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Abstract

This study focuses on the role of heterogeneity in network peer effects by account-
ing for network-specific factors and different driving mechanisms of peer behavior. We
propose a novel Multivariate Instrumental Variable (MVIV) estimator which is con-
sistent for a large number of networks keeping the individual network size bounded.
We apply this approach to estimate peer effects on school achievement exploiting the
network structure of friendships within classrooms. The empirical evidence presented
is based on a unique network dataset from German upper secondary schools. We show
that accounting for heterogeneity is not only crucial from a statistical perspective,
but also yields new structural insights into how class size and gender composition
affect school achievement through peer behavior.
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aDepartment of Economics, Universitätsstraße 1, D-78462 Konstanz, Germany. Phone: +49-7531-88-
4214, email: Livia.Shkoza@uni-konstanz.de.

bDepartment of Economics, Ludwigstr. 33, D-80539 Munich, Germany. Phone: +49 89-2180-2224,
email: Derya.Uysal@econ.lmu.de.
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1 Introduction

In the social sciences, it is an uncontested hypothesis that social interactions shape an

individual’s behavior and the behavior of groups of individuals as a whole. A popular

framework of representing these interactions is peer effects models, which have a straight-

forward interpretation but also suffer from their stylized nature. This holds especially

true in education where the identification and estimation of peer effects are crucial issues.

Closely related to the identification issue is the question of to what extend the strength

of peer effects is driven by observable network-specific factors. For instance, in the con-

text of individual educational attainment, obvious candidates for such factors are class size

and gender composition, two factors frequently considered to be major determinants of

individual performance at school.

This paper takes a closer look at the role of heterogeneity within network peer effects

models by augmenting the linear-in-means peer effects model in various dimensions. In

particular, we focus on heterogeneous peer effects by accounting for network-specific factors

- class size and gender composition - and allowing for different driving mechanisms of

peer behavior. Since there is no suitable tool to estimate and test for these dimensions

of heterogeneity in peer effects, we propose a novel Multivariate Instrumental Variable

(MVIV) approach. Contrary to the IV-GMM type of estimators applied to cross-sectional

data which typically assume that the network size approaches infinity, the MVIV estimator

introduced here exploits the information from a set of networks and is consistent for a large

number of networks keeping the individual network sizes bounded. Moreover, we show that

the approach is equivalent to a two-step IV-Minimum Distance (IVMD) approach, which

offers several advantages in applied work.

Using our proposed estimation strategy, we provide empirical evidence on the existence

and importance of peer effects heterogeneity in education. This evidence is drawn from
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a previously unexploited dataset for German secondary schools, which contains unique

information on friendship networks within classes. We show that neglecting heterogeneity

due to network specific features leads to insignificant and potentially misleading findings.

In his seminal work, Manski (1993) explains the dependence of an individual’s behav-

ior on the behavior of others in a socially interactive environment through three possible

effects: (i) endogenous peer effects (the individual is influenced by the peers’ behavior),

(ii) exogenous peer effects (the individual is affected by the peers’ characteristics), and

(iii) correlated effects (individuals’ outcomes are similar due to similar environments or

common unobserved shocks). Separate identification of these effects is far from trivial and

several strategies, primarily driven by data availability issues, have been proposed (see

Bramoullé et al. 2020, for a comprehensive survey on the existing literature). Bramoullé

et al. (2009) show that exogenous information on the second (and higher) order peers can

serve as valid instruments to identify the endogenous peer effect, when network data is

observed. This idea of exploiting the network structure by using exogenous variation in the

covariates of the second-order peers (‘peers of the peers’) as valid instruments is similar

to the IV/GMM estimation approaches for spatial lag models (e.g., Kelejian & Prucha

1998, 1999). It is important to note that the identification via instrumental variables as

suggested by Bramoullé et al. (2009) and several other papers following them is only valid

if the networks are exogenous conditional on observed characteristics and network fixed

effects, and if all networks are fully observed without measurement errors.

