∗∥∥2
]
< C, then

∥∥V ar (ξ̄δ,nT )∥∥ ≤ C

[
n−2

n∑
i=1

{
E
[
d−2
i 1{di > an}

]}1/2
+ a−2

n n−2

n∑
i=1

{
E
[
d2
i1{di ≤ an}

]}1/2

]
.

Now using results (A.1.4) and(A.1.5) of Lemma A.1, we have

n−2

n∑
i=1

{
E
[
d−2
i 1{di > an}

]}1/2
= O(n−1a−1

n ),

and n−2

n∑
i=1

{
E
[
d2
i1{di ≤ an}

]}1/2
= O(n−1a3/2

n ),

then
∥∥V ar (ξ̄δ,nT )∥∥ = O(n−1a−1

n ) + O(n−1a
−1/2
n ), and since an = Cnn

−α result (A.1.14)

follows. To establish (A.1.15) using (A.1.17) we have∥∥∥∥∥n−1

n∑
i=1

a−1
n d2

i1{di ≤ an}R′iH iRi

∥∥∥∥∥ ≤ Cn−1

n∑
i=1

a−1
n di1{di ≤ an} ‖(W ′

iW i)
∗‖ , (A.1.18)

and by Cauchy-Schwarz inequality,

E

∥∥∥∥∥n−1

n∑
i=1

a−1
n d2

i1{di ≤ an}R′iH iRi

∥∥∥∥∥
≤ Cn−1

n∑
i=1

a−1
n

{
E
[
d2
i1{di ≤ an}

]}1/2
[
E
∥∥(W ′

iW i)
∗∥∥2
]1/2

.

Under Assumption 4, supiE
∥∥(W ′

iW i)
∗∥∥2

< C, and we have

E

∥∥∥∥∥n−1

n∑
i=1

a−1
n d2

i1{di ≤ an}R′iH i(W i)Ri

∥∥∥∥∥ ≤ C

[
n−1

n∑
i=1

{
E
[
a−2
n d2

i1{di ≤ an}
]}1/2

]
.

Now using (A.1.1) E [a−2
n d2

i1{di ≤ an}] = a−2
n O(a3

n) = O (an) , and result (A.1.15) follows.

Lemma A.3 Let

vit − v̄i◦ = uit − ui◦ + (xit − x̄i◦)′ ηiβ, for i = 1, 2, ..., n; t = 1, 2, ..., T,

v̄◦t − v̄◦◦ = n−1

n∑
i=1

(vit − v̄i◦) = (ū◦t − ū◦◦) + n−1

n∑
i=1

(xit − x̄i◦)′ ηiβ,
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where ηiβ = βi − β0, and suppose that Assumptions 1, 6 and 8 hold. Then

E (vit − v̄i◦) = 0, for i = 1, 2, ..., n; t = 1, 2, ..., T, (A.1.19)

v̄◦t − v̄◦◦ = Op(n
−1/2), for t = 1, 2, ..., T, (A.1.20)

and (noting that T is fixed as n→∞)

√
n (v̄T − v̄◦◦τ T )→d N(0,Ων), (A.1.21)

where v̄T = (v̄◦1, v̄◦2, ..., v̄◦T )′ = n−1
∑n

i=1 νi◦, νi◦ = (νi1, νi2, ..., νiT )′,

Ων = MT

[
lim
n→∞

n−1

n∑
i=1

E (νi◦ν
′
i◦)

]
MT , (A.1.22)

and MT = IT − T−1τ Tτ
′
T .

Proof. Under Assumptions 1 and 8, E(uit) = 0 and E
(
x′itηiβ

)
= E

(
x′isηiβ

)
for all t and s.

Hence

E (uit − ui◦) = 0, and E
[
(xit − x̄i◦)′ ηiβ

]
= E

(
x′itηiβ

)
− T−1

T∑
t′=1

E
(
x′it′ηiβ

)
= 0,

then result (A.1.19) follows. Result (A.1.20) also follows noting that under Assumptions

1 and 6, {vit − v̄i◦, for i = 1, 2, ..., n}, are cross-sectionally independent with mean zero and

finite variances. To establish A.1.21 we first note that v̄◦◦ = T−1 (τ ′T v̄T ), and hence

√
n (v̄T − v̄◦◦τ T ) = MT

√
nv̄T = n−1/2

n∑
i=1

MTνi◦,

where MTνi◦ is a T × 1 vector (T is fixed) with zero means and finite variances, and by

Assumption 6 are cross-sectionally independent. Therefore, result A.1.21 follows by standard

central limit theorems for independent but not identically distributed random variables.

A.2 Proof of Propositions and Theorems

A.2.1 Proof of Proposition 1

Proof. Under Assumption 2, θ̂MG →p θ0 if ξ̄nT →p 0. A sufficient (but not necessary)

condition for the latter to hold can be obtained by applying Markov inequality to ξ̄nT , i.e.,

A6



for any fixed ε > 0, Pr
(∥∥ξ̄nT∥∥ ≥ ε

)
≤ E‖ξ̄nT‖2

ε2
. Thus for ξ̄nT →p 0, it is sufficient to show

that E
∥∥ξ̄nT∥∥2 → 0. In what follows we find conditions under which E

∥∥ξ̄nT∥∥2
= O(n−1),

and hence establish that ξ̄nT →p 0 at the regular rate of n−1/2. Note that

∥∥ξ̄nT∥∥2
= n−2

∥∥∥∥∥
n∑
i=1

ξiT

∥∥∥∥∥
2

= n−2

(
n∑
i=1

ξiT

)′( n∑
i=1

ξiT

)
= n−2

n∑
i=1

n∑
j=1

ξ′iTξjT .

Hence E
∥∥ξ̄nT∥∥2

= n−2
∑n

i=1

∑n
j=1E

(
ξ′iTξjT

)
. Since under Assumption 1 u′its are cross-

sectionally independent and we have

E
∥∥ξ̄nT∥∥2

= n−2

n∑
i=1

E (ξ′iTξiT ) . (A.2.1)

Then using (2.7),

E (ξ′iTξiT |W i) = E (u′iRiR
′
iui|W i) = E [Tr (R′iuiu

′
iRi) |W i] = Tr (R′iH i(W i)Ri) ,

where by Assumption 1, H i(W i) = E(uiu
′
i|W i). Also

Tr (R′iH i(W i)Ri) ≤ Tλmax [H i(W i)]Tr (R′iRi)

= Tλmax [H i(W i)]Tr
[
(W ′

iW i)
−1
]
≤ Tλmax [H i(W i)]

{
kλmax

[
(W ′

iW i)
−1
]}

.

Since T and k are finite, and under Assumption 1, supi λmax [H i(W i)] < C,

Tr (R′iH i(W i)Ri) ≤ Cλmax (W ′
iW i)

−1
.

Then given (A.2.1) we have

E
∥∥ξ̄nT∥∥2

= n−2

n∑
i=1

E [Tr (R′iH i(W i)Ri)] ≤ Cn−2

n∑
i=1

E
{
λmax

[
(W ′

iW i)
−1
]}

.

Hence, E
∥∥ξ̄nT∥∥2

= O (n−1) , if

sup
i
E
{
λmax

[
(W ′

iW i)
−1
]}

< C <∞. (A.2.2)

It is also worth noting that condition (A.2.2) can be written in terms of column or row norms

of (W ′
iW i)

−1 which is easier to use in practice. Since W ′
iW i is a symmetric matrix then

it follows that λmax [(W ′
iW i)

−1] ≤ ‖(W ′
iW i)

−1‖1 , where ‖A‖1 denotes the column norm of
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A. Also (W ′
iW i)

−1 = d−1
i (W ′

iW i)
∗, where di = det(W ′

iW i), and (W ′
iW i)

∗ is the adjoint

of W ′
iW i. Then λmax [(W ′

iW i)
−1] ≤ d−1

i ‖(W ′
iW i)

∗‖1 , and by Cauchy–Schwarz inequality

E
{
λmax

[
(W ′

iW i)
−1
]}
≤
[
E
(
d−2
i

)]1/2 {
E
[
‖(W ′

iW i)
∗‖2

1

]}1/2

,

hence equation (A.2.2) will hold under the following conditions

sup
i
E
(
d−2
i

)
< C, and sup

i
E
[
‖(W ′

iW i)
∗‖2

1

]
< C, for i = 1, 2, ..., n.

Under the above conditions θ̂MG converges in probability to θ0 at the regular rate of n−1/2,

irrespective of whether θi are correlated with the regressors or not, and it is robust to error

serial correlation and conditional heteroskedasticity.

A.2.2 Proof of Proposition 3

Proof. Consider

Ψ̄nAnΨ̄n = Ψ̄nΩβΨ̄n −

(
n−1

n∑
i=1

ΨixΩβΨix

)
,

and without loss of generality suppose that Ωβ is positive definite. Then

Ψ̄nAnΨ̄n = −

[
n−1

n∑
i=1

P iP
′
i − P̄ nP̄

′
n

]
= −n−1

n∑
i=1

(
P i − P̄ n

) (
P i − P̄ n

)′
,

where P i = ΨixΩ
1/2
β and P̄ n = n−1

∑n
i=1P i. Hence An = −Ψ̄

−1
n V

P
n Ψ̄

−1
n , where

V P
n =

[
n−1

n∑
i=1

(
P i − P̄ n

) (
P i − P̄ n

)′]
.

It is clear that V P
n is semi-positive definite and by Assumption 3 Ψ̄n is positive definite.

