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Abstract 
 
We study the effect of Artificial Intelligence (AI) on employment across US commuting zones 
over the period 2000-2020. A simple model shows that AI can automate jobs or complement 
workers, and illustrates how to estimate its effect by exploiting variation in a novel measure of 
local exposure to AI: job growth in AI-related professions built from detailed occupational data. 
Using a shift-share instrument that combines industry-level AI adoption with local industry 
employment, we estimate robust negative effects of AI exposure on employment across 
commuting zones and time. We find that AI’s impact is different from other capital and 
technologies, and that it works through services more than manufacturing. Moreover, the 
employment effect is especially negative for low-skill and production workers, while it turns 
positive for workers at the top of the wage distribution. These results are consistent with the view 
that AI has contributed to the automation of jobs and to widen inequality. 
JEL-Codes: J230, J240, O330. 
Keywords: artificial intelligence, automation, displacement, labor. 
 
 
 
 

 
Alessandra Bonfiglioli 

University of Bergamo / Italy 
alessandra.bonfiglioli@unibg.it 

Rosario Crinò 
University of Bergamo / Italy 

rosario.crino@unibg.it 
 

Gino Gancia 
University of Milan Bicocca / Italy 
ginoalessandro.ganci@unimib.it 

 
Ioannis Papadakis 

University of Sussex / United Kingdom 
I.Papadakis@sussex.ac.uk 

 
 
 
 
September 2023 
We thank Daron Acemoglu for useful comments. The usual caveat applies. 



1 Introduction

Artificial Intelligence (AI) is often viewed as one of the most transformative and disruptive

technologies of recent times. Thanks to improvements in machine learning techniques and

the growing availability of vast amounts of digital data, the last two decades have witnessed a

tremendous increase in the use of AI applications, which include web search engines, targeted

advertising, recommendation systems, self-driving cars, generative or creative tools and chat-

bots. A pressing policy question is how these advances will affect labor markets and especially

employment.

On the one hand, intelligent tools promise to enhance human capabilities and create new

demand for certain skills. For instance, AI can substitute existing capital (Bresnahan, 2019)

and boost labor productivity (McKinsey Global Institute, 2017). On the other hand, the

fear is that AI will surpass workers in a growing set of tasks, making them redundant. For

instance, AI-assisted machines can be used to automate jobs (Acemoglu, 2022, Acemoglu and

Johnson, 2023). Whether AI will complement or substitute workers is therefore an empirical

question, for which there is still very little systematic evidence.

This paper is one of the first attempts at filling this gap by studying the effect of AI

on employment across US Commuting Zones (CZs) over the period 2000-2020. Our analysis

covers the years of the rise of the digital economy. All the major companies involved in big

data collection were founded by the early 2000s: Amazon (1994), Google (1998), LinkedIn

(2003), Facebook (2004), Twitter (2006). There is also evidence that the diffusion of AI

technologies speeded up after 2010 (e.g., Taddy, 2019, Alekseeva et al., 2021, and Acemoglu

et al. 2022). Yet, precise metrics for quantifying AI adoption are at present lacking. To

overcome this limitation, we recognize that using AI necessitates skills that only professionals

in a narrow range of occupations possess. Taking advantage of a novel section of the O*NET

database, we classify AI-related occupations as those whose job postings most frequently

require specialized software used for machine learning and data analysis. Then, we detect AI

adoption from the growth in the relative importance of these AI-related occupations.

A second challenge in identifying causal effects is that AI adoption might be correlated

with other shocks hitting a CZ. To overcome this problem, we use a shift-share instrument

that combines industry-level AI adoption for the US with CZ-level employment shares across

industries. Then, guided by a simple model, we identify CZs more exposed to AI as those

specialized in industries that experienced faster growth in AI-related occupations.

With this data at hand, we first document some patterns about the change in the em-

ployment share of AI-related occupations across industries, CZs and time. This preliminary
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analysis confirms that AI-adoption varies significantly and that it accelerated after 2010. We

then estimate the effect of AI-adoption on employment using 2SLS stacked first-differences

models for the decades 2000-2010 and 2010-2020. To control for other characteristics of a

CZ that may influence AI adoption and employment, we include a wealth of fixed effects

and covariates. We also control for other technologies such as ICT and industrial robots,

and follow various approaches to account for underlying trends and unobserved shocks. In

all cases, we estimate robust negative effects of AI exposure on employment across CZs and

time. Interestingly, we find that the 2SLS coeffi cient is more strongly negative than its OLS

counterpart, which is consistent with the view that contemporaneous shocks may induce an

upward bias.1

Finally, we dig deeper into the effect of AI adoption. We start by comparing AI with other

shocks studied in the literature. Then, we explore the mechanisms through which the effect

of AI unfolds. Differently from industrial robots, we find that AI adoption is concentrated

in the service sector, but it exerts a negative effect on employment both in services and in

manufacturing. Finally, we study how the employment response to AI varies by gender, age,

skill and occupation. We show that the negative employment effects are largest for low-skill

and production workers, while they turn strongly positive for workers at the top of the wage

distribution. This suggests that AI adoption may have contributed to increasing inequality.

This paper is related to the large and growing literature on the labor market effects of new

technologies and especially automation. Particularly close is the seminal paper by Acemoglu

and Restrepo (2020), which studies the effects of industrial robots, from the International

Federation of Robotics (IFR), on US CZs. We differ in several important respects. First, we

focus on an entirely different technology, the adoption of AI, using a novel measure. Second,

our measure of AI adoption has several advantages compared to their proxy for automation.

The IFR data, first used by Graetz and Michaels (2018), is available for 19 broad sectors

only, while our variable has a much finer variation (188 industries). Moreover, the IFR data

are not available at the CZ level, which makes it impossible to test the mechanisms through

which US-level exposure operates across localities. In terms of results, we find evidence that

AI adoption, similarly to robots, displaces workers. However, we also find that AI adoption,

unlike robots, operates mostly through the service sector.

A recent strand of the literature studies the evolution of occupations that are at risk of

being displaced by AI. Various measures have been proposed: the AI occupational impact

measure by Felten et al. (2018, 2019, 2021); the Suitability for Machine Learning (SML) index

1For instance, Bonfiglioli et al. (2022a) argue that positive demand shocks trigger investment in automa-
tion and also increase employment.
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by Brynjolfsson et al. (2018, 2019); and Webb’s (2020) AI Exposure score. Combining these

measures with information from job postings in the US, Acemoglu et al. (2022) find that,

consistently with our approach to measuring AI adoption, establishments with AI-suitable

tasks increase their demand for AI-related skills and reduce their overall hiring. Albanesi et

al. (2023) study instead the evolution of occupations exposed to AI in a panel of European

countries. None of these papers detect a negative relationship between displacement risk

and employment at the occupation or industry level, suggesting that existing measures of

displacement risk might be correlated with other shocks. Our paper is the first to identify

negative aggregate effects of AI adoption on employment. Our results are consistent with Hui,

Reshef and Zhou (2023), who document a negative impact of generative AI on the employment

of free-lancers in an online labor market, and with Grennan and Michaely (2020), who find

negative effects for financial analysts.

While most of the literature focuses on occupations that compete with AI, a few recent

papers study instead the jobs that are involved in the creation of AI. Hanson (2021) selects AI-

related occupations based on keywords such as "computer", "data" or "software" in job titles,

while we use specific software requirements included in job postings. More importantly, he

uses his classification to study a very different question, namely, the determinants of regional

specialization in AI-related activities and not the labor market effects of AI. Alekseeva et

al. (2021), instead, provide some descriptive evidence on the demand for AI skills in the US

across occupations and industries. Finally, relative to using vacancies to measure the demand

for AI-related skills (as in Acemoglu et al., 2022), occupational data have the advantage of

being available for a broader sample.

The remainder of the paper is organized as follows. Section 2 presents a simple model of

the effects of AI on employment to guide the empirical analysis. Section 3 describes the data

and the main variables. Section 4 discusses the empirical specification and the identification

strategy. Section 5 presents some stylized facts and preliminary evidence. Section 6 contains

the main empirical results. Section 7 considers possible threats to identification. Section 8

compares the results to other technologies and explores the adjustment mechanisms. Section

9 concludes.

2 AI and Local Labor Demand

This section presents a simple partial-equilibrium, task-based, model of the effects of AI on

the demand for labor across CZs similar to Acemoglu and Restrepo (2020). The role of

the model is to show that AI can automate jobs or complement workers, to illustrate how
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to estimate its effect using variation in local exposure to AI and to clarify how to measure

it. The analysis is kept deliberately simple to make the link with the empirical section as

transparent as possible. Partial equilibrium is adopted both for simplicity and for consistency

with the econometric specifications.

2.1 A Simple Model of AI and Employment

The economy consists of C commuting zones. Each CZ c ∈ C has identical preferences over

I industries. For simplicity, trade is free across CZs and we denote with pi the price of the

output of industry i ∈ I. Each industry produces output by combining a specific capital with
a continuum of tasks indexed by z ∈ [0, 1], each of which can be performed by AI or labor.

The production function for industry i in CZ c is:

yci = ϕci

[
exp

(∫ 1

0

lnxci(z)dz
)]α

K1−α
ci , (1)

where xci(z) is the output of task z and Kci is CZ c’s endowment of the specific capital used

in industry i. Differences in the endowment of specific capital generate differences in the

industrial composition of employment across CZs.

Denote with ωc and wc the cost of AI and the wage in CZ c. We assume that ωc < wc.

We identify the capabilities of AI with the set of tasks it can perform. Workers can perform

all tasks. However, since AI is cheaper than labor, workers will not be employed in tasks that

can be performed by AI. Assuming that AI can be used in the set of tasks [0, κic], we will

have xci(z) = Aci/κci, where Aci is the AI input used in CZ c in industry i. Labor performs

the remaining tasks [κic, 1], with xci(z) = Lci/(1 − κci), where Lci is employment in CZ c in
industry i. Substituting these quantities into (1), industry output becomes:

yci = ϕci

(
Aci
κci

)ακci ( Lci
1− κci

)α(1−κci)
K1−α
ci . (2)

The demand for AI services and for labor from industry i in CZ c are:

ωcAci = ακcipiyci, (3)

and

wcLci = α (1− κci) piyci. (4)
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Substituting (3)-(4) into (2) yields:

yci = (ϕciα)
1

1−αp
α

1−α
i

(
1

ωc

)ακci
1−α
(

1

wc

)α(1−κci)
1−α

Kci.

We define an improvement of the AI technology as an increase in the set of tasks it can

perform: dκci > 0. We also allow technological progress in AI to boost productivity of all

factors: dϕci/dκci = γ ≥ 0. This assumption may capture phenomena such as the use of AI as

a general purpose technology complementing all existing factors or the creation of new tasks.

These are mechanisms that have been emphasized in part of the literature. Since AI services

are cheaper than labor and may raise productivity, industry output necessarily expands with

dκci > 0:

d ln yi =

(
α ln πc
1− α +

γ

1− α

)
dκi, (5)

where πc ≡ wc/ωc > 1 is the cost saving of AI relative to labor.

