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Abstract 
 
This paper introduces life expectancy inequality into a tractable Mirrleesian life-cycle model and 
characterizes the optimal income tax policy using theory and calibration. A positive association 
between life expectancy and income counteracts the well-known static pattern of declining 
marginal utility. As a result, the mechanical value of redistribution is reduced at all income levels. 
Moreover, the pension wedge becomes a novel determinant of optimal taxation, motivating 
relatively lower optimal tax rates for low earners and relatively higher optimal tax rates for high 
earners. Quantitatively, the effects of the mechanical value of redistribution dominate, and the 
optimal marginal tax rates fall by up to 10 percentage points when life expectancy is 
heterogeneous. 
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1 Introduction

Income and life expectancy are strongly correlated (Goldman, 2001; Cutler et al., 2011). Recent

empirical evidence documents that individuals in the top decile of the US income distribution

can expect to live about 10 years longer than those in the bottom decile (Chetty et al., 2016).

Similar socioeconomic health gaps exist around the world, even in countries with lower levels of

economic inequality and more universal health care systems (Mackenbach et al., 2008; European

Commission, 2013).1 Since income and survival are fundamental determinants of well-being,

redistributive policies should take into account inequalities in both dimensions. However, ex-

isting studies of optimal redistribution typically focus on economic inequality and, with very

few exceptions, neglect differences in life expectancy.2 The goal of this paper is to assess the

implications of unequal lifespans for optimal redistribution. I introduce life expectancy inequal-

ity into a tractable Mirrleesian life-cycle model and characterize the optimal income tax policy

using economic theory and calibration.

In general, life expectancy inequality can both affect and be affected by redistribution policy.

Throughout the paper, I consider life expectancy inequality to be exogenous and examine its

implications for optimal redistribution policy. The reason for this choice is that the current

state of empirical knowledge about the income-health gradient in rich countries seems far too

limited to be able to model a “production function” for life expectancy. The surveys by Cutler

et al. (2006) and Cutler et al. (2011) suggest that a causal role of income is not evident and that

the gradient is primarily the result of reverse causality and a number of other factors (including

education, access to health care, health behavior, parental resources, and genetic differences)

whose relative importance remains poorly understood. Several recent studies using panel data

or quasi-experimental variations in income or wealth also suggest that the impact of economic

resources on health is small to negligible in developed countries (Adams et al., 2003; Meer et al.,

2003; Frijters et al., 2005; Banerjee et al., 2010; Cesarini et al., 2016; Gerdtham et al., 2016;

Erixson, 2017). Although there is no final consensus yet, the exclusion of a causal pathway from

income to health seems to be a viable working assumption.

1In Germany, for example, the gap in life expectancy between the top and bottom deciles of the income
distribution is about 7 years (Lampert et al., 2019).

2Cremer et al. (2004) and Shourideh and Troshkin (2017) model heterogeneous life expectancy in Mirrleesian
frameworks to explore optimal retirement incentives. Hosseini and Shourideh (2019) use a similar approach to
study asset taxation.

2



I introduce life expectancy inequality into a two-period extension of the seminal Mirrlees

(1971) model. The first period represents the working life of the individuals and the second

period describes the retirement phase. The individuals differ from each other on the basis of

a one-dimensional, unobservable characteristic that determines both their labor productivity

and their probability of reaching the retirement phase. Thus, the model is able to replicate

the positive association between between income and life expectancy observed in the data. The

government optimizes a nonlinear income tax function and employs an exogenous pension system

that transfers resources to the retirement phase. Individuals can supplement their retirement

benefits by annuitizing the disposable income they do not spent during their working years. With

a uniform life expectancy, the model condenses to the classic static Mirrlees setup, allowing me

to connect to the well-known characterizations of the optimal policy by Diamond (1998), Saez

(2001) and many others.

The main findings are as follows. First, the pension wedge (which measures the implicit

tax imposed by the pension system) becomes a novel determinant of optimal income taxes.

Intuitively, the efficiency costs of income taxation are large when there is a pre-existing distortion

to labor supply. Therefore, the optimal statutory tax rate decreases with the size of the pension

wedge.3 Provided that the pension system is progressive, this factor depresses optimal tax rates

particularly for high earners (except for top earners whose income exceeds the limits of the

pension system). However, as life expectancy inequality increases, the pension wedges of high

and low earners move closer together. Through this channel, life expectancy inequality leads

to relatively lower optimal tax rates for low earners and relatively higher optimal tax rates for

high earners.

Second, the mechanical value of redistribution differs from its static counterpart due to a

“lifespan factor”. While in static models an individual’s disposable income can be converted

directly into her marginal utility, the conversion process is affected by the individual’s life ex-

pectancy in the present environment. Individuals who expect to live longer will place a higher

weight on the future and thus reduce their current consumption. This increases their marginal

utility from each tax dollar. In addition, individuals with long life expectancies may face higher

prices for annuitizing their wealth. Provided that the income effect of the annuity price dom-

3Fiscal externalities provide an alternative explanation for this result. Note that a positive wedge creates
fiscal externalities for the government. In this case, the government receives an extra benefit from the generation
of income and should not discourage income choices too much.
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inates the substitution effect, this channel amplifies the positive impact of life expectancy on

marginal utility. Overall, the positive association between life expectancy and income coun-

teracts the well-known static pattern of declining marginal utility. As a result, the mechanical

value of redistribution decreases at all income levels.

Third, I evaluate the quantitative importance of life expectancy inequality for optimal re-

distribution. I calibrate the model to the US economy and simulate optimal income taxes with

and without life expectancy inequality. Quantitatively, the “lifespan factor” strongly dominates

the “pension wedge factor”. Thus, optimal marginal tax rates drop at all income levels when

life expectancy inequality is introduced. Averaged across taxpayers, the optimal marginal tax

rates decrease by 6 percentage points in the baseline calibration. The impact is particularly

pronounced at low incomes, where optimal marginal tax rates fall by more than 10 percentage

points. For high earners, the impact of life expectancy inequality on optimal marginal tax rates

is rather small. This is because life expectancy rises steeply with income at low levels and flat-

tens out at higher levels.4 Finally, I show that the results are qualitatively and quantitatively

robust to alternative model parameterizations.

Related literature. Building on the seminal Mirrlees (1971) model, this paper relates to the

extensive literature on optimal nonlinear income taxation surveyed, for example, by Mankiw

et al. (2009), Diamond and Saez (2011), and Piketty and Saez (2013). To my knowledge, this

is the first paper to relate the characterization of nonlinear income taxes to heterogeneous life

expectancy.

The paper follows Michau (2014) in emphasizing the importance of a life-cycle perspective

for optimal redistribution. His paper characterizes optimal redistribution policies in a life-

cycle model with homogeneous lifespans and endogenous retirement. He shows that optimal

allocations involve distortions to the retirement margin, and thus their implementation requires

history-dependent instruments such as a social security system. In contrast to the current

approach, the implementation leaves a degree of freedom between the income tax and the social

security system, so that the form of the optimal income tax cannot be deduced.

In addition, the paper relates to the work by Shourideh and Troshkin (2017) and Hosseini

and Shourideh (2019), who consider heterogeneous life expectancy in Mirrleesian frameworks.

