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ABSTRACT 

The Earth’s climate is projected to warm significantly in the 21st century, and this will affect 

human societies in many ways. Since sleep is a basic human need and part of everyone's life, 

the question of how temperature affects human sleep naturally arises. This paper examines 

the effect of daily mean temperature on sleep duration using nationally representative 

Hungarian time use surveys between 1976 and 2010. Compared to a mild temperature (5-10 

°C), colder temperatures do not influence sleep duration. However, as daily mean 

temperatures rise, sleep duration starts to strongly decline. The effect of a hot (>25 °C) day is 

−12.4 minutes. The estimated sleep loss is especially large on weekends and public holidays, 

for older individuals, and for men. Combining the estimated effects with temperature 

projections of twenty-four climate models under four climate change scenarios shows that 

the warming climate will substantially decrease sleep duration. The projected impacts are 

especially large when taking into account of the effects of heatwave days. This study also 

shows that different groups in society are likely to be affected in significantly different ways 

by a warming climate. 
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A hőmérséklet és alvásmennyiség kapcsolta időmérleg-

felmérések adatai alapján 

HAJDU TAMÁS 

ÖSSZEFOGLALÓ 

Az előrejelzések szerint a Föld éghajlata jelentősen melegszik a 21. században, és ez 

sokféleképpen érinti majd az emberiséget. Mivel az alvás olyan alapvető emberi szükséglet, 

ami mindenki életének szerves része, természetesen felmerül a kérdés, hogy a hőmérséklet 

hogyan befolyásolja az alvásmennyiséget. Ez a tanulmány a napi középhőmérsékletnek az 

alvás időtartamára gyakorolt hatását vizsgálja 1976 és 2010 közötti országos reprezentatív 

időmérleg-felmérések segítségével. Az enyhe hőmérséklethez képest (amikor a napi 

középhőmérséklet 5-10°C) a hidegebb hőmérséklet nem befolyásolja az alvás időtartamát. A 

napi középhőmérséklet emelkedésével azonban az alvás időtartama erőteljesen csökkenni 

kezd. Egy forró (>25°C) nap hatása −12,4 perc. Az alvásveszteség különösen nagy a 

hétvégeken és ünnepnapokon, az idősebbek és a férfiak esetében. A becsült hőmérsékleti 

hatások és huszonnégy klímamodell által négy éghajlatváltozási forgatókönyvre készített 

hőmérsékleti előrejelzések kombinálása azt mutatja, hogy a melegedő éghajlat jelentősen 

csökkenteni fogja az alvás időtartamát. A hatások különösen nagyok, ha figyelembe vesszük a 

hőhullámos napok hatásait. A tanulmány azt is mutatja, hogy a társadalom különböző 

csoportjait valószínűleg jelentősen eltérően érinti majd a felmelegedő éghajlat. 
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temperatures do not influence sleep duration. However, as daily mean temperatures rise, sleep 

duration starts to strongly decline. The effect of a hot (>25 °C) day is −12.4 minutes. The 

estimated sleep loss is especially large on weekends and public holidays, for older individuals, 
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1. Introduction 

Sleep is essential for humans and other animals (Cirelli and Tononi 2008). Insufficient sleep 

and sleep disturbances are associated with negative physical, cognitive, emotional, and social 

consequences. The short duration of sleep is associated with higher mortality risk, health 

complications, and diseases, including hypertension, cardiovascular disease, and stroke 

(Cappuccio et al. 2010; Itani et al. 2017; Tobaldini et al. 2019). Sleep plays an essential role in 

maintaining a healthy immune system (Besedovsky, Lange, and Haack 2019). Disrupted, 

inadequate sleep or reduced sleep quality leads to negative mode, anxiety, greater interpersonal 

conflict, and social withdrawal (Ben Simon et al. 2020; Ben Simon and Walker 2018; Tomaso, 

Johnson, and Nelson 2021). Sleep deprivation has also a deleterious effect on cognitive 

performance (Lim and Dinges 2010; Krause et al. 2017; Lowe, Safati, and Hall 2017). 

Given the importance of sleep, there is an extensive literature on the factors that influence sleep. 

An important strand of this literature investigates how environmental factors affect human 

sleep. Among others, it includes studies on noise (Muzet 2007; Basner and McGuire 2018), 

artificial light (Paksarian et al. 2020; Boslett et al. 2021), air pollution (Liu et al. 2020; Cao, 

Chen, and McIntyre 2021), and exposure to green spaces (Shin et al. 2020; Stenfors et al. 2023). 

As climate change is considered one of the greatest threats to humanity in the 21st century, the 

question naturally arises of how temperature and a warming climate affect human sleep. 

Previous studies on the effect of temperature on sleep consist mainly of laboratory experiments. 

These studies show that both cold and heat decrease sleep quality and increase wakefulness 

(Haskell et al. 1981; Fletcher, van den Heuvel, and Dawson 1999; Tsuzuki, Okamoto-Mizuno, 

and Mizuno 2004; Okamoto-Mizuno et al. 2005; Okamoto-Mizuno and Mizuno 2012; Lan et 

al. 2017; Rifkin, Long, and Perry 2018). However, large-scale studies in real-world settings that 

examine the effects of ambient temperatures and are able to provide quantitative information 

on the potential impacts of climate change for policymakers are extremely rare. 

Such a unique example is the study that uses U.S. survey data from more than 750,000 

respondents over a 10-year-long period (Obradovich et al. 2017). It examines the effect of 

ambient temperature on the number of days of insufficient rest or sleep over the past 30 days 

(measured by a single retrospective question). It finds that an increase of 1 °C in the 30-day 

average of daily minimum temperature deviations from their long-term mean causes nearly 3 

days of insufficient rest/sleep per 100 individuals per month. Assuming a worst-case climate 

scenario (RCP 8.5), the study predicts that 14 additional days of insufficient rest/sleep per 100 
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individuals will be expected in the U.S. by 2099, compared to 2010. Another paper used data 

from sleep-tracking wristbands (Minor et al. 2022). This dataset consists of more than 7 million 

daily sleep records of 47,628 individuals over a two-year period across 68 countries. The paper 

concludes that the higher the daily minimum temperature the shorter the sleep duration. The 

relationship is monotone, but the marginal effect of temperature is increasing. The impact of 

increasing minimum temperature by 1 °C is much stronger above a temperature baseline of 5-

10 °C. The observed relationship means that the warming climate will cause an average of 6 

hours of sleep loss per person by 2099 (compared to 2010) under the RCP 4.5 scenario, whereas 

the projected sleep loss is 14 hours under the RCP 8.5 scenario. Mullins and White (2019) 

examine the effect of temperature on mental health and identify changes in sleep quantity as a 

potential mechanism. Based on data from the US Time Use Survey, they found that warmer 

temperatures reduce the number of minutes slept. 

The present study examines the effect of ambient temperature on sleep duration. It uses 

nationally representative Hungarian time use surveys between 1976 and 2010, fine spatial 

resolution meteorological data, and temperature projections of state-of-the-art climate models. 

Meteorological data is linked to the almost 122,000 time use diaries to investigate the effect of 

daily mean temperature on sleep duration. The empirical approach is based on the recent climate 

econometrics literature (Dell, Jones, and Olken 2014; S. Hsiang 2016). A nonlinear relationship 

between temperature and sleep duration is allowed by using temperature categories representing 

different daily mean temperatures. The baseline model includes controls for precipitation, 

humidity, socio-economic background, day-of-week, and public holidays, but an individual 

fixed effects model is also estimated. As county-by-year-by-month fixed effects are also 

included, the effects of temperature are identified from the random variation in daily 

temperatures within a given county and a given month. The analysis shows that as the daily 

mean temperature increases, sleep duration decreases. On a day of 20-25 °C, the average sleep 

duration is 6.3 minutes shorter than on a mild (5-10 °C) day. The effect of an extremely hot 

(>25 °C) day is −12.4 minutes. However, the effects are much stronger for certain groups in 

society, especially among older people. It is also shown by this paper that the effect of heatwave 

days (hot days preceded by other hot days) is much stronger than “simple” hot days.  

