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Abstract

We examine the impact of labor market power on firms’ adoption of automation technologies.

We develop a model that incorporates labor market power into the task-based theory of automa-

tion. We show that, due to higher marginal cost of labor, monopsonistic firms have stronger

incentives to automate than wage-taking firms, which could amplify or mitigate the negative em-

ployment effects of automation. Using data from US commuting zones, our results show that com-

muting zones that are more exposed to industrial robots exhibit considerably larger reductions in

both employment and wages when their labor markets demonstrate higher levels of concentration.
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1 Introduction

Over the last decades, rms in the United States have steadily increased their use of artificial intelli-

gence and other forms of automation (Acemoglu and Restrepo, 2020; Alekseeva et al., 2021; Zolas

et al., 2021). At the same time, US labor markets have become increasingly concentrated, especially

in manufacturing (Benmelech et al., 2022; Rinz, 2020). Both automation and labor market power

may have contributed to increasing labor market inequality (Acemoglu and Restrepo, 2021; Yeh et

al., 2022). Yet, they might be intertwined, and both the level of automation and its effects on employ-

ment and wages could depend on the characteristics of the labor market, including the intensity of

competition for workers.

In this paper, we study theoretically and empirically the interrelation between automation and

labor market power. We provide empirical evidence that labor market power can amplify the negative

effects of automation on employment and wages. We also propose a theory that can help make sense

of these empirical findings. If a firm is a wage-taker in the labor market – that is, it has no monopsony

power – automating its processes would result in a reduction of its wage expenses due to hiring fewer

workers. However, if a firm has monopsony power, the impact of automation on the firms’ total

wage bill consists of two components: the reduction in wages due to fewer workers being hired,

and the negative impact of automation on the wages of the remaining workers. That is, since the

monopsonistic firm faces an upward-sloping labor supply, automating a marginal worker enables the

firm to pay lower wages for the infra-marginal workers as well.

We build a model that formalizes these ideas. The model adds labor market power to the task-

based theory of automation of Acemoglu and Restrepo (2018c). In this model, a firm must choose

which tasks will be performed by humans, and which tasks it will automate with machines. There ex-

ists a threshold beyond which tasks cannot be automated with the existing technology. Technological

change can be modeled in two ways: either an increase in productivity of labor or capital for their

existing tasks, or an increase in the automation threshold, which allows more tasks to be automated.

Labor market power arises as the result of jobs being differentiated, as in Berger et al. (2022).

We first show that, if we start from an equilibrium where the competitive level of automation is

below the threshold of automatable tasks, an increase in monopsony power leads to an increase in

automation. We then examine whether higher labor market power amplifies or mitigates the effect

of an increase in the automation threshold on employment. We show that the effect is ambiguous.

2



On the one hand, if the automation threshold is binding in both the high and low labor market power

economies, increasing the threshold would result in stronger reductions in employment in the econ-

omy with lower labor market power. On the other hand, if the threshold is not binding in the low labor

market power economy, but it is binding in the high labor market power one, increasing the threshold

would result in stronger reductions in employment in the economy with higher labor market power.1

We show in numerical simulations that this effect tends to make the expected effect of automation on

employment stronger when labor market power is high.

We test the predictions of our model in an empirical setting using data on robot adoption, US

local labor market employment, wages, and concentration (Acemoglu and Restrepo, 2020). We first

replicate the main results of Acemoglu and Restrepo (ibid.), and then explore the heterogeneity with

respect to labor market concentration, measured by the Herfindahl-Hirschman index of employer

concentration for each industry by commuting zone. This index serves as a proxy for the degree

of labor market power within the local labor market. Our results show that commuting zones that

are more exposed to industrial robots exhibit considerably larger reductions in both employment and

wages when their labor markets demonstrate higher levels of concentration. This is consistent with

the model predictions for the case when the automation threshold is binding in the high labour market

power economy but not in the low one.

Our research contributes to several distinct strands of literature. First, we extend the recent work

on the labor market effects of robots by introducing labor market power in the task-based framework

of automation by Acemoglu and Restrepo (2018b) and by testing the implications empirically. We

build on the canonical model allowing firms to possess wage-setting power due to upward-sloping

labor supply curves and demonstrate that such wage-setting power can affect firms’ equilibrium level

of automation. We identify conditions under which firms could engage in excessive automation (Ace-

moglu and Restrepo, 2018a,c) from the stand point of a social planner. Thereby, we can revisit the

assumption that firms take wages as given when deciding to automate (Acemoglu and Restrepo, 2020;

Adachi et al., 2020; Bessen et al., 2022; Koch et al., 2021). Empirically, we find that the negative

impacts of industrial robots on employment and wage growth in US commuting zones are amplified

in more concentrated local labor markets where firms hold more wage-setting power. This finding is

important, considering that US labor markets show considerable variation in monopsony power (Azar

1As we will show, it is not possible for the threshold to be binding in the low labor market power case, but not binding

in the high labor market power case, because an increase in labor market power shifts the MPL/MPK curve to the right.
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et al., 2022; Berger et al., 2022; Yeh et al., 2022).

Second, we contribute to a recent research on the determinants of automation (Acemoglu and

Restrepo, 2022; Danzer et al., 2020; Dechezleprêtre et al., 2021; Fan et al., 2021) by showing that

idiosyncratic differences in firms’ labor market power can affect incentives to automate. The exist-

ing literature has predominantly focused on regional differences in labor markets like demographic

change, migration, or minimum wage policies. We offer a novel explanation for the heterogeneity

in robot adoption that has consistently been documented in recent micro-data studies (Brynjolfsson

et al., 2023; Deng et al., 2021).

Third, we further the literature on the wage and employment implications of monopsony (Man-

ning, 2021; Robinson, 1933; Sokolova and Sorensen, 2021). While previous research has primarily

concentrated on the direct effects of labor market power on wages and employment, our study ex-

tends this perspective. We show that labor market power can also indirectly influence labor markets

through its impact on firms’ adoption of automation technologies, thus influencing wage and employ-

ment growth.

Fourth, there has been a growing literature on the connection between automation and market

concentration recently. Firooz et al. (2022) find empirical evidence suggesting that automation plays

a role in augmenting sales concentration within US industries, without notable repercussions on em-

ployment concentration. Concurrently, Leduc and Liu (2022) posits that the prospect of workforce

displacement due to automation can bolster employers’ bargaining power, subsequently dampening

real wage growth in a business cycle boom. We extend this nascent literature on automation and mar-

ket concentration by shedding light on the reverse relationship: specifically, how initial differences

in labor market concentration may impact the optimal level of automation, and its effects on labor

market outcomes.