Then it follows that Ψ̄
−1
n V

P
n Ψ̄

−1
n is also semi-positive definite and hence An is non-positive

definite, An � 0. For Bn we have

Ψ̄nBnΨ̄n = Ψ̄n

[
n−1

n∑
i=1

Ψ−1
ix X

′
iMTH i(X i)MTX iΨ

−1
ix

]
Ψ̄n

−

[
n−1

n∑
i=1

X ′iMTH i(X i)MTX i

]
,

and in general it is not possible to sign Ψ̄nBnΨ̄n. The outcome depends on the heterogeneity
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of error variances and their interactions with the heterogeneity of regressors. We have already

seen that Bn � 0 when H i(X i) = σ2IT , but this result need not hold in a more general

setting where H i(X i) varies across i.

A.2.3 Proof of Theorem 2

Proof. Using (2.5), (4.2) and (5.2), we have

θ̃i − θ0 = δiθ0 + ζiT , (A.2.3)

where ζiT = (1 + δi)ηi + (1 + δi)ξiT , and using (5.5)

θ̂TMG − θ0 =

(
1

1 + δ̄n

)
ζ̄nT , (A.2.4)

where ζ̄nT = n−1
∑n

i=1 ηi + n−1
∑n

i=1 δiηi + n−1
∑n

i=1(1 + δi)ξiT . Subtracting (A.2.4) from

(A.2.3) now yields

θ̃i − θ̂TMG = ζiT + δiθ0 −
(

1

1 + δ̄n

)
ζ̄nT ,

and we have

n−1

n∑
i=1

(
θ̃i − θ̂TMG

)(
θ̃i − θ̂TMG

)′
= n−1

n∑
i=1

ζiTζ
′
iT +

(
n−1

n∑
i=1

δ2
i

)
θ0θ

′

0 +

(
n−1

n∑
i=1

δiζiT

)
θ′0 + θ0

(
n−1

n∑
i=1

δiζ
′
iT

)

+

[(
1

1 + δ̄n

)2

− 2

(
1

1 + δ̄n

)]
ζ̄nT ζ̄

′
nT −

(
δ̄n

1 + δ̄n

)
θ0ζ̄

′
nT −

(
δ̄n

1 + δ̄n

)
ζ̄nTθ

′
0. (A.2.5)

By the results in Lemma A.1, E
(
δ̄n
)

= O(an), and E
(
ζ̄nT
)

= E (δiηi) = O(an), δ̄n =

O(an) + op(1) and n−1
∑n

i=1 δ
2
i = O(an) + op(1). Also using (5.11) we have

ζ̄nT = O(n−α) +Op

(
n−

(1−α)
2

)
,

and since α > 1/3 using (5.10),[(
1

1 + δ̄n

)2

− 2

(
1

1 + δ̄n

)]
ζ̄nT ζ̄

′
nT = Op

(
n−2α

)
+Op

(
n−(1−α)

)
= Op

(
n−(1−α)

)
, (A.2.6)(

δ̄n
1 + δ̄n

)
ζ̄nTθ

′
0 =O(ann

−α) +Op

(
ann

− (1−α)
2

)
= Op

(
n−

(1+α)
2

)
. (A.2.7)
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Consider now

ζ̄δ,nT = n−1

n∑
i=1

δiζiT = n−1

n∑
i=1

δi (1 + δi)ηi + n−1

n∑
i=1

δi (1 + δi) ξiT . (A.2.8)

By (A.1.3) in Lemma A.1, E [δi (1 + δi)ηi] = O(an), and since δi (1 + δi)ηi are distributed

independently over i we have

n−1

n∑
i=1

δi (1 + δi)ηi = Op(an). (A.2.9)

Since conditional on W i, δi (1 + δi) ξiT are distributed over i with zero means, then following

the same line of argument as in the proof of Lemma A.2, we have E [δi (1 + δi) ξiT ] = 0 and

V ar

[
n−1

n∑
i=1

δi (1 + δi) ξiT

]
= n−2

n∑
i=1

E
[
δ2
i (1 + δi)

2R′iH iRi

]
≤ Cn−2

n∑
i=1

E
[
δ2
i (1 + δi)

2 d−1
i ‖(W ′

iW i)
∗‖
]
.

Further using (A.1.16)

(1 + δi)
2 δ2

i =
[
1{di > an}+ a−2

n d2
i1{di ≤ an}

](di − an
an

)2

1{di ≤ an}

= a−2
n d2

i

(
di − an
an

)2

1{di ≤ an},

and

V ar

[
n−1

n∑
i=1

δi (1 + δi) ξiT

]
≤ Cn−2

n∑
i=1

E

[
a−2
n di

(
di − an
an

)2

1{di ≤ an} ‖(W ′
iW i)

∗‖

]
.

By Cauchy-Schwarz inequality

E

[
a−2
n di

(
di − an
an

)2

1{di ≤ an} ‖(W ′
iW i)

∗‖

]

≤ a−2
n

{
E

[
d2
i

(
di − an
an

)4

1{di ≤ an}

]}1/2 [
E
∥∥(W ′

iW i)
∗∥∥2
]1/2

,
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and since under Assumption 4, supiE
∥∥(W ′

iW i)
∗∥∥2

< C, we have

V ar

[
n−1

n∑
i=1

δi (1 + δi) ξiT

]
≤ Cn−2a−2

n

n∑
i=1

{
E

[
d2
i

(
di − an
an

)4

1{di ≤ an}

]}1/2

.

Also using (A.1.1) of Lemma A.1

E

[
d2
i

(
di − an
an

)4

1{di ≤ an}

]
= a−4

n E
[(
d6
i − 3d5

i an + 3a3
nd

3
i − a4

nd
2
i

)
1{di ≤ an}

]
= O

(
a3
n

)
,

which yields

V ar

[
n−1

n∑
i=1

δi (1 + δi) ξiT

]
= O

(
n−1a−2

n a3/2
n

)
= O

(
n−1a−1/2

n

)
,

and by Markov inequality

n−1

n∑
i=1

δi (1 + δi) ξiT = O
(
n−1/2a−1/4

n

)
= O

(
n−1/2+α/4

)
. (A.2.10)

Using (A.2.9) and (A.2.10) in (A.2.8), we have ζ̄δ,nT = Op(n
−α) + O

(
n−1/2+α/4

)
, which if

used with (A.2.6) and (A.2.7) in (A.2.5) now yields (for α > 1/3)

1

n

n∑
i=1

(θ̃i − θ̂TMG)(θ̃i − θ̂TMG)′ =
1

n

n∑
i=1

ζiTζ
′
iT

+Op

(
n−(1−α)

)
+Op

(
n−

(1+α)
2

)
+O(n−α) +O

(
n−1/2+α/4

)
,

and since ζiT are independently distributed over i, we have

plim
n→∞

n−1

n∑
i=1

(
θ̃i − θ̂TMG

)(
θ̃i − θ̂TMG

)′
= lim

n→∞

[
n−1

n∑
i=1

E (ζiTζ
′
iT )

]
.

But using (A.2.4) and recalling that δ̄n = O(an) then

lim
n→∞

nV ar
(
θ̂TMG

)
= lim

n→∞
nV ar

(
ζ̄nT
)
.
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Also (recall that E
(
ζ̄nT
)

= O(an))

nV ar
(
ζ̄nT
)

= E

{
n−1

n∑
i=1

[ζiT − E (ζiT )] [ζiT − E (ζiT )]′
}

= n−1

n∑
i=1

E (ζiTζ
′
iT ) +O(a2

n).

Hence

lim
n→∞

nV ar
(
θ̂TMG

)
= lim

n→∞
n−1

n∑
i=1

E (ζiTζ
′
iT ) = plim

n→∞
n−1

n∑
i=1

(
θ̃i − θ̂TMG

)(
θ̃i − θ̂TMG

)′
,

and n−1
∑n

i=1

(
θ̃i − θ̂TMG

)(
θ̃i − θ̂TMG

)′
is a consistent estimator of nV ar

(
θ̂TMG

)
.

A.3 Proof of Theorem 3 (Asymptotic distribution of

the TMG-TE estimator)

Proof. Initially, we consider the case where T ≥ k. To derive the asymptotic distribution

of θ̂TMG−TE we first note that θ̂TMG−TE(φ) = θ̂TMG− Q̄
′
nφ, and θ̂TMG−TE = θ̂TMG− Q̄

′
nφ̂.

Hence (
θ̂TMG−TE − θ0

)
−
(
θ̂TMG−TE(φ)− θ0

)
= −Q̄′n

(
φ̂− φ

)
. (A.3.1)

Also stacking (6.7) over t and subtracting the results from (6.10) yields

φ̂− φ = −MTW̄
(
θ̂TMG−TE − θ0

)
+MT ν̄, (A.3.2)

where ν̄ = n−1
∑n

i=1 νi, and νi = (νi1, νi2, ..., νiT )′ with νit = uit + x′itηβi . Using this result

in (A.3.1) we have(
Ik − Q̄

′
nMTW̄

)(
θ̂TMG−TE − θ0

)
=
(
θ̂TMG−TE(φ)− θ0

)
− Q̄′nMT ν̄.

For a known value of φ, the asymptotic distribution of
(
θ̂TMG−TE(φ)− θ0

)
is the same as

θ̂TMG with yi replaced by yi − φ. Under the assumption that Ik − Q̄
′
nMTW̄ is invertible,

we have

θ̂TMG−TE−θ0 =
(
Ik − Q̄

′
nMTW̄

)−1 (
θ̂TMG−TE(φ)− θ0

)
−
(
Ik − Q̄

′
nMTW̄

)−1

Q̄
′
nMT ν̄.