The partial-equilibrium effects on labor demand follow from differentiating (4):

d ln(wcLci) = − dκci
1− κci

+ d ln(piyci). (6)

This equation illustrates the two key possible effects of AI. The first term captures the negative

effect on labor demand when AI displaces workers in some tasks previously performed by

humans. The second term is the increase in labor demand when AI raises productivity and

hence total revenue of the industry. Eq. (6) clarifies that the displacement effect of AI is the

only one responsible for any negative impact on labor demand.

Aggregating the industry-level implications yields the effect on local labor demand:

d ln(wcLc) = −
∑
i∈I

Lci
Lc

dκci
1− κci

+
∑
i∈I

Lci
Lc
d ln(piyci). (7)

2.2 AI and Local Labor Demand: Empirical Specification

Equations (5) and (7) summarize the effects of advances in AI on labor demand, through the

displacement of workers and the increase in productivity. In order to derive an estimation

equation for employment in the most transparent way, we now make some additional sim-

plifying assumptions. First, we assume that the supply of labor is fully elastic and set the

wage as the numeraire, wc = 1. For instance, this would be the case if labor is freely mobile

across CZs or if there is a binding wage floor. We discuss later what happens when labor
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supply is not fully elastic. Second, we assume that AI services are also in fully elastic supply.

In particular, the AI input is a bundle of intermediate inputs Iic (such as computing power

and data) and specialized workers Hci (e.g., programmers and data scientists), which must

be combined in fixed proportions:

Aci = min {Iic, νHci} .

Third, as in Acemoglu and Restrepo (2020), we consider an initial equilibrium in which

κci ≈ 0. This assumption is appropriate to study the adoption of an entirely new technology

such as AI.

Under these assumptions, we can detect technological progress in AI from the increase in

AI-specific workers. Differentiating (3) and rearranging yields:

dκci =
1

π

dAci
Lci

=
ν

π

dHci

Lci
. (8)

This equation shows that technological progress in AI in industry i can be measured by the

increase in AI employment over raw labor. Finally, using κci ≈ 0, wc = 1, (5) and (8) into

(7) yields:
dLc
Lc

=
ν

π

(
α ln π

1− α +
γ

1− α − 1

)∑
i∈I

Lci
Lc

dHci

Lci
. (9)

Equation (9) shows that the effect of AI can be estimated by regressing changes in employment

on changes in AI-related jobs at the CZ level.

However, the main concern is that shocks to AI employment in a CZ might be correlated

with other local shocks that have a direct effect on employment. For instance, an increase in

local demand may trigger AI adoption and simultaneously raise labor demand. Ideally, we

want to use changes in AI technology that are exogenous to other labor market shocks in CZ

c. To do so, we adopt a classic Bartik design and instrument dHci/Lci with its national coun-

terpart, dHi/Li, where dHi is the change in AI-related jobs in industry i in the US. We defer

a detailed discussion of the identification strategy and the possible threats to identification

to Section 4.

Before proceeding, we pause to briefly discuss what happens when labor supply is not

fully elastic. In this case, employment in CZ c must satisfy the market-clearing condition∑
i∈I Lci = Lc. Adding a labor supply equation of the form Lc = ηwφc , it is possible to solve

simultaneously for Lc and wc. An increase (decrease) in labor demand will then translate

into an increase (decrease) in both employment and wages.
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3 Data and Variables

Our sample consists of 722 CZs covering the entire mainland of the US.2 The time period of

our analysis spans the last two decades, given that the surge of AI is a recent phenomenon.

Specifically, we observe each CZ at the endpoints of each decade, i.e., in the years 2000,

2010 and 2020. We now present the data sources and explain the construction of the main

variables. Descriptive statistics are provided in Appendix Table B1.

3.1 Employment, Population and Other Characteristics of CZs

For each CZ, we measure employment, population and other characteristics using micro-level

data from two sources: the decennial Census for the year 2000 and the American Community

Survey (ACS) for the years 2010 and 2020. Both data sources are extracted from IPUMS

(Ruggles et al., 2013). To increase sample size, we follow Autor, Dorn and Hanson (2013)

and Acemoglu and Restrepo (2020) in measuring 2010 variables using pooled five-year ACS

data for 2011 (2007-2011). Similarly, we measure 2020 variables from pooled five-year ACS

data for 2021 (2017-2021).3

We construct total CZ-level employment using sample weights, considering working-age

individuals (age 16+) who are not unpaid family workers, do not reside in institutional group

quarters, and have reported being employed over the previous year (Autor and Dorn, 2013).

In later sections, we also consider disaggregations of employment along various dimensions.

Specifically, we distinguish between employment in private and public sectors as well as in

primary, secondary and tertiary industries. We also disaggregate employment between high-

and low-skill workers, production and non-production workers, male and female workers,

occupations at different points of the wage distribution, and by age.4 Using data from the

2CZs are clusters of counties with strong commuting ties within them and weak commuting ties among
them (Tolbert and Sizer, 1996). As such, CZs may approximate local labor markets. The CZs in our sample
are the same as in Autor and Dorn (2013), Autor, Dorn and Hanson (2013) and Acemoglu and Restrepo
(2020).

3The Census and the ACS are 5% and 1% samples, respectively, of the US population, and are repre-
sentative at the level of micro-regions known as Public Use Microdata Areas (PUMAs). We map PUMAs to
CZs using a crosswalk developed by Autor and Dorn (2013).

4The public sector comprises transportation, communication, other public utilities, public administra-
tion, and armed forces. The private sector is made up of all non-public sector industries. The primary sector
comprises agriculture, forestry, fisheries and mining. The secondary sector comprises construction and man-
ufacturing. The tertiary sector consists of the public sector as well as wholesale trade, retail trade, finance,
insurance, real estate, business and repair services, personal services, entertainment and recreation services,
professional and related services. High-skill workers are those who have completed at least a bachelor’s degree,
low-skill workers those who have completed less than a bachelor’s degree. Production occupations comprise
construction, extraction, installation, maintenance, repair and other production occupations.
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Census and the ACS, we also construct CZ-level population and numerous proxies for initial

demographic and industrial composition (details in Section 4).

3.2 Measuring AI Adoption within CZs

Precise metrics for quantifying AI adoption are presently lacking. To make progress, we build

a novel proxy for AI adoption in each CZ by exploiting a specific feature of AI technologies.

Specifically, adopting these technologies demands a wide spectrum of specialized software,

which is essential for a firm to: execute existing machine learning algorithms, which extract

patterns from large datasets by exploiting results from statistics and data science; combine

and adapt these algorithms to solve complex problems specific to the distinct needs of the

firm; generate, update and assemble the input datasets in real time; train the algorithms

and govern their learning process. In turn, operating this specialized software necessitates a

distinct set of skills, which are primarily possessed by professionals engaged in a narrow range

of occupations pertaining to the domains of computer science, mathematics and statistics.

Our proxy for AI adoption leverages the specific requirement of specialized software and

advanced technical skills that is typical of AI. In a nutshell, we first identify a set of AI-related

occupations using data on the software knowledge required to workers in each job. Then,

following the theoretical model, we proxy for AI adoption in a CZ using the increase in the

relative importance of AI-related occupations in that locality.

To identify AI-related occupations, we take advantage of a novel section of the O*NET

database called "Hot Technologies". The latter reports the software requirements that are

most frequently included in all current employer job postings in the US. The list of software

includes 157 titles, spanning from software with general applications like Microsoft Excel,

to advanced programming languages like Python and C++. With the help of computer

scientists, we narrow down the list to 54 software that are normally used for data collection

and generation; for execution and adaptation of machine learning algorithms; and to feed

these algorithms with large (structured and unstructured) datasets. The list of software is

reported in Appendix Table B2.

Using the "Hot Technology" section of O*NET, we identify occupations for which each

software is "in demand". These are occupations to which knowledge of a given software is

typically required in job postings. This yields 82 occupations, defined according to the 2018

version of the Standard Occupational Classification (SOC). We refine the list by applying

two sequential filters. First, we restrict to occupations for which at least two software are "in

demand". This excludes 21 occupations that use a single software in their daily activities.
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Examples are "Special Effects Artists and Animators", who use Python, or "Commercial and

Industrial Designers", who use JavaScript. Second, we use occupational definitions from the

SOC classification, together with information on each occupation’s main tasks provided in

O*NET, to further exclude occupations whose main activities fall outside of the domains of

computer science, mathematics and statistics. This filter eliminates occupations like "Ac-

tuaries". While both Python and SQL are "in demand" for this job, the main role of an

actuary is to "analyze statistical data, such as mortality, accident, sickness, disability, and

retirement rates and construct probability tables to forecast risk and liability for payment of

future benefits."

The final list of AI-related occupations comprises 19 titles, which are listed in Table

1. Using correspondence tables from the US Bureau of Labor Statistics, we track these

occupations back in time across the revisions of the SOC classification occurred during the

sample period. Then, we use information on each worker’s SOC occupation (available in

the Census and in the ACS) to match our consistent set of AI-related occupations with the

micro-level data. With this information, we measure employment in AI-related occupations

in each CZ and year. Finally, following (9), we construct our proxy for AI adoption as follows:

AIadoct =
LAIcτ1 − LAIcτ0
Lc2000

, (10)

where LAIcτ0 and L
AI
cτ1
denote employment in AI-related occupations in CZ c in the first year (τ 0)

and last year (τ 1) of each decade t, while Lc2000 is total employment (across all occupations)

in CZ c in 2000. Hence, for each CZ, AIadoct measures the decadal change in the relative

importance of AI-related occupations, as proxied by the employment of these professions

relative to initial employment in the CZ.

Before proceeding, we pause to discuss two potential limitations of this variable. First,

not all employment in AI-related occupations needs to be devoted to AI adoption. Second,

employment growth in AI-related occupations may reflect a wider usage of ICT independently

of AI. We believe both issues to have a modest influence on AIadoct. On the one hand, the

list of AI-related occupations is obtained starting from a restricted list of specialized software,

and is further narrowed down by our sequential filters. Second, because ICT have rapidly

spread all over the US during previous decades, the scope for further diffusion of ICT over

our sample period is likely to be limited.

Nevertheless, in the empirical analysis, we specifically tackle these two issues. In a ro-

bustness check, we construct AIadoct using a single AI-related occupation, "Data Scientists",

9



Table 1: AI-Related Occupations

Computer and Information Research Scientists Mathematicians
Computer Network Architects Network and Computer Systems Administrators
Computer Network Support Specialists Operations Research Analysts
Computer Occupations, All Other Software Developers
Computer Programmers Software Quality Assurance Analysts and Testers
Computer Systems Analysts Statistical Assistants
Computer User Support Specialists Statisticians
Data Scientists Web and Digital Interface Designers
Database Administrators Web Developers
Database Architects
Occupations are classified according to the 6-digit level of the 2018 Standard Occupational Classification.

whose tasks are limited to the typical domains of AI.5 The resulting indicator is certainly

too narrow to capture the actual size of AI adoption in the US, but the patterns it delivers

are identical to those of our broader proxy, both qualitatively and quantitatively. Second,

we present robustness checks controlling for various proxies for ICT exposure. Controlling

for these variables does not affect our main results. Interestingly, we also find ICT to have

smaller, and sometimes opposite, effects on employment compared to AI.

4 Empirical Specification and Identification Strategy

In this section, we present the empirical specification and illustrate our identification strategy.