Following Bramoullé et al. (2009), several extensions have been proposed to estimate

the endogenous peer effect using network information. As the baseline model we use the

(homogeneous) composite peer effects specification proposed by Liu et al. (2014) as such an

extension. First, the network-specific peer effects can be given a structural interpretation,

as the model relies on a microeconomic foundation, specifically utility-maximizing behavior

in a Nash equilibrium (similar to Blume et al. 2015, Calvó-Armengol et al. 2009, among
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others). Second, the model allows for two channels through which peer effects operate.

One hypothesis is that individuals align their behavior with the norm of their peer group

represented by the mean behavior of the peers, because deviating from the norm may inflict

utility losses. This idea is reflected in the composite model by the local-average part, which

uses the mean behavior of the peer group as a predictor for the individual’s behavior (for

example, Boucher et al. 2014). An alternative hypothesis is that an individual’s return to

their own effort increases with the aggregate quality of the peers. This is reflected in the

local-aggregate part of the composite model. Thus, the composite model allows the data

to decide in which way and how strongly peer behavior affects an individual’s behavior.

In this study, we account for heterogeneity modelling the two peer effects parameters –the

local-average and the local-aggregate coefficients of the composite model– as functions of

network specific features.

Irrespective of the identification strategies applied, the implicit assumption made in

most of the peer effect studies is that the endogenous peer effects are homogeneous across

networks. Thus, the empirical evidence on heterogeneous peer effects in education exploit-

ing network information is rather limited. A notable exception is Calvó-Armengol et al.

(2009), who investigate the relationship between peer effects and the network topology.

They only provide graphical evidence that the strength of the network effect varies with

certain structural network measures, such as density, asymmetry, and redundancy. Con-

trary to Calvó-Armengol et al. (2009) we study the link between network characteristics

and the endogenous peer effect in a structural way within a regression approach. In the

study on peer effects heterogeneity in education by Masten (2018) the endogenous peer ef-

fect is pair-specific, purely random and contrary to our approach, not driven by observable

factors. Using a laboratory experiment on individual performance Beugnot et al. (2019)

study the role of gender heterogeneity in social networks based on the model by Arduini

et al. (2020). From a technical point of view the approach of Arduini et al. (2020) is similar
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to the composite model as both approaches allow for different peer effects resulting from

the presence of several networks. However, in the study conducted by Beugnot et al. (2019)

the focus of interest is to detect differences in peer effects between males and females, while

our study focuses on the question whether networks operate differently depending on the

gender composition.

The empirical evidence on the role of peer effects in education is rather scarce due to the

limited availability of appropriate network data in educational context. To the best of our

knowledge, most of the existing research papers on network peer effects in education use the

National Longitudinal Study of Adolescent to Adult Health (Add Health) (see Bramoullé

et al. 2009, Boucher et al. 2014). In our paper, we study heterogeneous peer effects on school

grades using unique network data from 85 school classes of secondary schools in Germany.

Besides using network data which has not been used before, our study also contributes to the

empirical literature on the determinants of school performance by providing deeper insights

on how certain network features may affect individual performance through peer behavior.

In particular, our study provides a better understanding of how gender composition and

class size affect an individual’s school grades by enhancing peer behavior.

One strand of the literature on gender effects in school performance concentrates on the

difference of outcomes for girls in single-sex and coeducational classes (see for a review Mael

et al. 2005, Morse 1999). The results based on observational studies are somewhat mixed:

some studies provide evidence for positive effects of single-sex schools, whereas others sug-

gest no difference. The other strand of the literature identifies the gender peer effect using

exogenous variation in gender due to experimental or quasi-experimental research design.

Hoxby (2002) and Lavy & Schlosser (2011) find that the proportion of female students has

positive effects on students’ cognitive achievements. They do not find a differential effect on

boys and girls. However, none of these studies explicitly considers the classrooms’ network

structure. The common point in these studies is that gender (or the gender ratio) enters the
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reduced form equations as a regressor. In contrast in our structural approach, the gender

ratio affects the outcome of academic success through the endogenous peer effect. This

indirect effect has a clear structural interpretation in the sense that observed differences

in academic success between classes with different gender compositions have their roots in

different collaborative patterns captured by the peer effects.