Hence using Lemma A.3, ν̄ = Op

(
n−1/2

)
, and we have

n(1−α)/2
(
θ̂TMG−TE − θ0

)
=
(
Ik − Q̄

′
nMTW̄

)−1 [
n(1−α)/2

(
θ̂TMG−TE(φ)− θ0

)]
+Op(n

−α/2),
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where for a known φ we have already established in Theorem 1 that

n(1−α)/2
(
θ̂TMG−TE(φ)− θ0

)
→d N (0, Vθ(φ)) ,

with V θ(φ) = limn→∞ V ar
[
n(1−α)/2θ̂TMG−TE(φ)

]
. Suppose further that plimn→∞

(
Q̄
′
nMTW̄

)
= Gw, where Ik −Gw is non-singular. For α > 1/3, we have n(1−α)/2

(
θ̂TMG−TE − θ0

)
→d

N (0,V θ,TMG−TE) , where

V θ,TMG−TE = (Ik −Gw)−1 V θ(φ)
[
(Ik −Gw)−1]′ . (A.3.3)

A consistent estimator of the asymptotic variance of θ̂TMG−TE is given by

̂V ar(θ̂TMG−TE) =
1

n− 1

(
Ik − Q̄

′
nMTW̄

)−1

V̂ θ

[(
Ik − Q̄

′
nMTW̄

)−1
]′
, (A.3.4)

where

V̂ θ =
1

(n− 1)(1 + δ̄n)2

n∑
i=1

(θ̃i −Q′iφ̂− θ̂TMG−TE)(θ̃i −Q′iφ̂− θ̂TMG−TE)′, (A.3.5)

Consider now the asymptotic distribution of φ̂. Using (A.3.2) and noting that

MTW̄
(
θ̂TMG−TE − θ0

)
= MTX̄

(
β̂TMG−TE − β0

)
, we have

φ̂− φ0 = −MTX̄
(
β̂TMG−TE − β0

)
+MT ν̄.

Two cases can arise depending on whether the probability limit of MTX̄ tends to zero as

n→∞, or not. Under (a) plimn→∞MTX̄ = 0, we have n1/2(φ̂−φ0)→d N(0,MTΩνMT ),

where Ων is given by (A.1.22), namely φ̂→p φ0 at the regular rate of n−1/2. Also since

νit − ν̄i◦ = (uit − ūi◦) + (xit − x̄i◦)′ ηiβ = yit − ȳi◦ − (xit − xi◦)′ β− φt,

Ων can be consistently estimated by

Ω̂ν =
1

n− 1

n∑
i=1

(
yi −X iβ̂TMG−TE − φ̂

)(
yi −X iβ̂TMG−TE − φ̂

)′
. (A.3.6)

Under case (b), plimn→∞MTX̄ 6= 0, and convergence of φ̂ to φ0 cannot achieve the regular
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rate. To see this note that

n(1−α)/2
(
φ̂− φ0

)
= −MTX̄

[
n(1−α)/2

(
β̂TMG−TE − β0

)]
+ n−α/2MT

(
n1/2ν̄

)
,

where MT

(
n1/2ν̄

)
= Op(1) and and since α > 0 the second term tends to zero, but rather

slowly. In practice, where it is not known whether MTX̄ → 0 or not, one can consistently

estimate the asymptotic variance of φ̂ by

̂
V ar

(
φ̂
)

= MT

[
X̄

̂
V ar

(
β̂TMG−TE

)
X̄
′
+ n−1Ω̂ν

]
MT , (A.3.7)

where
̂

V ar
(
β̂TMG−TE

)
and Ω̂ν are given by (A.3.4) and (A.3.6), respectively. Note that

̂
V ar

(
φ̂
)

is singular as
̂

V ar
(
φ̂
)
τ T = 0, but its diagonal elements can be used to test if φ̂t

for t = 1, 2, .., T are individually or jointly statistically significant subject to φ′τ T = 0.

A14



Online Supplement to “Trimmed Mean Group

Estimation of Average Treatment Effects in Ultra Short

T Panels with Correlated Heterogeneous Coefficients”

M. Hashem Pesaran

University of Southern California, and Trinity College, Cambridge

Liying Yang

Postdoctoral research fellow, Sauder School of Business, University of

British Columbia

October 17, 2023



S.1 Introduction

This online supplement is structured as follows. Section S.2 derives the Hausman-type test

of correlated heterogeneity in panel data models with time effects, with corresponding Monte

Carlo (MC) evidence provided in Section S.9. Section S.3 provides details of the MC de-

sign. Sections S.4 and S.6 summarize MC results for the TMG estimator with Gaussian

and uniformly distributed errors in the regressor (xit) process, respectively. Section S.4.2

provides MC evidence for the TMG and GP estimators using different α and αGP , exponents

in the threshold values. Section S.5 investigates the robustness of the TMG estimator to a

number of variations on the baseline DGP. Section S.7 shows and discusses the MC results

when there is an interactive effect in the regressor process. Section S.8 presents the empirical

power functions for the baseline model with correlated heterogeneity and time effects.

S.2 The Hausman-type test of correlated heterogeneity

with time effects

Given the panel data model with time effects in (6.1), a Hausman-type test can be constructed

based on the difference between the TMG and FE-TE estimators when T ≥ k. The FE-TE

estimator is given by

β̂FE−TE = Ψ̄
−1
n,TE

[
1

n

n∑
i=1

(
X i − X̄

)′
MT (yi − ȳ)

]
, (S.2.1)

and

φ̂FE−TE = MT (ȳ − X̄β̂FE−TE), (S.2.2)

where

Ψ̄n,TE =
1

n

n∑
i=1

(
X i − X̄

)′
MT

(
X i − X̄

)
.

Then,

β̂FE−TE − β0 = Ψ̄
−1
n,TE

[
1

n

n∑
i=1

(
X i − X̄

)′
MT ν̃i

]
, (S.2.3)

where ν̃i = νi− ν̄, ν̄ = n−1
∑n

i=1 νi, and νi = ui+X iηiβ. We derive the test statistics under

the null hypothesis in (7.1), for two cases: (a) when T ≥ k the TMG-TE estimator in (6.12) is

used, and (b) the TMG-C estimator in (6.20) is used when T > k. The implicit null is given

by n−1/2
∑n

i=1E
[(
X i − X̄

)′
MT

(
X i − X̄

)
ηiβ

]
→ 0, which is implied by (7.1) but not vice

versa. We make the following assumption that corresponds to the pooling Assumption 3:
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Assumption S.1 (FE-TE pooling assumption) Let Ψ̄n,TE = n−1
∑n

i=1 Ψi,TE, where

Ψi,TE =
(
X i − X̄

)′
MT

(
X i − X̄

)
. For T ≥ k, there exists n0 such that for all n > n0,

Ψ̄n,TE is positive definite,

Ψ̄n,TE →p lim
n→∞

n−1

n∑
i=1

E (Ψi,TE) = Ψ̄TE � 0, (S.2.4)

and

Ψ̄
−1
n,TE = Ψ̄

−1
TE + op(1). (S.2.5)

S.2.1 T ≥ k

When T ≥ k, consider

∆̂β,TE = β̂FE−TE − β̂TMG−TE,

where β̂FE−TE and β̂TMG−TE are given by (S.2.1) and (6.12), respectively. Given (A.3.1),

(A.3.2) and φ̂ = MT (ȳ − X̄β̂TMG−TE), we have

β̂TMG−TE − β0 = (Ik′ − Q̄
′
nxMTX̄)−1

[
1

n(1 + δ̄n)

n∑
i=1

Q′ixMT ν̃i

]
, (S.2.6)

where δi is given by (4.3), and partitioning Qi conformably with W i = (τ T ,X i) we have

Qix = (1 + δi)MTX i(X
′
iMTX i)

−1, (S.2.7)

and

Q̄nx =
1

n(1 + δ̄n)

n∑
i=1

Qix. (S.2.8)

Using (S.2.3) and under Assumption S.1

β̂FE−TE − β0 = Ψ̄
−1
TE

[
1

n

n∑
i=1

(
X i − X̄

)′
MT ν̃i

]
+op(1), (S.2.9)

which in conjunction with (S.2.6) yields

∆̂β,TE = β̂FE−TE − β̂TMG−TE = n−1

n∑
i=1

G′i,TEMT ν̃i,
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where Gi,TE is a T × k′ matrix given by

Gi,TE =
(
X i − X̄

)
Ψ̄
−1
TE − (1 + δ̄n)−1Qix

[(
Ik′ − Q̄

′
nxMTX̄

)−1
]′
.

Under Assumption 1 and the null hypothesis given by (7.1), E(ν̃it|Gi,TE) = 0 for all i and

t. Also by Assumptions 1 and 6, uit and ηiβ are cross-sectionally independent so that ν̃it

conditional on X i are also cross-sectionally independent. Then as n→∞,

√
n∆̂β,TE →d N(0,V ∆,TE),

as long as

V ∆,TE = lim
n→∞

1

n

n∑
i=1

E
(
G′i,TEMT ν̃iν̃

′
iMTGi,TE

)
� 0. (S.2.10)

Hence when T ≥ k, the Hausman-type test for panels with time effects is given by

Hβ,TE = n∆̂
′
β,TEV

−1
∆,TE∆̂β,TE, (S.2.11)

and as n→∞, Hβ,TE →d χ
2
k′ . For fixed T , V ∆,TE can be consistently estimated by

V̂ ∆,TE =
1

n

n∑
i=1

(
Ĝ
′
i,TEMT

ˆ̃νi,FE ˆ̃ν
′
i,FEMT Ĝi,TE

)
, (S.2.12)

where
ˆ̃νi,FE = ν̂i − ν̄ = (yi − ȳ)− (X i − X̄)β̂FE−TE, (S.2.13)

and

Ĝi,TE =
(
X i − X̄

)
Ψ̄
−1
n,TE − (1 + δ̄n)−1Qix

[(
Ik′ − Q̄

′
nxMTX̄

)−1
]′
. (S.2.14)