4.1 Regression Equation

Guided by the theoretical model (eq. 9), our empirical analysis relates changes in employment

to AI adoption across CZs. To this purpose, similarly to Autor, Dorn and Hanson (2013) and

Acemoglu and Restrepo (2020), we estimate specifications of the following form:

∆ (L/P )cdt = αd + αt + β · AIadocdt +X
′

cdt · γ + εcdt, (11)

5According to the definition provided in the SOC classification, Data Scientists "develop and implement
a set of techniques or analytics applications to transform raw data into meaningful information using data-
oriented programming languages and visualization software. Apply data mining, data modeling, natural
language processing, and machine learning to extract and analyze information from large structured and
unstructured datasets. Visualize, interpret, and report data findings. May create dynamic data reports".
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where c indexes a CZ, d denotes the Census Division to which the CZ belongs, t stands for

time, and εcdt is an error term.6 We estimate (11) by stacking two first-differences correspond-

ing to changes over 2000-2010 and 2010-2020, the two decades spanned by our sample. The

main outcome variable, ∆ (L/P )cdt, is the change in the employment-to-population ratio of

CZ c over decade t.7 To shed light on the mechanisms, we also consider alternative outcomes,

such as unemployment and non-participation rates, and disaggregate employment across dif-

ferent sectors. To study heterogeneity, we further split employment across occupations, skill

levels, genders and age groups. The main explanatory variable is AIadocdt, the proxy for

the adoption of AI technologies in CZ c over decade t introduced in Section 3. Given the

definition of AIadocdt in (10), eq. (11) is a changes-on-changes regression.

The specification in (11) includes a wealth of fixed effects and covariates, which control

for other characteristics of the CZ that may influence AI adoption and employment. Specif-

ically, we control for Census Division fixed effects, αd, to absorb heterogeneous trends in

labor market conditions across groups of contiguous states. We also include decade fixed

effects, αt, to soak up time-varying shocks hitting all CZs simultaneously. Moreover, we con-

trol for a large set of covariates, included in the vector Xcdt. The latter contains two types

of variables. First, it includes several proxies for initial characteristics of each CZ: (i) size,

measured by log population; (ii) demographic composition, proxied by the population shares

of female, college-educated, White and old individuals (age 65+); and (iii) composition of

economic activities, captured by the share of manufacturing in total employment, the share

of females in manufacturing employment, the share of light manufacturing in total manufac-

turing employment, and the employment share of workers in routine-intensive occupations.8

These variables account for heterogeneous trends across CZs characterized by different initial

demographic and industrial structures. Second, the vector Xcdt includes proxies for two main

labor market shocks considered in the recent literature: the change in import competition

from China (Autor, Dorn and Hanson, 2013) and exposure to industrial robots (Acemoglu

and Restrepo, 2020). Both variables are measured in each decade.9

6Census Divisions are defined by the US Census Bureau and subdivide the country into nine groups of
states: New England, Middle Atlantic, East North Central, West North Central, South Atlantic, East South
Central, West South Central, Mountain, and Pacific.

7While the model yields sharp predictions for non-AI employment, we prefer to focus on total employment
to be more general and conservative, also given that AI employment is still small as shown in Section 5.

8Light manufacturing is made up of textile mill products; apparel and other finished textile products;
paper and allied products; printing, publishing and allied industries. The employment share of routine-
intensive occupations is defined as the share of hours worked in occupations with routine-task intensity at the
top tercile of the distribution (Autor and Dorn, 2013) and is constructed using data from the 2000 Census.

9Import competition from China is a Bartik measure of changes in imports from China per worker across
industries, as in Autor, Dorn and Hanson (2013). Exposure to industrial robots is a Bartik measure of
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The coeffi cient of interest is β. Our empirical design implies that this coeffi cient measures

the relative difference in the growth of employment relative to population across CZs that have

similar initial conditions, face similar trade and automation shocks, but experience different

rates of AI adoption over time. Although the rich set of controls and fixed effects absorb most

observable confounders, the OLS estimate of β need not have a causal interpretation, due

to unobservable factors that may simultaneously affect AI adoption and employment. We

now turn to discussing the key identification concerns and illustrate our strategy to estimate

causal effects.

4.2 Identification Strategy

Variation in AIadocdt across CZs could reflect CZ-specific unobservables that also influence

employment. In particular, demand shocks in a CZ may lead firms to hire more workers

and use more AI technologies, inducing a spurious positive correlation between AIadocdt

and ∆ (L/P )cdt. To account for this issue, we construct an instrument that is meant to

isolate variation in AIadocdt not due to demand shocks within CZs. Following a long tradi-

tion initiated by Bartik (1991) and Blanchard and Katz (1992), and recently applied to the

automation literature by Acemoglu and Restrepo (2020), we use a shift-share (Bartik) instru-

ment, which combines nation-wide industry shifts with local industry shares. The instrument

is constructed as follows:

AIexpcdt =
I∑
i=1

λcdi1980 ×
(
LAIiτ1 − LAIiτ0
Li2000

)
, (12)

where LAIiτ0 and L
AI
iτ1
denote employment of AI-related occupations in industry i, at the na-

tional level, in the first year (τ 0) and last year (τ 1) of decade t, respectively; Li2000 is total

employment in industry i, at the US level, in 2000; and λcdi1980 ≡ Lcdi1980
Lcd1980

is industry i’s share

in total employment of CZ c in 1980.

The intuition behind this instrument is the following. As technological progress lowers

the cost of AI and/or increases its productivity, AI adoption grows, especially in industries

whose activities are more amenable to the use of these technologies. These industry-level

AI adoption shifts have asymmetric effects across CZs, depending on historical differences

in their industrial specialization, as captured by the employment shares λcdi1980. In the

baseline version of the instrument, we measure these shares in 1980, i.e., 20 years before the

changes in robot density (the number of installed robots per worker) across 29 sectors, and is constructed as
in Acemoglu and Restrepo (2020) using data on robot installments from the IFR.
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beginning of the sample period. Because AI was largely inexistent at that time, this choice

mitigates the concern that the industrial composition of a CZ might have been influenced

by the anticipation of AI developments in future decades. We keep the employment shares

constant to avoid endogenous and serially correlated changes in AIexpcdt in the context of

our stacked first-differences specification.

To compute the industry-level shifts, we use the micro-level data from the Census and

the ACS, which contain information on each worker’s industry of employment. The employ-

ment shares are computed using data from the County Business Patterns, which we slightly

aggregate to match the industry detail of the micro-level data. The final sample includes

188 NAICS industries, mostly at the 3- or 4-digit level, spanning all sectors of the economy.

It is worth noting that our instrument exploits significantly larger cross-industry variation

than the typical Bartik measures used in the recent automation literature. For instance, the

proxies for exposure to industrial robots based on data from the IFR aggregate industry-level

shifts for 19 broad sectors.

The identifying assumption behind our approach is that the industry-level shifts are ex-

ogenous to shocks occurring in individual CZs. We believe this to be a reasonable assumption,

given that most CZs are tiny relative to the overall size of the US economy. Moreover, our

specification controls for a large set of fixed effects and covariates, which absorb a wealth

of potential observable confounders. Yet, our identification strategy would be endangered in

two cases. First, if some contemporaneous shocks remained that correlate with the outcome

∆ (L/P )cdt and the instrument AIexpcdt. Second, if some remaining underlying trends at the

CZ-level influenced employment independently of AI.

In Section 7, we use various approaches to account for underlying trends and contempora-

neous shocks more flexibly. We find that these potential confounders are unlikely to drive the

results. Moreover, we implement a falsification test showing that current AI adoption does

not explain past changes in employment. This further suggests that our results are driven

by period-specific AI adoption rather than secular trends that predate the rise of AI. This

extensive sensitivity analysis gives further credibility to our results but might not eliminate

all concerns with a violation of the exclusion restriction. Hence, we also use an approach

developed by Conley, Hansen and Rossi (2012) to study how strong a violation would have

to be for inference on β to become uninformative about the causal effect of AI. We find that

inference would remain informative even under implausibly large violations.
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Source: US Census and American Community Survey. Each bar corresponds to the employment share of AI-related
occupations in the US in a given year.

Figure 1: Employment Share of AI-Related Occupations in the US

5 Stylized Facts and Preliminary Evidence

We now illustrate the main patterns of AI adoption emerging from our data and provide

preliminary evidence on the relationship between AI and employment in the US. Figure 1 plots

the nation-wide employment share of AI-related occupations in 2000, 2010 and 2020. This

share has remained fairly constant, at around 0.14%, over the 2000s but has rapidly increased

thereafter, exceeding 0.2% in 2020. This pattern confirms existing evidence according to

which the use of AI was quite limited in the early 2000s but has significantly accelerated after

2010 (e.g., Taddy, 2019, Alekseeva et al., 2021). Our stacked first-differences specification

exploits the differential AI adoption between the two decades.

The process of AI adoption is not uniform across industries. Rather, our data reveal a

substantial degree of heterogeneity across the 188 industries in our sample, a crucial aspect

for the identification strategy. Specifically, the standard deviation of the industry-level AI

adoption shifts is 0.3%, almost five times the mean, and the difference between the industries

at the top and bottom percentile of the distribution is 1.2%. Another distinguishing feature

of AI adoption is the type of industries that are most interested by the phenomenon. Table
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Table 2: Top and Bottom Industries in Terms of AI Adoption in the US

Computer Systems Design and Related Services 0.0241 Household Appliance Stores -0.0048
 Software Publishers 0.0156 Computer and Peripheral Equipment Manufacturing -0.0037
Executive Offices and Legislative Bodies 0.0078 Other General Government and Support Activities -0.0018
Management of Companies and Enterprises 0.0071 Printing and Related Support Activities -0.0011
Electric Power Generation, Transmission and Distribution 0.0030 Utilities (excl. Electricity) -0.0009
National Security and International Affairs 0.0030 Commercial and Service Industry Machinery Manufacturing -0.0007
Scientific Research and Development Services 0.0028 Structural Clay Products -0.0006
Management, Scientific and Technical Consulting Services 0.0023 Apparel Accessories and Other Apparel -0.0006
Finance and Insurance 0.0019 Beverage Manufacturing -0.0006
Other Professional, Scientific, and Technical Services 0.0017 Electronic and Precision Equipment Repair and Maintenance -0.0005

Top 10 Industries Bottom 10 Industries

Industries are classified according to the NAICS classification. The second and fourth columns report the AI adoption shift in each industry (the term in round brackets in eq. 12)
averaged between the decades 2000-2010 and 2010-2020.

2 lists the top ten and bottom ten industries in terms of the average shifts over the sample

period. The top industries consist of advanced services such as information services; profes-

sional, scientific and technical services; business services; and financial services. They also

comprise some utilities (electricity) and some of the most advanced branches of the public

sector (national security and international affairs; executive offi ces and legislative bodies).

Conversely, the bottom industries include traditional manufacturing sectors like beverage,

apparel and structural clay products; utilities other than electricity; retail services; and the

public administration.

