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1 Abstract

Quantifying factors giving rise to temporal variation in forest fires is important for advancing scientific
understanding and improving fire prevention. We demonstrate that eighty percent of the large year-to-year
variation in forest area burned in California can be accounted for by variation in temperature, precipitation,
housing construction, electricity transmission, and ocean surface temperatures in the North Atlantic, North
Pacific, and Equatorial Pacific. California is of particular interest because of its large acreage burned and
proximity of fires to human populations. We believe our model is the first unified treatment of climatic
factors and human activities that affect forest area burned.

2 Introduction1

Fires destroy millions of acres of forest annually in the US and around the world.2 The economic impacts
are extensive, including damage to human health from air pollution, destruction of forests and homes, and
loss of wildlife. As manifest by recent fires in North America, air pollution can reach far beyond the areas
where fires are burning, including reaching across national boundaries. Moeltner, et. al. (2013) study the
effect of Nevada forest fires on hospital admissions, finding that patient counts can be causally linked to
fires as far as 200–300 miles from the impact area. We provide a unified treatment of factors impacting the
amount of forest area burned annually in California over a period of 36 years. California is of particular
interest because of its large acreage burned and proximity of area burned to human populations. California
has a large forested area, 33 million acres, comprising one third of the state’s total land area. That fraction
is broadly representative of the United States as a whole; 34% of US land area is forested (World Bank,
2022).

Over the period of our sample, forest area burned in California averaged 13% of total acreage burned
nationwide. Over the last decade, the average percentage has been 14%, with individual years as low as
1% and as high as 41% (US National Interagency Fire Center, 2022). There is much year-to-year variation
in both climate and local human activities in California. This permits relatively precise estimation of the
parameters of the model we develop. As we noted in our abstract, we believe that the model we develop
is the first to provide a unified treatment of climatic factors and human activities. Also, we find significant
evidence of a structural break between years 2020 and 2021. We discuss the potential implications of this
break in the presentation of our findings.

3 Literature Review

There is a rich literature on the predictors of forest fires. At millennial time scales, changes in insolation
were found to be the main driver of changes in the number and extent of fires during the past 17,000 years
in Yellowstone National Park (Millspaugh, Whitlock, and Bartlein, 2000). More forest fires were recorded
during the warmer and drier early Holocene than at the present day. The availability of fire data processed
from the Terra satellite Moderate Resolution Imaging Spectroradiometer (MODIS)3 has allowed several
groups to examine changes in fire extent and frequency in recent times to examine the effect of temperature,
rainfall, dry days, fuel status, and anthropogenic disturbances. For example, Kale, Ramachandran, and

1We are indebted to Marshall Burke and Sam Heft-Neal, whose work inspired ours. https://siepr.stanford.edu/publications/
policy-brief/managing-growing-cost-wildfire. We thank them for guiding us to data for forest area burned and precipitation
for California.

2The scourge of wildfires is truly worldwide. A BBC report on a recent wildfire in Greece was headlined: “Inside the horror
of Europe’s biggest wildfire”. https://www.bbc.co.uk/news/extra/ifgej14zt1/greece-wildfire

3MODIS Active Fire and Burned Area Products, https://modis-fire.umd.edu/
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Pardeshi (2017) found that in India fires are correlated with temperature, including higher temperatures
driven by El Niño. The number of other types of fires have also been shown to be temperature-related.
Using 7 years of recent data, Xu, Liu, Yan (2021) find that an increasingly warm climate is likely to very
slightly increase the annual non-forest fire frequency over the next fifty years.

Guyette (2012) develops a physical chemistry-based model to predict the mean interval between forest fires
using data prior to the year 1850. The significant variables in this model are annual mean maximum
temperature, annual mean precipitation, and the partial pressure of oxygen as represented by elevation. He
reports: “Although it may seem intuitive that fire frequency is relatively lower in landscapes where annual
precipitation is high, this relationship is not well supported by data and literature. Increases in precipitation
have a negative influence on fire frequency due to influences such as increased fuel moisture and relative
humidity. In contrast, increased precipitation generally has a positive influence on fuel production.”

This fuel production effect of precipitation has been examined by a number of researchers. In their study
of an 11-year period in India, Kale, Ramachandran, and Pardeshi (2017) found that the large fire year of
2009 had both record heat and three contiguous prior years of heavy rain. In their study area, La Niña
causes high rainfall, while El Niño causes reduced rainfall. They had two high fire years in their data set;
both were El Niño years preceded by strong La Niña events. Quantitative analyses of the lagged relationship
between rainfall in a given year and forest fire area burned or number of forest fires have been undertaken
for particular locations. In India’s Western Ghats, Quentin, et. al. (2012) found that the monsoon season
prior to a fire year controlled fuel moisture content during the fire year. Forkel, et. al. (2012) found that
1-year lagged precipitation was a good predictor of burned area for particular types of forests in Siberia that
rest on permafrost. Koutsias et. al. (2012) used an 1894-2010 data set for Greece, finding that 2-year lagged
annual precipitation was positively correlated with fire risk (although the dominant rainfall effect was that
increased precipitation decreases fire risk in that year by making fuel moist). Two studies, Pausas (2004) and
Turco, et al. (2013), examined fire number and area burned in the Iberian Peninsula, both finding a positive
correlation with 2-year lagged precipitation. Using a 29-year data set in southeastern Arizona, Crimmins and
Comrie (2004) found a positive association between large fires at low elevation with 1-year lagged rainfall,
and between large fires at high elevations with wet years up to three years prior to the fire year. Brooks and
Matchett (2006) studied wildfires in the Mojave Desert (portions of which are in California, Nevada, and
Arizona), finding that fire size increased for middle elevation shrublands in their 25-year study period in a
year after a year of high rainfall, due to increased growth of annual grasses.

Winds can propagate wildfires. As Li, Paek, and Yu (2016) explain “The Santa Ana winds (SAW) are a
weather phenomenon in Southern California that occur most often during late autumn to early spring. SAW
events are characterized by high wind speeds, low relative humidity and high temperatures, and are well
known for their ability to exacerbate fire conditions and aid in the spread of wildfire.” Santa Ana Winds in
turn are influenced by sea surface temperature and associated atmospheric pressure patterns. Measures of
North Atlantic, North Pacific, and Equatorial Pacific sea surface temperatures are Atlantic Multi-decadal
Oscillation (AMO), Pacific Decadal Oscillation (PDO) and El Niño–Southern Oscillation (ENSO). Using
data for 1960-2010, Li, Paek, and Yu (2016) find that a regression of mean annual Santa Ana Wind Days
(SAD) on mean annual PDO and mean annual AMO can account for 76% of the variation in SAD.4 Cardil
et al. (2021) investigate Atlantic and Pacific ocean influences on drought, Santa Ana winds and wildfires in
southern California. As discussed above, there is evidence that weather conditions associated with El Niño
impact forest fires in the Southern Hemisphere. The impact of El Niño on southern California has been
a subject of some debate, with the debate centered on whether El Niño impacts precipitation in southern
California and Baja, New Mexico (Minnich, Vizcaíno, and Dezzani, 2000).