The paper is structured as follows: Section 2 presents the model and core findings, Section 3

discusses the empirical approach, Section 4 presents empirical results, and Section 5 concludes.
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2 A Model of Task-Based Production and Monopsony

2.1 Households

Consider a representative household which derives utility from aggregate consumption C, which is a

bundle of the different consumption goods produced by firms and disutility from labor. Its preferences

over consumption and labor are represented by the following utility function:

U(C,L) = C −
1

ϕ
1
ϕ

L1+ 1
ϕ

1 + 1
ϕ

, (2.1)

where aggregate consumption C and labor L are bundles of firm-level consumption and labor, given

by

C =

∫ 1

0

cjdj, (2.2)

L =

[
∫ 1

0

l
θ+1
θ

j dj

]

θ
θ+1

. (2.3)

Thus, all firms produce a homogeneous consumption good and there is perfect competition in the

product market. However, jobs that firms offer are differentiated (with a constant-elasticity of substi-

tution across jobs), which gives them some degree of monopsony power in the labor market.

The household has a fixed capital endowment K, which it rents out to the firms at an endogenous

rate R. Capital is undifferentiated, and therefore firms are perfectly competitive in the capital market.

The household supplies labor and capital lj and kj to firm j, and obtains profits πj from firm j. The

price of the consumption good is the numeraire. The household’s budget constraint is

C =

∫ 1

0

wjljdj +RK +

∫ 1

0

πjdj. (2.4)

The first-order condition with respect to lj yields the inverse labor supply function to firm j which

takes aggregate labor supply L as given:

wj =
1

ϕ
1
ϕ

L
1
ϕ

(

lj
L

)
1
θ

. (2.5)
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We can rewrite this in terms of the wage index W =
[

∫ 1

0
w1+θ

j dj
]

1
1+θ

as follows:

wj =

(

lj
L

)
1
θ

W. (2.6)

This is the inverse labor supply curve faced by firm j given aggregate labor L and the aggregate wage

level W .

2.2 Firms

There is a continuum of firms with measure one, indexed by j. Firm j produces good cj . Aggregate

output for firm j is produced through a continuum of tasks, indexed by i:

yj =

(
∫ 1

0

yj(i)
σ−1
σ di

)

σ
σ−1

(2.7)

where σ ∈ (0,∞) is the elasticity of substitution between tasks. There is a threshold of automatable

tasks I . Tasks i > I can be produced with labor according to yj(i) = γ(i)lj(i). Tasks i ≤ I can

be produced with labor or capital: yj(i) = η(i)kj(i) + γ(i)lj(i). We assume that γ(i)/η(i) is strictly

increasing in i.

Wages are endogenous, and the firm is a monopsonist with respect to the wage paid to its own

workers, and does not discriminate between workers. At the same time, it is a wage-taker with respect

to the aggregate wage index W . The rate of return on capital R is also endogenous, and the firms are

price-takers in the capital market.

The firm faces an upward-sloping labor supply curve wj(lj) with constant elasticity θ. The overall

amount of labor that the firm demands is the integral of the labor that it demands across tasks, that is

lj =
∫ 1

0
l(i)di. We also define kj =

∫ 1

0
kj(i)di.

2.3 Equilibrium and Comparative Statics

The profit maximization problem of firm j is

max
{l(i),k(i)}i∈[0,1]

yj −Rkj − wj(lj)lj. (2.8)
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There is a unique level of automation Ĩ at which the firm would be indifferent between automating

a task or have it done by humans. In the competitive case (θ = ∞), that level of automation is given

by
wj

R
=

γ(Ĩ)

η(Ĩ)
. (2.9)

In the monopsonistic case (θ < ∞), the automation level takes into account the extra cost due to

the fact that hiring an additional worker increases wages for all existing workers as well

wj(1 +
1
θ
)

R
=

γ(Ĩ)

η(Ĩ)
. (2.10)

If Ĩ > I , the firm cannot produce all tasks up to Ĩ with capital because some of the tasks below Ĩ

are not yet automatable. Thus, the equilibrium level of automation is I∗ = min
{

I, Ĩ
}

.

For tasks below the automation threshold I∗, the first-order condition with respect to kj(i) is

yj(i) =

[

η(i)

R

]σ

yj. (2.11)

For tasks above I∗, the first-order condition with respect to lj(i) is

yj(i) =

[

γ(i)

wj(lj)
(

1 + 1
θ

)

]σ

yj. (2.12)

We can solve each of these for yj and replace it in the production function of firm j to obtain a

production function in terms of aggregate labor and capital for the firm:

yj = F (kj, lj) =

[

(
∫ I∗

0

η(i)σ−1di

)

1
σ

k
σ−1
σ

j +

(
∫ 1

I∗
γ(i)σ−1di

)

1
σ

l
σ−1
σ

j

]

σ
σ−1

(2.13)

To simplify the expression, we define the productivity factors of capital and labor as AK =
(

∫ I∗

0
η(i)σ−1di

)
1

σ−1
and AL =

(

∫ 1

I∗
γ(i)σ−1di

)
1

σ−1
so that we can rewrite the production function

as yj = F (kj, lj) =
[

(AKkj)
σ−1
σ + (ALlj)

σ−1
σ

]
σ

σ−1
.

The marginal product of firm j’s capital bundle is equal to the cost of capital R:

FK(kj, lj) = AK

(

yj
AKkj

)
1
σ

= R (2.14)

7



The marginal product of firm j’s labor bundle is equal to the marginal cost of labor to the firm:

FL(kj, lj) = AL

(

yj
ALlj

)
1
σ

= wj(lj) + w′(lj)lj = wj(lj)

(

1 +
1

θ

)

. (2.15)

Imposing symmetry in the first-order condition for labor and combining it with the aggregate

inverse labor supply W = (L/ϕ)
1
ϕ yields a nonlinear equation in aggregate labor (conditional on

a level of automation). Although the equation does not have a closed-form solution, we can use

it to characterize the equilibrium conditional on the level of automation. Equilibrium employment

conditional on the level of automation implies an MPL/MPK curve as a function of the level of

automation i. The equilbrium level of automation is given by the intersection of this curve and the

γ(i)/η(i) curve, or the automation threshold if the latter is lower.

We can also show that automation increases (though not strictly) when labor market power is

higher. This is because the schedule given by the equilibrium ratio of MPL and MPK conditional on

a level of automation shifts to the right when labor market power increases. A shift to the right in

the MPL/MPK schedule implies a higher intersection between this curve and the γ(i)/η(i) curve, and

implies a higher level of desired automation Ĩ . This is summarized by the following Proposition, and

illustrated in Figure 1. If we start at point a in the figure, and shift the MPL/MPK curve to the right,

equilibrium automation increases until Ĩ hits the maximum possible level of automation, given by the

threshold I . Further increases in market power would not increase automation, because Ĩ would be

above the threshold.