Coupling the obtained relationship with the outputs of climate models, the impact of climate 

change is projected under four SSP (Shared Socio‐Economic Pathway) scenarios. The warming 

climate will decrease sleep duration during the 21st century. The median projections for the last 

decade of the century range between 3.7 (SSP 1-2.6 scenario) and 14.0 hours (SSP 5-8.5 
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scenario) per person per year, while they range between −4.7 and −22.7 hours when taking into 

account the effect of heatwave days and their future increase. Importantly, most of this loss is 

concentrated in the summer and early autumn. 

This study makes important contributions to the literature. Despite the growing evidence on the 

relationship between ambient temperature and sleep from large-scale data collected in real-

world settings, limitations remain in terms of (i) measurement of sleep, (ii) data collection 

strategy, and (iii) understanding the potential impact of climate change. First, some research 

measures sleep in terms of days of insufficient sleep, which is helpful for providing evidence 

about subjective sleep quality but limited in its ability to tell us about the effect of temperature 

on an objective measure of sleep duration. Second, of those that do monitor sleep duration, 

some of the previous research has relied on data collected from users of sleep-tracking 

wristbands, which are prone to selection bias. In a high-quality paper, Minor et al. (2022) use a 

sample that was overrepresented by middle-aged males. On the one hand, people of higher 

social status may make defensive efforts, which may lead to effects different from those in a 

general population. On the other hand, these demographic groups and study participants using 

sleep-tracking technology may also be more prone to sleep disruption and sleep-related anxiety. 

Again, this makes it more difficult to generalize the results. The heterogeneity of the effects 

also needs to be investigated in more detail to get a full picture of the impact of temperature on 

sleep, and this can only be done using data covering the whole of society. This is important, for 

example, because the world's population is growing rapidly, so understanding the differences 

between age groups can provide useful information for public policy. Finally, long-term 

databases spanning several decades are needed to examine possible adaptation. This has not 

been possible in previous research due to a lack of suitable data but is essential to predict and 

assess the potential impacts of climate change. Although not explored in previous studies, 

understanding the effects of heatwaves, which will become more frequent in the future, is also 

essential. This study addresses these gaps by using a large number of time-use diaries over a 

thirty-five-year period, which addresses prior concerns regarding measurement and 

generalizability and also provides an opportunity for an in-depth examination of 

heterogeneities, changes over time, and the impacts of heatwaves. 



5 

 

2. Data 

2.1. Time use surveys 

Data on sleep duration are from five waves of the Hungarian Time Use Survey (HTUS) 

administered by the Hungarian Central Statistical Office. HTUS is a nationally representative 

time use data collection. During a face-to-face interview, one respondent per household 

completes a time diary in which they report their activities for the previous day (24 hours).1 The 

waves used in this paper are from 1976/1977, 1986/1987, 1993, 1999/2000, and 2009/2010. All 

waves follow an open diary design and, with the exception of the 1993 wave, covered a one-

year period. In three out of the five waves of the HTUS (1976/1977, 1986/1987, and 

1999/2000), each respondent completed four diaries (one per season). Table A1 in 

Supplementary Materials summarizes some important characteristics of the surveys. 

The analysis sample is restricted to adults (aged 18 and over). A few observations with missing 

information on the exact date of the diary, education level, or labor force status are excluded. 

In addition, as the effect of temperatures is identified from the variation in temperature exposure 

within a particular county and calendar month, observations in county-by-year-by-month 

“cells” with less than 10 diaries are also excluded. The final sample covers 121,670 diaries of 

46,586 individuals (Table A2, Supplementary Materials). Table A3 in Supplementary Materials 

provides a step-by-step summary of the sample selection process. 

The main dependent variable is the sleep duration (measured in minutes) which includes all 

sleep and nap periods of the 24 hours. It has an average of 513 minutes in the sample (Table 

A4, Supplementary Materials). Two additional dependent variables are defined: (i) the time of 

falling asleep and (ii) the wake-up time. The first one is the start of the first sleep period after 

19:00, the second one is the end of the last sleep period before 11:00. 

2.2. Historical temperature observations 

Information on ambient temperature is drawn from the European Climate Assessment & 

Dataset project (Cornes et al. 2018). The E–OBS 27.0e dataset provides information on daily 

(mean, minimum, and maximum) temperatures and other weather data for Europe with a 

spacing of 0.1° × 0.1° in regular latitude/longitude coordinates starting from 1950. The gridded 

data are aggregated to the county (NUTS 3 region) level by averaging the observed temperature 

 
1 The selection of the person to be sampled from the household was done differently in each wave of the survey, 

usually either by random selection by interviewers or by selecting a person with a predefined characteristic. 
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measures.2 For the main analysis, the following temperature categories were constructed from 

the daily mean temperatures: ≤−5 °C, −5–0 °C, 0–5 °C, 5–10 °C, 10–15 °C, 15–20 °C, 20–25 

°C, >25 °C.  

2.3. Temperature change in the 21st century 

Information on the change in temperatures during the 21st century is from the latest version of 

the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6) 

(Thrasher et al. 2022). This dataset provides daily temperature projections for 2015-2100 and 

retrospectively simulated historical data for the period 1950-2014 based on output from Phase 

6 of the Climate Model Intercomparison Project (CMIP6). The spatial resolution of the 

projections is 0.25° × 0.25°. 

Projected temperature changes under four climate change scenarios are considered: SSP1-2.6, 

SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios (O’Neill et al. 2016). SSP1-2.6 assumes that CO2 

emission will be cut severely declining to net zero in the 2070s. This scenario is consistent with 

limiting warming to 2°C by the end of the 21st century (relative to 1850–1900). SSP2-4.5 is 

often labeled as a “middle-of-the-road” scenario. It assumes that climate protection measures 

will be taken, but the CO2 emission will decline only after the middle of the century. SSP3-7.0 

is a scenario with increasing CO2 emission during the 21st century, whereas SSP5-8.5 is a 

worst-case scenario that assumes very high greenhouse gas emissions and a fossil-fuel-based 

development. Projections of twenty-four climate models are used: ACCESS-CM2, ACCESS-

ESM1-5, BCC-CSM2-MR, CanESM5, CESM2, CMCC-ESM2, CNRM-CM6-1, CNRM-

ESM2-1, EC-Earth3, EC-Earth3-Veg-LR, FGOALS-g3, GFDL-ESM4, GISS-E2-1-G, IITM-

ESM, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MIROC-ES2L, MPI-ESM1-2-

HR, MPI-ESM1-2-LR, MRI-ESM2-0, NorESM2-LM, NorESM2-MM. 

To project the impact of climate change, within-model changes in the temperature distribution 

are calculated for each decade between 2020 and 2099 using 1990-2014 as a baseline. In the 

first step, daily temperature data are calculated by averaging the mean temperature for each day 

over grid points within Hungary. Next, the annual distribution of the main temperature 

categories (≤−5 °C, −5–0 °C, 0–5 °C, 5–10 °C, 10–15 °C, 15–20 °C, 20–25 °C, >25 °C) is 

determined for each decade and compared to the temperature distribution of the baseline period: 

 
2 According to the NUTS classification system, Budapest (the capital of Hungary) is a county in its own right, so 

the country is divided into 20 counties. 
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ΔTolg
j

= Tolg
j

− T̂ol
j

          (1) 

where o stands for the SSP scenario (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), l denotes 

the climate model, and g denotes the decade (from the 2020s to the 2090s). T is the annual 

number of days when the daily mean temperature falls into temperature category j, whereas T̂ 

denotes the baseline annual value from the 1990-2014 period. 

3. Methods 

3.1. The effect of daily mean temperature 

To identify the effect of daily mean temperatures on sleep duration, the following equation is 

estimated: 

Sicymd = ∑ βjTcymd
j

j + ∑ γkPcymd
k + ∑ πlHcymd

l
lk + δXicymd + ρcym + εicymd  (2) 

S is the sleep duration (in minutes) of individual i in county c, in year y, month m, and day d. T 

stands for temperature bins. βj is the coefficient of interest and shows the effect of daily mean 

temperature falling in temperature bin j on the sleep duration. In the main specification, the 

effects of seven temperature categories are estimated (≤−5 °C, −5–0 °C, 0–5 °C, 10–15 °C, 15–

20 °C, 20–25 °C, >25 °C) compared to a 5–10 °C day. This is a flexible estimation strategy. 