Anthropogenic effects on wildfires have attracted the attention of a number of authors. Westerling et al.(2011)
found that higher population density in California increased fire activity up to a point, but that in a few
very densely-populated areas fire activity was rather low. Globally, Knorr et al. (2014) found that the effect
of increasing population is mainly to decrease wildfire frequency, and that only for areas with more than
about 0.1 people per km2 does fire frequency increase (by 10-20%). Since many fires are sparked by humans
in areas adjacent to wild areas, the wildland-urban interface (WUI) has been defined for two decades as

4They report that the correlation between SAD predicted from their regression and observed SAD is .87. The R-squared
value, .76, is the square of the correlation.
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an important study area (Glickman and Babbitt (2001). Radeloff et al. (2005) performed the first detailed
national mapping of the WUI in the United States, noting that in the year 2000 almost 40% of all US housing
units are located on the WUI. Price and Bradstock (2014) studies 38 years of data on the WUI near Sydney,
Australia. They found that “fires are most common where un-vegetated land in urban areas has been little
other than to accommodate the houses.” Farmed areas reduce fuel, while homes in forest areas are correlated
with people sparking abundant fuel. For California, Syphard et al. (2007) found that the number of fires
per unit time, or per unit area, from 1960-2000 is related to population density, distance to the WUI, and
vegetation type. They observe that humans caused roughly 95% of the number of fires in California.

The potential for electrical transmission lines to create sparks that ignite wildfires has been well know for
many years. The regulatory authority in California with primary responsibility for wildfire prevention is the
California Department of Forestry and Fire Protection, known by the shorthand CalFire. For many years,
CalFire has promulgated and annually updated regulations and guidelines with the goal of reducing fires
caused by power lines.5

In July 12, 2019, the California state government passed and signed into law Assembly Bill No. 1054. Page 3
of the bill states “Existing law requires each electrical corporation to annually prepare and submit a wildfire
mitigation plan to the commission for review and approval. Existing law requires the commission to consider
whether the cost of implementing an electrical corporation’s plan is just and reasonable in the electrical
corporation’s general rate case. This bill would require the plan, in calendar year 2020 and thereafter,
to cover at least a 3-year period.” Section 2(b) specifies “The state’s electrical corporations must invest in
hardening of the state’s electrical infrastructure and vegetation management to reduce the risk of catastrophic
wildfire.” and Section 2(g) requires “The first $5 billion in safety investments in the aggregate by the large
electrical corporations must be made under this act without return on equity that would have otherwise
been borne by ratepayers.”

In addition to deaths, injuries, property damages, and harm to wildlife, fires create pollutants with adverse
health effects that extend well beyond the perimeter of the burned area. These adverse health impacts are
manifest across the life cycle. Burke et al. (2021) combine satellite-based fire and smoke data with infor-
mation from pollution monitoring stations to investigate how changes in wildfire activity affect air pollution
and related health outcomes. They develop a statistical model and demonstrate that fuel management inter-
ventions could have large beneficial health benefits. Rosales-Rueda and Triyana (2019) study the effects of
early-life exposure to air pollution from Indonesian forest fires, finding delayed attainment of normal height
of children exposed to the fires, lower lung capacity 10 years after exposure, and shorter stature of children
who were exposed in utero at 10 and 17 years after exposure. Analyzing agricultural fires, Rangel and Vogl
(2019) find that late-pregnancy smoke exposure decreases birth weight, gestational length, and in utero sur-
vival. They go on to say “Fires less associated with smoke exposure predict improved health, highlighting the
importance of disentangling pollution from its economic correlates.” Pullabhotla and Souza (2022) find sig-
nificant evidence of the effect of upwind fires on hypertension. Zhang, et. al. (2023) demonstrate association
between small airborne particulates and dementia. Bishop, Ketcham, and Kuminoff (2023) exploit changes
in regulation by the Environmental Protection Administration to provide causal evidence that exposure to
small airborne particulates increases the probability of dementia among the elderly. Forest fires are among
prominent sources of small airborn particulates.6

4 Data Overview

As summarized above, an impressive body of research has identified factors that affect the amount of forest
area burned and attendant damages. Because the factors that have been identified can act in combination,
we develop a model to investigate the combined effects of environmental factors and human activities on the
extent of forest area burned annually over the past 36 years in the US state of California.

5The importance attached to this effort is reflected in the signatories of CalFire publications. For example, the 2008 report
carried the names of the governor, Arnold Schwarzenegger, The Secretary for Resources, Mike Chrisman, the Director of CalFire,
Ruben Grijalva, and the state Fire Marshall, Kate Dargan. https://osfm.fire.ca.gov/media/8482/fppguidepdf126.pdf
For the 2021 edition, see Porter et. al. (2021)

6See also https://www.epa.gov/wildfire-smoke-course/why-wildfire-smoke-health-concern
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Based on the evidence discussed in our literature review, we investigate the effects of the variables enumer-
ated below. We anticipate positive algebraic signs for the first five variables. As explained below, we use
stepwise regression to select the sea surface temperature variables that are included in the model.
1. Housing Starts: Housing construction entails a variety of activities that can inadvertently ignite forest
fires, including transportation of materials, extension of power lines and roadways, operation of both gasoline
and electrically powered equipment, and, in some instances, cigarette smoking.
2. Electricity Imports: Electrical wires rubbing against trees can create sparks that ignite wildfires.
3. Average Daily Maximum Temperatures: Higher temperatures increase the rate with which fires spread.
4. Lagged Precipitation: Precipitation promotes growth of weeds, small plants, and shrubs that die off
during the winter, providing fuel for fires during the succeeding year.
5. Vapor Pressure Deficit: Dry air (high VPD) promotes burning.
6-8. Sea Surface Temperatures: Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation
(PDO), and El Niño Southern Oscillation (ENSO) are known to impact climate in the western United
States: We use stepwise regression to estimate the timing, algebraic signs, and magnitudes of their impacts
on forest area burned.