Proposition 2.1. An equilibrium of the model exists and is characterized by the intersection between

the γ(i)/η(i) schedule and the MPL
MPK

(i) schedule which indicates the ratio of MPL and MPK con-

ditional on the level of automation (ignoring the automation threshold). If the intersection of the

two curves is below the automation threshold I , then the equilibrium level of automation I∗ is given

by Ĩ , i.e., the level of the intersection. If the intersection of the two curves is above the automation

threshold, then the equilibrium level I∗ is equal to the threshold I .

The equilibrium level of employment is characterized by the solution to the following equation in

L at I∗:

AL

[

1 +

(

AKK

ALL

)
σ−1
σ

]
1

σ−1

=

(

L

ϕ

)
1
ϕ
(

1 +
1

θ

)

. (2.16)

If the equilibrium level of automation is below the threshold I , then an increase in labor market
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Figure 1: Equilibrium Automation under Low and High Levels of Labor Market Competition

γ(i)

η(i)

MPL

MPK
θ=θL

MPL

MPK
θ=θH

iI = I*
L

Ĩ |
θ=θH

= I*
H

Ĩ |
θ=θL

c

b

a

Note: This figure illustrates the determination of the equilibrium level of automation when the labor

market power parameter is θH (less labor market power), and when it is θL (more labor market power).

If labor market power is low, at θ = θH , the equilibrium level of automation is at point a, at the

intersection of the MPL/MPK curve and the γ/η curve, which is below the automation threshold.

If labor market power increases, so that θ = θL, the MPL/MPK curve shifts to the right, and the

intersection is at point b. However, because tasks above I are not automatable, the equilibrium is in

point c, at the intersection of the MPL/MPK curve and the vertical line that indicates automation

level I . Thus, the equilibrium level of automation I∗ is higher than in the low labor market power

case.

power (1/θ) increases automation. If the equilibrium level of automation is at the threshold I , then

an increase in labor market power leaves automation unchanged.

We are also interested in the effect of technological progress, modeled as an increase in the set of

automatable tasks, on employment and wages, and in particular in the heterogeneity of this effect by

the level of labor market power. Consider two economies that are identical, except that in one of them

labor market power is low (i.e., the elasticity of substitution parameter is high, θ = θH) and in the

other labor market power is high (i.e., the elasticity of substitution parameter is low θ = θL < θH).

We can compare the response of employment and wages to an increase in the automation threshold I

in these two economies.

The are three possible cases. (1) If the automation threshold is not binding for both the θL and
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θH economies, an increase in the threshold has no effect in either economy. (2) If the automation

threshold is binding in both, a marginal increase in the automation threshold increases automation

by the same amount in both. When this happens, it is possible for the effect of an increase in the

automation threshold on employment and wages to be stronger in the more competitive economy. (3)

It is possible that the automation threshold is not binding for the low labor market power economy, but

is binding in the low labor market competition economy (see Figure 1). In this case, an increase in the

automation threshold has no effect on the equilibrium with low labor market power, that is, at point

a, because the equilibrium is below the automation threshold. However, it does affect the equilibrium

for the high labor market power economy, at point c, because it is at the threshold.

In the Appendix, we show that the effect of an increase in the automation threshold I on employ-

ment and wages can be negative or positive, depending on whether the (negative) displacement effect

dominates the (positive) productivity effect (as in Acemoglu and Restrepo, 2018b). Regardless of the

sign of the effect on employment and wages, if we are in case (2), the effect can be stronger (i.e.,

higher in absolute value) in the more competitive labor market, while in case (3) the effect can be

stronger in the more monopsonistic labor market. The overall effect is therefore ambiguous. If the

automation threshold has high variance, it is more likely that it will bind when labor market power

is higher, and the mechanism in case (3) is more important. However, if the automation threshold

does not vary across labor markets, the mechanism in case (2) is more important. To illustrate this,

we provide a Monte-Carlo simulation of the expected marginal effect with a stochastic automation

threshold in the following subsection.

2.4 Simulation

We solve the model numerically for the following parameter values: σ = 0.7, ϕ = 0.5, ϕ = 1, K = 1,

η(i) = 1, γ(i) = eAi, with A = 1, and for a range of values for θ between 1 and 5. For each value of

θ, we take 10,000 random draws for the automation threshold I . We do it first for a “low I dispersion

case”, with I uniformly distributed in the interval [0.33, 0.331], in which case the threshold is always

binding for this range of θ. We then run the simulation for a high I dispersion case, uniform over

[0.33, 0.45], which approximately covers the range of Ĩ for our range of θ parameters.

For each draw, we calculate the derivative with respect to I (which can be zero if the threshold is

non-binding), and take expectation across draws for each value of θ. The results are plotted in Figure

10



Figure 2: Simulated Average Effect of Automation Threshold on Log Employment as a Function of Labor

Market Power

(a) Low I Dispersion (b) High I Dispersion

Note: This figure shows the average marginal effect on log employment with respect to the automation

threshold I . The model is solved numerically for the following parameter values: σ = 0.7, ϕ = 0.5,

ϕ = 1, K = 1, η(i) = 1, γ(i) = eAi, with A = 1, and for a range of values for θ between 1 and 5. For

each value of θ, we take 10,000 random draws for the automation threshold I . In the low dispersion

case, I is uniform in the interval [0.33, 0.331], and in the high dispersion case it is uniform in the

interval [0.33, 0.45] (about the range of Ĩ corresponding to our range of θs).

2.2 In the low dispersion case, the mechanism described in case (2) dominates, and the expected

effect of automation on employment is less negative when labor market power is higher. In the

high dispersion case, the mechanism in case (3) dominates, and the expected effect of automation on

employment (and therefore on wages as well) is more negative when labor market power is higher.

As we argue above, the automation threshold is more likely to be binding when labor market power

is higher.

This theoretical ambiguity implies that it is an empirical question whether labor market power

amplifies or mitigates the labor market effects of automation. The next section describes our method-

ology to examine this question empirically.

3 Empirical Methodology

To test whether the effect of automation on employment and wages is stronger when labor market

power is higher, we make use of the empirical framework presented by Acemoglu and Restrepo

(2020). This framework allows to study the long-run equilibrium adjustments of local labor markets

2Note that in all cases, the wage effect goes in the same direction as the employment effect, due to increasing aggregate

labor supply.

11



in the United States in response to changes in labor demand driven by advancements in industrial

robot technology.

