ECONSTOR

Working Paper
 Interpreting the will of the people: Social preferences over ordinal outcomes

Working Paper, No. 395

Provided in Cooperation with:
Department of Economics, University of Zurich

[^0]This Version is available at: https://hdl.handle.net/10419/282183

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

[^1]

University of Zurich ${ }^{\text {ZZH }}$

University of Zurich
Department of Economics

Working Paper Series
ISSN 1664-7041 (print)
ISSN 1664-705X (online)

Working Paper No. 395

Interpreting the Will of the People: Social Preferences over Ordinal Outcomes

Sandro Ambuehl and B. Douglas Bernheim

Revised version, January 2024

Interpreting the Will of the People

Social Preferences over Ordinal Outcomes

Sandro Ambuehl, B. Douglas Bernheim*

January 5, 2024

Abstract

We investigate the nature of social preferences when a decision maker's information is limited to group members' ordinal rankings. By studying choices made on behalf of others, we identify social choice rules that embody the normative values decision makers implicitly favor. Few people are attracted to majority or plurality rule as a normative principle. Most favor scoring rules that promote compromise. People evaluate relative sacrifice by inferring cardinal utility from ordinal ranks, but also care about ranks intrinsically. Cluster analysis reveals that our social preference classification is comprehensive. Ordinal aggregation principles are stable across domains and countries with divergent traditions. JEL codes: C91, D71

[^2]
1 Introduction

Envision a benevolent party (a "Planner") who must make a decision that impacts the members of some group ("Stakeholders"). The Planner possesses reliable information about the Stakeholders' ordinal preferences over the available options ("within-menu rankings"), but not about their cardinal preferences (intensity). How would the typical individual in the role of Planner determine the "best" choice for the group? In other words, what is the nature of social preferences over ordinal rank profiles?

This issue is of broad importance for at least two reasons. First, people often make decisions for groups in settings where information about cardinal preferences is unavailable. Outcomes often have important non-monetary components, and few decision makers are equipped to convert those components into monetary equivalents (e.g., equivalent variation, willingness-to-pay). Many institutions elicit ordinal preferences over the available options (rankings or binary comparisons) rather than expressions of intensity. Such procedures are used in matching markets, committee deliberations, and elections. In other settings, parties may have confidence in available ordinal information, but not in available cardinal information. For example, in workplace settings, a supervisor charged with allocating a diverse set of assignments may learn which tasks individual team members prefer without being able to distinguish strong tastes from a tendency to complain. A parent who selects restaurants for family meals may learn each child's ranking over the alternatives while remaining skeptical about expressions of intensity.

Second, ordinal rank profiles may play an intrinsic role in social preferences. One reason is that people may care directly about ordinal consequences. For example, a Planner concerned with fairness may wish to avoid selecting an option that any group member ranks last. ${ }^{1}$ Alternatively, a Planner might feel ethically obliged to follow the will of the majority. Another reason is that, in the spirit of Arrow (1951), people may intuitively question the validity of cardinal interpersonal utility comparisons. For example, they may sense that different people derive different levels of pleasure from the same amount of money, but distrust their own ability to gauge that differential. For these reasons, inquiries into social preferences that impose the cardinal Bergson-Samuelson structure - the predominant approach in the pertinent literature (e.g. Engelmann and Strobel, 2004; Bolton and Ockenfels, 2006; Jackson and Yariv, 2014)—may improperly identify underlying objectives.

Social preferences over ordinal rank profiles manifest themselves through desired social choice rules - that is, functions that map each ordinal preference profile over a given set of alternatives to a selection from that set. The choices Planners make on behalf of others reveal the social choice rules that embody the normative values they implicitly favor. In addition to improving our understanding of decision making by group leaders, analyzing revealed social preferences in this way illuminates considerations that shape public policy. For example, a society that favors the normative values associated with the Borda criterion and antiplurality (discussed below) will tend to provide protections

[^3]for minority populations. In contrast, a society that applauds the normative values underlying the Condorcet criterion will be susceptible to what Mill, in On Liberty, termed the "tyranny of the majority" (Mill, 1869). Additionally, under the view that representative democracies ought to defer to citizens' judgments about appropriate criteria for preference aggregation, positive analyses of social choice carry normative implications.

Our analysis addresses four main questions. First, what social choice rules do people implicitly adopt when they are free to impose their underlying social preferences? For instance, do they seek compromise solutions, or insist that the majority should prevail? Second are these rules stable, or do they vary from context to context? To what extent do they reflect structural principles of preference aggregation, rather than contextual adaptations? Third, are social preferences over ordinal rank profiles intrinsic (a possibility discussed above), derivative, or both? By derivative, we mean that ordinal information matters only insofar as it provides a basis for Planners with standard BergsonSamuelson social welfare functions to draw inferences about cardinal outcomes, a hypothesis traceable to Borda (1781) (see also Apesteguia et al., 2011). Fourth, do aggregation preferences vary across cultures with divergent political and social traditions, and might such variation help to explain policy differences?

Our analysis departs from a large literature beginning with Arrow (1950) that attempts to identify ideal aggregation criteria. Arrow's celebrated Impossibility Theorem shows that a collection of appealing axioms renders ideal aggregation unachievable. Yet groups cannot avoid preference aggregation merely because they might run afoul of a theoretical axiom. One way or another, they routinely make implicit or explicit judgments about tradeoffs between different members' objectives. Accordingly, as in the literature on social preferences over cardinal outcomes (reviewed in Fehr and Charness, 2023), our perspective is explicitly positive rather than normative.

By interpreting a social choicer rule as an expression of social preferences rather than as a procedure for group decision making, our analysis also departs from a large literature, beginning with Gibbard (1973) and Satterthwaite (1975), on implementability. ${ }^{2}$ While issues of manipulability inevitably arise in practice, they pertain to the constraints that appear in mechanism design problems, rather than to the objective functions decision makers seek to maximize subject to those constraints. It is the latter we seek to illuminate. Knowing, for example, that people favor the normative values underlying highly manipulable social choice rules helps to explain why Planners sometimes defect from announced incentive-compatible decision criteria after group members have submitted their preferences (see Featherstone, 2019, for evidence). Accordingly, we follow the literature on social preferences over cardinal outcomes by studying settings in which Planners are unencumbered by these incentive problems, and therefore free to express their true distributional objectives. Adopting a similar perspective, Borda described his famous rule as intended for "honest men" (quoted in Black,

[^4]1958).

Identifying the rules that govern social preferences over ordinal rank profiles is conceptually challenging. Even in simple social choice problems (e.g., with five people and three options), the set of possible mappings from group members' preference profiles to best social choices is astronomically large. We therefore proceed in four steps. First, drawing on the theoretical literature, we identify a reasonably large set of plausible aggregation rules. Each rule implies a distinctive fingerprint of implied best choices over the set of conceivable five-person three-option preference profiles. Second, we conduct an experiment in which subjects in the role of Planner make a series of decisions for groups of Stakeholders. We assign each subject to one of various pre-specified rules using a Bayes classifier, which identifies the best match between each subject's empirical fingerprint and the theoretical fingerprints associated with the rules. Third, we corroborate the classifications using a handful of discerning four-option social choice problems. Fourth, we use a clustering algorithm to determine whether our pre-specified rules omit empirically important possibilities.

We elicit subject-level empirical fingerprints by requiring each Planner to make decisions for multiple preference profiles, knowing that any one of them may involve a real group of Stakeholders who care about the outcome. The Planners' decisions are of two types: assignment decisions (distributing five work tasks among five Stakeholders), and political priority-setting (assigning a contribution on behalf of five Stakeholders to a single Swiss political party). We call these the work domain and the political domain, respectively. Most of our analysis focuses on the work domain; we examine the political domain to evaluate context-sensitivity. Because we are interested in identifying structural aggregation preferences, we design the experiment to remove considerations arising from self-interest, paternalism (i.e., the tendency to ignore or discount Stakeholder judgments with which the Planner disagrees, as in Ambuehl et al., 2021a), and the potential incentive incompatibility of truthful preference revelation by Stakeholders.

In answer to the first question (which rules do people use?), we find that the overwhelming majority of subjects behave as if they rely on scoring rules, which assign a score to each rank and select best options based on the total scores. Such rules violate Arrow's axioms (specifically, Independence of Irrelevant Alternatives, abbreviated IIA). ${ }^{3}$ The two most common as-if aggregation criteria are the Borda rule (for which the score is linear in ranks), and near-antipluralilty (where antiplurality rule minimizes the number of last-place ranks). A sizable majority ($>60 \%$) of subjects employ strictly concave scoring rules, of which antiplurality is an example. Substantively, these rules imply an even stronger social preference for compromise than the Borda rule; technically, they have the property that

[^5]improvements in low ranks are more important than improvements in high ranks. Condorcet (majoritarian) rules are relatively rare, as is the related concept of plurality rule, and likewise associated runoff criteria. Neither do people often gravitate toward supermajority or unanimity (Pareto) rules, even though those also provide minorities with varying degrees of protection. The classification's fit is excellent: empirical and theoretical fingerprints for assigned rules are remarkably similar. Analysis of discerning four-option profiles corroborates our conclusions. Clustering analysis identifies only one non-pre-specified rule of consequence ($>2 \%$ of subjects), and it differs from near-antiplurality on only one of 17 preference profiles. Many of the rules that mirror our subjects' choices are used in practice. ${ }^{4}$

The prevalence of strictly concave scoring rules calls to mind the familiar cardinal concept of a strictly concave Bergson-Samuelson social welfare function. However, these concepts are distinct. Even if social preferences over ordinal rank profiles derive from cardinal inferences, the scoring function would not necessarily inherit the curvature properties of the cardinal welfare function. The curvature of the inference function would also come into play. Similarly, the prevalence of antiplurality calls to mind the familiar cardinal concept of the minimax criterion. However, apart from focusing on those who are in some sense less fortunate, these are fundamentally incompatible concepts: antiplurality judges misfortune according to an individual's own rankings within a menu, while maximin judges misfortune according to interpersonal comparisons.

In answer to the second question (stable structure versus contextual adaptations), we find that our classifications are highly predictive of choices out of sample, even across domains. This result reassures us that social preferences over ordinal rank profiles entail stable structural elements. This is not to say that the distribution of rules is the same in the work domain and the political domain. On the contrary, the differences between these distributions, though relatively small, are systematic and statistically significant, which points to a degree of context-specificity.

In answer to the third question, we find that social preferences over ordinal rank profiles are both intrinsic and derivative. First we test whether subjects aggregate ordinal preferences based in part on inferences about cardinal utility. We use two empirical strategies. One is to check whether choices conform to Sen's α, which states that the removal of an unchosen option from an opportunity set should not alter the selection from that set. We exhibit settings for which choices satisfy Sen's α when the preference rankings provided to the Planner include the unavailable item, but severely violate Sen's α when we also remove the item from the rankings. We infer that subjects likely draw inferences about the intensity of preferences from comparisons with options that are generally considered undesirable. The other strategy is to examine the correlation between best-fit scoring parameters and the scoring parameters our Planners would use if they were money-metric utilitarians,

[^6]given their elicited beliefs about Stakeholders' reservation valuations for first-, second-, and thirdranked choices. These correlations corroborate the importance of cardinal inferences.

Next, we show that Planners' choices are consistent with the hypothesis that they also care intrinsically about Stakeholders' ordinal rankings, entirely apart from any cardinal inferences they draw from those rankings. We conduct a supplemental experiment involving monetary payoffs in which we disable the cardinal inference mechanism by revealing these payoffs to the Planner. In one set of treatments, we ask whether the Planners' choices are sensitive to swapping Stakeholders' payoffs for a subset of options (swap treatments) in a way that changes the menu-specific ordinal ranking profile but leaves each option's cardinal properties unaltered. A second set of treatments involves deleting one option from a three-option menu (deletion treatments), which can change the ordinal ranks for the remaining options without affecting the payments they yield. In both cases, we find that the modifications change Planners' choices. Significantly, Planners sometimes choose alternatives that yield strictly inferior cardinal payoff distributions (in the sense of first-order dominance) in order to achieve more favorable rank distributions.

To answer to the fourth question (comparisons across countries), we run supplemental experiments using general population samples, wherein social choices determine the allocation of a contribution over well-known charities. We find that the distributions of aggregation preferences in the U.S. and Sweden, countries with divergent political and social traditions, are remarkably similar, and both resemble the distribution for the student sample used in our main experiment. ${ }^{5}$ Policy differences may therefore be attributable to other factors, such as beliefs, historical accidents, institutions, and/or equilibrium selection, as hypothesized by Alesina and Angeletos (2005). Nevertheless, we find suggestive evidence that the use of more concave scoring rules in experimental decisions correlates with a preference for electing compromise candidates.

Most broadly, our paper contributes to the literature on positive welfare economics, which uses empirical methods to determine how people evaluate the well-being of other individuals and groups (see, e.g., Konow, 2003; Gaertner, 2009; Gaertner and Schokkaert, 2012; Andreoni et al., 2020; Almås et al., 2020; Ambuehl et al., 2021a), and to the literature on social preferences (reviewed in Fehr and Charness, 2023). While most of the latter concerns self-other tradeoffs, a handful of papers study other-other tradeoffs (Jackson and Yariv, 2014; Engelmann and Strobel, 2004; Bolton and Ockenfels, 2006). We extend that research agenda to settings in which people aggregate others' ordinal rankings rather than their cardinal payoffs. Just as in the existing literature on social preferences, we focus on a tractable domain consisting of simple collective choice problems (small groups, small menus) that are rich enough to permit the expression of potentially generalizable attitudes, and then provide supplementary evidence that the qualitative properties of preferences within that domain apply more broadly. Our analysis points to a limitation of the typical preference formulations considered in

[^7]existing studies, in that they assume people care exclusively about cardinal payoffs, and attach no intrinsic weight to (within-menu) ordinal rankings.

To our knowledge, only a handful of previous papers have attempted to address the problem of ordinal preference aggregation from a positive perspective. The most closely related paper is Kara and Sertel (2005), which uses hypothetical choices over abstract options for four preference profiles to determine the best fit among three ordinal aggregation rules. Unlike the current paper, they did not examine the relation between ordinal and cardinal aggregation. Furthermore, our analysis uses far more exhaustive lists of rules and preference profiles, studies real choices, checks for the presence of omitted rules, tests out-of-sample predictive accuracy, and examines stability across domains and cultures. Our finding that subjects overwhelmingly favor the normative values underlying scoring rules is consistent with Featherstone (2019), who shows that, in the context of matching markets, policymakers often evaluate matches based on rank distributions (a special case of scoring rules). Other related work elicits subjects' preferences over (five or fewer) voting procedures, rather than over outcomes (Engelmann and Grüner, 2017; Hoffmann and Renes, 2017; Engelmann et al., 2020). ${ }^{6}$ In these experiments, it is up to the subjects to imagine what each rule might imply for any particular preference profile. Those inferences are often non-trivial, and it is possible that a subject would reject a seemingly appealing rule after learning what it implies. Choices over procedures rather than outcomes may also implicate strategic considerations, which we intentionally remove from our study in order to recover underlying social preferences.

This paper complements the theoretical social welfare literature (Arrow et al., eds, 1991, 2010; Fishburn, 2015; Brandt et al., 2016) by empirically documenting the normative appeal of the value judgments underlying various rules. By examining the tendency for people to make cardinal inferences from ordinal information about preferences, we also provide empirical context for a theoretical literature on utilitarian-optimal voting rules (de Laplace, 1812; Weber, 1978; Merrill III, 1984; Apesteguia et al., 2011; Boutilier et al., 2015; Pivato, 2016). Moreover, the low frequency with which choices conform to Condorcet rules suggests that most people do not accept Condorcet efficiency (the frequency with which a rule selects the Condorcet winner when one exists; Merrill III, 1984; Van Newenhizen, 1992; Baharad and Nitzan, 2003) as normatively appealing.

The remainder of the paper is organized as follows. Section 2 lays out our main strategy for understanding the criteria people implicitly use to make decisions on behalf of groups when they only have ordinal information about others' preferences. Section 3 details our experimental design. Section 4 provides our classification results and all associated analyses. It also discusses our supplementary experiment, which examines whether Planners care intrinsically about Stakeholders' ordinal rankings. Section 5 describes our supplementary experiments involving general population samples. Section 6

[^8]concludes.

2 Conceptual framework

We are concerned with settings in which a decision maker, the Planner, must make a selection from a set of K social options, \mathcal{A}, on behalf of N Stakeholders. Each option has direct consequences for the Stakeholders, but the Planner is not materially affected by her decision. We assume throughout that each Stakeholder i has a linear preference ordering \succsim_{i} over \mathcal{A}. To avoid technicalities, we assume the orderings are strict - a property that is, in any case, generic. Before making a decision, the Planner learns the group's ordinal preference profile, $P=\left(\succ_{1}, \ldots, \succ_{N}\right)$. We interpret social choice rules as expressions of Planners' social preferences. Any such rule provides a complete account of the Planner's choices for every preference profile; in other words, it is a mapping R from preference profiles into nonempty subsets of \mathcal{A} (best choices). A resolute rule admits no ties, in the sense that it maps every profile to single option. A rule is irresolute if at least one preference profile maps to a non-singleton set, indicating that there is more than one best choice.

It bears emphasis that, for the purpose of this study, we do not interpret social choice rules as procedures for group decision making. While any given social choice rule, such as a voting rule, may have a procedural flavor, we do not contend that, in making decisions for their assigned groups, our subjects consciously apply such procedures. Nor does our experiment speak to questions concerning attributes of these procedures, such as procedural fairness, other than the outcomes they produce. Our approach parallels consumer theory, which uses utility functions to summarize preference relations, but does not assert that consumers choose by computing the maxima of those functions.

The task of identifying the rule that best describes a Planner's aggregation preferences is challenging because the set of possibilities is astronomically large. To illustrate, consider a simple setting with 5 Stakeholders, where the Planner must choose among 3 options. In that case, the domain of any social choice rule satisfying anonymity (meaning that the rule treats all Stakeholders symmetrically) and neutrality (meaning that the rule treats all social options symmetrically) consists of 42 distinct preference profiles. ${ }^{7}$ A social choice rule maps each of these profiles to a subset of the three options. Because there are seven such subsets, there are $7^{42}=3.1 \times 10^{35}$ possible social choice rules for this simple environment. While most are unreasonable, 3.5×10^{28} exhibit no Pareto violations. ${ }^{8}$

Because the set of potential social choice rules is so vast, our analysis proceeds in three steps. First, based on the literature, we identify a reasonably large collection of social choice rules encompassing

[^9]the most plausible alternatives. Second, we classify Planners according to the pre-specified rules that most closely match their actual choices. Third, we deploy clustering analysis to determine whether our pre-specified rules omit empirically important alternatives.

In the remainder of this section, we summarize various social choice rules that may describe our subjects' aggregation preferences, and explain conceptually how we distinguish among them.

2.1 Familiar social choice rules

The literature sorts social choice rules into three broad classes. Scoring rules assign points to ranks and select all point-maximizing alternatives. Several familiar rules fall within this class. The Borda rule emerges when the number of points assigned to rank k declines linearly with k. The Plurality rule assigns a positive number of points to the first rank and zero to all other ranks. Hence, it maximizes first-place ranks. Its opposite, the antiplurality rule, minimizes last-place ranks by assigning zero points to the lowest ranked alternative and an equal, positive number of points to every other rank.

The class of Condorcet extensions derives from the Condorcet method, also known as pairwise majority. The objective of that method is to select an option that majority-defeats all others (a Condorcet winner). A well-known limitation of the majority-preference relation is that it can cycle, in which case a Condorcet winner may not exist. Consequently, a Condorcet extension selects a Condorcet winner when one exists, but otherwise employs some other criterion (Brandt et al., 2016). An example is the top cycle or Smith set, defined as the smallest collection of options that majoritydefeat all options in the complement of the set. Other examples include Black's rule, which selects the Borda winner when a Condorcet winner fails to exist, and the Kemeny-Young method, which selects the winner for the non-cyclical profile that is Kendall-tau-closest to a given cyclical profile. Condorcet extensions are nested within a more general class of p-supermajority rules. The p-supermajority criterion declares option A better than option B if the fraction of Stakeholders who prefer A to B is at least p. For Condorcet, p is the strict majority threshold; for Unanimity rule (also know as the Pareto rule), $p=1$. Intermediate cases entail supermajority rule.

The third class consists of multistage rules, which winnow down the set of alternatives in a series of steps. They introduce almost limitless possibilities, inasmuch as they can, in principle, apply different criteria in each step. This class includes scoring runoff rules, which repeatedly eliminate the alternative with the lowest score until only one option remains (see Freeman et al., 2014). A wellknown example is the single transferable vote rule, which iteratively deletes options with the lowest plurality scores. Another is Baldwin's rule, which iterates the Borda score.

2.2 Main identification strategy

Our main empirical analysis studies choice problems involving 5 Stakeholders and 3 options. This focus offers three advantages.

First, 5-Stakeholder 3-option problems are the simplest and hence most cognitively manageable settings that provide adequate scope for differentiation among a broad collection of rules.

Second, with K options, the set of scoring rules is a $K-2$ parameter family. Consequently, when $K=3$, we can associate each scoring rule with a single parameter, s. To understand this point, note that without loss of generality, we can assign a score of 1 to a Stakeholder's highest-ranked alternative, and a score of 0 to her lowest-ranked alternative. The parameter $s \in[0,1]$ is then the score assigned to the middle alternative. The cases of $s=0, s=1 / 2$, and $s=1$ correspond to the Plurality, Borda, and Antiplurality rules, respectively. The one-dimensionality of this class facilitates the interpretation of our results. In particular, the function relating ranks to weights is concave when $s>1 / 2$, and convex when $s<1 / 2$. Concavity (convexity) implies that replacing a third-place rank with a second-place rank is more (less) valuable than replacing a second-place rank with a first-place rank. Accordingly, concave scoring rules codify an aversion to giving Stakeholders their least favorite choices, while convex scoring rules codify an attraction to giving Stakeholders their favorite choices. These observations suggest that scoring rules may reflect inferences about cardinal utility. They also suggest the interpretation of concavity as appreciation of compromise.

Third, with 5 Stakeholders and 3 options, we can in principle investigate choices exhaustively on the entire preference domain (42 distinct strict preference profiles) by eliciting a choice for every conceivable profile. In practice, many of the 42 preference profiles provide little or no discernment among rules. For example, if all Stakeholders have the same ranking, the best social choice is obvious. Including such problems lengthens the experiment, thereby risking the erosion of subjects' effort and attention, without adding significant value. Accordingly, we omit profiles that provide little or no differentiation among well-known rules.

Our analysis is based on the 17 discerning profiles listed in Table $1,{ }^{9}$ which also shows how these profiles differentiate among familiar social choice rules. For example, if a subject uses a scoring rule, we can determine the parameter s from the choices they make for profiles 1 through 11 . To understand this point, first consider profile 11. Because all Stakeholders rank option B second, its score is $S_{s}(B)=5 s$. Four Stakeholders rank option C first and one ranks it third, so its score is $S_{s}(C)=4$. Option A is rank-dominated by C, so no scoring rule will select it. Therefore, the subject will choose option B if $S_{s}(B)>S_{s}(C)$, or equivalently, $s>0.8$, and will choose option C if $s<0.8$. If $s=0.8$, the subject is indifferent between options B and C. Now consider profile 6 , which differs from profile 11 only in that Stakeholder 2's preferences between A and C are reversed. Reasoning as before, we see that scoring rules select B over C when $s>0.6$. Indeed, for each of these eleven profiles, there is a threshold \bar{s} at which the optimal choice for a scoring rule with parameter s switches from the alternative listed in column 7 to the alternative listed in column 5 . These thresholds divide the interval $[0,1]$ into a sequence of subintervals with boundaries in the set $\mathcal{C}=\left\{0, \frac{1}{3}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, 1\right\}$. The subject's decisions place their scoring parameter in one of these intervals. In some cases, we can

[^10]Table 1: Three-alternative profiles.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Index	Profile	Rule predictions										
		Scoring cutoff	Scoring rules. $s \in$					Condorcet	Runoff rules, $s \in$			
		\bar{s}	\{0\}	$(0, \bar{s})$	$\{\bar{s}\}$	$(\bar{s}, 1)$	\{1\}			$\left(\frac{1}{3}, \frac{1}{2}\right)$	$\left(\frac{1}{2}, 1\right)$	\{1\}
1*	$\begin{array}{lllll} \text { A A C C } & \text { C } \\ \text { B } & \text { B A A A } \\ \text { C } & \mathrm{C} & \mathrm{~B} & \mathrm{~B} & \mathrm{~B} \end{array}$	1/3	C	C	\{A,C $\}$	A	A	C	C	C	C	\{A,C $\}$
2	$\begin{array}{lllll} \text { A } & \text { C } & \text { C } & \text { B } \\ \text { B } & \text { A A } & \text { A } & \text { A } \\ \text { C } & \text { B } & \text { B } & \text { C } & \text { C } \end{array}$	1/3	\{B,C $\}$	B	\{A,B $\}$	A	A	A	B	A	A	\{A,B\}
	$\begin{array}{lllll} \text { A } & \text { A } & \text { C } & \text { C } \\ \text { B } & \text { C } & \text { B } & \text { B } \\ \text { C } & \text { B } & \text { A } & \text { A } \end{array}$	1/2	A	A	\{A,C $\}$	C	C	A	A	A	A	\{A,C $\}$
4^{*}	A A B B B B C A A A C B C C C	1/2	B	B	\{A,B	A	A	B	B	B	B	\{A,B
	$\begin{array}{lllll} \text { A } & \text { C } & \text { C } & \text { B } \\ \text { B } & \text { B } & \text { B } & \text { A } \\ \text { C A } & \text { A } & \text { A } & \text { C } \end{array}$	1/2	C	C	\{B,C $\}$	B	B	C	C	C	C	\{B,C $\}$
6^{*}	$\begin{array}{lllll} \text { A A A } & \text { C } & \text { C } \\ \text { B } & \text { B } \\ \text { C } & \text { C } & \text { A } & \text { A } & \text { A } \end{array}$	$3 / 5$	C	C	\{B,C $\}$	B	B	C	C	C	C	\{B,C $\}$
	$\begin{array}{lllll} \text { A } & \text { C } & \text { C } & \text { B } \\ \text { B } & \text { A } & \text { B } & \text { A } \\ \text { C } & \text { A A } & \text { A } & \text { C } \end{array}$	$2 / 3$	C	C	\{B,C $\}$	B	B	C	C	C	C	\{A,B\}
8*	$\begin{array}{lllll} \text { A } & \text { C } & \text { C } & \text { B } \\ \text { B } & \text { B B } & \text { A } \\ \text { C } & \text { A } & \text { A } & \text { A } & \text { } \end{array}$	2/3	C	C	\{B,C $\}$	B	B	C	C	C	C	\{B,C $\}$
	$\begin{array}{lllll} \text { A } & \text { A } & \text { A } & \text { B } & \text { B } \\ \text { B } & \text { C } & \text { C } & \text { C } \\ \text { C } & \text { B } & \text { A } & \text { A } \end{array}$	3/4	A	A	\{A,C $\}$	C	C	A	A	A	A	\{A,C $\}$
	$\begin{array}{lllll} \text { A } & \text { C } \\ \text { B } & \text { A A A A A } \\ \text { C } & \text { B } \end{array}$	3/4	C	C	\{A,C $\}$	A	A	C	C	C	C	\{A,C $\}$
11^{*}	$\begin{array}{lllll} \text { A } & \text { C } \\ \text { B } & \text { B } & \text { B } & \text { B } \\ \text { C } & \text { A } & \text { A } & \text { A } \end{array}$	4/5	C	C	\{B,C $\}$	B	B	C	C	C	C	\{B,C $\}$
12	$\begin{array}{lllll} \text { A } & \text { C } & \text { C } & \text { B } \\ \text { B } & \text { A } & \text { C } & \text { C } \\ \text { C } & \text { B } & \text { B } & \text { A } & \text { A } \end{array}$	0	-	-	\{B,C $\}$	C	C	\{A,B,C	B	B	B	\{A,C $\}$
13	$\begin{array}{lllll} \text { A } & \text { C } & \text { B } & \text { B } \\ \text { B } & \text { A } & \text { C } & \text { A } \\ \text { C } & \text { B } & \text { B A } & \text { C } \end{array}$	1/2	\{B,C $\}$	\{B,C $\}$	\{A,B,C $\}$	A	A	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$	B	B	\{A,B,C $\}$	\{A,B,C $\}$
14	$\begin{array}{lllll} \text { A } & \text { C } & \text { C } & \text { B } \\ \text { B A } & \text { B } & \text { C } & \text { C } \\ \text { C } & \text { B A } & \text { A } & \text { A } \end{array}$	0	-	-	\{B,C $\}$	\{B,C $\}$	$\{\mathrm{B}, \mathrm{C}\}$	B	B	B	B	\{B,C $\}$
15	$\begin{array}{lllll} \text { A } & \text { C } & \text { C } & \text { B } \\ \text { B } & \text { A } & \text { A } & \text { A } \\ \text { C } & \text { B A } & \text { C } & \text { C } \end{array}$	0	-	-	\{B,C $\}$	B	\{A,B\}	B	B	B	B	\{A,B\}
16	$\begin{array}{lllll} \text { A } & \text { C } & \text { B } & \text { B } \\ \text { B A } & \text { C } & \text { A } \\ \text { C } & \text { A A A } \end{array}$	0	-	-	\{B,C $\}$	B	B	B	B	B	B	\{A,B\}
17	$\begin{array}{lllll} \text { A } & \text { C } & \text { C } & \text { B } \\ \text { B } & \text { B } & \text { A } & \text { A } \\ \text { C } & \text { A } & \text { A } & \text { C } & \text { C } \end{array}$	0	-		$\begin{aligned} & \{\mathrm{B}, \mathrm{C}\} \\ & 10 \end{aligned}$	B	B	B	B	B	B	\{A,B

Notes: Each profile is displayed as a 3×5-matrix. Columns correspond to Stakeholders and rows to preference ranks. A Stakeholder's first, second, and third-ranked alternatives are listed in the first, second, and third rows, respectively. For Condorcet-cyclical profiles, we indicate the set of options in the top-cycle. For decisions in the political domain, we only use the profiles indicated with an asterisk.
also distinguish choices corresponding to scoring parameters at the boundaries of these intervals. ${ }^{10}$
The remaining profiles provide further scope for differentiating among social choice rules. For example, because profiles 12 and 13 exhibit Condorcet cycles, all three options are best choices according to the top-cycle Condorcet extension, but not according to many other rules.

Each social choice rule generates a "fingerprint" of selections across the 17 preference profiles; see Figure 1. Each column in the figure represents a 5 -Stakeholder 3-option preference profile, which we identify in the first panel. For example, the first column corresponds to the profile wherein two Stakeholders prefer A to B to C, while three prefer C to A to B. Each subsequent panel corresponds to a specified social choice rule; it shows the options that rule selects for each preference profile. Each subject's sequence of choices also generates a fingerprint. We will assign each subject to the rule with the fingerprint that matches her own most closely.

Our main classification results encompass 22 benevolent social choice rules. ${ }^{11}$ We start with the 15 distinguishable rules that emerge from the scoring method. We can differentiate between $s=\frac{1}{2}$ (the Borda rule), 5 ranges of scoring parameters in the convex region (the most extreme of which corresponds to Plurality rule), and 10 ranges of strictly concave rules (the most extreme of which corresponds to Antiplurality rule). Our data can also differentiate among 4 social choice rules that emerge from the scoring runoff method. These rules correspond to values of s in the following ranges: $\left[0, \frac{1}{3}\right],\left(\frac{1}{3}, \frac{1}{2}\right)$, and $\left[\frac{1}{2}, 1\right)$, as well as $s=1 .{ }^{12}$ Finally, we can distinguish three social choice rules that emerge from the p-supermajority top-cycle method. These rules correspond to values of p in the following ranges: $\left[\frac{1}{2}, \frac{3}{5}\right],\left(\frac{3}{5}, \frac{4}{5}\right]$, and $\left(\frac{4}{5}, 1\right]$. Henceforth we adopt a slight abuse of terminology and call these rules Condorcet, Supermajority, and Unanimity, respectively. While our basic classification does not include other Condorect extensions, we conduct robustness analyses to determine whether this omission is material.