4.1 Notation

Data for forest acreage burned annually in California have been collected on a consistent basis dating back
to 1987. Data for all of our explanatory variables are available over that time period and extend back several
years prior to 1987. Our units of measure are the following: Area burned is in millions of acres, temperature
is in Fahrenheit, and precipitation is in inches. New housing construction is for the western Census region
of the US and is measured in thousands of units.7 Net electricity imports to California are measured in
terawatts. Ocean surface temperatures are measured in degrees Fahrenheit. We use F , T , P−1, H, and E to
denote respectively forest area burned, maximum temperature, lagged precipitation, and new private home
construction, and net electricity imports. In the text, subscript −k denotes the k-year lag of a variable. In
the tables, suffix _k denotes the k-year lag of a variable.

We obtained for each year the highest and lowest monthly values of Pacific Decadal Oscillation (PDO). We
denote these PDO_H and PDO_L respectively. We calculated the range of PDO as the difference between
PDO_H and PDO_L and denoted the result PDO_R. We did the same for AMO, denoting the highest,
lowest, and range as AMO_H, AMO_L, and AMO_R. Similarly for El Niño Southern Oscillation, we
obtained ENSO_H, ENSO_L, and calculated ENSO_R.8

We investigated availability of measures of the vapor-pressure deficit (VPD). We obtained county-level mea-
sures of the VPD for two counties that have experienced extensive fire damage, Riverside County and San
Diego county. The measures we obtained are the mean of annual daily maximum values of the VPD for
Riverside and San Diego counties. We denote these respectively VPD_RS and VPD_SD. As shown in the
Figure 2(h), VPD_RS is much higher than VPD_SD.

We list below the variables in the form, linear or logarithmic, in which they appear in our models. In our
subsequent presentation, we provide the rationale for choosing the logarithmic form for some variables. We
use suffix _k to denote the k-year lag of a variable. For example, LP_1 is the one-year lag of precipitation.

LF : The logarithm of forest area burned. Area burned is expressed in millions of acres.
T : Average daily maximum temperature.
LP : The logarithm of precipitation.
LH: The logarithm of new private houses.
LE: The logarithm of electricity imports to California.
R_AMO: The range of Atlantic Multidecadal Oscillation

7We submitted an inquiry to the Census Bureau requesting data for housing construction for the state of California and were
informed that state-level data are not available. California had 55 percent of the population of the western Census region in
the 1980 decennial census and 50% in 2020. Thus, the pattern of change in housing construction in California can be expected
to exhibit a similar pattern as the western Census region. Moreover, national market factors such as mortgage rates and the
financial crisis can be expected to have similar proportionate impact on housing starts in California as in the western region.

8Appendix B details the sources of data.
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R_PDO: The range of Pacific Decadal Oscillation
R_ENSO: The range of El Niño–Southern Oscillation
LV PD_RS: The logarithm of the vapor pressure deficit in Riverside County California
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4.2 Summary Statistics

Summary statistics for our main variables follow.

Table 1: Summary Statistics

Mean Median Max Min Stdev
F 0.77 0.49 4.30 0.04 0.83
T 71.58 71.60 74.20 68.20 1.20
P 21.30 19.84 36.41 7.93 6.57
H 242.21 239.15 463.10 87.00 85.96
E 81.14 82.92 102.53 58.29 12.29
R_AMO 0.35 0.34 0.65 0.16 0.11
R_PDO 2.13 2.14 3.75 0.70 0.70
R_ENSO 1.47 1.30 3.80 0.20 0.89
VPD_RS 29.04 29.14 32.51 25.43 1.51

The correlation matrix for our variables is shown below. For brevity, we include the range of AMO, PDO, and
ENSO but not the high and low values. It is of interest to note the relatively high correlation, .43, between
maximum temperature and net electricity imports. This is intuitive. During hotter weather, households are
likely to make more extensive use of air conditioning. The correlation between temperature and VPD_RS
is also noteworthy. We explore this further in the analysis that follows.

Table 2: Correlation Matrix

F T P H E R_AMO R_PDO R_ENSO VPD_RS
F 1.00 0.54 -0.32 0.40 0.26 -0.05 -0.35 -0.04 0.65
T 0.54 1.00 -0.49 0.34 0.43 0.16 -0.44 -0.18 0.82
P -0.32 -0.49 1.00 -0.10 -0.23 -0.08 0.43 0.30 -0.41
H 0.40 0.34 -0.10 1.00 0.01 0.23 -0.22 -0.20 0.26
E 0.26 0.43 -0.23 0.01 1.00 0.06 -0.11 0.07 0.33
R_AMO -0.05 0.16 -0.08 0.23 0.06 1.00 -0.14 -0.08 0.03
R_PDO -0.35 -0.44 0.43 -0.22 -0.11 -0.14 1.00 0.26 -0.26
R_ENSO -0.04 -0.18 0.30 -0.20 0.07 -0.08 0.26 1.00 -0.18
VPD_RS 0.65 0.82 -0.41 0.26 0.33 0.03 -0.26 -0.18 1.00

4.3 Plots of the Variables

Figure 1(a) shows our dependent variable. An upward tendency in area burned is evident, along with
increasing year-to-year variation in area burned. Figure 1(b) shows the logarithm of area burned. We return
to the plot at the right in our discussion of model specification.
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Figures 2(a) through 2(h) display our explanatory variables. The large variation in new housing construction,
Figure 2(c), is noteworthy. New housing construction peaked prior to the financial crisis and then plummeted
in 2007. Starts neared their pre-crisis peak in 2020 and exceeded the pre-crisis peak in 2022. It hardly
needs saying that the financial crisis imposed great costs. From a statistical perspective, however, this
large variation in new housing construction aids in obtaining a precise estimate of the effects of housing
construction on forest fires. The plots also reveal much year-to-year variation in the other explanatory
variables, enhancing estimation of the effects of these variables on forest area burned.
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Figure 2(a): Maximum Temperature in California by Year
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Figure 2(b): Precipitation per Year

Precipitation in inches in California, 1987 through 2022.
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Figure 2(c): New Housing Construction by Year
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Figure 2(d): Net Electricity Imports to California by Year

Terawatts of electricity imported to California, 1987 through 2022.
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Figure 2(e): Range of Atlantic Multi−Decadal Oscillation

