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Abstract

We study how performance metrics affect the allocation of talent. We exploit the introduction

of a new measure of scientific performance: citation metrics. For technical reasons, the

first citation database only covered citations from certain journals and years. Thus, only a

subset of citations became visible, while others remained invisible. We identify the effects

of citation metrics by comparing the predictiveness of visible to invisible citations. Citation

metrics increased assortative matching between scientists and departments. We also find that

highly-cited scientists in lower-ranked departments (“hidden stars”) benefited from citation

metrics, while minorities did not. Citation metrics also affected promotion decisions.
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1 Introduction

The allocation of talent to productive positions in society is of utmost importance for the

creation of new ideas, technological progress, and economic growth (e.g., Murphy et al.,

1991; Jones, 1995; Weitzman, 1998; Romer, 1986, 1990). As talent is scarce, private

sector firms and universities increasingly rely on performance metrics to identify talented

individuals (e.g., Hoffman et al., 2018; Forbes, 2013). In academia, performance metrics

based on citations and publications affect hiring, promotions, wages, research funding,

and the prestige of academics (e.g., Hamermesh and Schmidt, 2003; Ellison, 2013). Due

to their increasing use, concerns have been raised about a potential overreliance on

performance metrics in science (DORA, 2013; CoARA, 2022). Despite the importance

of such metrics, as well as the recent discussions, there is virtually no evidence of how

performance metrics affect the organization of science.

In this article, we provide the first systematic evidence of the impact of performance

metrics on the allocation of talent and on scientific careers. Specifically, we study

how citation metrics affect the assortative matching between scientists and universities,

which groups benefit most from citation metrics, and how citation metrics affect career

outcomes such as promotions. Our empirical strategy exploits the introduction of the

Science Citation Index (SCI), which led to quasi-random variation in the visibility of

individual scientists’ citations.

While researchers always had a rough sense of the influence of scientific work,

it was impossible to systematically measure citations until the 1960s. This changed

dramatically in 1963 when Eugene Garfield published the first Science Citation Index

(SCI). For the first time, it became possible to identify the highest-cited papers and

researchers. The Nobel Laureate and molecular biologist Joshua Lederberg welcomed the

first edition of the SCI with the words: “I think you’re making history, Gene!” (Wouters,

2017). Scientists, funding bodies, and university administrators immediately started to

use citation counts in hiring, promotion, and funding decisions. The sociologist Harriet

Zuckerman remarked in the New York Times that there are “cases of people who have

been asked to go count their own citations, and also of deans and administrations who

have asked for citation counts” (Carlton, 1981).

In the first part of the article, we investigate how the availability of citation metrics

affects the assortative matching between scientists and departments. We document

that the correlation between scientists’ citations and the ranking of their department

increased by 54%. At the same time, scientists’ publications became 36% less predictive
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of their department ranking. These over-time changes suggest that hiring committees

started to attach more weight to citation counts and less weight to publication counts

when evaluating candidates. The increased correlation between scientists’ citations and

the ranking of their departments may be spurious for various reasons. For example,

the increasing importance of expensive research labs or federal research funding (e.g.,

Kantor and Whalley, 2022) could disproportionately favor leading departments and

allow them to attract star scientists, who turn out to be highly cited. Similarly,

increases in team production (e.g., Wuchty et al., 2007; Jones, 2009) may have spurred

within-department collaborations and, hence, made department quality more critical for

citations of individual scientists.

We estimate the causal effect of citation metrics by exploiting that, for technical

reasons, the SCI only covered citations in a subset of journals and years. Only these

citations became visible to the scientific community. In contrast, other citations remained

invisible to contemporaries, yet are observable in modern citation data. The variation

in the visibility of citations stems from two sources: variation in coverage of citations

(1) over time and (2) across journals. First, citations appearing in citing articles until

1960 were invisible. With the first edition of the SCI, citations from citing articles in

1961 became visible. Due to technological constraints, the coverage of the SCI was

interrupted for two years. Hence, citations appearing in citing articles in 1962 and

1963 remained invisible at the time (but are observable today). After 1964, the SCI

was published yearly, and thus citations appearing in citing articles after 1964 became

visible. Second, due to a lack of computing power, the SCI only covered citations in

certain journals. As a result, some citations appearing in covered years (1961 and from

1964 onwards) remained invisible if they came from citing articles published in journals

not indexed by the SCI. Importantly, in the early years, the selection of citing journals

was somewhat arbitrary because the lack of citation data meant that journal rankings

did not exist.1

Importantly, our empirical strategy exploits when and where a scientist’s papers were

cited, not when and where they were published. The cited papers could be published in

any journal and in any earlier year. The following example of two hypothetical scientists

illustrates our identification strategy: suppose that each of the two scientists published

a paper in 1957 (in any journal). One of the papers was cited in Nature in 1961, while

the other one was cited in Nature in 1962. As the SCI covered citations in 1961 but not

1In fact, the impact factor, which nowadays is used to rank academic journals, was invented by the
creators of the SCI (Garfield, 1979, p. 150).

2



in 1962, the first citation became visible in the SCI, while the second remained invisible

to contemporaries. Using modern citation databases, we can, however, observe both

visible and invisible citations.

To carry out our empirical analysis, we combine new data on historical faculty

rosters of U.S. universities from the World of Academia Database (Iaria et al., 2022)

with extensive publication and citation data from Clarivate Web of Science. These

data enable us to construct the most comprehensive individual and department-level

rankings for the 1960s. In addition, we digitize lists from historical volumes of the SCI,

which specify the exact citing journals that were indexed in each volume of the SCI.

This allows us to measure which citations were visible and, thus, to reconstruct the

information set available to scientists in the 1960s.

We estimate the effect of citation metrics on the match between scientists and

departments by comparing the importance of visible citations relative to invisible

citations. The identification strategy relies on the assumption that visible and invisible

citations would be equally predictive of career outcomes, had the SCI not become

available in the 1960s. We find that visible citations are four times as predictive of

scientists’ department rank than invisible citations. Specifically, scientists with a 10

percentile higher visible citation count were, on average, placed at a 2.6 percentiles

higher ranked department in 1969. For instance, a chemist would be placed at Harvard

or Berkeley as opposed to the University of Illinois Urbana-Champaign or Michigan. In

contrast, scientists with a 10 percentile higher invisible citation count were on average

only placed at a 0.7 percentiles higher ranked department. This pattern holds even if

we control for detailed publication records, i.e., for the number of publications in each

journal (e.g., two Nature, one Science, and one PNAS publication) and year (e.g., one

publication in 1956, two in 1958, and one in 1960). Note that it is not surprising that

even invisible citations affect the matching between scientists and departments since the

academic community always had some knowledge of the quality of scientists’ research,

even if precise citation counts were not available.

Despite the somewhat arbitrary nature of the SCI coverage, a concern with this

empirical strategy could be that the visibility of citations in the SCI was correlated

with other characteristics that impact career outcomes. First, visible citations may

come from citing articles in higher quality journals (e.g., Nature or Science) and may

therefore have a larger impact on scientists’ careers. In a robustness check, we abstract

from potential differences in journal quality by relying exclusively on over-time variation

in visibility. This analysis compares scientists whose paper was cited, for example, in
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Science in 1961, and was therefore visible, to scientists whose paper was cited in Science

in 1963, and was therefore invisible. The results remain unchanged, indicating that

differences in the quality of indexed journals cannot explain our findings.

Second, as the SCI was introduced in 1961, visible citations are more likely to occur

in later years. This would bias our estimates if citations in later years had a larger

impact on scientists’ career outcomes in 1969. To address this concern, we exclusively

rely on across-journal variation in the visibility of citations. This robustness check

compares scientists whose paper was cited in the same year (e.g., 1961), but one citation

occurred in the Journal of the American Chemical Society, and was visible in the SCI,

while the other citation occurred in Chemical Reviews, and was invisible. The results

remain unchanged, indicating that differences in the timing of citations cannot explain

our findings.

Further, we investigate whether citations that would have been visible, had the

SCI been introduced earlier, have any predictive power. We construct “pseudo-visible”

citations, i.e., citations from journals that were covered in the first SCI, but in years

in which the SCI was not published. This placebo test compares pseudo-visible and

invisible citations for years in which the SCI did not yet exist. The results show that

citations in journals covered by the SCI did not matter differentially in years in which the

SCI was not yet available. This provides strong evidence for our identifying assumption

because the differential impact of visible citations, relative to invisible ones, only occurs

for years that were actually covered in the SCI.2

Next, we shed light on two potential mechanisms that could underlie the increase

in assortative matching based on citation metrics. First, scientists with few citations

may have disproportionately left academia. We find that scientists with a 10 percentile

higher visible citation count were 2.9 percentage points (or 4.2 percent) less likely to

leave academia between 1956 and 1969. In contrast, invisible citations did not affect

the probability of leaving academia. Second, highly cited scientists may have moved to

higher-ranked departments. We show that scientists with a 10 percentile higher visible

citation count were 0.6 percentage points (or 11.6 percent) more likely to move to a

higher-ranked department between 1956 and 1969. Invisible citations had no effect

on moving to a higher-ranked department. Overall, these results indicate that both

mechanisms increased assortative matching.

2We also show that our findings are robust to using alternative functional forms of the citation
measures and to measuring department quality with alternative department rankings.
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In the second part of the article, we investigate the heterogeneous effects of citation

metrics. First, we show that scientists in higher percentiles of the individual-level citation

distribution, and especially those above the 90th percentile, benefited disproportionately

from the availability of citation metrics. Second, we find that the availability of citation

metrics particularly benefited highly cited academics who were originally placed in

lower-ranked departments. Thus, citations enabled the discovery of these “hidden stars.”

This suggests that the introduction of the SCI helped to overcome misallocation by

helping the highest-cited scientists to move to higher-ranked departments. Third, we

investigate if minorities differentially benefited from the introduction of the SCI. We find

that neither female, Hispanic, Asian, nor Jewish academics benefited disproportionately

from the availability of citation metrics. These results suggest that the availability

of more “objective” performance metrics did not help minorities overcome potential

discrimination.

In the last part of the article, we study the impact of citation metrics on individual-

level promotions. We analyze whether scientists who were assistant or associate professors

in 1956 were promoted to full professors by 1969. We find that the probability of

promotion increased by 4.5 percentage points (or 6.3 percent) for scientists with a 10

percentile higher visible citation rank. In contrast, invisible citations did not affect

promotion probabilities. These results indicate that the introduction of citation metrics

not only affected assortative matching but also had direct impacts on the careers

of scientists. As full professor positions come with higher salaries, job security, and

improved access to research grants, citation metrics also changed the allocation of

resources to individual scientists.

This paper contributes to three different strands of the literature. First, our paper

contributes to the body of literature on the economics of science and the creation of

knowledge. The existing literature has shown that scientists have to process increasing

amounts of knowledge to advance the scientific frontier (Jones, 2009) and that access to

the knowledge frontier is crucial for producing science (Iaria et al., 2018). Additional

contributions have highlighted the importance of superstar scientists (Azoulay et al.,

2010), studied whether peer-effects affect scientific productivity (e.g., Waldinger, 2010,

2012; Borjas and Doran, 2012), and the role of editors (e.g., Card and DellaVigna, 2020).

More recently, increased attention has been paid to inefficiencies in the scientific process

such as the Matthew Effect (Azoulay et al., 2014; Jin et al., 2019), gatekeepers (Azoulay

et al., 2019), or discrimination (e.g., Card et al., 2020, 2022; Iaria et al., 2022; Koffi,

2021; Hengel, 2022).
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Despite all these papers making use of publication and citation data, and a long-

standing debate on citations in sociology (e.g., Lotka, 1926; Merton, 1968; Zuckerman

and Merton, 1971; Wouters, 1999a, 2014; Muller and Peres, 2019; Biagioli and Lippman,

2020; Pardo-Guerra, 2022), there is no evidence on how the observability of citation

metrics affect scientific careers. While some papers have documented that citation

metrics, such as the h-index or citation counts, predict career outcomes (e.g., Ellison,

2013; Jensen et al., 2009; Hilmer et al., 2015), our paper is the first to causally examine

this fundamental aspect of modern science. Specifically, we disentangle differences in

the underlying quality of academics from differences in the observed quality on the basis

of citation metrics. Our results highlight that the observability is of crucial importance.

Second, our findings contribute to the literature on performance metrics in the

labor market. As highlighted by the theoretical models of Holmstrom and Milgrom

(1991) and Feltham and Xie (1994), the use of performance metrics shapes incentives

of agents in the labor market. The key empirical challenge to estimating the impact

of performance metrics is that, in most cases, it is impossible to measure performance

before the introduction of a specific performance metric. As a result, researchers often

lack a valid counterfactual. This makes empirical evidence on how performance metrics

affect the allocation of talent exceedingly rare. A few notable exceptions study the effect

of performance metrics in the teacher labor market (Rockoff et al., 2012) and on first

placements of MBA graduates (Floyd et al., 2022). The unique advantage of our setting

is that we observe the information set available to decision-makers at the time – and

crucially, what was not part of that information set.3

Last, we contribute to research on assortative matching in the labor market (e.g.,

Abowd et al., 1999; Andrews et al., 2008; Card et al., 2013; Song et al., 2019) by showing

that performance metrics can increase assortative matching.

2 The Science Citation Index: Background and Data

2.1 The Creation of the Science Citation Index

The SCI was the first systematic international and interdisciplinary citation index.

During the 1950s, Eugene Garfield and his newly founded Institute for Scientific In-

3Since we measure the exact information set of contemporaries in the 1960s, our analysis allows us
to identify the effects of revealing new information on labor market outcomes. In this, we add to the
literature on how information disclosure and new information technologies affect market efficiency (e.g.,
Jensen, 2007; Koudijs, 2015; Tadelis and Zettelmeyer, 2015; Steinwender, 2018).
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formation (ISI) developed the technology to construct a citation index. By the early

1960s, this undertaking was supported by National Institutes of Health and National

Science Foundation grants. In November 1963, these efforts came to fruition and the

first edition of the SCI was published, covering citations in 1961 (Garfield, 1963b, see

Figure 1, panel (a), for a picture of the first SCI). The SCI quickly became the “most

widely used and authoritative database of research publications and citations” (Birkle

et al., 2020).

To construct the SCI, Garfield and his team selected 613 citing journals from the

physical and life sciences and collected all citations appearing in articles in these journals

in 1961 (Garfield, 1963a). This enabled them to identify all papers that were cited by

these articles in 1961. The cited papers could have been published in any previous year

(i.e., not only in 1961) and in any journal (i.e., not only in the set of citing journals but

in any journal or book).