Because we distinguish between social choice rules based on their fingerprints, larger differences between fingerprints facilitate more reliable classifications. Figure 2 tabulates, for each pair of social choice rules, the number of preference profiles (out of the 17 we use for identification) for which their implications differ. Two patterns stand out. First, in the vast majority of cases, different rules have different implications for large numbers of profiles. Ignoring the diagonal, few of the entries in Panel A are less than 3, and many are greater than 8 , indicating differences on more than half of profiles. Second, three clusters of similar rules are visible. The first and second clusters consist of the strictly

[^11]Figure 1: Fingerprints of an example selection of social choice rules.

Notes: Each column corresponds to a three-alternative preference profile. The profiles appear in the top panel: each cell shows the number of Stakeholders with the preference ranking indicated to the left of the row. In the second through fifth panels, we use dark shading if the rule chooses the corresponding option, and no shading if the rule does not choose the option. Non-resolute rules choose more than one option for some profiles. We use intermediate shades to indicate the number of tied options.
convex and strictly concave scoring rules, respectively. Because these rules are members of the single family that is indexed by a continuous parameter s, adjacent rules tend to differ on small numbers of profiles, but more distant scoring rules are more easily differentiated. The third cluster consists of the scoring runoff rules with $s<1$. Observe also that the Condorcet rule as well as the runoff rules, align more closely with convex scoring rules than with concave scoring rules. Hence, a preference for compromise may push subjects away from Condorcet extensions and runoff rules.

3 Experimental design

Overview We assign subjects to one of two roles: each Planner ('she') chooses alternatives that potentially affect groups of five Stakeholders ('he'). The only purpose of including Stakeholders in

Figure 2：Distance between rules．

	－1m				mb		N1m		м＞		＋100		－		－1m	－19	$\stackrel{-}{ }$						
－	\checkmark	－10	\checkmark	1	v_{∞}	mu	V_{∞}	ताल	v_{∞}	0	v	\cdots			$\checkmark 1$	\cdots	$\stackrel{\rightharpoonup}{V}$						
\｜	\checkmark	11	\checkmark	$\\|$	\checkmark	mos	\checkmark	Nm	\checkmark	11	\checkmark	11	\checkmark	$\stackrel{\rightharpoonup}{\\|}$	∞	$\stackrel{\infty}{\vee}$	$\stackrel{\otimes}{\vee}$	$\stackrel{7}{11}$		家			
∞	\bigcirc	\sim	710	－		－	910	∞	N10	\cdots	ツば	∞	710	\cdots	V1	－m	－	∞	＊	\％			
	$\begin{aligned} & \text { of } \\ & \text { ô } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \text { bo } \\ & \text { E. } \\ & \text { 8 } \end{aligned}$	$\begin{aligned} & \text { en } \\ & \text { 苞 } \\ & \text { م } \end{aligned}$	$\begin{aligned} & \text { 60 } \\ & \text { 苞 } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { 苞 } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { bo } \\ & \text { B } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { en } \\ & \text { 苞 } \\ & \dot{\omega} \end{aligned}$	$\begin{aligned} & \text { bo } \\ & \text { E } \\ & \text { B } \\ & \text { n } \end{aligned}$	$\begin{aligned} & \text { ê } \\ & \text { 范 } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \text { bô } \\ & \text { E } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { ê } \\ & \text { 苟 } \\ & 0 \end{aligned}$		$\begin{aligned} & \text { ê } \\ & \text { 島 } \\ & \text { © } \end{aligned}$		$\begin{aligned} & \text { Hi } \\ & \text { 相 } \end{aligned}$	合 先		为	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$		䂞		

Scoring, $s=0$
Scoring, $0<s<\frac{1}{3}$
Scoring, $s=\frac{1}{3}$
Scoring, $\frac{1}{3}<s<\frac{1}{2}$
Scoring, $s=\frac{1}{2}$
Scoring, $\frac{1}{2}<s<\frac{3}{5}$
Scoring, $s=\frac{3}{5}$
Scoring, $\frac{3}{5}<s<\frac{2}{3}$
Scoring, $s=\frac{2}{3}$
Scoring, $\frac{2}{3}<s<\frac{3}{4}$
Scoring, $s=\frac{3}{4}$
Scoring, $\frac{3}{4}<s<\frac{4}{5}$
Scoring, $s=\frac{4}{5}$
Scoring, $\frac{4}{5}<s<1$
Scoring, $s=1$
Runoff, $0 \leq s \leq \frac{1}{3}$
Runoff, $\frac{1}{3}<s<\frac{1}{2}$
Runoff, $\frac{1}{2}<s<1$
Runoff, $s=1$
Condorcet
Supermajority
Unanimity

0	5	6	6	10	10	11	11	13	13	15	15	16	16	16	7	7	7	16	7	15	17
5	0	2	2	6	6	7	7	9	9	11	11	12	12	13	3	4	4	16	4	15	17
6	2	0	2	6	6	7	7	9	9	11	11	12	12	13	5	5	5	14	5	15	16
6	2	2	0	4	4	5	5	7	7	9	9	10	10	11	5	4	4	16	4	15	17
10	6	6	4	0	4	5	5	7	7	9	9	10	10	11	8	7	6	12	6	14	15
10	6	6	4	4	0	1	1	3	3	5	5	6	6	7	8	7	7	16	7	15	17
11	7	7	5	5	1	0	1	3	3	5	5	6	6	7	9	8	8	15	8	15	17
11	7	7	5	5	1	1	0	2	2	4	4	5	5	6	9	8	8	16	8	15	17
13	9	9	7	7	3	3	2	0	2	4	4	5	5	6	11	10	10	15	10	15	17
13	9	9	7	7	3	3	2	2	0	2	2	3	3	4	11	10	10	16	10	15	17
15	11	11	9	9	5	5	4	4	2	0	2	3	3	4	13	12	12	14	12	16	16
15	11	11	9	9	5	5	4	4	2	2	0	1	1	2	13	12	12	16	12	16	17
16	12	12	10	10	6	6	5	5	3	3	1	0	1	2	14	13	13	15	13	17	17
16	12	12	10	10	6	6	5	5	3	3	1	1	0	1	14	13	13	16	13	17	17
16	13	13	11	11	7	7	6	6	4	4	2	2	1	0	15	14.	14	15	14	17	17
7	3	5	5	8	8	9	9	11	11	13	13	14	14	15	0	1	2	17	3	15	17
7	4	5	4	7	7	8	8	10	10	12	12	13	13	14	1	0	1	17	2	15	17
7	4	5	4	6	7	8	8	10	10	12	12	13	13	14	2	1	0	16	1	14	16
16	16	14	16	12	16	15	16	15	16	14	16	15	16	15	17	17	16	0	16	16	13
7	4	5	4	6	7	8	8	10	10	12	12	13	13	14	3	2	1	16	0	13	15
15	15	15	15	14	15	15	15	15	15	16	16	17	17	17	15	15	14	16	13	0	4
17	17	16	17	15	17	17	17	17	17	16	17	17	17	17	17	17	16	13	15	4	0

Notes：This graph plots the set of 22 benevolent rules on both the horizontal and vertical axes．Each cell reports the number of profiles（out of the 17 used in the work domain）for which a given pair of rules differ from each other．We use the definition that two rules differ on a profile if they select a different subset of options（distance $=1$ ）；otherwise they do not differ on that profile（distance $=0$ ）．
the experiment is to ensure that the Planners＇decisions are consequential．Choice problems fall into two domains，task assignment（work）problems and budget allocation（political）problems．For each domain，the Planner views a sequence of preference profiles and，in each instance，selects one of several alternatives．We match one out of every four Planners，selected at random，with a real group of Stakeholders．The actual preference profile for that group is among the ones that Planner considers， but is not identified as such．Although we only implement decisions that pertain to actual Stakeholder groups，from each Planner＇s perspective any one of her decisions could turn out to be a real choice． Consequently，as long as she cares about the Stakeholders to some degree，she has an incentive to reveal her aggregation preferences truthfully for every preference profile she encounters．We focus primarily on the work domain，for which we employ the 17 profiles shown in Table 1 ．We examine the political domain，for which we employ a smaller set of profiles，to evaluate context－dependence．

Tasks for the work domain For the work domain，Stakeholders are workers，whom we recruit on Amazon Mechanical Turk．Each worker receives $\$ 15$ for correctly completing a single assigned task．

The compensation is sufficiently high to ensure that any attrition is non-systematic.
There are five work tasks. We choose tasks that resemble familiar activities for online workers, and that different workers might plausibly rank in different orders. The tasks are as follows: (i) Image labeling. The worker views a sequence of 400 images and identifies each by clicking a button. (ii) Hate speech filtering. The worker views 400 messages posted on twitter.com and indicates whether each includes hate speech such as racist or sexist statements. (iii) Audio transcription. The worker listens to a sequence of 400 words and, in each case, identifies the word by clicking a button. (iv) Movie reviews classification. The worker classifies 400 movie reviews according to whether they are positive or negative. (v) Assigning apprentices to mentors. The worker finds a pairwise stable match between five hypothetical apprentices and five hypothetical mentors knowing their preferences. The worker completes 20 rounds of this task.

Workers reveal their preferences over tasks in a preliminary session. After seeing a description of each task and trying it out to gain familiarity (except for the matching task, a single round of which some subjects find time-consuming), workers then rank the tasks from most to least preferred. We ensure incentive compatibility by informing workers that their rankings determine the task they perform with 5% probability, as follows: the computer randomly pre-selects two tasks, and workers perform the one they say they prefer. To preclude strategic reporting, we tell workers that some other process will determine their assigned tasks with 95% probability. Because we leave that process unspecified, workers have no information about the manner in which their own expressed preferences may factor into the alternative process. After the Planners make their choices, Workers complete their assigned tasks in a second session.

Social choice problems for the work domain A social alternative is a task assignment: it assigns each of the five tasks to one of the five workers in a group. ${ }^{13}$ Planners choose from menus of task assignments. For three-option problems, menus consist of three randomly selected task assignments.

For the main portion of our experiment, Planners are students at the University of Zurich and the Swiss Federal Institute of Technology. (We examine US and Swedish general population samples in Section 5). At the beginning of the experiment, they acquaint themselves with the work tasks by reading descriptions and performing abbreviated versions (except for the matching task). Their instructions describe the mTurk platform and provide information on the value of hourly worker compensation in our experiment.

A Planner proceeds through several rounds of decision making for her group. In each round, she observes an ordinal preference profile for the task assignments. For Planners who are matched with actual workers, one of these corresponds to her workers' preferences over task assignments, which we infer from their elicited preferences over tasks. The Planner then chooses an assignment she considers best for the group. We also ask her to identify any alternative she considers just as good as the

[^12]one she selects. While this expression of indifference has no consequences within our experiment, two considerations mitigate the usual concerns about hypothetical choices: first, the question asks the Planner to report indifference that she presumably would have recognized when making the associated consequential choice moments prior; second, misrepresenting her indifference would not serve any other plausible objective (e.g., enhancement of social image). ${ }^{14}$ However, as a precaution, we adopt two complementary approaches to identifying social choice rules, one of which uses the indifference data, and one which does not.

Recent research on paternalism shows that people tend to discount or even disregard preferences with which they disagree (Ambuehl et al., 2021a). That consideration is orthogonal to the focus of the current paper, which concerns the aggregation of ordinal preferences that are equally valid in the eyes of the Planner. To ensure that Planners cannot second-guess a worker's preferences (for example, by placing little weight on an expressed desire to complete the hate-speech filtering task), we limit the Planner's knowledge about task assignments. Specifically, we show the Planner a menu of abstract geometric symbols, explain that each represents a task assignment, and describe each worker's ranking of those assignments. However, we do not explain which worker performs which task in any given assignment.

The presentation of preference profiles may influence Planners' choices by highlighting particular information. We vary the presentation across planners, using all structurally distinct possibilities for displaying preference profiles in a two-dimensional table. Because a preference profile is an array of three-tuples of the form (option, worker, rank) that indicate the preference rank a particular worker assigns to a given option, there are three such possibilities: rows and columns can be ranks and workers (in which case options appear in cells), ranks and options (in which case workers appear in cells), or workers and options (in which case ranks appear in cells).

We show the first possibility in Figure 3, which represents each worker as a vertical bar. Within each bar, the geometric symbols representing the assignments are ordered according to the worker's preference, with the most preferred assignment on top. By clicking buttons, Planners can highlight or hide options. Highlighting an option makes the distribution of its ranks (the data that is crucial for scoring rules) readily apparent. When an option is hidden, the display re-positions the remaining assignments onto two lines. This feature makes pairwise preference counts (the data that is crucial for Condorcet extensions) readily apparent. Additionally, Planners can hide or rearrange the workers, either by dragging and dropping them, or by clicking a button to shuffle them randomly. We show the second and third possibilities in Appendix A.3. We provide the same tools for exploration (hiding, highlighting, and rearranging).

Each Planner sees one and only one presentation format, which we select at random. We randomize

[^13]Figure 3: Planners' decision interface, version 1 (options in cells).

Notes: Subjects can drag and drop columns, click a button to shuffle columns, highlight choice options, hide choice options, and hide workers. If a subject hides an option, the remaining options are arranged on two rows regardless of their initial position. Symbols for options and colors for the bars representing each worker are randomly drawn each round. The order of workers is randomly drawn each round.
symbols (representing options) and colors (representing workers) to ensure Planners do not conflate decisions across preference profiles. We also randomize the positions of all alternatives and of all workers in each round.

In addition to the 17 preference profiles shown in Table 1, each Planner who is matched to a
real group of five workers views that group's actual preference profile and makes a choice, while other Planners view a randomly generated preference profile. Planners also make decisions for six four-option preference profiles and one two-option profile, which we randomly intermingle with the three-option profiles. Planners then view three final preference profiles, each of which rank either three or four alternatives, but they choose from menus that omit one of the alternatives. We provide more detail concerning all of these additional profiles and decisions in Sections 4.4 and 4.6. Altogether, Planners make choices for 28 preference profiles in the work domain.

The political domain To examine the consistency of Planners' aggregation preferences across domains, we also present them with decisions involving political contributions. In this domain, Stakeholders (citizens) are voting-age members of the general Swiss population. ${ }^{15}$ Planners, who are also voting-age Swiss nationals, direct a contribution of Fr. 30 (roughly $\$ 33.90$ at the time of the experiment) to one of the five largest Swiss political parties, as measured by the number of members in the Swiss National Council.

The procedures we use for political contributions are generally the same as for the work domain. Here it is especially important to emphasize that, for any given preference profile, Planners do not know which geometric symbol corresponds to which party, so they cannot impose their own political preferences.

To keep the length of the experiment manageable for our subjects, we use a smaller set of preference profiles for the political domain. Over 12 rounds, Planners view, in random order, the starred preference profiles in Column 2 of Table 1, a selection of four four-option profiles (see Section 4.4), and one additional profile (either the actual profile for her assigned citizen group or a randomly generated profile, depending on whether we assign her to a group).

Additional elicitations For the work domain, we ask Planners to predict the average reservation wages for the tasks workers rank first, second, and third, knowing only that rankings involve three tasks randomly selected from the five possibilities. For the political domain, we ask Planners to predict the average Swiss citizen's willingness to pay to trigger or prevent the donation the citizen ranks first, second, and third. As we discuss subsequently, we use these responses to assess the hypothesis that Planners aggregate ordinal preferences based on implicit inferences about cardinal utility.

We elicit risk preferences using the method developed in Holt and Laury (2002). We also elicit altruism toward workers through modified dictator games. In addition, Subjects complete the fouritem version of the Cognitive Reflection Test by Thomson and Oppenheimer (2016). For the last 143 subjects, we added four questions probing their knowledge of social choice theory. Subjects also report a variety of personal characteristics. See Appendix X for further details.

[^14]Table 2: Schematic overview of the experiment.

Part 0: Initial instructions

Part A: Task assigment

1. Instructions concerning task assignment
2. Instructions about the interface that displays preference profiles
3. 25 task assignment decisions (intermingled)
4. 3 task assignment decisions with unavailable options (intermingled)

Part B: Donation to a political party

1. Instructions concerning the donation to a political party
2. 12 party donation decisions

Part C: Further elicitations

1. Beliefs

- 5 rounds of incentivized belief elicitation about workers' reservation wages, followed by an unincentivized elicitation of own reservation wages for completing each of the five tasks
- 6 rounds of incentivized belief elicitation about citizens' political preferences, followed by an unincentivized elicitation of own willingness to pay to trigger or prevent the donation to each of the political parties

2. Preferences

- Risk preferences
- Altruism

3. Other characteristics

- Demographic information
- Cognitive Reflection Test
- Knowledge about social choice theory

Notes: Each stage in Part C directly follows instructions concerning that stage. Half of the subjects proceed through the experiment in the order displayed. For the other half, Part B and Part A are interchanged. The latter subjects receive the instructions about the interface that displays preference profiles in Part B instead of in Part A. For those subjects, the two stages of Part C. 1 are also interchanged.

Timing Table 2 provides an overview of the experiment's temporal structure. Planners perform ordinal preference aggregation tasks in parts A (work domain) and B (political domain). Within each domain, we display preference profiles in individually random order. We also randomize the order of

Parts A and B, and include instructions about the decision interface in the part that appears first. To avoid nudging subjects to think about cardinal utility, we elicit risk aversion and beliefs about WTA/WTP in Part C, after the preference aggregation tasks are complete.

Incentives A randomly selected decision (pertaining to WTP/WTA, risk preferences, or social preferences) from part C determines the Planner's own payment. As we have explained, social choices are incentivized in the sense that each one may be consequential for others, and we also incentivize the elicitation of workers' preferences.

Instructions and comprehension checks The full instructions for Planners, which we present onscreen in English, appear in Appendix D.1. The presentation requires subjects to try out each option in the preference display (e.g., hide and highlight). Subjects must pass two multi-part comprehension checks to continue with the study.

4 Analysis

Our analysis focuses on 405 subjects in the role of Planner. Subjects participated in 11 online sessions, supervised via video-conferencing software (Zoom), in January 2021. We restricted the sample to Swiss citizens by checking each participants' government-issued ID.

The median subject completed the session in 82 minutes and received Fr. 50. ${ }^{16}$ Twelve potentially eligible subjects started the study but did not complete it. ${ }^{17}$ Only five subjects failed to complete the experiment after presenting a valid ID. The implied attrition rate among potentially eligible subjects was therefore between 1.2% and 3%. The median age is 23 . Among the subjects who were asked, 7% reported having taken a class that covered social choice theory, but only $1 \%, 3 \%$, and 2% could correctly name Arrow's theorem, the Condorcet paradox, and the Borda rule, respectively. While our subject pool includes a higher proportion of women (61%) than men and skews towards the political left $(70 \%, 15 \%$, and 14% of subjects rate themselves as left, center, and right, respectively), Section 5 shows that similar results obtain in general population samples.

We structure our analysis as follows. Subsection 4.1 exhibits aggregate choice patterns. Subsection 4.2 presents our main classification results for the work domain. In Subsection 4.3, we use clustering methods to determine whether our classification omits any empirically important social choice rules. Subsection 4.4 provides corroborating evidence on classifications using discerning four-option profiles. Subsection 4.5 then investigates the extent to which our classification captures structural aggregation principles by comparing choices across domains and by evaluating out-of-sample predictive performance. In Subsection 4.6, we investigate the extent to which ordinal aggregation preferences reflect cardinal imputations. Subsection 4.7 describes and analyzes our supplemental experiment, which

[^15]demonstrates that Planners intrinsically care about preference ranks even when we provide cardinal information about outcomes. Throughout, we pool across the three methods of presenting preference profiles, but mention instances where results differ.

4.1 Aggregate choice patterns

Figure 4 shows choice frequencies for each of the 17 three-option profiles in the work domain. Structure is readily apparent, such as the near-unanimous decisions for profiles 2,16 , and 17 . Because nearly all subjects choose the option that is both rank-dominant and a Condorcet winner in profiles 16 and 17 , we can infer that they act benevolently toward their groups. Notably, disagreements are common for the score-identifying profiles 3 to 11, indicating heterogeneity in aggregation preferences .

Figure 4: Distribution of choices in three-option problems

Profile	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Condorcet	C	A	A	B	C	C	C	C	A	C	C	ABC	ABC	B	B	B	B
Scoring																	
\bar{s}	$1 / 3$	$1 / 3$	$1 / 2$	$1 / 2$	$1 / 2$	$3 / 5$	$2 / 3$	$2 / 3$	$3 / 4$	$3 / 4$	$4 / 5$	-	$1 / 2$	0	0	0	0
$s<\bar{s}$	C	B^{a}	A	B	C	C	C	C	A	C	C	$\mathrm{C}^{a)}$	BC	-	-	-	-
$s>\bar{s}$	A	A	C	A	B	B	B	B	C	A	B	C	A	BC	$\mathrm{B}^{b)}$	B	B

Choice freq.
A
B
C

| 86 | 96 | 36 | 63 | 1 | 0 | 1 | 1 | 72 | 29 | 1 | 1 | 73 | 1 | 6 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 0 | 37 | 75 | 61 | 43 | 39 | 3 | 0 | 29 | 8 | 15 | 62 | 93 | 98 | 99 |
| 13 | 1 | 64 | 0 | 24 | 38 | 56 | 60 | 25 | 70 | 70 | 91 | 13 | 37 | 1 | 1 | 0 |

${ }^{\text {a) }}$ For $s=0,\{\mathrm{~B}, \mathrm{C}\}$ is selected.
${ }^{\text {b) }}$ For $s=1,\{\mathrm{~A}, \mathrm{~B}\}$ is selected.
Notes: Darker shades of blue indicate higher frequencies. The numerical percentage appears within each shaded cell. The profile numbering is the same as for Table 1.

Patterns for profiles 1 and 2 anticipate our overall conclusions. If, just for the moment, we confine attention to scoring rules and the Condorcet top-cycle extension, we would infer that 86% of subjects use scoring rules with $s>\frac{1}{3}$ (because they choose A in profile 1), that only $2-3 \%$ of subjects use scoring rules with $s<\frac{1}{3}$ (because they choose B or C in profile 2), and that 10% of subjects use the Condorcet rule (because the fraction of A increases from 86% to 96% between profiles 1 and 2). The third-option comparisons inherent in scoring rules also point to widespread violations of Arrow's Independence of Irrelevant Alternatives axiom.

Choices for profiles 12 and 13 corroborate the low prevalence of the Condorcet rule with the topcycle extension, in that we see little indication of indeterminacy despite the presence of cycles. For
profile $12,91 \%$ of subjects agree on option C, which is rank-dominant, and for profile $13,73 \%$ of subjects select option A, which minimizes the number of last-place ranks.

Choices for profiles 3,4 , and 5 corroborate the prevalence of concave scoring rules, which select options C (64%), $\mathrm{A}(63 \%)$, and $\mathrm{B}(75 \%)$, respectively. In contrast, all convex scoring rules and the Condorcet rule select options A (36%), B (37\%), and C (24%), respectively. Either pattern is consistent with the Borda rule, which is only partially resolute for these profiles.

4.2 Main classification

4.2.1 Classification procedures

Next we assign each subject to the social choice rule that best matches their selections. We deploy two Bayes classification procedures (Hastie et al., 2001), the robustness of which is well-documented (see, e.g., Webb, 2010). Both classifiers assign each subject the rule with the greatest posterior probability conditional on her observed choices under distributional assumptions detailed below. ${ }^{18}$

The first procedure only relies on consequential choices; it excludes information on indifference. The data for each subject then consists of 17 options, one for each preference profile. We make the following four assumptions (analogously to Costa-Gomes et al., 2001): (i) The prior distribution over pre-specified rules is uniform. ${ }^{19}$ (ii) For each of the 17 outcomes, the subject follows her assigned rule with probability $1-\epsilon$, and uniformly randomizes over the three options with probability ϵ. The prior distribution of ϵ is uniform over $[0,1]$. (iii) Decision errors are independent across preference profiles. (iv) When a rule is irresolute, the subject randomizes uniformly and independently over the prescribed choices. ${ }^{20}$ Following common practice, we use the Maximum A Posteriori (MAP) decision rule, which assigns each subject the rule R^{*} and noise level ϵ^{*} that maximize the posterior probability, $P(R, \epsilon \mid c)$, where c is their choice vector. ${ }^{21}$ When more than one rule maximizes the Bayesian posterior, we assign the subject to a maximizing rule at random.

When limiting consideration to consequential choices, irresolute rules have a built-in advantage: their predictions more easily encompass actual choices. Our first procedure creates a countervailing disadvantage: irresolute rules receive less "credit" (in terms of the increment to the posterior probability) than resolute rules when both turn out to be consistent with a given choice.

The second procedure employs subjects' indifference statements along with their consequential choices. The data for each subject then consists of 17 subsets of optimal options, one for each preference profile. We continue to impose assumptions (i) and (iii), along with a slightly modified version of assumption (ii): when deviating from her rule, the subject randomizes uniformly over the

[^16]seven subsets of options, rather than the three options. Under these assumptions, a rule maximizes the posterior probability if and only if it maximizes the number of profiles for which it predicts the correct subset. As with our first procedure, we break ties at random.

The two procedures complement each other. On the one hand, restricting attention to consequential choices may yield more reliable results. On the other hand, the indifference data provide pertinent information, particularly inasmuch as the average Planner expresses irresoluteness for 18% of the profiles. ${ }^{22}$ Information on indifference also allow us to dispense with assumption (iv).

We pre-specify the 22 benevolent social choice rules discussed in Section 2.2. We also include a malevolent version of each rule by inverting each Stakeholder's preference ranking before applying the rule. Accordingly, we consider a total of 44 possible aggregation rules.

For our first classification procedure, we absorb the following three scoring rules into neighboring intervals: $s=\frac{3}{5}, s=\frac{4}{5}$, and $s=1$; we do the same with their malevolent counterparts. The reason is that we cannot separately identify these rules without using information on indifference. As shown in Figure 2, each differs from nearby scoring rules on exactly one profile. Moreover, for the single differentiating profile, each prescribes the union of the options selected when the scoring parameter is slightly larger, and when it is slightly smaller. Because our first procedure always favors resoluteness over irresoluteness when both possibilities are consistent with the same observation, it will never select $s \in\left\{\frac{3}{5}, \frac{4}{5}, 1\right\}$ over all nearby scoring rules. In contrast, because there are two profiles for which the scoring rule with $s=\frac{1}{3}$ is irresolute while its neighbors are resolute, that rule can rationalize certain choice patterns that are inconsistent with its neighbors. A similar observation holds for $s \in\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}\right\}$.

4.2.2 Classification results

Figure 5 displays our main classification results. Panel A, which relies on incentivized choices alone, is strikingly similar to Panel B, which also incorporates indifference data. Four features merit emphasis.

First, we assign the largest number of subjects to the Borda rule and the near-antiplurality rule (with $4 / 5<s<1$). Together, these two rules account for 30 to 40 percent of all subjects, depending on the classification procedure.

Second, choices for a clear majority of subjects are consistent with strictly concave scoring rules $\left(\frac{1}{2}<s \leq 1 ; 62.5 \%\right.$ in Panel A, and 61.5% in Panel B). In contrast, choice patterns consistent with strictly convex scoring rules $\left(s<\frac{1}{2}\right)$ are uncommon. Plurality rule describes the choices of surprisingly few subjects (1% in Panel A, and 0.25% in Panel B.)

Third, fewer than 5% of subjects choose consistently with the Condorcet rule, and virtually no subjects follow other p-supermajority rules (supermajority and unanimity). A small minority follow scoring runoff rules (4.7% in Panel A and 7.2% in Panel B).

[^17]Because our pre-specified rules contain only one Condorcet extension (top cycle), these classifications could in principle understate the prevalence of choices consistent with the Condorcet class. We therefore enlarge the set of pre-specified rules to include all conceivable Condorcet extensions, and reclassify subjects using our first procedure. ${ }^{23}$ The classifier assigns 10.6% of subjects to a Condorcet extension, a modest increase, some of which would occur by chance. It is unlikely that the low prevalence of Condorcet reasoning is a statistical or experimental artifact, because the Condorcet rule coincides on a large number of profiles with convex scoring rules, which are also unpopular. We provide further corroboration of this finding based on four-option problems in section 4.4.

Fourth, we see little evidence that subjects are malevolent or lazy. The fraction of subjects assigned to malevolent rules is de minimis. Lazy subjects would be inclined to select the most easily implementable rule. Plurality rule is arguably the least cognitively demanding alternative, followed by plurality runoff, yet the vast majority of subjects evidently find the distributional implications of both unappealing. With the exception of antiplurality, the concave scoring rules, which describe the majority of our subjects, embody more nuanced and complex judgments. An analysis of decision times corroborates these assessments: decision making is relatively rapid for subjects assigned to plurality rule and relatively slow for those assigned to scoring rules with $0.5 \leq s<1$ (see Appendix [X]).

We obtain similar results for each method of presenting preference profiles. ${ }^{24}$ The only notable difference across display formats is that Borda is more common than near-antiplurality with the first and third display formats, while the opposite is true for the second display format; furthermore, this difference is larger when we use the indifference data (see Appendix A.4).

Random benchmark We draw statistical inferences by comparing our classification to a randomchoice benchmark. We construct the benchmark by generating 4,000 artificial subjects whose simulated selections for each profile are uniformly distributed across options. We generate indifference data by designating each of the unchosen options as equally good based on independent Bernoulli draws. We choose the Bernoulli probability to match the average size of the best-option sets according to the actual subjects. We then assign each simulated subject to a pre-specified social choice rule using both of our procedures. We construct the distribution of subjects assigned to each rule under the null hypothesis of random choice by drawing 1,000 bootstrap samples of 405 simulated subjects each.

Figure 5 plots, for each rule, the mean fraction of simulated subjects assigned to that rule, as well as the 1st and 99th percentiles of the corresponding distribution. The average fractions of simulated subjects assigned to a malevolent rule is 50.4% in panel A and 40.9% in panel B , which exceed the

[^18]Figure 5: Best fitting pre-specified rules

Notes: Both panels show the frequency of subjects classified as following each pre-specified rule (blue bars). Each red dot indicates the fraction of 4,000 simulated subjects (uniform randomizers) that the pertinent method classifies as a particular pre-specified type. From that sample of 4,000 simulated subjects, we draw 1,000 bootstrap samples of 405 subjects each to a construct a distribution of classifications. The red lines extend from the 1st to the 99th percentiles of that distribution. The random-choice benchmark for malevolent rules is not visible as it exceeds the range of the graph (50.4% and 40.9% in the work and political domains, respectively).
ranges of the figures. ${ }^{25}$ Turning to benevolent rules, in panel A we see that the fraction of subjects assigned to every weakly concave scoring rule except $\frac{3}{4}<s<\frac{4}{5}$ exceeds the 99 th percentile of the random benchmark. In contrast, the fractions of subjects assigned to the two most convex scoring rules $\left(s<\frac{1}{3}\right)$ fall short of the 1st percentile of the random benchmark. While the fraction of subjects assigned to the Condorcet rule is small, it is larger than we would observe by chance, a conclusion for which we find corroboration in Section 4.4. Finally, scoring runoff rules, supermajority, and unanimity are no more prevalent (and in some cases significantly less prevalent) than for the randomchoice benchmark. Similar conclusions generally follow from panel B, with the qualification that the random-choice simulations assign lower frequencies to scoring rules that coincide with the boundaries of distinguishable intervals.

Because our two classification procedures yield such similar results, subsequent sections focus on the first procedure.