Interestingly, AI adoption involves very different industries compared to the adoption of

industrial robots. Indeed, Acemoglu and Restrepo (2020) show that automation is mostly

concentrated in manufacturing, especially in highly mechanized industries such as automotive;

in the chemical and pharmaceuticals sectors; and in heavy activities such as production of

metal products. This suggests that AI adoption and automation are distinct shocks, which

are likely to have different implications for labor demand. Our empirical results will support

this view.

We now discuss regional variation. Figure 2a shows the average value of AIadocdt, com-

puted between the two decades, in each CZ; Figure 2b displays the corresponding values of

AIexpcdt. Four main patterns stand out. First, negative values of AIadocdt are very rare (only

6% of CZs), implying that AI adoption has been a widespread phenomenon in the US over

the last two decades. Second, because CZs differ in their historical industrial specialization,

the cross-industry variation in the shifts translates into significant differences in AI exposure

across localities. AIexpcdt is particularly high in some CZs on the West Coast– especially in

states like California and Washington– and in South-Central US– e.g., in states like Texas

and Arizona. It is also high in CZs comprising large cities on the East Coast and the Great

Lakes region, like Boston, New York, Miami, Philadelphia, Washington D.C. and Chicago.

On the contrary, AIexpcdt is relatively low in Northern states and in most of the Midwest.
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Third, the spatial variation in AIadocdt largely resembles that in AIexpcdt. This suggests

that the combination of nation-wide industry-level AI adoption shifts with spatial historical

differences in industrial structure is a good predictor of actual AI adoption across CZs in the

US. Fourth, there are notable exceptions to this pattern. For instance, some CZs in Northern

states score higher in the ranking of AIadocdt than they do in terms of AIexpcdt. This is

consistent with the idea that AI adoption could be driven by CZ-specific factors, indepen-

dently of actual exposure to these technologies. This is exactly the endogenous variation in

AI adoption our identification strategy aims to get rid of.

Figure 3 illustrates our empirical strategy and provides a preliminary, visual, representa-

tion of the main results. The figure contains four scatterplots. In each of them, the hollow

circles correspond to CZ×decade pairs, for a total of 1,444 observations. Plot a) illustrates the
relationship between ∆ (L/P )cdt and AIadocdt. The relationship is negative (coeff. −0.345,

s.e. 0.062), implying that CZs with larger AI adoption experience relatively faster declines

in employment as a share of population. Plot b) shows the first-stage relationship between

AIadocdt and AIexpcdt. The plot underscores the strong predictive power of our instrument

in explaining variation in AI adoption across CZs (coeff. 7.782, s.e. 0.616). Plot c) displays

the reduced-form relationship between ∆ (L/P )cdt and AIexpcdt. The strong negative asso-

ciation between the two variables (coeff. −12.889, s.e. 1.015) suggests that CZs with higher

AI exposure experience significantly larger reductions in the employment-to-population ratio

compared to less exposed CZs. Plot d) finally shows the relationship between ∆ (L/P )cdt

and ÂIadocdt, the fitted value of AI adoption from the first-stage regression. The association

between the two variables is strongly negative (coeff. −1.656, s.e. 0.130), suggesting that

differences in AI adoption across CZs, driven by variation in exposure to AI, have a strong

negative effect on employment as a share of population. Interestingly, the relationship in

Plot d) is stronger than its counterpart in Plot a), consistent with demand shocks inducing

an upward bias in the OLS estimates.

6 Main Results and Robustness

In this section, we present the baseline results and perform an extensive sensitivity analysis

to assess their robustness.

16



Source: US Census and American Community Survey. The top map plots the average value of AIado cdt (see eq. 10) in each
CZ between the decades 2000-2010 and 2010-2020. The bottom map plots the corresponding values of AIexp cdt  (see eq.12).

Figure 2: AI Adoption and AI Exposure in US Commuting Zones
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The sample consists of 722 CZs observed over two decades, 2000-2010 and 2010-2020. In each plot, an observation is a CZ x decade pair.
AI Adoption and AI Exposure are defined in eq. (10) and (12), respectively. Predicted AI Adoption is the fitted value of AI Adoption from the
first-stage regression in Plot b).

Figure 3: AI Adoption, AI Exposure and Employment in US Commuting Zones
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6.1 Baseline Estimates

The baseline estimates of (11) are reported in Table 3. Standard errors are corrected for

clustering at the state level to account for residual correlation across CZs within each state,

and observations are weighted by the initial-period share of each CZ in total population. The

first four columns correspond to a parsimonious specification including only Census Division

and decade fixed effects. Column (1) reports the OLS estimate of β, which is negative and

very precisely estimated (coeff. −0.253, s.e. 0.080), confirming that AI adoption and changes

in the employment-to-population ratio are negatively correlated across CZs. Columns (2)

and (3) show, respectively, the first-stage and reduced-form coeffi cients on the instrument

AIexpcdt. The first-stage estimate is positive, large and highly statistically significant (coeff.

9.695, s.e. 1.128), confirming the strong predictive power of the instrument.10 At the same

time, the reduced-form estimate is negative and very precisely estimated (coeff. −6.507, s.e.

1.447), confirming that CZs more exposed to AI experience a relatively larger reduction in

employment as a share of population. The results in columns (2) and (3) imply a negative

2SLS estimate of β (coeff. −0.671, s.e. 0.157), as shown in column (4). Also in this case, the

2SLS coeffi cient is more negative than its OLS counterpart, consistent with OLS estimates

being upward biased due to unobserved CZ-specific shocks.

The last four columns of Table 3 report estimates from our preferred specification, which

includes the full list of controls described in Section 4. The results are confirmed, suggesting

that our evidence depends neither on initial differences in CZ characteristics nor on other

important shocks occurred over the sample period, namely, the increase in Chinese import

competition and the diffusion of industrial robots. The 2SLS coeffi cient reported in column

(8) implies that a 1 standard deviation (s.d.) higher AIadocdt causes a reduction in∆ (L/P )cdt

by 1 percentage point (p.p.), roughly 0.56% of a s.d.. To have a sense of the magnitude of the

effect, if the CZ with average AI adoption over the sample period (0.004) had hypothetically

had no AI adoption at all, its employment-to-population ratio would have grown by 0.6 p.p.

more, i.e., 20% faster than observed growth. While these numbers cannot be interpreted as a

counterfactual exercise, they neverthess suggest that AI adoption has contributed to slowing

down job creation in the US over the last two decades.

10The Kleibergen-Paap F -statistic equals 73.8 and thus exceeds the value of 10 normally considered as a
rule-of-thumb threshold for instrument relevance.
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Table 3: Baseline Results
(1) (2) (3) (4) (5) (6) (7) (8)
OLS First 

Stage
Reduced 
Form

Second
Stage

OLS First 
Stage

Reduced 
Form

Second
Stage

AIadocdt -0.253*** -0.671*** -0.238** -1.594***

[0.080] [0.157] [0.104] [0.377]
AIexpcdt 9.695*** -6.507*** 9.599*** -15.298***

[1.128] [1.447] [1.813] [3.279]

Census Division FE yes yes yes yes yes yes yes yes
Decade FE yes yes yes yes yes yes yes yes
Control Variables no no no no yes yes yes yes

Kleibergen–Paap F -stat. - - - 73.8 - - - 28.0

Obs. 1444 1444 1444 1444 1444 1444 1444 1444
R2 0.33 0.58 0.33 - 0.42 0.63 0.45 -
The sample consists of 722 CZs observed over two decades, 2000-2010 and 2010-2020. Each observation is a CZ x decade pair. The
subscripts c , d and t denote CZs, Census Divisions and decades, respectively. The dependent variable is the change in the employment-to-
population ratio in each CZ over each decade. AIado cdt and AIexp cdt are the measures of AI adoption and AI exposure defined in eq. (10)
and (12) respectively. Control variables include the following initial characteristics of each CZ: log population; the population shares of female,
college-educated, White and old individuals (age 65+); the share of manufacturing in total employment; the share of females in
manufacturing employment; the share of light manufacturing in total manufacturing employment; and the employment share of workers in
routine-intensive occupations. Control variables also include the change in import competition from China and exposure to industrial robots
in each CZ over each decade. Observations are weighted by the initial-period share of each CZ in total population. Standard errors are
corrected for clustering at the state level. ***, **, *: indicate significance at the 1, 5 and 10% level, respectively.

6.2 Robustness Checks

We study the robustness of the baseline results along three dimensions: the presence of

influential observations; the use of different corrections for the standard errors; and the

adoption of alternative definitions for the main variables.

6.2.1 Outliers

In Table 4, we report 2SLS estimates of β obtained on various sub-samples, which exclude

extreme observations in ∆ (L/P )cdt or AIadocdt. We start by dropping observations for which

∆ (L/P )cdt is above or below the sample mean by more than two standard deviations (column

1), or for which ∆ (L/P )cdt falls in the top or bottom 1% (column 2) or 5% (column 3) of

the distribution. In the last three columns, we use the same approaches to exclude extreme

observations in AIadocdt. In all cases, the coeffi cient β remains negative and very precisely

estimated. In fact, excluding extreme observations either leaves the point estimate close to

the baseline or makes it larger, suggesting that our results are not driven by outliers.
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Table 4: Robustness Checks: Outliers
(1) (2) (3) (4) (5) (6)

2std from Mean 1% Tails 5% Tails 2std from Mean 1% Tails 5% Tails
2nd Stage Regression

AIadocdt -1.119*** -1.533*** -1.125*** -2.940*** -2.395*** -3.190***

[0.333] [0.370] [0.334] [0.642] [0.616] [0.777]
1st Stage Regression

AIexpcdt 9.306*** 9.556*** 9.237*** 7.169*** 7.467*** 5.752***

[1.969] [1.852] [1.999] [1.150] [1.076] [1.096]

Kleibergen–Paap F -stat. 22.6 26.6 21.3 38.9 48.1 27.5

Obs. 1386 1414 1295 1387 1409 1298
The sample consists of 722 CZs observed over two decades, 2000-2010 and 2010-2020. Each observation is a CZ x decade pair. The subscripts c , d and t denote
CZs, Census Divisions and decades, respectively. The dependent variable is the change in the employment-to-population ratio in each CZ over each decade.
AIado cdt and AIexp cdt are the measures of AI adoption and AI exposure defined in eq. (10) and (12), respectively. The specifications in columns (1)-(3) exclude
observations for which the change in the employment-to-population ratio is above or below the sample mean by more than two standard deviations (column 1),
or falls in the top or bottom 1% (column 2) or 5% (column 3) of the distribution. The specifications in columns (4)-(6) exclude the corresponding observations of
AIado cdt . All specifications include Census Division fixed effects, decade fixed effects and the control variables used in Table 3. Observations are weighted by the
initial-period share of each CZ in total population. Standard errors are corrected for clustering at the state level. ***, **, *: indicate significance at the 1, 5 and 10%
level, respectively.