Range of Atlantic Multi−Decadal Oscillation, 1987 through 2022.
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Figure 2(f): Range of Pacific
Decadal Oscillation

Range of Pacific Decadal Oscillation, 1987 through 2022.
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Figure 2(g): Range of El Niño−Southern Oscillation Oscillation

Range of El Niño−Southern Oscillation, 1987 through 2022.
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Figure 2(h): Vapor−Pressure Deficit: Riverside and San Diego Counties
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5 Models of Forest Area Burned

We first estimated a linear regression with F as the dependent variable and T , P−1, H, and E as independent
variables. A Ramsey test of functional form yielded p-values of .005 and .004 with one and two fitted terms
respectively. Column (1) is the counterpart model with variables other than temperature expressed in
logarithms. Ramsey tests for this functional form yield p-values of .81 and .84 with one and two terms
respectively. These high p-values are favorable to this functional form. For all models reported below, we
use logarithms of forest area burned, precipitation variables, housing, and electricity imports.9 Ramsey tests
with one and two fitted terms for the regression in Column (2) of Table 3 yield p-values of .96 and .59
respectively. These are favorable to this functional form. Indeed, among the twelve Ramsey tests conducted
for the regressions in Table 3, the lowest Ramsey test p-value is .29; this is for the test with two fitted terms
for the regression in Column (6) of Table 3. Thus, all p-values are quite favorable for the functional forms
for all regressions in Table 3.

In our initial work on this model, data were available for 1987 through 2020. Subsequently, data for years 2021
and 2022 became available. We noted non-negligible changes in the magnitudes of some of the coefficients
when the two additional years of data were added. Hence, using the Chow forecast test, we tested for a
structural break for each of the models in Columns (2), (4), and (6) of Table 3. We used 1987-2020 as the
pre-break period and 2021-2022 as the post-break period. We obtained .02, .04, and .02 respectively. Hence,
we strongly reject the hypothesis of no structural break for all three regressions. Therefore, in Table 3, we
report in Columns (1), (3), and (5) regressions with data through 2020 for comparison with the regressions
with data through 2022 in Columns (2), (4), and (6).

Columns (1) and (2) of Table 3 have four key explanatory variables, temperature, lagged precipitation,
housing construction, and electricity imports. Two of these are climate variables and two are measures of
human activities. Columns (3) and (4) add another climate variable, the logarithm of the vapor-pressure
deficit. Columns (5) and (6) include the ocean temperature variables found to be significant in our stepwise
analysis.10 From the adjusted R2, we see that the four variables in Column (1) account for 58% of the
variation in forest area burned over the 1987-2020 period. The first three variables are significant at the 5%
level while the logarithm of electricity imports is significant at the 10% level. Comparing Column (2) to
Column (1), we see that coefficients of all except the temperature variable are smaller in Column (2), and
housing starts and electricity imports are less significant in Column (2) than Column (1). These differences
between Columns (1) and (2) comport with the finding of a significant structural break between 2020 and
2021. While we do not assert causality for the models in these columns, we note that these results are
consistent a causal interpretation.

In Columns (3) and (4), we include the logarithm of the vapor pressure deficit for Riverside County. The
estimates are consistent with the expectation that fires spread faster when humidity is low. We see as well
that the coefficients of temperature in both regressions are small and insignificant. This clearly signals the
presence of multicollinearity and strongly suggests that a channel by which temperature promotes forest fires
is by drying the air. We explore this further in Table 4. Interestingly, while its coefficient declines, lagged
precipitation remains significant in Column (3) when the vapor pressure deficit is introduced. We explore
further in Table 4 whether precipitation may also be a channel affecting the vapor pressure deficit.

The results in Columns (1) through (4) can be thought of as estimates of the predicted effects of local climate
variables on forest area burned. By local variables, we mean measures specific to California or, in the case
of the vapor pressure deficit, a county in California. From the adjusted R2 values for Columns (3) and (4),
we see that local climate variables and human activities can account for approximately 60% of the annual
variation in forest area burned.

The ocean temperature variables can be thought of as global climate variables in the sense that their effects
9We do not use the logarithm of temperature variables, T, R_AMO, R_ENSO, R_PDO, because temperature is not a

cardinal variable. If the logarithm of temperature were used, spurious differences in results would arise based on the measure
used, e.g., centigrade, Fahrenheit, or Kelvin. This does not arise with temperature in unlogged form.

10We performed the Jarque-Bera normality test for the residuals for the six regressions in Table 3, obtaining, in order the
regressions appear in the table, p-values of .57, .62, .54, .80, .52, and .62. These high p-values provide strong evidence for the
validity of the t-distribution for hypothesis tests of the coefficients of the equations in Table 3.
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are much more far reaching than the effects of variables in Columns (3) and (4). We next turn to discussion
of the effects of these global climate variables. In columns (5) and (6), we include results from our stepwise
analysis of ocean surface temperature variables. We see that the coefficients of R_AMO_1 and R_AMO_2
are negative and highly significant. Thus, an increase in the difference between maximum and minimum
Atlantic sea temperatures in a given year is followed by a predicted reduction in forest area burned in the
subsequent two years. By contrast, an increased range of variation of ocean surface temperatures near the
equator is followed by a predicted increase in forest area burned the following year. The logarithm of the
vapor pressure deficit is not significant in Columns (5) and (6). However, a joint test of the hypothesis that
the coefficients of LP_1 and LVPD_RS are both zero yields a p-values of .02 and .03 for the regressions in
Column (5) and (6) respectively. Thus, the variables are jointly significant at the .05 level. From the adjusted
R2 values, we see that the regressions in Columns (5) and (6) predict more than 75% of the variation in
forest area burned in California over the time period of our sample.

Readers might wonder whether the use of range of ocean temperatures is appropriate, or whether annual
maximum and annual minimum values, appropriately lagged, should instead be used. Appendix Table A1
contains the regression with maximum and minimum values instead of the ranges. With that regression, we
tested the constraints that are implied by use of ranges of the AMO and ENSO variables. This is a standard
linear hypothesis test. The test yields a p-value of .92 with data through 2020 and a p-value of .76 with
data through 2022. We also did the same test with a model that did not include the logarithm of the vapor
pressure deficit and got p-values of .91 and .97 respectively. These high p-values support the conclusion that
the ranges of the AMO and ENSO variables capture their effects quite well.