Goodness of fit The average value of the estimated noise parameter ϵ^{*} provides a formal goodness-of-fit measure. Using incentivized choices alone, we obtain a mean noise parameter of 0.10 , which signifies that the average subject chose randomly in just 1.7 of the 17 preference profiles. A whopping 42.0% of our subjects fit their assigned rule perfectly. For the remainder, the mean noise parameter is 0.16 , equivalent to choosing randomly for 2.7 of the 17 preference profiles. ${ }^{26}$ In contrast, the average estimated noise parameter for our simulated random-choice data is 0.46 , and 0.57 when excluding simulated subjects classified as Supermajority or Unanimity (10 of 17 profiles). ${ }^{27}$ When we use the indifference data, subjects' responses match the sets of options selected by their assigned rule for 14 of 17 profiles (85%). In contrast, for our random-choice benchmark, the corresponding number is $44 \% .^{28}$ The fact that actual choices fit the rules dramatically better than random-choice simulations also indicates that the vast majority of our subjects paid attention and chose thoughtfully.

A more detailed picture of goodness-of-fit emerges from comparisons between the theoretical fingerprints associated with particular rules and the empirical fingerprints of the subjects assigned to those rules. The top half of Figure 6, panel A, plots the distribution of choices, by profile, for subjects assigned to the Borda rule. The bottom half of the same panel shows the Borda prescriptions. The fit is plainly tight. The highest choice frequency for any Borda-proscribed option is 16% (profile 6, option B). The second highest is 8% (profile 1, option C). The frequencies of all other Borda-proscribed

[^19]Figure 6: Empirical fingerprints of classified subjects

A. Subjects classified as Borda

Empirical Choices

B. Subjects classified as near-antiplurality

Empirical Choices

Notes: In both panels, the top half displays the choices by subjects assigned to a certain rule. The bottom half displays the choices the rule predicts. The figures pertain to the classification procedure that does not use indifference data. Darker shades of grey indicate higher frequencies. The numerical percentage appears within each shaded cell. For the theoretical rule, we take the frequency of each best option to be 50% for a two-way tie and 33% for a three-way tie.
options are at most 5%. While these subjects rarely depart from the Borda rule, they do deviate somewhat from uniform resolution of ties (see, for example, profiles 3 and 14, where the proportions are one-third/two-thirds rather than half-half).

Panel B of Figure 6 provides analogous information for the near-antiplurality rule, which differs from Borda on 10 of the 17 profiles. The fit is also good, if slightly less tight. The highest choice frequency for any antiplurality-proscribed option is 32% (profile 9 , option A). These subjects select four other proscribed options with frequencies ranging between 13% and 16% (see profiles $4,7,8$, and 10), but they select each of the remaining 28 proscribed options with frequencies of 5% or less.

Overall, the 22 pre-specified benevolent social choice rules fit the data remarkably well given the astronomical number of possible rules in our setting. ${ }^{29}$ To further allay possible concerns about

[^20]overfitting, we show in subsection 4.5 that our classification predicts well out of sample.

4.3 Is the classification complete?

To determine whether our classification analysis excludes empirically important rules, we look for clusters of subjects whose choices more closely resemble each others' than any of the pre-specified possibilities. Our approach is similar to that of Costa-Gomes and Crawford (2006).

To identify clusters, we use the k-modes clustering algorithm, which is an adaptation of the wellknown k-means method to categorical data (Huang, 1998). The algorithm begins by arbitrarily selecting k subjects as initial cluster centers. Then it iterates two steps. First, each subject is assigned to the cluster for which the center matches her choices on the largest number of preference profiles. Second, cluster centers are updated: the new cluster center consists of the vector of modal choices for subjects assigned to that cluster. The algorithm terminates once the cluster centers stabilize. We use our pre-specified rules to create additional potential cluster modes that appear in all iterations. Because we do not use the indifference data for this exercise, we include every resolute version of each pre-specified rule. Following Costa-Gomes and Crawford (2006), if a subject is equidistant from a pre-specified rule and an endogenous cluster, we assign them to the pre-specified rule.

We search for clusters in the work domain fixing $k=1,2,3,5$, and 10 . For $k=1$, we run the algorithm 405 times, using each subject's choices as an initial cluster center once. For $k \geq 2$, we run the algorithm 1000 times, in each case randomly setting the initial cluster centers equal to the choices of k randomly selected subjects (excluding those who perfectly conform to pre-specified rules), and retaining the solution with the lowest total within-cluster distance. ${ }^{30}$ We limit the pre-specified rules to all scoring rules and all Condorcet extensions, which have a total of 296 resolute components. We exclude unanimity because the resolute components (of which there are $2^{3} \times 3^{14}>38 \times 10^{6}$) encompass all choice patterns that are consistent with the Pareto principle. Similarly, we exclude supermajority because it is massively irresolute, so the number of resolute components is enormous. These exclusions are likely inconsequential given the small number of subjects assigned to these rules in section 4.2 , and in any case the exclusion of an empirically important rule can only increase the fraction of subjects assigned to endogenous clusters. Other exclusions are attributable to redundancies.

We find that for $k=1$, just under 5% (19 of 405) of subjects are assigned to an endogenous cluster. For $k=2$, the same cluster emerges plus a second that attracts under 2% of subjects (7 of 405). As we increase k further, these same two clusters remain, and the others encompass even fewer subjects. For $k=10$, the smallest three clusters are degenerate (1 subject), indicating that we can find no other consequential similarities. Notably, the rule for the largest cluster is a one-profile deviation from near-antiplurality: on profile 9 , it selects option A rather than C. This profile is the only one for which near-antiplurality selects an option ranked last by some Stakeholder, and not ranked first by any other Stakeholder. See Appendix A. 4 for details.

[^21]
4.4 Corroboration based on four-option social choice problems

Four-option profiles provide additional opportunities to distinguish cleanly between classes of social choice rules. Specifically, there are two four-option profiles, labeled "Condorcet-separating 1" and "Condorcet-separating 2 " in Table 3 (numbered 18 and 19), for which the Condorcet winner is rankdominated. These profiles distinguish between all Condorcet extensions and the entire class of proper scoring rules (ones that do not assign the same score to any two ranks) because the former must select the Condorcet winner while the latter cannot select a rank-dominated option.

We randomly intermingle both of these profiles with the three-option profiles in both domain blocks. While four-option problems are more cognitively demanding, recall that the experimental interface allows subjects to hide options, which makes it easy to identify Condorcet winners.

Table 3: Four-alternative profiles.

Label	Index	Profile	Option selected by some proper scoring rule	Condorcet	Plurality (* $=$ runoff $)$
Condorcet-separating 1		$\begin{array}{lllll} \mathrm{A} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B} & \mathrm{C} \\ \mathrm{~B} & \mathrm{~B} & \mathrm{~A} & \mathrm{C} & \mathrm{D} \\ \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{D} & \mathrm{~A} \\ \mathrm{D} & \mathrm{D} & \mathrm{D} & \mathrm{~A} & \mathrm{~B} \end{array}$	B or C	A	$\left\{\mathrm{A}^{*}, \mathrm{~B}\right\}$
Condorcet-separating 2		$\begin{array}{lllll} \mathrm{A} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B} & \mathrm{C} \\ \mathrm{~B} & \mathrm{~B} & \mathrm{~A} & \mathrm{D} & \mathrm{D} \\ \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{~A} \\ \mathrm{D} & \mathrm{D} & \mathrm{D} & \mathrm{~A} & \mathrm{~B} \end{array}$	B or C	A	$\left\{\mathrm{A}^{*}, \mathrm{~B}\right\}$
Runoff-separating 1	22	$\begin{array}{lllll} \mathrm{A} & \mathrm{~A} & \mathrm{~B} & \mathrm{D} & \mathrm{D} \\ \mathrm{~B} & \mathrm{~B} & \mathrm{C} & \mathrm{~A} & \mathrm{C} \\ \mathrm{C} & \mathrm{C} & \mathrm{D} & \mathrm{C} & \mathrm{~B} \\ \mathrm{D} & \mathrm{D} & \mathrm{~A} & \mathrm{~B} & \mathrm{~A} \end{array}$	A or B or C	\{A, B, C, D \}	\{A, ${ }^{*}$ \}
Runoff-separating 2	23	$\begin{array}{lllll} \mathrm{A} & \mathrm{~A} & \mathrm{C} & \mathrm{D} & \mathrm{D} \\ \mathrm{~B} & \mathrm{~B} & \mathrm{~B} & \mathrm{~A} & \mathrm{~B} \\ \mathrm{C} & \mathrm{C} & \mathrm{D} & \mathrm{C} & \mathrm{C} \\ \mathrm{D} & \mathrm{D} & \mathrm{~A} & \mathrm{~B} & \mathrm{~A} \end{array}$	A or B or C	\{A, B, C, D \}	\{A, ${ }^{*}$ \}

Notes: We display each preference profile as a 4×5-matrix; columns correspond to workers, rows to preference ranks. The r th row shows a worker's r th-ranked alternative. For Condorcet-cyclical profiles, we indicate the set of options in the top-cycle.

As shown in the left half of Table 4 (which pertains to the work domain), subjects choose the Condorcet winner roughly one-fifth of the time for each of these profiles. However, only 11.6% consistently choose the Condorcet winner for both profiles. ${ }^{31}$ In contrast, because a negligible fraction of subjects choose option D, roughly 80% of the individual choices are consistent with a proper scoring

[^22]Table 4: Choices on class-separating profiles

Domain	Work				Politics			
Option	A	B	C	D	A	B	C	D
Condorcet winner	\checkmark				\checkmark			
Optimal for some scoring rule		\checkmark	\checkmark			\checkmark	\checkmark	
Condorcet-separating 1	0.205	0.694	0.099	0.002	0.188	0.746	0.064	0.002
Condorcet-separating 2	0.212	0.719	0.064	0.005	0.188	0.800	0.012	0.000
Consistent Condorcet	0.116				0.111			
Consistent Scoring	0.696				0.733			
Option	A	B	C	D	A	B	C	D
Plurality-runoff winner				\checkmark				\checkmark
Optimal for some scoring rule	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Runoff-separating 1	0.257	0.385	0.314	0.044	0.353	0.405	0.188	0.054
Runoff-separating 2	0.202	0.615	0.141	0.042	0.259	0.643	0.042	0.056
Consistent Runoff							28	
Consistent Scoring								

Notes: This table displays the fraction of subjects choosing each of the four options in each of the class-separating profiles. The first 262 subjects were not presented with the profile labelled Runoff-separating 2 in the political domain. The fraction of subjects consistently choosing in accordance with the plurality runoff rule in that domain is based on the remaining subjects.
rule. Moreover, for 69.6% of subjects, the pair of choices is consistent with some scoring rule in the following class: $\left[1, s_{1}, s_{2}, 0\right]$ where $s_{1}=(2 / 3)^{\gamma}, s_{2}=(1 / 3)^{\gamma}$, and $\gamma \in[0, \infty]$.

The preceding estimates likely overstate the fraction of subjects who more broadly support Condorcet outcomes, because other rules can rationalize the selection of option A for profiles 18 and 19. As indicated in Table 3, plurality rule $\left(s_{1}=s_{2}=0\right)$ prescribes options A and B , while the plurality runoff rule prescribes A. Antiplurality rule $\left(s_{1}=s_{2}=1\right)$ also prescribes either A or B. One way to distinguish between Condorcet and plurality runoff on the one hand, and plurality and antiplurality on the other, is to examine the indifference data. Of those who select A for both profiles, 36.2% rate B as equally good, which suggests that more than a third of these selections reflect either plurality or antiplurality rule. Accordingly, choices for our four-option profiles imply that the fraction of subjects who implicitly follow some Condorcet rule in the work domain is no higher than $(1-0.362) \cdot 11.6 \%=$ 7.4%, which is consistent with our findings for three-option problems.

Profiles 22 and 23 in Table 3, which we also intermingled with the three-option profiles, leverage the principle of rank-dominance to provide clean separation between proper scoring rules and the plurality runoff rule. As shown in the left half of Table 4, subjects choose option D, the plurality runoff winner, roughly 5% of the time. Only 1.2% of subjects choose D for both profiles, ${ }^{32}$ whereas

[^23]88.4% of subjects behave as if both choices reflect a single proper scoring rule from the family specified above. Accordingly, only a small fraction of the Condorcet-consistent behavior for profiles 18 and 19 is likely attributable to use of the plurality runoff rule.

Four-option profiles such as 22 and 23 also enable more nuanced distinctions among rules. For example, they can provide a foundation for distinguishing concave scoring from a general aversion to lowest ranks; see Appendix A.4.

4.5 Contextual judgments or structural aggregation principles?

Next we investigate the extent to which our classification captures subjects' structural aggregation principles, as opposed to contextual judgments.

To the extent we have uncovered subjects' structural aggregation principles, we would expect our classifications to be stable across the work and political domains. The latter presents subjects with a smaller number of preference profiles. To maintain comparability across domains, we re-estimate the type distribution in the work domain based on only the 7 profiles used in both domains. The smaller number of profiles also decreases the number of rules we can distinguish. While we can still identify scoring rules for which the parameter falls within the same intervals as before, we can no longer distinguish them from rules for which the parameter lies at the boundaries of those intervals (i.e., points in \mathcal{C})..33 Moreover, the fingerprints of scoring rules with $s \leq \frac{1}{3}$ (including plurality rule), the Condorcet rule, and all scoring runoff rules with $s<1$ coincide for these seven profiles. For our current purposes, we will call this group the "plurality-equivalent rules."

Figure 7: Comparison between work and political domains

Notes: Classifications are based only on consequential choices, and on the same set of seven preference profiles for both domains. The category 'plurality equivalent' includes scoring rules with $s \leq 1 / 3$, the Condorcet rule, and all scoring runoff rules with $s<1$.

[^24]Figure 7 shows the differences in the resulting distributions of classifications for the work and political domains. Here we rely only on consequential choices, and we reclassify subjects in the work domain based on the same seven preference profiles to ensure comparability. Systematic differences are immediately apparent. Within the political domain, subjects' choices are less frequently consistent with strictly concave scoring rules, especially $\frac{4}{5}<s \leq 1$, and more frequently consistent with the Borda rule or a plurality-equivalent rule. The difference is highly statistically significant (Wilcoxon signedrank test, $p<0.01) .{ }^{34}$ It bears emphasis, however, that these differences are of limited magnitude. The increase in the frequency of plurality-equivalent rules is on the order of 6%, and the decrease in the frequency of all strictly concave rules is 13.6%.

Even if subjects' aggregation preferences are not completely stable across domains, they may still capture stable tendencies that reflect underlying structure. Notably, results for the four-option classseparating profiles in Table 4 exhibit strikingly little domain sensitivity. It follows that people are generally attracted to the selections of scoring rules and generally averse to those of majoritarian criteria.

To evaluate the stability of aggregation preferences more comprehensively, we examine the out-of-sample and cross-domain predictive power of our classifications. For each evaluation, we designate a training set of preference profiles which we use to classify Planners based on their consequential choices, as well as a test set which we use to evaluate predictive success. We score predictions as follows. If the actual choice lies outside the predicted best-choice set, the score is zero. If it lies within the predicted best-choice set, the score is $1, \frac{1}{2}$, or $\frac{1}{3}$ depending on whether there are 1,2 , or 3 best options. With this scoring system, if underlying choices are in fact uniformly random, the average score will be $\frac{1}{3}$ irrespective of the sizes of predicted best-choice sets. Averaging this score across all profiles in the test set, we obtain a measure of predictive accuracy that lies between 0 and 1 .

We conduct four separate evaluations, two involving within-domain predictions, and two involving cross-domain predictions. For the within-domain predictions, we use the leave-one-out approach: we designate one preference profile in the pertinent domain as the test set and use the other same-domain profiles as the training set. We repeat using each profile as the test set and average the predictive scores. For cross-domain predictions, we designate all profiles in one domain as the training set and all profiles in the other domain as the test set. Thus, the training set for the work domain consists of either 16 (within-domain) or 17 (cross-domain) profiles, while the training set for the political domain consists of either 6 (within-domain) or 7 (cross-domain) profiles. ${ }^{35}$ Because of these differences, caution is warranted when comparing the various predictions to each other rather than to benchmarks.

As shown in Table 5, the average predictive accuracy scores for our four evaluations range from

[^25]0.758 (work to politics) to 0.853 (work to work). In all four cases, predictive performance is far superior to the random-choice benchmark (expected score of $\frac{1}{3}$).

Table 5: Out-of-sample predictive power of the Bayesian classification

Dependent variable	(1)	(2)
	Fraction of correct predictions (weighted by resoluteness)	
Test domain	Work	Politics
Predictions		
Training domain		
Work	0.853	0.758
Politics	0.812	0.759
Benchmarks		
1. Uniform, all prespecified rules		
Mean	0.445	0.398
99th percentile	0.485	0.440
2. Uniform, non-malevolent prespecified rules		
Mean	0.720	0.651
99th percentile	0.744	0.686
3.a Estimated rule frequencies, work domain		
Mean	0.762	0.653
99th percentile	0.779	0.680
3.b Estimated rule frequencies, political domain		
Mean	0.696	0.625
99th percentile	0.716	0.652

Notes: Within-domain predictions are based on a leave-out-one approach.

Next we quantify the improvement in predictive performance that results from making appropriate assignments of subjects to pre-specified rules, rather than merely from pre-specifying a set of rules that generally coincide with reasonable tendencies. To this end, we offer three alternative benchmarks. For the first, we make predictions based on a uniform random assignment of each subject to one of the 44 pre-specified rules. The second benchmark is identical, except that we restrict these assignments to the 22 benevolent rules. The third refines the second by randomizing based on the estimated distribution of subjects across rules, rather than uniformly. There are two versions of the third benchmark, which differ according to whether we use the estimated distribution for the work domain or the political domain. In each case, we perform the procedure using 1000 bootstrap draws of our sample, and report both the mean and the 99th percentile of the resulting score.

For all four evaluations and all benchmarks, the average predictive accuracy score exceeds the 99th percentile of the benchmark's distribution by a wide margin. To be sure, merely pre-specifying a set of rules that generally coincide with reasonable tendencies accounts for a sizable portion of
the improvement in predictive accuracy relative to the random-choice benchmark. However, the gain from making appropriate assignments of individual subjects to specific rules is considerable. To illustrate, focus on the most demanding benchmark for the work domain (3a), for which the mean benchmark score is 0.762 . If all of our individual-level assignments were correct, we would obtain a score of 0.921 . This number represents the theoretical maximum for the average score, given the overall distribution of pre-specified rules; it is less than 1.0 because the rules are partially irresolute. An average score of 0.853 therefore implies that the individual-level assignments achieve 57% (i.e., $(0.853-0.762) /(0.921-0.762))$ of the maximum possible gain in predictive accuracy over a baseline that randomly scrambles those assignments.

Based on the strong out-of-sample predictive performance of our classifications, we conclude that assigned rules capture the essence of subjects' actual aggregation preferences. While the shift in the distributions of selections between the two domains points to a degree of context-specificity, the accuracy of the cross-domain predictions reassures us that ordinal aggregation also entails stable structural elements.

4.6 Do Planners make cardinal inferences?

Are social preferences over ordinal rankings derivative, intrinsic, or both? The predictive accuracy of scoring rules suggests that, in the spirit of Apesteguia et al. (2011), people are intuitively comfortable with the concept of cardinal utility, and use the ordinal information they receive to make cardinal inferences before aggregating. This hypothesis is consistent with the context-sensitivity of scoring rules documented in section 4.5, but that finding may have other explanations. In this subsection, we provide evidence that corroborates the cardinal inference hypothesis. The next subsection then demonstrates that subjects also care about ranks intrinsically.

Informational interventions Suppose a decision maker chooses option A from the set $\{A, B, C\}$. According to the choice axiom known as Sen's α, if we remove option C from the opportunity set, the chooser will still select A. A decision maker who draws (cardinal) inferences about an option from the entire choice set will violate this axiom. In the current context, there are two distinct ways to remove C : we can continue to inform the Planner about the Stakeholders' rankings of all three options even though C is no longer available (variant 1), or we can limit this information to the rankings of A and B (variant 2). Imagine that, in the original problem, the Planner makes cardinal inferences about the attractiveness of options A and B from their rankings relative to C and applies a Samuelson-Bergson social welfare function. In variant 1 , that information remains available, so the Planner should respect Sen's α. However, in variant 2, that information is no longer available, so depending on the rankings, we should see violations of Sen's α.

Each column of Table 6 provides a separate test of the cardinal-inference hypothesis based on this design. For column (1), the "Baseline" profile (part A) consists of three alternatives. Option C is
obviously inferior, and is almost never chosen. For the "Option removed, rank information retained" profile (part B), we remove option C from the menu but continue to display rankings that include it. Choice frequencies are similar and the differences are statistically insignificant, so we do not reject Sen's α. For the "Option and rank information removed" profile (part C), we remove option C from the menu and from the Stakeholders' rankings. Choice frequencies change dramatically, and we resoundingly reject Sen's α. The natural explanation is that Stakeholders generally regard C as a bad option. The fact that one of them thinks B is worse than C, whereas none think A is worse than C, leads most Planners to choose A over B. But when that information is removed, nearly all Planners select B based on the majority preference relationship.

Results for the other two columns in Table 6 are qualitatively similar. In column (2), where we remove option A from a three-alternative profile, we reject Sen's α even when information about the rankings of A remains available (possibly because ordinal ranks among feasible options also matter intrinsically), but the choice frequencies change less than when we also remove A from the rankings. In column (3), where we remove option D from a four-option profile, the choice frequencies barely change when information about the rankings of D remain available, but change dramatically when they are unavailable.

Synthetic money-metric scoring parameters While the preceding findings are generally consistent with the cardinal-inference hypothesis, they do not explicitly document reliance on cardinal information. The next part of our analysis fills that gap. On the assumption that Planners are money-metric utilitarians, we use their stated beliefs about Stakeholders' reservation valuations for first-ranked, second-ranked, and third-ranked options to construct synthetic money-metric scoring parameters. We then ask whether the scoring parameters that rationalize actual choices are related to these synthetic utilitarian versions.

Formally, let $u_{r}^{i, d}$ denote Planner i 's belief about the average Stakeholder's reservation valuation for his r th-ranked alternative, for rank $r \in\{1,2,3\}$ and domain $d \in\{$ work, politics $\}$. The synthetic utilitarian scoring rule employs the score vector $\left[1, \tilde{s}_{d}, 0\right]$, where

$$
\tilde{s}_{d}=\frac{u_{2}^{i, d}-u_{3}^{i, d}}{u_{1}^{i, d}-u_{3}^{i, d}}
$$

We examine the relation between the synthetic utilitarian scoring parameter \tilde{s} and subjects' actual best-fitting scoring parameter s. In the work domain, we exclude 9 subjects who say they believe the average reservation wage is lower for the second-ranked option than for the first-ranked option, or lower for the third-ranked option than for the second-ranked option, on the grounds that they are likely inattentive or confused; in the political domain we drop 6 subjects. Thus, $\tilde{s}_{d} \in[0,1]$. To avoid selection effects, we assign all subjects to their best-fitting scoring rules. We estimate OLS regressions, using interval midpoints whenever best-fit scoring parameters are interval-identified. All regressions

Table 6: Effects of removing alternatives

	(1)	(2)	(3)
	A. Baseline		
Profiles	A A B B B	A C C C B	A A B B C
	B C A A A	B B B B A	B B A C D
	C B C C C	C A A A C	C C C D A
			D D D A B
Choice distribution	A B C	A B C	A B C D
	$0.630 \quad 0.3650 .005$	$0.012 \quad 0.748 \quad 0.240$	$\begin{array}{llll}0.205 & 0.694 & 0.099 & 0.002\end{array}$
B. Option removed, rank information retained			
Profiles			
	A A B B B	A C C C B	A A B B C
	$B \in A$ A A	B B B B A	B B A C D
	G B $G \in G$	$\mathrm{C} A \wedge A \mathrm{C}$	C C C D A
			D P D A B
Choice distribution	$\begin{array}{cc} \mathrm{A} & \mathrm{~B} \\ 0.573 & 0.427 \end{array}$	$\begin{array}{cc}\text { B } & \text { C } \\ 0.642 & 0.358\end{array}$	A B C
			$\begin{array}{lll}0.217 & 0.674 & 0.109\end{array}$
C. Option and rank information removed			
Profiles			
	A A B B B	B C C C B	A A B B C
B B A A A		C B B B C	B B A C A
			C C C A B
Choice distribution	A	B C	A B C
	0.0070 .993	0.0070 .993	$0.622 \quad 0.368 \quad 0.010$
D. p-values			
A vs. B	0.531	0.007	1.000
B vs. C	0.000	0.000	0.000
A vs. C	0.000	0.000	0.000

Notes: Column 3 of Panel C is profile 14 of Table 1. In Panel A, column 3 is profile 18 from Table 3, and columns 1 and 2 are profiles 4 and 5 from Table 1 , respectively. Columns 1 and 2 of Panel C both display the distribution of choices that subjects made for the single two-alternative profile they encountered. All decisions concern the work domain. p-values are based on two-sample Kolmogorov-Smirnov tests for equality of distributions.
include fixed effects for preference profile presentation modes and for the order in which the subject made decisions about the work domain and the political domain.

The regression in Column 1 of Table 7 pools observations across the work and political domains. It includes a dummy variable for domain and clusters standard errors on the subject level. The coefficient of the synthetic scoring rule is positive and statistically significant. It remains positive when we run
the regression separately for the two domains, but it is statistically significant only for the political domain. A potential explanation for this difference is that we measure the synthetic scoring parameter with less noise in the political domain because subjects are more familiar with political attitudes than with inclinations to perform various tasks, and consequently there is less attenuation of the coefficient.

Columns 4 to 6 add controls for Planners' risk attitudes and altruism, both measured as the percentile rank of the subject's average switching point for the two pertinent multiple decision lists. The coefficient of risk aversion is positive, as one would expect if Planners maximize the expected utility of a Stakeholder assessed behind a "veil of ignorance" concerning which Stakeholder has which ranking (in which case greater risk aversion implies greater concavity of the scoring rule). However, the effect is weak. We also find that more altruistic Planners tend to use more concave scoring rules.

Column 7 shows that the observed differences in scoring parameters across regimes are at least partially attributable to differences in cardinal inferences. We regress the difference between best-fit scoring rules across regimes for each subject on the corresponding difference between the synthetic scoring rules. The coefficient of interest remains positive and statistically significant. Indeed, this estimate closely resembles its counterparts in columns 1 and 4.

4.7 Do people care about ordinal information intrinsically?

The fact that subjects draw cardinal inferences from ordinal preference information does not preclude the possibility that they also care about ranks intrinsically. To examine this possibility, we conduct an experiment in which the Planner chooses among options involving monetary payoffs to Stakeholders. We disable the cardinal inference mechanism by revealing these payoffs to the Planner, and then ask whether the Planner's choices are still sensitive to modifications of the options that that alter their within-menu ordinal rankings without changing their cardinal properties.

4.7.1 Design

A laboratory subject in the role of Planner chooses between two or three vectors of payoffs for three Stakeholders. The Planner makes 20 such choices, knowing there is a 10% chance she will be assigned to an actual group of Stakeholders, in which case we implement one of her decisions, selected at random. As in the foregoing experiment, this design ensures that, as long as the Planner is not indifferent about the Stakeholders' welfare, she has an incentive to reveal her true social preferences. The Planner's own payment does not depend on her selection.

We study two types of treatments, which we label Swap and Deletion, respectively. Panel A of Table 8 exhibits the structure of the typical swap treatment. Profiles $S 1$ and $S 2$ correspond to two different choice tasks, each with three options, A, B, and C, and three Stakeholders, 1,2 , and 3 . The anonymized payment vector associated with each option is the same for $S 1$ and $S 2$: expressed in decreasing order, the payments are $\left(6+\epsilon_{1}, 5+\epsilon_{3}, 3+\epsilon_{2}\right)$ for $A,(6,5,3)$ for B, and $(4,2,1)$ for C.

Table 7: Relation between best-fitting scoring parameters and beliefs about reservation prices.

VARIABLE	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Estimated scoring parameter s						
Domain							
Work	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark
Politics	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
Differenced (cross-domain)							\checkmark
Scoring parameter \tilde{s} implied by beliefs	$\begin{gathered} 0.168^{* *} \\ (0.067) \end{gathered}$	$\begin{gathered} 0.104 \\ (0.076) \end{gathered}$	$\begin{gathered} 0.210^{* *} \\ (0.104) \end{gathered}$	$\begin{gathered} 0.147^{* *} \\ (0.067) \end{gathered}$	$\begin{gathered} 0.080 \\ (0.077) \end{gathered}$	$\begin{aligned} & 0.193^{*} \\ & (0.106) \end{aligned}$	$\begin{aligned} & 0.137^{* *} \\ & (0.069) \end{aligned}$
Risk aversion \%-rank				$\begin{aligned} & 0.063^{*} \\ & (0.033) \end{aligned}$	$\begin{gathered} 0.049 \\ (0.034) \end{gathered}$	$\begin{gathered} 0.076 \\ (0.047) \end{gathered}$	
Altruism \%-rank				$\begin{gathered} 0.080^{* *} \\ (0.035) \end{gathered}$	$\begin{aligned} & 0.065^{*} \\ & (0.034) \end{aligned}$	$\begin{gathered} 0.094^{*} \\ (0.051) \end{gathered}$	
Political domain	$\begin{gathered} -0.133^{* * *} \\ (0.012) \end{gathered}$			$\begin{gathered} -0.134^{* * *} \\ (0.012) \end{gathered}$			
Observations	795	396	399	795	396	399	390
Subjects	405	396	399	405	396	399	390

Notes: Parameters estimated with OLS using midpoint values of best-fit score. All regressions control for the type of preference profile presentation and for whether the political domain was displayed before or after the work domain. Regressions include all subjects with monotonic beliefs about reservation prices. Regressions include subjects with multiple switches in the multiple decision lists used to elicit risk preferences and altruism. For these subjects we set the corresponding variable equal to the mean of the values among the other subjects. We also include two indicator variables for the presence of multiple switching points, one for each characteristic. Standard errors in columns 1 and 4 are clustered by subject.

Consequently, assuming the Planner's preferences correspond to an anonymous Bergson-Samuelson social welfare function, she will have the same preferences over the three alternatives in $S 1$ and $S 2$.

Despite the cardinal equivalence between $S 1$ and $S 2$, these profiles imply different ordinal rankings for the Stakeholders. As the bottom half of the panel shows, Option B rank-dominates option A in profile $S 1$ whereas A rank-dominates B in profile $S 2$. For Planners who intrinsically care about ordinal rankings, the switch from $S 1$ to $S 2$ will therefore make option A more attractive relative to option B. Option C is dominated both cardinally and ordinally, so we expect few Planners to select it. ${ }^{36}$

[^26]For some tasks, we set $\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=0$. In this case, a Planner who judges outcomes based on an anonymous Bergson-Samuelson social welfare function should be indifferent between A and B. We would expect such Planners to choose each of these options roughly half of the time. For other tasks, we set $\epsilon_{i}>0$ for at least one i (with $\epsilon_{i}<1$ throughout). This case reveals whether Planners use ordinal information merely to resolve cardinal indifference, or alternatively choose options with more favorable rank distributions even at the cost of implementing a strictly inferior payoff distribution. Specifically, a Planner who judges outcomes based on an anonymous Bergson-Samuelson social welfare function should choose A in both $S 1$ and in $S 2$ when $\epsilon_{i}>0$ for some i. But for a Planner who cares about Stakeholders' ordinal rankings, the fact that one Stakeholder ranks A last in $S 1$, while none rank B last, may provide an offsetting reason to select B. Secondarily, by making comparisons across treatments with different values of ϵ_{i} (for either $S 1$ or $S 2$), we can similarly determine whether subjects care about cardinal payoffs holding the ordinal preference profile fixed.

Panel B of Table 8 exhibits the structure of two deletion treatments, one associated with profile $D 1$, the other with $D 2$. For each of these profiles, we present Planners with two decision tasks, both with three Stakeholders $(1,2$, and 3$)$, one with three options $(A, B$, and $C)$, the other with only two options $(A$ and $B)$. Because the payoff vector associated with option C is unattractive, we expect that Planners will rarely choose it. Assuming we can represent the Planner's preferences with a BergsonSamuelson social welfare function, removing the unchosen alternative should have no effect on choice frequencies for the other options. This implication is a consequence of Sen's α. (The purpose of δ and ν in these profiles is to avoid overlapping information in visual depictions.)