Using the above estimate of V̂ ∆,TE, a feasible statistic for testing the null hypothesis, H0

given by (7.1), (in the case of panel regression models with time effects and T ≥ k) is given

by

Ĥβ,TE = n
(
β̂FE−TE − β̂TMG−TE

)′
V̂
−1

∆,TE

(
β̂FE−TE − β̂TMG−TE

)
. (S.2.15)

S3



S.2.2 T > k

For panels with T > k, we consider

∆̂β,C = β̂FE−TE − β̂TMG−C ,

where β̂FE−TE is given by (S.2.1), and β̂TMG−C is the TMG-C estimator based on φ̂C as the

estimator of the time effects given by (6.20) and (6.17), respectively. Using (6.18) and noting

that M iMTX i = 0 we have

φ̂C − φ = M̄
−1
n

(
1

n

n∑
i=1

M iMTνi

)
(S.2.16)

where νi = X iηiβ + ui, and M̄n = n−1
∑n

i=1M i. Using (6.20) and partitioning θ̂TMG−C =

(α̂TMG−C , β̂
′
TMG−C)′, we have

β̂TMG−C =
1

1 + δ̄n

[
n−1

n∑
i=1

Q′ixMT (yi − φ̂C)

]
,

where Qix is defined by (S.2.7). Also, since yi = αiτ T + φ +X iβ0 + νi, then noting that

n−1
∑n

i=1

(
1 + δ̄n

)−1
Q′ixMTX i = Ik′ , we have

β̂TMG−C − β0 =
1

1 + δ̄n

[
n−1

n∑
i=1

Q′ixMT (νi + φ− φ̂C)

]
.

Also using (S.2.16),

1

n(1 + δ̄n)

n∑
i=1

Q′ixMT

(
φ̂C − φ

)
= Q̄

′
nxMTM̄

−1
n

(
1

n

n∑
i=1

M iMTνi

)

where Q̄nx is given by (S.2.8). Hence

β̂TMG−C − β0 =
1

1 + δ̄n
n−1

n∑
i=1

Q′ixMTνi − Q̄
′
nxMTM̄

−1
n

(
1

n

n∑
i=1

M iMTνi

)

= n−1

n∑
i=1

[
(1 + δ̄n)−1Q′ix − Q̄

′
nxMTM̄

−1
n M i

]
MTνi,

S4



or equivalently in terms of ν̃i = νi − ν̄,

β̂TMG−C − β0 = n−1

n∑
i=1

[
(1 + δ̄n)−1Q′ix − Q̄

′
nxMTM̄

−1
n M i

]
MT ν̄i,

since 1
n

∑n
i=1

[
(1 + δ̄n)−1Q′ix − Q̄

′
nxMTM̄

−1
n M i

]
MT ν̃ = 0 given 1

n

∑n
i=1 M̄

−1
n M i = IT .

Using this result together with (S.2.9), we now have

∆̂β,C =
1

n

n∑
i=1

G′i,CMT ν̃i,

where

Gi,C =
(
X i − X̄

)
Ψ̄
−1
TE −

[
(1 + δ̄n)−1Qix −M iM̄

−1
n MT Q̄nx

]
,

and by Assumption S.1 Ψ̄TE � 0. Also by Assumptions 1 and 9, plimn→∞ M̄n = M � 0,

and under the null hypothesis given by (7.1), we have E(ṽit|Gi,C) = 0, for all i and t.

Also by Assumptions 1 and 6, uit and ηiβ are cross-sectionally independent so that ν̃it

conditional on X i are also cross-sectionally independent. Then when T > k, as n → ∞,
√
n∆̂β,C →d N(0,V ∆,C), so long as

V ∆,C = lim
n→∞

1

n

n∑
i=1

E
(
G′i,CMT ν̃iν̃

′
iMTGi,C

)
� 0. (S.2.17)

Thus, when T > k, the Hausman-type test for panels with time effects is given by

Hβ,C = n∆̂
′
β,TEV

−1
∆,C∆̂β,TE, (S.2.18)

and as n→∞, Hβ,C →d χ
2
k′ . A consistent estimator of V ∆,C for a fixed T is given by

V̂ ∆,C =
1

n

n∑
i=1

(
Ĝ
′
i,CMT

ˆ̃νi,FE ˆ̃ν
′
i,FEMT Ĝi,C

)
(S.2.19)

where

Ĝi,C =
(
X i − X̄

)
Ψ̄
−1
n,TE −

[
(1 + δ̄n)−1Qix −M iM̄

−1
n MT Q̄nx

]
, (S.2.20)

with ˆ̃νi,FE given by (S.2.13). Then the test statistics given by (S.2.18) for panel regressions

with time effects and T > k can be consistently estimated by

Ĥβ,C = n
(
β̂FE−TE − β̂TMG−C

)′
V̂
−1

∆,C

(
β̂FE−TE − β̂TMG−C

)
. (S.2.21)
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S.3 Parameters of Monte Carlo experiments

The DGP for yit and xit is described in Section 8.1 of the main paper. Section S.3.1 describes

different DGPs considered in the MC experiments, with their key parameters summarized in

Table S.1. Section S.3.2 describes how the value of κT in the yit process has been calibrated

by stochastic simulations to achieve a given level of overall fit, PR2 for a given value of T .

The simulated values of κ2
T for different DGPs are reported in Table S.2.

S.3.1 Calibration of the parameters

1. Generation of yit and xit , for i = 1, 2, ..., n, and t = 1, 2, ..., T.

(a) xit are generated as heterogeneous AR(1) processes with ρix = 0 for all i (in the

static case), and ρix ∼ IIDU(0, 0.95) for the dynamic case. See (8.3) in the main

paper. The errors ex,it of the xit equation are generated according to the following

two distributions:

i. Gaussian with ex,it ∼ IIDN(0, 1), where E(ex,it) = 0, E(e2
x,it) = 1, and

γ2 = E(e4
x,it)− 3 = 0.

ii. Uniform distribution with ex,it =
√

12(zit− 1/2), where zit∼ IIDU(0, 1), with

E(zit) = 1/2 and V ar(zit) = 1
12

. Hence, E(ex,it) = 0, E(e2
x,it) = 1 and

γ2 = E(e4
x,it)− 3 =

(
√

3)
5
−(
√
−3)

5

(4+1)(
√

3+
√

3)
− 3 = −6

5
.

(b) αix ∼ IIDN(1, 1), and σ2
ix ∼ IID 1

2
(z2
ix + 1), with zix ∼ IIDN(0, 1).

(c) The errors in the yit equation are composed of three components, κσiteit. See

(8.1) in the main paper. eit are generated as heterogeneous AR(1) processes given

by (8.2) in the main paper, with ρie = 0 for all i (serially uncorrelated case) and

ρie ∼ IIDU(0, 0.95) (serially correlated case). The innovations to the yit, ς it,

are generated as ς it ∼ IIDN(0, 1), or IID 1
2
(χ2

2 − 2). σ2
it are generated based on

different cases as described in Section 8.1.3 with E(σ2
it) = 1. The scalar, κ, is

calibrated for each T to achieve a given level of fit, PR2 ∈ {0.2, 0.4}, See sub-

section S.3.2 below.

2. Generation of heterogeneous coefficients, θi = (αi, βi)
′ for i = 1, 2, ..., n.

(a) θi = (αi, βi)
′ are generated using (8.4) in sub-section 8.1.2 of the main paper,

with α0 = E(αi) = 1 and β0 = E(βi) = 1.
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(b) (ραφ, ρβφ)′ ∈ {0, 0.5}, σ2
α = 0.2 and σ2

β ∈ {0.2, 0.5, 0.75}.

(c) εiα ∼ IID(0, σ2
εα) and εiβ ∼ IID(0, σ2

εβ), where σ2
εα = (1 − ρ2

αλ)σ
2
α and σ2

εβ =

(1− ρ2
βλ)σ

2
β.

(d) For correlated heterogeneous coefficients we set

ψα =

(
ρ2
αλ

1− ρ2
αλ

)1/2

σεα = ραλσα, and ψβ =

(
ρ2
βλ

1− ρ2
βλ

)1/2

σεβ = ρβλσβ.

Example 4 In the simple case where ρix = 0 and γix = 0, xit = αix + σixex,it, then

di = det(W ′
iW i) = Tx′iMTxi = Tσ2

ix (e′ixMTeix) . (S.3.1)

Using Lemma 6 in the online supplement of Pesaran and Yamagata (2023), we have

E(e′ixMTeix) = Tr(MT ) = T − 1,

E
[
(e′ixMTeix)

2
]

= γ2Tr[MT �MT ] + Tr(MTMT ) + 2Tr(MT )Tr(MT ),

where � denotes the element-wise product, and γ2 measures excess kurtosis of ex,it ∼ IID(0, 1)

given by γ2 = E(e4
x,it) − 3, which depends on the specific distribution of ex,it. Denote

the diagonal elements of MT as mtt for t = 1, 2, ..., T , then mtt = 1 − 1
T

, and we have

Tr[MT �MT ] =
∑T

t=1 m
2
tt = (T−1)2

T
. It is now easily seen that

E
[
(e′ixMTeix)

2
]

= (T − 1)(T + 1) +
γ2(T − 1)2

T
,

and hence

V ar(e′ixMTeix) = 2(T − 1) +
γ2(T − 1)2

T
.