4The relationship between life expectancy and income percentiles is nearly linear (Chetty et al., 2016). How-
ever, the relationship becomes concave when percentiles are replaced by income levels.
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The present paper builds on a similar model and complements their results by addressing a

distributional policy question. Hosseini and Shourideh (2019) study a multi-period Mirrleesian

life-cycle model with a focus on intertemporal distortions. Orthogonal to the distributional

aspects highlighted in the present paper, they show that asset subsidies late in live play an

important role in Pareto optimal reforms. The present paper takes asset taxation (and the

resulting net annuity prices) as given and focuses on income taxation as the main policy instru-

ment. Shourideh and Troshkin (2017) study optimal retirement incentives using a Mirrleesian

approach. In particular, they show that labor wedges and retirement wedges are closely con-

nected in any constrained efficient allocation. In their quantitative analysis, they also explore

the implications of heterogeneous lifespans for efficient retirement ages and the pension system.

The present paper abstracts from the retirement decision and examines the consequences of

heterogeneous life expectancy for redistributive taxation. I therefore consider the papers to be

complementary.

Ndiaye (2020) explores optimal pension and tax design in a life-cycle model with wage risk.

Beyond redistribution, policies also aim to provide dynamic social insurance in this setting.5

Lifespans are fixed and homogeneous, and the focus is on the retirement wedge and the im-

plementation of history-dependent allocations using policies similar to the US Social Security

system.

The paper is also related to earlier work by Cremer et al. (2004). They study optimal life-

cycle policies in a model with two or three types of unobserved productivity and health status

and a tax-transfer system that depends on income and the retirement age. In the absence of first-

best instruments, they show that income tax rates should be positive and the retirement decision

should be distorted.6 Abstracting from the retirement margin, the present paper extends their

work to a continuous type space in which skill and life expectancy are positively related, and

derives a complete characterization of the optimal nonlinear income tax.

Finally, the paper relates to the analysis of capital taxation with heterogeneous discount

rates by Diamond and Spinnewijn (2011). To keep the analysis of two-dimensional heterogeneity

tractable, their approach replaces the continuous Mirrlees (1971) framework with a four-types,

5For related models of dynamic taxation, see for example Golosov and Tsyvinski (2006), Farhi and Werning
(2013), Abraham et al. (2016), Golosov et al. (2016), Koehne (2018) and the survey by Stantcheva (2020).

6Bommier et al. (2011) revisit the distortion of the retirement decision in a model with only heterogeneity in
lifespans. Depending on the planner’s aversion to multi-period inequality, a subsidy or tax on continued activity
may be optimal.

5



two-jobs model. They show that savings taxes increase welfare when skills and discount rates

are sufficiently correlated. The present paper works with explicit discount rates that are uniform

across agents, but generates implicit discount rates that increase with skills due to higher life

expectancy. Adding a positive relationship between explicit discount rates and skills would

strengthen the results by amplifying the lifespan factor in the mechanical value of redistribution.

The rest of the paper is organized as follows. Section 2 extends the Mirrlees (1971) model to

include heterogeneous life expectancy. Section 3 performs a theoretical analysis and derives a

novel “ABCD” formula for optimal redistribution. Section 4 calibrates the model and simulates

optimal tax systems with homogeneous and heterogeneous life expectancy. Section 5 concludes.

All proofs are relegated to the appendix.

2 Model

I consider a two-period version of the Mirrlees (1971) model of optimal nonlinear taxation. The

first period represents the individual’s working life. In this period, individuals work, consume

and save. The second period represents the individual’s retirement phase. In this period,

individuals have left the labor market and consume retirement benefits and their annuitized

wealth. Individuals differ with respect to a one-dimensional, unobservable characteristic that

determines both their labor productivity and their probability of reaching the retirement phase.

2.1 Preferences and skills

There is a continuum of individuals with identical, time-separable von Neumann–Morgenstern

preferences. The individuals live for up to two periods and discount the future with the factor

β ∈ (0, 1).

Individuals differ with respect to their skill θ ∈ Θ :=
[
θ, θ
]
⊂ R++. An individual with skill

θ and labor hours l earns a gross income of y = θl. Skill and labor hours are private information,

whereas gross income y is publicly observable. The distribution of skill types in the economy

is defined by a smooth probability density f : Θ → R++ with full support. The cumulative

distribution function of this distribution is denoted by F : Θ→ [0, 1].

In the first period, individual utility depends on consumption c1 ∈ R+ and labor hours

l ∈ R+ and is given by u (c1 − v (l)). In this specification, the utility function u : R → R is
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strictly increasing, strictly concave and twice continuously differentiable. The labor disutility

function v : R+ → R+ is strictly increasing, strictly convex, twice continuously differentiable

and satisfies v (0) = 0. Note that income effects on labor supply are zero for this specification.

With probability p (θ) ∈ (0, 1), an individual with skill θ reaches the second period. In

this period, the individual does not work and her utility u(c2) = u (c2 − v (0)) is determined

exclusively by her consumption c2.

2.2 Individual problem

At the beginning of the first period, individuals observe their skill realization θ. Then, they

choose their labor supply l (θ) and, as a consequence, their gross income y (θ) = θ · l (θ).

Individuals pay income taxes T (y (θ)) and social security contributions S (y (θ)) and spend

their disposable income on contemporaneous consumption c1 (θ) and an annuity a (θ) with unit

price q (θ) that is paid out during the retirement phase. In the second period (retirement),

which is reached with probability p (θ), individuals do not work and consume the sum c2 (θ) =

a (θ) +B (y (θ)) of their annuity payments a (θ) and social security benefits B (y (θ)).

Formally, individuals solve the following optimization problem:

V (θ) := max
c1,c2,a,y

u
(
c1 − v

(y
θ

))
+ p (θ)βu (c2)

subject to c1 + q (θ) a = y − T (y)− S (y) and c2 = a+B (y) .

(1)

The two budget constraints can be easily combined to obtain the following intertemporal budget

constraint:

c1 + q (θ) c2 = y − T (y)− S (y) + q (θ)B (y) . (2)

Using the intertemporal budget constraint, the individual problem can be written as follows:

V (θ) = max
c2,y

u
(
y − T (y)− S (y) + q (θ)B (y)− v

(y
θ

)
− q (θ) c2

)
+ p (θ)βu (c2) (3)

This decision problem can be decomposed into two steps. First, individuals maximize their

disposable income minus the disutility of labor:

max
y
y − T (y)− S (y) + q (θ)B (y)− v

(y
θ

)
. (4)
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Given the solution of this problem, individuals optimize intertemporally:

max
c2

u
(
y − T (y)− S (y) + q (θ)B (y)− v

(y
θ

)
− q (θ) c2

)
+ p (θ)βu (c2) . (5)

From the point of view of the individual, the labor supply problem (4) is equivalent to that

of the typical static Mirrlees problem, except that the statutory income tax is replaced by the

effective income tax,

T̂ (y; θ) := T (y) + S (y)− q (θ)B (y) , (6)

to account for the contributions and benefits of the pension system. Note that the effective

marginal tax rate,

T̂ ′ (y; θ) = T ′ (y) + S′ (y)− q (θ)B′ (y) , (7)

is the sum of the statutory marginal tax rate T ′ and the pension wedge S′−qB′ (which captures

the marginal labor distortion imposed by the pension system).

2.3 Government problem

The government does not observe skills or labor hours and is setting taxes T as a (nonlinear)

function of income y. Throughout the paper, I focus on the statutory tax function T as the

government’s design object and consider the pension system (S,B) and the annuity price q to

be exogenous.

The government chooses income taxes to maximize a weighted utilitarian welfare function

with nonnegative weights defined by the function χ : Θ → R+. The tax function T is optimal

if it solves the following problem:

max
T

ˆ θ

θ
χ (θ)V (θ) dF (θ) , (8)

where V (θ) is the indirect utility defined by Equation (1).