This information was stored on punch cards and converted to magnetic tapes, which

were processed and printed by IBM computers (Garfield (1963b), p. x). Entries were

ordered by the last name and initials of each scientist (see Figure 1, panel (c)). Figure

1, panel (b), shows the 1961 entry for the medical scientist Murray R. Abell. His entry

covers five cited papers: a 1950 paper in Archives of Pathology (vol. 50, p. 1), another

1950 paper in Archives of Pathology (vol. 50, p. 23), a 1956 paper in Archives of

Pathology (vol. 61, p. 360), a 1957 paper in the American Journal of Clinical Pathology

(vol. 28, p. 272), and a 1961 paper in Cancer (vol. 14, p. 318). Each of these papers

was cited at least once in 1961; e.g., the 1956 Archives of Pathology paper, was cited

by one article in 1961 in the Journal of Pathology and Bacteriology (vol. 82, p. 281).

Overall, these five papers received six citations in 1961.

For technical reasons, the SCI did not collect citations for 1962 and 1963. As “[t]he

1961 SCI was the result of an experimental research program”, its preparation took

more than two years (Garfield, 1965). After releasing the 1961 SCI in November 1963,

the ISI moved on to preparing the 1964 SCI.4 From then on, the SCI was published

quarterly. The set of covered citing journals quickly expanded from 613 in 1961 to 2,180

in 1969.

Despite its relatively high price5, the SCI was an immediate success. By the late

4The 1962 and 1963 SCIs were released only in 1972 (Garfield, 1972). For this reason, we measure
outcomes in 1969 and, hence, before the ISI had begun to fill in gaps in coverage.

5The cost of the 1964 SCI was $1,950 (roughly $19,000 in 2023) for private sector firms, and $1,250
(roughly $12,000 in 2023) for university libraries (Pizer, 1964).
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Figure 1: Entry in Science Citation Index

(a) The 1961 SCI volume (b) An entry in the SCI

(c) A page in the SCI

Notes: Panel (a) shows the five books of the 1961 SCI. Panel (b) shows a sample entry of the 1961
volume of the SCI. It lists five cited papers for “Abell MR”. Murray R. Abell was Professor of Pathology
(Medicine) at the University of Michigan. The cited papers could have been published in any year until
1961 (here: 1950 (twice), 1956, 1957, and 1961). The five papers are cited by six articles. Because the
example is from the 1961 volume of the SCI, all citations are from 1961. Panel (c) shows a sample page
in the 1961 volume of the SCI.
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1960s, every major university had a subscription. For example, in 1965 chemists at Ohio

State University lobbied the library administration to subscribe to a second copy of

the SCI, in addition to the copy that was already available in the medical library (see

Appendix Figure A.2).6

2.2 Data

Reconstructing SCI Coverage from the Web of Science

For contemporaries, citations were only visible if they came from citing articles in

journals that were indexed in the SCI. This means that only an incomplete set of

citations was visible at the time. Both citations from before the SCI was introduced in

1961, as well as citations in journals that were not indexed by the SCI, remained invisible.

In the 1970s and 1980s, the SCI was backward expanded to cover additional years and

journals, and later became part of the Web of Science. As a result, the Web of Science

contains both citations that were visible to contemporaries and citations that became

available during the backward expansions and were thus invisible to contemporaries.

We reconstruct the sets of citations that were visible and invisible to contemporaries.

For this purpose, we hand-collect yearly lists of citing journals from the printed historical

SCI volumes. We digitize these lists and hand-link them to theWeb of Science. Appendix

Figure A.1 shows a sample journal list. Using this linking procedure, we can identify

which citations were part of the information set of the 1960s, and crucially, which ones

were not.

Faculty Rosters

To study how the introduction of citation metrics affected the careers of academics,

we use data containing faculty rosters for nearly all universities in the United States

from the World of Academia Database (see Iaria et al., 2022). The data contain

almost comprehensive cross-sections of all U.S. academics for the years 1956 and 1969.

Because the SCI only counted citations for the natural and biomedical sciences, we

focus on all academics who worked in either medicine, biology, biochemistry, chemistry,

6By 1966, the SCI was not only available as printed volumes, but could also be purchased on
magnetic tapes. The magnetic tapes provided the raw data for constructing citation counts and for
conducting quantitative citation analyses (Garfield, 1966). Furthermore, the ISI published five-year
cumulations of the SCI. For example, the 1965-1969 compilation included all citations from citing
journals between 1965 and 1969 (Garfield, 1971).
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physics, or mathematics. For the period of our analysis, the database provides the

most comprehensive data on academics in the United States (see Iaria et al. (2022) for

details). For the 1969 cross-section, the data contain 26,404 scientists (in the six fields)

at 1,443 departments in 378 universities (Table 1, Panel B).

The World of Academia Database has two unique advantages for our purpose. First,

it enables us to identify the department (e.g., physics at Berkeley) of each academic.

Second, it contains complete faculty rosters. This allows us to observe academics who

published and received citations, but also academics who did not publish or who did

not receive any citations. This enables us to construct comprehensive individual and

department rankings based on all academics and not only on those who published and

were cited.

Linking Scientists with Publications and Citations

To count scientists’ publications and citations, we link the World of Academia Database

with publication and citation data from the Web of Science. We use the cascading

linking algorithm developed in Iaria et al. (2022). The links are based on the academic’s

surname, first name or initials (depending on whether first names are available), country,

city, and subject. The matching is based on the primary subject of each academic (e.g.,

physics) to reduce the number of false positives. To harmonize affiliations across the

faculty rosters and the Web of Science, we rely on Google Maps API.

For the 1969 cohort of scientists, we link their publications and citations from 1956

to 1969. This enables us to measure the number of papers that each scientist published

in this period and to count the citations that these papers received from the time they

were published until 1969. Crucially for our identification strategy, we observe the

complete citation network and thus the exact journal in which a certain paper was cited.

This allows us to measure whether the citations were captured in the SCI and were thus

visible to contemporaries.

The average scientist in our data published 8.81 papers between 1956 and 1969

(Table 1, Panel A). These papers received 109 citations that were visible to contemporaries

and 49 citations that were invisible to contemporaries but can be observed today.7 As

has been documented by a large literature in the sociology of science, citations of

academics are highly skewed (e.g., Lotka, 1926). The most highly cited scientists in our

7We show below that the different distributions of visible and invisible citations do not drive our
results.
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data received more than 9,000 visible and more than 3,900 invisible citations between

1956 and 1969.

Table 1: Descriptive Statistics

Panel A: Summary Statistics

Variable Mean Std. Dev. Min Max

Publications 8.81 16.77 0 405
Visible Citations 109.43 310.92 0 9,064
Invisible Citations 48.65 147.48 0 3,904
Full Professor Share 0.38
Female Share 0.10

Panel B: Number of Observations

Dataset includes: Observations

Citations 4,173,968
Publications 232,666
Scientists 26,404
Departments 1,443
Universities 378

Notes: Panel A reports summary statistics at the scientist-level for the cross-section of
scientists observed in 1969. Publications are the number of papers a scientist published
between 1956 and 1969, i.e., their papers published before being observed in the 1969
cross-section; visible citations is the number of citations these papers received between
1956 and 1969 that were visible in the SCI; and invisible citations is the number of cita-
tions these papers received between 1956 and 1969 that were not visible in the SCI. Panel
B reports the number of observations at the scientist, publication, citation, university,
and department levels.

Constructing Scientist Rankings

Based on our scientist-publication-citation-linked data, we can construct rankings based

on citations and publications. Within each subject, we rank scientists according to

their citation (or publication) counts between 1956 and 1969. We then calculate each

scientist’s percentile rank in the subject-specific distribution of citations (or publications).

This variable transformation allows us to compare the scientists’ relative positions in

the citation distributions, even if these distributions differ across subjects. For example,

the median mathematician received six citations, while the median medical researcher

received 55 citations. If percentiles cannot be uniquely assigned because too many
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scientists have the same number of citations or publications, we assign the mid-point of

the percentiles.

Constructing Department Rankings

Our data also allow us to construct the most comprehensive department rankings for

this time period. Importantly, these are the first rankings for this period that are based

on scientific output (as opposed to reputation-based surveys). In addition, our rankings

cover a much larger number of departments than previously available survey-based

rankings. In fact, the practice of ranking departments by their research output only

developed as a result of citation indexing.

We rank all 1,443 departments in 378 universities on the basis of the average total

citations received by scientists in each department. As outlined above, the rankings avoid

systematic error because the World of Academia database also lists all scientists who

have not published and/or were not cited in our study period. In our main department

ranking, we construct the leave-out mean of the number of citations received by scientists

in a given department, i.e., the average citation count of scientist i’s colleagues. We then

assign the rank based on the percentile in the subject-specific distribution of leave-out

mean citation counts. We use the percentile rank because it allows us to compare

the relative position of departments in the separate distributions for different scientific

subjects (physics, chemistry, and so on); all with different numbers of departments and

scientists.

In robustness checks, we show that our findings are robust to using several alternative

department rankings. First, we construct analogous department percentile ranks based

on the number of publications. That is, we construct a department’s rank based on

the average number of publications and the leave-out mean of publications. Second, we

construct department percentile ranks based on data from Roose and Andersen (1970),

and Cartter (1966), which provide reputation-based rankings for various subjects. As

highlighted above, these rankings cover far fewer universities. The Cartter-ranking

contains 106 universities (Cartter, 1966), and the Roose-Andersen ranking contains 130

(Roose and Andersen, 1970), while our baseline ranking contains 378 universities.8 In

Appendix B.2., we list the top 20 departments in each of the academic subjects, as

8These alternative rankings strongly correlate with our main citation-based ranking. The correlation
between the Roose-Andersen ranking and our citation-based ranking is 0.67, while the correlation
between the Cartter ranking and our citation-based ranking is 0.65.
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measured by the various rankings. Our main analysis is robust to using either one of

these department rankings.

2.3 How Was the SCI Used in Hiring and Promotions?

While the SCI was predominately designed to facilitate literature research, it was

immediately used to evaluate scientists. For example, Eugene Garfield remembered:

“The SCI’s success did not stem from its primary function as a search engine,

but from its use as an instrument for measuring scientific productivity.”

(Garfield, 2007, p. 65)

The eminent biologist Richard Dawkins described the SCI as a publication that:

“is intended as an aid to tracking down the literature on a given topic.

University appointments committees have picked up the habit of using it as

a rough and ready (too rough and ready) way of comparing the scientific

achievements of applicants for jobs.” (Dawkins, 1986, p. 427)

The SCI made scientists’ citations visible and readily accessible for the first time. Because

the SCI was organized by cited authors, it was easy to measure and compare the citation

counts of different scientists. Figure 2 shows one such comparison for two scientists

working at the California Institute of Technology. The box on the left shows citations

of the physicist Charles B. Archambeau. The box on the right shows the citations of

the 1965 physics Nobel Laureate Richard P. Feynman. As one contemporary remarked,

“[a]n early form of research evaluation of individuals made use of a ruler to measure

column inches of citations!” (Birkle et al., 2020, p. 364).

Very quickly, scientists, funding bodies, and university administrators started to

use citation counts in hiring, promotion, and funding decisions. Some universities even

made citations a mandatory metric in the evaluation applicants’ portfolios (Wade, 1975,

p. 429). The importance of newly available citation metrics is also exemplified in

the court case Johnson v. University of Pittsburgh9. In 1973, Sharon Johnson sued

the biochemistry department at the University of Pittsburgh for sex discrimination.

Her legal case argued that she was overlooked for tenure even though her papers had

received more citations (as measured in the SCI) than those of two recently tenured

male colleagues.

9Dr. Sharon Johnson v. The University of Pittsburgh, W.Da. PA., 1977.
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Figure 2: Comparison of SCI Entries

Notes: This figure compares the entries in the 1965-1969 cumulation of the SCI (Garfield, 1971) for
two physicists at the California Institute of Technology: Charles B. Archambeau on the left, and Nobel
laureate Richard P. Feynman on the right.

The SCI’s Impact on Assortative Matching: Suggestive Evidence

To motivate our empirical strategy, we provide suggestive evidence of the impact of the

SCI on the assortative matching of academics to departments. If departments began

to use the SCI to evaluate scientists, we would expect that the correlation between a

scientist’s citations and their department rank should increase after the publication

of the SCI. We investigate this hypothesis by drawing binscatter plots showing the

relationship between the individual citation rank and the department rank (Figure 3).

We find that the correlation between a scientist’s individual citation rank and their

department rank increased by 54% (Figure 3, panels (a) and (b)) between 1956 and

1969. At the same time, the correlation between the individual publication rank and

the department rank decreased by 36% (Figure 3 panels (c) and (d)).

The evidence in this figure is in line with the hypothesis that the introduction of

citation metrics increased the reliance of hiring decisions on citations, and decreased the

reliance on other observable characteristics such as publications. However, the increasing

correlation between scientists’ citation rank and their department rank may have been

caused by other factors. For example, the increasing importance of expensive research

labs or federal research funding (e.g., Kantor and Whalley, 2022) could disproportionately

favor leading departments and allow them to attract scientists, who turn out to be highly
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Figure 3: Assortative Matching Before and After Citation Metrics

Assortative Matching by Citations

Assortative Matching by Publications

Notes: Panels (a) and (b) show the conditional correlation of individual scientists’ citation rank and
their department rank for two cross-sections: 1956 and 1969. Panel (a) shows a binned scatter plot for
1956 and thus before the introduction of the SCI. While we can now measure these citations in the Web

of Science, they were not observable at the time. Panel (b) shows a binned scatter plot for 1969 and
thus after the introduction of the SCI. The regression coefficient in both panels is conditional on an
individual’s publication rank. Panels (c) and (d) show the conditional correlation between individual
scientists’ publication rank and their department rank. Publications were observable to contemporaries
in both 1956 and 1969. The regression coefficient in both panels is conditional on an individual’s
citation rank.
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cited. Similarly, increases in team production (e.g., Wuchty et al., 2007; Jones, 2009) may

have spurred within-department collaborations and, hence, may have made department

quality more important for scientists’ citations. To overcome these challenges, we

introduce a novel identification strategy that allows us to isolate the causal effect of

citation metrics on assortative matching in academia.

3 The Effect of Citation Metrics on Assortative

Matching

3.1 Empirical Strategy

We identify the causal effect of measuring citations by comparing the effect of citations

that were visible in the SCI to the effect of citations that remained invisible. For

technical reasons, the SCI only covered citations from citing articles in a subset of

journals and years. Hence, only citations from citing articles in this subset were visible

to the scientific community. In contrast, other citations remained invisible because they

were not covered in the SCI. Importantly, the cited papers could have been published in

any journal and in any previous year. Therefore, scientists’ visible citation counts were

not determined by the journals in which their papers were published but only by the

journals in which their papers were cited.