Using the above results we now have

λi =
e′ixMTeix − (T − 1)[

2(T − 1) + γ2(T−1)2

T

]1/2
, (S.3.2)

which can be viewed as a standardized version of di = Tσ2
ix (e′ixMTeix), conditional on σ2

ix,

namely

λi =
di/Tσ

2
ix − E (di/Tσ

2
ix)√

V ar (di/Tσ2
ix)

=
di − E(di)√
V ar (di)

.
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Table S.1: Summary of key parameters in the Monte Carlo experiments with Gaussian and
uniformly distributed errors

Gaussian Uniform

Case (1) (2) (3) (4) (1) (2) (3) (4)

E(αi) 1 1 1 1 1 1 1 1

E(βi) 1 1 1 1 1 1 1 1

E(σ2
it) 1 1 1 1 1 1 1 1

E(σ2
ix) 1 1 1 1 1 1 1 1

γ2 0 0 0 0 -1.2 -1.2 -1.2 -1.2

E(di) 2 2 2 2 2 2 2 2

V ar(di) 14 14 14 14 10.4 10.4 10.4 10.4

PR2 0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.4

σ2
α 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

σ2
β 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

ρλα 0 0.25 0.5 0.5 0 0.25 0.5 0.5

ρλβ 0 0.25 0.5 0.5 0 0.25 0.5 0.5

σ2
εα 0.2 0.19 0.15 0.15 0.2 0.19 0.15 0.15

σ2
εβ 0.5 0.469 0.375 0.375 0.5 0.469 0.375 0.375

ψα 0 0.11 0.22 0.22 0 0.11 0.22 0.22

ψβ 0 0.18 0.35 0.35 0 0.18 0.35 0.35

Corr(αi, βi) 0 0.0625 0.25 0.25 0 0.0625 0.25 0.25

Notes: The values of key parameters under columns (1), (2) and (3) are set according to the baseline model

described in Section 8.1.3 with zero, medium and large degrees of correlated heterogeneity, where ρλβ is

defined by (8.6) in the main paper. For further details, see Section 8.1.3 of the main paper. The calibrated

parameter values are reported for T = 2, to save space.

S.3.2 Calibration of κ2 by stochastic simulation

The scaling parameter κ in (8.1) is set to achieve a given level of fit as measured by the

pooled PR2

PR2 = lim
n→∞

PR2
n = 1− limn→∞ n

−1T−1
∑n

i=1

∑T
t=1 V ar(uit)

limn→∞ n−1T−1
∑n

i=1

∑T
t=1 V ar(yit − αi − φt)

= 1− κ2

limn→∞ n−1T−1
∑n

i=1

∑T
t=1 V ar(βixit) + κ2

. (S.3.3)

Since T is fixed the value of κ in general depends on T and we have (noting that V ar(βixit) =

E(β2
ix

2
it)− [E(βixit)]

2)

κ2
T =

(
1− PR2

PR2

)
lim
n→∞

1

nT

n∑
i=1

T∑
t=1

{
E(β2

ix
2
it)− [E(βixit)]

2} . (S.3.4)
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Due to the non-linear dependence of βi on xit (through di) we use stochastic simulations to

compute E(β2
ix

2
it) and E(βixit), which can be carried out in a straightforward manner since

the values of xit and βi do not depend on κ and can be jointly simulated using the relations

(8.3) and (8.4).

The total number of simulations is Rκ = 1, 000 with n = 5, 000 and T = 2, 3, 4, 5, 6, 8. For

each replication r = 1, 2, ..., Rκ, we generate a new sample of β
(r)
i and {x(r)

it } given the DGP

set up in our paper. The random variables which are drawn independently across replications

are denoted with a superscript (r). The random variables that are drawn once and used for

all replications are denoted without a superscript (r).

1. Generate x
(r)
it :

(a) First generate e
(r)
x,it as IID(0, 1) according to the two distributions specified in

Section S.3.1, namely Gaussian or uniform distributions, and generate (σ2
ix)

(r) as

IID 1
2

[(
z

(r)
ix

)2

+ 1

]
, where z

(r)
ix are generated as IIDN(0, 1).

(b) Generate

λ
(r)
i =

e
(r)′
ix MTe

(r)
ix − (T − 1)√

2(T − 1) + γ2
T

(T − 1)2
,

where γ2 depends on the chosen distribution: (i) with Gaussian distribution γ2 =

0, and (ii) with uniform distribution γ2 = −6
5
.

(c) Generate ρix = 0 ∀i for static xit, or ρ
(r)
ix ∼ IIDU(0, 0.95) for dynamic xit. Then

generate ε
(r)
ix as IIDN(0, 1), and x

(r)
it iteratively for t = −49,−48, ...,−1, 0, 1, ..., T

for the dynamic case

x
(r)
it = α

(r)
ix

(
1− ρ(r)

ix

)
+ γ

(r)
ix ft + ρ

(r)
i x

(r)
i,t−1 +

[
1−

(
ρ

(r)
ix

)2
]1/2

σ
(r)
ix e

(r)
x,it,

without or with interactive effects, γ
(r)
ix ∼ IIDU(0, 2), ft = 0.9ft−1+(1−0.92)1/2vt,

and vt ∼ IIDN(0, 1), where xi,−50 = 0 and f−50 = 0. The first 50 observations

are dropped, and {xi1, xi2, ..., xiT} are used in the simulations.

2. Generate β
(r)
i

(a) Generate ε
(r)
iβ as IIDN(0, σ2

εβ) where σ2
εβ = (1− ρ2

λβ)σ2
β.

(b) Given ψβ, λ
(r)
i and ε

(r)
iβ , set β

(r)
i = β0 + η

(r)
iβ . Then β

(r)
i = β0 + η

(r)
iβ .
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3. Given β
(r)
i and x

(r)
it , we then simulate

ART = R−1T−1n−1

R∑
r=1

n∑
i=1

T∑
t=1

(
β

(r)
i

)2 (
x

(r)
it

)2

BRT = R−1T−1n−1

R∑
r=1

n∑
i=1

T∑
t=1

β
(r)
i x

(r)
it

̂V ar(βixit)RT = ART −B2
RT .

Then for given values of PR2 = 0.2 or 0.4, compute κ2
T as

κ2
T =

(
1− PR2

PR2

)
̂V ar(βixit)RT .

Table S.2: Simulated values of κ2
T for T = 2, 3, 4, 5, 6, 8

Gaussian Uniform
Case (1) (2) (3) (4) (1) (2) (3) (4)

There is no autoregressions or factors in xit.
T = 2 14.02 14.62 17.02 6.38 14.01 14.08 15.30 5.74
T = 3 14.00 14.61 16.56 6.21 14.00 14.10 15.16 5.69
T = 4 14.00 14.58 16.24 6.09 14.00 14.13 15.06 5.65
T = 5 14.00 14.56 16.00 6.00 14.00 14.13 14.98 5.62
T = 6 14.00 14.56 15.83 5.93 14.00 14.15 14.93 5.60
T = 8 14.00 14.50 15.57 5.84 13.99 14.14 14.82 5.56

xit are generated as heterogeneous AR(1) processes.
T = 2 13.98 14.62 15.50 5.81 13.98 14.62 15.50 5.81
T = 3 13.99 14.61 15.43 5.79 13.99 14.61 15.43 5.79
T = 4 13.97 14.58 15.33 5.75 13.97 14.58 15.33 5.75
T = 5 13.99 14.56 15.26 5.72 13.99 14.56 15.26 5.72
T = 6 14.01 14.56 15.22 5.71 14.01 14.56 15.22 5.71
T = 8 13.98 14.50 15.10 5.66 13.98 14.50 15.10 5.66

xit are generated as heterogeneous AR(1) processes with interactive effects.
T = 2 23.95 24.59 25.47 9.55 23.94 24.02 24.16 9.06
T = 3 25.05 25.67 26.48 9.93 25.07 25.20 25.37 9.51
T = 4 24.53 25.14 25.91 9.71 24.55 24.70 24.88 9.33
T = 5 24.89 25.47 26.17 9.81 24.91 25.05 25.23 9.46
T = 6 24.36 24.91 25.58 9.59 24.34 24.51 24.71 9.27
T = 8 23.20 23.71 24.30 9.11 23.20 23.37 23.57 8.84

Notes: The values of κ2T are computed according to stochastic simulations described in Section S.3.2, with

1, 000 replications. The values of key parameters for different cases are summarized in Table S.1.
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S.4 Monte Carlo evidence with Gaussian distributed

errors in the regressor

S.4.1 Comparison of FE, MG and TMG estimators

Table S.3 summarizes the MC results for the FE, MG and TMG estimators in panel data

models under uncorrelated heterogeneity (ρβ = 0), but with correlated heteroskedastic errors

(in the yit equation), for T = 2, 3, 4, 5, 6, 8 and n = 1, 000, 2, 000, 5, 000 and 10, 000. It gives

bias, RMSE and size for case (a) σ2
it = λ2

i , on the left panel and for case (b) σ2
it = e2

x,it, on

the right panel of the table.S1 As to be expected, the MG estimator performs very poorly

when T is ultra short, and suffers from substantial bias. In contrast, the bias of the TMG

estimator remains small even when T = 2. Turning to the comparison of FE and TMG

estimators, we note that under both specifications of error heteroskedasticity, the bias of

FE and TMG estimators are close to zero, and both estimators have the correct size for all

T and n combinations. The main difference between FE and TMG estimators lies in their

relative efficiency (in the RMSE sense), when T is ultra short. For example, when T = 2 and

n = 1, 000 the FE estimator is more efficient than the TMG estimator under case (b), whilst

the reverse is true under case (a). This ranking of the two estimators is also reflected in their

empirical power functions shown on the left and right panels of Figure S.1, for T = 2, 3, 4, 5

and n = 10, 000. The empirical power functions for both estimators are correctly centered

around β0 = 1. But under heteroskedasticity of type (a), the empirical power function of the

TMG estimator is steeper and for T = 2 lies within that of the FE estimator, with the reverse

being true when error heteroskedasticity is generated under case (b).S2 However, differences

between FE, MG and TMG estimators vanish very rapidly as n and T are increased.

As a general rule, the FE estimator performs well when heterogeneity is uncorrelated.