In Table 3, the coefficients of ln(P−1), ln(H), and ln(E) are elasticities. The coefficients of all other variables
are semi-elasticities. Hence, the coefficients in Column (6) of Table 1 can be interpreted as follows. Holding
constant other variables in the regression, a 0.1 degree increase in maximum temperature increases predicted
area burned by 4.2%. Holding constant other variables in the regression, 1% increase in precipitation in
a given year increases predicted area burned the following year by .50%. A 1% increase in new housing
construction predicts a .59% increase in predicted area burned.11 A 1% increase in net electricity imports
predicts a 1.00% increase in predicted area burned. A .1 degree increase in R_AMO predicts a .32% decrease
in area burned one year later and a .23% decrease in area burned two years later. A .1 increase in R_ENSO
predicts a 3.6% increase in area burned one year later.

While the preceding interpretations are correct, they do not convey a sense of the relative magnitudes of the
predicted impacts of the variables over the period of our sample. For this purpose, standardized coefficients
are more informative. We present and discuss these following Table 3.

11The proviso “holding constant other variables” applies to the interpretation of each coefficient.
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=====================================================================================
Table 3

-----------------------------------------------------------------
LF

(1) (2) (3) (4) (5) (6)
-------------------------------------------------------------------------------------
T 0.398 0.393 0.077 -0.003 0.439 0.411

p = 0.00001 p = 0.00002 p = 0.685 p = 0.988 p = 0.0002 p = 0.001

LP_1 1.139 0.983 0.782 0.624 0.622 0.498
p = 0.002 p = 0.013 p = 0.028 p = 0.072 p = 0.028 p = 0.067

LH 0.595 0.552 0.715 0.647 0.657 0.588
p = 0.017 p = 0.075 p = 0.005 p = 0.025 p = 0.0003 p = 0.008

LE 1.211 1.170 1.324 1.314 1.052 0.996
p = 0.062 p = 0.068 p = 0.059 p = 0.068 p = 0.031 p = 0.054

LVPD_RS 8.165 9.966 3.310 4.224
p = 0.067 p = 0.032 p = 0.178 p = 0.105

R_AMO_1 -2.632 -2.832
p = 0.0003 p = 0.0001

R_AMO_2 -2.045 -2.051
p = 0.015 p = 0.020

R_ENSO_1 0.312 0.357
p = 0.002 p = 0.0003

Constant -49.518 -47.973 -54.874 -54.233 -59.419 -59.116
p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000

-------------------------------------------------------------------------------------
Observations 34 36 34 36 34 36
R2 0.626 0.551 0.689 0.643 0.839 0.806
Adjusted R2 0.575 0.493 0.633 0.583 0.787 0.749
Residual Std. Error 0.583 0.650 0.541 0.589 0.412 0.458
F Statistic 12.156*** 9.507*** 12.398*** 10.796*** 16.233*** 14.050***
=====================================================================================

5.1 Standardized coefficients

Standardized coefficients (beta weights) are scale-free and provide further insight into the relative impacts
of the variables. The standardized coefficients for the models in Columns (2), (4), and (6) of Table 3 are
presented below. A standardized coefficient is interpreted as follows. Suppose an explanatory variable
increases by one standard deviation while all other explanatory variables are unchanged. The standardized
coefficient of that explanatory variable is the number of standard deviation by which the dependent variable
changes. Hence, we see that the estimates from Column (2) imply that a one standard deviation increase in
temperature increases the logarithm of predicted area burned by .52 standard deviations. The standardized
coefficient, .54, of temperature in Column (6) is exceeding close to that for Column (2). By contrast,
temperature is insignificant in Column (4) and its standardized coefficient is negligibly small. A one standard
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deviation increase in the logarithm of lagged precipitation increases predicted logarithm of area burned in
Columns (2), (4), and (6) by .34, .21, and .17 standard deviations respectively. A one standard deviation
increase in the logarithm of new housing construction increases predicted logarithm of area burned by .23,
.27, and .25 standard deviations respectively in Columns (2), (4), and (6). Thus, the estimated effects of
this human activity are remarkably similar across the three regressions. A one standard deviation increase
in the logarithm of net electricity imports increases predicted logarithm of area burned by .20, .23, and .17
respectively in Columns (2), (4), and (6).

A one standard deviation increase in the range of AMO in a given year reduces the predicted logarithm
of area burned by .32 standard deviations one year later and by .23 standard deviations two years later.
A one standard deviation increase ENSO increases predicted area burned one year later by .34 standard
deviations. The standardized coefficients for Column (6) show that each of the variables had a substantial
predicted effect on area burned. It should be noted that the standardized coefficients are not additive across
the variables because the variables are correlated; each standardized coefficient is the effect of variation in
the associated variable with all other variables held constant.

Standardized Coefficients Column (2) of Table 3

Coefs Std_Coefs
T 0.3928 0.5184
LP_1 0.9826 0.3384
LH 0.5524 0.2311
LE 1.1702 0.2014

Standardized Coefficients Column (4) of Table 3

Coefs Std_Coefs
T -0.0032 -0.0042
LP_1 0.6238 0.2148
LH 0.6469 0.2706
LE 1.3143 0.2262
LVPD_RS 9.9655 0.5737

Standardized Coefficients Column (6) of Table 3

Coefs Std_Coefs
T 0.4105 0.5418
LP_1 0.4984 0.1716
LH 0.5881 0.2460
LE 0.9957 0.1714
LVPD_RS 4.2237 0.2432
R_AMO_1 -2.8324 -0.3194
R_AMO_2 -2.0514 -0.2303
R_ENSO_1 0.3568 0.3406
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6 Implications for Policy

We noted above the finding of a significant structural break break between 2020 and 2021 for the three
equations in Table 3 that are estimated with data for 2022. This is potentially very important when we
consider these results in light of California Assembly Bill No. 1054 passed July 12, 2019. As summarized
in our literature review, this law states “The state’s electrical corporations must invest in hardening of
the state’s electrical infrastructure and vegetation management to reduce the risk of catastrophic wildfire.”
Moreover, a heavy financial burden is placed on electrical corporations to incentive them to undertake the
hardening of infrastructure. Such hardening could include better insulation of power lines or burying them
underground, removing tree branches that might ignite a fire by rubbing against above-ground electrical
wires in windy conditions, and removing vegetation in the vicinity of such power lines so that there is less
fuel to feed a fire if one should be ignited. Such changes would, in turn, be expected to reduce the estimated
magnitude of coefficients of the coefficients of the first five variables in the model in Column (6) relative to
the coefficients in Column (5). We see that the coefficients of the first four variables are in fact smaller in
Column (6) than in Column (5). The coefficient of the fifth variable, the vapor pressure deficit, increases,
but is not significant in either regression. One would expect that, controlling for the first five variables,
hardening would have little effect on the coefficients of the global variables, and we find little difference in
those coefficients between Columns (5) and (6). We also wish to emphasize that, while the differences in
the first four coefficients are consistent with improved hardening mandated by Assembly Bill No. 1054, the
differences are by no means definitive. Hence, the policy change made in Assembly Bill No. 1054 may have
given rise to the significant structural break that we find, but more definitive analysis must await additional
data.