3.1 Measuring local labor market exposure to robots

Based on the study by Acemoglu and Restrepo (2020), we measure the exposure to industrial robots

in 722 continental US commuting zones over the period 1990 to 2015.3 To approximate global ad-

vancements in industrial robot technology, we examine changes in the number of industrial robots

per worker across 19 different industries in five European countries (Denmark, Finland, France, Italy,

Sweden) that have been ahead of the US in adopting robot technology. For each industry i, we com-

pute a measure of average robot penetration over the period from t0 to t1 as the average change in the

stock of industrial robots relative to the total number of workers in that industry in 1990 subtracting

the growth of robot stocks that is due to real output growth. This measure is given by

APREU5
i,(t0,t1)

=
∑

j∈EU5

1

5

(

Rj,i,t1 −Rj,i,t0

Lj,i,1990

− gj,i,(t0,t1)
Rj,i,t0

Lj,i,1990

)

(3.1)

where Rj,i,t is the number of robots in industry i in country j at time t, gj,i,(t0,t1) is the output growth

rate of industry in country j between t0 and t1 and Lj,i,1990 is the total number of workers in industry

i in country j in 1990.4

To obtain a measure of commuting zone exposure to robots, we finally multiply the industry-

specific changes in average robot penetration in the five European countries by lc,i,1970, the share of

industry i in the total employment of commuting zone c in 1970.

Robotsc,(t0,t1) =
∑

i∈I

lc,i,1970 × APREU5
i,(t0,t1)

(3.2)

To compute the shares of industries in commuting zone employment, we make use of micro-data

from the decennial census of 1970 as in Acemoglu and Restrepo (ibid.). We also use the micro-

data from the decennial censuses of 1990 and 2000 combined with micro-data from the American

Community Survey to compute outcomes variables in terms of employment, unemployment, non-

3Commuting zones are clusters of counties in which the majority of workers both live and work. This geography is

typically used to delineate local labor markets (see Tolbert and Sizer, 1996).
4We use data on the industry-specific stocks of industrial robots from the International Federation of Robotic, while

both output and employment data for industries in Europe comes from the EUKLEMS database.
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participation as well as average wages for our main analysis.

The identifying assumption of the empirical strategy is that there are no differential shocks or

trends affecting labor market outcomes in commuting zones with greater exposure to robots relative

to those with less exposure (such as differential trends of industries or regions or negative shocks that

are correlated with the increasing exposure to robots and local labor market conditions).5

3.2 Measuring local labor market concentration

We extend the empirical framework by Acemoglu and Restrepo (2020) taking into account the com-

petitiveness of local labor markets at the beginning of the observation period. We proxy the competi-

tiveness of local labor markets with the degree of employer concentration within a commuting zone.

A recent body of literature shows that measures of employer concentration reflect the extent to which

firms face a more or less elastic labor supply curve in the local labor market (e.g. Berger et al., 2022).

We therefore utilize the local employer concentration as a proxy for the labor supply elasticity (θ) in

our model that describes the competitiveness of the local labor market. This allows us to explore how

initial differences in local labor market competitiveness impact the effects of improvements in robot

technology across different commuting zones.

We compute a measure of local labor market concentration for all 722 continental commuting

zones in 1990 using data on county-by-industry establishment counts from the US Census County

Business Patterns, county industry employment counts from Eckert et al. (2021) and a county-to-

commuting zone crosswalk provided by David and Dorn (2013). In each commuting zone, we observe

the number of establishments n in a 3-digit SIC industry i by employment bracket s in commuting

zone c in 1990.6 We take the mid-point m of an employment bracket s as a proxy for the actual

employment size of establishments assigned to employment bracket s. We then compute employ-

ment shares and the Herfindahl-Hirschman index of employer concentration for each industry i in a

commuting zone c as

HHIc,i =

12
∑

s=1

nc,i,s

(

ms

Lc,i

)2

(3.3)

where L stands for the total employment of industry i in commuting zone c. As the level of analysis

will eventually be at the commuting-zone level, we further aggregate the industry-by-commuting zone

5See Acemoglu and Restrepo, 2020 for a comprehensive check of the validity of the proposed measure of commuting

zone exposure to robots.
6County Business Patterns reports 12 employment brackets which are described in detail in Table 3 in the Appendix.
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level HHIs to the commuting zone level. To calculate the average level of employer concentration for

each commuting zone, we compute a weighted mean of all industry employer Herfindahl indices as

HHIc ≡

395
∑

i=1

lc,i ×HHIc,i (3.4)

where l is the share of industry i in total employment of the commuting zone c. As in Benmelech

et al. (2022), this average HHI at the level of the commuting zone represents the degree of employer

concentration that the average worker faces in a given local labor market.7

3.3 Empirical Specifications

We explore the heterogeneous effect of local labor market exposure to robots on employment, unem-

ployment and non-participation rates across labor markets with different initial employer concentra-

tion. We estimate the following model in three stacked differences over three periods from 1990 to

2000, 2000 to 2007 and 2007 to 2015:

∆yc,(t0,t1) = β1 Robotsc,(t0,t1) + β2 Robotsc,(t0,t1) × HHIc,1990 + β3 HHIc,1990

+ X′
c,1990 γ + δt + ρj + ǫc,(t0,t1)

(3.5)

In our main specification, yc,t stands for the log number of private sector employees in commuting

zone c in year t and HHIc,1990 is the continuous measure of local labor market concentration of com-

muting zone c in 1990. The coefficient of interest is β2 which captures the heterogeneous effect of

robots on employment across commuting zones with different initial levels of local labor market con-

centration HHIc. The sign of the coefficient β2 allows us to infer whether the automation threshold is

binding for monopsonists but not for competitive firms. If this was indeed the case, improvements in

automation technology would lead to more negative employment effects in more concentrated labor

markets. We keep HHIc fixed to initial levels in 1990 to avoid any endogeneity between increasing

automation and contemporaneous changes in labor market concentration.

Following Acemoglu and Restrepo (2020), we control for unobserved period-specific regional

trends by including dummies for census divisions ρj and period indicators δt. Hence, our regression

identifies the coefficients β2 from variation in exposure to labor market shocks between commuting

7Figure 4 in the Appendix displays the regional variation in labor market concentration across the 722 US commuting

zones in 1990, attributing the value for each commuting zone to one out of seven equal-sized bins.
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zones in a given time-period and census division and variation in the ex-ante local labor market con-

centration. We also include X’c,1990, a vector of commuting zone baseline characteristics in 1990, to

allow for differential trends due to observable differences in demographics (age, education, gender

and ethnic composition), industry shares (manufacturing, light-manufacturing) or in the exposure to

Chinese import competition and offshoring (share of routine employment).