As described above, the first volume of the SCI contained citations from 1961 in

any of 613 citing journals. As a result, all 1961 citations in those 613 journals became

visible in the SCI, while citations before 1961 and in other journals remained invisible.

Because of limited computing power, the collection of citation data was interrupted in

1962 and 1963. By 1964, data collection resumed. The set of covered citing journals

quickly expanded from 613 in 1961 to more than 2,000 in 1969. As a result, the visibility

of citations was affected by two sources of variation: first, in which year a paper was

cited, and second, in which journal it was cited.

Our data allow us to measure the citations that were visible in the SCI and also

to measure citations that were invisible to contemporaries. Invisible citations can be

measured today because citation databases were expanded to include citing articles

for additional years and for a larger set of citing journals. Thus, we reconstruct the

information set of scientists in the 1960s, and crucially we can also infer which citations
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were not part of that information set. Using this approach, we construct a separate

count of visible and invisible citations for each scientist.

Table 2 illustrates the identifying variation for a hypothetical scientist. It reports

citations to the scientist’s papers, which can be published in any journal and in any

year. These papers were cited in articles from journals A, B, and C between 1956

and 1969. Journal A was in the initial set of 613 citing journals indexed by the SCI

in 1961. Journal B was added to the SCI in 1966, whereas citations from Journal C

were not covered in the 1960s. The shaded cells indicate citations that were visible to

contemporaries because the SCI collected citations for those years and citing journals.

The white cells indicate citations that were invisible because the SCI did not collect

data for those years and citing journals. In other words, citations in shaded cells were

part of contemporaries’ information set, while citations in white cells were not.

Table 2: Illustration of The Identifying Variation

Notes: This table reports citations of a hypothetical scientist’s papers. Numbers in shaded cells indicate
citations that were visible in the SCI because the citation occurred in a journal and in a year (1961, or
1964-69) that was covered by the SCI. Numbers in white cells indicate citations that were invisible in
the SCI, but are observable today.

In the example, the hypothetical scientists’ papers were cited in articles published in

journal A in 1959, in 1961, in 1963, and twice in 1967. The citations in 1959 and 1963
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were invisible because the SCI did not exist for those years. In contrast, the citations

in 1961 and 1967 were visible in the SCI. Similarly, the scientist’s papers were cited in

articles in journal B in 1957, 1961, 1965, and three times in 1966. Because journal B

was added to the SCI only in 1966, the citations in 1957, 1961, and 1964 were invisible.

In contrast, the three citations in 1966 were visible. Finally, the scientist’s papers were

cited in articles in journal C in 1959, 1961, and 1969. As journal C was not covered in

our study period, all of these citations were invisible to contemporaries.

Hence, if contemporaries in 1969 had looked up the scientist’s total citations in the

SCI, they would have found six citations. Hence, the scientist’s visible citation count

is six. The scientist received eight additional citations, but these were invisible at the

time. Yet, modern citation data allow us to observe these citations. For each scientist i,

we separately count the number of visible and invisible citations between 1956 and 1969

to i ’s papers published between 1956 and 1969.

Our identification strategy then exploits the differential visibility of individual

scientists’ citations. If the very measurement of citations affects the assortativeness of

the match between academics and universities, visible citations should be more predictive

of career outcomes than invisible ones.10 The identifying assumption underlying this

new empirical strategy is that the effect of visible and invisible citations would be the

same if both had been covered in the SCI. Given the arbitrary timing of the introduction

of the SCI and the lack of coverage for the years 1962 and 1963, this seems plausible.

Nonetheless, there may be concerns that any effect might be driven by differences in the

timing or the quality of the citing journals, i.e., by the two sources of variation in the

visibility of citations. We will address these concerns in a series of robustness checks

outlined below.

The identification strategy gives rise to the following regression equation:

Dep. Ranki = δ · V isible Citationsi + θ · Invisible Citationsi (1)

+ π · Publicationsi + Subject FE + ϵi

where Dep. Ranki is the department rank of scientist i in 1969.11 V isible Citationsi

10Invisible citations may still correlate with outcomes, because scientists have always had a rough
idea of the quality, and thus citation potential, of their peers’ papers.

11In the main specification, we use the department ranking based on the leave-out mean of citations.
As we show in Table C.1, all results are robust to different measures of the department rank, e.g., based
on citations, based on publications, or alternative department rankings based on contemporaneous
reputation-based surveys.
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measure scientist i’s visible citations. Invisible Citationsi measure scientist i’s invisible

citations. In the baseline specification, we measure citations as the percentiles in

the distributions of visible and invisible citations.12 Publicationsi flexibly control for

scientists i’s publications. SubjectFE control for differences between academic subjects.

To account for potential correlations of regression residuals in a certain department, e.g.,

in chemistry at Berkeley, we cluster all standard errors at the department-level.

Crucially, we compare the magnitudes of the coefficients δ and θ. If the visibility of

citations in the SCI increased the assortativeness of the match between scientists and

departments, we would expect the coefficient δ to be larger than θ. For example, the

difference between δ and θ captures if citations that occurred in 1961 instead of 1962

have a larger impact on the match between scientists and departments. Note that we

would not expect θ to be zero as even in the absence of the SCI scientists will have an

approximate idea about the importance and quality of other scientists’ papers (an idea

supported by the positive correlation in Figure 3, Panel (a)).

3.2 Main Results

We illustrate the main regression in Figure 4. The figure shows binscatter plots for

the relationship between visible and invisible citations and the department rank of an

academic. In line with our hypothesis, academics are significantly more sorted based on

visible than on invisible citations.

We report estimates of Equation (1) in Table 3. In column (1), we report a

specification that controls for subject-fixed effects. The coefficient for visible citations is

around two and a half times larger than the coefficient for invisible citations. Scientists

with a 10 percentile higher visible citation count were, on average, placed at a 2.8

percentiles higher-ranked department in 1969. For example, a chemist would be placed

at Harvard or Berkeley as opposed to the University of Illinois Urbana-Champaign or

Michigan. In contrast, scientists with a 10 percentile higher invisible citation count were

on average only placed at a 1.1 percentiles higher-ranked department.13 We also report

the p-value of a two-sided t-test for the equality of the two citation coefficients. We

reject the equality of the two coefficients at the 0.1%-level.

12We explore alternative transformations of citation counts in Table C.3, e.g., standardizing citation
counts or using the inverse hyperbolic sine of citations.

13As discussed above, it is not surprising that even invisible citations positively affect placements
because they proxy for wider recognition by the scientific community.
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Figure 4: Predictiveness of Visible and Invisible Citations

Notes: Panels (a) and (b) show the predictiveness of visible and invisible citations on the match
between scientists and departments. Panel (a) shows a binned scatter plot with the visible citation
percentile rank on the horizontal axis and the department rank on the vertical axis, conditional on
invisible citations and publication controls. Panel (b) shows a binned scatter plot with the invisible
citation percentile rank on the horizontal axis and the department rank on the vertical axis, conditional
on visible citations and publication controls. The plotted relationships correspond to column (3) in
Table 3. The slopes are significantly different from each other; the p-value from a t-test of no difference
is < 0.001 (see also column (3) in Table 3).

To rule out that these differences could potentially be explained by scientists’

publication records, we include fine-grained controls for publications in columns (2)-(5).

In column (2), we show that the results are robust to controlling for the number of

publications by year, i.e., controlling separately for the number of publications in 1956,

1957, and so on.14

One might be concerned that differences in publication and citation patterns across

the sciences could explain our findings. For example, mathematicians publish fewer

papers and receive fewer citations than chemists or medical researchers. To address this

concern, we show that the results are robust to separately controlling for the number of

publications by year and subject (column (3)).

14Since the number of scientists’ publications takes many fewer values than the number of citations (see
Table 1), especially when measuring publications separately by years (columns (2)-(5) in Table 3) and
journals (columns (4)-(5) in Table 3), we do not use the percentile rank transformation of publications.
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Table 3: The Effect of Visible and Invisible Citations on Assortative Matching

Dependent variable: Department rank

(1) (2) (3) (4) (5)

Rank Visible Citations 0.282∗∗∗ 0.300∗∗∗ 0.262∗∗∗ 0.232∗∗∗ 0.227∗∗∗

(0.034) (0.031) (0.034) (0.034) (0.035)

Rank Invisible Citations 0.110∗∗∗ 0.076∗∗∗ 0.067∗∗∗ 0.061∗∗∗ 0.058∗∗

(0.023) (0.020) (0.021) (0.023) (0.024)

Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year × Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal × Subject Yes

P-value (Rank Visible = Rank Invisible) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Observations 26,404 26,404 26,404 26,404 26,404
R2 0.131 0.134 0.147 0.227 0.253

Notes: The table reports the estimates of Equation (1). The dependent variable is the department rank of
scientist i in 1969, measured in percentiles. To construct the department rank, we calculate the leave-out mean
of citations of all scientists in the department of scientist i. We then assign the rank based on the percentile in
the distribution of leave-out mean citations. The first explanatory variable measures scientist i ’s individual rank
in the distribution of visible citations (i.e., all citations that were visible in the SCI; see Section 3.1 for details).
The second explanatory variable measures scientist i ’s individual rank in the distribution of invisible citations
(i.e., all citations that were not visible in the SCI). Publications by Year separately measure the number of
scientist i ’s publications in each year between 1956 and 1969. Publications by Journal separately measure the
number of scientist i ’s publications in each journal (e.g., Nature or Science). Standard errors are clustered at
the department level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

Naturally, not only the number of publications but also the journal in which a paper

was published may be correlated with citation counts and thus might bias our estimates.

To overcome this challenge, we additionally control for the number of publications in

each individual journal. That is, we add a variable that counts the number of papers in

Science, another variable that counts the number of papers in Nature, and so on. In

total, we add 1,714 variables that control for the number of publications in each journal

(column (4)). We also allow the effect of these controls to differ by subject, so that a

publication in Science may have a different effect on the career of a physicist than on

the career of a chemist (column (5)). The results are robust to the inclusion of these

very fine-grained controls for scientists’ publication records. In fact, the difference in

the impact of visible and invisible citations increases with the inclusion of additional

controls. With all controls (column (5)), visible citations have a four times larger effect
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on the department rank than invisible citations.

Taken together, the results indicate that the availability of citation metrics indeed

led departments to select scientists based on the citations that were visible in the SCI.

Importantly, the differential effect of visible and invisible citations cannot be explained

by the differential timing of publications or the quality of journals in which the cited

paper appeared. In the next part of the paper, we investigate this result further and

rule out alternative explanations that might explain our findings.

3.3 Ruling out Alternative Explanations

Despite the somewhat arbitrary nature of the SCI coverage, our results would be biased,

if the visibility of citations in the SCI were correlated with other characteristics that

impacted a scientist’s department rank in 1969. This may occur for two main reasons.

First, visible citations may come from citing articles in higher-quality journals and

may, therefore, have a larger impact on assortative matching between scientists and

departments. Second, as the SCI was introduced in 1961, visible citations are more likely

to occur in later years, which may have had a larger impact on assortative matching in

1969. We address these concerns by exclusively relying on over-time or across-journal

variation in the visibility of citations, thereby holding fixed the other source of variation.

Quality of Citing Journals

The first concern is that visible citations may come from citing articles in higher quality

journals (e.g., Nature or Science) and therefore have a larger impact on a scientist’s

career. It is important to note that this concern is somewhat mitigated because it was

difficult to assess journal quality before the introduction of the SCI. Hence, some of the

citing journals initially included in the SCI turned out to be of relatively lower quality.

Similarly, many journals that were, in fact, of high quality were not covered during the

first years of the SCI.

Nonetheless, we address the potential concern of differences in the quality of citing

journals by fixing the set of journals from which citations are drawn. For this test, we

only rely on over-time variation in the visibility of citations. This allows us to abstract

from potential differences in journal quality. In particular, we estimate regressions that

only use visible and invisible citations from the set of journals that were included in

22



the first edition of the SCI in 1961 (i.e., only using over-time variation in citations from

type A journals in Table 2).15

For example, the test compares scientists who were cited in Nature in 1961 and

therefore these citations were visible in the SCI, to scientists who were cited in Nature

in 1962 and therefore these citations were invisible. The hypothetical scientist presented

in Table 2 would have three visible citations: one in 1961 and two in 1967; and two

invisible citations: one in 1959 and one in 1963. We do not consider citations in type B

or C journals, i.e., journals not indexed in the first SCI in 1961, for this test.

The results that use only citations from type A citing journals are almost identical

to the main results (see Table 4). Not only are the point estimates very similar, but also

the p-values for the difference in coefficients remain below the 0.1%-level. These results

highlight that differences in the quality of citing journals do not drive our findings.

Table 4: Robustness Check: Citations From a Consistent Set of Journals

Dependent variable: Department rank

(1) (2) (3) (4) (5)

Rank Visible Citations 0.274∗∗∗ 0.282∗∗∗ 0.243∗∗∗ 0.215∗∗∗ 0.208∗∗∗

(0.033) (0.029) (0.032) (0.033) (0.034)

Rank Invisible Citations 0.114∗∗∗ 0.080∗∗∗ 0.071∗∗∗ 0.069∗∗∗ 0.066∗∗∗

(0.022) (0.019) (0.020) (0.022) (0.023)

Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year × Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal × Subject Yes

P-value (Rank Visible = Rank Invisible) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Observations 26,404 26,404 26,404 26,404 26,404
R2 0.122 0.125 0.141 0.223 0.250

Notes: The table reports the estimates of Equation (1). To construct citation ranks, we only consider citations
in journals that were covered by the 1961 edition of the SCI. The dependent variable is the department rank of
scientist i in 1969, measured in percentiles. To construct the department rank, we calculate the leave-out mean
of citations of all scientists in the department of scientist i. We then assign the rank based on the percentile in
the distribution of leave-out mean citations. The first explanatory variable measures scientist i ’s individual rank
in the distribution of visible citations in type A journals (see Table 2). The second explanatory variable measures
scientist i ’s individual rank in the distribution of invisible citations in type A journals. Publications by Year
separately measure the number of scientist i ’s publications in each year between 1956 and 1969. Publications
by Journal separately measure the number of scientist i ’s publications in each journal (e.g., Nature or Science).
Standard errors are clustered at the department level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

15We visualize the underlying variation of this robustness check in panel (b) of Appendix Figure C.1.
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The Timing of Citations

The timing of the introduction of the SCI was plausibly exogenous, i.e., there is no

particular reason why the SCI was first published in 1961 instead of, say, 1960. However,

because citations could only become visible after 1961, visible citations, on average,

occurred in later years than invisible ones. If later citations had more predictive power

for career outcomes in 1969, differences in the effect of visible and invisible citations

may stem from the differential timing of citations.