The only restriction is that the effect of temperature is the same within the 5 °C-wide 

temperature bins.  

P denotes the daily amount of precipitation (0 mm, 0-3 mm, 3-5 mm, 5-10 mm, >10 mm), while 

H stands for relative humidity (≤50%, 50-60%, 60-70%, 70-80%, >80%). A series of 

characteristics of the respondent and the interview day is also included (X): gender, age 

category (<20, 21-30, 31-40, 41-50, 51-60, 61-70, 71-), education (primary, vocational, high 

school, tertiary), labor market status (employed, unemployed, on maternity leave, student, 

retired, other), household size (1, 2, 3, 4, 5, 6+), day-of-week (Monday, Tuesday, Wednesday, 

Thursday, Friday, Saturday, Sunday), and an indicator of public holidays. County-by-year-by-

month fixed effects (ρ) controls for unobserved location-by-time-specific factors that influence 

sleep. It effectively means that each county is allowed its own level, nonlinear trend, and 

seasonality in sleep duration. Thus, the effects of temperatures are identified from the variation 

in daily temperatures within a county and month. 
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The regression is estimated using an individual weight that adjusts for the unequal inclusion 

probabilities (provided by the HTUS) combined with another weight that transforms every 

wave’s N equal. The standard errors are clustered at the county and individual levels (two-way 

clustering). 

3.2. The effect of climate change 

The effects of climate change are calculated by multiplying the β coefficients from Eq. (2) by 

the projected within-model temperature changes from Eq. (1) (∆T). Uncertainty in the 

relationship between temperatures and sleep duration is captured by bootstrapping the β 

coefficient estimates (200 times, sampling with replacement) (Burke et al. 2015). As a result, 

several projections are calculated as follows: 

ΔSbolg = ∑ βb
j
ΔTolg

j
j           (3) 

where b stands for the bootstrap sample (1-200), o stands for the SSP scenario (SSP1-2.6, SSP2-

4.5, SSP3-7.0, and SSP5-8.5), l denotes the climate model (24 in total), and g denotes the decade 

(from the 2020s to the 2090s). That is, the ∆Ss show the projected change in sleep duration per 

person per year due to changes in temperature distribution compared to 1990-2014. The results 

are presented separately for SSP scenario-decade pairs, so for each SSP scenario-decade pair, 

4,800 possible projections (24 climate models × 200 estimates of the temperature-sleep 

relationship) are analyzed, thus capturing both climate uncertainty and regression uncertainty. 

In the empirical analysis, the median, the interquartile range, and the middle 95% of these 4,800 

projections are calculated for each SSP scenario and decade.  

The impacts by calendar month are examined by using projected temperature changes for each 

month: 

ΔSbolgm = ∑ β𝑏
j
ΔTolgm

j
j          (4) 

where b stands for the bootstrap sample, o stands for the SSP scenario, l denotes the climate 

model, g denotes the decade, and m denotes the calendar month. 

4. Results 

4.1. Main results and robustness 

Figure 1 shows the effects of daily mean temperature on sleep duration. Compared to the 

reference temperature (5–10 °C), colder temperatures do not influence sleep duration. However, 
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hot temperatures have detrimental effects, especially beyond 15-20 °C. The effect of a 20–25 

°C is −6.3 minutes, whereas the effect of a >25 °C day is −12.4 minutes. Compared to the 

average sleep duration of 513.2 minutes (Table A4, Supplementary Materials), these values 

represent a decrease of 1.2% and 2.4%. The pattern of the temperature coefficients suggests 

that the marginal effect of temperature is increasing. Compared to the 10–20 °C range where a 

1 °C increase in temperature decreases sleep duration by approximately 0.25 minutes, the 

marginal effect increases fourfold beyond 20 °C.  

 

 

Figure 1. The effect of daily mean temperature on sleep duration 

The circles are the β coefficients estimated using Eq. (2). The reference temperature is 5–10 °C. The 

shaded area represents 95% confidence intervals computed using standard errors clustered at the 

county and individual levels. The model has controls for precipitation, humidity, the characteristics 

of the respondent and the interview day (gender, age, education, labor market status, household size, 

day-of-week, public holiday), and county-by-year-by-month fixed effects. N = 121,670. 

 

Similar patterns are obtained when estimating a restricted cubic spline regression or using 

narrower (2 °C-wide) temperature categories (Figure 2). Below the reference temperature, no 

sizeable effects are observed, but at higher temperature levels sleep duration is reduced, 

Importantly, in both cases, the marginal effect appears to be higher at extremely hot 

temperatures than just above the reference point. The conclusions remain the same if daily 
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maximum or minimum temperature is used in place of daily mean temperature (Figure A1, 

Supplementary Materials).  

 

 

Figure 2. Estimations applying a cubic polynomial spline function and using narrower 

temperature bins 

(A) The estimates come from restricted cubic spline functions with six knots. The reference temperatures are 

7.5 °C. (B) 2 °C-wide temperature bins, the lowest category is ≤−6 °C, and the highest category is >26 °C. The 

reference temperature is 6–8 °C. The models have controls for precipitation, humidity, the characteristics of 

the respondent and the interview day (gender, age, education, labor market status, household size, day-of-week, 

public holiday), and county-by-year-by-month fixed effects. The shaded areas represent 95% confidence 

intervals computed using standard errors clustered at the county and individual levels. N = 121,670. 

 

The sensitivity of the results is explored by a series of robustness tests, including the use of 

different fixed effects, exclusion of control variables, alternative methods for clustering the 

standard errors, and excluding extremely short (<4 hours) and long (>12 hours) sleep duration 

(Table A5, Supplementary Materials). None of these changes alter the conclusions.  

There may be a concern that ambient temperatures could influence participation in the time use 

survey. On cold or hot days different respondents might be available which could bias the 

estimated effects. This possibility is investigated by using the observable characteristics of the 

respondents as the outcome variable of interest. The results demonstrate that respondents’ 

characteristics do not change considerably with temperatures (Table A6, Supplementary 

Materials). Only a few coefficients are statistically significant at the 5 percent level (four out of 

sixty-three), and no clear temperature patterns are observed. In addition, as shown above, 

removing individual controls does not affect the conclusions (Table A5, Supplementary 

Materials). These results suggest that the estimated relationship between sleep and ambient 

temperature is unlikely to be driven by an endogenous selection of respondents.  
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Next, a falsification test is performed to rule out that unmeasured seasonal factors drive the 

results. Specifically, the temperature variables are replaced with temperature measured exactly 

one year after the completion of the time use diary. Current sleep duration should not be affected 

by the temperature of the distant future, therefore, zero coefficients are expected in this 

estimation. Indeed, the estimated temperature coefficients are practically zero and all of them 

are statistically insignificant at the 5 percent level (Figure 3). 

 

 

Figure 3. Falsification test with future temperatures  

Estimates based on temperature values measured one year after the completion of the time use diary. 

The circles are the temperature coefficients (β). The reference temperature is 5–10 °C. The shaded 

area represents 95% confidence intervals computed using standard errors clustered at the county and 

individual levels. The model has controls for future precipitation, future humidity, the characteristics 

of the respondent and the interview day (gender, age, education, labor market status, household size, 

day-of-week, public holiday), and county-by-year-by-month fixed effects. N = 121,670. 