Intrinsic concern for Stakeholders' ordinal rankings can produce violations of Sen's α. To illustrate, suppose Planners are averse to selecting options that Stakeholders rank last among the available choices. In $D 1$, this consideration favors A over B when C is available, but it favors B over A when C is unavailable. In $D 2$, it favors B over A when C is available, and A over B when C is unavailable. Accordingly, we would expect the relative frequency with which Planners select A to fall when C is deleted from $D 1$, and to rise when C is deleted from $D 2$.

Implementation Planners complete 20 decision tasks in random order. Twelve are versions of profiles $A 1$ and $A 2$, re-scaled by a factor of 2 to 3 . For half of these tasks, $\epsilon_{i}=0$ for all i; for the other half, $\epsilon_{i}>0$ for some i. The remaining eight tasks are versions of profiles $S 1$ and $S 2$, re-scaled by a factor of 4 to 5 , half with option C available and half without. We randomize the order in which options and Stakeholders are listed, which makes it difficult to spot the relationships between the decision tasks. The purpose of including re-scaled versions while disguising similarities is to augment sample size.

To ensure that our results are not inadvertent artifacts of a presentation format that makes ordinal information particularly salient, we use three different formats that parallel those in the experiment of Section 3; see Appendix B. We adjust ν as needed to prevent the visual elements from overlapping.

Each subject views all tasks displayed in the same format.
We ran the experiment at the University of Zurich's Experimental Economics Laboratory between March and May 2023 with 584 subjects in the role of Planner. In addition, Stakeholders recruited on prolific.com received the payments associated with the option chosen by their assigned Planner in a randomly selected task.

4.7.2 Results

Table 9 shows the fraction of subjects who choose alternative A in various treatments, pooling over similar tasks with different scaling multipliers, as well as across display formats. ${ }^{37}$ Planners who do not choose alternative A overwhelmingly select option B. They choose option C in only 1.28% of the swap treatment tasks. For the deletion treatment tasks, this frequency is also 1.28% with profile $D 1$ and 0.62% with profile $D 2$.

Panel A provides results for swap treatments. The first line focuses on treatments for which all ϵ_{i} are zero. Planners choose option $A 30 \%$ of the time in versions of profile $S 1$, versus more than 70% of the time in versions of profile $S 2$. In both cases, we can rule out a frequency of 50%, the most natural manifestation of indifference. The dramatic treatment effect is highly statistically significant and directionally consistent with preferences over ordinal rank profiles that respect dominance.

The second row of Panel A shows that this effect persists even when alternative A cardinally dominates alternatives B and C. Notably, the frequency with which Planners choose A in versions of $S 1$ is only 75%, which is consistent with social preferences that value the avoidance of Stakeholders' least-preferred outcomes. Furthermore, that frequency rises to more than 90% in $S 2$, where ordinal considerations also favor A. Again, the effect size is highly statistically significant.

Panel A also demonstrates that Planners do not rely exclusively on ordinal information; they also account for cardinal payoffs. In tasks involving variants of both $S 1$ and $S 2$, they select alternative A significantly more often when the associated payoff distribution dominates that of alternative B, even though the ordinal preference profile does not change when switching from $\epsilon=0$ to $\epsilon>0$. The effect sizes of 45.5 and 18.9 percentage points are large and highly statistically significant.

To corroborate the importance of Planners' intrinsic concerns for Stakeholders' ordinal rankings, we now turn to the deletion treatments. Panel B of Table 9 shows the frequency with which Planners select alternative A, depending on whether alternative C is available. For profile $S 1$, the removal of alternative C increases the frequency with which Planners choose alternative B by 3.3 percentage points $(p<0.05)$. Though small in absolute terms, the effect represents an 18% increase in the likelihood of choosing B (from 18.8% to 22%). For profile $S 2$, the removal of alternative C increases the frequency with which Planners choose option A by 9.9 percentage points (or 25%, from 39.6% to 49.6%). This effect is highly statistically significant. In both cases, the direction of the treatment

[^27]effect is consistent with the hypothesis that Planners try to avoid alternatives Stakeholders rank lowest among the available options.

We conclude that Stakeholders' ordinal rankings over available alternatives affect Planners' choices even when cardinal information is provided.

5 General population samples

In this section, we ask whether our main conclusions extend to general population samples. We also test whether the general public in countries with divergent social and political traditions, the United States and Sweden (Alesina and Glaeser, 2004), use similar or divergent criteria when aggregating ordinal preferences, and we explore external validity by asking whether ordinal aggregation preferences among the general public are related to attitudes toward political processes. Our cross-cultural comparison can potentially help explain why different nations gravitate toward different types of policies. As Alesina and Angeletos (2005) point out, policies may diverge either because different cultures have fundamentally different preferences, or because of beliefs, historical accidents, institutions, or equilibrium selection.

In these supplemental experiments, each social choice entails the allocation of $\$ 20$ (in the U.S.) or SEK170 (in Sweden) to one of four charities: Doctors without Borders, Unicef, Oxfam, and the International Fund for Animal Welfare. ${ }^{38}$ These organizations are well-known in both countries and represent diverse causes that have broad appeal across the political spectrum. We recruited 712 Swedish and 805 U.S. voting-age citizens through Dynata and Lucid to serve as Planners. Each Planner aggregates the preferences of same-country Stakeholders, recruited through pollfish. Planners only observe group members' ordinal preference rankings. All Planners see the same reduced set of profiles we used for the political domain in our main experiment, as well as either the actual profile for a group of Stakeholders or a randomly generated profile. Planners know that one of the preference profiles they consider corresponds to real Stakeholders with 10% probability. We use abridged instructions that carefully explain the preference displays (see Appendix D.3). Subjects who failed comprehension checks were excluded. See Appendix C for additional implementation details and demographic summary statistics.

To make our samples more representative of the respective general populations, we weight observations as follows. For the US sample, we use the 2018 General Social Survey (Smith et al., 2019) to generate weights for 16 population categories defined by (i) gender (male, female), (ii) race (white, black, hispanic, other), and (iii) political party preference (Democrat, Republican). For the Swedish sample, we use data from Statistics Sweden (2018) to generate weights for 12 categories defined by (i)

[^28]gender, and (ii) political party preference (Left Party, Social Democratic Party, Green Party, Centre Party, Moderate Party, Sweden Democrats). ${ }^{39}$

Because these data require us to categorize subjects based on seven three-option profiles rather than seventeen, it is important to bear in mind the following limitations. First, categorizations based on fewer choices are more sensitive to one or two noisy selections. Second, because it is harder to detect irresoluteness with fewer profiles when using only consequential choices, certain scoring rules such as Borda are more difficult to distinguish from neighboring rules. Third, some rules become entirely indistinguishable. In particular, the Condorcet rule, plurality rule, and plurality runoff all have the same implications for the reduced set of three-option profiles. In light of the first two issues, we rely on seven-profile classifications mainly to make comparisons across subject pools. The distributions themselves should be taken with a grain of salt, as there are systematic differences between the sevenand seventeen-profile classifications for our student population in the work domain.

In light of the third issue, we begin by discussing the four-option class-separating profiles, which cleanly differentiate between proper scoring rules, Condorcet rules, and plurality runoff, as in Section 4.4 (recall Table 3). Only 8.0% of U.S. subjects and 5.8% of Swedish subjects consistently choose the Condorcet winner for both Condorcet-separating profiles. Moreover, 24.4% (U.S.) and 14.6% (Sweden) of those subjects express indifference between options for at least one of these profiles, which suggests that they follow plurality rule. That leaves roughly 5% to 6% of subjects in the Condorcet category. Likewise, small minorities (3.1% of US subjects and 1.7% of Swedish subjects) choose the plurality runoff winner in both runoff-separating profiles. All of these results closely parallel our findings for the student sample.

Next, using the Bayes classifier, we assign each subject to the best-fitting rule based on their choices for the seven three-option profiles. Figure 8 displays the results. To facilitate comparisons across samples, we consolidate several categories (strictly concave scoring rules, all benevolent alternatives aside from scoring rules, and all malevolent rules). The figure shows classification frequencies for the U.S. sample, the Swedish sample, and the Swiss student sample (political domain). When comparing the results for the student sample to either of the general population samples, one should bear in mind that the domains are similar but not identical. Because we have found that aggregation preferences vary somewhat across domains (Section 4.5), we would not expect the classifications to match perfectly.

Differences in classification frequencies between the Swedish and U.S. general population samples are remarkably small and statistically insignificant. Hence, the fundamental aggregation preferences of U.S. and Swedish citizens are extremely similar, which suggests that they do not contribute to policy divergences. The general population distributions also resemble the distribution for the student sample despite the difference in domains. ${ }^{40}$ Like the low prevalence of Condorcet choice patterns

[^29]Figure 8: Classification of general population samples to pre-specified rules

Notes: Bayes classifications based on consequential choices for the seven three-option preferences profiles indicated with stars in Table 1. General population observations weighted to make the samples representative with respect to gender, party preference, and (for the US only) race.
(noted above), widespread conformance with strictly concave scoring rules proves to be a robust phenomenon. Notably, the elevated frequencies of "Other benevolent rules" are attributable primarily to the antiplurality runoff rule, which is closely related to the strictly concave scoring rule alternatives. The modestly higher frequencies of malevolent rules suggest that our general population samples may include slightly higher fractions of subjects who did not take the tasks seriously. Similarly, the slightly elevated use of plurality rule, the least cognitively demanding alternative, could be attributable to greater laziness.

Finally, we ask whether our measures of aggregation preference correlate with self-reported attitudes toward political processes. Our survey presents subjects with two hypothetical candidates for political leadership of the nation. It describes Candidate 1 as polarizing: "Most citizens either love him or hate him. There is hardly anyone who does not have a strong opinion. If candidate 1 were elected, some citizens would be exhilarated, many others would be devastated, and nobody would be indifferent." We describe Candidate 2 as a compromise alternative: "While he is nobody's greatest favorite, most citizens would be ok with candidate 2. If he were elected, nobody would be exhilarated, nobody would be devastated." 41 We ask subjects "Which candidate better represents the will of the citizens of the nation?" In addition, subjects indicate their level of agreement or disagreement with each of the following two statements: "The political system should strive for compromise solutions that everyone can live with even if the result is nobody's absolute favorite," and "What the majority wants is right for a country, even if that makes some citizens suffer."

Table 10 examines the relation between these self-reported attitudes and our behavioral measure of aggregation preference. For Columns 1 and 2, the dependent variable is a binary indicator of

[^30]preference for the compromise candidate. For Columns 3 and 4, it is an index of preference for compromise policies constructed as follows: we assign values $0, \frac{1}{3}, \frac{2}{3}$, and 1 to the responses 'strongly disagree', 'disagree', 'agree', and 'strongly agree' for the first of the two statement above, invert the scores for the second, and average responses across them. Each column reports an OLS regression pooling over U.S. and Swedish subjects. The main independent variable is the subject's scoring parameter, which we compute by restricting the Bayes classification to scoring rules and assigning interval midpoints. In all cases, we control for sample provider and display fixed effects. While the results are not strong, they are nevertheless suggestive. As expected, those who deploy more concave scoring rules tend to prefer greater compromise in political processes. The relationship is significant at the 10% level in Columns 1 and 2, and statistically insignificant but directionally consistent in Columns 3 and 4.

6 Conclusion

Our objective in this paper has been to develop an empirical understanding of ordinal aggregation preferences. Because there are many settings in which groups make collective choices based primarily on ordinal rankings, this objective is of considerable practical importance. We find that choices for the overwhelming majority of people conform to scoring rules. The most common choice patterns correspond to the Borda and antiplurality rules. For a sizeable majority of subjects, choices conform to strictly concave scoring rules, which indicates a pronounced preference for compromise. Subjects are generally averse to majoritarian outcomes. Thus, many familiar rules, such as plurality and the Condorcet criterion, describe the ordinal aggregation choices of relatively few individuals. The same is true of plurality runoff, supermajority and unanimity rules. The classification's fit is excellent, and clustering analysis reveals no major omissions from our list of pre-specified rules. We find systematic and significant differences in the distributions of rules between the work domain and the political domain, but these differences are of limited magnitude. Because our classifications are highly predictive of choices out of sample, including across domains, we infer that ordinal aggregation also entails stable structural elements. While we find strong indications that subjects aggregate ordinal preferences based in part on inferences about cardinal utility, a separate experiment demonstrates that subjects also care about ordinal rankings intrinsically. It follows that (within-menu) ordinal rankings may impact perceptions of fairness even when cardinal information is available. Supplemental experiments show that the distributions of aggregation preferences in the U.S. and Sweden, countries with divergent political and social traditions, are remarkably similar, and both resemble the distribution for the student sample used in our main experiment. There is suggestive evidence that conformance with more concave scoring rules in experimental decisions correlates with a preference for electing compromise candidates.

The rules that best-describe our subjects' ordinal aggregation preferences are easily manipulable.

When designing markets, establishing voting rules, or selecting aggregation procedures for other practical settings, the pursuit of non-manipulable (or difficult-to-manipulate) procedures may therefore render outcomes less normatively appealing to most of the affected parties. This trade-off merits further study.

Our analysis suggests many potential directions for future work. The extent to which our asif characterizations generalize beyond the domain we examined (small groups and small menus) is an open question. Even if they are context-specific, they potentially illuminate attitudes that may apply more generally, for example concerning the desire for compromise solutions. We have also focused exclusively on preferences over outcomes. A complementary line of inquiry would investigate the relationships between preferences over rules revealed by choices over outcomes, and preferences over rules implied by approval of axioms (in the spirit of Nielsen and Rehbeck, 2020 and others). Likewise, one could also study preferences over rules revealed by choices over rules (as in Engelmann and Grüner, 2017; Hoffmann and Renes, 2017; Engelmann et al., 2020), but that approach would necessarily implicate the strategic issues from which we have intentionally abstracted. It would also be of interest to investigate whether an awareness of manipulability issues factors into preferences over collective choice mechanisms.

References

Alesina, Alberto and Edward Glaeser, Fighting poverty in the US and Europe: A world of difference, Oxford University Press, 2004.

- and George-Marios Angeletos, "Fairness and redistribution," American Economic Review, 2005, 95 (4), 960-980.
Almås, Ingvild, Alexander W Cappelen, and Bertil Tungodden, "Cutthroat capitalism versus cuddly socialism: Are Americans more meritocratic and efficiency-seeking than Scandinavians?," Journal of Political Economy, 2020, 128 (5), 1753-1788.
Ambuehl, Sandro, B Douglas Bernheim, and Axel Ockenfels, "What Motivates Paternalism? An Experimental Study," American Economic Review, 2021, 111 (3).
_ , Sebastian Blesse, Philip Dörrenberg, Christoph Feldhaus, and Axel Ockenfels, "Politicians' Social Welfare Criteria: An Experiment With German Legislators," unpublished, 2021.
Andreoni, James, Deniz Aydin, Blake Barton, B Douglas Bernheim, and Jeffrey Naecker, "When Fair Isn't Fair: Understanding Choice Reversals Involving Social Preferences," Journal of Political Economy, 2020, 128 (5).
Apesteguia, Jose, Miguel A Ballester, and Rosa Ferrer, "On the justice of decision rules," The Review of Economic Studies, 2011, 78 (1), 1-16.
Arrow, Kenneth J, "A difficulty in the concept of social welfare," Journal of Political Economy, 1950, 58 (4), 328-346.
_ , Social choice and individual values, John Wiley \& Sons, 1951.
_ , Amartya Sen, and Kotaro Suzumura, eds, Handbook of social choice and welfare, Vol. 1, Elsevier, 1991.
_ , , and _, eds, Handbook of social choice and welfare, Vol. 2, Elsevier, 2010.
Baharad, Eyal and Shmuel Nitzan, "The Borda rule, Condorcet consistency and Condorcet stability," Economic Theory, 2003, 22 (3), 685-688.
Baker, John, "Election of the Green Party Cathaoirleach, 2007," Irish Political Studies, 2008, 23 (3), 431-440.

Black, Duncan, The theory of committees and elections, Springer, 1958.
Bolton, Gary E and Axel Ockenfels, "Inequality aversion, efficiency, and maximin preferences in simple distribution experiments: comment," American Economic Review, 2006, 96 (5), 1906-1911.
Borda, JC, "Memoire sur les Elections an Scrutin," Paris, France: Academie Royale de Science, 1781.

Boutilier, Craig, Ioannis Caragiannis, Simi Haber, Tyler Lu, Ariel D Procaccia, and Or Sheffet, "Optimal social choice functions: A utilitarian view," Artificial Intelligence, 2015, 227, 190-213.
Brandt, Felix, Vincent Conitzer, Ulle Endriss, Jerome Lang, and Ariel D. Procaccia, Handbook of Computational Social Choice, Cambridge University Press, 2016.
Camerer, Colin F, Anna Dreber, Eskil Forsell, Teck-Hua Ho, Jürgen Huber, Magnus Johannesson, Michael Kirchler, Johan Almenberg, Adam Altmejd, Taizan Chan et al., "Evaluating replicability of laboratory experiments in economics," Science, 2016, 351 (6280), 14331436.

Condorcet, Marquis de, On the constitution and the functions of provincial assemblies, Vol. 1994 of Oeuvres de Condorcet. Paris. 1788.
Costa-Gomes, Miguel A and Vincent P Crawford, "Cognition and behavior in two-person guessing games: An experimental study," American Economic Review, 2006, 96 (5), 1737-1768.
Costa-Gomes, Miguel, Vincent P Crawford, and Bruno Broseta, "Cognition and behavior in normal-form games: An experimental study," Econometrica, 2001, 69 (5), 1193-1235.
Davies, Todd and Raja Shah, "Intuitive preference aggregation: Tests of independence and consistency," in "Public Choice Society and Economic Science Association Annual Meetings, Nashville, TN" 2003.
de Laplace, Pierre-Simon, "Leçons de Mathématiques, donnés à l'École Normale en 1795," Journal de l'École Polytechnique, 1812, 2 (17-18).
Debian Project, "Constitution for the Debian Project, v1.7," https://www. debian. org/devel/ constitution, 2016.
Econometric Society, "Rules and Procedures," https://www.econometricsociety.org/ society/organization-and-governance/rules-and-procedures\#45 May 2022.
Engelmann, Dirk and Hans Grüner, "Tailored Bayesian Mechanisms: Experimental Evidence from Two-Stage Voting Games," Unpublished Manuscript, 2017.

- and Martin Strobel, "Inequality aversion, efficiency, and maximin preferences in simple distribution experiments," American Economic Review, 2004, 94 (4), 857-869.
_ , Hans Peter Gruener, Timo Hoffmann, and Alex Possajennikov, "Minority Protection in Voting Mechanisms: Experimental Evidence," Unpublished Manuscript, 2020.
Featherstone, Clayton R, "Rank efficiency: Investigating a widespread ordinal welfare criterion," unpublished, 2019.
Fehr, Ernst and Gary Charness, "Social preferences: fundamental characteristics and economic consequences," 2023.
Fishburn, Peter C, The theory of social choice, Princeton University Press, 2015.
Freeman, Rupert, Markus Brill, and Vincent Conitzer, "On the axiomatic characterization of runoff voting rules," in "Twenty-Eighth AAAI Conference on Artificial Intelligence" 2014.
Gaertner, Wulf, Distributive justice: An overview of experimental evidence, Oxford University Press, 2009.
- and Erik Schokkaert, Empirical social choice: questionnaire-experimental studies on distributive justice, Cambridge University Press, 2012.
Gibbard, Allan, "Manipulation of voting schemes: a general result," Econometrica, 1973, 41 (4), 587-601.
Hastie, Trevor, Robert Tibshirani, and Jerome Friedman, The elements of statistical learning, Vol. 1, Springer series in statistics New York, 2001.
Hoffmann, Timo and Sander Renes, "Flip a coin or vote: Choosing Group Decision Rules," Unpublished Manuscript, 2017.
Holt, Charles A. and Susan K. Laury, "Risk Aversion and Incentive Effects," American Economic Review, 2002, 92 (5), 1644-655.
Huang, Zhexue, "Extensions to the k-means algorithm for clustering large data sets with categorical values," Data Mining and Knowledge Discovery, 1998, 2 (3), 283-304.
Jackson, Matthew O and Leeat Yariv, "Present bias and collective dynamic choice in the lab," American Economic Review, 2014, 104 (12), 4184-4204.
Kara, Ayça E Giritligil and Murat R Sertel, "Does majoritarian approval matter in selecting a social choice rule? An exploratory panel study," Social Choice and Welfare, 2005, 25 (1), 43-73.
Konow, James, "Which is the fairest one of all? A positive analysis of justice theories," Journal of Economic Literature, 2003, 41 (4), 1188-1239.
Kuziemko, Ilyana, Ryan W Buell, Taly Reich, and Michael I Norton, ""Last-place aversion": Evidence and redistributive implications," The Quarterly Journal of Economics, 2014, 129 (1), 105149.

Lalley, Steven P and E Glen Weyl, "Quadratic voting: How mechanism design can radicalize democracy," in "AEA Papers and Proceedings," Vol. 108 American Economic Association 2014 Broadway, Suite 305, Nashville, TN 37203 2018, pp. 33-37.
Laslier, Jean-François, "And the loser is... plurality voting," in "Electoral systems," Springer, 2012, pp. 327-351.
Martinangeli, Andrea FM and Lisa Windsteiger, "Last word not yet spoken: a reinvestigation of last place aversion with aversion to rank reversals," Experimental Economics, 2020, pp. 1-21.
Merrill III, Samuel, "A comparison of efficiency of multicandidate electoral systems," American Journal of Political Science, 1984, pp. 23-48.

Mill, John Stuart, On liberty, Longmans, Green, Reader, and Dyer, 1869.
Newenhizen, Jill Van, "The Borda method is most likely to respect the Condorcet principle," Economic Theory, 1992, $2(1), 69-83$.
Nielsen, Kirby and John Rehbeck, "When Choices are Mistakes," Available at SSRN 3481381, 2020.

Pivato, Marcus, "Asymptotic utilitarianism in scoring rules," Social Choice and Welfare, 2016, 47 (2), 431-458.

Portmann, Lea and Nenad Stojanović, "Electoral discrimination against immigrant-origin candidates," Political Behavior, 2019, 41 (1), 105-134.
Richie, Robert, "Instant runoff voting: what Mexico (and others) could learn," Election Law Journal, 2004, 3 (3), 501-512.
Satterthwaite, Mark Allen, "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, 1975, 10 (2), 187-217.
Smith, Tom W., Michael Davern, Jeremy Freese, and Stephen L. Morgan, General Social Surveys, 1972-2018, Chicago: NORC, 2019.
Statistics Sweden, "The Party Preference Survey in May 2018," https://www.scb.se/ publication/34439 2018.
Thomson, Keela S and Daniel M Oppenheimer, "Investigating an alternate form of the cognitive reflection test," Judgment and Decision Making, 2016, 11 (1), 99.
Toplak, Jurij, "The parliamentary election in Slovenia, October 2004," Electoral Studies, 2006, 25 (4), 825-831.

Vickrey, William, "Counterspeculation, auctions, and competitive sealed tenders," The Journal of Finance, 1961, 16 (1), 8-37.
Webb, Geoffrey I, "Naïve Bayes," Encyclopedia of machine learning, 2010, 15, 713-714.
Weber, Robert J, "Comparison of public choice systems," Cowles Foundation for Research in Economics, Yale University, 1978.

ONLINE APPENDIX

Interpreting the Will of the People A Positive Analysis of Ordinal Preference Aggregation

Sandro Ambuehl, B. Douglas Bernheim

Table of Contents

A Main experiment 1
A. 1 Identification . 1
A. 2 Bayes Classifier . 3
A. 3 Design details . 8
A. 4 Supplementary results . 15

B Cardinal outcomes experiment 19
B. 1 Design details . 19
B. 2 Supplementary results . 20

C General population experiment 26
C. 1 Design details . 26
C. 2 Supplementary results . 26

D Experiment instructions 28
D. 1 Main experiment . 28
D. 2 Cardinal outcomes experiment . 65
D. 3 General population experiment . 71
D. 4 Elicitation of mTurk worker Stakeholder preferences 83
D. 5 Elicitation of Swiss citizen Stakeholder preferences 93

References 94

A Main experiment

A. 1 Identification

Excluded three-option profiles Given anonymity and neutrality, our setting of five Stakeholders and three alternatives allows for 42 different preference profiles. The work domain in our experiment uses the 17 profiles that provide the largest amount of discrimination between our pre-specified rules. Table A. 1 lists the remaining 25 profiles that are not included in our experiment. These omitted profiles cannot expand the set of scoring rules, scoring runoffs, or q-majority rules we can distinguish. In the case of scoring rules and q-majority rules, this can be shown analytically. For the case of scoring runoff rules, we show this point using brute-force computer scripts.

Figure A. 1 shows that these profiles would also provide little or no additional ability to distinguish between our pre-specified rules.

Figure A.1: Distance between rules used on the set of 25 omitted profiles.

Notes: This graph plots the set of 22 benevolent rules on both the horizontal and vertical axes. Each cell reports the number of profiles (out of the 25 profiles omitted from the experiment) for which a given pair of rules differ from each other. We use the definition that two rules differ on a profile if they select a different subset of options (distance $=1$); otherwise they do not differ on that profile (distance $=0$).

Distance between rules on profiles used the in political domain Figure A. 2 displays the distance between any pair of our pre-specified rules on the preference profiles we use for the political domain. Entries of zero off the diagonal indicate that the corresponding pair of rules cannot be separately identified using either of our methods. Moreover, using incentivized choice alone, we cannot separately identify any pair of rules that differ from each other on only a single profile if the set of options chosen by one rule on that profile is a subset of those chosen by the other rule.

Figure A.2: Distance between rules used in the political domain.

Notes: This graph plots the set of 22 benevolent rules on both the horizontal and vertical axes. Each cell reports the number of profiles (out of the 7 used in the political domain) for which a given pair of rules differ from each other. We use the definition that two rules differ on a profile if they select a different subset of options (distance $=1$); otherwise they do not differ on that profile (distance $=0$).

A. 2 Bayes Classifier

Derivation of the Bayesian posterior Here, we derive the explicit expression for the Bayesian posteriors, $P(R, \epsilon \mid c)$, that our Bayesian classifier maximizes. For each preference profile t, a social choice rule R prescribes a subset $S_{R}^{t} \subseteq\{A, B, C\}$ of admissible options. For each t, the subject makes a choice $c_{t} \in\{A, B, C\}$. If the individual follows rule R with error probability ϵ and behaves according to the assumptions listed in Section 4.2, then the probability of choosing each alternative is given by the following expressions for $X, Y, Z \in\{A, B, C\}$ with X, Y, and Z mutually distinct from each other.

$$
\begin{aligned}
P\left(c_{t}=X \mid S_{R}^{t}=\{X\} ; \epsilon\right) & =1-\frac{2}{3} \epsilon \\
P\left(c_{t}=Y \mid S_{R}^{t}=\{X\} ; \epsilon\right) & =\frac{1}{3} \epsilon \\
P\left(c_{t}=X \mid S_{R}^{t}=\{X, Y\} ; \epsilon\right) & =\frac{1}{2}-\frac{1}{6} \epsilon \\
P\left(c_{t}=Z \mid S_{R}^{t}=\{X, Y\} ; \epsilon\right) & =\frac{1}{3} \epsilon \\
P\left(c_{t}=X \mid S_{R}^{t}=\{A, B, C\} ; \epsilon\right) & =\frac{1}{3}
\end{aligned}
$$

Moreover, by the assumption of conditional independence across rounds, the probability of observing choice sequence $c=\left(c_{1}, \ldots, c_{T}\right)$ from a subject who follows rule R is given by $P(c \mid R)=\prod_{t=1}^{T} P\left(c_{t} \mid S_{R}^{t}\right)$. Given the assumption of uniform prior probabilities across rules and error probabilities, we derive the prior probability of observing choice sequence c as $P(c)=\sum_{R} \frac{1}{N_{R}} \int_{0}^{1} P(c \mid R ; \epsilon) d \epsilon$, where N_{R} is the total number of rules. By Bayes' rule, the posterior associated with rule R and error probability ϵ conditional on the sequence of choices c is thus given by

$$
\begin{equation*}
P(R, \epsilon \mid c)=\frac{P(c \mid R ; \epsilon) \mu_{i}}{P(c)} \tag{1}
\end{equation*}
$$

Monte Carlo Simulations We use Monte Carlo simulations to test (i) whether the Bayesian classifier reliably detects the use of pre-specified rules, and (ii) whether noise introduces bias.

To answer the first question, we simulate a sample of 1,000 subjects. We uniformly randomly assign each simulated subject to one of the identifiable benevolent rules in each domain. Each simulated subject follows the assigned rule exactly and randomizes uniformly among all tied options in case of irresoluteness. We then run the Bayesian classifier on this sample of simulated subjects, both using all three-option profiles available in the work domain, and using the three-option profiles available in the political domain. Figure A. 3 shows the results. Using the profiles available in the work domain (Panel A), three features stand out. First, the data are generally tightly centered around the diagonal. Second, subjects following a massively irresolute rule (supermajority and unanimity) are frequently confused for following another rule. Yet, even in these cases, the rule generating the choices receives non-trivial weight. Hence if the classifier assigns zero weight to these two rules, it is unlikely that any subject actually followed one of these rules. Third, while scoring rules with a parameter between the boundaries of identifiable intervals are correctly classified in all cases, scoring rules with a parameter on the interval boundaries are sometimes confused for those with a parameter just above or just below the interval boundary. The reason is mechanical. In case of a scoring parameter on the interval boundary (henceforth: a point-identified scoring rule), the set of chosen options is the union of the options chosen by the neighboring interval-identified scoring rules. By assumption, subjects uniformly randomize in case of ties. If a point-identified scoring rule is irresolute on two profiles, and the neighboring interval-identified scoring rules are resolute on those profiles, for instance, there is a 50% chance that the randomization over the ties happens to coincide exactly with the choices prescribed by one of the neighboring interval-identified scoring rules. Panel B performs the same exercise but restricts the available data to the profiles available in the political domain and the set of rules to the rules identifiable in that domain. Qualitatively, we observe the same results as in the work domain, with the exception that the (rather irresolute) antiplurality-runoff rule is sometimes confused with other rules.

To answer the second question, we simulate 4,000 subjects who choose uniformly randomly from all options in each round. We then run the Bayesian classifier on this sample of simulated subjects, both using all three-option profiles available in the work domain, and using the three-option profiles available in the political domain. Figure A. 4 shows the resulting distribution of best-fitting types. Panel A uses the profiles available in the work domain. Unsurprisingly, close to half of simulated subjects are assigned to a malevolent rule. ${ }^{42}$ Within the set of benevolent rules, we see that the least resolute rules, supermajority and unanimity, attract by far the largest fraction of subjects. The remaining rules all attract similar numbers of subjects, between one and roughly five percent. Notably, neither of the modes we observe in our experimental data, Borda and near-antiplurality, attract a disproportionate fraction of randomly generated subjects.

[^31]Figure A.3: Bayesian classifier if rules are followed exactly

Notes: Each of 1,000 simulated subjects is randomly uniformly assigned one identifiable benevolent rule in the respective domain and follows the rule exactly. In case of ties, simulated subjects randomize uniformly among all tied options. We run the Bayesian classifier on the simulated data. Fractions of subjects are indicated by the sizes of circles.

Panel B uses the set of profiles available in the political domain. We find that 40.8% of simulated subjects are classified as malevolent. Among the remainder, we observe the same tendency as in the work domain to assign randomly generated subjects to the least resolute rules, and no tendency to disproportionately assign subjects to Borda or near-antiplurality.

Overall, we conclude that our classification results in Section 4.2.2 are not an artifact of classifying noisy data.

Figure A.4: Bayesian classifier on uniformly random noise

${ }^{\text {a) }}$ The category "Consistent with $0 \leq s<33$ " includes scoring rules with $0 \leq s<\frac{1}{3}$, any Condorcet extension, and any scoring runoff rule with $s<1$."

Notes: Each of 4,000 simulated subjects makes uniformly random choices from all three options. We run the Bayesian classifier on the simulated data. Graphs display the distribution over benevolent rules only.