We also explore the heterogeneous effect of local labor market exposure to robots on wages across

labor markets with different initial employer concentration. We compute for each commuting zone

the average hourly, weekly and yearly wages of workers within 250 demographic cells defined by

gender, education, age and race.8 By looking at wages within defined demographics, we can control

for changes in wages in the commuting zone that are driven by changes in the characteristics of the

work force such as age.We estimate the following model at the demographic group by commuting

zone level in two stacked differences over the periods from 1990 to 2000 and from 2000 to 2007:

∆yc,d,(t0,t1) = β1 Robotsc,(t0,t1) + β2 Robotsc,(t0,t1) × HHIc,1990 + β3 HHIc,1990

+ X′
c,1990 γ + σd + δt + ρj + ǫc,d,(t0,t1)

(3.6)

where y stands for the log average wage of workers in a demographic cell d in commuting zone c and

year t. In addition to the dummies for census divisions ρj , the period indicators δt, the commuting

zone characteristics in 1990 X′
c,1990, we also include a dummy for each demographic cell that corrects

for differential long-run trends in wages across the different demographics. Again, we are interested in

the coefficient of the interaction term β2 which reflects the heterogeneous effect of robots on average

wages across commuting zones with differential initial levels of labor market concentration.

4 Results

In our empirical results we, first, document the negative effect of robot exposure on commuting zone

employment consistent with Acemoglu and Restrepo (2020) and reveal that the negative employment

effect is substantially more pronounced in initially more concentrated labor markets. Next, we find

heterogeneous effects of robots on measures labor force participation. Last, we document that labor

market concentration also moderates the negative effect of robots on average wages.

8See Appendix B.3 for more details on the computation of average wages.
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4.1 Employment

Consistent with previous evidence by Acemoglu and Restrepo (2020) and Faber et al. (2022), column

(1) in Panel A of Table 1 shows that an increase of commuting zone exposure of 1 robot per thousand

workers decreases total employment by about 2 percent. However, column (2) reveals significant

heterogeneity in the effect by initial levels of labor market concentration in 1990. It shows that the

coefficient of the interaction of robot exposure and the continuous variable of local labor market

concentration in 1990 is significantly negative and sizable in magnitude. The estimates in column (2)

imply that the effect of robots on total employment is about 60% stronger in commuting zones at the

75th percentile of labor market concentration distribution (HHI
75th

1990 = 0.44) compared to commuting

zones at the 25th percentile (HHI
25th

1990=0.22). We can also observe the strong moderating effect of labor

market concentration when looking at manufacturing and blue-collar occupation reported in columns

(4) and (6) which are arguably most exposed to industrial robots.

We further corroborate the relationship estimating the mean effects of robots in commuting zones

in different quartiles of the distribution of labor market concentration in 1990.9 Panel A in Figure 3

shows the point estimates by concentration quartile and confirms the previous finding showing con-

sistently stronger effects in commuting zones in the upper quartiles of the concentration distribution

for total employment as well manufacturing and blue-collar employment.

The combined evidence suggests that improvements in automation technology seem to affect em-

ployment more negatively in more concentrated local labor markets. While there is no data on robot

adoption across commuting zones allowing us to test mechanisms directly, the obtained results are

in line with case 3 presented in Section 2.3. The observed pattern suggests that firms in more con-

centrated labor markets are bound by the automation threshold and are more likely to automate as

automation technology improves, amplifying the effect on employment. On the other hand, firms in

less concentrated labor markets are less likely to be bound and do therefore react less as automation

technology improves.

9We order commuting zones by the level of labor market concentration in 1990 and group them into 4 bins that each

contain one quarter of the total US population in 1990.
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Figure 3: Local Labor Market Effects of Exposure to Robots by Local Labor Market Concentration
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Note: The figure displays coefficient estimates of the impact of robots on labor market outcomes for each quartile of com-

muting zones based on the employment-weighted distribution of labor market concentration in 1990. For each outcome

variable, we estimate a single regression model. The displayed coefficients are obtained from the interaction of quartile

dummies with the main explanatory variable: exposure to robots. The capped lines indicate 95% confidence intervals. All

estimates in Panel A and B are from specifications that include the full set of controls from Table 1. All estimates in Panel

C are from specifications that include the full set of controls from Table 2.
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4.2 Labor force participation

Next, we explore how lower employment growth due to robots might lead to higher unemployment

rates and non-participation in the labor force in more concentrated regions. Column (1) in Panel B of

Table 1 shows that the decrease in employment in the first part of the analysis translates into a lower

employment to population ratio. We find that an increase of exposure by 1 robot per thousand workers

reduced the share of employed individuals in the population of working age adults by 0.6 percent. This

negative effect is again significantly more pronounced in more concentrated labor markets.

Yet, column (4) shows that the positive effect of robots on unemployment rates is not significantly

different in more versus less concentrated labor markets. Column (6) shows that the reduction in the

employment to population ratio due to robots leads to higher non-participation rates in more concen-

trated labor markets, thus providing explanation to absence of the differential effect on unemployment.

This interesting pattern is consistent with recent evidence by Dodini et al. (2023) showing that more

concentrated labor markets provide workers with fewer outside options which leads to higher non-

participation rates and larger earnings declines for workers after involuntary job separation. Panel B

in Figure 3 illustrates that the effect of robots on employment and non-participation rates is systemat-

ically more pronounced in commuting zones in the upper quartiles of the concentration distribution.

4.3 Wages

Finally, we find that local labor market concentration also moderates the effect of robots on average

wages within demographic cells across commuting zones. Table 2 reports the estimates following the

model specification of equation 3.6 with demographic cell fixed effects. Consistent with the results in

Acemoglu and Restrepo (2020), we find in column (1) that an increase in exposure to robots by 1 robot

per thousand workers decreases average hourly wages by more than 2 percent. Again, we find that

this average effect masks significant heterogeneity along the dimension of labor market concentration.

Estimates in column (2) imply that effect of robots on average hourly wages is 35 percent larger in

commuting zones at the 75th percentile relative to commuting zones in the 25th percentile of local

labor market concentration. This pattern is also true for average weekly and yearly wages. Panel C

in Figure 3 corroborates again a systematic pattern showing that the mean effect on wages tends to

stronger among commuting zones in the upper quartiles of the concentration distribution.
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Table 1: Local labour market concentration and the effect of exposure to robots on changes in employment,

unemployment and non-participation: stacked differences from 1990 to 2000, 2000 to 2007 and 2007 to 2015

Panel A. Change in log employment × 100

Total Manufacturing Blue-collar

employment employment employment

(1) (2) (3) (4) (5) (6)

Robots -2.253∗∗∗ -1.240 -2.832∗∗∗ -0.556 -4.598∗∗∗ -2.979∗∗

(0.494) (0.778) (0.659) (1.338) (0.772) (1.251)

Robots × HHI1990 -12.855∗∗ -29.001∗∗∗ -20.061∗∗∗

(4.829) (7.956) (6.678)