But in line with our theoretical results, the FE estimator suffers from substantial bias and

size distortions under correlated heterogeneity, irrespective of whether the errors are het-

eroskedastic. The degree of bias and size distortion of the FE estimator rises with the degree

of heterogeneity, ρβ. Table S.4 provides additional MC results for ρβ = 0.25 and PR2 = 0.2

on the left panel and for ρβ = 0.5 and PR2 = 0.4 on the right panel for sample size combina-

tions T = 2, 3, 4, 5, 6, 8, and n = 1, 000, 2, 000, 5, 000, 10, 000. Comparing these results with

those already reported in Table 1 we also note that the FE estimator shows a higher degree

of distortion when PR2 is increased from 0.20 to 0.40, with ρβ fixed at 0.50.

S1For details on the DGP and the rationale behind these specifications see Section 8.1.3 in the main paper.
S2These results are in line with Proposition 3 and Example 2 in the main paper.
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Figure S.1: Empirical power functions for FE and TMG estimators of β0 (E(βi) = β0 = 1)
in panel data models without time effects and with uncorrelated heterogeneity, ρβ = 0, and
correlated heteroskedasticity (cases (a) and (b))

Notes: For details of the DGP for the left and right panels, see footnote (i) to Table S.3. For the FE estimator,

see footnote (ii) to Table S.3. For the TMG estimator, see footnotes (ii) and (iii) to Table S.3.
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S.4.2 Comparison of TMG and GP estimators for different expo-

nents, α and αGP , used in the threshold values

Table S.5 compares small sample properties of TMG and GP estimators of β0 for different

choices of α and αGP used for their computations, respectively. The results are for the

baseline model with correlated heterogeneity, but without time effects, for ultra short values

of T = 2, 3, and n = 1, 000, 2, 000, 5, 000 and 10, 000. The empirical power functions for

TMG and GP estimators are shown in Figures S.4 and S.5. The figures suggest that both

estimators benefit from setting α and 2αGP close to 1/3 value obtained from our theoretical

derivations. The TMG estimator is less sensitive to the choice of α as compared to the GP

estimator to αGP . For further discussions see Section 8.2.4 of the main paper.
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Table S.5: Bias, RMSE and size of TMG and GP estimators of β0 (E(βi) = β0 = 1) for
different values of the parameters, α and αGP , in the baseline model without time effects and
with correlated heterogeneity, ρβ = 0.5

T = 2 T = 3
π̂ Size π̂ Size

Estimator α/αGP (×100) Bias RMSE (×100) (×100) Bias RMSE (×100)
n = 1, 000

TMG 1/3 31.2 0.048 0.35 4.9 16.5 0.023 0.20 5.2
TMG 0.35 29.6 0.045 0.36 4.6 15.0 0.020 0.21 5.0
TMG 1/2 18.1 0.017 0.47 5.7 6.0 0.004 0.25 4.7
GP 0.35/2 12.6 0.017 0.51 5.5 15.0 0.045 0.20 5.9
GP 1/4 7.5 0.001 0.64 5.4 6.0 0.014 0.23 5.6
GP 1/3 4.2 -0.029 0.83 4.5 1.4 0.011 0.31 4.5

n = 2, 000
TMG 1/3 28.5 0.044 0.27 5.3 14.1 0.018 0.16 5.4
TMG 0.35 26.8 0.041 0.28 5.3 12.7 0.016 0.16 5.3
TMG 1/2 15.6 0.028 0.37 5.1 4.5 0.004 0.20 5.0
GP 0.35/2 11.2 0.023 0.38 4.9 12.7 0.035 0.16 6.1
GP 1/4 6.4 0.035 0.50 4.7 4.5 0.009 0.18 5.0
GP 1/3 3.4 0.031 0.70 5.8 0.9 -0.001 0.23 5.0

n = 5, 000
TMG 1/3 24.7 0.037 0.18 4.7 10.8 0.016 0.11 5.3
TMG 0.35 23.1 0.034 0.19 4.4 9.5 0.014 0.11 5.1
TMG 1/2 12.4 0.016 0.26 4.6 2.9 0.002 0.14 5.2
GP 0.35/2 9.6 0.018 0.26 4.6 9.5 0.029 0.10 5.1
GP 1/4 5.1 0.012 0.36 4.7 2.9 0.008 0.13 4.7
GP 1/3 2.5 0.009 0.52 5.2 0.5 0.002 0.16 3.9

n = 10, 000
TMG 1/3 22.1 0.029 0.14 5.6 8.8 0.013 0.08 5.3
TMG 0.35 20.6 0.025 0.15 5.3 7.7 0.011 0.08 4.9
TMG 1/2 10.5 0.009 0.21 4.7 2.1 0.002 0.10 4.8
GP 0.35/2 8.5 0.012 0.20 6.0 7.7 0.022 0.08 5.8
GP 1/4 4.3 -0.002 0.28 5.1 2.1 0.005 0.09 4.8
GP 1/3 2.0 0.002 0.41 4.3 0.3 0.001 0.12 5.2

Notes: (i) The GP estimator is given by (3.1) in the main paper. For T = 2, GP compare d
1/2
i with the

bandwidth hn = CGPn
−αGP . αGP is set to 1/3. CGP = 1

2 min (σ̂D, r̂D/1.34), where σ̂D and r̂D are the

respective sample standard deviation and interquartile range of det(W i). For T = 3, we continue using the

bandwidth hn with CGP = (d̄n)1/2. See Section 8.2.2 in the main paper for details. (ii) For details of the

baseline model, see footnote (i) to Table 1 in the main paper. For the TMG estimator and its threshold,

see footnotes (ii) and (iii) to Table S.3. π̂ is the simulated fraction of individual estimates being trimmed,

defined by (4.7) in the main paper.
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Figure S.2: Empirical power functions for TMG and GP estimator of β0 (E(βi) = β0 = 1)
for parameters α = 0.35 and αGP = 0.35/2 in the baseline model without time effects and
with correlated heterogeneity, ρβ = 0.5

Notes: For details of the baseline model without time effects, see footnote (i) to Table 1 in the main paper.

See also footnotes (ii) and (iii) to Table S.3 and footnote (i) to Table S.5.
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Figure S.3: Empirical power functions for TMG and GP estimator of β0 (E(βi) = β0 = 1)
for parameters α = 1/3 and αGP = 1/3 in the baseline model without time effects and with
correlated heterogeneity, ρβ = 0.5

Notes: For details of the baseline model without time effects, see footnote (i) to Table 1 in the main paper.

See also footnotes (ii) and (iii) to Table S.3 and footnote (i) to Table S.5.
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Figure S.4: Empirical power functions for the TMG estimator of β0 (E(βi) = β0 = 1)
for different values of the threshold parameter, α ∈ {1/3, 0.35, 1/2}, in the baseline model
without time effects and with correlated heterogeneity, ρβ = 0.5

Notes: For details of the baseline model without time effects, see footnote (i) to Table 1 in the main paper.

See also footnotes (ii) and (iii) to Table S.3.
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Figure S.5: Empirical power functions for the GP estimator of β0 (E(βi) = β0 = 1) for
different values of the bandwidth parameter, αGP ∈ {0.35/2, 1/4, 1/3} in the baseline model
without time effects and with correlated heterogeneity, ρβ = 0.5

Notes: For details of the baseline model without time effects, see footnote (i) to Table 1 in the main paper.

See also footnote (i) to Table S.5.
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S.4.3 Comparison of TMG and GP estimators with correlated het-

eroskedasticity

Table S.6 provides additional MC results on small sample properties of TMG and GP estima-

tors of β0 in panel data models with correlated heterogeneity, ρβ = 0.5, as well as correlated

error heteroskedasticity which are generated as case (a) σ2
it = λ2

i , and case (b) σ2
it = e2

x,it, for

all i and t. These results are to be compared to the ones in Table 2 in Section 8.2.2 of the main

paper which are for random heteroskedasticity. The TMG estimator continues to perform

better than the GP estimator when T = 2 or 3, and allowing for correlated heteroskedasticity

does not alter this conclusion.

Table S.6: Bias, RMSE and size of TMG and GP estimators of β0 (E(βi) = β0 = 1) in panel
data models without time effects and with correlated heterogeneity, ρβ = 0.5, and correlated
heteroskedasticity (cases (a) and (b))

T = 2 T = 3
π̂ Size π̂ Size

Estimator (×100) Bias RMSE (×100) (×100) Bias RMSE (×100)

Case (a): σ2
it = λ2

i

n = 1, 000
TMG 31.2 0.049 0.25 5.4 16.5 0.023 0.16 4.9
GP 4.2 -0.012 0.53 4.7 2.0 0.000 0.22 4.3

n = 2, 000
TMG 28.5 0.044 0.19 5.6 14.1 0.018 0.13 5.7
GP 3.4 0.022 0.46 6.0 1.3 0.004 0.18 5.2

n = 5, 000
TMG 24.7 0.036 0.13 4.5 10.8 0.016 0.09 5.5
GP 2.5 0.000 0.33 5.4 0.7 0.000 0.13 5.4

n = 10, 000
TMG 22.1 0.031 0.10 6.3 8.8 0.014 0.06 5.1
GP 2.0 0.004 0.25 4.3 0.5 0.000 0.09 4.9
Case (b): σ2

it = e2
x,it

n = 1, 000
TMG 31.2 0.050 0.37 5.5 16.5 0.024 0.21 5.1
GP 4.2 -0.018 0.85 5.1 2.0 -0.003 0.28 4.6

n = 2, 000
TMG 28.5 0.043 0.28 5.7 14.1 0.020 0.16 5.1
GP 3.4 0.038 0.72 5.4 1.3 0.003 0.22 4.7

n = 5, 000
TMG 24.7 0.033 0.19 4.8 10.8 0.014 0.11 5.3
GP 2.5 -0.007 0.53 5.9 0.7 -0.002 0.15 4.3

n = 10, 000
TMG 22.1 0.032 0.14 5.7 8.8 0.013 0.08 5.5
GP 2.0 0.006 0.41 5.3 0.5 -0.001 0.11 4.5

Notes: (i) The data generating process is given by yit = αi + βixit + σiteit, where σ2
it are generated as case