Excluding Outliers in D(L/P) Excluding Outliers in AIado

6.2.2 Inference

In Figure 4, we plot the baseline 2SLS estimate of β along with confidence intervals corre-

sponding to alternative corrections for the standard errors. Confidence interval (1), labeled

"Baseline", is based on standard errors corrected for clustering at the state level. Confidence

intervals (2)-(5) are based on standard errors corrected for clustering at: the CZ level; the

Census Division level; the state-year level; and the Census Division-year level. These cluster-

ing structures allow for correlation in the residuals: within each CZ over time; across all CZs

within the same Census Division and over time; and across all CZs within the same state, or

within the same Census Division, in a given year. Confidence intervals (6) and (7) combine

the latter two clustering structures with clustering at the CZ level (two-way clustering) to

allow for residual correlation both across CZs and over time within a CZ. Finally, confidence

interval (8) is based on Borusyak et al. (2022) inference approach. The latter takes account

of the fact that, with a shift-share instrument, standard inference may be invalid because

observations with similar industry shares may have correlated residuals. Reassuringly, all

confidence intervals are very similar to the baseline one, suggesting that our results are not

sensitive to the specific approach used for inference.

6.2.3 Variables Definitions

In Table 5, we consider alternative ways of defining the main variables. We start by tackling

the concern that our definition of AI-related occupations might be too broad, including work

unrelated to AI. To this purpose, we reconstruct both AIadocdt and AIexpcdt using a narrow
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Hollow circles correspond to the baseline 2SLS coefficient on AIado cdt (Table 3, column 8). Confidence interval (1) refers to standard
errors corrected for clustering at the state level. Confidence intervals (2)-(7) correspond to standard errors corrected using the alternative
clustering schemes indicated on the horizontal axis. Confidence interval (8) is based on Borusyak et al. (2022) inference approach. All
confidence intervals are at the 95% level.

Figure 4: Robustness Checks: Inference

set of AI-related occupations, which only includes "Data Scientists". Employment in this

occupation has started to increase only recently and is still very low (0.01% at the national

level in 2020). Nevertheless, the estimate of β reported in column (1) is negative and very

precisely estimated also in this case. Quantitatively, the effect is essentially identical to the

baseline: a 1 s.d. higher AIadocdt would cause a fall in ∆ (L/P )cdt of 1 p.p., or 0.56% of its

s.d..

In column (2), we reconstruct AIexpcdt using industry shares for 1990 rather than 1980. It

is reassuring that β hardly changes, suggesting that AIexpcdt exploits long-lasting differences

in the industrial specialization of CZs, rather than period-specific developments in their in-

dustrial structure that could result from transitory shocks. In column (3), we adjust AIadocdt
for cross-industry differences in the growth rate of employment within each CZ, and AIexpcdt
for cross-industry differences in the growth rate of employment at the national level. While

the first-stage relationship is slightly weaker, our main results are qualitatively unchanged

and quantitatively stronger. This suggests that our evidence is not driven by changes in

industries’relative size but reflects variation in AI intensity within industries.

In column (4), we estimate (11) for the log change in employment, adding the log change

in population among the controls. The coeffi cient implies that a 1 s.d. higher AIadocdt would
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Table 5: Robustness Checks: Variables Definitions
(1) (2) (3) (4) (5) (6)
Only Data 
Scientists

Ind. Shares 
for 1990

Adj. for Ind. 
Growth

Log 
Emp.

Private 
Sector Emp.

Public 
Sector Emp.

2nd Stage Regression

AIadocdt -17.340*** -1.138*** -3.443** -2.143*** -1.593*** -0.000

[4.395] [0.289] [1.466] [0.510] [0.425] [0.194]
1st Stage Regression

AIexpcdt 12.286*** 8.620*** 1.288*** 8.337*** 9.599*** 9.599***

[1.835] [2.225] [0.458] [1.467] [1.813] [1.813]

Kleibergen–Paap F -stat. 44.8 15.0 7.9 32.3 28.0 28.0

Obs. 1444 1444 1444 1444 1444 1444
The sample consists of 722 CZs observed over two decades, 2000-2010 and 2010-2020. Each observation is a CZ x
decade pair. The subscripts c , d and t denote CZ, Census Divisions and decades, respectively. The dependent variable is:
the change in the employment-to-population ratio in each CZ over each decade (columns 1-3); the log change in
employment in each CZ over each decade (column 4); and the change in private sector employment (column 5) or public
sector employment (column 6) relative to population in each CZ over each decade. AIado cdt and AIexp cdt are the
measures of AI adoption and AI exposure defined in eq. (10) and (12), respectively. In column (1), AIado cdt and AIexp cdt

are based on a narrow definition of AI-related occupations, which only includes "Data Scientists". In column (2), AIexp cdt

is constructed using CZ-level industry shares for 1990 rather than 1980. In column (3), AIado cdt and AIexp cdt are adjusted
for cross-industry differences in employment growth rates at the CZ and national level, respectively. All specifications
include Census Division fixed effects, decade fixed effects and the control variables used in Table 3. The specification in
column (4) also includes the log change in population. Observations are weighted by the initial-period share of each CZ
in total population. Standard errors are corrected for clustering at the state level. ***, **, *: indicate significance at the 1, 5
and 10% level, respectively.
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lower employment by 1.3%. Finally, in columns (5) and (6), we revert to the employment-to-

population ratio as the dependent variable but split the numerator into private and public

sector employment. The results show that the effect of AI adoption is entirely concentrated

in the private sector, where the bulk of the phenomenon is currently taking place.

7 Threats to Identification

Identification requires that, after controlling for Census Division fixed effects, decade fixed

effects, initial characteristics of CZs and shocks to trade and automation, no unobservable

remains that correlates with the instrument and influences employment across localities. As

mentioned in Section 4, the exclusion restriction is threatened by two types of confounders,

namely, underlying trends and contemporaneous shocks that might affect local labor markets

independent of AI adoption. We now use alternative approaches for accommodating the

possible influence of these confounders and study how the coeffi cient β is affected.

In Table 6, we deal with contemporaneous shocks. To start with, we allow for the pos-

sibility that CZs with similar changes in employment or similar AI adoption might be hit

by similar unobservable shocks. To accommodate them, we divide CZs into ten bins corre-

sponding to the deciles of ∆ (L/P )cdt or AIadocdt over 2000-2020. We then interact a dummy

for each bin with decade dummies. We add these interactions either individually (columns 1

and 2) or jointly (column 3). These interactions absorb shocks hitting all CZs with compara-

ble changes in our key variables. Accordingly, identification exploits the remaining variation

across CZs falling in the same bin within each decade. In column (4), we take a complemen-

tary approach and exclude CZs with the highest values of AIadocdt. These are CZs falling

in the top decile of the distribution in a given decade. The coeffi cient β remains negative,

precisely estimated and in the same ballpark as the baseline estimates across all specifications.

A related concern is that the industry shifts that make up the instrument might be driven

by shocks occurring in specific CZs. If these shocks also affected the local labor market,

the exclusion restriction would be violated. We believe this concern to be assuaged by the

small size of most CZs relative to the US as a whole. Nevertheless, in column (5), we estimate

(11) using a "leave-one-out" instrument, in which the industry-level shifts are computed after

excluding the CZ to which the instrument refers. Our main results are preserved also in this

case.

Unobserved shocks may also play out at the industry level. For example, industries with

large AI adoption might experience other shocks that are relevant to the labor market of some

CZs. Our specification already controls for trade and automation shocks, by means of Bartik
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Table 6: Threats to Identification: Contemporaneous Shocks
(1) (2) (3) (4) (5) (6) (7)
Bins of 
D(L/P)

Bins of 
AIado

Bins of D(L/P) 
and AIado

No CZs with 
Top AIado

Leave-One-Out 
AIexp

No Ind. with 
Top Shifts

Bartik for D 
Ind. Emp.

2nd Stage Regression

AIadocdt -1.131*** -2.965*** -2.421*** -2.536* -2.222* -1.945*** -1.345***

[0.229] [0.940] [0.810] [1.274] [1.132] [0.656] [0.320]
1st Stage Regression

AIexpcdt 9.276*** 4.520*** 4.462*** 4.754*** 0.315*** 8.402*** 10.610***

[1.345] [1.217] [1.330] [1.047] [0009] [2.235] [2.214]

Kleibergen–Paap F -stat. 47.5 13.8 11.3 20.6 12.3 14.1 22.9

Obs. 1444 1444 1444 1286 1444 1444 1444
The sample consists of 722 CZs observed over two decades, 2000-2010 and 2010-2020. Each observation is a CZ x decade pair. The subscripts c , d and t denote
CZs, Census Divisions and decades, respectively. The dependent variable is the change in the employment-to-population ratio in each CZ over each decade.
AIado cdt and AIexp cdt are the measures of AI adoption and AI exposure defined in eq. (10) and (12), respectively. In column (5), AIexp cdt is constructed excluding
the CZ to which this variable refers. In column (6), AIado cdt and AIexp cdt are constructed excluding industries whose shifts (the round bracket terms of eq. 12) fall
in the top decile of the distribution. All specifications include Census Division fixed effects, decade fixed effects and the control variables used in Table 3. The
specification in column (1) controls for full sets of interactions between decade dummies and dummies for deciles of the change in the employment-to-population
ratio over 2000-2020. The specification in column (2) controls for full sets of interactions between decade dummies and dummies for deciles of AIado cdt over
2000-2020. The specification in column (3) jointly includes the two sets of interactions used in columns (1) and (2). The specification in column (4) excludes CZs
falling in the top decile of the distribution of AIado cdt in a given decade. The specification in column (7) includes a Bartik measure of the change in log industry
employment. Observations are weighted by the initial-period share of each CZ in total population. Standard errors are corrected for clustering at the state level.
***, **, *: indicate significance at the 1, 5 and 10% level, respectively.

measures of changes in Chinese import penetration and in robot density. Moreover, in the next

section, we will enrich the specification with Bartiks for different forms of technical change,

and our results will turn out to be insensitive to these additional controls. Nevertheless, we

now use two complementary approaches to further address concerns with industry-specific

shocks.

In a first exercise, reported in column (6), we reconstruct both AIadocdt and AIexpcdt
excluding industries whose AI adoption shifts fall in the top decile of the distribution. The

coeffi cient of interest remains close to the baseline estimate. Interestingly, this exercise also

serves two additional purposes. On the one hand, it further helps mitigating concerns with

outliers. On the other hand, because some of the industries with the largest shifts could

be AI-producing sectors, excluding them may better isolate the effect of AI adoption. In a

second exercise, shown in column (7), we augment the specification with a Bartik measure of

changes in log industry employment. This variable serves as a synthetic proxy for all shocks

resulting in differential changes in employment across industries. Controlling for this measure

is largely inconsequential for the results.

We now discuss underlying trends. Our specification controls for linear trends both across

Census Divisions– through the Census Division fixed effects, αd– and across CZs with similar

initial characteristics within each Census Division– through the start-of-period controls in-

cluded in the vector Xcdt. In Table 7, we allow for richer sets of fixed effects to accommodate

underlying trends more flexibly. In column (1), we replace the Census Division fixed effects
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with state fixed effects, thereby allowing for heterogeneous linear trends across individual

states rather than across groups of them. The coeffi cient of interest is essentially unchanged.

In column (2), we go one step further by taking advantage of our stacked first-differences

design, which allows us to include CZ fixed effects. In this case, identification relies on a

different source of variation, namely, changes in ∆ (L/P )cdt and AIadocdt within each CZ

between the two decades. This specification fully exploits the acceleration in AI adoption

occurred after 2010, but is extremely demanding because the sample comprises only two

observations for each CZ.11 The estimate of β is largely unaffected. In a last exercise, we re-

place the Census Division and decade fixed effects with Census Division×decade fixed effects
(column 3) and state×decade fixed effects (column 4), thereby allowing for non-linear trends.
The main results are preserved.