HHI1990 0.561 -0.229 6.506

(4.779) (7.407) (6.215)

Observations 2166 2166 2166 2166 2166 2166

R-squared 0.44 0.44 0.37 0.38 0.42 0.43

Panel B. Change in rate

Employment to Unemployment Non-participation

population ratio rate rate

(1) (2) (3) (4) (5) (6)

Robots -0.684∗∗∗ -0.125 0.554∗∗∗ 0.505∗∗∗ 0.815∗∗∗ 0.144

(0.117) (0.329) (0.130) (0.148) (0.143) (0.339)

Robots × HHI1990 -6.729∗∗∗ 0.559 8.130∗∗∗

(1.977) (0.585) (2.113)

HHI1990 4.630∗∗∗ -0.776 -4.975∗∗∗

(1.281) (0.518) (1.294)

Observations 2166 2166 2166 2166 2166 2166

R-squared 0.30 0.34 0.22 0.22 0.51 0.55

Demographics X X X X X X

Industry Shares X X X X X X

Routineness & Trade X X X X X X

Census Divisions X X X X X X

Period FE X X X X X X

Note: All specifications control for the following commuting zone characteristics in 1990: demographic characteristics

of commuting zones in 1990 (log population; the share of females; the share of the population over 65 years old; the

shares of the population with no college, some college, college or professional degree, and masters or doctoral degree;

and the shares of whites, blacks, Hispanics, and Asians), the shares of employment in manufacturing and light manufac-

turing and the female share of manufacturing employment in 1990, as well as the exposure to Chinese imports and the

share of employment in routine jobs in 1990. Regressions also control for census division and period dummies. Stan-

dard errors are robust against heteroskedasticity and correlation within states are given in parentheses. Regressions are

weighted by commuting zone population in 1990. Standard errors are clustered at the state level. Coefficients with ***,

**, and * are significant at the 1%, 5% and 10% confidence level, respectively.
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Table 2: Local labour market concentration and the effect of exposure to robots on changes in average

wages: stacked differences from 1990 to 2000 and 2000 to 2007

Change in log wages × 100

Hourly Wages Weekly Wages Yearly Wages

(1) (2) (3) (4) (5) (6)

Robots -2.553∗∗∗ -2.132∗∗∗ -3.379∗∗∗ -3.018∗∗∗ -3.416∗∗∗ -3.031∗∗∗

(0.341) (0.354) (0.334) (0.311) (0.331) (0.308)

Robots × HHI1990 -5.224∗∗ -4.513∗ -4.796∗

(2.372) (2.509) (2.546)

HHI1990 -2.634 -2.746 -2.653

(2.847) (2.958) (2.935)

Observations 158254 158254 156402 156402 156402 156402

R-squared 0.21 0.21 0.26 0.26 0.26 0.26

Demographics X X X X X X

Industry Shares X X X X X X

Routineness & Trade X X X X X X

Census Divisions X X X X X X

Period FE X X X X X X

Note: We estimate regressions at the demographic cell × commuting zone level where we define demographic cells

by age, gender, education and race. The outcome variables are log changes in the average wage by demographic cell

multiplied by 100. All specifications include a dummy for each demographic cell and control for the following com-

muting zone characteristics: demographic characteristics in 1990 (log population; the share of females; the share of

the population over 65 years old; the shares of the population with no college, some college, college or professional

degree, and masters or doctoral degree; and the shares of the Asian, Black, Hispanic and White population), the

shares of employment in manufacturing and light manufacturing and the female share of manufacturing employment

in 1990, as well as the exposure to Chinese imports and the share of employment in routine jobs in 1990. Regres-

sions also control for census division and period dummies. Standard errors are robust against heteroskedasticity and

correlation within states are given in parentheses. Regressions are weighted by commuting zone population in 1990.

Standard errors are clustered at the state level. Coefficients with ***, **, and * are significant at the 1%, 5% and

10% confidence level, respectively.
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5 Conclusion

The extent to which employers exercise monopsony power in labor markets has wide-ranging impli-

cations for workers, firms and labor markets. In this paper, we argue that labor market power can in

fact drive excessive demand for automation as automation at firms with labor market power affects the

total wage bill in two ways: it reduces the wage bill as fewer workers are being hired, and it reduces

the wages of the remaining workers. Therefore, if monopsony power is high enough, the firm could

have an incentive to automate with a technology that is less efficient than the workers it replaces and

still obtain net cost efficiencies through the reduction in the wages of the remaining employees.

We formalize this idea by incorporating labor market power from the differentiated jobs model

by Berger et al. (2022) into the task-based theory of automation of Acemoglu and Restrepo (2018c).

When the labor market is competitive, some automatable tasks are not automated because it is still

more cost-effective for them to be done by humans. However, it may be privately optimal for the

firm to automate them under monopsony, precisely in order to exploit its monopsony power. For this

reason, marginal increases in automatable tasks may not reduce labor demand when the labor market

is competitive, while reducing it in the case of a monopsonistic labor market. On the other hand,

when the automation threshold is binding in both high and low labor market power economies, it is

ambiguous whether labor market power amplifies or mitigates the effect on automation.

We examine this question in an empirical setting of Acemoglu and Restrepo (2020) in studying in-

dustrial automation in the US. We replicate their results and explore the heterogeneity with respect to

labor market concentration, measured by Herfindahl-Hirschman index of employer concentration for

each industry. We show that automation is associated with considerably larger reductions in employ-

ment and wages in more concentrated labor markets. This provides first evidence that labor market

power affects firms’ automation decisions.

One policy implication of our model is that minimum wage policies could decrease the incentive

to automate in monopsonistic labor markets where the minimum wage is binding. As minimum wages

prevent the monopsonist to pay below the wage floor, the policy flattens the marginal cost of labor

curve of the monopsonist. In this way, the minimum wage alleviates the incentive to automate beyond

what the competitive firm would do. Therefore, perhaps surprisingly, minimum wage policies could

reduce the level of automation in monopsonistic labor markets.

Our paper raises a number of questions that call for more research. First, there is a need for a
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more thorough exploration of the relationship between labor market power and automation. This

requires more detailed data at the local industry or firm level. Second, we have focused on industrial

automation of production tasks mostly in manufacturing industries. However, with the advent of

artificial intelligence, it would be useful to extend the technological scope as companies will likely

automate more and more non-production tasks outside of manufacturing.
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Appendix A Proofs

PROOF OF PROPOSITION 2.1

Proof. Conditional on a level of automation, equation (2.16) always has a solution, since the left-

hand side is decreasing in L, and the right-hand side is increasing in L and its range is [0,∞). We

can calculate the equilibrium level of employment for every possible level of automation, calculate the

ratio of the marginal product of labor and the marginal product of capital, and find Ĩ as the level where

the ratio of MPL to MPK is equal to the ratio of γ to η. The ratio of MPL to MPK goes to infinity in

the limit when zero tasks are automated, and to zero in the limit when all tasks are automated, which

ensures an intersection with the ratio of γ to η curve. The intersection of these two curves determines

the unrestricted equilibrium level of automation Ĩ . If the resulting Ĩ is higher than the threshold of

automatable tasks I , then the threshold is binding and the equilibrium I∗ is equal to the theshold I .