(a): σ2
it = λ2i , and case (b): σ2

it = e2x,it, for all i and t. The errors processes for yit and xit equations are

chi-squared and Gaussian, respectively. xit are generated as heterogeneous AR(1) processes. ρβ is defined

by (8.6) in the main paper. For further details see Section 8.1.3 in the main paper and Section S.3. (ii) For

the TMG estimator, see footnotes (ii) and (iii) to Table S.3. For the GP estimator, see footnote (i) to Table

S.5. π̂ is the simulated fraction of individual estimates being trimmed, given by (4.7) in the main paper.
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S.5 The effects of increasing PR2 on the small sam-

ple properties of TMG, TMG-TE and TMG-C, GP

and SU estimators

Table S.7 provides summary MC results with the higher level of fit, PR2 = 0.4, for T = 2 and

3 and n = 1, 000, 2, 000, 5, 000, 10, 000. These results are comparable with the ones reported

in Table 2 for the baseline model where PR2 = 0.2. Table S.8 gives the same results for β0

but under DGPs with time effects, and Table S.9 provides the results for the time effect φ1

when T = 2, and the time effects, φ1 and φ2, when T = 3.

Table S.10 reports bias, RMSE and size for the TMG and GP estimators for models with

and without time effects, and for different xit processes, for T = 2 and n = 1, 000, 2, 000,

5, 000, 10, 000.

Table S.7: Bias, RMSE and size of TMG, GP and SU estimators of β0 (E(βi) = β0 = 1) in
panel data models without time effects and with correlated heterogeneity, ρβ = 0.5, and the
level of overall fit, PR2 = 0.4

T = 2 T = 3
π̂ Size π̂ Size

Estimator (×100) Bias RMSE (×100) (×100) Bias RMSE (×100)
n = 1, 000

TMG 31.2 0.049 0.22 5.4 16.5 0.023 0.13 5.6
GP 4.2 -0.014 0.51 4.6 2.0 0.001 0.17 4.7
SU 4.2 -0.028 0.99 4.9 ... ... ... ...

n = 2, 000
TMG 28.5 0.044 0.17 5.7 14.1 0.020 0.10 5.9
GP 3.4 0.022 0.43 5.8 1.3 0.004 0.13 4.7
SU 3.4 0.005 0.85 5.5 ... ... ... ...

n = 5, 000
TMG 24.7 0.037 0.12 5.6 10.8 0.016 0.07 6.0
GP 2.5 0.007 0.32 5.3 0.7 0.000 0.09 5.1
SU 2.5 0.002 0.62 4.9 ... ... ... ...

n = 10, 000
TMG 22.1 0.030 0.09 6.9 8.8 0.013 0.05 6.1
GP 2.0 0.003 0.25 4.4 0.5 0.000 0.07 4.9
SU 2.0 0.004 0.50 5.1 ... ... ... ...

Notes: (i) The data generating process is given by yit = αi + βixit + σiteit with random heteroskedasticity,

ρβ is defined by (8.6) in the main paper, and PR2 is defined by (S.3.3). The errors processes for yit and

xit equations are chi-squared and Gaussian, respectively, and xit are generated as heterogeneous AR(1)

processes. For further details see Section 8.1.3 in the main paper and Section S.3. (ii) For the TMG

estimator, see footnotes (ii) and (iii) to Table S.3. For the GP estimator, see footnote (i) to Table S.5. The

SU estimator is proposed by Sasaki and Ura (2021), with the same threshold as the GP estimator. π̂ is the

simulated fraction of individual estimates being trimmed, defined by (4.7) in the main paper. The estimation

algorithm for the SU estimator is not available for T = 3, denoted by “...”.
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Table S.8: Bias, RMSE and size of TMG-TE, TMG-C, GP and SU estimators of β0 (E(βi) =
β0 = 1) in panel data models with time effects, correlated heterogeneity, ρβ = 0.5, and the
level of overall fit, PR2 = 0.4

T = 2 T = 3
π̂ Size π̂ Size

Estimator (×100) Bias RMSE (×100) (×100) Bias RMSE (×100)
n = 1, 000

TMG-TE 31.2 0.049 0.22 5.5 16.5 0.023 0.13 5.6
TMG-C ... ... ... ... 16.5 0.023 0.13 5.5
GP 4.2 -0.018 0.52 4.0 2.0 0.001 0.17 4.6
SU 4.2 -0.032 1.02 5.4 ... ... ... ...

n = 2, 000
TMG-TE 28.5 0.044 0.17 5.6 14.1 0.020 0.10 5.7
TMG-C ... ... ... ... 14.1 0.020 0.10 5.7
GP 3.4 0.022 0.44 5.2 1.3 0.004 0.13 4.7
SU 3.4 0.007 0.86 5.8 ... ... ... ...

n = 5, 000
TMG-TE 24.7 0.037 0.12 5.6 10.8 0.016 0.07 6.0
TMG-C ... ... ... ... 10.8 0.016 0.07 6.0
GP 2.5 0.007 0.32 5.0 0.7 0.000 0.09 5.1
SU 2.5 0.004 0.63 4.7 ... ... ... ...

n = 10, 000
TMG-TE 22.1 0.030 0.09 6.9 8.8 0.013 0.05 6.1
TMG-C ... ... ... ... 8.8 0.013 0.05 6.1
GP 2.0 0.003 0.25 4.3 0.5 0.000 0.07 4.9
SU 2.0 0.007 0.50 5.4 ... ... ... ...

Notes: (i) The data generating process is given by yit = αi + βixit + σiteit with random heteroskedasticity,

ρβ is defined by (8.6) in the main paper, and PR2 is defined by (S.3.3). Time effects are set as φt = t for

t = 1, 2, ..., T − 1, and φT = −T (T − 1)/2. The errors processes for yit and xit equations are chi-squared

and Gaussian, respectively, and xit are generated as heterogeneous AR(1) processes. For further details see

Section 8.1.3 in the main paper and Section S.3. (ii) The TMG-TE estimators of θ0 and φ are given by

(6.9) and (6.11) in the main paper, respectively, and their asymptotic variances are given by (A.3.4) and

(A.3.7), respectively. The TMG-C estimators of θ0 and φ are given by (6.20) and (6.17) in the main paper,

respectively, and their asymptotic variances are given by (6.21) and (6.19) in the main paper, respectively.

For the trimming threshold, see footnote (iii) to Table S.3. (iii) GP and SU estimators are proposed by

Graham and Powell (2012) and Sasaki and Ura (2021). For their trimming threshold, see footnote (i) to

Table S.5. π̂ is the simulated fraction of individual estimates being trimmed, defined by (4.7) in the main

paper. “...” denotes the estimation algorithms are not available or not applicable.

Table S.9: Bias, RMSE and size of TMG-TE and GP estimators of the time effects, φ1 and
φ2, in panel data model with correlated heterogeneity, ρβ = 0.5, and the overall fit, PR2 = 0.4

n = 1, 000 n = 5, 000
Estimator Bias RMSE Size (×100) Bias RMSE Size (×100)

T = 2 T = 2
φ1 = 1 TMG-TE 0.002 0.06 6.1 -0.001 0.02 4.7

GP 0.001 0.33 7.1 -0.005 0.21 6.9
T = 3 T = 3

φ1 = 1 TMG-TE 0.165 0.00 6.5 0.108 0.00 2.9
GP 0.020 0.00 9.1 0.007 0.00 4.1

φ2 = 2 TMG-TE 0.165 0.00 6.5 0.108 0.00 2.9
GP 0.020 -0.01 8.1 0.007 0.00 3.7

Notes: See the notes to Table S.8.
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S.6 Monte Carlo evidence when the errors of xit are

uniformly distributed

In this section, the DGP is generated using the baseline model without time effects, but with

the errors in the xit equation drawn from a uniform distribution, as compared to the Gaussian

errors used in the baseline model. Table S.11 compares small sample performance of the

TMG estimator of β0 using different α ∈ {1/3, 0.35, 1/2} for threshold values with correlated

heterogeneity, ρβ = 0.5 for T = 2, 3, and n = 1, 000, 2, 000, 5, 000 and 10, 000. Table S.12

reports bias, RMSE and size of FE, MG and TMG estimators of β0 for T = 2, 3, 4, 5, 6, 8,

and n = 1, 000, 2, 000, 5, 000 and 10, 000.

The choice of the error distribution does not seem to be consequential.