 

In three out of the five waves of the HTUS, each person completed four diaries (one per season), 

which allows for the inclusion of individual fixed effects. In this way, not only the observed 

characteristics of the individuals can be controlled for, but all person-specific factors that do 

not change during the survey year. These fixed effects control for all unobserved individual 

characteristics except, for example, sudden changes in health status. Although a sizeable portion 

of the sample is excluded from this estimation, including individual fixed effects does not 

change the main patterns of the temperature-sleep duration relationship (Figure 4). 
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Figure 4. Temperature coefficients from a model with individual fixed effects 

The circles are the temperature coefficients (β). The reference temperature is 5–10 °C. The shaded 

area represents 95% confidence intervals computed using standard errors clustered at the county and 

individual levels. The model has controls for precipitation, humidity, the characteristics of the 

respondent and the interview day (gender, age, education, labor market status, household size, day-

of-week, public holiday), county-by-year-by-month fixed effects, and individual fixed effects. The 

wave of 1993 and 2009/2010 are excluded, as only one diary was completed by each respondent. N 

= 101,623. 

 

As alternative outcome variables, four binary indicators are used showing whether the total 

sleep time is less than 6 hours, between 6 and 8 hours, between 8 and 9 hours, or at least 9 hours 

(Figure A2, Supplementary Materials). The results of these estimations suggest that heat 

increases not only the chance of short sleep duration but also the chance of a healthy length of 

sleep. At the same time, the chance of long sleep duration (at least 9 hours) is significantly 

reduced by high temperatures. Cold temperatures do not affect these outcomes. 

Finally, the impact of heatwaves is examined. A heatwave is defined in two ways. The first 

definition is a period of at least three consecutive days where the daily mean temperature 

exceeds 25°C. Accordingly, heatwave days are those >25 °C days that are preceded by at least 

two other >25 °C days. The second definition is that a heatwave day is a day above 25 °C 

preceded by at least four other days above 25 °C. Table A7 in Supplementary Materials 

summarizes these estimations. Most coefficients are virtually identical to baseline results shown 

in Figure 1, but >25 °C days are disentangled into two groups: heatwave days and non-heatwave 

days. Extremely hot (>25 °C) days that are not preceded by two >25 °C days decrease daily 
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sleep by 11.4 minutes, while the effect of a heatwave day (preceded by at least two others) is 

−14.1. Although this difference seems to be non-negligible, it is not statistically significant at 

any conventional level (p = 0.57). However, when heatwave days are defined as hot days 

preceded by at least four other hot days, the effect of heatwave days is statistically stronger than 

the effect of non-heatwave days with >25 °C (−22.7 minutes vs. −10.7 minutes, p = 0.04). 

As these results suggest that the effects of temperature bins below the reference category are 

practically identical, in the next sections, more parsimonious models are estimated where the 

lowest three temperature bins are merged.  

4.2. Temporal displacement, heterogeneity, and further results 

The results of the previous section show that people suffer sleep loss on hot days, but the heat 

might affect sleep duration on the subsequent days too. Some may sleep more on the following 

days to make up for lost sleep. But it is also possible that extreme heat might have a delayed 

negative impact on sleep duration. To check these possibilities, lagged temperatures are 

included from the previous two days. The results suggest that previous days’ temperatures do 

not influence sleep duration (Figure A3, Supplementary Materials). While the effects of 

contemporaneous temperatures (lag 0) replicate the baseline findings, the coefficients of the 

lagged temperatures are statistically insignificant and much smaller without any meaningful 

pattern. It is especially apparent for the two highest temperature categories. A similar 

conclusion is obtained when including lagged temperatures up to six days (Figure A4, 

Supplementary Materials). The sum of the six lags is not statistically different from for any 

temperature category, whereas the sum of the contemporaneous and lagged temperatures 

replicates the baseline pattern (Figure A5, Supplementary Materials). 

Next, the heterogeneity in the effects of temperatures is explored. Specifically, a series of 

equations are estimated that are based on Eq. (2) but in which the interactions between the 

temperature variables and the categorical variable representing (i) workdays and holidays, (ii) 

education groups, (iii) age groups, or (iv) females and males are included. Important insights 

emerge from these results (Figure 5). First, the estimated effects of extreme heat (>25 °C days) 

are much stronger on weekends and public holidays (−31.0 minutes) than on workdays (−4.2 

minutes). As sleep duration is constrained by rigid schedules on workdays due to work, school, 

or other compulsory duties, there is less room for an external factor to disturb sleep. In contrast, 

bedtime and wake-up time are less constrained on holidays, so the role of an external 

disturbance can be more pronounced. Second, individuals with low education seem to be 
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slightly more affected by exposure to hot temperatures than individuals with high education, 

although the differences do not reach the level of statistical significance. Third, older people 

seem to suffer larger sleep loss due to exposure to extreme heat than young and middle-aged 

individuals. The effect of a >25 °C day is −28.4 minutes among 61 years old or older, −9.1 

minutes among 41-60 years old, and −5.1 minutes among 18-40 years old. Although this data 

does not allow to specify the reasons behind the age-related differences, previous research 

showed that aging is associated with more fragile sleep (Mander, Winer, and Walker 2017). 

Finally, the negative effects of hot temperatures are stronger among males than among females.  

 

 

Figure 5. Heterogeneous effects of temperature on sleep duration 

The circles are the temperature coefficients (β). The reference temperature is 5–10 °C. The shaded area 

represents 95% confidence intervals computed using standard errors clustered at the county and individual 

levels. (B) Low education = primary school, high education = secondary school or college education. (C) 

Young = 18-40 years old, middle-aged = 41-60 years old, older = 61+ years old. The models have controls for 

precipitation, humidity, the characteristics of the respondent and the interview day (gender, age, education, 

labor market status, household size, day-of-week, public holiday), and county-by-year-by-month fixed effects. 

The formal tests of the differences between the coefficients are shown in Supplementary Materials: Table A8 

(panel A), Table A9 (panel B), Table A10 (panel C), and Table A11 (panel D). N = 121,670. 
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Heterogeneity over time, or in other words, adaptation is also explored (Figure A6, 

Supplementary Materials). The results of this exercise suggest that the effect of heat has not 

changed during the thirty-five years of this analysis. The effect of a >25 °C day is −11.8 minutes 

during the first three waves (1976/1977, 1986/1987, 1993) and −12.3 minutes in the two more 

recent waves (1999/2000, 2009/2010). 

Figure 6 examines how temperatures influence the time of waking up and going to bed. Wake-

up is defined as the end of the last sleep period before 11:00, whereas the time of going to bed 

is the start of the first sleep period after 19:00. Looking at the graph, one can see that the time 

of waking up is much more influenced by hot temperatures than the time of going to bed. 

However, it must be noted that the time of going to bed is likely to be different from the time 

of falling asleep. Respondents of the time use surveys are likely to report the time of going into 

bed rather than the actual time of falling asleep (even if the corresponding time spell is labeled 

as a sleep event). Even if heat delays the time it takes to fall asleep, this cannot be observed in 

time use surveys, only the effect on bedtime. Consequently, Figure 6 provides solid and credible 

evidence for the effect of temperature on the time of waking up. The time of going to bed seems 

to be not influenced by temperature. 

 

 

Figure 6. The effects of temperature on the time of waking up and going to bed 

The circles are the temperature coefficients (β). The reference temperature is 5–10 °C. The shaded areas 

represent 95% confidence intervals computed using standard errors clustered at the county and individual 

levels. Dependent variable: (A) time of waking up, (B) time of going to bed. The model has controls for 

precipitation, humidity, the characteristics of the respondent and the interview day (gender, age, education, 

labor market status, household size, day-of-week, public holiday), and county-by-year-by-month fixed effects. 

The wave of 1976/77 is not included, as the total daily sleep duration is available in the dataset without specifics 

on the sleep spells. N = 96,213 (A) and 95,081 (B). 
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Finally, the effects on night and daytime sleep are explored (Figure A7, Supplementary 

Materials). Night sleep is defined as sleep time between 20:00 and 7:59, while day sleep is 

defined as the sleep time between 8:00 and 19:59. These results show that the effect of 

temperature on total sleep time is driven by the effect on night sleep. The temperature 

coefficients for daytime sleep are close to zero. Importantly, the estimated effect of a 25 °C day 

on daytime sleep is −1.6 minutes, which means that a night's sleep disrupted by heat cannot be 

compensated for by a longer daytime nap. On the contrary, if there is an effect, daytime sleep 

is also reduced because of the heat. 