A. 3 Design details

Alternative display formats Figures A. 5 and A. 6 show the second and third display formats referenced in Section 3.

Figure A.5: Planners' decision interface, version 2 (individuals in cells)

Notes: Subjects can drag and drop columns, click a button to shuffle columns, hide choice options, highlight workers, and hide workers. If a subject hides an option, only two rows are shown; the remaining rows are labeled 'Best of 2' and Worst of 2.' Symbols for options and colors for worker symbols are randomly drawn each round. The order of options is randomly drawn each round.

Figure A.6: Planners' decision interface, version 3 (ranks in cells)

Notes: Subjects can drag and drop columns, drag and drop rows, click a button to shuffle columns, click a button to shuffle rows, highlight preference ranks, hide choice options, and hide workers. If a subject hides an option, only two symbols, labeled 'best' and 'worst,' are shown. The colors of the symbols labeled 'best' and 'worst' differ depending on whether two or three options are displayed, to signify that the best (worst) option among two is not necessarily best (worst) among three. Symbols for options and colors for worker symbols are randomly drawn each round. The orders of workers and options are randomly drawn each round. Colors for the preference ranks are randomly drawn on the individual level but remain constant throughout the experiment.

Table 8: Cardinal payoff profiles

A. Swap treatments

Profile $S 1$			
Option	Stakeholder		
	1	2	3
A	$6+\epsilon_{1}$	$3+\epsilon_{2}$	$5+\epsilon_{3}$
B	3	5	6
C	1	4	2

Profile $S 2$			
Option	Stakeholder		
	1	2	3
A	$6+\epsilon_{1}$	$5+\epsilon_{3}$	$3+\epsilon_{2}$
B	5	3	6
C	4	1	2

Implied ordinal preferences (if $0 \leq \epsilon_{i}<1$)

Preference rank	Stakeholder		
	1	2	3
1	A	B	B
2	B	C	A
3	C	A	C

Preference rank	Stakeholder		
	1	2	3
1	A	A	B
2	B	B	A
3	C	C	C

B. Deletion treatments

Profile D1			
Option	Stakeholder		
	1	2	3
A	3	2	$2-\delta$
B	1	3	$3-\delta$
C	2	1	$1-\delta$

Profile D2			
Option	Stakeholder		
	1	2	3
A	1	3	$3+\delta$
B	2	$2-\nu$	$2+\delta$
C	3	1	$1+\delta$

Implied ordinal preferences

Preference rank	Stakeholder			Preference rank	Stakeholder		
	1	2	3		1	2	3
1	A	B	B	1	C	A	A
2	C	A	A	2	B	B	B
3	B	C	C	3	A	C	C

Notes: $0 \leq \epsilon_{i}, \delta, \nu<1$ for all i. In the tables displaying implied ordinal preferences, columns correspond to Stakeholders and rows to preference ranks. A Stakeholder's first, second, and third-ranked alternatives are listed in the first, second, and third rows, respectively.

Table 9: Choices with cardinal payoff information

A. Swap treatments				B. Deletion treatments		
Profile	S1	$S 2$	Difference	Profile	D1	D2
$\epsilon=0$	$\begin{gathered} 0.300 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.712 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.412^{* * *} \\ (0.022) \end{gathered}$	C available	$\begin{gathered} 0.812 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.396 \\ (0.018) \end{gathered}$
$\epsilon>0$	$\begin{gathered} 0.755 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.901 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.146 * * * \\ (0.015) \end{gathered}$	C removed	$\begin{gathered} 0.780 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.496 \\ (0.019) \end{gathered}$
Difference	$\begin{gathered} 0.455^{* * *} \\ (0.017) \\ \hline \end{gathered}$	$\begin{gathered} 0.189^{* * *} \\ (0.013) \\ \hline \end{gathered}$	$\begin{gathered} -0.265 * * * \\ (0.021) \end{gathered}$	Difference	$\begin{gathered} -0.033^{* *} \\ (0.014) \\ \hline \end{gathered}$	$\begin{gathered} 0.099^{* * *} \\ (0.014) \\ \hline \end{gathered}$

Notes: Both panels show the frequency with which subjects choose option A. Standard errors clustered by subject. Pooled across display formats.

Table 10: Relation between behavioral measures of preference for compromise and self-reports

VARIABLES	(1)	(2)	(3)	(4)
	Prefers compromise candidate		Prefers compromise solutions	
Mean of the dep. var.	0.801		0.686	
Scoring parameter	$\begin{aligned} & 0.077^{*} \\ & (0.042) \end{aligned}$	$\begin{aligned} & \hline 0.070^{*} \\ & (0.042) \end{aligned}$	$\begin{gathered} 0.035 \\ (0.056) \end{gathered}$	$\begin{gathered} 0.022 \\ (0.055) \end{gathered}$
Demographic controls		\checkmark		\checkmark
Subjects	1,404	1,404	1,404	1,404

Notes: OLS regressions. All regressions control for sample provider and display fixed effects. Demographic controls include nationality, gender, age, marital status, percentile rank of respondents' education within the sample in their respective country, indicators for being unemployed and for being part-time employed, as well as the percentile rank of income within the sample for the respondents' country.

Table A.1: Excluded three-alternative profiles.

A A B B B	A A A A A	A A B B B	A B B B B	A C B B B
B C C C C	B B B B B	B C C C A	B C A A A	B B C A A
C B A A A	C C C C C	C B A A C	C A C C C	C A A C C
A C C C C	A A A A A	A A B B B	A B B B B	A A A B B
B A B B B	B B C C C	B C C A A	B A A A A	B C C A A
C B A A A	C C B B B	C B A C C	C C C C C	C B B C C
A C B B B	A A B B B	A C C C C	A C C B B	A C B B B
B A C C C	B B C C C	B A A A B	B B B C C	B B A A A
C B A A A	C C A A A	C B B B A	C A A A A	C A C C C
A C B B B	A A B B B	A C C C C	A C C B B	A A A C C
B A C C A	B B A A A	B A A B B	B B B C A	B C C A A
C B A A C	C C C C C	C B B A A	C A A A C	C B B B B
A C B B B	A A A A A	A B B B B	A B B B B	A B B B B
B A C A A	B C C C C	B C C C C	B C C A A	B C C C A
C B A C C	C B B B B	C A A A A	C A A C C	C A A A C

Notes: Most our pre-specified rules make the same prediction about which option will be chosen for most of the profiles in this table. Note that for the majority of these profiles, the preference rank distributions of the alternatives are fully ordered by stochastic dominance, and the option with the lowest (least preferred) rank distribution is statewise dominated by another option.

Details about decisions in the political domain There are two differences between the political and work domain that are not mentioned in the main text. First, to prevent Planners from drawing inferences about parties from preference distributions, we select the group of five citizens from a sample that equally represents those who self-identify as politically left, right, and center. Planners are aware of the sample's composition. The second difference concerns the process for eliciting Stakeholders' preferences: citizens' expressed preferences determine the recipient of the donation with 2.5% probability, versus 5% probability for the analogous contingency in the work domain.

Additional elicitations Beliefs about reservation prices. In the elicitation of belies about stakeholder reservation prices in the work domain, possible answers range from $\$ 0$ to $\$ 10$ in increments of $\$ 0.50$. Half of the subjects see these questions ordered by rank (first, second, third), and half see them ordered by reverse rank (third, second, first). Before subjects answer these questions, we remind them about the price and income level in the US and the standard wages of mTurk workers. The instructions for these tasks explain the concept of WTP using an example for which we randomize the elicited valuation (either $\$ 5$ or $\$ 1$). We assume that the Planner's inferences about positional money-metric utility do not vary from one profile to another, and consequently elicit these beliefs only once.

The elicitations in the political domain are the same as for the work domain, with two exceptions. First, Possible predictions for the WTP to trigger the donation lie in the set $\{>15,15,13,11,9,7,5$, $3,1,-1,-3,-5,-7,-9,-11,-13,-15,<-15\}$. Over the five rounds, Planners make predictions for citizens with different first names rather than different cities of residence. Second, to increase statistical power, Planners answer five (nearly) redundant versions of these questions, where each version specifies the city and state where the worker lives. We use two sets of five city labels, randomly assigned, so we can determine whether the labels are consequential.

If one of the subject's reservation price predictions ends up determining her payment, she receives Fr. 30 minus Fr. 3 for every dollar by which her prediction differs from the truth, which we assess using incentivized multiple decision lists in preliminary sessions involving a separate set of workers. Planners also indicate their own reservation price for completing each of the five tasks, but these responses are unincentivized.

Risk preferences. On each line of a multiple decision list, subjects choose between two lotteries. The first lottery pays Fr. 23 with probability p or Fr. 15 with probability $(1-p)$. The second pays Fr. 38 with probability p or Fr. 3 with probability $(1-p)$. The list includes 11 binary choices with $p \in\{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1\}$. In a second otherwise identical decision list, the first lottery pays either Fr. 20 or Fr. 13, while the second pays either Fr. 34 or Fr. 5.

Altruism. Subjects complete a multiple decision list involving the following pairs of alternatives: "Increase each of the five workers' payoffs by \$2. Decrease my own study payment by CHF X," or "Do not increase the group members' payoffs. Leave my own study payment unchanged." Each
line employs a different value of X in the set $\{0,1,2,3,4,6,8,10,12,14,16,18,20\}$. In an otherwise identical second list, the first option is "Increase each of the five workers' payoffs by Fr. X (exchanged to USD). Decrease my own study payment by Fr. $5 X$," and the values of X lie in $\{0.2,0.4,0.6,0.8,1,1.2,1.4,1.6,1.8,2\}$. Notice that the first list implicates both efficiency and equity, while the second implicates only equity. Subjects complete a multiple decision list involving the following pairs of alternatives: "Increase each of the five workers' payoffs by \$2. Decrease my own study payment by CHF X," or "Do not increase the group members' payoffs. Leave my own study payment unchanged." Each line employs a different value of X in the set $\{0,1,2,3,4,6,8,10,12,14,16,18,20\}$. In an otherwise identical second list, the first option is "Increase each of the five workers' payoffs by Fr. X (exchanged to USD). Decrease my own study payment by Fr. $5 X$," and the values of X lie in $\{0.2,0.4,0.6,0.8,1,1.2,1.4,1.6,1.8,2\}$. Notice that the first list implicates both efficiency and equity, while the second implicates only equity.

Demographics questions We elicit the following demographic characteristics: gender, age, field of study and degree level they are working towards, grades in university entrance exams in mathematics and in their first language, canton in which they completed their university entrance exam, their main language, whether they live with their parents, their number of siblings, monthly spending, religiosity, religion, political stance, and political party they voted for in the last election of the Swiss National Council.

Questions about background in social choice theory Subjects report whether they have taken a class covering pertinent topics. We illustrate a three-option, three-citizen cyclical preference profile and ask subjects to name the paradox. We also ask subjects to name the Borda rule and Arrow's impossibility theorem based on verbal descriptions.

Comprehension checks Each of the two comprehension checks consists of nine questions. The first set concerns the preference displays and the second concerns the general decision environment. Subjects must answer all nine questions correctly to proceed. If they make a mistake, we ask them to review the instructions and try again, but we do not tell them which question(s) they missed. This feature prevents the subject from trying to pass the comprehension check by trial and error (the chance of passing either of the comprehension checks by chance is less than 0.2%). The comprehension questions appear in Appendix D.1.

A. 4 Supplementary results

Effects of preference displays Here, we study the influence of the format in which we presented preference profiles on our classification results. Figure A. 7 displays the classification to pre-specified rules separately by display format. Graphs on the left hand side use incentivized choices only while those on the right hand side make use of indifference statements.

In each case we see that (i) malevolent and qualified majority rules receive vanishing support, (ii) runoff rules receive minor support, and (iii) the vast majority of subjects follow a concave scoring rule. Differences across the graphs mainly concern the modes of Borda and near-antiplurality. Relying on incentivized data alone, both of these rules emerge as the modal choices in each display version. While Borda is the more pronounced mode in display versions 1 and 3 , near-antiplurality is the more pronounced mode in display version 2. This same pattern emerges to a larger extent if we incorporate indifference data for classification. Overall we conclude that our main results are robust to the preference display used, except that we cannot reliably distinguish whether Borda or nearantiplurality is the more pronounced mode.

Figure A.7: Best fitting pre-specified rules, work domain, by display

Display 1 (options in cells)

Notes: Displays 1, 2, and 3 are shown in Figures 3, A.5, and A.6, respectively.

Classifications by fit Panel A of Figure A. 8 displays the results of our classification based on incentivized choice separately for subjects whose choices are perfectly consistent with their bestfitting rule and those whose choices deviate on at least one preference profile from their best-fitting rule.

Figure A.8: Best fitting pre-specified rules, by perfect fit
A. Subjects with perfect fit to the assigned rule

B. Subjects with imperfect fit to the assigned rule

Notes: Results of the classification based on incentivized data alone. Panel A shows the subset of subjects whose choices are a perfect fit to the best-fitting rule. Panel B shows the subset of subjects who fit the best-fitting rule imperfectly.

Endogenous clusters Table A. 2 displays the endogenous clusters uncovered by our clustering algorithm and the fractions of subjects assigned to each.

Table A.2: Clustering results

Profile	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Condorcet	C	A	A	B	C	C	C	C	A	C	C	ABCABC	B	B	B	B	
Scoring																	
$\quad \bar{s}$	$1 / 3$	$1 / 3$	$1 / 2$	$1 / 2$	$1 / 2$	$3 / 5$	$2 / 3$	$2 / 3$	$3 / 4$	$3 / 4$	$4 / 5$	-	$1 / 2$	0	0	0	0
$s<\bar{s}$	C	$\left.\mathrm{B}^{a}\right)$	A	B	C	C	C	C	A	C	C	$\mathrm{C}^{a)}$	BC	-	-	-	-
$s>\bar{s}$	A	A	C	A	B	B	B	B	C	A	B	C	A	BC	$\mathrm{B}^{b)}$	B	B

Endogenous clusters, $k=1$
\% subjects 4.69

Total: 4.69
$\begin{array}{lllllllllllllllll}\mathrm{A} & \mathrm{A} & \mathrm{C} & \mathrm{A} & \mathrm{B} & \mathrm{B} & \mathrm{B} & \mathrm{B} & \mathrm{A} & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{A} & \mathrm{B} & \mathrm{B} & \mathrm{B} & \mathrm{B}\end{array}$

Endogenous clusters, $k=2$
\% subjects
4.69
1.73

Total: 6.42

\% subjects	Endogenous clusters, $k=3$																
4.69	A	A	C	A	B	B	B	B	A	A	B	C	A	B	B	B	B
1.73	A	A	C	B	B	B	C	B	C	C	B	C	A	C	B	B	B
0.25	A	A	C	A	A	A	B	A	B	A	A	B	A	A	C	B	A

Total: 6.67
Endogenous clusters, $k=5$
\% subjects 4.69
1.73
1.73
1.48
0.74

Total: 10.37
Endogenous clusters, $k=10$

\% subjects																	
4.69	A	A	C	A	B	B	B	B	A	A	B	C	A	B	B	B	B
1.73	A	A	C	B	B	B	C	B	C	C	B	C	A	C	B	B	B
1.48	A	A	A	B	B	B	B	C	A	C	C	C	A	B	B	B	B
1.23	A	A	A	B	B	B	C	C	A	C	C	C	A	B	B	B	B
0.99	A	A	C	A	B	B	C	C	C	C	C	C	A	C	B	B	B
0.74	A	A	C	A	B	B	C	B	A	C	C	C	C	B	B	B	B
0.74	A	A	C	A	B	B	B	C	C	C	B	C	A	B	B	B	B
0.25	A	A	C	A	A	A	B	A	B	A	A	B	A	A	C	B	A
0.25	B	C	B	B	A	B	C	C	C	B	A	A	B	A	C	A	B
0.25	A	C	A	B	C	C	B	B	A	A	B	C	A	B	C	C	B
Total 12.35																	

Notes: This table shows the clusters that emerge endogenously (in addition to those associated with our pre-specified rules) from application of a k-modes algorithm, along with the fractions of subjects assigned to each such cluster. For ease of comparison, the top section of the table shows choices for selected pre-specified rules.

Last-place aversion Does the the concave aggregation we document in section 4.2 simply represent linear aggregation with a discount for receiving one's least-preferred alternative (last-place aversion; formalized as using scoring vectors that assign score $\frac{k-1}{K-1}$ to any option ranked $k \geq 2$, but score $-d<0$ to the option ranked last in the case of K alternatives), or does it reflect globally concave aggregation in the sense that subjects' choices are described by score vectors that are strictly concave across all ranks (for instance by instance, by using scoring vectors that assign score $\left(\frac{k-1}{K-1}\right)^{\gamma}$ to the option ranked k in the case of K alternatives)? Choices in the runoff-separating profiles of Table 3 show that globally concave aggregation plays a substantial role. In these profiles, the choice of option A is consistent with a scoring rule with $s \leq 0.5$ whereas the choice of B or C is consistent with $s \in\left[\frac{1}{2}, \frac{2}{3}\right]$ and $s \in\left[\frac{2}{3}, 1\right]$, respectively, where $s=\left(\frac{1}{2}\right)^{\gamma}$. Importantly, in these profiles, option B is ranked last by one individual, and option A is ranked last by two individuals. In the three-option profiles 3 and 4, 64% of subjects choose the option consistent with a weakly concave scoring rule. If last-place aversion explains this choice pattern, then, in the four-option profiles 22 and 23 , we should observe that at least 64% of subjects avoid the last-place-generating options (A or B). In contrast, the fraction of subjects selecting either option A or option B is given by 64.2% and 81.7% for the first and second runoff-separating profiles, respectively. Hence, last-place aversion cannot be the sole reason for the choice patterns we observe in the three-option profiles.

B Cardinal outcomes experiment

B. 1 Design details

Display formats Figures B.9, B.10, and B. 11 show each of the three display formats described in Section 4.7.

Parameters Swap treatments. The cardinal advantage we confer on option A depends on the display format. With the format in Figure B.9, it is $\epsilon_{1}=\epsilon_{2}=\epsilon_{3}$ throughout, whereas with the remaining two formats, $\epsilon_{1}=\epsilon_{2}=0$ throughout.

The following twelve tasks make up the swaps treatments. For two tasks, we use profiles $S 1$ and $S 2$ with all amounts multiplied by a factor of two, and with $\epsilon_{i}=0$ for all i. Two other tasks are identical except that the strictly positive ϵ_{i} equal 0.25 . An additional group of four tasks parallel the first four, except that we use a multiplicative factor of 2.5 , and we set the strictly positive values of ϵ_{1} equal to $1 / 5$. Yet another group of four tasks parallel the first two groups, except that we use a multiplication factor 3 and set the strictly positive values of ϵ_{1} equal to $1 / 6$.

Deletion treatments. The eight tasks that make up the deletion treatments belong to four pairs. Paired tasks are identical except that one includes option C while the other does not. One pair is based on profile $D 1$ with payoffs multiplied by 5 and $\delta=0.4$. A second pair is based on $D 1$ with payoffs multiplied by factor 4 and $\delta=0.5$. The remaining four rounds parallel the first four, except

Figure B.9: Planner's decision interface, version 1 (axes stakeholders and payoffs)

we use profile $D 2$ instead of $D 1$, and set $\nu=0.4$ and $\nu=0.5$ when the scaling factor is 5 and 4, respectively. With the display format for which no visual overlap occurs, we set $\nu=0$ throughout.

Implementation Subjects read all instructions on-screen in English. We reproduce these instructions in Appendix D.2. Only those who passed two comprehension checks were allowed to complete the tasks. The first check ensures that subjects understand the payoff information displayed in the tasks. The second ensures that they understand the consequences of selecting any given payoff vector for the group of Stakeholders. We allow subjects who do not pass a check to revisit the instructions and try again.

B. 2 Supplementary results

In this section, we provide more detailed statistical analysis of the resulting choices. In particular, we provide separate results for each display format, and we perform robustness checks for treatments involving profiles $D 1$ and $D 2$.

Table B. 3 shows the choice distributions for each payoff profile category, both pooled across display formats and separately for each display format. Table B. 4 performs statistical tests of treatment effects. The first column pools across display formats and includes display format fixed effects. Columns

Figure B.10: Planner's decision interface, version 2 (axes options and payoffs)

Figure B.11: Planner's decision interface, version 3 (axes individuals and options)

Table B.3: Choice distributions

Profile	$S 1$ $\epsilon_{i}=0$	$S 2$ $\epsilon_{i}=0$	$S 1$ $\epsilon_{i}>0$	$S 2$ $\epsilon_{i}>0$	$D 1$	$D 1$	$D 2$	$D 2$
Option C available					Yes	No	Yes	No
Choice (pooled across displays)								
A	0.300	0.712	0.755	0.901	0.812	0.780	0.396	0.496
B	0.687	0.275	0.233	0.085	0.175	0.220	0.597	0.504
C	0.013	0.013	0.012	0.014	0.013	-	0.007	-
Choice (display 1)								
A	0.440	0.644	0.842	0.874	0.842	0.879	0.266	0.313
B	0.547	0.335	0.142	0.114	0.139	0.121	0.729	0.687
C	0.012	0.021	0.016	0.012	0.018	-	0.005	-
Choice (display 2)								
A	0.293	0.673	0.750	0.910	0.855	0.795	0.425	0.542
B	0.698	0.317	0.242	0.082	0.135	0.205	0.565	0.458
C	0.008	0.010	0.008	0.008	0.010	-	0.010	-
Choice (display 3)								
A	0.170	0.818	0.675	0.919	0.740	0.668	0.495	0.626
B	0.813	0.174	0.313	0.060	0.250	0.332	0.500	0.374
C	0.017	0.009	0.012	0.021	0.010	-	0.005	-

2,3 , and 4 then show results separately for each display format. We cluster all standard errors at the subject level.

Panel A of Table B. 4 compares the choice frequency of option A for the case in which $\epsilon_{i}=0$ for all i across profiles $S 1$ and $S 2$. While both baseline choice probability and effect size vary substantially across display formats, we observe large treatment effects for each of them. Panel B considers the parallel comparison for the case in which $\epsilon_{i}>0$ for some i. Recall that for display format 1 , we set $\epsilon_{i}>0$ for all i, whereas for display formats 2 and 3 we set $\epsilon_{3}>0$ but keep $\epsilon_{1}=\epsilon_{2}=0$. While we find strong positive effects for display formats 2 and 3 , we find a substantially smaller effect for display format 1. Possibly because we conferred a stronger cardinal advantage upon option A in that display format, the baseline probability of selecting option A is higher than for the other display formats. Panel C shows the effect of increasing ϵ_{i} separately for each display format with profile $S 1$. Panel D shows the corresponding regressions for profile $S 2$. We see strong and highly statistically significant treatment effects for each display format and each of the two profiles.

Panels A and B of Table B.5, respectively, show the effects of removing alternative C from profiles $D 1$ and $D 2$. For profile $D 1$, we see strong and significant effects with display formats 2 and 3 . For display format 1 , we observe a statistically insignificant effect with the opposite sign. Columns 5 to 8 repeat columns 1 to 4 , but only include observations for which option C was not chosen. The results are largely similar. For profile $D 2$, we observe statistically significant effects (at the 5% level)

Table B.4: Statistical tests
A. $S 1$ vs. $S 2$ when $\epsilon_{i}=0$ for all i

VARIABLES	(1)	(2)	(3)	(4)
	Option A chosen			
Display format	All	1	2	3
Profile S2	$\begin{gathered} 0.412^{* * *} \\ (0.022) \end{gathered}$	$\begin{gathered} \hline 0.204^{* * *} \\ (0.035) \end{gathered}$	$\begin{gathered} 0.380^{* * *} \\ (0.039) \end{gathered}$	$\begin{gathered} \hline 0.648^{* * *} \\ (0.031) \end{gathered}$
Constant	$\begin{gathered} 0.336^{* * *} \\ (0.017) \end{gathered}$	$\begin{gathered} 0.440^{* * *} \\ (0.023) \end{gathered}$	$\begin{gathered} 0.293^{* * *} \\ (0.023) \end{gathered}$	$\begin{gathered} 0.170^{* * *} \\ (0.018) \end{gathered}$
Display format FE	Yes			
Observations	3,504	1,140	1,200	1,164
Subjects	584	190	200	194
B. $S 1$ vs. $S 2$ when $\epsilon_{i}>0$ for some i				
VARIABLES	(1)	(2)	(3)	(4)
	Option A chosen			
Display format	All	1	2	3
Profile S2	$0.146^{* * *}$	0.032	0.160***	0.244***
	(0.015)	(0.022)	(0.025)	(0.026)
Constant	$0.785^{* * *}$	0.842***	0.750***	$0.675^{* * *}$
	(0.017)	(0.020)	(0.026)	(0.027)
Display format FE Observations Subjects	Yes			
	3,504	1,140	1,200	1,164
	584	190	200	194
C. Effect of increasing ϵ_{i} in profile $S 1$				
VARIABLES	(1)	(2)	(3)	(4)
	Option A chosen			
Display format	All	1	2	3
Increased epsilon	0.455***	0.402***	$0.457^{* * *}$	0.505***
	(0.017)	(0.027)	(0.030)	(0.029)
Constant	0.414***	$0.440^{* * *}$	0.293***	0.170***
	(0.019)	(0.023)	(0.023)	(0.018)
Display format FE Observations Subjects	Yes			
	3,504	1,140	1,200	1,164
	584	190	200	194
D. Effect of increasing ϵ_{i} in profile $S 2$				
VARIABLES	(1)	(2)	(3)	(4)
	Option A chosen			
Display format	All	1	2	3
Increased epsilon	0.189***	0.230***	$0.237^{* * *}$	0.101***
	(0.013)	(0.023)	(0.025)	(0.020)
Constant	$0.664^{* * *}$	$0.644^{* * *}$	$0.673^{* * *}$	0.818***
	(0.017)	(0.020)	(0.023)	(0.020)
Display format FE	Yes	24		
Observations	3,504	1,140	1,200	1,164
Subjects	584	190	200	194

Table B.5: Statistical tests
A. $D 1$ by availability of option C

VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Option A chosen							
Display format	All	1	2	3	All	1	2	3
Option C unavailable	$\begin{gathered} -0.033^{* *} \\ (0.014) \end{gathered}$	$\begin{gathered} 0.037 \\ (0.024) \end{gathered}$	$\begin{gathered} -0.060^{* * *} \\ (0.021) \end{gathered}$	$\begin{gathered} -0.072^{* * *} \\ (0.028) \end{gathered}$	$\begin{gathered} -0.043^{* * *} \\ (0.014) \end{gathered}$	$\begin{gathered} 0.021 \\ (0.023) \end{gathered}$	$\begin{gathered} -0.069^{* * *} \\ (0.022) \end{gathered}$	$\begin{gathered} -0.080^{* * *} \\ (0.027) \end{gathered}$
Constant	$\begin{gathered} 0.877^{* * *} \\ (0.019) \end{gathered}$	$\begin{gathered} 0.842^{* * *} \\ (0.022) \end{gathered}$	$\begin{gathered} 0.855^{* * *} \\ (0.021) \end{gathered}$	$\begin{gathered} 0.740^{* * *} \\ (0.025) \end{gathered}$	$\begin{gathered} 0.890^{* * *} \\ (0.018) \end{gathered}$	$\begin{gathered} 0.858^{* * *} \\ (0.021) \end{gathered}$	$\begin{gathered} 0.864^{* * *} \\ (0.020) \end{gathered}$	$\begin{gathered} 0.747^{* * *} \\ (0.025) \end{gathered}$
Display format FE	Yes				Yes			
Observations	2,336	760	800	776	2,321	753	796	772
Subjects	584	190	200	194	584	190	200	194

B. $D 2$ by availability of option C

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
VARIABLES	Option A chosen							
Display format	All	1	2	3	All	1	2	3
Option C unavailable	$\begin{gathered} 0.099^{* * *} \\ (0.014) \end{gathered}$	$\begin{gathered} 0.047^{* *} \\ (0.021) \end{gathered}$	$\begin{gathered} 0.118^{* * *} \\ (0.025) \end{gathered}$	$\begin{gathered} 0.131^{* * *} \\ (0.028) \end{gathered}$	$\begin{gathered} 0.097^{* * *} \\ (0.015) \end{gathered}$	$\begin{gathered} 0.046^{* *} \\ (0.021) \end{gathered}$	$\begin{gathered} 0.113^{* * *} \\ (0.025) \end{gathered}$	$\begin{gathered} 0.129 * * * \\ (0.028) \end{gathered}$
Constant	$\begin{gathered} 0.240^{* * *} \\ (0.029) \end{gathered}$	$\begin{gathered} 0.266^{* * *} \\ (0.029) \end{gathered}$	$\begin{gathered} 0.425^{* * *} \\ (0.032) \end{gathered}$	$\begin{gathered} 0.495^{* * *} \\ (0.032) \end{gathered}$	$\begin{gathered} 0.242^{* * *} \\ (0.029) \end{gathered}$	$\begin{gathered} 0.267^{* * *} \\ (0.029) \end{gathered}$	$\begin{gathered} 0.429^{* * *} \\ (0.032) \end{gathered}$	$\begin{gathered} 0.497^{* * *} \\ (0.032) \end{gathered}$
Display format FE	Yes				Yes			
Observations	2,336	760	800	776	2,328	758	796	774
Subjects	584	190	200	194	584	190	200	194

separately for each display format. Again, these results remain largely unchanged when we exclude observations for which the selected C.

C General population experiment

C. 1 Design details

Instructions are abridged versions from the laboratory experiment, but include the detailed presentation of the preference display. We only use versions 1 and 2 of presenting preference profiles (see Figures 3 and A.5, respectively), since version 3 is often perceived as less intuitive.

A native speaker of Swedish at a commercial translation agency translated the survey into Swedish. We aimed for 1000 respondents in each country. We began sampling with Dynata until no further subjects could be recruited. We then continued sampling the same survey with Lucid until no further subjects could be recruited (potential repeat participants were automatically filtered out by the Qualtrics survey). We retain subjects who participated through Dynata if they correctly answered the comprehension check about the preference display. For subjects recruited through Lucid we added a filter such that subjects could complete the survey only if they correctly answered these comprehension check questions. Because of these requirements, which are more stringent than typical for the subject population, we managed to obtain 712 subjects in Sweden and a comparable 805 subjects in the US. We recruited all Stakeholders with pollfish.

We exclude subjects who failed the comprehension check. Those recruited with Lucid were terminated upon failing the check. Those recruited with Dynata who failed the check could nonetheless finish the study, but we do not include them in our analysis.

C. 2 Supplementary results

Respondent summary statistics Table C. 6 presents the distribution of the demographic characteristics of the general population samples.

Table C.6: Demographic characteristics of the general population samples.

Variable	USA	Sweden
Gender		
Male	0.509	0.560
Female	0.489	0.433
Non-binary	0.001	0.007
Age		
18-25	0.098	0.184
26-35	0.088	0.188
36-45	0.062	0.141
46-55	0.155	0.179
56-65	0.160	0.191
66-75	0.200	0.100
76-85	0.214	0.015
>85	0.022	0.001
Race		
White (non-hispanic)	0.625	
Black	0.057	
White (hispanic)	0.255	
Other	0.063	
Native Swedish		0.778
Other European background		0.124
Other		0.098
Political party preference		
Republican or other right-learning party	0.477	
Democrat or other left-learning party	0.523	
Left Party		0.149
Social Democratic Party		0.249
Green Party		0.065
Centre Party		0.089
Moderate Party		0.239
Sweden Democrats		0.210
Education		
Primary school	0.000	0.052
Some high school	0.005	0.058
High school or GED	0.145	0.266
Some college	0.194	0.159
Associate's or Bachelor's degree	0.419	0.412
Master's degree	0.189	0.030
Doctoral degree	0.048	0.024
Income bracket		
< USD 50k, < SEK 500k	0.420	0.779
between USD 50k and 100k or SEK 500k and 1,000k	0.349	0.208
> USD 100k, > SEK 1,000k	0.231	0.013
Marital status		
Married	0.511	0.370
Widowed	0.097	0.038
Divorced	0.142	0.090
Separated	0.010	0.032
Never married	0.241	0.470
N	805.000	711.000

D Experiment instructions

D. 1 Main experiment

Technical Check

To test whether your computer can display the study correctly, please copy the following number into the field below

225784

WELCOME

This is a research study run by the Department of Economics at the University of Zurich.
This study will take about 50 to 80 minutes to complete. The average participant will earn Fr . 45 for completing this study. This consists of a base payment of Fr. 30 that you will receive with certainty, and a variable payment of up to Fr. 38 that depends on your decisions and on luck.
You will receive payment in cash at the end of this study.