Our study also contributes to the long-lasting debate on the effect of class size on

academic success. The empirical evidence on this issue is by no means unambiguous.

For example, Hanushek (1996) and Hoxby (2000) find no effect of class size reduction

on achievement. The results of Dobbelsteen et al. (2002) suggest that students in smaller

classes do not have better academic performance (and even sometimes worse) than students

in larger classes. On the other hand, Angrist & Lavy (1999), Krueger (1999), and more

recent studies, Heinesen (2010), Fredriksson et al. (2012), report a substantial positive effect

of reducing class size on academic achievement. Like the studies on gender effects, the vast

majority of the empirical studies concentrate on direct effects of class size on school success

within reduced form settings. Our study shows that peer effects decrease with class size.

The outline of this paper is as follows. In Section 2 we introduce the composite network

model and elaborate on its identification conditions. Moreover, we introduce the new MVIV

approach for the modeling and estimation of heterogeneous peer effects and its Minimum

Distance representation. In Section 3, we describe our network data and discuss further

implementation issues. Section 4 contains the major empirical findings. Section 5 concludes

and gives an outlook for future research.

2 The Network Model and Estimation

As a baseline model, we rely in the following on the composite peer effects model by Liu

et al. (2014). We assume there is a set of L independent networks, each consisting of nl
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agents (‘the network size’) and an overall number of observations N =
∑L

l=1
nl. The social

connections for network l are indicated by the adjacency matrix Al = [aij,l], where aij,l = 1

if agent i in network l is connected with agent j, and aij,l = 0 otherwise. The diagonal

elements aii,l are set to zero. The reference group of agent i in network l is the set of their

peers, and the size of the reference group is the (out)degree ai,l =
∑nl

j=1
aij,l. Let Gl = [gij,l]

be the row-normalized adjacency matrix of network l, with elements gij,l = aij,l/ai,l, where

by construction 0 ≤ gij,l ≤ 1 and
∑nl

j=1
gij,l = 1.

The econometric specification for the composite peer effects model is of the form

yi,l = ηl + x′

i,lγ +

nl
∑

j=1

gij,lx
′

j,lγg + βa,l

nl
∑

j=1

aij,lyj,l + βg,l

nl
∑

j=1

gij,lyj,l + εi,l, (1)

for i = 1, . . . , nl and l = 1, . . . , L and E[εl|xl, Al, ηl] = 0. This exogeneity assumption is

rather common but strong. It requires that there are no unobserved factors which affect

both the link formation and the outcome variable. If this assumption fails to hold, then

our approach will yield inconsistent estimates as the approaches by Bramoullé et al. (2009)

and Liu et al. (2014).1 Note that the parameters βa,l and βg,l on the local-aggregate and

the local-average endogenous peer effects are heterogeneous, i.e., they are network-specific.

There are kx direct exogenous factors and kx average exogenous peer group factors with

the corresponding parameter vectors γ and γg. Finally, the correlated effect is given by

ηl. Liu et al. (2014) show that the econometric model (1) can be derived from a utility

maximizing network game with a unique Nash equilibrium.

Under homogeneity of the peer effects, i.e., βa,l = βa and βg,l = βg our model reduces

to the model of Liu et al. (2014). The composite model nests two specifications, the local-

aggregate (βg,l = 0) and the local-average model (βa,l = 0).

1Alternatively, one could rely on a model with endogenous link formation. See for example Auerbach
(2022) and Johnsson & Moon (2021) for endogenous link formation approach. However, in such models it
is not straightforward how to incorporate the heterogeneity of peer effects into the model. We leave this
for future research and focus on the heterogeneity aspect of peer effects.
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In matrix notation, the general specification (1) for network l takes the form

yl = ηlιnl
+Xlγ +Xg

l γg + βa,ly
a
l + βg,ly

g
l + εl, (2)

where yl = (y1,l, . . . , ynl,l)
′, yal = Alyl, y

g
l = Glyl, Xl =

[

x1,l x2,l · · · xnl,l

]

′

and Xg
l = GlXl,

while εl = (ε1,l, . . . , εnl,l)
′ and ιnl

is an nl × 1 vector of ones.