Table 5: Robustness Check: Citations Only From Years With SCI

Dependent variable: Department rank

(1) (2) (3) (4) (5)

Rank Visible Citations 0.314∗∗∗ 0.321∗∗∗ 0.280∗∗∗ 0.256∗∗∗ 0.247∗∗∗

(0.038) (0.035) (0.038) (0.039) (0.040)

Rank Invisible Citations 0.084∗∗∗ 0.061∗∗∗ 0.055∗∗∗ 0.038∗∗ 0.039∗∗∗

(0.017) (0.014) (0.015) (0.015) (0.015)

Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year × Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal × Subject Yes

P-value (Rank Visible = Rank Invisible) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Observations 26,404 26,404 26,404 26,404 26,404
R2 0.130 0.133 0.147 0.226 0.253

Notes: The table reports the estimates of Equation (1). To construct citation ranks, we only consider citations in
years when the SCI was available (i.e., 1961, and 1964-1969). The dependent variable is the department rank of
scientist i in 1969, measured in percentiles. To construct the department rank, we calculate the leave-out mean
of citations of all scientists in the department of scientist i. We then assign the rank based on the percentile in
the distribution of leave-out mean citations. The first explanatory variable measures scientist i ’s individual rank
in the distribution of visible citations (i.e., all citations that were visible in the SCI; see Section 3.1 for details).
The second explanatory variable measures scientist i ’s individual rank in the distribution of invisible citations
(i.e., all citations that were not visible in the SCI). Publications by Year separately measure the number of
scientist i ’s publications in each year between 1956 and 1969. Publications by Journal separately measure the
number of scientist i ’s publications in each journal (e.g., Nature or Science). Standard errors are clustered at
the department level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

We address this concern by fixing the timing of citations and exclusively relying on

across-journal variation in visibility. In particular, we estimate regressions that only

use visible and invisible citations from years in which the SCI was available (i.e., 1961

and 1964-1969). This exercise compares scientists with the same publication record who
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were cited in similar years, but in different journals, only some of which were covered in

the SCI.16

For our hypothetical scientist presented in Table 2, this test considers six visible

citations: one from journal A in 1961 and two from journal A in 1967, and three from

journal B in 1966. It also considers three invisible citations: one each from journal B in

1961 and 1965, and one from journal C in 1969.17

The results that use only citations from years in which the SCI was published are

very similar to the main results (Table 5). The point estimates are almost identical, and

the p-values for the difference in coefficients remain below the 0.1%-level. These results

strongly suggest that the differential timing of visible and invisible citations does not

drive our findings.

3.4 Placebo Test

We provide further evidence that citations in journals covered by the SCI only started to

matter once the SCI became available. For this placebo test, we construct pseudo-visible

citations. We define citations as pseudo-visible, if they come from citing journals that

were included in the 1961 issue of the SCI (i.e., type A journals in Table 2) but occurred

in years when the SCI was not available (i.e., in 1956-1960 and 1962-1963). We construct

four citation ranks for each scientist:

1. Rank visible citations (SCI years): citations from journals that were covered in

the SCI in years when the SCI was published (1961 and 1964-1969),

2. Rank invisible citations (SCI years): citations from journals that were not covered

in the SCI in years when the SCI was published (1961 and 1964-1969),

3. Rank pseudo-visible citations (non-SCI years): citations from journals that were

covered in the SCI in 1961 but from years when the SCI was not published

(1956-1960 and 1962-1963),

4. Rank invisible citations (non-SCI years): citations from journals that were not

covered in the SCI in 1961 and from years when the SCI was not published

(1956-1960 and 1962-1963).

16As outlined above, in the early years limited funding and computing power prevented the Institute
for Scientific Information from covering a large number of journals in the SCI (Garfield, 1963b, p. xvii).
As a result, citations in many reputable journals remained invisible.

17See also panel (c) of Appendix Figure C.1.
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For our hypothetical scientist presented in Table 2, this test considers six visible

citations in SCI years: one from journal A in 1961 and two from journal A in 1967, plus

three from journal B in 1966. It also considers three invisible citations in SCI years: one

each from journal B in 1961 and 1965, and one from journal C in 1969. Furthermore, it

considers two pseudo-visible citations from non-SCI years: one each from journal A in

1959 and 1963. Finally, it considers three invisible citations from non-SCI years: one

each from journal B in 1957, and one each from journal C in 1959 and 1962.18

For each scientist, we count the number of citations in these four categories and

construct their subject-specific percentile ranks. Using these measures, we estimate the

following regression:

Dep. Ranki = δ1 · V isible Citations (SCI years)i

+ θ1 · Invisible Citations (SCI years)i

+ δ2 · Pseudo-V isible Citations (non-SCI years)i (2)

+ θ2 · Invisible Citations (non-SCI years)i

+ π · Publicationsi + Subject FE + ϵi

As pseudo-visible citations were not visible to contemporaries, we would expect them to

matter similarly to the invisible ones, i.e., we would expect δ1 ≫ δ2 ≈ θ1 ≈ θ2.
19

18See also panel (d) of Appendix Figure C.1.
19Note that omitting the third and fourth term (Pseudo-V isible Citations (non-SCI years)i and

Invisible Citations (non-SCI years)i) from Equation (2) is equivalent to the robustness test presented
in Table 5. In Table 6 we report regressions of this kind for reference (columns (1) and (2)).
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Table 6: Placebo Test: Predictiveness of Citations Before the SCI

Dependent variable: Department rank

Only SCI years Incl. non-SCI years

(1) (2) (3) (4)

Rank Visible Citations (SCI years) 0.280∗∗∗ 0.247∗∗∗ 0.265∗∗∗ 0.230∗∗∗

(0.038) (0.040) (0.035) (0.036)

Rank Invisible Citations (SCI years) 0.055∗∗∗ 0.039∗∗∗ 0.035∗∗ 0.022
(0.015) (0.015) (0.015) (0.015)

Rank Pseudo-Visible Citations (non-SCI years) 0.012 0.027
(0.020) (0.022)

Rank Invisible Citations (non-SCI years) 0.034∗∗ 0.020
(0.017) (0.018)

Publications by Year × Subject Yes Yes Yes Yes
Publications by Journal × Subject Yes Yes

P-value (Visible = Invisible (SCI years)) < 0.001 < 0.001 < 0.001 < 0.001
P-value (Visible = Pseudo-Visible) < 0.001 < 0.001
P-value (Invisible (SCI) = Invisible (non-SCI)) 0.975 0.942
P-value (Pseudo-Visible = Invisible (non-SCI)) 0.432 0.823

Observations 26,404 26,404 26,404 26,404
R2 0.147 0.253 0.147 0.254

Notes: This table reports the estimates of Equation (2). The dependent variable is the department rank of
scientist i in 1969, measured in percentiles. To construct the department rank, we calculate the leave-out
mean of citations of all scientists in the department of scientist i. We then assign the rank based on the
percentile in the distribution of leave-out mean citations. The first explanatory variable measures scientist
i ’s individual rank in the distribution of visible citations in SCI years (i.e., all citations that were visible in
the SCI; see Section 3.1 for details). The second explanatory variable measures scientist i ’s individual rank
in the distribution of invisible citations in SCI years (i.e., all citations that were not visible in the SCI in
1961 and 1964-1969). The third explanatory variable measures scientist i ’s individual rank in the distribution
of pseudo-visible citations in non-SCI years (i.e., all citations in journals that were contained in the SCI in
1961 but for years that were not covered in the SCI, i.e., 1956-1960 and 1962-1963). The fourth explanatory
variable measures scientist i ’s individual rank in the distribution of invisible citations in non-SCI years (i.e.,
all citations in journals that were not contained in the SCI in 1961 and in years that were not covered, i.e.,
1956-1960 and 1962-1963). Publications by Year separately measure the number of scientist i ’s publications
in each year between 1956 and 1969. Publications by Journal separately measure the number of scientist i ’s
publications in each journal (e.g., Nature or Science). Standard errors are clustered at the department level.
Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1. P-value from test θ1 = θ2 = δ2: 0.650 in column (3),
0.974 in column (4).
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Figure 5: Plot of Coefficients from Placebo Test

Notes: The figure plots regression coefficients and corresponding 95 percent confidence intervals from
Equation (2). The estimates correspond to column (3) in Table 6.

We find that the coefficient on visible citations from SCI years is almost identical

to the baseline specification (Table 6). Strikingly, the coefficient on pseudo-visible

citations from non-SCI years is a lot smaller and very similar to the coefficients on

invisible citations. This indicates that citations in journals that were covered by the

SCI only had a differential impact in years in which the SCI was actually available. The

coefficients on invisible citations from SCI years and non-SCI years are also very similar

and not distinguishable from the coefficient on pseudo-visible citations (p-value of test

θ1 = θ2 = δ2: 0.650). Figure 5 visualizes the results of this placebo test.

3.5 Further Robustness Checks

In additional results, we show that the findings are robust to using alternative ways of

ranking departments, using alternative transformations of individual citation counts,

and to imposing additional sample restrictions.

Alternative Department Rankings

First, we consider alternative department rankings. The main results use department

ranks based on the leave-out mean of citations. The results are robust to using rankings
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based on the mean of citations, i.e., including citations of the focal scientist (Table C.1,

Panel A, column (2)). Instead of using department rankings based on citations, we

can use scientists’ publication counts to construct department rankings. This leaves

the results almost unchanged (Table C.1, Panel A, columns (3) and (4)). Instead of

percentile ranks, we can also use an indicator for being in a top five department in

each subject. For example, the top five departments in mathematics are Princeton,

Virginia Polytechnic Institute, Stanford, Chicago, and IAS Princeton. In line with our

main results, a ten-percentile increase in visible citations increased the probability of

being affiliated with a top-five department by 0.26 percentage points (i.e., a 12.7 percent

increase). In contrast, invisible citations did not matter significantly (Table C.1, Panel

A, column (5)).

Our results also hold if we construct department rankings based on the scientific

output of departments in the 1956 cross-section (Table C.1, Panel B). While 1956

rankings have the advantage that they are determined before the introduction of

the SCI, they are not available for universities that only enter the data after 1956.

Moreover, the 1956 rankings may suffer from higher measurement error, because we

measure department composition before hiring and moving decisions were actually made.

Ranking departments on the basis of 1956 rankings results in a 25 percent smaller

sample. Nevertheless, the results remain qualitatively unchanged.

Our results are also robust to using external department rankings that do not rely

on citation or publication data. We draw on subject-specific reputational rankings from

Roose and Andersen (1970) and Cartter (1966), to construct analogous department

percentile ranks. As these rankings do not cover medical schools, we supplement these

rankings with the first comprehensive ranking of medical schools by Cole and Lipton

(1977). To avoid unnecessary sample selection for this robustness check, we assign

departments that are unranked in these rankings to the average rank between 1 and

the lowest-ranked department.20 We report the results of these tests in Table C.2.

The estimates show that our results are very similar if we use independently compiled

reputation-based rankings.

20This is necessary, because these external rankings cover fewer departments than our data. Roose
and Andersen (1970) and Cartter (1966) do not contain rankings for biology as a whole but for specific
subfields of biology (Botany, Developmental Biology, Entomology, Microbiology, Molecular Biology,
Physiology, Population Biology, and Zoology in the Roose-Andersen ranking; Botany, Entomology,
Microbiology, Physiology, and Zoology in the Cartter ranking). Based on these rankings, we construct
an overall ranking for biology by calculating the average rank of a department in the subfields of biology.
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Alternative Transformations of Citation Counts

Second, we consider alternative ways of measuring scientists’ performance. We show that

the results are qualitatively similar if we use standardized citations instead of percentiles

(Table C.3, column (2)). For this test, we standardize visible and invisible citations at

the subject-level. As standardized citations contain large outliers, we show that the

results are also robust to winsorizing at the 99th percentile and then standardizing

citation counts (Table C.3, column (3)). Further, the results are also similar if we use

the inverse hyperbolic sine transformation of citations (Table C.3, column (4)).

Another concern could be that the results are driven by differences in the distributions

of visible and invisible citations. Potentially, larger measurement error for invisible

citations could explain the smaller and insignificant coefficient for invisible citations.

We address this concern with a robustness check in which we only use citations from

1956 to 1965 to construct visible and invisible citation ranks. This leads to very

similar distributions of visible and invisible citations.21 For these alternative variables,

measurement error concerns would, if anything, disproportionately downward bias the

coefficient on visible citations. Using these alternative individual citation ranks leaves

our results qualitatively unchanged (Table C.3, column (5)).

Alternative Sample Restrictions

Third, we show that the results are robust to restricting the sample in various ways.

In particular, the findings are robust to excluding scientists with zero citations from

the sample (Table C.4, column (2)). This test shows that our findings are not driven

by scientists without citations. We also show that the results are robust to excluding

scientists in small departments because department ranks may be less precisely calculated

in small departments. For this test, we restrict the sample to all scientists in departments

with more than 10 scientists (Table C.4, column (3)).

3.6 Mechanisms

In the next subsection, we shed light on two potential mechanisms that could underlie

the increased assortative matching. First, scientists with few citations may have

disproportionately left academia. Second, highly cited scientists may have moved up to

21For citations measured in 1956-1965 the summary statstics are as follows. Visible citations: mean
32.4, standard deviation 97.0; invisible citations: mean 43.5, standard deviation 133.3.
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better departments. We investigate these explanations in turn by comparing the impact

of visible and invisible citations on these individual-level career outcomes.

Effect on Leaving Academia

We start by estimating the impact of citation metrics on the probability of leaving

academia. For these regressions, we study scientists whom we observe in the 1956

cross-section of academics. We exclude scientists who were already full professors in

1956 to avoid picking up retirements.22 We then check whether these scientists remain

active until 1969. We estimate the following regression:

✶[Leaving Academia]i = δ · V isible Citationsi + θ · Invisible Citationsi (3)

+ π · Publicationsi + Subject FE + ϵi

where ✶[Leaving Academia]i is an indicator variable that equals 1 if a scientist left

academia between 1956 and 1969. The remaining variable definitions are identical to

the definitions of Equation (1). Note that these regressions can only be estimated for

the subsample of scientists we observe in 1956 and 1969.

The probability of leaving academia was lower for academics with a higher visible

citation count (Panel A of Table 7). Scientists with a 10 percentile higher visible citation

count were around 2.9 percentage points (or 4.2 percent relative to the mean) less likely

to leave academia between 1956 and 1969. Strikingly, invisible citations did not have a

significant impact on the probability of leaving academia. The p-values for the difference

in coefficients on visible and invisible citations are below 0.01. These findings suggest

that the increased assortative matching of academics was, in part, driven by scientists

with fewer visible citations leaving academia.

Effect on Moving to Higher-Ranked Department

As a second mechanism for increased assortative matching, we investigate the moves of

scientists between departments. More specifically, we estimate a version of Equation (3)

in which we replace the dependent variable with an indicator that equals one if a scientist

moved to a higher-ranked department between 1956 and 1969.