This study has been approved by the ethics review board of the department of economics in protocol OEC IRB \# 2020-035. The study is run in collaboration with Stanford University. It has been approved in Stanford IRB protocol \#53339.

By clicking the "continue" button below, you consent to participating in this decision making study.

Instructions

Please read the instructions carefully.

There will be two comprehension checks. You will be able to continue with the study only if you correctly answer al questions in both comprehensian checks.

This study has three parts.
In part A. you will make decisions that determine what type of work a group of five other study participants will have to complete.
In part B, you will make decisions that determine which of five political parties will receive a donation of CHF30 In part C, you will make decisions that determine your own payoff.

Consequences of your decisions in parts A and B

There is a one in four chance that your choices will determine either the work that the group of five other study participants will complete or the party that will receive the donation. If so, each of your decisions in parts A and B is equally lixely to count. Only one decision will be carried out.

Consequences of your decisions in part C

Your compensation for completing this study consists of a fixed payment of Fr. 30 and a variable payment ranging between Fr. 0 and Fr . 38; on average your total pasment will be around Fr. 45 . The variable payment will be determined by part C of the study. It will depend on your decisions and on luck.

If you are matched to a group of five other participants, you are the only person who is matched to them.
On behalf of the Economics Department at UZH, we guarantee that we cary out all aspects of the study exactly as we describe to you. The ries govening our research do not permit us to decelve our participants in any way.

Part A

Who will be affected by my decisions?

In this part of the study, you will make decisions that may affect a group of five other participants. These five other participants are workers whom we have recruited on the crowdsourcing website Amazon Mechanical Turk MTurk.

Please read the following description about MTurk and workers on that platiorm, so you know who will be affected by the decisions you make in this study today.

About workers on MTurk

Amazon Mechanical Turk is a website on which businosses can hire remotely located workers.
Employers post jobs known as Human intelifigence Tasks (HITs), such as identitying specific content in an image or video, witing product descriptions, or answering questions, among others. Workers browse among existing jobs and complete them in exchange for a rate set by the empleyer.
Any resident of the United States can register as a worker on MTurk. Once registered they complete tasks in exchange for money. Payment for completed tasks can be transferred to a Worker's U.S. bank account.
Workers set their own hours and are not under any obligation to accept any particular task They are entirely flexible regarding how many hours they work, when they work, or where they do it. in this sense, they face similer opporturities as individuals who drive for the rideshare platform Uber.com.

The MTurk workers recruited for this experiment

Al workers who may be affected by your decisions have been active on mlurk for a substantial amount of time. They all have completed at least 1000 Human interaction Tasks, and they have received good reviews for their work (at loast 98% satisfaction rate). All of them are basod in the Unitod Statos.

Pay for workers in this study, and in the United States in general
You are deciding for mTurk workers whom we will remunerate with an average payment of USD 15 per hour. That amount is similar to the average earnings of US-drivers on the ideshare platform Uber: Drivers earn USO 14.73 per hour, after experses such as car insurance and ropairs, according to www.ridester.com/how-much-do-uber drivers-make/, Taxi drvers in Zurich, by comparison, earn around CHF 22 per hour.
A similar relation holds for cashiers. While a cashier at the Swiss retailer Migros earns about CHF 20 per hous, the A similar relation hoids for cashiers. While a cashier at the Swiss retaier Migros earns about CHF 20 per hous, the
large US retalers Walmart and Target remunerate typical cashiers with USD 10 and USD 13 per hous, respectively.

A reasonable rule of thumb is that USD1 buys a bit less than one-and-a half times as much in the United States as CHF 1 buys in Zurich. At the same time, many workers in the United States also earn substantially less than the average resident of Zurich.
complete five different work tasks that we will explain momentarily.

Your task in this study is to decide which of the five workers will complete which task.

Importan

The five workers have alreacy participated in a first part of the stucy. They will complete the second part of the stucty after you have made your choice about which worker will complete which task. You are the only person who delermines ne tasks of those ive workers.

The five workers' tasks

The team of five workers wit need to complete a total of five different tasks.

Not al workers will proter the same tasks. Tasks that are attractive to some will be unatractive to others, and vice versa.

The tasks include, for instance, audio transcription, sorting hate-speech out of a dataset of onine comments, of classitying movie reviews. Some tasks may be emotionally charged, some may require a lot of concentration and carefut thought, and others simply require some time and practice. Wh will show you each task momentarit)

Each team-member will receive $\$ 10$ once they have completed the task assigned to them. If a team-member falls to complete the assigned task, they will not receive any payment.
On the next five pages, you'l see each of the five tasks. Piease complete one or two examples of each task, then click continue.

Movie Review Classification (task 1)

In this task, the worker will classity 400 movie reviews by whether they are positive or negative; that is, by whether the reviewer liked or disliked the move. This task will take around hall an hour, but could take 15 minutes more ar less depencing on the worker's motivation and speed.

[^32]

Spoken Words Transcription (task 2)

Whis task, the worker wilh hear 400 spoken words. For each or viem, the worker wil cick a button to indcate what was said. Workers with experience in audio-transcription will typically require about 15 minutes to ranscribe the text, whereas workers with less experience may take a bit longer. Transcribing spoken words takes few special skills, but requires a quiet environment and good hesdphones or speakers.

Please give it a try!
Onoe you're done, click the next button. It will appear as soon as you've transcribed one word correctly. (Scroll to the bottom of the page.)

Words transerbed correctly: 0

\odot

Image Labeling (task 3)

In this task, the worker wil see a sequence or 400 images. For each image the worker will click a bution to indicate the content of the image. This task will take about hall an hour but could take 15 minutes more or less depending on the worker's speed. Labeling images does not take any special skils, and can easily be done while listening to music

Please give it a try!
Once you're done, click the next buttion. It will appear as soon as you have classified one image correctiy. (Scroll to the bottom of the page)

Plime	Car
Cat	Bid
Deor	Dog
Fros	Sip
Hase	Tusk

Twitter hate speech sorting (task 4)

In this task, the worker will sort 400 short messages posted on twittercom by whether they include hate speech (e.g. racist or sexist statements), This task will take around half an hour, but could take 15 minutes more or less depending on the worker's motivation and speed.

Some workers may find this task emotionally taxing.
\qquad

Please give it a try!
Once you're done, click the next button. It will appear as soon as you've classified one message correctly. (Scroll to the bottom of the page)

Classified correctly: 0

hate speech

Assigning apprentices to mentors (task 5)

This task requires a bit more thought than the others. The worker assigned to this task will repeatody assign each of five (typothetical) apprentices at a (rypothetical) company to one of five (rypothetical) mentors at that company.
The worker will have to create such assignments for 5 companies. This task will take around half an hour, but could take 15 minutos more or less.

The reason is that worker cannot just create any arbitrary assignment. Instead, each of the apprentices have indicated which mentor they would prefer most, second most, and so on. Likewise, each of the mentors have indicated which of the apprentions they would most like to mertoc, which they would second-most like to mentor and so on. The worker will need to find a way to pair apprentices and mentors to make all apprentices and mentors as happy as possible. (Specifically, the worker will have to find an assignment in which there are no two people that are not paired with each other, but would prefer each other over their assigned partners.)

Some people will find this task more engaging than the less challenging tasks, while others will be put off by in. Some people will be much better at this task than others.

Give this task a try if you like. (You do not need to complete it) Scroll to the bottom and click Next once you're done.

Mentors

Janice 's preferences over appremicess are 1. Dyann, 2. Grace, 3. Wile, 4. Madison, 5. Jordan Bily's proterencess over apprentions are 1. Dylen, 2. Grace, 3. Wilie, 4. Madison, 5. Jordar Jhila's preferences over apprentices are 1. Dyan, 2. Wilie, 3. Madison, 4. Jordan, 5. Grace Bruce's preferencess over apprentices are 1. Jordin, 2. Dyyan, 3. Madison, 4. Grace, 5. WIIte
Marie's preferenoes cver apprentices are 1. Grace, 2. Dylan, 3. Wilio, 4. Madison, 5. Jorden
Janice

Apprentices
Wilie's preferences over mentors are 1. Bruce, 2. Billy, 3. Jula, 4. Janice, 5. Marie Madison's prefterences over mentors are 1. Bruce, 2. Jarice, 3. Juia, 4. Billy, 5. Marie Jordar's preferences over mentors are 1. Jarice, 2. Jila, 3. Blly. 4. Buce, 5. Mario race's preberencoses cuer mertors are 1. Bruce, 2. Marie, 3. Bily, 4. Jarice, 5. Jili Dylan's preferences over mentors are 1. Julia. 2. Bill. 3. Marie. 4. Jaricice, 5. Bruce

Pair mentors and apprentices

How will I assign tasks to workers?

Part A of this study has 28 rounds. In each round, you will select an "Assignment," by which we mean a way of allocating the five tasks among the five workers. We will present you with two to four possible Assignments. Your task will be to select one of the Assignments.

One of these rounds pertains to the five workers we have assigned to you. Your choice of an Assignment for that round is real, and we will actually carry it out (if this part of the experiment has randomiy been chosen to be carrled out). Your cholce in that round wil dotermine which worker will complote which task. However, we are not going to tell you which round involves your real choice.

You should therefore treat every one of these rouncs as if it were real, because it could bel

The pre-selected assignments
Recall that a task assignment simply describes which worker will complete which task. We will refer to each Assignment by an icon like O, O. or $\boldsymbol{\mathcal { O }}$. These locons have absolutely no meaning, apart from serving as labels to help you visually distinguish between the assignments.

Hero's an example (don't bother to remember it, it's just an example)

	Worker 1	Worker 2	Worker 3	Worker 4	Worker 5
Assignment	Image labeling	Speech transeription	Hate-speech filtering	Apprentice-mentor assignment	Movie review classification
$\begin{gathered} \text { Assignment } \\ 0 \end{gathered}$	Apprentice-mentor assignment	Movie review classification	Image labeling	Hate-speech filtering	Speech transeription

With Assignment O, worker 1 will label images, worker 2 will transcribe speech, and so on, as you can see in the first row of the table.

With Assignment 0 . on the other hand, worker 1 completes the apprentice-mentorship assignment, worker 2 classifies movie reviews, and so forth, as you can see in the second row of the table.
One more thing: As in the example above, it you swich from one Assignment to another, then every worker will complete a different task. There are no two Assignments in which some worker completes the same task in each of those Assignments.

The workers' preferences

The five workers differ in which tasks they like or disslike.
To help you make your docision, you will see each group member's preferencos over the pre-selected
Assignments as in the following picture. Each bar (with a stick figure \mathcal{N}) represents one member of the group of five for whom you are choosing an Assignment.

In this picture, each bar (with a stick figure \hat{K}) represents one worker. Each bar contains all three symbols
区. and . that represent the three possible task assignments from which you will get to choose. In each bar, the Assignment on top is the one that the team member prefers most, whereas the Assigrment on the bottom is the one he or she prefers least.

Consider the worker on the very left (dark blue), for instance. Of the three tasks he might complete, he mosi prefers the one he will be given in Assignment . As you can see in the table below, that would be Task D) His second-most preterred task is the one he will complete in Assignment X ; and he least prefers the task he will complete in Assignment 0°. The worker on the very right (green) has different preferences. She most prefers
 least prefers the task shell have to complete in Assignment

Important: You will only learn the workers' preferences over the pre-selected Assignments. You will not learn who
will complete which task in which Assignment.

	Worker 1	Worker 2	Worker 3	Worker 4	Worker 5
Assignment	Task B	Task A	Task D	Task E	Task C
Assignement 8	Task A	Task D	Task C	Task B	Taske
Assignment ${ }^{\circ} \%^{\circ}$	Task E	Task B	Task A	Task C	Task D

Comprehension Check 1

To make sure you correctly understand how informaton about the Workers' preterences is being displayed to you, please answer the questions below. All questions refer to the Assignments below. (These
are different Assignments than on the previous page. The workers' preference rankings are different, too.)
II you have trouble finding the correct answers, please click the "previous" buttion below (with the arrow to the leff) and study the instructions more carefully.

One of your answers to the comprethension check questons is incorrect. Please study the image wth the preferences casefuly. You might also want to doutio-check the
instructions to mate sure you understand them.

Subjects see each of the following statements, and complete the requested action before the next statement is shown.
(i) You can drag and drop each worker to a different position. Please give this a try by dragging a worker to a different location.
(ii) Underneath each stick figure representing the worker, you will see a button labeled "Hide". If you click it, that worker's preferences will be hidden. If you click it a second time, that worker's preferences will be displayed again. Please hide, then show, one of the workers.
(iii) At the bottom of the figure, you see two rows of buttons. Buttons in the first row allow you to highlight an assignment. If you click the button a second time, the highlighting will be switched off. Please give this a try.
(iv) Buttons in the second row allow you to hide an assignments. If you click such a button a second time, the assignment will be displayed again. Please hide, then show one of the assignments.
(v) Finally, on top of the figure, you see a button labelled "shuffle". That button will shuffle the order of the workers. Please click it.
(vi) Great, that's all the features. Please click "next" to continue.

Haing Assignments changes the figure. Why and how

The figure wif only show you the Workers' preferences over the options that you are currently displaying. If the figure shows all three Assignments, you will see them stacked in three rows. Il you hide one of the Assignments, then you will see the Workers' preferences over the two remaining assignments, so there will only be two rows. For instance, consider the Worker below.

Now, go ahead and hide Assigrment \mathbf{O}.

Hiding Assignments changes the figure. Why and how?
The figure will only show you the Workers' preterences over the options that you are currently displaying. If the figure shows all three Assignments, you will see them stacked in three rows. II you hide one of the Assignments, then you will see the Workers' preferences over the two remaining assignments, so there will only be two rows. For instance, consider the Worker below.

Now, go ahead and hide Assigrment O
 there are only two Assignments left. Hence, the figure only shows two rows of Assignments. Out of the two Assignments that are still being displayed, the Worker prefers Assignment $O_{\text {most, so that's now placed into the }}$ top row. But note that if you display all three options, he would rank that Assignment O only in the middle, he Ikes the non-displayed Assignment O better than Assignment O ,

Now, let's look at what happens if there is more than one worker, let's add a second Worker. You can see that Worker's preference ranking over the Assignments below. In this figure, the two workers have different preferences for Assignment 0 ; for one Wbrker it's the best of the three, but for the other Worker its only the second-best of the three:

Now, again, hide Assignment \mathbf{O}.

Now, let's look at what happens if there is more than one worker, let's add a second Worker. You can see that Worker's preference ranking over the Assignments below, in this figure, the two workers have different preferences for Assigrment 0 ; for one Werker it's the best of the three, but for the other Worker its only the second-best of the three.

HID

Now, again, hide Asslignment O
As you can see, Assignment Q is now in the top row for both workers. Why did that happen? The reason is that both Workers like Assignment $\mathrm{O}_{\text {more than Assignment }} \mathbf{V}^{\text {. How the workers would rank Assignment }}{ }^{\boldsymbol{\nabla}}$ compared to the hidden option is not visible from this figure (but you can see it by displaying Assignment O again).

Information about the group members' preferences

The group members have already participated in a first part of the experiment, in which they told us their tru preference ranking over the tasks.
They have done that for the options in exactly one of the 28 rounds you will see. Your decision for that round will be carried out for the group.

We are not going to tell you which of the 28 rounds presents you why your real choice.
Hence, you should make each decision in each round as if it is the one that counts, because it might bel

Click here If you would lke to know more about how the group mamber's preferences were messured.
Otherwise, scroll down al the way)

In the first part of the study, each worker first saw the same description of each task that you have seen before. Then, each worker sorted the five tasks in the order of their preference.

To make sure workers reported their genuine preferences, each worker faced a 5\% chance that their own choice would determine which task they would have to complete. Workers also knew that with the remaining chance, a different procedure would determine the task they will complete (but workers did not learn what that procedure is).

You are deciding for a group of workers in which none of the workers themselves determined the outcome.

The block of text below the button is shown only to subjects who click the button.

What happens if a worker is assigned a task, but does not to complete it?

A worker who does not complete the assigned task will not recelve the $\$ 10$ they would otherwise have received.
Moreover, we will check that eacch worker completes each task successfuly. If not, we will treat them as it they didn't complete the task

Do the five workers know each other?
No, they do not. We have recruited them at random from a pool of many thousand workers on the Amazon Mechanical Turk online labor plattorm

How will my own payment be determined?

We have been discussing Part A of the study. Your choices in Part A may atfect other people, but they will not affect your own payment. Your payment will be deternined by one of the choices you will make in Part C of the study. We wil expain how once Part C begins.

Please pay attention throughout and make all decisions carefully.
Hour choicess will have real consequences for a group of five other participants if this part is randomy selected to be carried outy the other participants are rea/ people.

Your decisions begin now.

Before you start with your decisions, please check all the corroct statements below (and only those).
Please make each decision as if it is the one that counts, because it might bel
It you have trouble finding the correct answers, please cick the "previous" button below (with the arrow to the left)
and study the instructions more carefully.
-The five workers are maal My choice of Assigmment will DThe five workers are topothetical, there ave no raal people

 whout parthg wayy mention The quatiof of work is
Two of the rounds will dotemine the work that each of the Each worker will complete the same task, regardiess of fve workess wil have to complets (ft this part is ramdomb|
-Teriemeron
wadio transcription assigning apperentices to mentiors, an classiting movie reviews.

Round 1 of 28

Study the workers' preterences, and choose a task assigrment.

Choose the Assignment to be carried out for the group of five workers.

Assignment Δ	Assignment	Assignment X
Chosesenin option	Chosse piospron	Cheose min aption
\bigcirc	\bigcirc	\bigcirc
Trearbionis esaviy	mon 3 cousy	\%
gosd as the dhosen option	gose mantectosen	osedmene chouen
\square	\square	\square

SHUFLE
PEOPLE

Choose the Assignment to be carried out for the group of five workers.

Assignment -// Choces fis option	Assignment Chocse fils option Chocee this oproon	Assignment * ${ }^{\nabla}$ Chocse thins option	Assignment \triangle Choove this eption
\bigcirc	\bigcirc	\bigcirc	\bigcirc
Tis option is equaly good as the chosen option	This aption is eouvily good as the chosen option	This eption is equally good as the chosen option	This option is equally good as the choten option
ㅁ	\square	\square	\square

Round 8 of 28.

Study the workers' preferences, and choose a task assigrment.
sturfuemances

Unavailable Assignments

In esch of the next three rounds, one of the Assignments will be unavalable. These rounds proceed like all the other rounds, except that you will not be able to choose the unavalable Assignment.

hemught	MGHGHT X
$\stackrel{\text { HOE }}{\stackrel{y}{*}}$	$\begin{gathered} \text { HIDE } \\ X \end{gathered}$

Choose the Assignment to be carried out for the group of five workers.

Assignment	Assignment X
Crocese nis eppion	Crsoses mis aption
\bigcirc	\bigcirc
Tha aption is equely	Tre cpron is equily
2000 us me chesen optom	good as the ohosen option
\square	\square

In this round, Assignment - is unavailable. You will not be able to select that Assignment.

SHUFFLE WORKERS

Part B

Choose the Assignment to be carried out for the group of five workers.

A Fr. 30 donation to a political party

In this part of the study, you will make decisions about a Fr. 30 donation to one of the five political parties that have the largest representation in the Swiss National Councl. These are the following parties:

FDP
SVP
UDC SVP /UDC (Swiss Poople's Party)

SP

- SP/PS (Social Democratic Party)
- CVP CVP / PDC (Christian Democratic People's Part)
on
Caniml
- LESVERIS GPS / Verts (Gireen Party)

Your decisions

We have enlisted five Swiss citizens (who are eligble to vote in Switzerland) to participate in a first part of this study. Each of the five citizens ranked the five political parties according to how much or how little he or she like the respective party to receive the donation of Fr. 30. The donation will 90 to exactly one of the five parties. You cannot split up the donation.

Your task in this study is to decide to select one of the five political parties based on the preterences of the five citizens assigned to you.

Important

The five Swiss citizens assigned to you are not assigned to ary other study participant. Hence, you are the only person who decides based on the preferences of these five citizens.

Here's how you will make your decision.

In each round of this part, we will present you with three or four parties which are randomly selected from the five largest political parties in Switzeriand. In each round, you will choose a party based on the preferences of the five citizens you are seeing in that round.

important:

We ask you to choose a party based on the group as a whole, taking into account their preferences and disagreements, but ignoring your own political attifudes

That's why we anonymize the parties. We will not refer to the them by their names but by abstract symbols like 0 . 0 , or ${ }^{\circ}$. Each symbol represents the donation going to a specific party. For instance, symbol 0 might indicate that the donation goes to the SVP / UDC, symbol might indicate that the donation goes to the SP / PS, etc. (Don't bother to remember these symbols, they are just examples. They have absolutely no meaning. apart from serving as labels to help you visually distinguish between the parties).

Moreover, the way we recruited the citizens makes it impossible for you to tell which symbol stands for which party based on the citizens' preferences."

Here's how we did that.

We have recruited a total of 249 Swiss citizens, of which 5 may be assigned to you. We have asked each citizen to rate themselves as left, center, or right. We have collected the sample of 249 citizens such that we have exactly 83 who rate themselves as right, 83 who rate themselves as center, and 83 who rate themselves as left. The 5 itizens assigned to you are randomly drawn from these 249 citizens.

How will I decide which party receives the donation?

Part B of this study has 12 rounds. One of these rounds pertains to the five Swiss citizens we have assigned to you. Your choice of a party for that round is real, and we will actually carry it out (if this part of the study is randomly chosen to be carried out). Your choice in that round will determine which poltical party will receive the donation of Fr. 30. However, we are not going to tell you which round inwolves your real choice.

You should therefore treat every one of these rounds as if it were real, because it could be!

Before you start with your decisions, please check all the correct statements below (and only those)
If you have trouble finding the correct answers, please click the "previous" button below (with the arrow to the left) and study the instructions more carefully.

Exactly one round is the "real' one: My decision in that round will determine which polifcal party will receive the donation of Fe .30 ef tis part of the study is randomily chosen to be carried out)
\square Each political party will recerve the same amount of mones. rogardiess of what I choose of this part of the study is randomly chosen to be carried out).
\square The five Swiss citizens are real. My choice of a poltical party based on their preferences will determine which oolicical party will receive a donation of this part of the

1 or
\square If one of my decisions from this part is carried out, one of \square The five Swiss citizens are hypothetical, and no donation of Fr. 30 .
\square The five S wiss citizens have already participated in a frst part of the experiment in which they ranked the five biggest Swiss political parties according to how much / how letle they would like them to receive the donation of Fc. 30 .
The five largest Swiss political parties that the five SWiss citizens have ranked arec SVP, FDP, SP, Gruene, CVP (now
known as Die Mitte)
\square Two of the rounds will determine which poilticul party will receive the donation (ff this part of the study is randomly chosen to be carried outt will actually be made to a political party.

Round 1 of 12 about the donation to a political party.

Study the Swiss citizens' preferences, and choose a party based on the preferences of this group of citizens as a whole.

Choose the party to receive the donation of Fr. 30 based on the preferences of the five citizens.

Part C

of this study

This part of the study has 15 rounds. In addition, we will ask some questions about yourself.
Your own payment for this study will be determined by exactly one of the 15 rounds. At the end of this study, the computer will randomly select which round that will be.

Hence, you should make each decision as if it is the one that counts, because it might be!
There are different kinds of decisions in this part. We will explain them as you proceed through the rounds.

Instructions for the next five rounds

In Part A of this study, you made several decisions conceming how the work tasks will be assigned to five workers recruited from Amazon Mechanical Turk.

In each of the next 5 rounds of part C, we ask you to predict how much these workers like or dislike each task assignment.

Measuring preference intensity

We have obtained precise measurements of how much each worker likes or dislikes each task. Your task is to predict these measurements.

Specifically, we have measured the least amount of money for which a worker would be willing to complete each task---his reservation wage for the task. For instance, if some worker would be willing to complete a task for $\$ 1$ or more, but would not be willing to complete it for $\$ 0.99$, then his reservation price is $\$ 1$. That is the least amount of money for which that worker is willing to complete the task. It is a measure of how bad a worker finds a task - the more he dislikes the task, the more money he must be offered before he will agree to complete it.

As in Part A of this study, we will only tell you a worker's preferences over pre-selected task Assignments. But we will not tell you the specific tasks a worker will complete in those assignments.

Cick here if you want to learn more about how we learned about the amounts for which workers are willing to complete each task
Otherwise scroll to the bottom and click "next".

Each worker who participated in the first part of this study learned that he faced a five percent chance that his own decisions would determine his payment and the work he would have to complete in the second part of the study.

After ranking the tasks in the order of his preference, each worker completed a list like the following for each of the five tasks.

Complate faxk in extherge recelve sa.	00	Do NOT concleta prax, do NOT recelve ary money.
Complote finky in exchange, rocelve 51.	00	Do NOT conscieta faxal, do NOT recelve ary money.
Complite finky in exchange, rocelve 52.	00	Do NOT complete praxy, do NOT recelve ary monex.
	00	Do NOT complete prask, do NOT recelve ary money.
Complote funst. nexcharge, receive se.	\bigcirc	Do NOT comelete fram, do NOT recelve ary monex.
	\bigcirc	Do NOT complete prax, do NOT recelve ary monex.
Complate funky in excharga, recelve st.	00	Do NOT completa prax, do NOT ricelve ary monex.
	\bigcirc	Do NOT concleta prax, do NOT ricelve ary money.
Complute fumy in excharge, rocelve sa.	$\bigcirc 0$	Do NOT consoleto trax. do NOT recelve ary money.
	00	Do NOT complete traxi, do NOT recelve ary money.
Complete frasy in exchenge, recelve sia.	$\bigcirc 0$	Do NOT concliete frack. do NOT recelve ary monex.
Complete frask in exchenoe, neceve 511.	00	Do NOT conscieto prax. do NOT recelve ary monex.
	00	Do NOT comelete prax, do NOT recelve ary monex.
Corrsietep pray in exchenge, necevive 513	○ 0	Do NOT completa prax, do NOT recerive ary money.
Considet praxy in exchenge, noceves 514.	○ 0	Do NOT concieta pame, do NOT rocelve ary money.
Completep traxy in exchengen ncecive 515.	\bigcirc	

Each worker knew that the computer would randomly pick one of the lines of one of the lists. That line would determine the task the worker had to complete, and the payment he would receive for it.

Moreover, the worker knew that in addition to the payment on the line selected to be carried out, he would receive $\$ 4$ if he followed through with his decision. If he falled to follow through, he would not only forfeit the payment he would have gotten according to the selected line, but he would also lose the $\$ 4$ he would have received for following through with his decision.

Hence, it was in each worker's own best interest to choose, on each line, as he genuinely preferred.

The screenshot on the right displays the text that is shown only if the subject clicks the button.

Predicting preference intensity

In each round of this part, you will make predictions for questions such as the following:

$$
\begin{aligned}
& \text { What is the least amount of money for which this worker will agee to complete the Assionment she rarks on the } \\
& \text { sottom poast preferraci. out of the tree? }
\end{aligned}
$$

○○○○○○○○○○○○○○○○○○○○○○

Memory refresher about mTurk workers

You are predicting the choices of mTurk workers who reside in the United States.
Many of the tasks will take workers around half an hour to complete, on average

A reasonable rule of thumb is that one US-Dollar buys a bit less than one-and-a half times as much in the United States as one Swiss Franc buys in Zurich. At the same time, many workers in the United States also earn substantially less than the awerage resident of Zurich.

Our payment system is designed such that it is in your own best interest to think about each decision carefully and answer according to your genuine bellefs.

Here's why. If your own study payment is determined by one of the rounds of this part, the following will happen. Many workers have already participated in the first part of this study, and we measured their true reservation wages for each of the assignments. For the round that ends up determining your payment, we will select one of the questions at random. For that question we will compare your answer to the reservation wages we have measured from the workers.

If your prediction coincides with our measurements, the variable part of your payment for this study will be

 Fr 30. For every dollar by which your prediction differs from the truth, you will lose Fr 3For instance, if the true answer is $\$ 4$, but you select $\$ 6$, then you are off by two dollars. In this case, the variable part of your payment for the study would be $\mathrm{Fr} 30-\left(2^{*} \mathrm{Fr} 3\right)=\mathrm{Fr} 24$.

Predicting reservation prices
 (Round 1 of 5)

In this round, you predictions concern the reservation wages of a worker in a city called
Kalamazoo in the state of Michigan.

Memory refresher about the tasks

To help you refresh your memory about the five tasks, we will reproduce each of them on the next five pages. Solve one example of each task, then click Next (except for Assigning Apprentices to Mentors, which you do not need to complete).

Subjects proceed through an example of each of the five tasks again.

Memory refresher: Task Assignments

In each round of this part, we are asking you to predict the Workers' reservation wages over three pre-determined task assignments, rather than over each of the five individual tasks. Each of the three Assignments assigns a different task to the worker. You will not learn which tasks are included in the three Assignments for any of the Workers.

What is the least amount of money for which this worker will agree to complete the Assignment he ranks on top (most preferred), out of the three?
moxe
Shan
$\$ 10$
$\begin{array}{llllllllllllllllllllll}\$ 0 & \$ 0.50 & \$ 1 & \$ 1.50 & \$ 2 & \$ 2.50 & \$ 3 & \$ 3.50 & \$ 4 & \$ 4.50 & \$ 5 & \$ 5.50 & \$ 6 & \$ 6.50 & \$ 7 & \$ 7.50 & \$ 8 & \$ 8.50 & \$ 9 & \$ 9.50 & \$ 10 & \$ 10\end{array}$
○

What is the least amount of money for which this worker will agree to complete the Assignment he ranks in the middle (neither least nor most preferred), out of the three?

What is the least amount of money for which this worker will agree to complete the Assignment he ranks on the bottom (least preferred), out of the three?
$\begin{array}{lllllllllllllllllllll}\$ 0 & \$ 0.50 & \$ 1 & \$ 1.50 & \$ 2 & \$ 2.50 & \$ 3 & \$ 3.50 & \$ 4 & \$ 4.50 & \$ 5 & \$ 5.50 & \$ 6 & \$ 6.50 & \$ 7 & \$ 7.50 & \$ 8 & \$ 8.50 & \$ 9 & \$ 9.50 & \$ 10\end{array}$

Your own opinion of the tasks

What is the least amount of money for which you would be wiling to complete each of the tasks yourself?
The questions on this page will not affect your payment, and you will not have to complete the tasks. Please answer truthfully.)

Image Labeling. What is the least amount of money for which you would be willing to complete the Image Labeling Task (label 400 images)?

$\begin{array}{llllllllllllll} & \text { Fr } 0 & \text { Fr } 2 & \text { Fr. } 4 & \text { Fr } 6 & \text { Fr. } 8 & \text { Fr. } 10 & \text { Fr. } 12 & \text { Fr. } 14 & \text { Ft } 16 & \text { Fr. } 18 & \text { Fr } 20 & \text { Ft } 22 & \text { Fr. } 24 \\ \text { Ft } 26 & \text { Fr. } 28 & \text { Fr. } 30 & \text { Ft. } 30\end{array}$

Hate Speech Filtering. What is the least amount of money for which you would be wiling to complete the Hate Speech Filtering Task (classify 400 tweets)?

Movie Review Classification. What is the least amount of money for which you would be willing to complete the

Movie Review Classification Task (classify 400 reviews)?

$$
\square
$$

Movie Review Classification Task (classify 400 reviews)?