In the remainder of this section, we use two additional approaches to further raise trust in

our 2SLS estimates. In column (5) of Table 7, we implement a falsification test by regressing

changes in the employment-to-population ratio prior to the beginning of the sample (over

1980-1990 and 1990-2000) on current AI adoption (in 2000-2010 and 2010-2020). We include

the same controls as in the baseline specification, and instrument AIadocdt using AIexpcdt. If

current AI adoption explained past changes in employment, our evidence could reflect labor

market trends that antedate the rise of AI, or long-lasting CZ characteristics that jointly

affect innovation and employment. Reassuringly, however, the coeffi cient on AIadocdt is very

small and statistically not significant. In column (6), we include the pre-sample change in

the employment-to-population ratio among the controls. Consistently with column (5), this

variable has no bearing on the coeffi cient β. Overall, these results help strengthening the view

that our evidence captures the effects of current AI adoption rather than other time-varying

confounders.

In a second approach, we change perspective and start from the premise that our in-

strument might be correlated with the error term due to some confounding factor. Then,

following Conley, Hansen and Rossi (2012), we study how strong a violation of the exclusion

restriction would have to be for inference on β to become uninformative about the causal

effect of AI adoption. We illustrate the approach of Conley, Hansen and Rossi (2012) in

Appendix A. Here, we present the main results, which are summarized in Figure 5. The

latter plots the 90% confidence interval around β corresponding to different violations of the

exclusion restriction, as captured by the parameter δ. When δ = 0, we are in the benchmark

case in which the exclusion restriction is satisfied. When δ > 0, instead, the exclusion re-

11Controlling for CZ fixed effects also accounts for possible mean reversion after the bust of the digital
technology bubble.
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Table 7: Threats to Identification: Underlying Trends

(1) (2) (3) (4) (5) (6)
State Fixed 
Effects

CZ Fixed 
Effects

Cens. Div. x 
Decade FE

State x Decade 
FE

Past D(L/P) as 
Dep. Var.

Past D(L/P) as 
Control

2nd Stage Regression

AIadocdt -1.529*** -1.299*** -1.400*** -1.202*** 0.253 -1.494***

[0.389] [0.438] [0.317] [0.330] [0.171] [0.363]
1st Stage Regression

AIexpcdt 10.398*** 15.997*** 9.591*** 9.898*** 9.599*** 9.515***

[1.924] [2.281] [1.836] [2.229] [1.813] [1.798]

Kleibergen–Paap F -stat. 29.2 48.9 27.3 19.7 28.0 28.0

Obs. 1444 1444 1444 1440 1444 1444
The sample consists of 722 CZs observed over two decades, 2000-2010 and 2010-2020. Each observation is a CZ x decade pair. The
subscripts c , d and t denote CZs, Census Divisions and decades, respectively. Except for column (5), the dependent variable is the
change in the employment-to-population ratio in each CZ over each decade; in column (5), the dependent variable is the change in
the employment-to-population ratio in each CZ over the pre-sample decades 1980-1990 and 1990-2000. AIado cdt and AIexp cdt are the
measures of AI adoption and AI exposure defined in eq. (10) and (12), respectively. All specifications include Census Division fixed
effects, decade fixed effects and the control variables used in Table 3. The specifications in columns (1)-(4) control for state fixed
effects, CZ fixed effects, Census Division x decade fixed effects and state x decade fixed effects, respectively. The specification in
column (6) controls for the change in the employment-to-population ratio in each CZ over the pre-sample decades 1980-1990 and
1990-2000. Observations are weighted by the initial-period share of each CZ in total population. Standard errors are corrected for
clustering at the state level. ***, **, *: indicate significance at the 1, 5 and 10% level, respectively.

striction is violated. Specifically, δ = x > 0 corresponds to a violation such that a change

in AIexpcdt by one interquartile range has a direct effect on ∆ (L/P )cdt equal to a change in

AIadocdt by x interquartile ranges.

When δ = 0, the confidence interval around β is [−2.202,−0.985]. As δ departs from this

benchmark, the confidence interval progressively widens. However, thanks also to the strong

predictive power of the instrument, the reduction in precision is slow and the confidence

interval starts including zero only when δ ≈ 0.6. Hence, for our parameter of interest to

become uninformative, the direct effect of AIexpcdt on ∆ (L/P )cdt would have to be at least

60% as large as the effect of a commensurate exogenous change in AIadocdt. Such a change is

twice the median value of AIadocdt in our sample. More concretely, it roughly corresponds to

the difference in average AI adoption between the CZ of Los Angeles and that of New Albany.

Overall, these figures suggest that even substantial, and likely implausible, relaxations of the

exclusion restriction would leave inference informative about the employment effect of AI

adoption.

8 Additional Evidence

In this section, we dig deeper into the effect of AI adoption. We start by comparing AI with

other shocks studied in the literature. Then, we explore the mechanisms through which the
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The figure plots 90% confidence intervals around the baseline 2SLS coefficient on AIado cdt (Table 3, column 8) for different priors about a
potential violation of the exclusion restriction. Priors are described by the parameter delta reported on the horizontal axis: delta=0 implies
that the exclusion restriction is satisfied; delta=x>0 corresponds to a violation of the exclusion restriction such that a change in AIexp cdt by
1 interquartile range has a direct effect on the employment-to-population ratio equal to a change in AIado cdt by x interquartile ranges. The
confidence intervals are based on standard errors corrected for clustering at the state level.

Figure 5: Threats to Identification: Sensitivity of Inference to Violations of the Exclusion
Restriction

effect of AI unfolds. Finally, we study how the employment response to AI adoption varies

by gender, age, skill and occupation.

8.1 AI Adoption and Other Shocks

Our model shows that AI adoption affects labor demand in two ways: by replacing workers

in some tasks (displacement effect) and by increasing effi ciency (productivity effect). Accord-

ingly, the effects of AI adoption should differ from those of other shocks that do not have

a displacement effect. We now compare AI adoption with various shocks of this type. The

results are reported in Table 8. In columns (1)-(6), we augment (11) with proxies for different

shocks; in column (7), we include all these proxies together. The specification in column (1)

includes a proxy for capital deepening, which is a Bartik measure of the change in capital

intensity (capital-to-labor ratio) across industries.12 The coeffi cient β is largely unchanged,

suggesting that our results are not capturing the effect of capital deepening. At the same

time, the coeffi cient on the new control is very small and positive, consistent with the effect

12This and the other Bartik measures used in Table 8 are constructed using data from the Production
Accounts Tables of the US Bureau of Economic Analysis.
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Table 8: Controls for Other Shocks

(1) (2) (3) (4) (5) (6) (7)
2nd Stage Regression

AIadocdt -1.597*** -1.590*** -1.575*** -1.744*** -1.675*** -1.833*** -2.185***

[0.377] [0.376] [0.377] [0.428] [0.379] [0.503] [0.660]
CapIntcdt 0.000* 0.000**

[0.000] [0.000]
SoftIntcdt -0.000 -0.001*

[0.000] [0.000]
CompIntcdt -0.001 0.003

[0.001] [0.002]
CommIntcdt 0.003** 0.003

[0.001] [0.002]
VAcdt 0.088*** 0.084***

[0.021] [0.023]
Offshcdt 0.060* 0.084*

[0.035] [0.045]
1st Stage Regression

AIexpcdt 9.603*** 9.595*** 9.468*** 8.987*** 9.636*** 7.984*** 7.011***

[1.818] [1.812] [1.778] [1.803] [1.821] [1.886] [1.879]

Kleibergen–Paap F -stat. 27.9 28.0 28.3 24.8 28.0 17.9 13.9

Obs. 1444 1444 1444 1444 1444 1444 1444
The sample consists of 722 CZs observed over two decades, 2000-2010 and 2010-2020. Each observation is a CZ x decade
pair. The subscripts c , d and t denote CZs, Census Divisions and decades, respectively. The dependent variable is the change
in the employment-to-population ratio in each CZ over each decade. AIado cdt and AIexp cdt are the measures of AI adoption
and AI exposure defined in eq. (10) and (12), respectively. CapInt cdt , SoftInt cdt , CompInt cdt and CommInt cdt are Bartik measures
of the change in, respectively, the capital-to-labor ratio, the software capital-to-labor ratio, the computer capital-to-labor ratio
and the communication equipment-to-labor ratio, across industries. VA cdt is a Bartik measure of the change in log industry
value added. Offsh cdt is the initial employment share of offshorable occupations in each CZ. All specifications include Census
Division fixed effects, decade fixed effects and the control variables used in Table 3. Observations are weighted by the initial-
period share of each CZ in total population. Standard errors are corrected for clustering at the state level. ***, **, *: indicate
significance at the 1, 5 and 10% level, respectively.

of capital deepening being different from that of AI.

Next, we study the implications of ICT. In columns (2)-(4), we add three Bartik mea-

sures of changes in (i) software, (ii) computer and (iii) communication equipment intensities,

respectively. In all specifications, the effect of AI adoption remains very close to the baseline

estimate. This reassures against the concern that AIadocdt might capture the effect of com-

puters, software and other high-tech capital. Also in this case, the coeffi cients on the new

controls are small and, when they are precisely estimated, their sign is positive. This pattern

suggests that AI adoption has different labor demand consequences compared to ICT.13

13This finding is consistent with Gaggl and Wright (2017) and Blanas, Gancia and Lee (2019), who find
positive associations between ICT and labor demand.
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In column (5), we consider other productivity-enhancing shocks. To remain agnostic

about the precise nature of the shock, we add a broad proxy, which is obtained as a Bartik

measure of the change in log industry value added. This proxy enters with a positive and

statistically significant coeffi cient, but its inclusion is inconsequential for our coeffi cient of

interest. Hence, AI adoption differs from productivity-enhancing shocks, and has distinct

effects on the labor market. Finally, in column (6) we compare AI adoption with offshoring.

To this purpose, we add the initial employment share of offshorable occupations, constructed

using data from Autor and Dorn (2013). The coeffi cient β is largely unchanged. Moreover,

while offshoring could also displace workers, the results show that AI adoption has markedly

different labor market effects.14

8.2 Channels

So far, our evidence highlights a negative impact of AI adoption on employment across CZs.

We now explore some of the mechanisms underlying this effect. The results are reported in

Table 9. We start by analyzing the sectors that contribute the most to the overall effect.

As shown in Section 5, the leading industries in terms of AI adoption belong to the service

sector, while manufacturing is still lagging behind. It is conceivable, therefore, that AI

adoption in services might currently have larger effects on labor demand than AI adoption in

manufacturing. To study the role of the two sectors, we split both AIadocdt and AIexpcdt in

two separate variables, constructed as in (10) and (12) on the subsets of manufacturing and

non-manufacturing industries, respectively. We then estimate (11) using the sector-specific

variables in place of the aggregate variables. The results are reported in column (1) for

manufacturing and in column (2) for non-manufacturing. Consistently with the different

speed of AI diffusion in the two sectors, the estimates show that the service sector makes up

the lion’s share of the overall effect.