Table S.11: Bias, RMSE and size of the TMG estimator of β0 (E(βi) = β0 = 1) for different
values of the threshold parameter, α, in the baseline model without time effects and with
correlated heterogeneity, ρβ = 0.5, using uniformly distributed errors in the xit equation

T = 2 T = 3
π̂ Size π̂ Size

Estimator α (×100) Bias RMSE (×100) (×100) Bias RMSE (×100)
n = 1, 000

TMG 1/3 27.0 0.051 0.33 5.0 12.6 0.027 0.20 5.2
TMG 0.35 25.5 0.048 0.34 5.0 11.3 0.025 0.20 5.3
TMG 0.50 15.2 0.025 0.43 4.4 4.0 0.012 0.23 4.9

n = 2, 000
TMG 1/3 24.4 0.045 0.26 5.2 10.5 0.024 0.15 5.6
TMG 0.35 22.9 0.042 0.27 5.2 9.3 0.022 0.15 5.1
TMG 0.50 13.0 0.024 0.34 5.0 3.0 0.012 0.18 5.1

n = 5, 000
TMG 1/3 20.9 0.041 0.18 6.0 7.7 0.015 0.10 5.0
TMG 0.35 19.5 0.038 0.19 5.9 6.7 0.013 0.10 5.3
TMG 0.50 10.3 0.020 0.25 5.0 1.9 0.006 0.12 4.9

n = 10, 000
TMG 1/3 18.7 0.036 0.13 5.8 6.2 0.011 0.07 5.0
TMG 0.35 17.4 0.034 0.14 5.8 5.3 0.009 0.07 5.2
TMG 0.50 8.7 0.024 0.19 4.2 1.3 0.002 0.09 5.0

Notes: (i) The baseline model is generated as yit = αi +βixit +uit, where the errors processes for yit and xit

equations are chi-squared and uniformly distributed, respectively, xit are generated as heterogeneous AR(1)

processes, and ρβ is defined by (8.6) in the main paper. For further details see Section 8.1.3 in the main

paper and Section S.3. (ii) For the TMG estimator and its threshold, see footnotes (ii) and (iii) to Table S.3.

π̂ is the simulated fraction of individual estimates being trimmed, defined by (4.7) in the main paper.
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S.7 Monte Carlo evidence of estimation with interac-

tive effects in the regressor

To further examine the robustness of TMG-TE and TMG-C estimators to the choice of DGP,

we generate the regressor, xit, with interactive effects, namely

xit = αix(1− ρix) + γixft + ρixxi,t−1 +
(
1− ρ2

ix

)1/2
ux,it,

where γix ∼ IIDU(0, 2), ft = 0.9ft−1 + (1 − 0.92)1/2vt, and vt ∼ IIDN(0, 1) for t =

−49,−48, ..., −1, 0, 1, ..., T , with f−50 = 0. We also calibrate κ in the outcome equation

given by (8.1) in the main paper, to achieve PR2 = 0.2 by stochastic simulation (see Table

S.2). The rest of the parameters are set as in the baseline model. See Section 8.1.3 in the

main paper for details.

Tables S.13–S.14 summarize the results for TMG-TE, TMG-C, GP and SU estimators

of β0 and the time effect φ1 when T = 2, and the time effects φ1 and φ2 when T = 3, for

T = 2, 3 and n = 1, 000, 2, 000, 5, 000 and 10, 000.

The comparative performance of TMG-TE and GP estimators is unaffected by the addi-

tion of interactive effects to the xit process. The inclusion of interactive effects, by increasing

the variance of xit, results in improved estimates with a higher degree of precision, and a

smaller number of estimates being trimmed. This can be seen in the estimates of π̂ (the

fraction of estimates trimmed) which are slightly lower than those reported in Table 3 in

the main paper for the baseline model. The bias is also slightly smaller but the RMSE is

larger. The RMSE of TMG-TE estimator of φ1 and φ2 are also higher as compared with

those reported in Table S.14 in the main paper.

The comparative empirical power functions for β0 and φ1 and φ2 are shown in Figures

S.6–S.8. As can be seen from Figure S.6, the TMG-C estimator of β0 has marginally higher

power than the TMG-TE estimator when xit includes interactive effects, compared to the

baseline model without interactive effects where TMG-TE and TMG-C estimators have very

similar power functions. See Figure S.9.
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Table S.13: Bias, RMSE and size of TMG-TE, TMG-C, GP and SU estimators of β0 (E(βi) =
β0 = 1) in panel data models with time effects, correlated heterogeneity, ρβ = 0.5, and
interactive effects in the xit equation

T = 2 T = 3
π̂ Size π̂ Size

Estimator (×100) Bias RMSE (×100) (×100) Bias RMSE (×100)
n = 1, 000

TMG-TE 29.9 0.037 0.43 5.2 13.1 0.022 0.26 4.8
TMG-C ... ... ... ... 13.1 0.020 0.25 5.0
GP 4.2 -0.017 0.97 4.4 0.5 0.016 0.36 5.1
SU 4.2 -0.060 1.93 5.9 ... ... ... ...

n = 2, 000
TMG-TE 26.9 0.029 0.32 4.2 10.7 0.012 0.19 3.8
TMG-C ... ... ... ... 10.7 0.011 0.18 4.2
GP 3.3 -0.004 0.79 4.4 0.4 0.000 0.27 4.9
SU 3.3 -0.012 1.55 5.2 ... ... ... ...

n = 5, 000
TMG-TE 23.4 0.026 0.22 4.9 8.1 0.009 0.13 3.8
TMG-C ... ... ... ... 8.1 0.008 0.12 4.3
GP 2.5 0.014 0.59 4.7 0.2 0.002 0.18 4.2
SU 2.5 0.059 1.15 4.9 ... ... ... ...

n = 10, 000
TMG-TE 20.8 0.020 0.17 5.5 6.5 0.008 0.10 4.7
TMG-C ... ... ... ... 6.5 0.007 0.09 5.6
GP 1.9 -0.008 0.47 4.7 0.1 0.001 0.13 5.5
SU 1.9 -0.030 0.91 4.9 ... ... ... ...

Notes: (i) The data generating process is given by yit = αi+φt+βixit+σiteit with random heteroskedasticity,

xit are generated as heterogeneous AR(1) processes with interactive effects, and ρβ is defined by (8.6) in the

main paper. Time effects are set as φt = t for t = 1, 2, ..., T −1, and φT = −T (T −1)/2. The errors processes

for yit and xit equations are chi-squared and Gaussian, respectively. For further details see Section 8.1.3 in

the main paper. (ii) For TMG-TE and TMG-C estimators, see footnote (ii) to Table S.8. For GP and SU

estimators, see footnote (iii) to Table 3. π̂ is the simulated fraction of individual estimates being trimmed,

given by (4.7) in the main paper. “...” denotes the estimation algorithms are not applicable or available.

Table S.14: Bias, RMSE and size of TMG-TE and GP estimators of the time effects, φ1 and
φ2, in panel data models with correlated heterogeneity, ρβ = 0.5, and interactive effects in
the xit equation

n = 1, 000 n = 5, 000
Estimator Bias RMSE Size (×100) Bias RMSE Size (×100)

T = 2 T = 2
φ1 = 1 TMG-TE 0.000 0.13 4.6 -0.005 0.06 4.5

GP 0.017 0.72 7.6 0.007 0.44 6.2
T = 3 T = 3

φ1 = 1 TMG-TE 0.131 0.00 13.2 0.081 0.00 6.0
GP 0.005 0.01 18.1 0.002 0.00 8.4

φ2 = 2 TMG-TE 0.131 0.01 14.9 0.081 0.00 6.7
GP 0.005 0.00 17.5 0.002 0.00 7.9

Notes: For details of models with time effects, where xit are generated as heterogeneous AR(1) processes

with interactive effects, see footnote (i) to Table S.13. For the TMG-TE estimator, see footnote (ii) to Table

S.8. For the GP estimator, see footnote (i) to Table S.5.
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Figure S.6: Empirical power functions for TMG-TE, GP, SU and TMG-C estimators of β0

(E(βi) = β0 = 1) in panel data models with time effects, correlated heterogeneity, ρβ = 0.5,
and interactive effects in the xit equation

Notes: For details of models with time effects, where xit are generated as heterogeneous AR(1) processes

with interactive effects, see footnote (i) to Table S.13. For the TMG-TE estimator, see footnote (ii) to Table

S.8. For GP and SU estimators, see footnote (iii) to Table S.8.
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Figure S.7: Empirical power functions for TMG-TE and GP estimators of the time effect
φ1 = 1 in panel data models with correlated heterogeneity, ρβ = 0.5, and interactive effects
in the xit equation

Notes: For details of models with time effects, where xit are generated as heterogeneous AR(1) processes

with interactive effects, see footnote (i) to Table S.13. For the TMG-TE estimator, see footnote (ii) to Table

S.8. For the GP estimator, see footnote (iii) to Table S.8.
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Figure S.8: Empirical power functions for TMG-TE and GP estimators of the time effect
φ2 = 2 in panel data models with T = 3, correlated heterogeneity, ρβ = 0.5, and interactive
effects in the xit equation

Notes: For details of models with time effects, where xit are generated as heterogeneous AR(1) processes

with interactive effects, see footnote (i) to Table S.13. For the TMG-TE estimator, see footnote (ii) to Table

S.8. For the GP estimator, see footnote (iii) to Table S.8.
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S.8 Empirical power functions for TMG-TE, TMG-C,

GP and SU estimators in the baseline model with

time effects and correlated heterogeneity

Figures S.9–S.11 show empirical power functions for TMG-TE, GP, SU (for T = 2) and

TMG-C (for T = 3) estimators of β0, and the time effects, φ1 and φ2, for the baseline model

with correlated heterogeneity, ρβ = 0.5, as discussed in Section 8.2.2 of the main paper.

Figure S.9: Empirical power functions for TMG-TE, GP, SU and TMG-C estimators of
β0 (E(βi) = β0 = 1) in the baseline model with time effects and correlated heterogeneity,
ρβ = 0.5

Notes: For details of the baseline model with time effects, see footnote (i) to Table 3 in the main paper.
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Figure S.10: Empirical power functions for TMG-TE and GP estimators of the time effect
φ1 = 1 in the baseline model with correlated heterogeneity, ρβ = 0.5

Notes: For details of the baseline model with time effects, see footnote (i) to Table 3 in the main paper.
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Figure S.11: Empirical power functions for TMG-TE and GP estimators of the time effect
φ2 = 2 in the baseline model with T = 3 and correlated heterogeneity, ρβ = 0.5

Notes: For details of the baseline model with time effects, see footnote (i) to Table 3 in the main paper.
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