The probability that a scientist moved to a higher-ranked department increased with

a higher visible citation rank (Panel B of Table 7). Scientists with a 10 percentile higher

22The results are very similar if we include full professors in this analysis.
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Table 7: Mechanisms

Dependent variable: Indicator for Career Outcome

(1) (2) (3) (4) (5)

Panel A: Dependent variable: Left academia between 1956 and 1969

Rank Citations Visible -0.0031∗∗∗ -0.0032∗∗∗ -0.0029∗∗∗ -0.0025∗∗∗ -0.0025∗∗∗

(0.0005) (0.0005) (0.0005) (0.0005) (0.0005)

Rank Citations Invisible -0.0004 -0.0002 0.0001 0.0002 0.0003
(0.0006) (0.0005) (0.0006) (0.0006) (0.0006)

P-value (Rank Visible = Rank Invisible) 0.005 0.002 0.002 0.008 0.009

Observations 11,625 11,625 11,625 11,625 11,625
R2 0.078 0.083 0.104 0.219 0.262

Panel B: Dependent variable: Moved to higher-ranked department between 1956 and 1969

Rank Visible Citations 0.0009∗∗∗ 0.0007∗∗∗ 0.0006∗∗ 0.0004 0.0005
(0.0003) (0.0003) (0.0003) (0.0003) (0.0004)

Rank Invisible Citations -0.0003 -0.0002 -0.0002 -0.0003 -0.0003
(0.0003) (0.0003) (0.0003) (0.0003) (0.0004)

P-value (Rank Visible = Rank Invisible) 0.017 0.087 0.124 0.226 0.294

Observations 6,154 6,154 6,154 6,154 6,154
R2 0.009 0.013 0.030 0.307 0.363

Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year × Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal × Subject Yes

Notes: This table reports the estimates of Equation (3). Panel A reports results from regressions with an indicator equal
to one if scientist i was observed in the 1956 cross-section, but not in the 1969 cross-section, i.e., if i has left academia,
as the dependent variable. These regressions use the 1956 cross-section of scientists who were not full professors in 1956.
Panel B reports results from regressions with an indicator equal to one if scientist i moved to a higher-ranked department
between 1956 and 1969, as the dependent variable. These regressions use the sample of scientists who are observed in both
the 1956 and 1969 cross-sections of scientists. In both panels, the first explanatory variable measures scientist i ’s rank in
the distribution of visible citations (i.e., all citations that were visible in the SCI; see Section 3.1 for details). The second
explanatory variable measures scientist i ’s rank in the distribution of invisible citations (i.e., all citations that were not visible
in the SCI). Publications by Year separately measure the number of scientist i ’s publications in each year between 1942 and
1969. Publications by Journal separately measure the number of scientist i ’s publications in each journal (e.g., Nature or
Science). Standard errors are clustered at the 1956-department-level in Panel A, and at the 1969-department-level in Panel B.
Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

visible citation count were around 0.6 percentage points more likely to move to a higher-

ranked department. This relatively small point estimate nevertheless represents an 11.6

percent increase relative to the mean. Invisible citations did not affect the probability

of moving to a higher-ranked department. The results are robust to controlling for

publications by year but turn insignificant if we add thousands of variables that control

for publications by journal and publications by journal and subject. Overall, the results
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suggest that assortative matching also increased because scientists with many visible

citations moved to higher-ranked departments.

4 Heterogeneous Impact of Performance Metrics

As the next step of our analysis, we investigate the heterogeneous impact of the SCI

depending on the scientists’ citation rank and the rank of their department. Furthermore,

we investigate if minorities disproportionately profited from the availability of citation

metrics.

4.1 Heterogeneous Effects by Individual-Level Citation Rank

First, we investigate if scientists in different percentiles benefited differentially from the

visibility of their citations. Specifically, we estimate a non-parametric version of our

main regression:

Dep. Ranki =
∑

q

δq · ✶(V isible Cit Decilei = q)

+
∑

q

θq · ✶(Invisible Cit Decilei = q) (4)

+ π · Publicationsi + Subject FE + ϵi

✶(V isible Cit Decilei = q) and ✶(Invisible Cit Decilei = q) are indicator variables for

i’s decile in the visible and invisible citation distributions, respectively.23 We visualize

the estimates relative to the bottom half of the visible and invisible individual-level

citation distribution (Figure 6).24

Over the upper half of the citation distribution, an increase in visible citations

increases the rank of a scientist’s department. Furthermore, the gap between visible and

invisible citations widens for higher deciles of the citation distribution. A scientist in the

top decile of the visible citation distribution was, on average, placed in a department

that was 21.1 percentiles higher in the department ranking, compared to scientists in the

bottom half of the visible citation distribution. This is equivalent to a physicist being

23To save space, we report results for the specification that separately controls for the number of
publications by year and subject (equivalent to column (3) in Table 3). The results for the other
specifications are almost identical.

24Because in some subjects, e.g., mathematics, a relatively high fraction of scientists have zero
citations, we do not separately estimate effects for lower deciles.
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Figure 6: Heterogenous Effects by Individual-Level Citation Rank

Notes: The figure plots estimated regression coefficients δq (visible citations, dark blue) and θq (invisible
citations, light blue) and corresponding 95 percent confidence intervals from Equation (4).

placed at Harvard as opposed to Florida State University. In contrast, a scientist in the

top decile of the invisible citation distribution was, on average, placed in a department

that was only seven percentiles higher ranked, compared to a scientist in the bottom

half of the invisible citation distribution. In Appendix Figure D.1 we further split up the

top decile and show that scientists in the very highest percentiles of the visible citation

distribution are placed in even higher-ranked departments. These results suggest that

scientists at the upper end of the citation distribution had a particularly large benefit

from the availability of citation metrics.

4.2 Heterogeneous Effects for Peripheral Scientists

Second, we analyze if highly cited scientists who were placed in lower-ranked departments

in 1956 differentially benefited from the availability of citation metrics. For this test, we

restrict the sample to scientists who we observe already in 1956. The outcome variable

is their department rank in 1969:
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Dep. Ranki =
∑

q

δHq · ✶(V isible Cit Decilei = q)×High-Ranked (1956)i

+
∑

q

δLq · ✶(V isible Cit Decilei = q)× Low-Ranked (1956)i

+
∑

q

θHq · ✶(Invisible Cit Decilei = q)×High-Ranked (1956)i (5)

+
∑

q

θLq · ✶(Invisible Cit Decilei = q)× Low-Ranked (1956)i

+ ω · Low-Ranked (1956)i + π · Publicationsi + Subject FE + ϵi

Variable definitions are identical to Equation (4). In addition, we add interactions

between the deciles of the individual-level citation distributions with indicator variables

that equal one if the scientist was working in either a high-ranked or a low-ranked

department in 1956. We define low-ranked departments as those below the 75th percentile

of the department ranking.25

Figure 7: Heterogenous Effect of Citation Rank for Peripheral Scientists

Notes: The figure plots estimated regression coefficients δHq and δLq and 95 percent confidence intervals
from Equation (5). I.e., it plots separate sets of coefficients for scientists who were based in high-
ranked (blue) and low-ranked (brown) departments in the 1956 cross-section. We define low-ranked
departments as those below the 75th percentile of the department ranking in 1956. In physics, for
example, low-ranked departments are all departments that were ranked lower than the University of
Wisconsin, Madison.

25Results are qualitatively similar if we use alternative cutoffs (e.g., 60th, 70th, 80th, or 90th
percentile, see Appendix Figure D.3).
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We show estimates for the deciles of the visible citation distribution for scientists

in high-ranked and low-ranked departments in Figure 7.26 Estimates for scientists

in low-ranked departments are consistently larger than for scientists in high-ranked

departments. This suggests that scientists who were in lower-ranked departments in

1956 benefited disproportionately from the availability of citation metrics.27

In other words, citation metrics allowed the discovery of “hidden stars.” This

may have reduced misallocation by helping the highest-cited scientists in low-ranked

departments to move to high-ranked departments. This finding is consistent with

anecdotal evidence. For example, a contemporary scientist remarked that “[t]he SCI

was especially useful to find people who would otherwise be overlooked.” (as cited in

Wouters, 1999b, p. 138)

4.3 Heterogeneous Effects for Minorities

In the last part of this section, we investigate heterogeneous impacts of the SCI on
minorities. Specifically, we analyze whether women, Hispanics, Asians, and Jews
disproportionately benefited from the availability of citation metrics. We identify these
groups based on the names of academics (for more details, see Appendix B.1.). We then
estimate the following regression:

Dep. Ranki =
∑

q

δMq · ✶(V isible Cit Decilei = q)×Majorityi

+
∑

q

δmq · ✶(V isible Cit Decilei = q)×Minorityi

+
∑

q

θMq · ✶(Invisible Cit Decilei = q)×Majorityi (6)

+
∑

q

θmq · ✶(Invisible Cit Decilei = q)×Minorityi

+ ω ·Minorityi + π · Publicationsi + Subject FE + ϵi

Variables are defined as before, but we add indicator variables that equal one if the

academic belongs either to the majority or to the minority. Overall, we do not find

systematic evidence that minorities benefited more or less from the availability of citation

metrics (Figure 8). The confidence intervals for all estimates overlap. Not surprisingly,

26To improve clarity, the figure does not report the estimates for the invisible citation deciles. As in
Figure 6, the estimates for invisible citations are consistently smaller than for visible citations. We also
find no difference in the impact of invisible citations depending on the department rank.

27These results may be interpreted as mechanical because scientists working in low-ranked departments
in 1956 have more scope to move to a higher-ranked department. However, showing such effects is
relevant for evaluating the distributional impact of citation metrics.
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some estimates are relatively noisy because minority groups, by definition, comprise

relatively few observations in 1969 (see e.g., Iaria et al. (2022)). Overall, these results

suggest that the availability of more “objective” performance metrics did not help

minorities overcome potential discrimination in the hiring process. However, the results

also highlight that the use of performance metrics did not widen discrimination against

minority groups.

Figure 8: Heterogenous Effects for Minority Scientists

(a) Female Academics (b) Academics with Hispanic Names

(c) Academics with Asian Names (d) Academics with Jewish Names

Notes: The four panels plot estimated regression coefficients δMq (blue) and δmq (brown), and correspond-
ing 95 percent confidence intervals from Equation (6). Panel (a) plots separate sets of coefficients for
women (brown) and men (blue). Panel (b) plots separate sets of coefficients for Hispanics (brown) and
Non-Hispanics (blue). Panel (c) plots separate sets of coefficients for Asians (brown) and Non-Asians
(blue). Panel (d) plots separate sets of coefficients for Jews (brown) and Non-Jews (blue).
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5 Impact of Performance Metrics on Promotions

In the last part of the paper, we investigate the impact of citation metrics on promotions.

In particular, we investigate if scientists who we observe as assistant or associate

professors in 1956 were promoted to full professors by 1969. This allows us to directly

study how the introduction of performance metrics influenced academic careers. We

estimate the following regression:

✶[Promoted Full Prof.]i = δ · V isible Citationsi + θ · Invisible Citationsi (7)

+ π · Publicationsi + Subject FE + ϵi

where ✶[Promoted Full Prof.]i is an indicator that equals one if scientist i was promoted

to full professor between 1956 and 1969. The remaining variable definitions are identical

to Equation (1). The coefficients of δ and θ measure how much the probability of

promotion changes for scientists with more visible and invisible citations, respectively.

The visible citation rank has a significant positive impact on the probability of

promotion (Table 8). The probability of promotion increased by 4.5 percentage points (or

6.3 percent relative to the mean) for scientists with a 10 percentile higher visible citation

rank.28 The estimates for invisible citations are very close to zero and statistically

insignificant. We also report the p-value of a two-sided t-test for the equality of the two

citation coefficients. We reject equality of the two coefficients with a p-value below 0.1

for four of the five specifications. Because of the small sample size and the demanding

specification with a very large number of control variables for the number of publications

by journal and subject (e.g., the number of publications in Nature for physicists, the

number of publications in Nature for chemists, the number of publications in Science

for physicists, and so on), the coefficients are not statistically significantly different from

each other for the specification reported in column (5). Nevertheless, the qualitative

difference between visible and invisible citations remains unchanged.

As in the analysis of assortative matching (Section 3), we rule out potential alterna-

tive explanations. We show that these results are robust to restricting citations only

to the set of journals that were covered in the first SCI, i.e., the 1961 SCI. This holds

fixed the quality of the citing journals and exploits only over-time variation in citation

28The effect of citation metrics on promotions is estimated within the set of academics who we observe
in 1956 and who have not left academia by 1969. Since the probability of leaving academia decreases
with visible citations (see Section 3.6), we likely estimate a lower-bound of the effect of citation metrics
on promotions.
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Table 8: The Effect of Visible and Invisible Citations on Promotions

Dependent variable: Promoted to Full Professor

(1) (2) (3) (4) (5)

Rank Visible Citations 0.0040∗∗∗ 0.0044∗∗∗ 0.0045∗∗∗ 0.0037∗∗∗ 0.0036∗∗

(0.0007) (0.0008) (0.0008) (0.0013) (0.0016)

Rank Invisible Citations 0.0010∗ 0.0004 0.0006 0.0000 0.0000
(0.0006) (0.0007) (0.0007) (0.0011) (0.0014)

Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year × Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal × Subject Yes

P-value (Rank Visible = Rank Invisible) 0.016 0.002 0.003 0.086 0.195

Observations 2,906 2,906 2,906 2,906 2,906
R2 0.142 0.149 0.159 0.394 0.422

Notes: This table reports the estimates of Equation (7). This regression is based on the sample of all scientists who
enter the World of Academia Database in the 1956 cross-section and are not full professors in 1956 and are observed
in 1969. The dependent variable is an indicator equal to 1 if scientist i is a full professor in 1969, i.e., if i has been
promoted to full professor. The first explanatory variable measures scientist i ’s individual rank in the distribution of
visible citations (i.e., all citations that were visible in the SCI; see Section 3.1 for details). The second explanatory
variable measures scientist i ’s individual rank in the distribution of invisible citations (i.e., all citations that were not
visible in the SCI). Publications by Year separately measure the number of scientist i ’s publications in each year
between 1956 and 1969. Publications by Journal separately measure the number of scientist i ’s publications in each
journal (e.g., Nature or Science). Standard errors are clustered at the 1969-department-level. Significance levels: ∗∗∗
p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

visibility (Table E.1). We also report results from a regression in which we restrict the

analysis to citations in years in which the SCI was published. Again, results do not

change (Table E.2). These robustness checks indicate that differences in the quality of

citing journals or the timing of citations do not drive our results.