2.4 Optimal control approach

Following standard procedures in the optimal taxation literature, I reformulate the government

problem (8) as an optimal control problem.
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First, I map the labor supply problem to a reporting problem in which the individuals report

their skill to a fictitious social planner, who allocates consumption resources and income targets

based on the reports. An individual with skill θ who reports skill θ̂ to the planner is required

to work y
(
θ̂
)
/θ hours and pay taxes T

(
y
(
θ̂
))

+ S
(
y
(
θ̂
))

in the first period and obtains a

social security benefit B
(
y
(
θ̂
))

in the second period. Hence, if the individual reports a skill

of θ̂, her disposable income minus labor disutility is given by:

x̂
(
θ, θ̂
)

:= y
(
θ̂
)
− T

(
y
(
θ̂
))
− S

(
y
(
θ̂
))

+ q (θ)B
(
y
(
θ̂
))
− v

y
(
θ̂
)

θ

 . (9)

The tax system induces truthful reporting if it satisfies

x (θ) := x̂ (θ, θ) = max
θ̂
x̂
(
θ, θ̂
)
. (10)

Following common practice (Mirrlees, 1971, 1976; Diamond, 1998; Saez, 2001), I replace the

incentive compatibility constraint (10) by the associated envelope condition:

dx (θ)

dθ
=
∂x̂ (θ, θ)

∂θ
=
l (θ)

θ
v′ (l (θ)) + q′ (θ)B (θl (θ)) . (11)

Next, I specify a feasibility constraint. The tax system is budget balanced if

ˆ θ

θ
[T (y (θ)) + S (y (θ))− q (θ)B (y (θ))] dF (θ)− E ≥ 0, (12)

where E represents other government expenditures. Equivalently, using the variables x and l,

this condition can be expressed as

ˆ θ

θ
[θl (θ)− x (θ)− v (l (θ))] dF (θ)− E ≥ 0. (13)

Finally, I express the objective function in terms of variables that are convenient for the

control problem. As explained above, for a given level x of disposable income minus labor

disutility, individual welfare is obtained by the following intertemporal value function:

V (θ) = Ṽ (x (θ) ; θ) := max
c2

u (x (θ)− q (θ) c2) + p (θ)βu (c2) . (14)
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By the envelope theorem, I obtain

∂Ṽ (x (θ) ; θ)

∂x (θ)
= u′ (x (θ)− q (θ) c2 (θ)) , (15)

where c2 (θ) is the maximizer of the intertemporal problem (14).

With these preparations, the optimal control problem is formulated as follows:

max
l

ˆ θ

θ
χ (θ) Ṽ (x (θ) ; θ) dF (θ) (16)

subject to

ˆ θ1

θ0

[θl (θ)− x (θ)− v (l (θ))] dF (θ)− E ≥ 0,

and
dx

dθ
=
l (θ)

θ
v′ (l (θ)) + q′ (θ)B (θl (θ)) .

3 The ABCD formula for optimal redistribution

In this section, I characterize the optimal tax system based on the first-order conditions of

the control problem (16).7 There are two main insights. First, heterogeneous life expectancies

change the mechanical value of redistribution. Second, the pension wedge becomes a novel

determinant of the optimal policy. Through this channel, heterogeneous life expectancies have

an additional effect on optimal redistribution.

The following elasticities will help to obtain simple and intuitive expressions of the optimality

condition.

Lemma 1 (Elasticities) Assuming a linearized tax and pension system, i.e., T ′′ = S′′ = B′′ =

0, the elasticities of taxable income are as follows:

εy,θ = 1 +
v′ (l)

lv′′ (l)
+
θ2q′ (θ)B′

lv′′ (l)
, (17)

εy,(1−T ′) =
v′ (l)

lv′′ (l)
+
θ (S′ − q (θ)B′)

lv′′ (l)
, (18)

εy,(1−S′) =
v′ (l)

lv′′ (l)
+
θ (T ′ − q (θ)B′)

lv′′ (l)
, (19)

εy,B′ =
v′ (l)

lv′′ (l)
− θ (1− T ′ (y)− S′ (y))

lv′′ (l)
, (20)

εy,(1−T̂ ′) =
v′ (l)

lv′′ (l)
. (21)

7In Appendix A.2, I derive the same result using a tax perturbation approach based on Saez (2001).
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In particular, assuming a linearized tax and pension system and a zero pension wedge, the

elasticity of taxable income with respect to the net-of tax rate is given by:

εy,(1−T ′)
∣∣
S′−qB′=0

=
v′ (l)

lv′′ (l)
. (22)

Next, I state the main optimality condition for the tax system. I provide two different

versions of this condition. Equation (23) is stated in terms of the exogenous skill distribution.

This version is helpful for the simulating optimal tax policy and forms the basis for the numerical

analysis in Section 4. Equation (24), expressed in terms of the endogenous income distribution,

is easily connected to well-known sufficient statistics results (Saez, 2001; Chetty, 2009) and can

be used to test the optimality of a given tax system.

Proposition 1 (ABCD formula) If the tax function T is optimal, it satisfies

T ′

1− T ′
=

εy,θ
εy,(1−T ′)

1−
´ θ
θ χu

′dF

λ (1− F )

 1− F
θf

T ′

T ′ + S′ − qB′
, (23)

where λ is the multiplier of the government budget constraint (13). Equivalently, the optimality

condition stated in terms of the cumulative income distribution H and its density function

h = H ′ is given by

T ′

1− T ′
=

1

εy,(1−T ′)

(
1−

´ y
y χu

′dH

λ (1−H (y))

)
(1−H (y))

y · h (y)

T ′

T ′ + S′ − qB′
. (24)

The optimality condition differs from the standard “ABC”-formula by Diamond (1998)

in one obvious and one more subtle way. First, there is a novel “D term” given by D :=

T ′/T̂ ′, where T̂ ′ = T ′ + S′ − qB′ is the effective marginal tax rate and S′ − qB′ is the

pension wedge. Second, the mechanical value of redistribution, captured by the term B :=

1−
´ θ
θ χu

′dF/ (λ (1− F )), also changes relative to the static case.

Below, I examine the consequences of these changes and briefly discuss the remaining terms

in the optimality condition.
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3.1 Elasticity of taxable income

The elasticity term, given by A := εy,θ/εy,(1−T ′) in the first version of the optimality condition

and by 1/εy,(1−T ′) in the second version, captures the efficiency losses induced by the local

marginal tax rate. When the elasticity of taxable income is high, taxation generates a large

deadweight loss and thus the marginal tax rate should be small.

Without a pension system, the elasticity term in Equation (23) can be simplified to the form

A =1 + 1/εy,(1−T ′) known from Diamond (1998), as the next result shows.

Lemma 2 (Simplification of A) If q′B′ = 0, the elasticity ratio εy,θ/εy,(1−T ′) is given by:

εy,θ
εy,(1−T ′)

=
1 + εy,(1−T ′)

∣∣
S′−qB′=0

εy,(1−T ′)
.

If q′B′ 6= 0, the ratio εy,θ/εy,(1−T ′) cannot be expressed in terms of the taxable income elasticities

εy,(1−T ′), εy,(1−S′), εy,B′.