A related issue has to do with the sectors that experience the largest changes in employ-

ment as a consequence of AI adoption. The previous results do not imply that the effect is

entirely concentrated in the service sector, because industries are linked to each other by up-

stream or downstream relationships and because workers may move across sectors in response

to shocks. To investigate the employment effects in different sectors, we divide the numerator

of the dependent variable into employment in primary, secondary and tertiary industries. We

also consider employment in manufacturing, which makes up the secondary sector together

with the construction industry. We then estimate (11) using employment in each branch of

14See Bonfiglioli et al. (2022b) for more evidence on the relationship between automation and offshoring.
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Table 9: Channels
(1) (2) (3) (4) (5) (6) (7) (8)
AIado and 
AIexp for Mfg

AIado and AIexp 
for Nmfg

Primary 
Sector Emp.

Secondary 
Sector Emp.

Mfg Sector
Emp.

Tertiary 
Sector Emp.

Unemployment Not in 
Labor Force

2nd Stage Regression

AIadocdt 1.127 -1.405*** 0.252** -0.866*** -0.725*** -0.979*** 0.390* 1.203***

[1.878] [0.422] [0.101] [0.259] [0.253] [0.291] [0.211] [0.241]
1st Stage Regression

AIexpcdt 2.296*** 5.089*** 9.599*** 9.599*** 9.599*** 9.599*** 9.599*** 9.599***

[0.650] [1.269] [1.813] [1.813] [1.813] [1.813] [1.813] [1.813]

Kleibergen–Paap F -stat. 12.5 16.1 28.0 28.0 28.0 28.0 28.0 28.0

Obs. 1444 1444 1444 1444 1444 1444 1444 1444
The sample consists of 722 CZs observed over two decades, 2000-2010 and 2010-2020. Each observation is a CZ x decade pair. The subscripts c , d and t denote CZs,
Census Divisions and decades, respectively. In columns (1)-(2), the dependent variable is the change in the employment-to-population ratio in each CZ over each
decade. In columns (3)-(6), the dependent variables are the changes in primary sector employment, secondary sector employment, manufacturing sector employment
and tertiary sector employment, respectively, as a share of population in each CZ over each decade. In columns (7)-(8), the dependent variables are the changes in the
number of unemployed workers and in the number of individuals out of the labor force, respectively, relative to population in each CZ over each decade. AIado cdt and
AIexp cdt are the measures of AI adoption and AI exposure defined in eq. (10) and (12), respectively. In columns (1)-(2), these variables are constructed on the subsets of
manufacturing and non-manufacturing industries, respectively. All specifications include Census Division fixed effects, decade fixed effects and the control variables
used in Table 3. Observations are weighted by the initial-period share of each CZ in total population. Standard errors are corrected for clustering at the state level. ***,
**, *: indicate significance at the 1, 5 and 10% level, respectively.

the economy, relative to population, as the dependent variable. The results are reported in

columns (3)-(6). The largest effect is found in the tertiary sector, which accounts for roughly

60% of the impact of AI adoption on overall employment. In addition, negative effects are

evident also in the secondary sector, primarily in manufacturing, which accounts for 45% of

the aggregate impact. Finally, the results show a small positive effect on employment in the

primary sector, which probably absorbs a small fraction of workers laid off from the other

branches.

The last results raise the question of what happens to displaced workers that are not

re-employed. To answer this question, in the last two columns, we study the response of

unemployment and non-participation rates. Specifically, we estimate (11) using two different

dependent variables: unemployment as a share of population (column 7) and the share of

population out of the labor force (column 8). The results indicate that AI adoption raises

both unemployment and non-participation. However, non-participation absorbs a much larger

share of the overall reduction in employment compared to unemployment (75% vs. 25%).

This fraction includes both workers who temporarily leave the labor force to update their

skills and discouraged workers who drop out of the labor force. In the next section, we study

heterogeneity in the effect of AI adoption, with the aim of shedding light on the possible

winners and losers from this new technology.
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Table 10: Heterogeneity: Gender and Age

(1) (2) (3) (4) (5)
Male 
Emp.

Female 
Emp.

Emp. 
16-24 Yrs

Emp. 
25-44 Yrs

Emp. 
45+ Yrs

2nd Stage Regression

AIadocdt -0.928*** -0.665*** -0.296* -1.401*** 0.103

[0.260] [0.181] [0.166] [0.366] [0.207]
1st Stage Regression

AIexpcdt 9.599*** 9.599*** 9.599*** 9.599*** 9.599***

[1.813] [1.813] [1.813] [1.813] [1.813]

Kleibergen–Paap F -stat. 28.0 28.0 28.0 28.0 28.0

Obs. 1444 1444 1444 1444 1444
The sample consists of 722 CZs observed over two decades, 2000-2010 and 2010-2020. Each
observation is a CZ x decade pair. The subscripts c , d and t denote CZs, Census Divisions and
decades, respectively. In columns (1)-(2), the dependent variables are the changes in the
employment of males and females, respectively, as a share of population in each CZ over each
decade. In columns (3)-(5), the dependent variables are the changes in the employment of workers
aged 16-24, 25-44 and 45+, respectively, as a share of population in each CZ over each decade.
AIado cdt and AIexp cdt are the measures of AI adoption and AI exposure defined in eq. (10) and
(12), respectively. All specifications include Census Division fixed effects, decade fixed effects and
the control variables used in Table 3. Observations are weighted by the initial-period share of each
CZ in total population. Standard errors are corrected for clustering at the state level. ***, **, *:
indicate significance at the 1, 5 and 10% level, respectively.

8.3 Heterogeneity

In columns (1) and (2) of Table 10, we investigate how the effect of AI adoption varies by

gender. We find negative effects on both male employment and female employment as a

share of population. While the coeffi cient is somewhat larger for men, the difference is not

statistically significant. Hence, our results do not clearly point to a strong gender bias in the

effect of AI adoption.

Different conclusions are reached about other dimensions of heterogeneity. A first aspect

to play a role is age. Columns (3)-(5) report the effects of AI adoption on employment for three

groups of workers: younger (age 16-24), middle-age (age 25-44) and older (age 45+) workers.

The largest negative effect is found for middle-age workers, which account for almost 88% of

the effect on overall employment. The impact of AI adoption is also negative, albeit much

smaller, on younger workers, while it is small and imprecisely estimated on older workers. One

possible interpretation of these results is that younger workers are better equipped to cope

with the challenges posed by AI, as they are capable of swiftly updating their skills. Older

workers are instead shielded from the AI shock possibly due to their tendency to hold more

stable jobs. Notably, these advantageous traits are often less pronounced among middle-aged
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Table 11: Heterogeneity: Skills and Occupations
(1) (2) (3) (4) (5) (6)
HS Emp. LS Emp. HS-NP 

Emp.
HS-P 
Emp.

LS-NP 
Emp.

LS-P 
Emp.

2nd Stage Regression

AIadocdt 0.048 -1.641*** 0.115 -0.067*** -1.021*** -0.621***

[0.326] [0.450] [0.326] [0.023] [0.340] [0.206]
1st Stage Regression

AIexpcdt 9.599*** 9.599*** 9.599*** 9.599*** 9.599*** 9.599***

[1.813] [1.813] [1.813] [1.813] [1.813] [1.813]

Kleibergen–Paap F -stat. 28.0 28.0 28.0 28.0 28.0 28.0

Obs. 1444 1444 1444 1444 1444 1444
The sample consists of 722 CZs observed over two decades, 2000-2010 and 2010-2020. Each observation is a CZ x 
decade pair. The subscripts c , d and t denote CZs, Census Divisions and decades, respectively. The dependent
variables are the changes in the employment of high-skill workers (column 1), low-skill workers (column 2), high-
skill/non-production workers (column 3), high-skill/production workers (column 4), low-skill/non-production
workers (column 5) and low-skill/production workers (column 6), respectively, as a share of population in each CZ
over each decade. AIado cdt and AIexp cdt are the measures of AI adoption and AI exposure defined in eq. (10) and
(12), respectively. All specifications include Census Division fixed effects, decade fixed effects and the control
variables used in Table 3. Observations are weighted by the initial-period share of each CZ in total population.
Standard errors are corrected for clustering at the state level. ***, **, *: indicate significance at the 1, 5 and 10%
level, respectively.

workers.

A second important dimension of heterogeneity is education. As shown in columns (1)

and (2) of Table 11, the negative effect of AI adoption is entirely concentrated on low-

skill workers. For high-skill workers, the estimated coeffi cient is positive albeit imprecisely

estimated. Occupations also play a role. As shown in columns (3)-(6), the effect of AI

adoption is always negative for production workers. On the contrary, for non-production

workers, the effect is negative only among low-skill ones. These results strengthen the view

that the implications of AI adoption differ from those of industrial robots, whose effects are

mostly concentrated on production workers and largely independent of education (Acemoglu

and Restrepo, 2020). This difference may be due to two factors. On the one hand, the two

technologies have spread in different industries: while AI is prevalent in advanced service

industries, automation is more prominent in highly mechanized manufacturing sectors. On

the other hand, the skill requirement of AI technologies is higher than that of industrial

robots.

In conclusion, we consider another dimension of heterogeneity, which is the focus of an

important stream of literature. It is well documented that, both in the US and in other indus-

trialized countries, the labor market has undergone a process of job polarization: employment
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Table 12: Heterogeneity: Quintiles of Initial Wage Distribution

(1) (2) (3) (4) (5)
Emp. 1st 
Quintile

Emp. 2nd 
Quintile

Emp. 3rd 
Quintile

Emp. 4th 
Quintile

Emp. 5th 
Quintile

2nd Stage Regression

AIadocdt -0.750* -0.916*** -0.262** -0.283** 0.616***

[0.415] [0.213] [0.122] [0.137] [0.199]
1st Stage Regression

AIexpcdt 9.599*** 9.599*** 9.599*** 9.599*** 9.599***

[1.813] [1.813] [1.813] [1.813] [1.813]

Kleibergen–Paap F -stat. 28.0 28.0 28.0 28.0 28.0

Obs. 1444 1444 1444 1444 1444
The sample consists of 722 CZs observed over two decades, 2000-2010 and 2010-2020. Each
observation is a CZ x decade pair. The subscripts c , d and t denote CZs, Census Divisions and
decades, respectively. The dependent variables are the changes in employment, as a share of
population, for occupations in the first quintile (column 1), second quintile (column 2), third quintile 
(column 3), fourth quintile (column 4) and fifth quintile (column 5) of the initial wage distribution in
each CZ over each decade. AIado cdt and AIexp cdt are the measures of AI adoption and AI exposure
defined in eq. (10) and (12), respectively. All specifications include Census Division fixed effects,
decade fixed effects and the control variables used in Table 3. Observations are weighted by the
initial-period share of each CZ in total population. Standard errors are corrected for clustering at the 
state level. ***, **, *: indicate significance at the 1, 5 and 10% level, respectively.

has shrunk among occupations in the middle of the wage distribution and expanded in those

at the upper and lower tails. The hollowing-out of the wage distribution has proceeded over

the period of our analysis. To see this, we follow Autor and Dorn (2013) and compute the

change in employment across occupations belonging to each quintile of the initial wage dis-

tribution. We find a decline in the employment share of occupations in the third (middle)

quintile (−1.45 p.p.) between 2000 and 2020, accompanied by an increase in the employment

shares of occupations in the first and second (bottom) quintiles (+0.51 and +0.49 p.p., re-

spectively) as well as of occupations in the fourth and fifth (top) quintiles (+0.11 and +0.34

p.p., respectively).