We also repeat the placebo test for this alternative career outcome. We test how

much citations from journals that were initially covered by the SCI, but in years in which

the SCI was not published, affect scientists’ careers. We find that these pseudo-visible

citations have no effect on a scientist’s probability of being promoted (Table E.3). Only

the citations that were truly visible in the SCI had an impact on scientists’ promotions

(Figure 9).

The results indicate that departments indeed used citation metrics in promotion

decisions. As full professor positions come with many advantages such as prestige,

job security, and research funds, these findings suggest that citation metrics affected

individual careers but also the allocation of resources in the sciences.
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Figure 9: Plot of Coefficients from Placebo Test

Notes: The figure plots regression coefficients and corresponding 95 percent confidence intervals from a
variant of Equation (2), where the dependent variable is an indicator equal to 1 if scientist i is promoted
to full professor between 1956 and 1969. See also column (3) in Table E.3.

6 Conclusion

The evaluation of scientists based on performance metrics, and in particular citations,

has become ubiquitous in modern science. Scientists are highly aware of the number of

citations their papers have received, and standard metrics like the Impact Factor or the

h-index are not only used to evaluate papers but also influence hiring and promotion

decisions. Equally, departments and scientific journals are frequently ranked based on

citation measures. This widespread reliance on citation metrics has been criticized, as

citations only capture one dimension of an academic’s contribution to knowledge (DORA,

2013; CoARA, 2022). Despite these concerns, little is known about the consequences of

measuring citations for the allocation of talent and for individual scientific careers.

In this paper, we use the introduction of the Science Citation Index to study these

questions. We collect new data and develop a new identification strategy to show that

systematically measuring and revealing citations had a large and immediate impact

on the careers of scientists. First, we show that the introduction of citation metrics

increased assortative matching between scientists and departments based on citations.

Second, we show that the effect is particularly pronounced for scientists at the top
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end of the citation distribution, and especially for “hidden stars” – well-cited scientists

in lower-ranked departments. Third, we find that scientists from minority groups did

not disproportionately benefit from citation metrics. Finally, we show that measuring

citations increased the reliance on citation metrics in promotion decisions. Overall, our

results demonstrate how the availability of citation metrics shapes modern science.
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Appendix

The Appendix presents details on data collection and additional results:

• Appendix A provides further background on the SCI.

• Appendix B provides details on data collection.

• Appendix C reports additional robustness checks and findings on the analysis of

assortative matching in Section 3.

• Appendix D reports additional findings on the heterogeneity analysis in Section 4.

• Appendix E reports additional findings on the promotion analysis in Section 5.

A Background on the SCI

Figure A.1: Example of Citing Journal List

Notes: This figure shows the first page of the “Source Journal List” of the 1961 SCI (Garfield, 1963b).
This is a complete list of all 613 citing journals, from which citations were indexed for the 1961 SCI.
We construct visible citations based on this list and the analogous lists from the 1964 to 1969 SCIs (see
Section 2.2).
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Figure A.2: Internal Correspondence at Ohio State University

Notes: In this letter, the chemistry librarian at Ohio State University requested a second copy of the
SCI to be placed in the library of the chemistry department, in addition to the existing copy at the
medical library. It shows that as early as 1965 there was large demand by chemists at Ohio State to
use the SCI. We thank archivists at Ohio State library for sharing this document.
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B Further Details on Data

B.1. Data on Scientists

In Section 4, we report results on the heterogeneous effect of citation metrics. In

particular, in Section 4.3, we report differential results for women and for people with

Asian, Hispanic, or Jewish names. We manually tag individual scientists as members of

one of those groups. Gender coding is based on the gender coding in Iaria et al. (2022).

We code Jewish names based on work from Benetti et al. (2023).

The coding of Hispanic and Asian names is based on data from the U.S. census.

We draw a list of Hispanic names from Name Census (2023b). From this list, we select

all surnames with a conditional probability of self-identifying as Hispanic of more than

25%. We then tag as Hispanic all academics in our dataset who have one of these names.

Similarly, we draw a list of the most common Asian names from Name Census (2023a).

From this list, we select all surnames with a conditional probability of self-identifying as

Asian or Pacific Islander of more than 50%.29 We then tag as Asian all academics in

our dataset who have one of these names.

29The different cutoffs reflect different assimilation patterns of the various immigrant groups. Results
are very similar if we impose the same cutoffs for both groups.
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B.2. Department Rankings

The following six tables list the top 20 departments according to our self-constructed

rankings (by average citations and by average publications in a department) and

according to survey-based rankings from the 1960s and 1970s. Across different rankings

for the same subject, it is often the same departments that are ranked highly.

Table B.1: Top 20 Departments: Biochemistry

Rank Citations Ranking Publications Ranking Cartter Ranking Roose-Andersen Ranking

1 Stanford Washington Harvard Harvard
2 Rockefeller Harvard U.C. Berkeley U.C. Berkeley
3 Johns Hopkins Stanford Stanford Stanford
4 Washington U.C. Berkeley Rockefeller Rockefeller
5 Harvard Dartmouth Wisconsin Wisconsin
6 Kentucky Wisconsin M.I.T. Cal. Tech.
7 U.C. Berkeley Kentucky Cal. Tech. M.I.T.
8 Dartmouth Johns Hopkins Johns Hopkins Brandeis
9 Wisconsin Virginia Polytechnic Institute Brandeis Cornell
10 Case Western Reserve U.C. Davis Illinois Johns Hopkins
11 Brandeis Illinois Columbia U.C.L.A.
12 Duke Kansas Western Reserve Duke
13 U.C. Davis Saint Louis N.Y.U. U.C. San Diego
14 Utah Duke Washington Washington
15 U.C.L.A. Rockefeller Duke Yeshiva
16 Columbia U.C.L.A. Michigan Chicago
17 Pennsylvania Columbia Pennsylvania Illinois
18 Chicago Case Western Reserve Yeshiva Princeton
19 Illinois Rice Chicago Western Reserve
20 Saint Louis Brandeis U.C.L.A. N.Y.U.

Notes: This table lists the top 20 biochemistry departments based on four different department rankings. The first column reports our
self-constructed ranking based on the average number of citations (between 1956 and 1969, to publications between 1956 and 1969) of all
scientists employed at the department in 1969. The second column reports our self-constructed ranking based on the average number of
publications (between 1956 and 1969) of all scientists employed at the department in 1969. The third column reports the ranking from
Cartter (1966). The fourth column reports the ranking from Roose and Andersen (1970). Where departments are ranked equally (in any of
the four rankings), they are reported in alphabetical order in this table. In the regression analysis, they are given the same rank.
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Table B.2: Top 20 Departments: Biology

Rank Citations Ranking Publications Ranking Cartter Ranking Roose-Andersen Ranking

1 Rockefeller Albion College U.C. Berkeley Harvard
2 Albion College Millikin Harvard U.C. Berkeley
3 Princeton Texas Cal. Tech. M.I.T.
4 Harvard Georgetown College Johns Hopkins Cal. Tech.
5 U.C. San Diego U.C. San Diego Rockefeller Rockefeller
6 Stanford Rockefeller Wisconsin Wisconsin
7 Cal. Tech. U.C. Riverside Illinois Stanford
8 Texas Wisconsin Michigan Washington
9 Syracuse Princeton Stanford U.C. San Diego
10 U.C. Berkeley U.C. Berkeley Minnesota Yale
11 Brandeis U.C. Davis Princeton Chicago
12 Yale Brandeis Indiana Illinois
13 Johns Hopkins Stanford Duke Cornell
14 Notre Dame Notre Dame Cornell Johns Hopkins
15 Winthrop College Whitman College Yale U.C. Davis
16 Chicago Mount Holyoke College U.C.L.A. Michigan
17 Georgetown Alma College Purdue Duke
18 U.C. Davis U.C. Santa Barbara Western Reserve U.C.L.A.
19 U.C. Santa Barbara Illinois Washington Brandeis
20 Wisconsin Central College, Pella Chicago Indiana

Notes: This table lists the top 20 biology departments based on four different department rankings. The first column reports our
self-constructed ranking based on the average number of citations (between 1956 and 1969, to publications between 1956 and 1969) of
all scientists employed at the department in 1969. The second column reports our self-constructed ranking based on the average
number of publications (between 1956 and 1969) of all scientists employed at the department in 1969. The third column reports the
ranking from Cartter (1966). While the Cartter ranking does not report rankings for biology overall, it does report rankings for
five subfields of biology (Bacteriology/Microbiology, Botany, Entomology, Physiology, and Zoology). Based on these rankings, we
construct an overall score for biology by taking the average rank of a department in the five reported subfields of biology. The fourth
column reports the ranking from Roose and Andersen (1970). While the Roose-Andersen ranking does not report results for biology
overall, it does report rankings for eight subfields of biology (Botany, Developmental Biology, Entomology, Microbiology, Molecular
Biology, Physiology, Population Biology, and Zoology). Based on these rankings, we construct an overall score for biology by taking
the average rank of a department in the eight reported subfields of biology. Where departments are ranked equally (in any of the four
rankings), they are reported in alphabetical order in this table. In the regression analysis, they are given the same rank.
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Table B.3: Top 20 Departments: Chemistry

Rank Citations Ranking Publications Ranking Cartter Ranking Roose-Andersen Ranking

1 U.C. Irvine U.C. Santa Barbara Harvard Harvard
2 Stanford Thiel College Cal. Tech. Cal. Tech.
3 U.C. Santa Barbara Stanford U.C. Berkeley U.C. Berkeley
4 Harvard U.C. Riverside M.I.T. Stanford
5 U.C.L.A. U.C. Irvine Stanford M.I.T.
6 U.C. Riverside Southern California Illinois Illinois
7 Illinois College of Forestry at Syracuse Columbia U.C.L.A.
8 College of Forestry at Syracuse Illinois Wisconsin Chicago
9 Cal. Tech. Iowa State U.C.L.A. Columbia
10 Northwestern Univeristy of Utah Chicago Cornell
11 Thiel College Northwestern Cornell Wisconsin
12 Southern California California Yale Yale
13 Iowa State Texas Princeton Princeton
14 Univeristy of Utah Case Western Reserve Northwestern Northwestern
15 U.C. Berkeley Pennsylvania Minnesota Iowa State
16 Columbia Johns Hopkins Iowa State Purdue
17 Notre Dame U.C. Davis Ohio State U.C. San Diego
18 Texas Duke Purdue Ohio State
19 California Iowa State Michigan Texas
20 Johns Hopkins Harvard Indiana Indiana

Notes: This table lists the top 20 chemistry departments based on four different department rankings. The first column reports our self-constructed
ranking based on the average number of citations (between 1956 and 1969, to publications between 1956 and 1969) of all scientists employed at the
department in 1969. The second column reports our self-constructed ranking based on the average number of publications (between 1956 and 1969) of all
scientists employed at the department in 1969. The third column reports the ranking from Cartter (1966). The fourth column reports the ranking from
Roose and Andersen (1970). Where departments are ranked equally (in any of the four rankings), they are reported in alphabetical order in this table.
In the regression analysis, they are given the same rank.

Table B.4: Top 20 Departments: Mathematics

Rank Citations Ranking Publications Ranking Cartter Ranking Roose-Andersen Ranking

1 Princeton U.C. Santa Barbara Harvard U.C. Berkeley
2 Virginia Polytechnic Institute U.C. Riverside U.C. Berkeley Harvard
3 Stanford Harvard Princeton Princeton
4 Chicago Princeton Chicago Chicago
5 Institute for Advanced Study, Princeton Carnegie-Mellon M.I.T. M.I.T.
6 Johns Hopkins Washington Stanford Stanford
7 Harvard Johns Hopkins Yale Yale
8 Columbia Chicago N.Y.U. N.Y.U.
9 Brandeis Rockefeller Columbia Wisconsin
10 U.C. Berkeley Stanford Wisconsin Columbia
11 Carnegie-Mellon Washington Michigan Michigan
12 Wisconsin Columbia Illinois Cornell
13 Washington Virginia Cornell Illinois
14 California U.C. San Diego Cal. Tech. U.C.L.A.
15 Rockefeller Wisconsin Minnesota Brandeis
16 Case Institute of Technology Brandeis U.C.L.A. Brown
17 Brown Yale Washington Cal. Tech.
18 Yale Institute for Advanced Study, Princeton Brown Minnesota
19 Washington Minnesota Brandeis Pennsylvania
20 Cornell Oakland John Hopkins Washington

Notes: This table lists the top 20 mathematics departments based on four different department rankings. The first column reports our self-constructed ranking based on the
average number of citations (between 1956 and 1969, to publications between 1956 and 1969) of all scientists employed at the department in 1969. The second column reports
our self-constructed ranking based on the average number of publications (between 1956 and 1969) of all scientists employed at the department in 1969. The third column
reports the ranking from Cartter (1966). The fourth column reports the ranking from Roose and Andersen (1970). Where departments are ranked equally (in any of the four
rankings), they are reported in alphabetical order in this table. In the regression analysis, they are given the same rank.
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Table B.5: Top 20 Departments: Medicine

Rank Citations Ranking Publications Ranking Cole-Lipton Ranking

1 Rockefeller New Mexico Harvard
2 Harvard Minnesota, Rochester Johns Hopkins
3 Univeristy of Utah Rutgers Stanford
4 U.C. San Diego U.C. San Diego U.C. San Francisco
5 Minnesota, Rochester Harvard Yale
6 Texas Amherst College Columbia
7 Rutgers Loretto Heights College Duke
8 M.I.T. Medical College of Virginia Michigan
9 Washington M.I.T. Cornell
10 U.C. San Francisco Washington Washington, U.C.
11 Minnesota Univeristy of Utah Pennsylvania
12 Johns Hopkins U.C.L.A. Minnesota
13 U.C.L.A. Johns Hopkins U.C.L.A.
14 Kansas Minnesota Albert Einstein College of Medicine
15 Florida Rockefeller Chicago, Pritzker
16 Medical College of Virginia Florida Washington
17 New Mexico U.C. San Francisco Case Western Reserve
18 Washington Southern California Rochester
19 Stanford Wagner College Colorado
20 Case Western Reserve Mississippi U.C. San Diego

Notes: This table lists the top 20 biochemistry departments based on four different department rankings. The first column
reports our self-constructed ranking based on the average number of citations (between 1956 and 1969, to publications between
1956 and 1969) of all scientists employed at the department in 1969. The second column reports our self-constructed ranking
based on the average number of publications (between 1956 and 1969) of all scientists employed at the department in 1969.
The third column reports the ranking from Cole and Lipton (1977). Since Cartter (1966) and Roose and Andersen (1970) do
not report rankings for medical schools, we use the ranking by Cole and Lipton (1977) for medicine. Where departments are
ranked equally (in any of the three rankings), they are reported in alphabetical order in this table. In the regression analysis,
they are given the same rank.
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Table B.6: Top 20 Departments: Physics