4.3. The impacts of climate change 

Under the assumption that future sleep duration will be influenced by temperatures in a similar 

way as sleep duration has been influenced by them in the past (somewhat justified by the 

adaptation result), the change in annual sleep duration is projected in response to climate 

change-induced warming. The projections are made separately for the four SSP scenarios and 

show estimates for each of the remaining decades of the 21st century. The projections are based 

on data from twenty-four climate models and the historical relationship between temperature 

and sleep (the uncertainty of which is captured by 200 bootstrap samples). The baseline period 

to which the future temperature distributions are compared is 1990-2014. 

Figure 7 shows the projections for the 2050s and 2090s, while Figure A8 in Supplementary 

Materials shows the results for all decades. The median projections suggest considerable sleep 

loss already for the middle of the century under each SSP scenario, compared to 1990-2014. 

For the 2050s, the total annual sleep loss per person due to warming is 3.7 hours in the SSP1-

2.6 scenario, 4.2 hours in the SSP2-4.5 scenario, 5.3 hours in the SSP3-7.0 scenario, and 6.4 

hours in the SSP5-8.5 scenario. By the end of the century, the median projection in SSP1-2.6 

does not change considerably: −3.7 hours (the middle 95% of the projections: −0.7–−10.0 

hours). In the other three scenarios, the median projections are steadily increasing. 

Consequently, they are significantly larger by the 2090s: −6.7 hours (middle 95%: −1.7–−13.9 

hours) in the SSP2-4.5 scenario, −10.4 hours (middle 95%: −3.9–−20.1 hours) in the SSP3-7.0 

scenario, and −14.0 hours (middle 95%: −4.7–−26.0) in the SSP5-8.5 scenario. Although there 

are differences between the individual projections, which are captured by the wide range of 

projected impacts, almost all of them predict a nonnegligible average annual sleep loss, 

especially under the less optimistic scenarios. 
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Figure 7. Projected annual sleep loss for the 2050s and 2090s 

The changes are calculated using the projected within-model differences in temperature distribution between 

1990-2014 and each decade in the 21st century and the estimated effect of temperatures on sleep duration 

(estimated by 200 bootstrap samples). The boxplots show the distribution of the projections: the medians, the 

interquartile ranges, and the middle 95% of the projections. 

 

Figure A9 in Supplementary Materials shows the projected impacts for the 2090s by calendar 

month. Most of the projected annual sleep loss is concentrated in the summer and early autumn. 

Under all SSP scenarios, the median projections are practically zero for the winter months, 

whereas around 70-80% of the annual sleep losses occur between June and September. The 

median projections of the total sleep loss over these four months are −3.2 hours (SSP1-2.6), 

−5.5 hours (SSP2-4.5), −8.3 hours (SSP3-7.0), and −10.6 hours (SSP5-8.5) per person. In terms 

of daily sleep loss, these projections represent −1.6 minutes (SSP1-2.6) and −5.2 minutes 

(SSP5-8.5) per person per day. In relative terms, these correspond to a daily sleep loss of 0.3% 

and 1.0%, respectively. But the uncertainty of the projections is quite wide. E.g., the middle 

95% of projections for SSP5-8.5 are between −1.7 and −10.2 minutes. 

These projections fail to take into account the possible heterogeneous impacts of climate 

change, although different groups in society may be affected in significantly different ways by 

a warming climate. Figure 8 shows the projected annual sleep loss for the 2090s by age group. 

As shown earlier, the elderly suffer greater sleep loss due to exposure to high temperatures than 

young and middle-aged adults, and are therefore projected to be more severely affected by 

climate change. According to the median projections, the predicted sleep losses for older people 

is about 4.5 times greater than for the middle-aged and 9 times greater than for young adults. 

For example, in the worst-case scenario (SSP5-8.5), the annual sleep loss for 18-40 and 41-60 

year olds is 4.2 hours and 8.1 hours, respectively, compared to 37.6 hours for older people. 
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Figure 8. Projected annual sleep loss for the 2090s by age 

Young = 18-40 years old, middle-aged = 41-60 years old, older = 61+ years old. The changes are calculated 

using the projected within-model differences in temperature distribution between 1990-2014 and 2090-2099 

and the estimated effect of temperatures on sleep duration (estimated by 200 bootstrap samples). The boxplots 

show the distribution of the projections: the medians, the interquartile ranges, and the middle 95% of the 

projections. 

 

During the 21st century, not only the number of hot days but also the number of consecutive 

hot days (heatwave days) will increase sharply. It has already been shown that the effect of 

these heatwave days on sleep can be stronger than that of a “normal” hot day. It is perhaps 

worth pointing out that, taking into account the impact of these days and the future change in 

their number, the projected impact of climate change for the 2090s is much stronger than the 

baseline projection (considering the median projections). In the SSP5-8.5 scenario, the median 

projection is −22.7 hours when heatwave days are taken into account (Figure A10, 

Supplementary Materials), compared to the −14.0 hours of the baseline model shown in Figure 

7. The median projections for SSP1-2.6, SSP2-4.5, and SSP3-7.0 are 1 hours, 2.3 hours, and 

5.1 hours stronger than the baseline approach, respectively. 

5. Discussion and conclusion 

Based on nationally representative time use survey data of a European country with a 

continental climate, this paper provides evidence that ambient temperature has a considerable 

effect on sleep duration. The estimated relationship is highly nonlinear. Compared to a mild 

temperature (5-10 °C), sleep duration is not affected by the cold. However, as daily mean 

temperatures rise, sleep duration starts to decrease. The impact of an extremely hot (>25 °C) 

day on daily sleep duration is −12.4 minutes. For the current adult population of Hungary (~8 

million), it means that an extremely hot day results in a total of 1.65 million hours of lost sleep, 
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compared to a day with a daily mean temperature of 5-10 °C. Even compared to a non-

extremely hot day (20-25 °C), the total sleep loss is 0.8 million hours on >25 °C days. The 

effect of hot temperatures is especially large on weekends and public holidays, for older 

individuals, and for males. Importantly, there is no evidence for the short-run recovery from the 

temperature-induced sleep deficit. Combining the estimated temperature effects with 

temperature projections of twenty-four climate models, it is found that the warming climate will 

decrease sleep duration during the 21st century. The median projections for the 2090s range 

between −3.7 and −14.0 hours per person per year under the four SSP scenarios considered in 

the analysis, while taking into account heatwave days they range between −4.7 and −22.7 hours. 

This sleep loss is mostly concentrated in the summer months. This study also shows that older 

people are projected to be much more affected than average by climate change.  

The estimated effects of temperature and climate change are nonnegligible and might lead to 

further consequences. Previous studies that leverage exogenous variation in sleep provide 

evidence that even a minor disruption in sleeping patterns or a small amount of sleep 

deprivation can lead to substantial consequences. Some of these papers analyze the impact of 

Daylight Saving Time. At the spring transition, clocks are moved forward by one hour, which 

results in a decrease of 40-60 minutes of sleep (Lahti et al. 2006; Barnes and Wagner 2009). 

This leads to increases in the number of fatal car accidents, workplace injuries, and the 

incidence of myocardial infarction (Barnes and Wagner 2009; Toro, Tigre, and Sampaio 2015; 

Smith 2016; Manfredini et al. 2018; Fritz et al. 2020; Osborne-Christenson 2022), and a drop 

in general well-being (Kountouris and Remoundou 2014). After the transition in the fall, similar 

effects with the opposite sign are observed in some studies (Jin and Ziebarth 2020), although 

others fail to establish any relationship (Fritz et al. 2020; Osborne-Christenson 2022). Other 

papers examine variation in the timing of natural light across or within time zones that causes 

small differences in total sleep time. An analysis of U.S. data finds that a regular loss of 19 

minutes of sleep per day has negative effects on weight, diabetes, cardiovascular diseases, and 

income (Giuntella and Mazzonna 2019). Another paper shows that both a short-run and a 

permanent increase in weekly sleep increase earnings (Gibson and Shrader 2018). Results based 

on Indian (Jagnani 2022) and Chinese (Giuntella, Han, and Mazzonna 2017) data show that 

later sunset time and the resulting loss of sleep reduces test scores in the short run and years of 

education in the long run, decreases cognitive skills and exacerbates depression symptoms. 