We partial out the network-specific level effects via transformation by multiplying (2)

by Jl = Inl
− 1

nl

ιnl
ι′nl

from left. Because Jlιnl
= 0, the transformed model is

ỹl = X̃lγ + X̃g
l γg + βa,lỹ

a
l + βg,lỹ

g
l + ε̃l , (3)

with ỹl = Jlyl, X̃l = JlXl, X̃g
l = JlX

g
l and ε̃l = Jlεl. The regressor matrix Wl =

[

X̃l X̃
g
l ỹal ỹgl

]

with dimension nl×kw, where kw = 2(1+kx), has column full rank. Provided

that the identification conditions hold, as outlined in Proposition 3 in Liu et al. (2014),

the parameters in (3) can be estimated consistently by instrumental variables for a single

network l assuming that the size of the network approaches infinity.2 Instead, we assume in

the following that the size of each network is random and bounded, i.e., nmin ≤ nl ≤ nmax.

We believe that this is a more realistic assumption when the networks consist of friendship

links in school classes as in our empirical study.

In order to introduce network heterogeneity we assume that the parameters βa,l and βg,l

for network-specific peer effects can be explained by a set of network-specific observable

factors

βj,l = β0,j + v′lβj for j = a, g , (4)

where vl is a kv × 1 vector of network-specific characteristics, and β0,a and β0,g denote the

2The identification conditions for the local-average model and local-aggregate model are discussed in
Proposition 5 in Bramoullé et al. (2009) and in Proposition 2 in Liu et al. (2014), respectively.

7



intercept terms for j = a, g, respectively. Inserting (4) into (3) gives in matrix notation

ỹl =Xl θ + ε̃l , (5)

with: Xl =
[

X̃l X̃g
l ỹal ỹgl ỹal v

′

l ỹgl v
′

l

]

θ =
(

γ′, γ′

g, β0,a, β0,g, β
′

a, β
′

g

)

′

It is important to note that the nl × k regressor matrix Xl with k = 2(1 + kx + kv) has

no full column rank because the interaction terms with vl imply perfect multicollinearity.

Consequently, IV-estimation of θ for a single network becomes infeasible (see Appendix A.1

for a more detailed exposition).

Multivariate IV Regression

In order to estimate the parameter vector θ of the heterogeneous peer effects network model

we propose a multivariate IV approach. By stacking the single network representations (5)

into a hyper-system, we obtain:

Y = X θ + ε (6)

where:

Y =





















ỹ1

ỹ2

...

ỹL





















ε =





















ε̃1

ε̃2

...

ε̃L





















X =





















X1

X2

...

XL





















.

Moreover, define Z = diag[Zl] as the
(

(
∑

l nl)× qL
)

-dimensional block-diagonal instru-

ment matrix with Zl as the nl × q ≥ k-dimensional network-specific instrument matrix.
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Then IV estimation of (6) with instrument matrix Z yields the well-known form:

θ̂MV IV =
(

X′ Z(Z′ Z)−1 Z′X
)

−1

X′ Z(Z′ Z)−1 Z′ Y

=

(

∑

l

X′

l Zl(Z
′

l Zl)
−1 Z′

l Xl

)

−1
∑

l

X′

l Zl(Z
′

l Zl)
−1 Z′

l ỹl ,

(7)

where the second equality arises from the block-diagonality of the projection matrix P =

Z(Z′ Z)−1 Z′, such that the IV estimator is given by sums of single network terms. For

iid random draws of networks {yl, Xl, Zl, Al}Ll=1
and further regularity conditions given in

Assumption A.1 we show in Proposition A.1 of Appendix A the consistency of the MVIV

estimator for large L:

plim
L→∞

θ̂MV IV = θ.