Also, from a policy perspective, the local climate variables are more readily monitored on an ongoing basis
than the global climate variables. The contrasting results in Columns (2) and (4) argue for further analysis
to obtain a deeper understanding of the interdependence of the local climate variables. In particular, the
contrast of the coefficients of temperature in Columns (2) and (4) strongly suggest that the vapor pressure
deficit is the major channel by which temperature exacerbates forest area burned.

7 Modeling the Vapor Pressure Deficit

The analysis of factors affecting wildfires is our primary objective. Analysis of the vapor pressure deficit
contributes to this objective, and is also of independent scientific interest. The first four columns of Table
4 utilize data for 1987-2022. The fifth utilizes data for 1987-2020. In Column (1) of Table 4, we find
that temperature alone can account for two thirds of the variation in LVPD_RS over the course of our
sample. Contemporaneous precipitation would be expected to increase humidity, thereby reducing the vapor
pressure deficit. Column (2) adds the logarithm of contemporaneous precipitation. It has the anticipated
algebraic sign, but the coefficient is quantitatively small and far from significant. Column (3) includes
instead the year to year change in the logarithm of precipitation. This proves to be significant at the
10% level and is of the anticipated sign. Standardized coefficients of the two variables are .79 and -.16
respectively. Hence, temperature is the dominant factor in this regression. In Column (4), we include ocean
surface temperature variables, finding the first and second lags of R_AMO and R_ENSO to be significant
as well as contemporaneous R_PDO. We investigate whether there was a structural break between 2020 and
2021, obtaining a p-value of .85. Hence, there is no evidence of a structural break. This is as expected and is
quite reassuring. There is no reason why a change in policy regarding electricity transmission should have any
effect on the phenomena that govern weather in California. The regressions in Columns (1) through (4) use
data for 1987-2022. The regression in Column (5) uses data from 1987-2020, and is included for comparison
to the regression in Column (4). The coefficients are nearly identical across the models. This is as expected
given the high p-value of the test for a structural break for the model in Column (4). Interestingly, the
coefficient of temperature increases substantially when we include the ocean temperature variables as can be
seen by comparing the coefficients of temperature between Columns (3) and (4). We next present the scaled
coefficients, followed by an analysis of autoregressive errors.
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=======================================================================
Table 4

---------------------------------------------------
LVPD_RS

(1) (2) (3) (4) (5)
-----------------------------------------------------------------------
T 0.036 0.035 0.035 0.049 0.048

p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000

LP -0.005
p = 0.727

dLP -0.019 -0.016 -0.017
p = 0.031 p = 0.073 p = 0.061

R_AMO_1 -0.070 -0.070
p = 0.017 p = 0.019

R_AMO_2 -0.113 -0.110
p = 0.055 p = 0.065

R_ENSO_1 0.017 0.017
p = 0.0002 p = 0.001

R_ENSO_2 0.012 0.012
p = 0.031 p = 0.028

R_PDO 0.024 0.023
p = 0.001 p = 0.003

Constant 0.803 0.867 0.891 -0.203 -0.128
p = 0.002 p = 0.009 p = 0.0001 p = 0.505 p = 0.692

-----------------------------------------------------------------------
Observations 36 36 36 36 34
R2 0.674 0.675 0.700 0.853 0.843
Adjusted R2 0.665 0.656 0.682 0.817 0.800
Residual Std. Error 0.030 0.031 0.030 0.023 0.023
F Statistic 70.420*** 34.307*** 38.464*** 23.252*** 19.892***
=======================================================================
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Standardized coefficients for the regression in Column (4) of Table 4 are presented below. We see that
temperature has an extremely large effect on the VPD. Holding other variables constant, a one standard
deviation increase in temperature increases the logarithm of VPD by 1.13 standard deviations. A standard
deviation increase in precipitation has an effect roughly one eighth the magnitude of a one standard deviation
in temperature. Precipitation, whether entered contemporaneously or as the change from the prior year, has
an effect of the anticipated sign but that effect is relatively modest compared to the effects of other variables
in the regression. An increase in either the one-year or two-year lag of R_AMO has a substantial effect in
reducing the VPD while an increase in either the one-year and two-year lag of R_ENSO increases the VPD.
A contemporaneous increase of PDO increases the VPD.

Standardized Coefficients Column (4) of Table 4

Coefs Std_Coefs
T 0.0494 1.1326
dLP -0.0161 -0.1387
R_AMO_1 -0.0700 -0.1370
R_AMO_2 -0.1127 -0.2197
R_ENSO_1 0.0175 0.2900
R_ENSO_2 0.0117 0.1937
R_PDO 0.0236 0.3129

The results above suggest that temperature impacts forest area burned primarily through the vapor pressure
deficit. As shown in Columns (3) and (4) of Table 3, the coefficients of temperature are small and insignificant
when the vapor pressure deficit is introduced. By contrast, precipitation operates through two channels.
From Columns (3) and (4) of Table 3 and the associated standardized coefficients, we see that lagged
precipitations has a substantial effect in increasing forest area burned. From Column (3) of Table 4, we
see that an increase in precipitation reduces the vapor pressure deficit, thereby contributing to a reduction
in area burned. The former effect far outweighs the latter. Hence, the overall effect of precipitation is to
increase forest area burned.

Below, we provide a correlation matrix of the explanatory variables in the models in Table 4. There is
remarkably little correlation across the sea surface temperature variables. These low correlations provide
insight into why the coefficients of the sea surface temperature variables in Column (4) are relatively precisely
estimated.