FL. $0 \quad$ Fr. 2 Fr. 4 FL 6 Fr. 8 Fr. 10 Fr. 12 Fr. 14 FL 16 Fr. 18 Fr. 20 Ft. 22 Fr. 24 FL 26 Fr. 28 Fr. 30 Fr. 30
○
0
○ \qquad ○
O O \qquad O O

Assigning Apprentices to Mentors. What is the least amount of money for which you would be willing to complete the Assigning Apprentices to Mentors Task (find assignments for 5 companies)?

00 O 0 O O O 00 O 000

O
Audio Transcription. What is the least amount of money for which you would be willing to complete the Audio Transcription Task (transcribe 400 words)?

-4)

0
○ 0
○
○
O

Instructions for the next six rounds

In Part B of this study, you made several decisions concerning a donation of CHF30 to one of the five bigges Swiss political parties, based on the preferences of Swiss citizens recruited for this study.

In the 5 rounds that follow these instructions, we ask you to predict how much these citizens like or dislike the donation going to each of the parties:

Recall the five biggest political parties:

SP

Predicting preference intensity

We have obtained precise measurements of how much each of the citizens in our sample likes or dislikes the donation going to each of the parties.

Your task is to predict these measurements.

Here's how we have made the measurements.

We have elicited each citizen's willingness to pay to trigger or to prevent a donation of Fr .30 for each of the parties. Each citizen recelved Fr. 20 for participation in the study. Citizens could use this money to trigger or prevent the donation of Fr . 30

Specifically, for each party, each citizen made decisions such as this one:
PParty] will receive Fr. 30 and my payment will be reduced by CHF 2
OR
[Party] will recelve nothing and my payment will not be reduced.
The amount Fr. 2 is just an example. That amount will vary across your decisions.
Somebody who wishes the party had more money and is willing to pay Fr . 2 to increase the party's budget by Fr . 30 will select the first option. Somebody who does not like the party or who does not want to give up Fr. 2 to increase the party's budget by Fr. 30 will select the second option.

Each citizen also made decisions like this one:
[Party] will receive nothing and my payment will be reduced by CHF 2
OR
[Party] will recelve F. 30 and my payment will not be reduced.
The amount Fr. 2 is just an example. That amount will vary across your decisions.
Somebody who wishes the party had less money and is willing to pay Fr. 2 to prevent the donation of Fr. 30 to the party will select the first option. Somebody who likes the party or who does not want to give up Ft. 2 to prevent the donation Fr, 30 to the party will select the second option.

Your task

Your task is to predict, for five randomly chosen voters, how much they are willing to pay to trigger or prevent the donation of Fr. 30 to each of three of the five parties, selected at random. You will only know whether your prediction concerns the citizen's most-preferred, middle, or least-preferred party amongst the random selection of three parties, but you will not know which party the citizen has ranked in which place. Neither will you know which parties are in the randomly selected set of three parties. You will make your prediction like this:

	How much is this oftisen willing to pay to trigger or prevent a donation of Fe. 30 to the party she ranks in the middle (neither most nor least preferred, out of the three?
	O mostran Cre 15 to troper se doration
	O up to CrFer 10 10 wioper the donation
	O up to CiF 7 750 io viper the donation
	O us to Cefe 5 to ripor the donation
	O up to Cre 4 sos riper the dination
	O us tocre 3 so vipoer the denation
	O up to Cre 2 20 vipor the donation
	O up to Cre 1 10 prevert tre donution
	O up tocrif 2 to pememe te donition
	O up locre 3 no peevert te diontion
	O up to CrF 4 to prewe the donation
	O is to Clie 5 to prewer the donstion
	O up to Cre 7.50 so prevent the dicnation
	O up 10 CFF 1010 prement the donation
	O up to CFF 15 to prevent the donation
	O more tran ChF 15 to prevent the conation

Our payment system is designed such that it is in your own best interest to think about each decision carefully and answer according to your genuine beliefs.

Here's why. If your own study payment is determined by one of the rounds of this part, the following will happen. Many citizens have arready participated in the first part of this study, and we measured their willingness to pay to trigger or prevent the donation to each of the five parties. For the round that ends up determining your payment, we will select one of the questions at random. For that question, we will compare your answer to the measurement we have obtained from the citizen whose willingness to pay you are predicting.

If your prediction coincides with our measurements, the variable part of your payment for this study will b Fr 30. For every Franc by which your prediction differs from the truth, you will lose Fr 1.

For instance, if the true answer is that the citizen is willing to pay Fr. 4 to trigger the donation, but you think the citizen is willing to pay Fr. 10 to prevent the donation, then you are off by Fr. 14. In this case, the variable part of your payment for the study would be $\operatorname{Fr} 30-\left(14^{*} \operatorname{Fr} 1\right)=\operatorname{Fr} 16$.

Predicting Swiss citizens' preferences

In this round, you predictions concern the preferences of a Swiss citizen whose first name is
Seraina.

We have randomly selected three of the five parties above.

How much is this citizen willing to pay to trigger or prevent a donation of Fr. 30 to the party she ranks on top (most preferred), out of the three?

O more than CHF 15 to trigger the donation
O up to CHF 15 to trigger the donation
O up to CHF 13 to trigger the donation
O up to CHF 11 to trigger the donation
O up to CHF 9 to trigger the donation
O up to CHF 7 to trigger the donation
O up to CHF 5 to trigger the donation
O up to CHF 3 to trigger the donation
O up to CHF 1 to trigger the donation
O up to CHF 1 to prevent the donstion
O up to CHF 3 to prevent the donation
O up to CHF 5 to prevent the donation
O up to CHF 7 to prevent the donation
O up to CHF 9 to prevern the donution
O up to CHF 11 to prevert the donation
O up to CHF 13 to prevent the donation
O up to CHF 15 to prevent the donation
O more than CHF 15 to prevert the donation

On the same page, the subject also answers the following two questions:

- How much is this citizen willing to pay to trigger or prevent a donation of Fr. 30 to the party she ranks in the middle (neither most nor least preferred), out of the three?
- How much is this citizen willing to pay to trigger or prevent a donation of Fr. 30 to the party she ranks on the bottom (least preferred), out of the three?

The subject answers the same three questions for another (real) four Swiss citizens, all with common Swiss first names. A random half of subjects see the above three questions in reverse order, i.e. starting with the citizen's bottom preference.

Your own opinion of the parties

What is the largest amount of money that you would be willing to pay to trigger or prevent a donation to each of the five political parties?
(The questions on this page are hypothetical. They will not affect your payment, and will not trigger or prevent a donation. Please answer truthfully.)

Are you eligible to vote in Switzerland?
0 Yes
How much are you willing to pay to trigger or prevent a donation of Fr. 30 to the FDP / PLR (FDP.The Liberals)

FDP

Die Liberalen

I would be willing to pay ...

O more than CHF 15 to trigger the donation
O up to CHF 15 to trigger the donation
up to CHF 10 to trigger the donation
O up to CHF 7.50 to trigger the donation
O up to CHF 5 to trigger the donation
up to CHF 4 to trigger the donation
up to CHF 3 to trigger the donation
O up to CHF 2 to trigger the donation
O up to CHF 1 to trigger the donation
O up to CHF 1 to prevent the donation
O up to CHF 2 to prevent the donation
up to CHF 3 to prevent the donation
Op to CHF 4 to prevent the donation
O up to CHF 5 to prevent the donation
O up to CHF 7.50 to prevent the donation
up to CHF 10 to prevent the donation
O up to CHF 15 to prevent the donation
O more than CHF 15 to prevent the donation

In each of the next 2 rounds, you will see a list of lotteries like this one:

On esch line, chose the option you genuinely prefer.		
Recelve 18 Fg . with 0% chance or 12 Fg . with 100% chance.	00	Receive 30 Ft with 0% chance or 3 Ft with 100% chance.
Receive 18 Fc with 10% chance or 12 Fc with 90% chance.	00	Recelve 30 Ft with 10% chance or 3 Fr with 90% chance.
Recelive 18 Ft . with 20% chance or 12 Fc with 80% chance.	00	Recelve 30 Ft . with 20% chance or 3 Ft. with 30% chance.
Recelve 18 Fe with 30% chance or 12 Fe with 70% chance.	00	Receive 30 Ft with 30% chance or 3 Ft . with 70% chance.
Recelve 18 Fc . with 40% chance or 12 Fc with 60% chance.	00	Recelve 30 Fc with 40% chance or 3 Fr with 60% chance.
Receive 18 Ft , with 50% chance or 12 Ft . with 50% chance.	00	Receive 30 Ft with 50% chance or 3 Fr , with 50% chance.
Receive 18 Fr . with 60% chance of 12 Fc , with 40% chance.	00	Receive 30 Ft with 60% chance of 3 Ft . with 40% chance.
Recelve 18 Fc with 70% chance or 12 Fc with 30% chance.	OO	Recelve 30 Ft with 70% chance or 3 Fr with 30% chance.
Recelve 18 Ft . with 80% chance or 12 Ft with 20% chance.	00	Receive 30 Ft wie 80% chance or 3 Ft , with 20% chance.
Recelve 18 Fr , with 90% chance or 12 Fr with 10% chance.	00	Receive 30 Fc with 90% chance or 3 Fr. with 10% chance.
Recelve 18 Fr with 100% chance or 12 Fs wth 0% chance.	00	Receive 30 Ft with 100% chance or 3 Ft with 0% chance.

If one of these rounds determines the payment you will receive for this study, here's what will happen. The computer will randomily draw one of lines from the ist in that round. The computer will then play out the lottery you selected on that line. That lottery will determine the variable part of the payment you receive for this study.

Hence, you should make each decision on each line as if it is the one that counts, because it might bel

On the same page, the subject answers the same question for each of the remaining four parties (parties presented in random order).

Choice between lotteries.

On each line, chose the option you genuinely prefer.

Receive 20 Fr with 0% chance or 13 Fr with 100% chance.	00	Recelve 34 Fr with 0% chance or 5 Fr with 100% chance.
Receive 20 Fr with 10% chance or 13 Fr wth 90% chance	$\bigcirc 0$	Recolve 34 Fr with 10% chance or 5 Fr with 90% chance.
Receive 20 Fr with 20% chance or 13 Fr with 80% chance.	00	Recelve 34 Fr with 20% chance or 5 Fr with 80\% chance.
Recelve 20 Fr with 30% chance or 13 Fr with 70% chance.	00	Receive 34 Fr with 30% chance or 5 Fr with 70\% chance.
Receive 20 Fr with 40% chance or 13 Fr with 60% chance.	00	Recelve 34 Fr with 40% chance or 5 Fr with 60% chance.
Receive 20 Fr with 50% chance or 13 Fr with 50% chance.	00	Receive 34 Fr with 50% chance or 5 Fr with 50% chance.
Recelve 20 Fr with 60% chance or 13 Fr with 40% chance.	00	Recelve 34 Fr with 60% chance or 5 Fr with 40% chance.
Receive 20 Fr with 70% chance or 13 Fr with 30% chance.	00	Receive 34 Fr with 70% chance or 5 Fr with 30% chance.
Recelve 20 Fr with 80\% chance or 13 Fr with 20\% chance.	$\bigcirc 0$	Recelve 34 Fr with 80% chance or 5 Fr with 20% chance.
Receive 20 Fr with 90% chance or 13 Fr weth 10% chance.	00	Recelve 34 Fr with 90% chance or 5 Fr with 10% chance.
Receive 20 Fr with 100% chance or 13 Fr with 0% chance.	00	Recelve 34 Fr with 100% chance or 5 Fr with 0% chance.

Choice between lotteries.

On each line, chose the option you genuinely prefer.
Receive 23 Fr with 0% chance or 15 Fr wth 100%

chance. ○○ | Receive 38 Fr with 0% chance or 3 Fr with 100% |
| :--- |
| chance. | Receive 23 Fr with 10% chance or 15 Fr with 90% (hance.

Instructions for the next two rounds

In each of the next two rounds, you decide whether the five workers will receive additional payments (independently of the task assignment you have decided about in Part A).

Your task is to select the options you genuinely prefer on each line of a list such as the one below.
On each line, you decide whether to increase each of the five workers' payments by some amount at a cost to yourself.

```
Monse echet te fovemotion
Monse echet te ter mi
```



```
M,
```



```
Monme eccot te fer wotum,
```



```
M,
Mones echot te fav wown
Momenechel tre fa movery
```

If one of these two parts is randomly selected to determine your study payment, the variable part of your payment will be Fr. 30 minus whatever you choose to give up to effect an increase in the Workers' payments. (In addition, you will recelve the fixed payment of Fr . 30.)

Specifically, at the end of the study, the computer will randomly select exactly one of these lines. Whatever you have selected on that line will be carried out. If, on the chosen line, you select the option on the right, you will receive CHF 30, and the five MTurk workers assigned to you will not receive any additional payment other than what they expect to receive for completing the tasks assigned to them. If, on the chosen line, you select the option on the left, we will pay each of the five MTurk workers assigned to you the specified additional amount of money, and we will discount the amount mentioned on the selected line from the Fr. 30 you would otherwise have eceived.

Hence, you should make each decision on each line as if it is the one that counts, because it might bel

Increase each of the five workers' payotts by $\$ 2$. Leave my own study paymert unchanged.

Increase esch of the five workers' payoffs by $\$ 2$
 Increase esch of the five workers' payoffs by $\$ 2$. Decrease my own study payment by Ft, 2

Increase esch of the free workers' payoffs by $\$ 2$ se esch of the five workers' payeffs by 5 Decrease my own study payment by Fr. 4
Increase esch of the five workers' payoffs by $\$ 2$ Decrease my own study payment by F. 6

Incruase each of the frue workers' payeffs by $\$ 2$ Decrease my own study payment by Fr.
Increase each of the five workers' payoffs by $\$ 2$. Decrease my own study payment by F. 10

Increase each of the free workers' payolfs by $\$ 2$ Decrease my own study payment by Fr. 12
Increase each of the five workers' payoffs by $\$ 2$. Decrease my own study payment by Fr. 14

Increase esch of the five workers' payoffs by $\$ 2$. Decrease my own study payment by Fr. 10 Increase each of the five workers' payoffs by $\$ 2$. Decrease my own study payment by Fr. 18

Increase esch of the five workers' payoffs by $\$ 2$. Decrease my own study payment by Fr . 20

- Do not increase the five workers' parplls. Leave $m y$ own study payment unchanged.

O Do not ncresse the five workers payolts. Leave my own study payment unchanged.

- Do not incresse the five workers' payolls. Leave my own study payment unchanged.

○ O Do not hcresse the five workers' payclls. Leave my
O O Dot heresse the five workers' poryom. Leave my own study payment unchanged.

Do not hcresse the five workers' payolls. Leave my

Do not increase the five workers' payoms. Leave my wn study payment unchanged.

Do not increase the five workers' payolls. Leave my

O Do not hcrease the five workers' payoms. Leave my O own study payment unchanged.

O Do not hcrease the five workers' payolls. Leave my own study payment unchanged.

O Do not hcresse the five workers paycels. Leave my own study payment unchanged.

- Do not hcrease the five workers' payolls. Leave my own study payment unchanged.

O O Don hcresse the five workers' payolts. Leave my

Increase each of the five workers' payofts by Fr. 0.20 (exchanged to USD). Decrease my own study payment by Fr. 1	O O	Do not increase the five workers' payots. Leave my own study payment unchanged.
Incresse each of the five workers' payolts by Fr. 0.40 (exchanged to USD). Decrease my own study payment by Fr. 2	\bigcirc	Do not increase the five workers' payolls. Leave my own study payment unchangod.
Increase each of the five workers' payotts by Fr. 0.60 (exchanged to USD). Decrease my own study payment by Fs. 3	OO	Do not incresse the five workers' payofts. Leave my own study payment unchanged.
Increase each of the five workers' payotts by Fr. 0.80 (exchanged to USD). Decrease my own study payment by Fs. 4	OO	Do not increase the five workers' payofs. Leave my own study payment unchanged.
Increase each of the five workers' payoffs by Fr. 1 (exchanged to USD). Decrease my own study payment by Fr. 5	OO	Do not increase the five workers' paycts. Leave my own study payment unchanged.
Increase each of the five workers' payotts by Fr. 1.20 (exchanged to USD). Decrease my own study payment by Fr. 6	O O	Do not increase the five workers' payolts. Leave my own study payment unchanged.
Increase each of the five workers' payotts by Fr. 1,40 (exchanged to USD). Decrease my own study payment by Fs. 7	OO	Do not incresse the five workers' payolts. Leave my own study payment unchanged.
Increase each of the five workers' payotts by Fr. 1.60 (exchanged to USD). Decrease my own study payment by Ff. 8	00	Do not increase the five workers' payctes. Leave my own study payment unchanged.
Increase each of the five workers' payofts by Fr. 1.80 (exchanged to USD). Decrease my own study payment by Fr. 9	O 0	Do not hcrease the five workers' payots. Leave my own study payment unchanged.
Increase each of the five workers' payofts by Fr. 2 (exchanged to USD). Decrease my own study payment by Fr. 10	\bigcirc	Do not increase the five workers' payolts. Leave my own study payment unchanged.

What is your gender?
O Male
O Female
Other (e.g. genderqueer)

What is your age?

At which institution / faculty is your main field of study?
O UZH Theological taculty
O UZH Law
O UZH Business, economics, and informatics
O UZH Medicine
O UZH vesuisse
UZH Philosophical facuity
UZH Mathematics and sciences
OTH Architecture and civl engineering
O ETH Enginoering sciences
ETH Natural sciences and mathematics
ETH Systems-criented natural sciences
O ETH Mansgement and sociil sciences
O ZHAW Linguistics, psychology, or social work
ZHAW Achitecture, Design and Civil Engineering
ZHaw Enginewring
O ZHAW Hoaith Protession
O ZHaw Ufe Sciences and Facility Management
O ZHaw Manwgement and Law
O ZHDK
O Other

What is your native language?
What degree level are you currently working towards
O Bachelor
O Master
O Doctorate
O Postitoc
O I am not currently working towards a degree

What was your final grade in your Maturitat in Mathematics?

$O 6$
55

05.5

O 5
04.5
O 4
O 3.5
13.5
03
O^{3}
O 2.5
O 2
O 1.5
01
O Ido net have a 5 wiss high school degree (Maturithe)

What was your final grade in your Maturitatt in your main language (German / French / Italian)?
O 6
O 5.5
O 5
0.5
0.4

O 3.
03
03
O 2.5
O_{2}
O 1.5
01
O I do not have a Swiss high school degree (Maturitas)

O Goman
French
French
O Rumensch
O English
O Other. Please indicate.

In which canton did you obtain your Maturnat?
O AG
O Al
OAR
O BE
O BL
O 8s
O FR
O GE
O GL
O GR
○ Ju
O
O NE
O NW
O ow
O sG
OH
so
Osz
○ TG
○ π
UR
O VD
O vs
O za
O ZH
Ido not have a Swiss high tehool degree Maturits)

Do you currently live with your parents?

O Yes

O No

How many siblings do you have?

O None

01
O^{2}
O^{3}
${ }^{3}$
O^{4} more than 4

How much money do you spend per month, on average? (including food, rent, clothing, entertainment. II your spending has changed during the Covid19-crisis, please indicate your spending from before the crisis.)

OCHF500 or less

Between CHF500 and CHF100
Oetween CHF1000 and CHF1500
Between CHF1500 and CHF2000
O Between CHF2000 and CHF2500
O Between CHF2500 and CHF3000
O Between CHF3000 and CHF4000
O Between CHF4000 and CHF5000
O Between CHF 5000 and CHF7500
O Between CHF7500 and CHF10000
O CHF10000 or more

How religious are you?

O 1 am deeply religious
O 1 am somewhat religious
O I am not very religous
O I am not religlous at al

If you have one, what is your religion?
O Christian forotestant)
O Christian (catholic)
O Muslim
O Judaist
O Hindu, Buddist, or Sikh
O Agnostic or atheist

Where do you stand politically?
O Far right
O Right
O Right of center
O Center
O Left of center
O Left
O Far left

If you are Swiss, which political party have you voted for in the last election of the Nationalrat / Consel national / Consiglio nazionale / Cussegl naziunal? (If you have not voted but you are eligible to vote, please indicate the party you would vote for in the next election.)
O Lega dei Ticinesi
O EDU/UDF
O Grâne / Verts
O solidaritéS
O sp/ps
O GLP / vertiberaux
O BDP/PBD
O FDP/PLR
O SvP/udc
O PdA/PST
O CVP/PDC
O Othe
O 1 am not eligible to vote in Switzerland
O EVP/PEV

O First

O Second
O Third

A farmer had 15 sheep and all but 8 died. How many are left?
*
Emily's father has three daughters. The first two are named April and May. What is the third daughter's name?

How many cubic feet of dirt are there in a hole that is 3^{\prime} deep, 3^{\prime} wide, and 3^{\prime} long? \%

The following table illustrates one of the most famous paradoxes of voting theory. If you know the name of the paradox, please enter it below:

Voter	First preference	Second proference	Third preference
Voter 1	A	B	C
Voter 2	B	C	A
Voter 3	C	A	B

The following is a description of a well-known voting rule. If you know its name, please enter it below:
The winner of an election is determined by giving each candidate, for each ballot, a number of points corresponding to the number of candicates ranked lower. Once all votes have been counted, the option or candidate with the most points is the winner.

The following is an informal statement of one of the foundational theorems in the theory of social choice. If you know it's name, please enter it below:

If there are at least 3 alternatives, there is no social choice function that simuitaneously satisfies ()) unrestricted domain, (i) unanimity, (iii) independence of irrelevant alternatives, and (iv) non-dictatorship.

Have you ever taken a class that covered the theory of social choice?
O Yes
No

This is the end of this study

Your payment for participating in this study consists of the fixed payment of CHF 30 plus the variable payment of CHF 34 for a total of

CHF 64

The variable part of your payment has been determined by one of your choices between lotteries. From the choices you have made, one line was selected at random, and the corresponding lottery was played out, exactly
as described in the instructions.
Please click the NEXT button to be redirected to the payment form.

D. 2 Cardinal outcomes experiment

WELCOME

This is a research study run by the Department of Economics at the University of Zurich.
This study will take about 45-60 minutes to complete, though some participants might take longer. The average participant will earn Fr. 30 for completing this study. This consists of a base payment of Fr . 20 that you will receive with certainty, and a variable payment of up to Fr .30 that depends on your decisions and on luck.

You will receive payment in cash at the end of this study.
This study has been approved by the ethics review board of the department of economics in protocol OEC IRB \# 2020-035.

By clicking the "continue" button below, you consent to participating in this decision making study.

Instructions

Please read the instructions carefully.

There will be two comprehension checks. You will be able to continue with the study only if you correctly answer all questions in both comprehension checks.

This study has two parts
In part A, you will make decisions that may determine the payment that each of a group of three other study participants will get.

In part B, you will make decisions that determine your own payoff.

Consequences of your decisions in part A

There is a 1 in 10 chance that one of your choices in Part A will determine the payments of three other study participants that are assigned to you.

If you are matched to a group of three other participants, you are the only person who is matched to them

The three other participants are US-individuals who take part in this study online.

Consequences of your decisions in part B

Your compensation for completing this study consists of a fixed payment of Fr .20 and a variable payment ranging between Fr .0 and Fr . 30 . The average participant such as yourself can expect a payment of around Fr . 30. The variable payment will be determined by part B of the study. It will depend on your decisions and on luck.

On behalf of the Economics Department at UZH, we guarantee that we carry out all aspects of the study exactly as we describe to you. The rules governing our research do not permit us to deceive our participants in any way.

Part A

Your decisions

We have enlisted three other participants to this study. Let's call them A, B, and C. Each of them will receive a fixed amount of money in exchange for their participation. Your task is to decide who receives how much.

You will make that decision by choosing between different distributions of payments. For instance, one distribution might specify that other participant A will receive $\$ 5$, other participant B will receive $\$ 10$, and other participant C will receive $\$ 8$. Another might specify that A will receive $\$ 9$, B will receive $\$ 4$ and C will receive $\$ 11$. We refer to each distribution by a symbol like $\square, 0$, or $\mathbb{2}$. Each symbol represents a specific distribution. For instance, symbol \square might indicate that A receives $\$ 5$, B receives $\$ 10$, and so forth. (Don't bother to remember these numbers or symbols, they are just examples. The symbols have absolutely no meaning, apart from serving as labels to help you visually distinguish between the distributions).

Rounds in part A

Part A of this study has 20 rounds. In each round, we will present you with three new payment distributions. Your task in each round is to select one of the three distributions of money.

One of these rounds pertains to the three participants we have assigned to you. Your choice for that round is real, and we will actually carry it out. It determines the payment each participant receives. However, we are not going to tell you which round involves your real choice.

You should therefore treat every one of these rounds as if it were real, because it could be!

Visual presentation of payment distributions

To help you decide which distribution of payments to select, we will present them as in the following picture.

At the bottom of the picture, you will see three stick figures $(\mathbb{\mathbb { N }})$. Each stick figure stands for a participant. Information about the payments that participant might receive appears above their stick figure. Each payment appears next to a symbol, and each symbol stands for a distribution of payments among the three participants.

夆
In this picture, each column (with a stick figure \mathbb{A}) represents one of the three other participants assigned to you. Each bar contains all three symbols 0 , and \mathbb{B}, that represent the distributions from which you may choose. In each bar the vertical location of a symbol tells you how much money the participant gets if you choose that distribution.

Consider the distribution represented by the symbol for instance. If you choose it, the participant on the left (red) will receive $\$ 18$, the participant in the middle (blue) will receive $\$ 12$, and the participant on the right (green) will receive $\$ 8$.

If you choose distribution instead, the participant on the left will receive $\$ 6$, the one in the middle will get $\$ 8$, and the one on the right will get \$16.

Comprehension Check

To make sure you correctly understand how information about the three participants' payments is being displayed to you, please answer the questions below. (This page shows different payment distributions than those displayed on the previous page.)

If you have trouble finding the correct answers, please click the "previous" button below (with the arrow to the left) and study the instructions more carefully.

> If you feel you have understood the instructions, but you still cannot continue, please raise your hand.

For how many participants is distribution $\$$ the one that gives them the highest payment (compared to what they would get if you chose a different distribution)?
0
1
2
3
O
○
○

For how many participants is distribution \triangle the one that gives them the lowest payment (compared to what they would get if you chose a different distribution)?

0	1	2	3
0	0	0	0

For how many participants is distribution that gives them neither their lowest nor their highest payment?

0	1	2	3
0	0	0	0

Which distribution gives the participant on the very left the highest payment?

Distribution

○
Distribution 0
\bigcirc

Distribution 8
○

Which distribution gives the participant on the very left the lowest payment?
Distribution
○
Distribution 0
○
Distribution 8
○

Which distribution gives the participant on the very left neither the highest nor the lowest payment?
Distribution
Distribution 0
Distribution 8
\bigcirc
\bigcirc

Does distribution give the participant on the very right the highest, lowest, or a middle payment, compared to other distributions?
Highest
Middle
Lowest
○
○
○

Does distribution give the participant on the very right the highest, lowest, or a middle payment, compared to other distributions?
Highest
Middle
Lowest
○
\bigcirc
○

Does distribution \triangle give the participant on the very right the highest, lowest, or a middle payment, compared to other distributions?
Highest
Middle
Lowest
\bigcirc
○
○

Tools

To help you study the payoff distributions, there are several options for rearranging, highlighting, and hiding information in the picture if you find it helpful. You don't have to use these interactive features, but we want you to know they're available.

We'll now walk you through each of the features. Please click "next" (the button with the arrow to the lower right) to start.

Here, subjects proceed through an interactive instruction that explains each screen element and asks them to manipulate it. Display version 1 proceeds through the following steps:

- You can drag and drop each participant to a different position. Please give this a try by dragging a participant to a different location.
- Underneath each stick figure representing the participant, you will see a button labeled "Hide". If you click it, that participant's payouts will be hidden. If you click it a second time, that participant's payouts will be displayed again. Please hide, then show, one of the participants
- At the top of the figure, you see two rows of buttons. Buttons in the first row allow you to highlight a distribution. If you click the button a second time, the highlighting will be switched off. Please give this a try.
- Buttons in the second row allow you to hide a distribution. If you click such a button a second time, the distribution will be displayed again Please hide, then show one of the distributions.
- Underneath the symbols representing the distributions you see a button labelled "shuffle". That button will shuffle the order of the participants Please click it.
- Once you have decided which distribution you would like to be carried out, select it at the bottom of the screen. Please click on one of the distributions
- In case you think that multiple distributions are equally good, please let us know. You do so by clicking the buttons underneath the choice buttons.
- Great, that's all the features. Please click "next" to continue.

What if several distributions of payoffs are equally good?

In some rounds, there might be multiple payoff distributions that you consider equally good. In other rounds, there might be one single distribution that you think is best.

In all rounds, you will have to choose one single distribution to be carried out.

However, as you saw on the previous screen, we will also ask you to indicate if there are other distributions you believe are equally good as the one you have chosen.

Please answer those questions truthfully.

(next page)

How will my own payment be determined?

We have been discussing Part A of the study. Your choices in Part A will affect other people, but they will not affect your own payment. Your payment will be determined by one of the choices you will make in Part B of the study. Once Part B begins, we will explain how.

Please pay attention throughout and make all decisions carefully

Your choices will have real consequences for a group of three other participants! The other participants are real people.
(next page)

Comprehension Check

Before you start with your decisions, please check all the correct statements below (and only those)
If you have trouble finding the correct answers, please click the "previous" button below (with the arrow to the left) and study the instructions more carefully.

If you feel you have understood the instructions, but you still cannot continue, please raise your hand.
\square Exactly one round is the "real" one: My decision in that round \square With a 1 in 10 chance I am matched to three other will determine the payments of the three other participants (if 1 am matched to a group of such participants). participants. These participants are real, and they pa participants. These participants are real, and they participate determine their payments.
\square Each of the three other participants will receive the same amount of money, regardless of what I choose.
\square Two of the rounds will determine the payments of the three other participants
\square The three other participants are definitely hypothetical, and no payments will be made to them
next page)

Your decisions begin now.

Please make each decision as if it is the one that counts, because it might be!

Round 1 of 20

Study the payoff distributions and choose one of them.
HIIGHLIGHT

HIGHLIGHT
(Q)
HIDE

HIGHLIGHT
HIDE

Choose the distribution to be carried out for the group of three other participants.

(The experiment then proceeds through all the rounds, elicits subjects' risk preferences and demographic information, and concludes)

D. 3 General population experiment

Technical Check

To test whether your computer can display the study correctly, please copy the following number into the field
below

This is a research study run by the Departments of Economics at Stanford University and at the University of Zurich.

This study will take 20-30 minutes to complete.

By clicking the "continue" button below, you consent to participating in this decision

 making study.


``` atrou unemen
```


 he

Contact mponeution

I do NOT agree to participate
O High school diploma or GED
O some colloge, but so degroe
O Associates degee
O Associatos degee
O Master's degree
O Master's degroe
What is your martal status?
O Merried
O widowed
O Diverces
O Separatad
O Neverer married

What is your age
O 18.25
O 20-35
O 36-45
O 46-55
O 56.65
O 66.7
O 76.85
O ${ }^{2} 50$ or adder

What is your gender

O Female
O Mule
O Other (e.g non-binay)

What is your primary ethricity?
O Black or Atican Ammericom
O Native Hawaian ar Pactic klandor
O Whise (non-Hisparic)
O American indan or Alaska Native
O Whine fispancic)
0 Asian
O Other

In which state do you currenty reside?
:

Are you a US otizen?
O° Yos
O No
Where do you stand poitically?