For conditionally heteroskedastic errors at the network level, the asymptotic distribution

given by:

√
L
(

θ̂MV IV − θ
) d→N

(

0,Λ−1ΦΛ−1
)

,

with Φ =E [Z′

l ε̃lε̃
′

l Zl]

Λ =E [X′

l Zl] E [Z′

l Zl]
−1

E [Z′

l Xl] ,

as outlined in Proposition A.2 and proven in Appendix A.

Note that the large L setting circumvents the problem of weak identification because

there are repeated observations of the correlation between instruments for a given sam-

ple size. Therefore, the question of a correlation between instruments and endogenous

variables, which asymptotically vanishes with increasing nl, does not arise.
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Instrumental Variable Minimum Distance Estimation

From a practical point of view, it is interesting to note that the MVIV estimator also has

a Minimum Distance representation, which can easily be implemented in applied research.

This is based on the first-stage IV regression:

ỹl = Wl πl + ε̃l , (l = 1, . . . , L) (8)

where πl =
(

γ′

l, γ
′

g,l, βa,l, βg,l

)

′

is the first-stage (“reduced form”) parameter vector. This

equations differs from (3) only by the parameters γl, γg,l. As stated earlier, the nl × kw

dimensional regressor matrix Wl =
[

X̃l X̃
g
l ỹal ỹgl

]

has full column rank.

The restriction between the first-stage reduced form parameter vector πl and the struc-

tural form parameter vector θ is given by

πl(θ) =Ml θ , (9)

with

Ml =





















Ikx 0 0 0 0 0

0 Ikx 0 0 0 0

0 0 1 0 v′l 0

0 0 0 1 0 v′l





















.

Stacking the restrictions between the L reduced form parameter vectors πl and the struc-

tural form parameter θ given by (9) into a (kwL× 1)-vector containing the complete set of

restrictions gives:

π(θ) = Mθ , (10)
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with π(θ) = (π1(θ)
′, π2(θ)

′, . . . , πL(θ)
′)′ and M = (M ′

1
,M ′

2
, . . . ,M ′

L)
′.

In the second step we estimate θ by minimizing the weighted quadratic distance between

the estimated reduced form parameter vector π̂(θ) =
(

π̂′

1
, π̂′

2
, . . . , π̂′

L

)

′

and Mθ with respect

to the structural parameter vector θ. Using the inverse of any consistently estimated

variance of π̂(θ), the minimization problem becomes:

θ̂MD ≡ argmin
θ

[

π̂ −Mθ
]

′

Ω̂−1
[

π̂ −Mθ
]

,

where Ω̂ is a consistent estimator of V [π̂(θ)]. Because of the independence of the networks,

the estimated weighting matrix Ω̂−1 = V̂ [π̂]−1 = diag[V̂ [π̂l]
−1] takes the form of a block

diagonal matrix with the inverses of the estimated variance-covariance matrices from the

first-stage estimates building the blocks. Moreover, due to the linearity of the restriction

between π and θ, the IVMD can be represented as a generalized least square estimator of

a regression of π̂ on M :

θ̂IV MD =
(

M ′Ω̂−1M
)

−1

M ′Ω̂−1π̂ =
(

L
∑

l=1

M ′

l V̂ [π̂l]
−1Ml

)

−1(
L
∑

l=1

M ′

l V̂ [π̂l]
−1 π̂l

)

. (11)

The minimum distance approach presented here differs from classical MD settings in the

way asymptotic convergence is achieved. In conventional settings, consistency and asymp-

totic normality results from the first-stage estimates by assuming nl → ∞ ∀ l = 1, . . . , L.

In contrast, for the MDE approach described above, the asymptotic results are derived by

exploiting the independence across networks and the information on the link between π̂l

and θ as the number of networks L tends to infinity.

In applied work the MDE approach is attractive since the first-stage estimates can ob-

tained by standard software packages. The IV estimation of πl in the first-stage also allows

for a straightforward implementation of different sets of instruments for each network. This
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is desirable in the case of isolated individuals when additional moments from the isolated

individuals are included in the first-stage estimates. Importantly, this variation in instru-

ments for different networks does not impact the second-stage estimation. Moreover, the

MDE approach can provide additional insights into each individual network as a byprod-

uct. In other words, the minimum distance approach can yield valuable information about

the specific characteristics of each network under study.