To see that an increase in labor market power increases the equlibrium level of automation when

the automation threshold is not binding, we need to show that the MPL/MPK schedule shifts to the

right. To see why this is the case, note that the derivative of (log) MPL/MPK with respect to log(1 +

1/θ) taking the level of automation as given is

d log(FL/FK)

d log(1 + 1/θ)
=

ϕ

σ

1 + ϕ

σ
(1− sL(1 + 1/θ))

> 0. (A.1)

Proposition A.1 (Displacement Effect). The derivative of the log labor share with respect to I when

the automating threshold is binding is always negative.

Proof. We start by obtaining an expression for the labor share. Combining the first-order condition

for labor and the production function in equation 2.13, yields the following expression:

slj =
1

1 +
(

AKkj
ALlj

)
σ−1
σ

·
1

1 + 1
θ

. (A.2)

Since all firms are symmetric, in equilibrium the labor share is the firm-level labor share evaluated
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at the aggregate labor supply and the capital endowment:

sL =
1

1 +
(

AKK
ALL

)
σ−1
σ

·
1

1 + 1
θ

. (A.3)

We rewrite the equation for equilibrium employment as

log(L) = log(ϕ) + ϕ log(AL)−
ϕ

σ − 1
log(sL)−

σϕ

σ − 1
log

(

1 +
1

θ

)

. (A.4)

This equation does not have a closed-form solution. However, using the implicit function theorem

we can take derivative with respect to I:

d log(L)

dI
= ϕ

d log(AL)

dI
+

ϕ

1− σ

d log(sL)

dI
. (A.5)

The expression for this derivative is

d log(sL)

dI
= −sK

σ − 1

σ

[

d logAK

dI
−

d logAL

dI
−

d logL

dI

]

= −
sK
σ

[

η(I)σ−1

Aσ−1
K

+ (1 + ϕ)
γ(I)σ−1

Aσ−1
L

]

−
sKϕ

σ

d log(sL)

dI

= −

sKϕ

σ

1 + sKϕ

σ

[

1

ϕ

η(I)σ−1

Aσ−1
K

+
1 + ϕ

ϕ

γ(I)σ−1

Aσ−1
L

]

,

which is always negative.

Proposition A.2 (Productivity Effect). The derivative of the log labor productivity with respect to I

when the automation threshold is binding is always positive.

Proof. Labor productivity is

Y

L
= AL

[

1 +

(

AKK

ALL

)
σ−1
σ

]
σ

σ−1

= AL

[

sL

(

1 +
1

θ

)]
σ

1−σ
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The expression for the derivative with respect to the automation threshold, when it is binding, is

d log(Y/L)

dI
=

d log(AL)

dI
+

σ

1− σ

d log(sL)

dI

=
1

1− σ

[
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+ σ
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]

=
1
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L

−
sK

1 + sKϕ

σ

(
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K
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γ(I)σ−1
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L

)]

=
1

1− σ

1

1 + sKϕ

σ

[
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(1− σ)

σ
)
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L

− sK
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K

]

=
1

1− σ

1

1 + sKϕ

σ

[

(1− sK)
γ(I)σ−1

Aσ−1
L

− sK
η(I)σ−1

Aσ−1
K

]

+
sKϕ

σ

1 + sKϕ

σ

γ(I)σ−1

Aσ−1
L

,

which is always positive.

Proposition A.3. The derivative of the equilibrium log wage with respect to I when the automation

threshold is binding is the sum of the productivity effect and the displacement effects, with the sign of

the overall effect being ambiguous.

Proof. The expression for the derivative is:

d log(W )

dI
=

d log(Y/L)

dI
+

d log(sL)

dI

= −
1

ϕ

sKϕ

σ

1 + sKϕ

σ

[

1

1− σ

η(I)σ−1

Aσ−1
K

+

(

1−
σ

1− σ

1− sK
sK

)

γ(I)σ−1

Aσ−1
L

]

.

Proposition A.4. The derivative of equilibrium log employment with respect to I when the automation

theshold is binding is simply the elasticity of labor supply times the derivative of the log wage, and

therefore it has the same sign as the latter.

Proof. The expression for this derivative is

d log(L)

dI
= ϕ

d log(W )

dI

= −

sKϕ

σ

1 + sKϕ

σ

[

1

1− σ

η(I)σ−1

Aσ−1
K

+

(

1−
σ

1− σ

1− sK
sK

)

γ(I)σ−1

Aσ−1
L

]

.
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Appendix B Data

B.1 Local labor market concentration

Table 3: Size brackets for number of employees by establishment as reported in County Business Patterns

Size bracket Median

1-4 3

5-9 7

10-19 15

20-49 35

50-99 75

100-249 175

250-499 375

500-999 750

1000-1499 1250

1500-2499 2000

2500-4999 3750

5000-more imputation

Figure 4: Local labor market concentration across US commuting zones in 1990

B.2 Local labor market exposure to robots

We follow Acemoglu and Restrepo (2020) and construct a measure of commuting zone exposure

using the following data sources:
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Industrial robots: We use data on the operational stock of industrial robots from the International

Federation of Robotics (IFR) for the United States and six European countries (Denmark, Finland,

France, Italy, Sweden, Germany) from 1993 to 2016.10 We classify the IFR data into 13 manufacturing

industries, and 6 broad industries outside manufacturing.11 To obtain the 19 IFR industries as in

Acemoglu and Restrepo (2020), we perform the following adjustments to the original data: First, we

keep the industry “all other manufacturing branches” and label it as “Miscellaneous manufacturing”.

Second, “All other non-manufacturing branches” are considered as “Services”. Third, the residual

category “Metal (unspecified)” is allocated proportionally to all industries in the “Metal industries”

(Basic Metals, Metal Products, Electronics, Industrial Machinery) and 4.) the residual “Unspecified”,

which is allocated proportionally over all 19 IFR industries. The IFR data comes with two drawbacks:

first, it groups the US together with Canada as Northern America before 2011 and second, it doesn’t

provide a split-up by industries for the Northern America before 2004. Given that the US accounts

for about 90 percent of the North American robot stock, we accept the first limitation. To deal with

the second limitation, we apply an algorithm that attributes the total stock in each year before 2004

according to an industry’s share in the total stock in 2004, the first year with disaggregated information

on the industry level. We apply this solution also to Denmark, which similarly lacks data by industry

before 1996.