Table 6: Correlation Matrix of Explanatory Variables in Table 4

T dLP R_AMO_1 R_AMO_2 R_ENSO_1 R_ENSO_2 R_PDO
T 1.00 -0.17 0.15 0.31 -0.39 0.02 -0.44
dLP -0.17 1.00 -0.20 0.18 -0.04 -0.23 0.34
R_AMO_1 0.15 -0.20 1.00 -0.09 0.01 0.03 -0.08
R_AMO_2 0.31 0.18 -0.09 1.00 -0.11 0.06 0.01
R_ENSO_1 -0.39 -0.04 0.01 -0.11 1.00 0.02 -0.07
R_ENSO_2 0.02 -0.23 0.03 0.06 0.02 1.00 -0.13
R_PDO -0.44 0.34 -0.08 0.01 -0.07 -0.13 1.00
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8 Further Analysis

8.1 Robustness

To investigate robustness, we estimate in Appendix Table A1 five regressions. All include the variables from
the model in Column (6) of Table 3. In addition, the five regressions include respectively the logarithm of
precipitation, lagged mean maximum temperature, mean minimum temperature, mean temperature, and
California population growth. All five have p-values greater than .3. Similarly, regressions in Table A2
include the variables in our preferred model and, respectively, the Palmer Drought Severity Index (PDSI),
the one-year lag of the Palmer Drought Severity Index (PDSI_1), the mean of daily maximum summer
temperatures, and the logarithm of total electricity generation in California. The p-values are above .15
for all of these variables. Thus, none of the additional variables approach significance at the 5% or 10%
significance levels. Moreover, the coefficients of the variables in our preferred model are relatively little
affected by the inclusion of variables enumerated above.

8.2 Estimates with Autoregressive Errors

A potential concern is that the variables in our data might be cointegrated, potentially leading to spurious
results. Dickey-Fuller unit root tests for LF, T, LP, LH, R_AMO, R_ENSO and R_PDO yield p-values
of .001, .014, .000, .024, .000, .000, and .000. Hence, we reject the null hypothesis of a unit root for these
seven variables. The unit root test for LE yields a p-value of .146. Hence, we do not reject a unit root
for LE. However, this is not cause for concern. McCallum (2010) makes a compelling case that, if present,
the spurious regression problem will be detected by estimating the model allowing for autocorrelation of the
error terms. If the spurious regression problem is present, the AR(1) coefficient will be close to one. We
estimated the model in Column (6) of Table 3 with autoregressive errors and found the first- and second-order
coefficients to be significant. The resulting model is presented below. The ar1 coefficient is far below one,
indeed significantly negative. Moreover, the estimated coefficients are similar to those in the corresponding
model without autoregressive errors.

Table 6: Forest Fires Model with Autoregressive Errors

Coef pvalue
T 0.3580 0.0070
LP_1 0.3296 0.0781
LH 0.6876 0.0000
LE 1.1753 0.0013
LVPD_RS 3.5542 0.0839
R_AMO_1 -2.7786 0.0001
R_AMO_2 -1.9923 0.0070
R_ENSO_1 0.2700 0.0019
intercept -55.0622 0.0000
ar1 -0.4293 0.0137
ar2 -0.4278 0.0217
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We did a similar investigation for the vapor pressure deficit. The following is the counterpart to Column
(5) of Table 4. The third order autoregressive coefficient is significant; the first- and second-order terms are
not. While the coefficients are somewhat different from those in Column (5), there are no major changes in
the coefficients. The significance levels change, with all variables now having p-values well below .05. Note
the magnitude and significance of the coefficient of temperature are little changed. This further ratifies the
importance of temperature in affecting the vapor pressure deficit.

Table 7: VPD Model with Autoregressive Errors

Coef pvalue
intercept 0.0926 0.3361
T 0.0452 0.0000
dLP -0.0197 0.0054
R_AMO_1 -0.0725 0.0056
R_AMO_2 -0.0848 0.0041
R_ENSO_1 0.0196 0.0000
R_ENSO_2 0.0125 0.0008
R_PDO 0.0212 0.0000
ar3 -0.5958 0.0005

9 Conclusion

California has 4% of the land area of the United States, but over the 36-year period of our sample (1987-2022)
California averaged 13% of the total US forest area burned. This underlines the importance of understanding
the factors that give rise to forest fires in that state. Moreover, understanding the factors impacting forest fires
in California is of broad economic and, more generally, scientific interest. We use fire area burned data from
the state government, statewide temperature and precipitation data from the US National Oceanographic
and Atmospheric Administration, new housing construction from the US Census Bureau, electric power
import data from the California Energy Commission, and measures of AMO, PDO, and ENSO from the
National Oceanic and Atmospheric Administration. We find that 75 percent of the variability in forest area
burned can be accounted for by variation in six variables: the mean of maximum annual temperatures, prior
year precipitation, new housing construction, net electricity imports, and variation in AMO and ENSO.
The latter two variables have been shown to influence Santa Ana Winds which, in turn, propagate forest
fires. From the standardized coefficients we find that all variables have quantitatively large effects on area
burned with temperature having the largest effect. From a policy perspective, local human activities are
the only variables that state and local authorities can potentially change. Reporting on the recent fires in
Hawaii, Sacks (2023) “Before the Maui wildfires, Hawaiian Electric did not have a plan — adopted widely in
California and other states — to shut off power in certain lines in advance of dangerous winds.” We noted
the correlation between electricity imports and temperature. This poses a particular challenge for regulatory
authorities because electricity imports increase during times of high temperature and, hence, during times
of high potential for forest fire severity.
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9.0.1 Data And Software Availability

Data will be made available as well as R Markdown code used to analyze the data and format output.
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10 Appendix A: Supplementary Analyses

10.1 Analysis of Global Variables

In our regressions in Table 3, we used the ranges of AMO and ENSO. It is of interest to investigate whether
the ranges are sufficient or whether the maximum and minimum values should instead be used. Column (1)
below reproduces the regression from Column (3) of Table 3. Column (2) below instead uses the maximum
and minimum values. For example, Column (2) uses AMO_H_1 and AMO_L_1 rather than R_AMO_1.
From Column (2) we see that the coefficients of AMO_H_1 and AMO_L_1 are -2.83 and 2.64 respectively.
Thus, they are opposite in sign and similar in magnitude. The same is true for the coefficients of AMO_H_2
and AMO_L_2, and the same is true for the coefficients of ENSO_H_1 and ENSO_L_1. We did a single
joint test of the null hypothesis that the following three conditions hold: the population coefficients of
AMO_H_1 and AMO_L_1 are equal in magnitude and opposite in sign and the same for the population
coefficients AMO_H_2 and AMO_L_2 and the same for the population coefficients of ENSO_H_1 and
ENSO_L_1. We obtained a p-value=.91. This test then establishes that the regression in Column (1)
that utilizes ranges is capturing the impact of movements in AMO and ENZO in impacting forest fires in
California. A similar test applied to the model in Column (5) of Table 4 yields a p-value=.24. Hence, the
range variables capture the impact of the AMO, ENSO, and PDO variables on the vapor pressure deficit.
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===========================================
Table A1