3 Data

Our empirical study is based on the data of the Gymnasiasten-Studie (CAESR 2007), a

longitudinal survey of 3,385 10th grade students attending upper secondary school (Gym-

nasium) in the German federal state of North Rhine-Westphalia (NRW) in the school year

1969/1970.3 Initial data contains 121 classes from 68 randomly selected upper secondary

schools. The initial survey of the students provides information on their previous school

grades as well as individual characteristics such as gender and age. Besides the student

survey, a standard psychometric Intelligence Structure Test (IST) was administered in the

classroom during the initial data collection period. About ten years after the original sur-

vey, the students’ grades were collected from the school archives. Central to our study is

the network information collected in the Sociometric Test of the Gymnasiasten Studie at

the time of the initial survey. To construct the adjacency matrices Al and Gl for each class,

we use information about every student’s assessment of whom he or she liked in the class

based on the question:4

3Even though it is a longitudinal survey, the classroom network is only measured at the initial survey.
There were three follow-up surveys, each approximately 10 years appart. Unfortunately, the follow-up
surveys suffer from substantial panel attrition.

4The original question in German is “In jeder Klasse gibt es Mitschüler, die man sympathisch findet

und die man mehr als andere in der Klasse gut leiden kann. Einige findet man sicher recht unsympathisch,

und das ist auch ganz normal so. Würden sie nun zunächst einmal die Schüler nennen, die Sie persönlich

gut leiden können.”
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“In every class there are fellow students who one likes more than others in the

class. Some others one finds quite unpleasant, and that is quite normal. Kindly

first list the students who you personally like a lot.”

Most of the empirical papers studying network peer effects in education use the National

Longitudinal Study of Adolescent to Adult Health (ADD Health) data. Our unique network

data differs from the Add Health data in several ways. One difference is that the students

in our dataset nominate their friends within the classroom, while in Add health data

nominations are made within the schools. At the time the survey, 10th graders attending

German upper secondary schools were taught at the class unit with a rather stable class

composition over several years. Therefore, using nominations at the class level seems to be

more appropriate. More important, in the Add Health survey, the respondents were asked

to name up to ten (five female and five male) best friends. This might raise a truncation

problem that does not occur with our dataset. In fact, Griffith (2021) shows that peer

effects with censored data are under-estimated.

We construct our sample by merging information from three different sources: student

surveys (Hummell et al. 1970), administrative data from school archives (Meulemann et al.

1986), and the sociometric test (Hummell et al. 2018). Among the 68 schools that initially

participated in the survey, 6 did not agree to data collection due to privacy concerns. The

remaining 62 schools accounted for 91% of the initial sample of students (3,010 students).

Due to incomplete information in the school archives, it was only possible to collect the

information on the grades of approximately 2,700 students. Lastly, we delete an observation

when any of the variables used in the empirical model were missing, and we also delete the

isolated individuals, i.e., those who did not name anyone as a friend. We lose around 300

observations after this step. This leaves a sample of 2,385 students and 101 classes.

In network data, removing individuals due to missing information might have different

consequences then in a cross-sectional data. Specifically, it might lead to mismeasurement
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in the network if a friendship link is affected by this. Following the identification approach

by Bramoullé et al. (2009), an implicit assumption in the literature, which we also adopt

here, is that the links among individuals are perfectly observed. It is still not much known

about the econometric implications of measurement errors in networks, however, Lewbel

et al. (2021) show in a recent paper that relatively small amounts of measurement error in

the network can be safely ignored in estimation. In particular, they show for the instru-

mental variable estimators like Bramoullé et al. (2009) and their standard errors, remain

consistent and valid, as long as the number and size of measurement errors in an observed

adjacency matrix is relatively small. Although they do not consider a hybrid model with

local-aggregate and loca-average effect together, they show for both cases separately that

the usual asymptotics provide a good approximation for inference. We believe that in our

case the measurement errors created in the adjacency matrix by deleting individuals due

to missing observations are small enough to be ignored safely as they suggested. After

cleaning the data, we excluded classes with fewer than 18 students, because the first-stage

estimates of a small network suffer from low degrees of freedom. Excluding small classes

results in 2,165 students in 85 classes.5 Table 1 contains the summary statistics of the

variables used in our empirical analysis and some network statistics. In the left panel of

the table, we present the variables before applying the class size restriction. One can see

that the sample means are not substantially affected by the class size restrictions.