Geographical position within a time zone and disturbance of circadian rhythm also affect cancer 

risks (Gu et al. 2017; VoPham et al. 2018). In sum, these studies show that a slight but regular 
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loss of sleep (which is alike to the potential effects of climate change) leads to substantial health 

and labor marker effects, but even an occasional shock to sleep duration can cause non-

negligible impacts. 

In light of the results of these studies, sleep loss due to exposure to hot days – and especially to 

heatwave days – and a warming climate may have non-negligible consequences on a wide range 

of outcomes, including health, cognitive performance, and general well-being. These effects 

can be particularly significant for older people. 

Climate change-induced sleep loss is likely to have sizable macroeconomic consequences. The 

economic cost of poor sleep is already high. A study in Australia estimate the annual cost of 

inadequate sleep at 45.2 billion US dollars in 2016-2017 (Hillman et al. 2018). Another study 

finds that 681.2 billion US dollars are lost each year due to insufficient sleep across five OECD  

countries (USA, Canada, Japan, Germany, UK) in the early 2010s (Hafner et al. 2017). In 

addition, a recent study estimates that the costs of insufficient sleep duration in Canada in 2020 

were 502 million Canadian dollars (Chaput et al. 2022). The expected sleep loss due to climate 

change will further increase these economic burdens. 

The results of this paper are an important contribution to the vast literature that analyzes the 

effects of temperature and climate change on human societies (Dell, Jones, and Olken 2014; T. 

A. Carleton and Hsiang 2016), including the effects on productivity (Burke, Hsiang, and Miguel 

2015b; Zhang et al. 2018; Miller et al. 2021; LoPalo 2022; Heyes and Saberian 2022), cognitive 

performance/learning (Graff Zivin, Hsiang, and Neidell 2018; Cook and Heyes 2020; Garg, 

Jagnani, and Taraz 2020; Graff Zivin et al. 2020; Park et al. 2020; Park, Behrer, and Goodman 

2021; Park 2022), aggression/crime (S. M. Hsiang, Burke, and Miguel 2013; Ranson 2014; 

Burke, Hsiang, and Miguel 2015a), and health (Deschênes and Moretti 2009; Barreca 2012; Ye 

et al. 2012; Gasparrini et al. 2015; Mora et al. 2017; White 2017; Karlsson and Ziebarth 2018; 

Agarwal et al. 2021; Hajdu and Hajdu 2021; T. Carleton et al. 2022; Conte Keivabu 2022; 

Hajdu and Hajdu 2023). Sleep may be one of the channels through which heat and climate 

change affect human health, performance, and behavior.  

Some important features of this study should be taken into account when assessing the results. 

First, time use diaries measure sleep duration with some bias. As mentioned before, sleep 

periods in the diaries are more likely to correspond to the time spent in bed rather than actual 

sleep. If heat affects (increases) the time it takes to fall asleep, then the effects on sleep duration 
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are underestimated. Second, sleep quality might be as important for many health outcomes as 

sleep duration. To get complete knowledge about the effect of ambient temperature on sleep, 

the characteristics of sleep other than duration cannot be ignored. Third, the time use data allow 

a relationship to be established between temperature and sleep duration, but other data are 

needed to explore the mechanism. Fourth, the assumptions behind the projection of the impact 

of climate change must be made clear. Following the literature (Obradovich et al. 2017; Minor 

et al. 2022) and given the results of the present study on adaptation, the projections assume that 

the relationship between temperature and sleep duration will be similar in the future as it has 

been in the past. The projected impacts can be considered as a benchmark. However, the impact 

of climate change can be influenced by a number of factors. Adaptation may occur in the future, 

which could mitigate the impact of climate change. Other factors might lead to an amplified 

impact of climate change. In the future, not only will the number of days with average 

temperatures above 25 °C increase, but also the average temperature of these days. As the 

marginal effect of temperature seems to be increasing, the effect of a >25 °C day is likely to be 

substantially larger in the next decades. In addition, temperature extremes that are beyond 

human experience are likely to occur during the century. The effects of unprecedented 

temperature extremes can be especially strong.  

The findings of this study imply that policymakers should design strategies to mitigate the 

sleep-related threats of heat and climate change, particularly among older people. Raising 

awareness of the effect of heat on sleep may lead to individual actions, but planning at the 

societal level may also be needed to effectively mitigate the negative effects of future heatwaves 

and a warmer climate. 
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Figures 

 

 

Figure A1. Estimations using daily maximum and minimum temperatures 

The estimates come from restricted cubic spline functions with seven knots. The reference temperatures are 15 °C 

(A) and 5 °C (B). The model has controls for precipitation, humidity, the characteristics of the respondent and the 

interview day (gender, age, education, labor market status, household size, day-of-week, public holiday), and 

county-by-year-by-month fixed effects. The shaded area represents 95% confidence intervals computed using 

standard errors clustered at the county and individual levels. N = 121,670. 
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Figure A2. Binary outcomes indicating different sleep durations 

The circles are the temperature coefficients (β). The reference temperature is 5–10 °C. The shaded areas represent 

95% confidence intervals computed using standard errors clustered at the county and individual levels. The models 

have controls for precipitations, humidity, the characteristics of the respondent and the interview day (gender, age, 

education, labor market status, household size, day-of-week, public holiday), and county-by-year-by-month fixed 

effects. N = 121,670. 
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Figure A3. Testing near-term displacement 

Estimation including two temperature lags. The circles are the temperature coefficients (β). The 

reference temperature is 5–10 °C. The shaded areas represent 95% confidence intervals computed 

using standard errors clustered at the county and individual levels. Lag 0 shows the 

contemporaneous effects, whereas lag 1 and lag 2 the effects of temperatures of the two previous 

days. The model has controls for contemporaneous and lagged precipitations, contemporaneous and 

lagged humidity, the characteristics of the respondent and the interview day (gender, age, education, 

labor market status, household size, day-of-week, public holiday), and county-by-year-by-month 

fixed effects. N = 121,670. 
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Figure A4. Including lagged temperatures up to six days 

Estimation including six temperature lags. The circles are the temperature coefficients (β). The reference 

temperature is 5–10 °C. The shaded areas represent 95% confidence intervals computed using standard errors 

clustered at the county and individual levels. The model has controls for contemporaneous and lagged 

precipitations, contemporaneous and lagged humidity, the characteristics of the respondent and the interview day 

(gender, age, education, labor market status, household size, day-of-week, public holiday), and county-by-year-

by-month fixed effects. N = 121,670.  
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Figure A5. The cumulative effect of exposure to ambient temperature 

Estimation including six temperature lags. (A) Sum of the coefficients on the lagged temperature variables. (B) 

Sum of the coefficients on the contemporaneous and lagged temperature variables. The reference temperature is 

5–10 °C. The shaded areas represent 95% confidence intervals computed using standard errors clustered at the 

county and individual levels. The model has controls for contemporaneous and lagged precipitations, 

contemporaneous and lagged humidity, the characteristics of the respondent and the interview day (gender, age, 

education, labor market status, household size, day-of-week, public holiday), and county-by-year-by-month fixed 

effects. N = 121,670.  

 

 

Figure A6. The effect of temperature on sleep duration over time 

The circles are the temperature coefficients (β). The reference temperature is 5–10 °C. The shaded 

area represents 95% confidence intervals computed using standard errors clustered at the county and 

individual levels. The model has controls for precipitation, humidity, the characteristics of the 

respondent and the interview day (gender, age, education, labor market status, household size, day-

of-week, public holiday), and county-by-year-by-month fixed effects. N = 121,670. 
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Figure A7. The effects of temperature on night and daytime sleep 

The circles are the temperature coefficients (β). The reference temperature is 5–10 °C. The shaded areas 

represent 95% confidence intervals computed using standard errors clustered at the county and individual 

levels. Dependent variable: (A) sleep time between 20:00 and 7:59, (B) sleep time between 8:00 and 19:59. 