To see how the pension system prevents the simplification of the “A term”, note that the

first-order condition for labor supply is given by the condition

θ
(
1− T ′ − S′ + q (θ)B′

)
= v′, (25)

which states that the marginal return to an hour of work (measured in terms of disposable

lifetime income) equals the marginal disutility of an hour of work. The comparative statics of

labor supply with respect to skill are therefore driven by two effects. First, a higher skill raises

the gross return to work (as indicated by the factor θ that multiplies the left-hand side). Second,

a higher skill has an additional influence on the net return to work if the discounted value of

marginal pension entitlements q (θ)B′ depends on skill, i.e., if q′B′ is nonzero. This novel term

does not exist in the static case and is not captured by conventional elasticity concepts with

respect to marginal tax or transfer rates. Therefore, the elasticity εy,θ does not vanish in the

optimality condition (23) if q′B′ is nonzero. However, when the condition is stated in terms of

the income distribution as in Equation (24), the transformation between income and skills drops

out and the elasticity term takes the form that is familiar from static sufficient statistics results.

In this sense, the trade-offs of the tax designer (as viewed with the tax perturbation approach)
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do not change in any deeper way, even though the “A term” is somewhat more elaborate than

in the static case.

3.2 Mechanical value of redistribution

As usual, the “B term” in the optimal tax formula is given by

B := 1−
´ θ
θ χu

′dF

λ (1− F )
(26)

and captures the mechanical value of redistribution. The marginal tax rate (MTR henceforth)

at a given skill raises tax revenue from individuals with higher skills without affecting their

labor supply. The redistributive value of the MTR is thus obtained by comparing the average

social marginal welfare weight in the population (which equals 1) to the average social marginal

welfare weight of individuals with skills above θ, which is obtained by integrating χu′/λ in the

expression above.

Although the definition of this term is standard, its value will differ substantially from

the static case if heterogeneous life expectancies affect the cross-sectional profile of marginal

utility. Importantly, the marginal utility in this term measures the marginal utility of current

consumption and thus depends not only on disposable income, as in a static model, but also

on the individual’s life expectancy. Next, I characterize this effect using some manipulations of

the intertemporal decision problem. Further below, I quantify the effect in a calibrated model.

Proposition 2 (Marginal utility) (i) For CRRA utility with u (c) = 1
1−σ c

1−σ for some pa-

rameter σ > 0, the social marginal welfare weight in Equation (26) equals

χ (θ)

λ
u′ (x (θ)− q (θ) c2 (θ)) =

χ (θ)

λ

(
1 + q (θ)1−

1
σ (βp (θ))

1
σ

)σ
u′ (x (θ)) . (27)

(ii) For CARA utility with u (c) = − 1
αe
−αc for some parameter α > 0, the social marginal

welfare weight in Equation (26) equals

χ (θ)

λ
u′ (x (θ)− q (θ) c2) =

χ (θ)

λ

(
βp (θ)

q (θ)

) q(θ)
1+q(θ) (

u′ (x (θ))
) 1

1+q(θ) . (28)

By relating the marginal utility of current consumption to the marginal utility of disposable
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income, Proposition 2 uncovers the effect of the life expectancy on the social marginal wel-

fare weight that is otherwise hidden in the intertemporal decision problem. Since the marginal

utility of disposable income is the basis of the welfare weights in static models, this represen-

tation allows the value of redistribution to be interpreted as resulting from a static model with

transformed welfare weights.

For CRRA utilities, Equation (27) shows that, ceteris paribus, individuals with higher sur-

vival rates p (θ) receive more social weight. Intuitively, holding the level of disposable income

constant, individuals who expect to live longer will shift more income into the future and will

thus have a higher marginal utility of current consumption. This effect increases their social

weight.

Furthermore, Equation (27) implies that the effect of the annuity price q (θ) on the social

weight depends on the intertemporal elasticity of substitution. If σ ≥ 1, income effects dominate

and the annuity price has a negative impact on current consumption.8 The marginal utility and

the social weight are then increasing in q (θ). If σ < 1, substitution effects dominate and the

annuity price has a positive impact on current consumption. The marginal utility and the social

weight are then decreasing in the annuity price. However, assuming that annuities are fairly

priced, i.e., (1 + r) q (θ) = p (θ) for some interest rate r, the combined effect of the survival rate

and the annuity price on the social weight remains positive even in the case with σ < 1.9

Exponential utility is another common case where the marginal utility of current consump-

tion can be related to the marginal utility of disposable income in closed form. In analogy

to CRRA utility, Equation (28) shows that the social weight increases with the survival rate

p (θ). Moreover, assuming fairly priced annuities and β (1 + r) = 1, the right-hand side of the

equation simplifies to

χ (θ)

λ
e
− αx(θ)

1+q(θ)

and has a positive derivative with respect to q (θ). Thus, similar to the CRRA case, the

combined effect of the survival rate and the annuity price on the social weight is positive under

mild restrictions.

In summary, provided that life expectancies increase with skill, Proposition 2 suggests that

the mechanical value of redistribution is smaller than in models with uniform life expectancy

8See Appendix A.3 for details.
9Note that 1 + q (θ)1−

1
σ (β (1 + r) q (θ))

1
σ = 1 + (β (1 + r))

1
σ q (θ) increases in q (θ) for any σ > 0.
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because long-lived individuals economize on current consumption. All else equal, this “lifespan

factor” calls for lower optimal tax rates across the entire income distribution.

3.3 Inverse Pareto coefficient

The term C := (1− F ) / (θf) has its usual form and captures the inverse Pareto coefficient of

the skill distribution. Intuitively, this term relates equity gains and efficiency losses induced by

the local MTR. The term increases with the proportion of taxpayers with skills above θ (whose

tax level increases with the local MTR) and decreases with the productivity and the proportion

of taxpayers with skill θ (whose choices are distorted by the local MTR).

3.4 Pension wedge factor

The novel term D = T ′/T̂ ′ reflects the fiscal externalities of the pension system. Note that

perturbations of T ′ cause income changes. To convert these income changes into public funds,

the effective MTR T̂ ′ rather than the statutory MTR T ′ is appropriate. When the local fiscal

externality of the pension system is positive, i.e., when T ′ < T̂ ′ or S′ − qB′ > 0, the “D term”

pushes down the optimal tax rate, which leads to higher individual income and a bigger revenue

from the fiscal externality.

A complementary interpretation of this factor can be based on efficiency costs rather than

fiscal externalities. Intuitively, when the pension wedge is positive, income choices are already

distorted before any income tax is levied. Ceteris paribus, the efficiency costs of income taxation

are then higher, which motivates lower statutory tax rates.

In the cross section, the “D term” generates relatively higher statutory MTRs for low earners

and relatively lower MTRs for high earners, provided that the pension wedge, S′−qB′, increases

with income. Life expectancy inequality moderates this effect via the annuity price q. If life

expectancies (and annuity prices q) rise with skill, the gradient of the pension wedge with

respect to skill will be smaller and the effect of the pension wedge on optimal statutory MTRs

will be dampened.

To explore the consequences of life expectancy inequality via the “D term” more formally,

I consider a mean-preserving spread of an arbitrary annuity price function q0 (θ) with mean q̄.
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Let

q (θ) = q0 (θ) + η (q0 (θ)− q̄) ,

where η > 0 is the spread parameter. The consequences of the mean-preserving spread are

summarized below.

Proposition 3 (Comparative statics of D) Let q (θ) = q0 (θ) + η (q0 (θ)− q̄) . Let D =

T ′/ (T ′ + S′ − qB′). Assuming T ′ > 0 and B′ > 0, the comparative statics of D with respect to

the spread parameter η are as follows:

∂D

∂η
T 0 ⇐⇒ q0 (θ) T q̄.

Moreover, ∂D
∂η = 0 if B′ = 0.