Industry employment and output: Furthermore, we use data on employment and output from

the 2007 and 2019 EU KLEMS releases (Stehrer et al., 2019; Timmer et al., 2007).12 As in Ace-

moglu and Restrepo (2020), we translate the numbers of persons employed in each European country-

industry in 1990 into “US equivalent workers” by dividing the total number of hours worked in a

European industry by the hours per worker in the corresponding US industry. This is to account for

the fact that European workers work on average less hours and to make employment numbers com-

parable. To adjust for the growth in robot stock due to output growth, we compute an output growth

rate and use the output deflators provided by EU KLEMS to correct for inflation.

10These selected European countries exhibit levels and an evolution of the number of robots per 1000 workers that

mirror the US over the sample period from 1993 to 2015 and will be used to construct an instrumental variable.
11Manufacturing industries include Food and Beverages, Textiles, Wood and Furniture, Paper and Printing, Plastics

and Chemicals, Minerals, Basic Metals, Metal Products, Electronics, Industrial Machinery, Automotive, Shipbuilding and

Aerospace, Miscellaneous Manufacturing; Non-Manufacturing industries include Agriculture, Mining, Utilities, Con-

struction, Education and Research, Services.
12We use both releases as the 2019 release in NACE 2 only covers the period 2000 to 2018, while the 2007 NACE1

release only provides data from 1970 to 2005. To obtain industry employment and output data for multiple countries from

1990 to 2016 we do therefore need to combine both the 2007 NACE 1 and the 2019 NACE 2 releases. The mapping of

NACE 1/2 to IFR industries is available upon request.
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Commuting zone employment: Finally, we compute industry employment shares in each com-

muting zone in 1970 and 1990 as well as changes in labor market outcomes using micro-data from the

US Decennial Census for the years 1970, 1990 and 2000 as well as from the American Community

Survey in 2006, 2007 and 2008 and 2014, 2015 and 2016 provided by the Integrated Public Use Mi-

crodata Series (IPUMS). We use the crosswalks by autor2013growth to map geographies provided

in the IPUMS data to 722 continental commuting zones.

To compute the industry employment in each commuting zone in a given year, we sum over work-

ing individuals aged 16 or older by industry using person weights from IPUMS multiplied with proba-

bility weights from the geographical crosswalks. We calculate the total commuting zone employment

simply as the sum of employment across all industries.13

B.3 Local labor market outcomes

Employment, unemployment and non-participation: Following Acemoglu and Restrepo (2020),

we calculate averages for demographic groups within commuting zones using micro-data from the US

Decennial Census for 1970, 1990, and 2000, the American Community Survey for 2006, 2007, and

2008, and for 2014, 2015, and 2016 provided by Integrated Public Use Microdata Series (IPUMS).

We focus on individuals aged 16 to 65 employed in the private sector, specifically in manufacturing

or blue-collar occupations. Unemployment rates are computed relative to the commuting zone’s total

labor force, and non-participation rates are relative to the total working-age population.

Average wages: To calculate average wage across demographic groups within commuting zones,

we utilize micro-data from the US Decennial Census for 1970, 1990, and 2000, along with data from

the American Community Survey for 2006, 2007, and 2008. Our analysis focuses on individuals aged

16 to 65 employed.

To handle top-coded wage incomes, we cap them at 1.5 times the respective annual top-coded

wage for each year and deflate wages using the 1999 consumer price index. Average weekly income

is computed by dividing total annual wage income by weeks worked, while hourly wages are derived

by dividing the average weekly wage by the usual number of hours worked per week, as indicated in

the micro-data. We winsorize hourly wages at $2 USD, in line with Acemoglu and Restrepo (ibid.).

13The mapping of 1990 Census Bureau industry classes to corresponding IFR industries is also available upon request.
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Individuals are categorized into one of 250 demographic cells within each commuting zone, de-

fined by age groups (16-25, 26-35, 36-45, 46-55, 56-65), educational attainment (less than high

school, high school degree, some college, college/professional degree, and masters/doctoral degree),

sex (male/female), and race (Hispanic, Black, White, Asian, Other). We calculate average yearly,

weekly, and hourly wages for each demographic group within each commuting zone cell.
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Table 4: Descriptive Statistics of Commuting Zone Data

Means by quartiles of

exposure to robots

All Q1 Q4 Q4-Q1

(1) (2) (3) (4)

Changes in outcomes, 1990-2015:

Log private sector employment 21.72 28.23 14.23 -14.00***

Log manufacturing employment -13.87 4.25 -28.48 -32.73***

Log blue-collar employment 1.80 16.42 -11.37 -27.79***

Employment to population ratio 2.00 4.23 0.22 -4.01***

Unemployment rate -0.45 -0.85 -0.31 0.55***

Non-participation rate 1.84 0.40 3.14 2.74***

Changes in outcomes, 1990-2007:

Log average yearly wage 10.69 15.66 6.31 -9.35***

Log average weekly wage 5.00 9.94 1.00 -8.93***

Log average hourly wage 2.80 8.41 -0.98 -9.39***

Share of population, 1990:

Female 0.51 0.51 0.51 0.01***

Less than college 0.71 0.69 0.74 0.05***

Some college or more 0.25 0.28 0.23 -0.05***

White 0.87 0.87 0.89 0.03**

Black 0.08 0.03 0.09 0.05***

Asian 0.00 0.00 0.00 -0.00

Hispanic 0.06 0.10 0.02 -0.09***

Above 65 years old 0.13 0.14 0.13 -0.00

Share of employment, 1990:

Manufacturing 0.17 0.08 0.24 0.16***

Light manufacturing (within manufacturing) 0.22 0.21 0.22 0.01

Female employment (within manufacturing) 0.33 0.32 0.32 0.00

Routine employment 0.36 0.33 0.38 0.05***

Labor market concentration, 1990:

Employment HHI 0.33 0.38 0.29 -0.10***

Observations 722 181 180 361

Note: Columns (1) to (3) display unweighted means of changes in outcomes multiplied by 100

as well as unweighted means of commuting zone characteristics in 1990. For each commuting

zone we compute the average exposure to robots the periods 1990 to 2000, 2000 to 2007 and

2007 to 2015. Columns (2) and (3) display unweighted means within commuting zones in the

first and last quartile of the exposure distribution, respectively. Column (4) displays the differ-

ence in the mean commuting zone characteristics between means forth and the first quartile of

robot exposure and reports statistical significance of the underlying ttest. Coefficients with ***,

**, and * are significant at the 1%, 5% and 10% confidence level, respectively.
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