The model has controls for precipitation, humidity, the characteristics of the respondent and the interview day 

(gender, age, education, labor market status, household size, day-of-week, public holiday), and county-by-year-

by-month fixed effects. The wave of 1976/77 is not included, as the total daily sleep duration is available in 

the dataset without specifics on the sleep spells. N = 98,076. 
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Figure A8. Projected sleep loss during the 21st century for each decade 

The changes are calculated using the projected within-model differences in temperature distribution between 

1990-2014 and each decade in the 21st century and the estimated effect of temperatures on sleep duration 

(estimated by 200 bootstrap samples). The boxplots show the distribution of the projections: the medians, the 

interquartile ranges, and the middle 95% of the projections. 
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Figure A9. Projected sleep loss by calendar month for the 2090s 

The changes are calculated using the projected within-model differences in temperature distribution between 

1990-2014 and 2090-2099 and the estimated effect of temperatures on sleep duration (estimated by 200 

bootstrap samples). The boxplots show the distribution of the projections: the medians, the interquartile ranges, 

and the middle 95% of the projections. 
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Figure A10. Projected sleep loss for the 2090s considering the effects of heatwave days 

Heatwave day is a day above 25 °C preceded by at least four other days above 25 °C. The changes are calculated 

using the projected within-model differences in temperature distribution between 1990-2014 and 2090-2099 

and the estimated effect of temperatures on sleep duration (estimated by 200 bootstrap samples). The boxplots 

show the distribution of the projections: the medians, the interquartile ranges, and the middle 95% of the 

projections. 
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Tables 

 

Table A1. The main characteristics of the time use surveys 

 1976/1977 1986/1987 1993 1999/2000 2009/2010 

Survey time span 
1976/11/01-

1977/10/31 

1986/03/01-

1987/03/08 

1993/02/01-

1993/05/30 

1999/09/01-

2000/09/06 

2009/10/01-

2010/10/21 

Age range 15-69 15-79 18-79 15-84 10-84 

Time diaries start 00:00 00:00 00:00 04:00 04:00 

N of diaries 24,507 39,617 11,174 43,172 8,391 

N of individuals 6,639 10,732 11,174 11,416 8,391 

Type of diary Open Open Open Open Open 

 

Table A2. Number of diaries and individuals in the analysis sample 

Wave N of diaries N of individuals 

1976/1977 23,594 6,405 

1986/1987 37,149 10,164 

1993 11,108 11,108 

1999/2000 42,023 11,113 

2009/2010 7, 7967 7,796 

Total 121,670 46,586 

 

Table A3. Sample selection by steps 

 N of diaries 

Raw dataset 126,861 

Excluding less than 18 years old 122,347 

Excluding observation with missing values 121,753 

Excluding county-by-year-by-month 

“cells” with less than 10 diaries 
121,670 
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Table A4. Descriptive statistics 

Variable Mean SD Min Max N 

Sleep durations (minutes) 513.18 104.29 0 1440 121,670 

Daily mean temperature (°C)      

≤−5 0.03 0.17 0 1 121,670 

−5 to 0 0.12 0.33 0 1 121,670 

0 to 5 0.17 0.38 0 1 121,670 

5 to 10 0.18 0.38 0 1 121,670 

10 to 15 0.16 0.36 0 1 121,670 

15 to 20 0.20 0.40 0 1 121,670 

20 to 25 0.12 0.32 0 1 121,670 

>25 0.02 0.15 0 1 121,670 

Daily precipitation (mm)      

0 0.69 0.46 0 1 121,670 

0 to 3 0.15 0.36 0 1 121,670 

3 to 5 0.06 0.24 0 1 121,670 

5 to 10 0.06 0.25 0 1 121,670 

10+ 0.03 0.17 0 1 121,670 

Age      

-20 0.05 0.22 0 1 121,670 

21-30 0.17 0.38 0 1 121,670 

31-40 0.19 0.39 0 1 121,670 

41-50 0.19 0.39 0 1 121,670 

51-60 0.18 0.38 0 1 121,670 

61-70 0.15 0.35 0 1 121,670 

71- 0.07 0.25 0 1 121,670 

Education      

Primary 0.47 0.50 0 1 121,670 

Vocational 0.19 0.39 0 1 121,670 

High school 0.24 0.43 0 1 121,670 

College/university 0.10 0.30 0 1 121,670 

Labor force status      

Employed 0.55 0.50 0 1 121,670 

Unemployed 0.04 0.20 0 1 121,670 

Maternity leave 0.03 0.18 0 1 121,670 

Student 0.03 0.17 0 1 121,670 

Retired 0.29 0.45 0 1 121,670 

Other 0.05 0.22 0 1 121,670 

N of household members      

1 0.10 0.30 0 1 121,670 

2 0.26 0.44 0 1 121,670 

3 0.23 0.42 0 1 121,670 

4 0.24 0.43 0 1 121,670 

5 0.09 0.29 0 1 121,670 

6+ 0.05 0.22 0 1 121,670 

Unknown 0.01 0.11 0 1 121,670 

Day-of-week      

Monday 0.14 0.35 0 1 121,670 

Tuesday 0.14 0.35 0 1 121,670 

Wednesday 0.14 0.35 0 1 121,670 

Thursday 0.14 0.35 0 1 121,670 

Friday 0.14 0.35 0 1 121,670 

Saturday 0.14 0.35 0 1 121,670 

Sunday 0.14 0.35 0 1 121,670 

Public holiday 0.02 0.15 0 1 121,670 

Weighted figures. 
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Table A5. Sensitivity tests 

 (1) (2) (3) (4) (5) (6) (7) 

Daily mean 

temperature (°C) 
Baseline Excl. controls 

Excl. 

precipitation and 

humidity 

C-Y, C-M FE 
C, Y, M FE + 

time trend 

County + Y-M 

clustering 

Sleep duration 4-

12 hours 

≤−5 −2.1 (3.4) −3.5 (3.5) −2.4 (3.4) −3.0 (3.1) −2.5 (3.4) −2.1 (4.8) −2.6 (3.3) 

−5 to 0 −1.6 (2.4) −3.8* (2.1) −1.6 (2.4) −2.6 (2.2) −2.5 (2.3) −1.6 (2.8) −0.5 (2.0) 

0 to 5 0.0 (1.2) −0.5 (1.4) 0.3 (1.2) −0.5 (1.0) −0.5 (1.1) 0.0 (1.7) 0.7 (1.3) 

5 to 10 ref. cat. ref. cat. ref. cat. ref. cat. ref. cat. ref. cat. ref. cat. 

10 to 15 −1.8 (1.7) −2.0 (1.8) −2.5 (1.6) −2.2 (1.7) −2.3 (1.9) −1.8 (1.4) −2.2 (1.4) 

15 to 20 −2.4 (1.9) −4.4** (1.9) −4.3** (1.6) −2.7 (1.9) −2.6 (1.8) −2.4 (1.5) −4.3** (1.7) 

20 to 25 −6.3** (3.0) −9.4*** (2.8) −8.7*** (2.5) −6.4** (2.8) −6.4** (2.9) −6.3** (2.9) −7.2** (2.6) 

>25 −12.4*** (3.2) −10.4** (3.6) −15.8*** (2.6) −13.1*** (2.8) −12.2*** (3.3) −12.4*** (2.9) −14.2*** (3.2) 

Fixed effects C-Y-M C-Y-M C-Y-M C-Y, C-M C, Y, M C-Y-M C-Y-M 

Time trend No No No No C-spec. quadratic No No 

Controls Yes No Yes Yes Yes Yes Yes 

Precipitation and 

humidity 
Yes Yes No Yes Yes Yes Yes 

SE clustering 
County + 

individual 

County + 

individual 

County + 

individual 

County + 

individual 

County + 

individual 
County + Y-M 

County + 

individual 

Weighted Yes Yes Yes Yes Yes Yes Yes 

R-squared 0.16 0.03 0.16 0.15 0.15 0.16 0.17 

N 121,670 121,670 121,670 121,670 121,670 121,670 117,358 
Controls: gender, age, education, labor market status, household size, day-of-week, public holiday. Standard errors are in parentheses. * p < 0.10, ** p < 0.05, *** 

p < 0.01 
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Table A6. Temperature and respondent characteristics 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Daily mean 

temperature (°C) 
Female 

High 

education 
Young 

Middle-

aged 
Older Employed Retired Other 

Large 

household 

size 

≤−5 
0.016 

(0.015) 