Assuming a monotonic relationship between individual life expectancies and annuity prices,

the spread parameter η is a measure of life expectancy inequality. Following this interpretation,

Proposition 3 states that life expectancy inequality affects optimal tax rates differently across

the skill distribution. At low skills (annuity prices below the mean), higher life expectancy

inequality tends to reduce the optimal tax rates via the “D term”. At high skills (annuity

prices above the mean), the opposite is true. Intuitively, as life expectancy inequality increases,

the pension wedges created by a progressive pension system differ less between low and high

earners. As a consequence, the efficiency costs of taxation increase for low earners (via the

higher pre-existing distortion created by the pension wedge), pushing towards lower optimal

statutory tax rates. For high earners, this effect is reversed. Finally, for top earners with a

marginal pension replacement rate of zero, the pension wedges are constant regardless of the

annuity price. Hence, the “D term” does not depend on life expectancy inequality at the top

of the income distribution.

4 Numerical simulation

In this section, I assess the quantitative relevance of heterogeneous life expectancies for optimal

redistribution policy. I calibrate the model to the US economy and simulate optimal tax systems

with and without life expectancy inequality.
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4.1 Parameterization

The utility function is u (c) = 1
1−σ c

1−σ with a coefficient of relative risk-aversion given by

σ = 2. Considering that individuals retire approximately 40 years after entering the labor force,

I assume that each model period has a duration of 40 years and set the discount factor to

β = 0.9840. Labor disutility is of the iso-elastic form v (l) =
(

1 + 1
φ

)−1
l
1+ 1

φ with parameter

φ = 0.5. With this specification, the labor supply problem has a closed-form solution given by

l = [θ (1− T ′ − S′ + qB′)]φ. For given marginal tax and benefit rates, income and skills are

thus related as follows:

θ = y
1

1+φ
[
1− T ′ − S′ + qB′

]− φ
1+φ . (29)

I exploit this relationship to infer the skill distribution from the income distribution.

In line with Sachs et al. (2020) and Koehne and Sachs (2022), the baseline income distri-

bution is lognormal with an appended Pareto tail. Following Diamond and Saez (2011), the

Pareto tail begins at $150,000 with a Pareto coefficient that decreases from Π = 2.2 at income

$150,000 to a constant coefficient Π = 1.5 for incomes above $350,000. All income thresholds

are converted from the 2005 levels used by Diamond and Saez (2011) into current 2022 dollars.

Incomes below the Pareto tail follow a lognormal distribution with parameters µ = 10.66 and

σ = 0.968. The parameter µ is chosen to match the 2022 level of US income per capita of

$73,360. The parameter σ is set to obtain a Pareto coefficient of 2.2 at the boundary of the

lognormal part.

The baseline tax system has the well-known parametric form T (y) = y − νy1−τused, for

example, by Benabou (2002) and Heathcote et al. (2017). Because the social security system

is modeled separately in my model, I choose a parameter of τ = 0.151 that represents the

progressivity of the US tax and transfer system abstracting from intergenerational redistribution

(Heathcote et al., 2014).10 The parameter ν controls the level of taxation and is chosen to match

the average rate of the US income tax. Recent statistics published by the IRS (2022) report an

adjusted gross income of $12.592 trillion and a total income tax of $1.711 trillion, generating

an average tax rate of 13.6 percent. To match this rate, I set ν = 5.089.

The social security system in the U.S. has a progressive, piece-wise linear schedule for retire-

10Due to the progressivity of the social security system, the estimated progressivity parameter increases to
τ = 0.181 if the intergenerational dimension of redistribution is included (Heathcote et al., 2017).
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ment benefits. The marginal replacement rate for newly eligible individuals in 2022 equals 90%

for incomes below $12,288, 32% for incomes between $12,288 and $74,064, and 15% for incomes

above $74,064 up to the maximum creditable income of $147,000 (SSA, 2022). I approximate

the retirement benefits by fitting an exponential function, B (y) = δeε·y + γ, with parameters

δ = −42738.126, ε = 1.492 · 10−5 and γ = 44719.133 obtained by least-squares estimation. This

function provides an excellent fit of the statutory benefits (Figure 1b), yielding an R2 of 0.994.

The benefits are financed by a budget-balancing proportional income tax of 6.02 percent. Given

the approximated tax and pension system (Figure 1a) and the lognormal-Pareto distribution

of income, I use Equation (29) to calibrate the skill distribution following the approach of Saez

(2001).

0 100 200 300 400 500

Income in $1,000

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Marginal policies (Calibration)

(a) Baseline marginal policy rates

0 100 200 300 400 500

Income in $1,000

0

5

10

15

20

25

30

35

40

45

50
Retirement benefit in $1,000

statutory
model

(b) Retirement benefit B

0 100 200 300 400 500

Income in $1,000

0.25

0.3

0.35

0.4

0.45

0.5

0.55
Survival probability

data

model

mean

(c) Survival probability p by baseline income

Figure 1: Calibration
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The probability p (θ) of reaching the retirement phase is calibrated based on estimates of

male life expectancy by income percentile constructed by Chetty et al. (2016). To approximate

the remaining life expectancy of individuals reaching the full retirement age in 2022, I subtract

66 years and 4 months (the full retirement age for the cohort born in 1956) from the estimated

life expectancy. Then, I convert life expectancy years into survival probabilities assuming that

the retirement period has a duration of 40 years, and interpolate the probabilities across the

income range. Following these steps, I obtain survival probabilities that range from 0.253

for bottom earners to 0.525 for top earners (Figure 1c), corresponding to expected retirement

durations between 10 and 21 years.

Finally, I assume that annuities are priced actuarially fairly: q = βp. Given the annuity

prices and the baseline tax and pension system, I infer government expenditures E from the

government budget constraint (12).

4.2 Optimal tax policy

Given the calibrated parameters, I solve for the optimal tax policy.11 My computational ap-

proach follows Mankiw et al. (2009) and iterates the right-hand side of the optimality condi-

tion (23) until a fixed point is found. To confirm the optimality of the fixed point tax policy, I

verify that the resulting income profile y (θ) is increasing in skill θ.

The solid line in Figure 2a displays the optimal tax policy. The optimal marginal tax rates

are approximately U-shaped, ranging from 70 percent for bottom earners to 41 percent for

middle earners. For top earners in the Pareto tail, the optimal tax rates converge to 52 percent.

To explore the role of life expectancy inequality, I contrast these results with the optimal tax

rates obtained in a model with homogeneous life expectancies p = p̄. In this model, I set the

individual survival rates to the mean of the heterogeneous life expectancy model. The annuity

price in this model is given by q̄ = βp̄. I maintain the skill distribution, the pension system and

the level of government expenditure from the baseline model. The optimal marginal tax rates

in the homogeneous life expectancy model are similarly U-shaped (dashed line in Figure 2a),

but higher than in the heterogeneous life expectancy model. The difference is particularly

pronounced for low-to-middle incomes and exceeds 10 percentage points for the lowest earners

(Figure 2b).

11The pension system is held constant in the analysis.
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Figure 2: Optimal policy

To uncover the mechanism behind this finding, I isolate the roles of the mechanical value of

redistribution (represented by the “B-term” in the optimal tax formula) and the pension wedge

(captured by the “D-term”). The dash-dotted line in Figure 3a shows how the optimal tax rate

varies with the mechanical value of redistribution. When the “B-term” is set to the level of

the heterogeneous life expectancy model, the optimal tax rates drop significantly below those

of the homogeneous life expectancy model. This result mirrors the theoretical prediction of

Proposition 2 and underscores the quantitative importance of accounting for lifecycle effects in

the value of redistribution. The dotted line in Figure 3a shows how the optimal tax rate depends

on the cross-sectional profile of the pension wedge. In this case, however, the effect is much more

modest. Consistent with Proposition 3, setting the “D-term” to the level of the heterogeneous

life expectancy model leads to a reduction in optimal tax rates for low earners and to an increase

in optimal tax rates further up in the income distribution. The non-monotonic shift of the

pension wedge in response to life expectancy inequality is responsible for this differential effect.