Rank Citations Ranking Publications Ranking Cartter Ranking Roose-Andersen Ranking

1 U.C. Berkeley U.C. Riverside U.C. Berkeley U.C. Berkeley
2 U.C. Riverside U.C. San Diego Cal. Tech. Cal. Tech.
3 U.C. San Diego Lycoming College Harvard Harvard
4 Rockefeller U.C. Santa Barbara Princeton Princeton
5 U.C. Santa Barbara Kentucky Wesleyan College Stanford M.I.T.
6 Stanford California M.I.T. Stanford
7 Chicago Goshen College Columbia Columbia
8 Princeton Harvard Illinois Illinois
9 Columbia Chicago Cornell Chicago
10 U.C. Irvine Rockefeller Chicago Cornell
11 Pennsylvania Columbia Yale U.C. San Diego
12 Harvard Princeton Wisconsin Yale
13 Pittsburgh Pennsylvania Michigan Wisconsin
14 Yale Stanford Rochester Michigan
15 Cal. Tech. U.C. Berkeley Pennsylvania Pennsylvania
16 Brown Pittsburgh Maryland Maryland
17 State University of New York Brown Minnesota Rockefeller
18 Notre Dame Iowa State Washington Rochester
19 Washington Notre Dame Johns Hopkins U.C.L.A.
20 Illinois Washington U.C.L.A. Minnesota

Notes: This table lists the top 20 physics departments based on four different department rankings. The first column reports our self-constructed
ranking based on the average number of citations (between 1956 and 1969, to publications between 1956 and 1969) of all scientists employed at the
department in 1969. The second column reports our self-constructed ranking based on the average number of publications (between 1956 and 1969)
of all scientists employed at the department in 1969. The third column reports the ranking from Cartter (1966). The fourth column reports the
ranking from Roose and Andersen (1970). Where departments are ranked equally (in any of the four rankings), they are reported in alphabetical
order in this table. In the regression analysis, they are given the same rank.
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C Additional Findings: Assortative Matching

C.1. Additional Robustness Checks

Table C.1: Robustness Check: Alternative Measures of Department Quality

Dependent variable: Department rank Indicator

(1) (2) (3) (4) (5)

Department ranking based on:

Leave-out
mean of
citations

Mean of
citations

Leave-out
mean of

publications
Mean of

publications
Top 5

department

Panel A: Department rankings from 1969

Rank Visible Citations 0.262∗∗∗ 0.304∗∗∗ 0.272∗∗∗ 0.303∗∗∗ 0.00026∗∗

(0.034) (0.029) (0.033) (0.028) (0.00011)

Rank Invisible Citations 0.067∗∗∗ 0.083∗∗∗ 0.054∗∗∗ 0.060∗∗∗ -0.00001
(0.021) (0.020) (0.020) (0.019) (0.00009)

P-value (Rank Visible = Rank Invisible) < 0.001 < 0.001 < 0.001 < 0.001 0.094

Observations 26,404 26,404 26,404 26,404 26,404
R2 0.147 0.203 0.148 0.207 0.069

Panel B: Department rankings from 1956

Rank Visible Citations 0.155∗∗∗ 0.167∗∗∗ 0.144∗∗∗ 0.162∗∗∗ 0.00067∗∗

(0.039) (0.040) (0.038) (0.041) (0.00034)

Rank Invisible Citations 0.027 0.022 0.005 0.006 -0.00025
(0.027) (0.027) (0.026) (0.027) (0.00020)

P-value (Rank Visible = Rank Invisible) 0.002 < 0.001 < 0.001 < 0.001 0.073

Observations 19,650 19,650 19,650 19,650 19,650
R2 0.061 0.060 0.058 0.058 0.031

Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year × Subject Yes Yes Yes Yes Yes

Notes: The table reports the estimates of Equation (1) for alternative dependent variables. In Panel A, we report department
rankings based on all scientists affiliated with a certain department in 1969. In Panel B, we report department rankings based
on all scientists affiliated with a certain department in 1956. For scientists who in 1969 are affiliated with departments that did
not exist in 1956, the ranking is not available. This results in a smaller sample size in Panel B. In column (1), we measure the
department rank as the leave-out mean percentile of the citation distribution. In column (2), we measure the department rank
as the percentile in the citation distribution. In column (3), we measure the department rank as the leave-out mean percentile of
the publication distribution. In column (4), we measure the department rank as the percentile of the publication distribution. In
column (5), the dependent variable is an indicator of being affiliated with a top-five department, as measured by average citations.
The first explanatory variable measures scientist i ’s individual rank in the distribution of visible citations (i.e., all citations that
were visible in the SCI; see Section 3.1 for details). The second explanatory variable measures scientist i ’s individual rank in the
distribution of invisible citations (i.e., all citations that were not visible in the SCI). Control variables are measured as in Table 3.
Standard errors are clustered at the department level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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Figure C.1: Illustration of Variation Used in Additional Tests

(a) Main Analysis (b) Robustness: Consistent Journal Set

(c) Robustness: Only SCI years (d) Placebo Test

Notes: The four panels illustrate the sets of citations used for the robustness checks in Section 3.3 and the placebo test in
Section 3.4. As in Table 2, these tables illustrate citations for a hypothetical scientist. Panel (a) illustrates the variation
used in the main analysis (see Table 3). Numbers in dark blue cells indicate citations that were visible in the SCI because
the citation occurred in a journal and year (1961, or 1964-69) that was covered by the SCI. Numbers in light blue cells
indicate citations that were invisible, but are observable today. Panel (b) illustrates the variation used in the robustness
check that restricts citations to a consistent set of journals (see Table 4). We disregard citations in journals that were not
covered by the first SCI in 1961 (here: journals B and C), and focus only on citations in journals that were covered by
the 1961 SCI (here: journal A). Numbers in dark blue cells indicate citations that were visible in the SCI, i.e., citations
from 1961, or 1964-69. Numbers in light blue cells indicate citations that were invisible because they came from years not
covered by the SCI. Panel (c) illustrates the variation used in the robustness check that restricts citations to years for
which the SCI was published (see Table 5). We disregard citations from years in which the SCI was not published, and
focus only on citations in years that were covered by the SCI, i.e., citations from 1961, or 1964-69. Numbers in dark blue
cells indicate citations that were visible in the SCI, because they came from journals indexed by the SCI. Numbers in
light blue cells indicate citations that were invisible because they came from journals not covered by the SCI. Panel (d)
illustrates the variation used in the placebo test (see Table 6). As in panel (c) we partition citations by whether they
appeared in years covered by the SCI (blue) or not (green). Numbers in dark green cells indicate pseudo-visible citations,
i.e., citations that were in fact invisible (because they came from years not covered by the SCI) but would have been
visible had the SCI been published for those years. Numbers in light green cells indicate invisible citations for years in
which the SCI was not published.
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Table C.2: Robustness Check: External Department Rankings

Dependent variable: Department rank

(1) (2) (3) (4) (5)

Panel A: Cartter Ranking

Rank Visible Citations 0.237∗∗∗ 0.245∗∗∗ 0.218∗∗∗ 0.192∗∗∗ 0.188∗∗∗

(0.030) (0.029) (0.031) (0.029) (0.029)

Rank Invisible Citations 0.054∗∗ 0.058∗∗ 0.041∗ 0.041∗ 0.036
(0.027) (0.023) (0.022) (0.022) (0.023)

P-value (Rank Visible = Rank Invisible) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Observations 26,404 26,404 26,404 26,404 26,404
R2 0.085 0.085 0.101 0.202 0.231

Panel B: Roose-Andersen Ranking

Rank Visible Citations 0.262∗∗∗ 0.275∗∗∗ 0.242∗∗∗ 0.217∗∗∗ 0.214∗∗∗

(0.031) (0.029) (0.032) (0.030) (0.030)

Rank Invisible Citations 0.045∗ 0.052∗∗ 0.033 0.033 0.029
(0.026) (0.022) (0.022) (0.022) (0.022)

P-value (Rank Visible = Rank Invisible) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Observations 26,404 26,404 26,404 26,404 26,404
R2 0.092 0.093 0.110 0.207 0.236

Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year × Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal × Subject Yes

Notes: The table reports the estimates of Equation (1) where the dependent variable is based on reputational
department rankings from Cartter (1966) in Panel A and from Roose and Andersen (1970) in Panel B. In both
panels, we use the first comprehensive ranking of medical schools by Cole and Lipton (1977) for the department
rankings of scientists in medicine. Using these field-specific rankings, we assign each department its percentile
rank. To avoid unnecessary sample selection for this robustness check, we assign unranked universities to the
average rank between 1 and the lowest-ranked university in those rankings. The first explanatory variable measures
scientist i ’s individual rank in the distribution of visible citations (i.e., all citations that were visible in the SCI; see
Section 3.1 for details). The second explanatory variable measures scientist i ’s individual rank in the distribution
of invisible citations (i.e., all citations that were not visible in the SCI). Publications by Year separately measure
the number of scientist i ’s publications in each year between 1956 and 1969. Publications by Journal separately
measure the number of scientist i ’s publications in each journal (e.g., Nature or Science). Standard errors are
clustered at the department level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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Table C.3: Robustness Check: Alternative Transformations of Citation

Counts

Dependent variable: Department rank

(1) (2) (3) (4) (5)

Citations variable transformation:
Main

specification
Standard-

ized
Winsorized

& std. Asinh
Only 1956-65

citations

Visible Citations 0.262∗∗∗ 2.762∗∗∗ 4.753∗∗∗ 2.550∗∗∗ 0.203∗∗∗

(0.034) (0.666) (0.542) (0.457) (0.027)

Invisible Citations 0.067∗∗∗ -0.444 0.702 1.032∗∗∗ 0.120∗∗∗

(0.021) (0.607) (0.457) (0.253) (0.025)

Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year × Subject Yes Yes Yes Yes Yes

P-value (Visible = Invisible) < 0.001 0.006 < 0.001 0.004 0.015

Observations 26,404 26,404 26,404 26,404 26,404
R2 0.147 0.102 0.111 0.141 0.135

Notes: The table reports the estimates of Equation (1) for alternative dependent variables. In column (1), we measure
the department rank as the leave-out mean percentile of the citation distribution. (Departments and individuals without
citations are assigned a percentile according to the midpoint between 0 and the lowest percentile with positive citations.)
In column (2), the dependent variable is equal to the leave-out mean of standardized citations of scientists affiliated with a
department. We standardize citations by subject. In column (3), the dependent variable is defined as in column (2), but
to reduce the weight of outliers, we winsorize citation counts at the 99th percentile and then standardize them. In column
(4), the dependent variable is equal to the leave-out mean of citations which we transform with the invisible hyperbolic
sine transformation. In column (5), we measure the department rank as the leave-out mean percentile of the distribution
of citations between 1956 and 1965 (instead of 1956-1969). (Summary statistics for the citation variables when restricting
to citation in 1956-1965: Mean visible citations is 32.4, standard deviation of visible citations is 97.0, mean invisible
citations is 43.5, standard deviation of visible citations is 133.3.) The first explanatory variable measures scientist i ’s
individual rank in the distribution of visible citations (i.e., all citations that were visible in the SCI; see Section 3.1 for
details). The second explanatory variable measures scientist i ’s individual rank in the distribution of invisible citations
(i.e., all citations that were not visible in the SCI). Control variables are measured as in Table 3. Standard errors are
clustered at the department level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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Table C.4: Robustness Check: Alternative Sample Restrictions

Dependent variable: Department rank

(1) (2) (3)

Sample restriction:
Full

sample
Num. of
cit. > 0

Size of
dept. > 10

Rank Visible Citations 0.262∗∗∗ 0.287∗∗∗ 0.201∗∗∗

(0.034) (0.037) (0.034)

Rank Invisible Citations 0.067∗∗∗ 0.088∗∗∗ 0.059∗∗∗

(0.021) (0.020) (0.021)

Subject Fixed Effects Yes Yes Yes
Publications by Year × Subject Yes Yes Yes

P-value (Rank Visible = Rank Invisible) < 0.001 < 0.001 < 0.001

Observations 26,404 16,520 21,869
R2 0.147 0.130 0.132

Notes: The table reports the estimates of Equation (1) for alternative subsamples. In column (1), we use the full
sample, i.e., it is equivalent to column (3) in Table 3. Column (2) reports results from the same regression for the
subsample of scientists who have more than zero citations. Column (3) reports results for the subsample of scientists
who are employed at departments with at least 10 scientists. The dependent variable is the department rank of
scientist i in 1969 measured in percentiles. To construct the department rank, we calculate the leave-out mean of
citations of all scientists in the department of scientist i. We then assign the rank based on the percentile in the
distribution of leave-out mean citations. The first explanatory variable measures scientist i ’s individual rank in the
distribution of visible citations (i.e., all citations that were visible in the SCI; see Section 3.1 for details). The second
explanatory variable measures scientist i ’s individual rank in the distribution of invisible citations (i.e., all citations
that were not visible in the SCI). Control variables are measured as in Table 3. Standard errors are clustered at the
department level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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C.2. Additional Findings

Table C.5: Heterogeneous Effect for Leaving Academia

Dependent variable: Left academia between 1956 and 1969

(1) (2) (3) (4) (5)

Sample restriction:
Full

sample
Dept. below
75th pct.

Dept. above
75th pct.

Dept. below
90th pct.

Dept. above
90th pct.