-----------------------
LF

(1) (2)
-------------------------------------------
T 0.605 0.601

p = 0.000 p = 0.000
LP_1 0.597 0.582

p = 0.034 p = 0.067
LH 0.547 0.628

p = 0.016 p = 0.029
LE 0.871 1.258

p = 0.073 p = 0.221
R_AMO_1 -3.017

p = 0.00002
R_AMO_2 -2.389

p = 0.003
R_ENSO_1 0.410

p = 0.00003
AMO_H_1 -3.146

p = 0.0001
AMO_L_1 3.081

p = 0.017
AMO_H_2 -2.418

p = 0.006
AMO_L_2 1.842

p = 0.103
ENSO_H_1 0.400

p = 0.001
ENSO_L_1 -0.435

p = 0.012
Constant -57.409 -61.870

p = 0.000 p = 0.00001
-------------------------------------------
Observations 36 36
R2 0.793 0.797
Adjusted R2 0.741 0.716
Residual Std. Error 0.465 0.486
F Statistic 15.315*** 9.841***
===========================================
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10.2 Investigation of Potential Effects of Other Variables

Each of the regressions in Table A2 below adds one variable to the regression in Column (3) of Table 3. The
regressions include, respectively, the log of contemporaneous precipitation, lagged maximum temperature,
minimum temperature, mean temperature, California population growth, and global surface temperature.
The p-values are above .3 for all of these variables. Hence, we conclude that these variables do not have
significant additional impact on forest area burned.

Each of the regressions in Table A3 below adds one variable to the regression in Column (3) of Table 3. The
regressions include, respectively, the range of PDO lagged one year, the mean of daily maximum summer
temperatures, and the logarithm of total electricity generation in California. The p-values are above .13 for
all of these variables. Hence, we conclude that these variables do not have significant additional impact on
forest area burned.
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===============================================================================
Table A2

-----------------------------------------------------------
LF

(1) (2) (3) (4) (5)
-------------------------------------------------------------------------------
T 0.570 0.719 0.858 0.615 0.622

p = 0.000 p = 0.000 p = 0.00002 p = 0.000 p = 0.000

LP_1 0.561 0.548 0.553 0.608 0.552
p = 0.046 p = 0.047 p = 0.047 p = 0.048 p = 0.078

LH 0.568 0.606 0.600 0.588 0.673
p = 0.019 p = 0.008 p = 0.010 p = 0.004 p = 0.007

LE 0.872 0.880 0.850 1.070 1.327
p = 0.096 p = 0.103 p = 0.117 p = 0.105 p = 0.089

R_AMO_1 -3.216 -3.323 -3.253 -3.142 -3.039
p = 0.00001 p = 0.00000 p = 0.00000 p = 0.00002 p = 0.00001

R_AMO_2 -2.336 -2.370 -2.386 -2.512 -2.551
p = 0.007 p = 0.007 p = 0.007 p = 0.002 p = 0.002

R_ENSO_1 0.417 0.415 0.417 0.411 0.425
p = 0.00003 p = 0.00004 p = 0.00005 p = 0.0001 p = 0.00004

LP -0.274
p = 0.300

T_min -0.189
p = 0.093

T_mean -0.315
p = 0.154

Pop_Gro 7.952
p = 0.618

Global_Surface_Temp -0.319
p = 0.358

Constant -54.027 -56.955 -56.772 -60.591 -45.695
p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.007

-------------------------------------------------------------------------------
Observations 36 36 36 36 36
R2 0.799 0.807 0.803 0.796 0.800
Adjusted R2 0.740 0.750 0.745 0.735 0.740
Residual Std. Error 0.466 0.456 0.461 0.470 0.465
F Statistic 13.441*** 14.133*** 13.772*** 13.150*** 13.468***
===============================================================================
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=======================================================
Table A3

-----------------------------------
LF

(1) (2) (3)
-------------------------------------------------------
T 0.598 0.521 0.606

p = 0.000 p = 0.000 p = 0.000

LP_1 0.671 0.608 0.595
p = 0.027 p = 0.017 p = 0.038

LH 0.533 0.369 0.553
p = 0.027 p = 0.113 p = 0.015

LE 0.923 0.569 1.010
p = 0.062 p = 0.241 p = 0.350

R_AMO_1 -3.027 -2.861 -3.044
p = 0.00004 p = 0.00002 p = 0.00004

R_AMO_2 -2.321 -2.201 -2.395
p = 0.005 p = 0.003 p = 0.004

R_ENSO_1 0.414 0.391 0.413
p = 0.00004 p = 0.00002 p = 0.0001

R_PDO_1 -0.085
p = 0.551

SummerMaxTmp 0.114
p = 0.048

log(TotElecGen) -0.306
p = 0.867

Constant -57.471 -57.218 -55.176
p = 0.000 p = 0.000 p = 0.0002

-------------------------------------------------------
Observations 36 36 36
R2 0.796 0.809 0.793
Adjusted R2 0.736 0.752 0.732
Residual Std. Error 0.469 0.454 0.473
F Statistic 13.175*** 14.284*** 12.942***
=======================================================
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11 Appendix B: Data Sources

Data for California fire area burned for 1987 through 2018 are from: https://www.fire.ca.gov/media/11397/
fires-acres-all-agencies-thru-2018.pdf Data for subsequent years are from: https://www.fire.ca.gov/stats-
events/

California temperature and precipitation data are from: https://www.ncdc.noaa.gov/cag/statewide/time-
series/4/tavg/12/12/1895-2021?base_prd=true&begbaseyear=1901&endbaseyear=2000

Data for new housing construction in the west are from: Housing Units Under Construction at End of Period
in the West Census Region: https://www.census.gov/construction/nrc/historical_data/index.html

Data for net electricity imports are from: https://www.energy.ca.gov/data-reports/energy-almanac/
california-electricity-data/california-electrical-energy-generation

Monthly AMO, PDO, and ENSO data are from:
https://psl.noaa.gov/data/correlation/amon.us.data
https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php

Data for the Vapor Pressure Deficit for Riverside and San Diego Counties, VPD_RS and VPD_SD are from
https://prism.oregonstate.edu/explorer
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