Progressive pension systems are generally associated with pension wedges that rise with income.

However, as the life expectancy of low earners falls and that of higher earners increases, the

profile of pension wedges becomes flatter (Figure 3b). As a result, the efficiency cost of taxation

increases for low earners, which rationalizes lower tax rates. For higher earners, the effect is

reversed.12

12Top earners are omitted from Figure 3a. For them, the marginal replacement rate drops to zero and life
expectancy inequality obtains a null effect on the “D-term”, consistent with the last part of Proposition 3.
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Figure 3: Impact of mechanical value of redistribution and pension wedge factor. Note: In the
left panel, the dashed red line displays the optimal marginal tax rate in the homogeneous life
expectancy model. The black lines display how the optimal marginal tax rate changes when
the B-term or D-term are set to the level of the heterogeneous life expectancy model.

Overall, the policy experiment demonstrates that life expectancy inequality justifies lower

income tax rates, especially at the bottom of the income distribution. In other words, the

tax system becomes less redistributive as life expectancy inequality increases. The result is

mainly driven by a reduced mechanical value of redistribution when low earners spread their

resources over a shorter life expectancy and high earners spread their resources over a longer

life expectancy.

Baseline σ = 1 σ = 3 φ = 0.25 β = 0.9540

Mean MTR (homog) 0.563 0.496 0.600 0.666 0.534
Mean MTR (heterog) 0.500 0.396 0.554 0.593 0.482
Mean income (homog) 62,716 66,160 61,028 62,991 62,951
Mean income (heterog) 64,361 69,087 62,133 64,426 64,527

Table 1: Comparison of optimal policies between homogeneous and heterogeneous life ex-
pectancy models. The second column reports mean marginal tax rates and mean incomes
in the baseline parameterization of the model. The remaining columns report the results for
alternative levels of risk aversion, elasticity of labor supply and intertemporal discount factor.

Table 1 quantifies the difference between the optimal policies in the two models. In the

heterogeneous life expectancy model, the mean marginal tax rate is 6 pp lower and mean income

is 2.6 percent higher. Table 1 also documents the robustness of the results for alternative levels

of risk aversion, elasticity of labor supply and intertemporal discount factor. The impact of

21



heterogeneous life expectancies on optimal tax rates remains sizable, exceeding 4 pp in all

parameterizations. Moreover, in all cases life expectancy inequality tends to lower the optimal

marginal tax rates particularly at the bottom of the income distribution (Figure 4).
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Figure 4: Optimal marginal tax rates for alternative parameterizations

5 Concluding remarks

This paper has introduced heterogeneous life expectancy into a Mirrleesian life-cycle model.

Heterogeneous life expectancy strongly affects the mechanical value of redistribution. Moreover,

it affects the optimal redistribution policy indirectly through changes in the pension wedge.

Optimal marginal tax rates decrease significantly relative to the homogeneous life expectancy

benchmark.

The results are derived in a tractable two-period model. They generalize easily to longer

time horizons when individual skills are fixed over time. Moreover, the implications for the
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mechanical value of redistribution extend to alternative models of the asset market as long as

the pricing of future payoffs is weakly monotonic in individual life expectancy. Finally, the

key role of the mechanical value of the redistribution remains valid even if the government

also optimizes the pension system. However, this setting includes a degree of freedom between

pension and tax progressivity.

A Appendix

A.1 Proofs

Proof of Lemma 1. The individual labor supply problem (4) generates the first-order

condition

θ
(
1− T ′ (y)− S′ (y) + q (θ)B′ (y)

)
= v′

(y
θ

)
. (30)

Assuming a linearized tax and pension system, differentiation of (30) with respect to θ yields:

(
1− T ′ − S′ + q (θ)B′

)
+ θq′ (θ)B′ = v′′

(y
θ

) dy
dθ θ − y
θ2

.

Equivalently,

dy

dθ
=
θ (1− T ′ − S′ − q (θ)B′) + θ2q′ (θ)B′

v′′
(y
θ

) +
y

θ
.

Equivalently,

dy

dθ
=
v′
(y
θ

)
+ θ2q′ (θ)B′

v′′
(y
θ

) +
y

θ
.

Hence, the elasticity of income with respect to skill is

εy,θ =
dy

dθ

θ

y
= 1 +

v′
(y
θ

)
y
θv
′′
(y
θ

) +
θ2q′ (θ)B′

y
θv
′′
(y
θ

) = 1 +
v′ (l)

lv′′ (l)
+
θ2q′ (θ)B′

lv′′ (l)
.

Assuming once more a linearized tax and pension system, differentiation of (30) with respect

to the net-of-tax rate 1− T ′ yields:

θ = v′′
(y
θ

) 1

θ

dy

d (1− T ′)
.
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Equivalently,

dy

d (1− T ′)
=

θ2

v′′
(y
θ

) =
θ2

v′′ (l)
.

Hence, the elasticity of income with respect to the net-of-tax rate is

εy,(1−T ′) =
dy

d (1− T ′)
(1− T ′)

y
=
θ (1− T ′)
lv′′ (l)

.

Using (30), I obtain

θ
(
1− T ′

)
= v′ (l) + θ

(
S′ − q (θ)B′

)
.

Hence,

εy,(1−T ′) =
v′ (l)

lv′′ (l)
+
θ (S′ − q (θ)B′)

lv′′ (l)

Similarly, we can derive the elasticity with respect to the effective net-of-tax rate 1 − T̂ ′.

Assuming a linearized tax and pension system, differentiation of the first-order condition

θ
(

1− T̂ ′
)

= v′
(y
θ

)

yields

θ = v′′
(y
θ

) 1

θ

dy

d
(

1− T̂ ′
) .

Hence,

εy,(1−T̂ ′) =
dy

d
(

1− T̂ ′
)
(

1− T̂ ′
)

y
=

θ2

v′′
(y
θ

) v′( yθ )
θ

y
=

v′ (l)

lv′′ (l)
.

Finally, I derive the elasticities εy,(1−S′) and εy,B′ . Differentiation of the first-order condi-

tion (30) with respect to 1− S′, assuming a linearized tax and pension system, yields:

θ = v′′
(y
θ

) 1

θ

dy

d (1− S′)
.

Hence,

εy,(1−S′) =
dy

d (1− S′)
(1− S′)

y
=

v′ (l)

lv′′ (l)
+
θ (T ′ − q (θ)B′)

lv′′ (l)
.
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Differentiation of (30) with respect to B′, assuming a linearized tax and pension system, yields

θq (θ) = v′′
(y
θ

) 1

θ

dy

dB′
.

Hence,

εy,B′ =
dy

dB′
B′

y
=
θ2q (θ)

v′′
(y
θ

) B′
y

=
v′ (l)

lv′′ (l)
− θ (1− T ′ (y)− S′ (y))

lv′′ (l)
.

Proof of Proposition 1. Problem (16) is a constrained optimal control problem with state

variable x and control variable l. Denote the co-state variable by p (θ) and the multiplier of the

feasibility constraint by λ. The Hamiltonian of problem (16) is:

H =χ (θ) Ṽ (x (θ) ; θ) f (θ) + λf (θ) [θl (θ)− x (θ)− v (l (θ))]

− λE + p (θ)

[
l (θ)

θ
v′ (l (θ)) + q′ (θ)B (θl (θ))

]
.