Cleariy left	Slighty wht	Center	Stighty right	Cliesty righ
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Which of the following political parties is closest to your own views and valus?
O Demecratio Party
O Ropubican Part
O Constitution Pary
Otertanian Pary
O American Solidarity Party
O Green Paty

What is your amnual income?
O Less than $\$ 10,000$
O \$10,000-\$19.999
O $\$ 200.050-\$ 28.999$
O $\$ 30,000$ - $\$ 39.999$
O $\$ 40,000-\$ 49,999$
O $\$ 50,000-\$ 50,999$
O $\$ 50,000$ - $\$ 69,999$
. 570,000 - 572,999
O 570.000000 - 579.999
\$ $580.0000-380,99$
O $\$ 100,000-\$ 140.80$
O More than $\$ 150,000$

What is your employment stasus?
O Employed datime
O Employed part time
O Unemployed looking for wank
O Unemployed not looking for work
O Rebined
O snderet
O Disabliod

Instructions
Plesse road the instructions carefully

In this study, you will make decisions about a $\$ 20$ donation to one of the following charitable organizations:

죽
. Unicef un international children's Emergency Fund is an agency that provides aid to children woridwide. It works to save children's lives, to defend their rights, and to help them fuffil their potential, from early childhood trough adolescence.

IFAW
The International Fund for Animal Welfare is one of the luggest animal weitare and in chantes in the world. The organization works to rescue individual animals, safeguard populations, proserve habitat, and advocate for graater protections.

OXFAM
, Oxtam is an international organization (NGO) that works to alleviate global poverty. It aims to help pecple build better lives for themselves, and for others

Doctors Without Borders is an international organization (NGO) that provides lifesaving
-
medical humantarian care in conflict zones and in countries atlected by enderic diseasees.

Your decisions

We have enlisted five US cirizens to participate in a frrst part of this study. Each of the five citizens ranked the chartable organizations according to how much or how ittile he or she would Ike that charity to recelve the donation of $\$ 20$.

Yur task in this study is to select one of the charitabie organizations based on the preferences of the five citizens assigned to you. The donation will go to exactly one of the charitable organizations. You cannot splf up the donation.

The five US citizens assigned to you are not assigned to ary other study participant. Hence, you are the only erson who decides based on the preferences of these five citizens.

There is a one in ten chance that your choices will determine which charitable organization will receive the money.
Hence, please make every decision as if will be carried out -- it might be!

On behalf of the Economics Dopartments at Stanford Unversity and at the University of Zurich, we guarantee that we carry out all aspects of the study exactly as we describe to you. The rules governing our research do not permit us to deceive our participants in any way.

The 12 rounds

You make decisions in 12 rounds．In one of these rounds，you will see the preferences of the five US citizens assigned to you．Your choice of a charity for that round is real，and we wil carry it out with a 1 in 10 chance rounds as if it were real－it could bel

We ask you to decide based on the will of the group as a whole，taking into account their preferences and disagreements，but ignoring your own preferences concerring the charitable organizations．

That＇s why we anomymize the charties．We will not refer to the them by their names but by abstract symbols like $(-)$ ，率，or \odot ．Each symbol represents the donation going to a specific organization．For instance，symbol (\mathbb{O}) might indicate that the donation goes to Doctors Without Borders，symbol＊might indicate that the donation goes to UNICEF，etc．（Dont bother to remember these symbols，they are just examples．They have absolutely no meaning，apart from serving as labels to help you visually distinguish between the charities）．

The US citizens＇preferences

To help you decide which organization will receive the donation of $\$ 20$ ，you will see the preferences of each of the five US cilizens over the organizations in a picture such as this one：

Each bar represents one of the charitable organizations you can choose．

	Charity 0	Charity霜	Charity
Best	＊	叔	
Middle			术枫年
Worst	材	东	

Each bar contains five stick figures（ \uparrow ）which represent the five US citizens to whom you are assigned．Within each bay aech citizen is placed into one of three cells lubeled＂Bestr＂．＂Midde＂and＂Worst＂，depending on how much he ikes or dislikes the corresponding charitabie corgenization to recelve the donation of $\$ z 0$ ．Consider the bar on the very left the

 prefers to recelve the donation of $\$ 20$, trom amongst the three charties in this picture．Simiarly，the charity represented by symbol $0-1$ is the one that oitizen \AA most peeters to rocelive the donation．

However，charity (∞) is the one that ctizen $*$
＊least perters vo rective the donation amount，from amongtt the theren charties in this picture．It is also the one that tectizens $\overbrace{\text { and }} \star_{\text {R peter least．}}$

Now look at the bar on the very right（the charity represented by symbol－）．In that bar，all citizen symbols are in the cell labeled＂middie＂．Charity ©）is the one that oitizen $\stackrel{\AA}{\mathcal{N}}$ ，for instance，ranks in the middle，out of the three charities in this picture，It is akso the charity each remaining citizen ranks in the midde．

Comprehension Check 1

answer the questions below．（This page shows dilferent preferences than those displayed on the previous page）

	Charity （c）	Charity σ	Charity （ 人
Best	₹	天跃	\star
Middlie	＊	NK	＊
Worst	天		林析

	－	1	2		3	4	
	0	0	\bigcirc		\bigcirc	0	
\square Which Charity does prefer least？							
	Charty			Cherity ${ }^{\text {P }}$			Charity（\％）
	\bigcirc			\bigcirc			\bigcirc
Where does 							
	Top			Mddip			Botam
	\bigcirc			\bigcirc			\bigcirc

Subjects see each of the following statements, and complete the requested action before the next statement is shown.
(i) You can drag and drop each charity to a different position. Please give this a try by dragging one charity to a different location.
(ii) On each bar, just above the stick figures representing the citizens, you see a button labeled 'hide.' If you click it, the citizen's preferences about that charity will be hidden. If you click it again, they will be shown again. Please hide, then show, citizen's preferences about one of the charities.
(iii) If you hide one of the charities, only two charities remain. The picture then places the citizens into the cells according to which of the two charities they find better. The picture is still showing the same preference information by the same citizens! To see this, please again hide, then show, one of the charities.
(iv) At the bottom of the figure, you see two rows of buttons. Buttons in the top row let you hide and show individual citizens. Please hide, then show, one of the citizens.
(v) At the bottom of the figure, you see two rows of buttons. Buttons in the top row let you hide and show individual citizens. Please hide, then show, one of the citizens.
(vi) Buttons in the bottom row let you highlight individual citizens. Please highlight, then un-highlight one of the citizens.
(vii) Finally, at the top of the picture you see a button labeled 'Shuffle charities.' That button will shuffle the order in which the charities are displayed. Please click it.
(viii) Great, that's all the features. Please click "next" to continue.

preferences?

In some rounds, there might be multiple charities that you believe represent the preferences of the five citizens equally well. in other rounds, there might be one single charity that you think best represents the preferences of the five ciricens.

In all rounds, you will have to choose one single charity to recelive the donation.
W0 ask you to indicate, however, it there are chartives you beliove roprosent the preference of the five citizens equally well as the one you have chosen, like this:

Please answer those questions truthully
(They were randomly selected by the computer at the beginning of tis survey.)
. unicef chidron's Emergency fund is an agoncy that provides aid to children early childhood through ado chicren's ives, to defend their rights, and to help them fuffil their potential, from

OXFAM
,
Oxtam is an international organization (NGO) that works to alleviate global poverty. It aims to help people build better lives for themselves, and for others

Doctors Without Borders is an international organization (NGO) that provides lifesaving medical humanitarian care in conflict zones and in countries atlected by endemic disesses

The five US chriens have alveady partiopated in a first part The fre US chizers are real. My choice of a charitable

 true preerercices co the five US chizens, Wha 1 hio actually be made to a chariable ocpanization. chance, my decision in than reund wild desermine which
chartabie orgarization wir receive the donation of $\$ 20$.

Your decisions begin now．

Round 1 of 12.

$\stackrel{\text { mox }}{\text { \％}}$	$\stackrel{\text { repe }}{\AA}$	$\stackrel{\text { rape }}{\star}$	$\stackrel{\text { noe }}{\chi}$	noe
	но⿱⿱亠䒑木斤	Hcescart 夫	нанай χ	－

Questions
Finally, we would like to ask you a few questions about yourself and about the charities. Please answer truthfully.
How familise are you with the charitable organizations?

What do you think the average American thinks of each of the four charties?
The average American thinks that the work of the charity on the left is --

0

Doctors without Borders

0
-
0
\square

Oxtam

unicef UN International Chidrent
Emergency Fund

- Candidate 1 is comprorising. While he is nobody's grestest faworite, most citizens would be ok with candidate 1 . If he were elected, nobody would be exhilarated, nobody would be devastated.
- Candidate 2 is polsizizg. Most citizens either love him or hate him. There is hardly anyone who does not have a strong cpinion. If candidate 2 were elected, some citicens would be excilarated, many others would be devastated, and nobody would be indilterent.

Which candidate better represents the will of the cirizens of the nation?

Candidate 1
O

Candidate 2
O

The poitical system should strive for compromise soktions that evenone can live with even if the result is nobody's absolute faverite.
Strongy dsagree
Disague
Agee
Strongly agree
○

What the majority wants is right for a country, even if that makes some ortizens sutter.
Strongly deagree Disagee Agse Srongly agree

○
O
○
0

O Very wlikg to take risk
O Somentat wlilig to take risks
O somenhat unwiling to take risks
O Very unwiling to take nisks.
How well does the following statement describe you as a person? As long as lam not convinced otherwise, I assume that people have only the best intentions.

O Doses not describe me of at
O Does not describe me very wel
O Describes me sommontat well
O Describes me very well

How do you assess your wilingness to share with others without expecting arything in return when f comes to charity?
O Completent unmiting to ther
O somemhat unwiling to share
O Somentat wiling to share
O Very wiling to ahare

Do you work in a job in which you routinely make decisions that affect groups of people leg. marager)?
O Yes
O No

D. 4 Elicitation of mTurk worker Stakeholder preferences

Technical Check

To test whether your computer can display the study correctly, please copy the following number into the field below

189214

To see if you are eigible to participate, please enter your Mechanical Turk Worker ID into the box below and then click NEXT.

Please see below for where you can find your Worker ID. Your WorkerID starts with the letter A and has 12-14 letters or numbers. It must be all CAPITAL letters and no spaces. It is NOT your email address.

PROTOCAL OARECTOPS:
a. Douplas Bemheim and Jonas: Anseim Mueter-Gastel, Starlord Universty. Departmest of Economics.

Descrip Tion: You ave insited to particieate in a resoarch stufy on docision-making. You will be asked to read instructions an soreen andior on paper in tee beginving and throughose the expermeme. You will be asked to meke severnal chocices (by
 affect your poymert.

PAYMENTS: You wil recelve the HIT payment upon completion of this stuys.
nMe involvevent: Your pariopasion in the frua par of sis experiment wil take around 10 minutes.

YOUR ROGHT's: II you have mad this form and have deoded to participate in this project plesse understand you partiopation is volutary and you have the right discontinue participation af any time. If you choose to do so. your pasmemt
 your ieternet Protocal uddress (PP address) to exclude diplemen survey mespondents:

CONFUCT OF NTEREST STATEMEN: None of the mesarchers imvolved with this study have any conflict of intewe:

CONTACT INFOPMATIOE: If you have any questions, concerns or complaits or I you feel that you have been inured as resilt of particioating in the study. ploesse contact Masias Cersosimo, Stanford University. Department of Economics, mes arnosimoestantort edu M559 3875019.

NDEPENDENT CONTACT: If you are not satisfed with how this study is being conducted, or it you have any concoms. complants, or generai questons about se reseanch or your ights as a partcipark, please cortact the stastond Univerney
 andert of the research toam.

By clicking the "continue" button below, you consent to participating in this decision making study.

Instructions

Please read carefully.

If you have questions about the instructions, please send an email to sandro.ambuehleecon.uzh.ch for assistance.

Five different work tasks

In this part of this study, you will make several decisions regarding the task you will complete in part 2 (in one to four weeks from today)

Once we send you the link for part 2, you will have one week to complete that part.

There are five different work tasks, of which you will complete one in part 2 . If you do complete the assigned task at that time, you will receive a bonus payment of, on average, \$10.

To help you with your decision, on the next five pages, you will see a brief example of each of the five work tasks. For each of the five tasks, the "next" button will appear as soon as you have provided one correct answer.

Movie Review Classification (task 1)

In this task, you will classify 400 movie reviews by whether they are positive or negative; that is, by whether the reviewer liked or disliked the movie. This task will take around half an hour, but could take 15 minutes more or less depending
on your motivation and speed.

Aevews that have been classifed into positive or negative by hand are an important inpt for training oomputer alporittms

Please give it a try

You do NOT need to complete it, just try it for a bit so you know how much / how little you like it)
Once you're done, click the next button.

The counter on top shows you the number of reviews you have classified correctly. For each correctly classified review, the counter increases by 1, but for each mistake you make, the counter decreases by 1 .

Spoken Words Transcription (task 2)

In this task, you will hear 400 spoken words. For each of them, you will click a button to indicate what was said. Transcribing spoken words takes few special Workers with experience in audio-transcription will typically require about 15 minutes to transcribe the text, whereas workers with less experience may take a bit longer.

Transcribing spokan text is noeded as computers can nosaliy anajzee writen data. but often have troutle with spoken words.

Please give it a try!

You do NOT need to complete it, just try it for a bit so you know how much / how little you like it)
Once you're done, click the next button.

The counter on top shows you the number of words you have transcribed correctly. For each correctly transcribed word, the counter increases by 1, but for each mistake you make, the counter decreases by 1 .

Words transcribed correctly: 1

\rightarrow

Image Labeling (task 3)

In this task, you will see a sequence of 400 images. For each image you will click a button to indicate the content of the image. Labeling images does not take any special skills, and can easily be done while listening to music. This task will take about half an hour but could take 15 minutes more or less depending on your speed.

Please give it a try!
You do NOT need to complete it, just try it for a bit so you know how much / how little you like it)
Once you're done, click the next button.
The counter on top shows you the number of imspes you have labeled correctly. For each correctly labeled image, the counter increases by 1 , but for each mistake you make, the counter decreases by 1 .

Twitter hate speech sorting (task 4)

In this task, you will sort 400 short messages posted on twittercom by whether they include hate speech (e.g. racist or sexist statements). This task will take around half an hour, but could take 15 minutes more or less depending on your motivation and speed.

Some workers may find this task emotionally taxing, other workers may not be bothered.

Please give it a try!

You do NOT need to complete it, just try it for a bit so you know how much / how little you like it)
Once you're done, click the next button.
The counter on top shows you the number of messages you have classified correctly. For each correctly classiffed message, the counter increases by 1, but for each mistake you make, the counter decreases by 1 .

Classifed correctly: 0

HATE SPEECH

Assigning apprentices to mentors (task 5)

This task requires more thought than the others. If you complete this task, you will repeatedly assign each of five (hypothetical) apprentices at a (hypothetical) company to one of five (thypothetical) mentors at that company.

You will have to create such assignments for 20 companies. This task will take around half an hour, but could take 15 minutes more or less.

You cannot just create any arbitrary assignment. Instead, each of the apprentices have indicated which mentor they would prefer most, second most, and so on. Likewise, each of the mentors have indicated which of the apprentices they would most like to mentor, which they would second-most like to mentor, and so on. You will need to find a way to pair apprentices and mentors to make all apprentices and mentors as happy as possible. (Specifically, you will have to find an assignment in which there are no two people that are not paired with each other, but would prefer each other over their assigned partners.)

You will have to create such assignments for 20 companies.
Some people will find this task more engaging than the less challenging tasks, while others will be put off by it. Some people will be much better at this task than others.

Please give this task a try. (You do NOT need to complete it, just try
it for a bit so you know how much / how little you like it)

Mentors

Arthur＇s preferences ower apprentices are 1．Lrarence，2．Aice．3．Sean，4．Jean，5．Ann Hannah＇s preferences over apprentices are 1．Ann，2．Sean，3．Lawrence，4．Alce，5．Jean Terrys preferences over apprentices are 1．Lawrence，2．Sean，3．Alice，4．Ann．5．Jean Terys prelerences over appremices are 1．Lawrence，2．Sean，3．Aice，4．Ann，5．Jean Christian＇s preferencess over apprentices are 1，Lawrence，2．Jean，3．Aon，4．Sean，5．Alice Christian＇s preferences over apprentices are 1．Lawrence，2．Jean，3．Aon，4，Sean，5．Alice

Apprentices
Ann＇s preferences over mentors are 1．Hannah，2．Arthur，3．Terry，4．Christian，5．Jacqueline Sear＇s preferences over mentors are 1．Christian，2．Jacqueline，3．Hannah，4．Arthut，5． Terry
Jean＇s preferences over mentors are 1．Terry，2．Christian，3．Arthur，4．Harnah，5．Jacqueine Lawrence＇s preferences over mentors are 1．Terry，2．Jacqueline，3．Arthur，4．Christian，5． Harnah
Alice＇s preferences cver mentors are 1．Jacqueline，2．Harrah，3．Christian，4．Arthur， 5.

Terry				
馹	解	侖	里	風
Ann	Sean	Joan	Lawrence	Alice

Pair mentors and apprentices

Your decisions

Today＇s part of the experiment consists of a single decision．
At the beginning of this study，the computer has randomly selected one of the rounds． There is a 5% chance that your choice in that round will determine which of the tasks you wifl comptete in part 2 of this study according to a procedure we will describe shortly．（With the remaining chance，the task you complete in part 2 will be determined In a different way．）

Your decisions

Today's part of the experiment consists of a single decision.

Your task is to rank the five work tasks in the order that you genuinely prefer. Put the task you like most on top, the task you like second-most in second place, and so on. The task you like least will be on the bottom.

Our study is designed so that it is in your own best interest to rank the tasks as you genuinely prefer.

Here's why. At the beginning of the study, the computer has selected at random two possible tasks for you out of the five. There is a 5% chance that your choice in that round wit determine which of the tasks you witl complete in part 2 of this study according to a procedure we will describe shortly. (With the remaining chance, the task you complete in part 2 will be determined in a different way.) If your choice determines the task you will complete in the second part of the study, you will complete the one you have ranked more highly out of these two.

Your choice

Please rank the five tasks in the order of your preference, as explained on the previous page.

Put the most preferred task on top, and the least prefered on the bottom.

$$
\uparrow
$$

more preterred

Spoken word transcription (400 words)

Movie reviems classification (400 reviews)
Twitter hate-speech filtering (400 tweets)
Assigning apprentices to mentors (20 matchings to be found)
mage labeling (400 images)
less preferred
\downarrow

O Male
O Female
O Other le.g genderqueer)

What is your age?
O Under 18
O 18 - 24
O $25-34$
O $35-44$
O 45 - 54
O 55-64
O $65-74$
O 75-84
O 85 crolde

We will invite you for the second part of this study in one to four weeks.

We will send you the link through the text field for a smal bonus payment. Hence.
please make sure to follow your bonus payments.
Please enter

HFB847IN

as the survey code and submit the HIT.
Thanik you for your participation.

D. 5 Elicitation of Swiss citizen Stakeholder preferences

English translation

Q1. Good day! Are you a citizen Of Switzerland? [Yes / No]

Q2. What is your general political attitude? [Clearly right, moderately right, center, moderately left clearly left]

Q3. This study is about a donation of SFr. 30 to one of the five largest Swiss political parties (measured by percentage of seats in the National Council). Your answer, as well as the answer of five other study participants will determine which party receives the donation.

Q4. With a one in forty chance, your answer will completely determine which party receives the donation. With the remaining probability, your answer will partly determine the recipient.

Q5. Please indicate which party you would like the most to receive the donation, and which the least. (Choose " 1 " for "the most" and " 2 " for "the least.") The order of parties below is random. The computer has randomly selected two parties. If your own answer determines the recipient, the party (of the two) that you prefer more will receive the donation.

[^0]: Suggested Citation: Ambuehl, Sandro; Bernheim, Bert Douglas (2024) : Interpreting the will of the people: Social preferences over ordinal outcomes, Working Paper, No. 395, University of Zurich, Department of Economics, Zurich, https://doi.org/10.5167/uzh-206634

[^1]: Terms of use:
 Documents in EconStor may be saved and copied for your personal and scholarly purposes.

 You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

 If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

[^2]: *Ambuehl: Department of Economics and UBS Center for Economics in Society, University of Zurich, Blüemlisalpstrasse 10, 8006 Zürich, Switzerland, sandro.ambuehl@econ.uzh.ch. Bernheim: Department of Economics, Stanford University, 579 Serra Mall, Stanford, CA, 94305, USA, bernheim@stanford.edu. We are grateful to Matias Cersosimo for research assistance. This project was funded by the Department of Economics at Stanford University and by the Department of Economics at the University of Zurich. All experiments were approved by the Stanford IRB and by the Ethics Review Board of the Department of Economics at the University of Zurich.

[^3]: ${ }^{1}$ The existing literature contains hints of such preferences, most notably the disputed phenomenon of "last place aversion" (Kuziemko et al., 2014; Camerer et al., 2016; Martinangeli and Windsteiger, 2020).

[^4]: ${ }^{2}$ A line of research in the tradition of Vickrey (1961) investigates mechanisms for eliciting and aggregating cardinal preferences. See, for example, the literature quadratic voting (Lalley and Weyl, 2018). Such mechanisms are not, however, widely used, and they do not account for intrinsic preferences over (within-menu) ordinal outcomes.

[^5]: ${ }^{3}$ According to IIA, if a change in Stakeholders' preference rankings leaves the relative rankings of options A and B unchanged, then it also leaves social preferences between A and B unchanged. Davies and Shah (2003) also document violations of IIA when subjects aggregate others' preferences. The logic of IIA is traceable to Condorcet (Condorcet, 1788), who criticized the Borda rule on the grounds that it "relies on irrelevant factors to form its judgments," in that it "confuses votes comparing Peter and Paul with those comparing either Peter or Paul to Jack and uses them to judge the relative merits of Peter and Paul." While the Borda rule respects the modern proscription on using cardinal measures of well-being, it slips cardinality back into the social calculus through these types of third-option comparisons. Indeed, Borda's justification for the rule explicitly references cardinal inferences; see Borda (1781).

[^6]: ${ }^{4}$ The Econometric Society uses the Borda rule to elect Officers and Council (Econometric Society, 2022). The Borda rule also determines Slovenian parliamentary elections (Toplak, 2006) and elections within the Irish Green Party (Baker, 2008). Swiss parliamentary elections incorporate disapproval votes which follow the spirit of the antiplurality rule (Portmann and Stojanović, 2019). Several nations use multistage methods for presidential elections (see, e.g., Richie, 2004). The Debian Project uses a Condorcet extension (the Schulze method) for all decision-making by committees and plebiscites (Debian Project, 2016).

[^7]: ${ }^{5}$ Ambuehl et al. (2021b) include an abridged version of the current experiment to study elected representatives in federal and state parliaments in Germany. They find similar qualitative results.

[^8]: ${ }^{6}$ Relatedly, Laslier (2012) reports the result of an informal poll among 22 voting theory experts who comprehensively evaluated an ad hoc list of 18 aggregation rules. The winner is approval voting, which, in our setting, is equivalent to antiplurality (assuming that first and second rank imply approval) or plurality (assuming that only the first rank implies approval).

[^9]: ${ }^{7}$ We identified these profiles using an algorithm that enumerated all the alternatives and then eliminated ones that are redundant under anonymity and neutrality. It is also possible to arrive at the number of such profiles through a combinatorial argument. According to The Hitchhiker's Guide to the Galaxy by Douglas Adams, the number 42 is "The Answer to the Ultimate Question of Life, the Universe, and Everything," calculated by a supercomputer over 7.5 million years, but unfortunately no one knows the question. We are delighted to have resolved that mystery. You're welcome.
 ${ }^{8}$ The Pareto criterion rules out nothing for 27 profiles, one option for 12 profiles, and two options for 3 profiles. The number of rules without Pareto violations is therefore $7^{27} \times 3^{12}$.

[^10]: ${ }^{9}$ Appendix A. 1 lists the omitted profiles and exhibits their limited ability to distinguish among rules.

[^11]: ${ }^{10}$ When a scoring parameter coincides with an interval boundary $s \in \mathcal{C}$, the set of options selected for a given preference profile is the union of those selected with scoring parameter $s-\epsilon$ and those selected with scoring parameter $s+\epsilon$ for $\epsilon>0$ sufficiently small. Accordingly, scoring rules with parameters $s \in \mathcal{C}$ are less resolute (produce more ties) than scoring rules with parameter $s \notin \mathcal{C}$.
 ${ }^{11}$ We define a rule as benevolent if it satisfies the Pareto criterion.
 ${ }^{12}$ We implement scoring runoff rules as follows. In the first stage, we calculate the score associated with each option and drop the option with the lowest score. We then choose the majority-preferred option from the remaining alternatives. (Because this step involves at most two options, majority rules coincides with all scoring rules.) If two options are tied, we drop both of them. If all three options are tied, the runoff rule selects all of them. Three-way ties occur only for profile 13 , and only for scoring runoff rules with $s \geq \frac{1}{2}$. We identify the set of distinguishable scoring runoff rules using a brute-force computer script.

[^12]: ${ }^{13}$ For instance, in a given task assignment, workers $1,2,3,4$, and 5 might complete tasks (ii), (i), (iii), (v), and (iv), respectively.

[^13]: ${ }^{14}$ An alternative procedure would be to (partially) incentivize indifference statements by randomizing among the pertinent options. We decided against that approach for two reasons. First, the procedure changes the nature of social alternatives by introducing lotteries over assignments, thereby implicating workers' preferences over lotteries. Second, the social choice rules we consider do not specify random resolution. Adding that provision to a rule amounts to creating a non-standard extension.

[^14]: ${ }^{15}$ We recruited Stakeholders mostly through the survey company pollfish.com. We supplemented this sample by placing ads on Facebook and in the laboratory at the University of Zurich. Age and citizenship are self-reported.

[^15]: ${ }^{16}$ At the time of the experiment, $1 \mathrm{Fr} .=\mathrm{USD} 1.13$.
 ${ }^{17}$ An additional 7 subjects started the study but were not eligible.

[^16]: ${ }^{18}$ Our classifier performs well in simulations (see Appendix A.2).
 ${ }^{19}$ With this assumption, our classifier is equivalent to assigning each subject the rule that maximizes the likelihood of the subject's choices.
 ${ }^{20}$ Because our displays present alternatives and workers in random order (redrawn in each round), even positional criteria (such as always choosing the option on the left) will yield uniform distributions.
 ${ }^{21}$ See Appendix A. 2 for the explicit derivation of $P(R, \epsilon \mid c)$.

[^17]: ${ }^{22}$ In comparison, the set of our benevolent pre-specified rules produce a tie for 23.8% of the profiles, on average. Focusing only on the Condorcet rule and the set of all scoring rules we can identify, this figure falls to 14.3%. Planners designate all options as equally good for only 1.54% of profiles.

[^18]: ${ }^{23}$ Because Condorcet winners fail to exist for two of the 17 profiles, there are only nine resolute Condorcet extensions. As long as we include all of them, there is no need to add any irresolute Condorcet extensions, because our first procedure never assigns a subject to a less resolute rule that is equally consistent with the subject's choices.
 ${ }^{24}$ In each case, (i) Borda and near-antiplurality are the two most common behavioral patterns, (ii) few people exhibit the patterns associated with Condorcet rules, runoff-type rules, and rules that attach relatively large weight to first-place ranks (such as plurality and other scoring rules with $s<0.5$), and (iii) concave scoring rules with $0.5 \leq s<1$ account for the vast majority of subjects.

[^19]: ${ }^{25}$ These benchmarks deviate from 50% because our selection of profiles is not random.
 ${ }^{26}$ Appendix A. 4 shows classifications of subjects based on the incentivized data split according to whether they fit their assigned rules perfectly or imperfectly. While the distributions are generally similar, Borda is more prevalent relative to near-antiplurality for perfectly fitting subjects. This pattern is mechanical: because Borda is less resolute than near-antiplurality, it has more scope for matching choice patterns perfectly.
 ${ }^{27}$ The mean estimated noise parameter in the random-choice data never equals its actual value (unity) because some random-choice sequences will always match some choice rules relatively well. The downward bias in the estimates of ϵ reflects overfitting.
 ${ }^{28}$ Alternatively, one can think of an empirical fingerprint as consisting of $3 \times 17=51$ binary variables, each of which indicates whether a given option is selected for a given profile. The average subject's choice coincides with the prediction of the best-fitting rule in 47 of these 51 cases (92%), which is far higher than the random-choice benchmark (65.9%).

[^20]: ${ }^{29}$ There are more than 232 trillion $\left(7^{17}\right)$ possible rules for the set of 17 profiles, of which more than 18 trillion $\left(7^{14} \times 3^{3}\right)$ exhibit no Pareto violations.

[^21]: ${ }^{30}$ We use the Hamming distance, i.e. the number of profiles on which two choice sequences differ from each other.

[^22]: ${ }^{31}$ This frequency, while relatively small, is significantly higher than would be observed by chance if the distributions of choices were independent across profiles, $0.205 \times 0.212=0.043\left(\chi^{2}\right.$-test, $\left.p<0.001\right)$.

[^23]: ${ }^{32}$ Though small, this fraction is significantly higher than would be observed by chance if the distributions of choices were independent across profiles (χ^{2}-test, $p<0.001$).

[^24]: ${ }^{33}$ As explained in Section 4.2, consequential choice data can identify such scoring rules only if the two nearby scoring rules $s+\epsilon$ and $s-\epsilon$ differ on at least two preference profiles. Appendix A. 1 shows the distance between all pairs of pre-specified rules in the political domain.

[^25]: ${ }^{34}$ We apply the test to the 400 (out of 405) subjects who are classified as following a scoring rule or a pluralityequivalent rule in both domains.
 ${ }^{35}$ Because the political domain employs a subset of the profiles of the work domain, some rules that can be distinguished in the work domain predict identical choice sequences in the political domain. If multiple rules are consistent with a subject's choices in the political domain, we randomly select one of them to derive predictions about that subject's choices in the work domain.

[^26]: ${ }^{36}$ This procedure is not simply a general test for menu dependence in social preferences, because intrinsic concern for Stakeholders' ordinal rankings has directional implications (that Planners should choose A more frequently in $S 1$ than in $S 2$) that other forms of menu dependence do not necessarily share. Our design more generally pinpoints the particular type of menu dependence that arises when Planners care intrinsically about Stakeholders' ordinal rankings. Suppose we can represent the Planner's social preferences by a utility function of the form $W\left(\pi_{k},\left\{\pi_{1}, \ldots, \pi_{3}\right\}\right)$, where π_{j} is the payoff vector associated with outcome j, and k is the chosen option. Suppose further that $W\left(\pi_{k},\left\{\pi_{1}, \ldots, \pi_{3}\right\}\right)=$ $W\left(\sigma_{k}\left(\pi_{k}\right),\left\{\sigma_{1}\left(\pi_{1}\right), \ldots, \sigma_{N}\left(\pi_{N}\right)\right\}\right)$ for any collection of permutations, $\sigma_{1}, \ldots, \sigma_{N}$. With this form of menu-dependent preferences over anonymized cardinal outcomes, the Planner will make the same selection in $S 1$ and $S 2$. In contrast, if we assume only that $W\left(\pi_{k},\left\{\pi_{1}, \ldots, \pi_{3}\right\}\right)=W\left(\sigma\left(\pi_{k}\right),\left\{\sigma\left(\pi_{1}\right), \ldots, \sigma\left(\pi_{N}\right)\right\}\right)$-in other words, the Planner's assessment remains the same when we change Stakeholders' labels in the same way for all options-then the Planner could in principle make a different selection in $S 1$ and $S 2$.

[^27]: ${ }^{37}$ See Appendix B for additional results and robustness checks.

[^28]: ${ }^{38}$ At the time of the study, these amounts were roughly equivalent according to market exchange rates $(\$ 1 \approx \mathrm{SEK}$ 8.50).

[^29]: ${ }^{39}$ For both countries, these are the most recent data that include the requisite information for each combination of characteristics.
 ${ }^{40}$ As expected, conformance with the Borda rule declines when we classify subjects based on seven profiles rather than seventeen. When we also employ the indifference data to classify subjects based on seven profiles, Borda frequencies increase substantially.

[^30]: ${ }^{41}$ We randomize the order of the descriptions as well as the candidate labels.

[^31]: ${ }^{42}$ Because our selection of profiles is not random, deviations from 50% are expected.

[^32]: Please give it a try!
 Once you're done, click the next button. It will appear as soon as you have classifed one review correctly. (Scroll to the bottom of the page)