The most accredited explanation for job polarization is routine-biased technical change,

i.e., the diffusion of technologies that substitute labor in standardized and codifiable activities,

while complementing it in abstract and manual-intensive tasks. Our interest is to study

whether AI adoption has contributed to job polarization over the last two decades. The

previous results suggest that this might not be the case: as previously shown, the effects of

AI adoption on overall employment are different from those of software and computers, which

are the main culprits of job polarization according to the literature (e.g., Autor and Dorn,

2013).
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To provide direct evidence, in Table 12, we estimate (11) using as the dependent variable

the change in employment, as a share of population, for occupations in each quintile of the

initial wage distribution. The results are inconsistent with a contribution of AI adoption

to job polarization. Indeed, there is no evidence of a U-shaped pattern in the estimated

coeffi cients. Rather, the coeffi cients follow a seemingly monotonic trend: they are strongly

negative for the bottom two quintiles, mildly negative for the third and fourth quintiles, and

strongly positive at the top of the distribution. This pattern is broadly in line with our

previous evidence by skill group, as long as an occupation’s position in the wage distribution

is correlated with its skill requirements. Overall, these results suggest that AI adoption

poses threats to low- and medium-skill workers, while offering new opportunities to the most

educated individuals. Hence, AI adoption may be a source of rising inequality in the US

labor market.

9 Conclusions

Recent improvements in the field of AI have triggered much hype. The ongoing debate

highlights the fact that AI is a flexible technology with the potential of turning dreamlike

scenarios or nightmares into reality. Nobody can predict the direction that future innovations

and applications will take. However, to inform policy decision, it is important to understand

the consequences of these technologies so far. The goal of this paper has been to study the

effect of AI adoption on labor demand as measured by changes in employment. Since the

deployment of AI can potentially increase productivity but also automate work, its impact

on employment is a still unanswered empirical question.15

Using data across US CZs over the period 2000-2020, a novel measure of AI adoption

based on the growth of AI-related jobs and a shift-share empirical strategy to identify causal

effects, we were able to estimate robust negative effects of AI exposure on employment. We

also found that AI’s impact is different from other forms of capital and technologies, such

as robots or ICT, and that it works through services more than manufacturing. Moreover,

the employment effect is especially negative for low-skill and production workers, while it

turns positive for workers at the top of the wage distribution. Overall, these results are

consistent with the view that AI, so far, has contributed to the automation of jobs and to

widen inequality. Finally, while the focus of this paper has been on employment so as to

best capture displacement effects, AI adoption is likely to have affected wages as well. In the

15See Varian (2018) and Acemoglu (2022) for a discussion of policy questions pertaining to other aspects
of AI.
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interest of space, we left a detailed analysis of this possibility to future research.

We conclude by discussing some policy implications of our findings. The existing literature

has already pointed out that automation, in the form of industrial robots, is partly to blame

for falling manufacturing employment (e.g., Acemoglu and Restrepo 2020, Dauth et al. 2021,

and Bonfiglioli et al. 2022a,b). Our alarming result is that service employment, which con-

stitutes the lion’s share in developed countries, may not be immune to automation through

AI. It is therefore crucial that governments put in place measures aimed at alleviating ad-

verse labor-market consequences. Since the negative effects are concentrated among low-skill

workers, a first remedy could be to help employees acquire new skills. Facilitating job-to-job

transitions and improving the flexibility of the labor market can also ease reallocation costs.

Since top earners seem to actually benefit from these new technologies, appropriate trans-

fer schemes could also be used to ensure that the gains are more broadly shared. Finally,

incentive schemes could be designed to redirect innovation towards applications aimed at

improving human capabilities rather than labor savings. To this end, collecting better data

and developing methodologies to identify the complementarities between AI applications and

jobs seem an important step for future research.
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Appendix A The Conley, Hansen and Rossi (2012) approach

In this section, we illustrate the main idea behind the approach of Conley, Hansen and Rossi

(2012) using our set-up. Consider the following version of (11):

∆ (L/P )cdt = αd + αt + β · AIadocdt +X
′

cdt · γ + λ · AIexpcdt + εcdt,

where λ is a parameter measuring the size of a violation of the exclusion restriction. The

baseline results presented in the text are based on the standard IV assumption that λ = 0.

However, if the exclusion restriction was not satisfied, i.e., if λ 6= 0, inference on β could still

be performed, using alternative priors about λ and conditional on this parameter. This can

be done by estimating the following specification

∆ (L/P )cdt − λ · AIexpcdt = αd + αt + β · AIadocdt +X
′

cdt · γ + εcdt

with 2SLS, instrumenting AIadocdt with AIexpcdt. Varying the prior about λ allows assess-

ing how inference on β would be influenced by different degrees of violation of the exclusion

restriction. Because the sensitivity of the 2SLS estimator to violations of the exclusion re-

striction inversely depends on the strength of the instrument, the same value of λ induces a

smaller decrease in precision the stronger is the first-stage relationship.

We set λ to be a function of a parameter δ, which we progressively raise (by intervals of

0.01 starting from 0) to generate increasingly larger violations of the exclusion restriction.

Specifically, we set λ ≡ −1.594×11× δ, where −1.594 is the baseline 2SLS estimate of β and

the interquartile range of AIadocdt is approximately 11 times that of AIexpcdt. For each value

of λ, we estimate the confidence interval of β for both the lower and the upper end of the

support [−λ, λ], and compute the final confidence interval as the union of the two confidence

intervals.16

Appendix B Data Appendix

16Besides this “union of confidence intervals” approach, Conley, Hansen and Rossi (2012) discuss other
strategies that use more prior information about λ. By imposing additional parametric restrictions, these
alternative approaches tend to yield narrower confidence intervals around the treatment parameter, and thus
may be less conservative.
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Table B1: Summary Statistics

Obs. Mean Median Std. Dev.
Outcomes
D(L/P)cdt 1444 0.0309 0.0279 0.0178

D(L/P)cdt (pre-sample: 1980-1990, 1990-2000) 1444 0.0055 0.0056 0.0136

D(L/P)cdt (private sector) 1444 0.0269 0.0246 0.0196

D(L/P)cdt (public sector) 1444 0.0040 0.0037 0.0113

D(L/P)cdt (primary sector) 1444 0.0018 0.0022 0.0127

D(L/P)cdt (secondary sector) 1444 -0.0101 -0.0069 0.0233

D(L/P)cdt (manufacturing sector) 1444 -0.0123 -0.0086 0.0216

D(L/P)cdt (terziary sector) 1444 0.0393 0.0368 0.0254

D(L/P)cdt (high-skill) 1444 0.0349 0.0339 0.0177

D(L/P)cdt (low-skill) 1444 -0.0041 -0.0070 0.0269

D(L/P)cdt (high-skill, non-production) 1444 0.0338 0.0327 0.0174

D(L/P)cdt (high-skill, production) 1444 0.0011 0.0010 0.0023

D(L/P)cdt (low-skill, non-production) 1444 0.0088 0.0071 0.0283

D(L/P)cdt (low-skill, production) 1444 -0.0128 -0.0111 0.0180

D(L/P)cdt (male) 1444 0.0137 0.0137 0.0129

D(L/P)cdt (female) 1444 0.0172 0.0159 0.0147

D(L/P)cdt (age 16-24) 1444 0.0013 0.0016 0.0119

D(L/P)cdt (age 25-44) 1444 -0.0134 -0.0115 0.0342

D(L/P)cdt (age 45+) 1444 0.0430 0.0473 0.0422

D(L/P)cdt (1st quintile of initial wage distribution) 1444 0.0098 0.0089 0.0300

D(L/P)cdt (2nd quintile of initial wage distribution) 1444 0.0082 0.0084 0.0128

D(L/P)cdt (3rd quintile of initial wage distribution 1444 0.0000 -0.0002 0.0126

D(L/P)cdt (4th quintile of initial wage distribution) 1444 0.0061 0.0051 0.0124

D(L/P)cdt (5th quintile of initial wage distribution) 1444 0.0054 0.0046 0.0208

DlnLcdt 1444 0.0606 0.0512 0.0858

D(U/P)cdt 1444 -0.0054 -0.0072 0.0153

D(NILF/P)cdt 1444 -0.0255 -0.0223 0.0226

AI Adoption
AIadocdt 1444 0.0038 0.0026 0.0063

AIadocdt (data scientists only) 1444 0.0003 0.0001 0.0006

AIadocdt (manufacturing industries) 1444 -0.0001 0.0000 0.0012

AIadocdt (non-manufacturing industries) 1444 0.0039 0.0029 0.0059

AIadocdt (adjusted for industry employment growth) 1444 0.0010 0.0012 0.0053

AIadocdt (excluding top decile industries) 1444 0.0033 0.0024 0.0061

AI Exposure
AIexpcdt 1444 0.0002 0.0002 0.0004

AIexpcdt (data scientists only) 1444 0.0000 0.0000 0.0000

AIexpcdt (manufacturing industries) 1444 0.0000 0.0000 0.0004

AIexpcdt (non-manufacturing industries) 1444 0.0004 0.0003 0.0006

AIexpcdt (adjusted for industry employment growth) 1444 0.0006 0.0002 0.0031

AIexpcdt (excluding top decile industries) 1444 0.0001 0.0001 0.0003

AIexpcdt (1990 industry shares) 1444 0.0003 0.0002 0.0005

AIexpcdt (leave-one-out) 1444 0.0017 -0.0026 0.0650
All statistics are computed on a sample of 722 CZs observed over two decades, 2000-2010 and 2010-2020. The subscripts
c , d and t denote CZs, Census Divisions and decades, respectively. L , U , NILF and P denote employment,
unemployment, not in labor force and population, respectively. AIado cdt and AIexp cdt are the measures of AI adoption and
AI exposure defined in eq. (10) and (12), respectively.
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Table B2: Software used to Identify the AI-Related Occupations
Amazon Redshift GitHub Oracle PL/SQL
Amazon Simple Storage Service S3 Go PHP
Amazon Simple Storage Service S4 JavaScript Perl
Amazon Web Services AWS CloudFormation JavaScript Object Notation JSON PostgreSQL
Amazon Web Services AWS software Jenkins CI Python
Ansible Software Kubernetes Ruby
Apache Hadoop Microsoft .NET Framework Scala
Apache Hive Microsoft Azure software Selenium
Apache Kafka Microsoft PowerShell ServiceNow
Apache Spark Microsoft SQL Server Splunk Enterprise
Atlassian Confluence Microsoft SQL Server Reporting Services SSRS Spring Boot
Atlassian JIRA MongoDB Spring Framework
Bash NoSQL Structured query language SQL
C Node.js Transact-SQL
C# Objective C TypeScript
C++ Oracle Database UNIX
Docker Oracle Java Vue.js
Git Oracle Java 2 Platform Enterprise Edition J2EE jQuery
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