The maximum principle generates the following necessary conditions:

0 =
∂H

∂l
= p (θ)

[
v′ (l (θ))

θ
+
l (θ)

θ
v′′ (l (θ)) + θq′ (θ)B′ (θl (θ))

]
+ λf (θ)

[
θ − v′ (l (θ)) ,

]
ṗ = −∂H

∂x
= −

[
χ (θ)u′ (x (θ)− q (θ) c2 (θ))− λ

]
f (θ) .

where c2 (θ) is the solution of the individual’s intertemporal problem (14).

Using the transversality condition, p
(
θ
)

= 0, I obtain:

p (θ) = p (θ)− p
(
θ
)

= −
ˆ θ

θ
ṗ (θ) dθ =

ˆ θ

θ

[
χ (θ)u′ (x (θ)− q (θ) c2 (θ))− λ

]
f (θ) dθ. (31)

Combining this result with the first-order condition for l yields:

−λ
[
θ − v′

]
f =

[
v′ + lv′′ + θ2q′B′

θ

]ˆ θ

θ

[
χu′ − λ

]
fdθ,

where I have dropped the arguments of all functions for brevity. Equivalently,

θ − v′

v′
=
v′ + lv′′ + θ2q′B′

v′
1

θf

ˆ θ

θ

[
1− χu′

λ

]
fdθ.
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Equivalently,

θ − v′

v′
=
v′ + lv′′ + θ2q′B′

v′
1− F
θf

´ θ
θ

[
1− χu′

λ

]
fdθ

1− F
.

Equivalently,

θ − v′

v′
=
v′ + lv′′ + θ2q′B′

v′
1− F
θf

1−
´ θ
θ χu

′fdθ

λ (1− F )

 .

Next, I connect this optimality condition to the marginal tax rates using individual first-

order conditions. The first-order condition of problem (4) is

1− T̂ ′ = v′

θ
.

Hence,

θ − v′

v′
=

1− v′

θ
v′

θ

=
T̂ ′

1− T̂ ′
.

Hence,

T̂ ′

1− T̂ ′
=
v′ + lv′′ + θ2q′B′

v′
1− F
θf

1−
´ θ
θ χu

′fdθ

λ (1− F )

 .

Equivalently,

T ′

1− T ′
=
v′ + lv′′ + θ2q′B′

v′
1− F
θf

1−
´ θ
θ χu

′fdθ

λ (1− F )

 T ′

T̂ ′
1− T̂ ′

1− T ′
.

The effective marginal tax rate and the statutory marginal tax rate are related as follows:

T̂ ′ = T ′ +
(
S′ − qB′

)
.

Using this relationship and the first-order condition

1− T̂ ′ = v′

θ
,

I obtain

T ′

1− T ′
=
v′ + lv′′ + θ2q′B′

v′
1− F
θf

1−
´ θ
θ χu

′fdθ

λ (1− F )

 T ′

T ′ + S′ − qB′
v′

θ
v′

θ + S′ − qB′
.
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Equivalently,

T ′

1− T ′
=
v′ + lv′′ + θ2q′B′

v′ + θ (S′ − qB′)
1− F
θf

1−
´ θ
θ χu

′fdθ

λ (1− F )

 T ′

T ′ + S′ − qB′
.

Next, I rewrite the optimality condition with the help of the elasticities obtained in Lemma 1.

Using Equations (17) and (18), I obtain

v′ + lv′′ + θ2q′B′

v′ + θ (S′ − qB′)
=

1 + v′+θ2q′B′

lv′′

v′+θ(S′−qB′)
lv′′

=
εy,θ

εy,(1−T ′)
.

The optimality condition for the tax system is hence

T ′

1− T ′
=

εy,θ
εy,(1−T ′)

1−
´ θ
θ χu

′fdθ

λ (1− F )

 1− F
θf

T ′

T ′ + S′ − qB′
,

which establishes Equation (23).

Alternatively, using the result

T̂ ′

1− T̂ ′
=
v′ + lv′′ + θ2q′B′

v′
1− F
θf

1−
´ θ
θ χu

′fdθ

λ (1− F )


and Equation (21), the optimality condition can be stated in terms of effective marginal tax

rates as follows:

T̂ ′

1− T̂ ′
=

εy,θ
εy,(1−T̂ ′)

1−
´ θ
θ χu

′fdθ

λ (1− F )

 1− F
θf

. (32)

Next, I state the optimality condition in terms of the income distribution. Let H be the

cumulative distribution function of income y and h = H ′ be its density function. Assuming

a linearized tax and pension system, the individual first-order condition for labor supply (25)

implies

dy =

(
v′
(y
θ

)
+ θ2q′ (θ)B′

v′′
(y
θ

) +
y

θ

)
dθ.

Using h (y) dy = f (θ) dθ, I obtain

1

y · h (y)
=

dy

y · f (θ) dθ
=

1

θ · f (θ)

(
1 +

v′ (l)

lv′′ (l)
+
θ2q′ (θ)B′

lv′′ (l)

)
=

εy,θ
θ · f (θ)

.
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Hence, using H (y) = F (θ) , I obtain

1−H (y)

y · h (y)
=

1− F (θ)

θ · f (θ)
εy,θ

and can transform Equation (23) into Equation (24).

Proof of Lemma 2. By Equations (17) and (22), I obtain

εy,θ = 1 +
v′ (l)

lv′′ (l)
+
θ2q′ (θ)B′

lv′′ (l)
,

1 + εy,(1−T ′)
∣∣
S′−qB′=0

= 1 +
v′ (l)

lv′′ (l)
,

where εy,(1−T ′)
∣∣
S′−qB′=0

represents the elasticity of taxable income with respect to the net-of-tax

rate, assuming a pension wedge of zero. If q′ (θ)B′ = 0, I obtain

εy,θ = 1 +
v′ (l)

lv′′ (l)
= 1 + εy,(1−T ′)

∣∣
S′−qB′=0

.

If q′ (θ)B′ 6= 0, the elasticity εy,θ involves the term q′ (θ) which is not contained in any of the

elasticities εy,(1−T ′), εy,(1−S′), εy,B′ stated in Equations (18), (19) and (20).

Proof of Proposition 2. (i) The first-order condition of the intertemporal problem (14) is

given by

−q (θ)u′ (x (θ)− q (θ) c2) + βp (θ)u′ (c2) = 0.

Using u′ (c) = c−σ, I obtain

c2 =
x (θ)

q (θ) + q (θ)
1
σ (βp (θ))−

1
σ

.

Hence,

V (θ) = u

(
x (θ)− q (θ)x (θ)

q (θ) + q (θ)
1
σ (βp (θ))−

1
σ

)
+ βp (θ)u

(
x (θ)

q (θ) + q (θ)
1
σ (βp (θ))−

1
σ

)
.

Equivalently,

V (θ) =

( q (θ)
1
σ (βp (θ))−

1
σ

q (θ) + q (θ)
1
σ (βp (θ))−

1
σ

)1−σ

+ βp (θ)

(
1

q (θ) + q (θ)
1
σ (βp (θ))−

1
σ

)1−σ
u (x (θ)) .
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Equivalently,

V (θ) =
q (θ)

1−σ
σ (βp (θ))−

1−σ
σ + βp (θ)(

q (θ) + q (θ)
1
σ (βp (θ))−

1
σ

)1−σ u (x (θ)) .

Equivalently,

V (θ) =
1 + βp (θ) q (θ)−

1−σ
σ (βp (θ))

1−σ
σ(

q (θ)1−
1
σ (βp (θ))

1
σ + 1

)1−σ u (x (θ)) .