Rank Citations Visible -0.0029∗∗∗ -0.0026∗∗∗ -0.0031∗∗∗ -0.0029∗∗∗ -0.0034∗∗∗

(0.0005) (0.0007) (0.0006) (0.0005) (0.0011)

Rank Citations Invisible 0.0001 0.0006 -0.0003 0.0006 -0.0005
(0.0006) (0.0007) (0.0006) (0.0006) (0.0013)

Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year × Subject Yes Yes Yes Yes Yes

P-value (Rank Visible = Rank Invisible) 0.002 0.023 0.014 0.001 0.199

Observations 11,625 5,618 6,007 9,490 2,135
R2 0.104 0.053 0.195 0.078 0.251

Notes: This table reports estimates of Equation (3) for subsamples of scientists at high-ranked or low-ranked departments. The
dependent variable is an indicator taking value 1 if scientist i was observed in the 1956 cross-section, but not in the 1969 cross-section,
i.e., if i left academia. This regression is based on the 1956 cross-section of scientists who were not full professors in 1956. Column (1)
reports the main specification for reference (see also column (3) in Panel A of Table 7). Columns (2) and (3) report regression results
based on sample splits at the 75th percentile in the department-ranking distribution. Columns (4) and (5) report regression results
based on sample splits at the 90th percentile in the department-ranking distribution. The first explanatory variable measures scientist
i ’s rank in the distribution of visible citations (i.e., all citations that were visible in the SCI; see Section 3.1 for details). The second
explanatory variable measures scientist i ’s rank in the distribution of invisible citations (i.e., all citations that were not visible in the
SCI). Publications by Year separately measure the number of scientist i ’s publications in each year between 1942 and 1969. Standard
errors are clustered at the 1956-department-level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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D Additional Findings: Heterogeneity Analysis

D.1. Heterogeneous Effect in Non-Parametric Analysis

Figure D.1: Heterogenous Effects by Percentile Rank

Notes: The figure plots regression coefficients δq (visible citations, dark blue) and θq (invisible citations,
light blue) and corresponding 95 percent confidence intervals from a variant of equation 4. It differs
from Figure 6 in that it splits up the 10th decile into smaller percentile bins.
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Figure D.2: Heterogenous Effects for Outgroup and Ingroup

Notes: This figure plots regression coefficients analogous to δMq (blue) and δmq (brown), and corresponding
95 percent confidence intervals from Equation (6), i.e., it reports separate sets of coefficients for members
of any outgroup (brown) and for scientists who are not part of some outgroup (blue). Being a member
of any outgroup is defined as taking value 1 if a scientist is either female, or has an Asian, Hispanic, or
Jewish name.
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Figure D.3: Heterogeneous Effects for Peripheral Scientists

(a) Cutoff: 60th percentile (b) Cutoff: 70th percentile

(c) Cutoff: 80th percentile (d) Cutoff: 90th percentile

Notes: The four panels plot estimated regression coefficients δHq (blue) and δLq (brown), and corre-
sponding 95 percent confidence intervals from Equation (5) for various cutoffs of high and low-ranked
departments. In panel (a) we define low-ranked departments as those below the 60th percentile of
the department ranking in 1956. In panel (b) we define low-ranked departments as those below the
70th percentile of the department ranking in 1956. In panel (c) we define low-ranked departments as
those below the 80th percentile of the department ranking in 1956. In panel (d) we define low-ranked
departments as those below the 90th percentile of the department ranking in 1956
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D.2. Heterogeneous Effect on Assortative Matching in Main

Analysis

In Sections 4.2 and 4.3, we perform heterogeneity analyses for scientists at low-ranked

departments and for minority scientists, respectively. These are based on a non-

parametric regression as outlined in Equations (5) and (6). Additionally, we report

results regarding the heterogeneous effect of citation metrics on assortative matching

based on a variant of the main specification in Equation (1):

Dep. Ranki = δ · V isible Citationsi + δI · V isible Citationsi × Indicatori (D.1)

+ θ · Invisible Citationsi + θI · Invisible Citationsi × Indicatori

+ ω · Indicatori + π · Publicationsi + Subject FE + ϵi

Indicatori takes value 1 if scientist i is member of a specific subgroup of scientists. In

Table D.1, we report results for peripheral scientists, i.e., where the indicator captures

whether a scientist was working at a low-ranked department in 1956. In Table D.2,

we report results for minority scientists, i.e., where the indicator captures whether the

scientist was part of a minority group.
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Table D.1: Heterogeneous Effect on Assortative Matching for Peripheral

Scientists

Dependent variable: Department rank

(1) (2) (3) (4) (5)
Indicator: Below 60 Below 70 Below 75 Below 80 Below 90

Rank Visible Citations 0.123∗∗∗ 0.092∗∗ 0.083∗∗ 0.084 0.185∗∗∗

(0.036) (0.038) (0.042) (0.051) (0.067)

Rank Invisible Citations 0.050 0.035 0.051 0.046 -0.061
(0.038) (0.043) (0.048) (0.058) (0.052)

Rank Visible Citations × Indicator 0.096∗ 0.133∗∗ 0.144∗∗∗ 0.151∗∗ 0.052
(0.056) (0.053) (0.055) (0.062) (0.076)

Rank Invisible Citations × Indicator 0.039 0.070 0.063 0.077 0.208∗∗∗

(0.057) (0.058) (0.061) (0.067) (0.061)

Indicator -35.341∗∗∗ -38.060∗∗∗ -37.545∗∗∗ -38.265∗∗∗ -37.965∗∗∗

(3.695) (3.824) (4.242) (4.805) (6.024)

Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year × Subject Yes Yes Yes Yes Yes

Observations 6,053 6,053 6,053 6,053 6,053
R2 0.378 0.338 0.315 0.288 0.230

Notes: The table reports the estimates of Equation (D.1) for different subgroups in the data. The dependent variable
is the department rank of scientist i in 1969 measured in percentiles. To construct the department rank, we calculate
the leave-out mean of citations of all scientists in the department of scientist i. We then assign the rank based on
the percentile in the distribution of leave-out mean citations. The first explanatory variable measures scientist i ’s
individual rank in the distribution of visible citations (i.e., all citations that were visible in the SCI; see Section 3.1 for
details). The second explanatory variable measures scientist i ’s individual rank in the distribution of invisible citations
(i.e., all citations that were not visible in the SCI). The third and fourth explanatory variables are the interactions
between these citation variables and an indicator taking value 1 if scientist i was based in a low-ranked department in
1956. These estimates capture the additional return on citations for these peripheral scientists. The fifth explanatory
variable is the low-ranked department indicator itself. Since we require information on where a scientist was based
in 1956, the sample of scientists used in this analysis is all scientists who appear in our data in both 1956 and 1969.
We define low-ranked departments as those below a specific percentile in the 1956 department ranking. The different
columns report results from regressions using different definitions of this variable: 60th percentile in column (1), 70th
percentile in (2), 75th percentile in column (3), 80th percentile in column (4), and 90th percentile in column (5).
Publications by Year separately measure the number of scientist i ’s publications in each year between 1956 and 1969.
Standard errors are clustered at the department level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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Table D.2: Heterogeneous Effect on Assortative Matching for Minority

Scientists

Dependent variable: Department rank

(1) (2) (3) (4) (5) (6)
Indicator: Main Female Asian Hispanic Jewish Outgroup

Rank Visible Citations 0.262∗∗∗ 0.268∗∗∗ 0.262∗∗∗ 0.262∗∗∗ 0.262∗∗∗ 0.255∗∗∗

(0.034) (0.038) (0.034) (0.034) (0.034) (0.032)

Rank Invisible Citations 0.067∗∗∗ 0.050∗∗ 0.068∗∗∗ 0.066∗∗∗ 0.066∗∗∗ 0.065∗∗∗

(0.021) (0.021) (0.022) (0.021) (0.021) (0.021)

Rank Visible Citations × Indicator -0.075 -0.040 -0.072 0.020 -0.020
(0.053) (0.077) (0.170) (0.208) (0.047)

Rank Invisible Citations × Indicator -0.016 -0.070 0.139 0.106 -0.011
(0.058) (0.085) (0.170) (0.221) (0.048)

Indicator -3.222 4.147 -2.239 -0.080 -6.235∗∗

(2.581) (3.349) (4.815) (6.390) (2.780)

Subject Fixed Effects Yes Yes Yes Yes Yes Yes
Publications by Year × Subject Yes Yes Yes Yes Yes Yes

Observations 26,404 23,497 26,404 26,404 26,404 26,404
R2 0.147 0.152 0.147 0.147 0.148 0.154

Notes: The table reports the estimates of Equation (D.1) for different subgroups in the data. The dependent variable
is the department rank of scientist i in 1969 measured in percentiles. To construct the department rank, we calculate
the leave-out mean of citations of all scientists in the department of scientist i. We then assign the rank based on the
percentile in the distribution of leave-out mean citations. The first explanatory variable measures scientist i ’s individual
rank in the distribution of visible citations (i.e., all citations that were visible in the SCI; see Section 3.1 for details). The
second explanatory variable measures scientist i ’s individual rank in the distribution of invisible citations (i.e., all citations
that were not visible in the SCI). The third and fourth explanatory variables are the interactions between these citation
variables and an indicator taking value 1 if scientist i is a member of a specific subgroup. These estimates capture the
additional return on citations for members of these subgroups. The fifth explanatory variable is the subgroup indicator
itself. Column (1) reports the main specification for reference (see column (3) in Table 3). Columns (2)-(5) report the
results from regressions where the subgroup indicator takes value 1 if scientist i is a member of a specific subgroup: female
in column (2), Asian in column (3), Hispanic in column (4), and Jewish in column (5). Column (6) reports the results
from a regression where the subgroup indicator is 1 if scientist i is member of any one of these outgroups. Publications by
Year separately measure the number of scientist i ’s publications in each year between 1956 and 1969. Standard errors are
clustered at the department level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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E Additional Findings: Promotions

Table E.1: Robustness Check: Citations From a Consistent Set of Journals

Dependent variable: Promoted to Full Professor

(1) (2) (3) (4) (5)

Rank Visible Citations 0.0043∗∗∗ 0.0045∗∗∗ 0.0045∗∗∗ 0.0040∗∗∗ 0.0039∗∗

(0.0008) (0.0008) (0.0008) (0.0013) (0.0017)

Rank Invisible Citations 0.0007 0.0001 0.0004 -0.0001 -0.0002
(0.0006) (0.0006) (0.0006) (0.0011) (0.0014)

Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year × Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal × Subject Yes

P-value (Rank Visible = Rank Invisible) 0.004 0.001 0.002 0.060 0.140

Observations 2,906 2,906 2,906 2,906 2,906
R2 0.138 0.145 0.157 0.395 0.423

Notes: This table reports the estimates of Equation (7). To construct citation ranks, we only consider citations in
journals that were covered by the 1961 edition of the SCI. This regression is based on the sample of all scientists
who enter the data in the 1956 cross-section and are not full professors in 1956 and are observed in 1969. The
dependent variable is an indicator equal to 1 if scientist i is a full professor in 1969, i.e., if i has been promoted to full
professor. The first explanatory variable measures scientist i ’s individual rank in the distribution of visible citations
(i.e., all citations that were visible in the SCI; see Section 3.1 for details). The second explanatory variable measures
scientist i ’s individual rank in the distribution of invisible citations (i.e., all citations that were not visible in the
SCI). Publications by Year separately measure the number of scientist i ’s publications in each year between 1956 and
1969. Publications by Journal separately measure the number of scientist i ’s publications in each journal (e.g., Nature
or Science). Standard errors are clustered at the 1969-department-level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05,
and ∗ p<0.1.
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Table E.2: Robustness Check: Citations Only From Years With SCI

Dependent variable: Promoted to Full Professor

(1) (2) (3) (4) (5)

Rank Visible Citations 0.0045∗∗∗ 0.0047∗∗∗ 0.0048∗∗∗ 0.0037∗∗∗ 0.0036∗∗∗

(0.0005) (0.0006) (0.0006) (0.0011) (0.0014)

Rank Invisible Citations 0.0005 0.0002 0.0003 -0.0000 -0.0002
(0.0005) (0.0006) (0.0006) (0.0009) (0.0011)

Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year × Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal × Subject Yes

P-value (Rank Visible = Rank Invisible) < 0.001 < 0.001 < 0.001 0.023 0.071

Observations 2,906 2,906 2,906 2,906 2,906
R2 0.141 0.149 0.159 0.394 0.422

Notes: This table reports the estimates of Equation (7). To construct citation ranks, we only consider citations in years
when the SCI was available (i.e., 1961, and 1964-1969). This regression is based on the sample of all scientists who enter
the data in the 1956 cross-section and are not full professors in 1956 and are observed in 1969. The dependent variable
is an indicator equal to 1 if scientist i is a full professor in 1969, i.e., if i has been promoted to full professor. The first
explanatory variable measures scientist i ’s individual rank in the distribution of visible citations (i.e., all citations that
were visible in the SCI; see Section 3.1 for details). The second explanatory variable measures scientist i ’s individual
rank in the distribution of invisible citations (i.e., all citations that were not visible in the SCI). Publications by Year
separately measure the number of scientist i ’s publications in each year between 1956 and 1969. Publications by
Journal separately measure the number of scientist i ’s publications in each journal (e.g., Nature or Science). Standard
errors are clustered at the 1969-department-level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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Table E.3: Placebo Test: Predictiveness of Citations Before the SCI

Dependent variable: Promoted to Full Professor

Only SCI years Incl. non-SCI years

(1) (2) (3) (4)

Rank Visible Citations (SCI years) 0.0048∗∗∗ 0.0036∗∗∗ 0.0046∗∗∗ 0.0035∗∗

(0.0006) (0.0014) (0.0008) (0.0016)

Rank Invisible Citations (SCI years) 0.0003 -0.0002 0.0001 -0.0001
(0.0006) (0.0011) (0.0007) (0.0013)

Rank Pseudo-Visible Citations (non-SCI years) 0.0001 0.0004
(0.0006) (0.0013)

Rank Invisible Citations (non-SCI years) 0.0004 -0.0005
(0.0006) (0.0012)

Publications by Year × Subject Yes Yes Yes Yes
Publications by Journal × Subject Yes Yes

P-value (Visible = Invisible (SCI years)) < 0.001 0.071 < 0.001 0.097
P-value (Visible = Pseudo-Visible) < 0.001 0.224
P-value (Invisible (SCI) = Invisible (non-SCI)) 0.810 0.845
P-value (Pseudo-Visible = Invisible (non-SCI)) 0.734 0.630

Observations 2,906 2,906 2,906 2,906
R2 0.159 0.422 0.159 0.422

Notes: This table reports the estimates of Equation (2). The dependent variable is an indicator equal to 1 if scientist i
is a full professor in 1969, i.e., if i has been promoted to full professor. This regression is based on the sample of all
scientists who enter the data in the 1956 cross-section and are not full professors in 1956 and are observed in 1969. The
first explanatory variable measures scientist i ’s individual rank in the distribution of visible citations in SCI years (i.e.,
all citations that were visible in the SCI; see Section 3.1 for details). The second explanatory variable measures scientist
i ’s individual rank in the distribution of invisible citations in SCI years (i.e., all citations that were not visible in the
SCI in 1961 and 1964-1969). The third explanatory variable measures scientist i ’s individual rank in the distribution
of pseudo-visible citations in non-SCI years (i.e., all citations in journals that were contained in the SCI in 1961 but
for years that were not covered in the SCI, i.e., 1956-1960 and 1962-1963). The fourth explanatory variable measures
scientist i ’s individual rank in the distribution of invisible citations in non-SCI years (i.e., all citations in journals that
were not contained in the SCI in 1961 and in years that were not covered, i.e., 1956-1960 and 1962-1963). Publications
by Year separately measure the number of scientist i ’s publications in each year between 1956 and 1969. Publications by
Journal separately measure the number of scientist i ’s publications in each journal (e.g., Nature or Science). Standard
errors are clustered at the 1969-department level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1. P-value
from test θ1 = θ2 = δ2: 0.937 in column (3), 0.890 in column (4).
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