0.000 

(0.015) 

−0.018 

(0.011) 

−0.001 

(0.013) 

0.019 

(0.013) 

−0.000 

(0.019) 

0.018 

(0.014) 

−0.017 

(0.012) 

−0.013 

(0.012) 

−5 to 0 
0.013 

(0.014) 

0.008 

(0.011) 

0.012 

(0.009) 

−0.005 

(0.011) 

−0.006 

(0.010) 

0.006 

(0.015) 

−0.008 

(0.011) 

0.002 

(0.008) 

−0.002 

(0.008) 

0 to 5 
0.001 

(0.008) 

−0.002 

(0.010) 

0.000 

(0.012) 

0.009 

(0.011) 

−0.009 

(0.007) 

0.013 

(0.010) 

−0.009 

(0.006) 

−0.004 

(0.008) 

0.002 

(0.004) 

5 to 10 ref. cat. ref. cat. ref. cat. ref. cat. ref. cat. ref. cat. ref. cat. ref. cat. ref. cat. 

10 to 15 
0.003 

(0.007) 

−0.008 

(0.005) 

0.006 

(0.009) 

0.007 

(0.011) 

−0.013* 

(0.007) 

0.004 

(0.009) 

−0.018*** 

(0.006) 

0.014** 

(0.006) 

0.014** 

(0.006) 

15 to 20 
0.017** 

(0.006) 

0.001 

(0.008) 

0.000 

(0.012) 

0.005 

(0.010) 

−0.006 

(0.008) 

0.008 

(0.011) 

−0.014* 

(0.007) 

0.005 

(0.010) 

0.010 

(0.008) 

20 to 25 
0.009 

(0.007) 

0.005 

(0.011) 

0.003 

(0.012) 

−0.009 

(0.012) 

0.006 

(0.009) 

0.003 

(0.010) 

−0.008 

(0.008) 

0.005 

(0.009) 

0.010 

(0.008) 

>25 
0.001 

(0.013) 

−0.008 

(0.014) 

−0.014 

(0.011) 

0.001 

(0.015) 

0.013 

(0.012) 

−0.009 

(0.016) 

0.003 

(0.016) 

0.006 

(0.012) 

0.004 

(0.012) 

R-squared 0.01 0.17 0.02 0.02 0.03 0.06 0.04 0.03 0.04 

N 121,670 121,670 121,670 121,670 121,670 121,670 121,670 121,670 119,424 
The dependent variables are indicated in the titles of the columns. Precipitation, humidity, and county-by-year-by-month fixed effects are included. Standard 

errors clustered at the county and individual levels are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 
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Table A7. The effects of heatwave days 

 (1) (2) 

Daily mean temperature (°C) 
Heatwave: at 

least 3 days 

Heatwave: at 

least 5 days 

≤−5 −2.1 (3.4) −2.1 (3.4) 

−5 to 0 −1.6 (2.4) −1.6 (2.4) 

0 to 5 0.0 (1.2) 0.0 (1.2) 

5 to 10 ref. cat. ref. cat. 

10 to 15 −1.8 (1.7) −1.9 (1.7) 

15 to 20 −2.5 (1.9) −2.5 (1.9) 

20 to 25 −6.3** (3.0) −6.4** (3.0) 

>25 (non-heatwave day) −11.4*** (4.0) −10.7*** (3.4) 

>25 (heatwave day) −14.1*** (3.7) −22.7*** (5.1) 

R-squared 0.16 0.16 

N 121,670 121,670 

p-value (non-heatwave day 

vs. heatwave day) 
0.57 0.04 

The models have controls for precipitation, humidity, the characteristics of the respondent and the 

interview day (gender, age, education, labor market status, household size, day-of-week, public 

holiday), and county-by-year-by-month fixed effects. Standard errors clustered at the county and 

individual levels are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

 

Table A8. The effects of temperatures on workdays and non-workdays 

 Workday 
Weekend and 

public holidays 

p 

(1) vs. (2) 

Daily mean 

temperature (°C) 
(1) (2) (3) 

≤5 -0.5 (1.4) 1.3 (3.1) 0.58 

5 to 10 ref. cat. ref. cat.  

10 to 15 -1.1 (1.9) -2.8 (2.4) 0.52 

15 to 20 -0.3 (1.9) -7.3** (3.0) 0.01 

20 to 25 -4.6 (3.1) -10.1*** (3.4) 0.05 

>25 -4.2 (3.4) -31.0*** (7.3) 0.00 

R-squared 0.16  

N 121,670  
The model has controls for precipitation, humidity, the characteristics of the respondent and the 

interview day (gender, age, education, labor market status, household size, day-of-week, public 

holiday), and county-by-year-by-month fixed effects. Standard errors clustered at the county and 

individual levels are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 
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Table A9. The effects of temperatures by education 

 Low education High education 
p 

(1) vs. (2) 

Daily mean 

temperature (°C) 
(1) (2) (3) 

≤5 3.7** (1.4) -4.0* (2.1) 0.00 

5 to 10 ref. cat. ref. cat. 
 

10 to 15 -0.7 (1.8) -3.0 (2.6) 0.45 

15 to 20 -3.3 (2.3) -1.8 (2.1) 0.52 

20 to 25 -8.6** (3.5) -4.2 (3.1) 0.18 

>25 -16.3*** (3.2) -9.7** (4.4) 0.20 

R-squared 0.16  

N 121,670  
The model has controls for precipitation, humidity, the characteristics of the respondent and the 

interview day (gender, age, education, labor market status, household size, day-of-week, public 

holiday), and county-by-year-by-month fixed effects. Standard errors clustered at the county and 

individual levels are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

 

Table A10. The effects of temperatures by age 

 Young Middle-aged Older 
p 

(1) vs. (2) 

p 

(1) vs. (3) 

p 

(2) vs. (3) 

Daily mean 

temperature (°C) 
(1) (2) (3) (4) (5) (6) 

≤5 -2.2 (2.4) -1.1 (1.7) 4.3* (2.3) 0.67 0.08 0.09 

5 to 10 ref. cat. ref. cat. ref. cat.  
  

10 to 15 -1.6 (3.7) -2.6* (1.5) -1.2 (3.5) 0.80 0.94 0.67 

15 to 20 0.9 (2.1) -3.8 (2.8) -6.6* (3.2) 0.05 0.04 0.50 

20 to 25 -3.6 (3.0) -7.0* (3.5) -10.2* (5.8) 0.34 0.27 0.46 

>25 -5.1 (4.3) -9.1 (5.5) -28.4*** (4.2) 0.53 0.00 0.01 

R-squared 0.16    

N 121,670    
The model has controls for precipitation, humidity, the characteristics of the respondent and the interview day 

(gender, age, education, labor market status, household size, day-of-week, public holiday), and county-by-year-

by-month fixed effects. Standard errors clustered at the county and individual levels are in parentheses. * p < 0.10, 
** p < 0.05, *** p < 0.01 
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Table A11. The effects of temperatures by gender 

 Male Female 
p 

(1) vs. (2) 

Daily mean 

temperature (°C) 
(1) (2) (3) 

≤5 -1.0 (2.2) 0.1 (1.4) 0.66 

5 to 10 ref. cat. ref. cat. 
 

10 to 15 -2.9 (2.5) -0.9 (2.0) 0.51 

15 to 20 -3.7 (2.2) -1.3 (2.1) 0.24 

20 to 25 -11.8*** (3.5) -1.3 (2.9) 0.00 

>25 -18.6*** (4.5) -6.8* (3.5) 0.03 

R-squared 0.16  

N 121,670  
The model has controls for precipitation, humidity, the characteristics of the respondent and the 

interview day (gender, age, education, labor market status, household size, day-of-week, public 

holiday), and county-by-year-by-month fixed effects. Standard errors clustered at the county and 

individual levels are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

 