Equivalently,

V (θ) =
1 + q (θ)1−

1
σ (βp (θ))

1
σ(

q (θ)1−
1
σ (βp (θ))

1
σ + 1

)1−σ u (x (θ)) .

Equivalently,

V (θ) =
(

1 + q (θ)1−
1
σ (βp (θ))

1
σ

)σ
u (x (θ)) .

Equation (27) follows immediately.

(ii) The first-order condition of the intertemporal problem (14) implies

u′ (x (θ)− q (θ) c2) =
βp (θ)

q (θ)
u′ (c2) .

Using u′ (c) = e−αc, I obtain

e−α(x(θ)−q(θ)c2) =
βp (θ)

q (θ)
e−αc2 .

Equivalently,

e−αx(θ)+α(1+q(θ))c2 =
βp (θ)

q (θ)
.

After taking logs and rearranging, I obtain

c2 =
x (θ)

1 + q (θ)
+

1

α (1 + q (θ))
ln
βp (θ)

q (θ)
.

Hence,

u′ (x (θ)− q (θ) c2) =
βp (θ)

q (θ)
e
− 1

1+q(θ)

(
αx(θ)+ln

βp(θ)
q(θ)

)
.

Equivalently,

u′ (x (θ)− q (θ) c2) =
βp (θ)

q (θ)

(
q (θ)

βp (θ)
e−αx(θ)

) 1
1+q(θ)

.
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Equivalently,

u′ (x (θ)− q (θ) c2) =

(
βp (θ)

q (θ)

) q(θ)
1+q(θ) (

u′ (x (θ))
) 1

1+q(θ) ,

which establishes Equation (28).

Proof of Proposition 3. Differentiation of D yields

∂D

∂η
=
T ′B′ (q0 (θ)− q̄)
(T ′ + S′ − qB′)2

.

The result follows immediately.

A.2 Tax perturbation approach

Using the tax perturbation approach of Saez (2001), I derive an optimal tax condition in terms

of the endogenous income distribution rather than the exogenous skill distribution.

Denote the cumulative distribution function of income y by H and its density function by

h = H ′. Consider an increase of T ′ by dτ in a small band (y, y+ dy). Mechanically, this reform

raises an extra tax revenue of

dM = dy dτ (1−H (y)) .

Since the extra revenue is financed by all individuals with incomes above y, there is a mechanical

welfare cost (in terms of public funds) of

dW = −dy dτ (1−H (y))

´ y
y χu

′dH

λ (1−H (y))
.

Moreover, individuals in the band (y, y + dy) change their income in response to the increased

marginal tax rate. There are h (y) dy individuals in the band and they change their income

by εy,(1−T ′)y dτ/ (1− T ′). To convert the income change into a change in public funds, it is

multiplied by the marginal effective tax rate T̂ ′. Summing up, the behavioral effect changes

public funds by

dB = dy dτ h (y) εy,(1−T ′)y
T̂ ′

(1− T ′)
.
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If the tax system is optimal, dM + dW + dB = 0 and, hence,

T̂ ′

(1− T ′)
=

1

εy,(1−T ′)

(
1−

´ y
y χu

′dH

λ (1−H (y))

)
(1−H (y))

y · h (y)
.

Equivalently,

T ′

(1− T ′)
=

1

εy,(1−T ′)

(
1−

´ y
y χu

′dH

λ (1−H (y))

)
(1−H (y))

y · h (y)

T ′

T̂ ′
.

A.3 Shadow value of a marginal individual dollar

Consider an individual who maximizes u (c1) + β · p · u (c2) subject to the budget constraint

c1 + qc2 = x. The Lagrangian

L = u (c1) + βpu (c2) + µ [x− c1 − qc2]

has the first-order conditions

u′ (c1) = µ,

βpu′ (c2) = µq.

Hence, the shadow value of a marginal dollar is given by µ = u′ (c1).

Using the budget constraint, c2 is given by

c2 =
x− c1
q

.

For CRRA utility, u′ (c) = c−σ, the first-order conditions imply

c−σ1 = µ =
βp

q
c−σ2 .

Equivalently, (
βp

q

) 1
σ

c1 = c2.
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Combined with the budget constraint, I obtain

(
βp

q

) 1
σ

c1 = c2 =
x− c1
q

.

Hence,

c1 =
x

1 + q1−
1
σ (βp)

1
σ

.

If σ ≥ 1, consumption in the first period is decreasing in the annuity price q. In that case, the

shadow value of a marginal dollar is increasing in q. The opposite is true if σ < 1.

A.4 Solution of parameterized model

A.4.1 Individual problem

Using v (l) = γ
(

1 + 1
φ

)−1
l
1+ 1

φ , the first-order condition for labor supply implies

l =

[
θ

γ

(
1− T ′ − S′ + qB′

)]φ
.

Income is given by

y = θl =
θ1+φ

γφ
[
1− T ′ − S′ + qB′

]φ
.

Inverting this relationship, the skill can be expressed as

θ = y
1

1+φγ
φ

1+φ
[
1− T ′ − S′ + qB′

]− φ
1+φ .

To find the marginal utility of consumption, I define the net lifetime income

yn := y − T (y)− S (y) + q (θ)B (y)

and solve the intertemporal problem:

max
c2

u (yn − v (l)− q (θ) c2) + βp (θ)u (c2) .
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The first-order condition

q (θ) (yn − v (l)− q (θ) c2)
−σ = βp (θ) c−σ2

implies

c2 =
yn − v (l)(

q(θ)
βp(θ)

) 1
σ

+ q (θ)

.

Hence, the marginal utility of consumption (generated by a dollar received in the first period)

is

u′ =

yn − v (l)− q (θ)
yn − v (l)(

q(θ)
βp(θ)

) 1
σ

+ q (θ)


−σ

.

Equivalently,

u′ =
(

1 + q (θ)1−
1
σ (βp (θ))

1
σ

)σ
[yn − v (l)]−σ .

A.4.2 Optimal tax

Equation (32) states the optimality condition for the effective marginal tax rate as:

T̂ ′

1− T̂ ′
=

εy,θ
εy,(1−T̂ ′)

1−
´ θ
θ χu

′fdθ

λ (1− F )

 1− F
θf

.

The condition can be decomposed into 3 terms:

Â (θ) =
εy,θ

εy,1−T̂ ′
= 1 +

1

φ
+
θ2q′B′

v′
,

B (θ) = 1−
´ θ
θ χ (θ)u′ (θ) f (θ) dθ

λ (1− F (θ))
,

C (θ) =
1− F (θ)

θf (θ)
.

Using the transversality condition (31), I obtain:

p (θ) =

ˆ θ

θ

[
χ (θ)u′ (x (θ)− q (θ) c2 (θ))− λ

]
f (θ) dθ.
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Due to the free initial state, I obtain the transversality condition p (θ) = 0 and hence

λ =

ˆ θ

θ
χ (θ)u′ (θ) f (θ) dθ.

Alternatively, using Equation (23) the optimality condition can be expressed in terms of the

statutory marginal tax rates as

T ′

1− T ′
=

εy,θ
εy,(1−T ′)

1−
´ θ
θ χu

′dF

λ (1− F )

 1− F
θf

T ′

T ′ + S′ − qB′
.

The right-hand side can be decomposed into 4 factors A,B,C,D defined as follows:

A (θ) =
εy,θ

εy,1−T ′
=

1 + φ+ θ2q′B′

lv′′

φ+ θ(S′−qB′)
lv′′

,

D (θ) =
T ′

T ′ + S′ − qB′
=
T ′

T̂ ′
,

with B (θ) and C (θ) defined as above.
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