Academic performance is measured by the average of the final grades (GPA) for all

compulsory and elective courses at the end of the school year 1969/70. As mentioned

before, we use the administrative data collected from the school archives to construct the

GPA. At the time of the survey, the choice of different courses within a class was very

limited, i.e., all students of the same class had to take the same courses. Selection of

certain specializations (e.g., languages, mathematics and sciences, humanistic secondary

5We estimated the model using different thresholds as a robustness check, but in general the results did
not change qualitatively.
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Table 1: Summary Statistics

Entire Sample Estimation Sample

Mean Std. Dev. Mean Std. Dev.

Outcome Variables

GPAa 3.20 0.48 3.19 0.48
German 3.46 0.76 3.45 0.76
Math 3.51 0.96 3.51 0.95
Individual characteristics

IQ 40.20 9.11 40.03 9.14
Previous GPAa 3.19 0.49 3.19 0.49
Age 15.38 0.87 15.37 0.87
Network measures

Class size 27.82 6.01 29.19 4.92
Relative Class sizeb 0.71 0.15 0.75 0.13
Sample Class sizec 23.61 5.98 25.47 4.23
Female share 0.45 0.43 0.49 0.43
Sample female sharec 0.45 0.43 0.49 0.44
Density 0.24 0.06 0.22 0.04
Clustering 0.03 0.02 0.02 0.01

N 2,385 2,165
L 101 85

Note: Own calculations. We exclude classes with fewer than 18 students in
the estimation sample. a: Better grades are represented by lower values. b:
relative class size represents the class size divided by the size of the largest
class. c: Sample class size refers to the number of remaining students in the
classroom after deleting the individuals with missing information either in
the survey data, administrative data, or in the sociometric test. The same
principle applies to the calculation of the female share measure.

school) took place with the choice of the specific secondary school. Therefore, the GPA

within a given network is based on mostly the same subjects. The grades are measured

in terms of the German grading system: with 1 (’very good’) being the best grade and 6

(’insufficient’) as the worst grade. In addition to the overall GPA, we also closely examine

scores in Mathematics and German to detect potential differences in peer behavior across

subjects.

Individual heterogeneity in our model is captured by the student’s IQ score, the GPA

from the previous school year, and the student’s age. The IQ is constructed from the

correctly solved questions of the IST. We control for the GPA from previous year as a

15



proxy for the overall school performance at the beginning of the survey year. In order

to account for network heterogeneity in the peer effects of the local-average and local-

aggregate models, we allow the two peer effect parameters βa,l and βg,l in Equation (2) to

depend on class-specific factors. As such factors we use the relative class size, i.e., the size

of the network relative to the largest class size, and the fraction of girls in the class. As

discussed in detail in Section 1, the literature on the effects of the class size and gender

(ratio) on school outcomes is very rich. In general, the main consideration is the direct

causal link from class size to the outcome. It seems, however, reasonable to look for a

potential indirect link through heterogeneous peer effects. In a study, Lin (2014) estimates

peer effects separately for large and small classes using the Add Health dataset and finds

significant differences between the peer effects in the two groups. She also conducted similar

analyses of various network attributes, including the gender ratio. Surprisingly, she does

not find a significant difference between the peer effects of the two subsamples by gender

proportion. However, experimental evidence about gender diversity and performance shows

that team collaboration is greatly improved by the presence of women in the group (see,

for example, Bear & Woolley 2011, and references therein).

The network density is defined as the ratio of all connections in a network to the number

of potential connections. Thus, the denser a network is, the closer its density is to unity. In

our sample, the density of the networks varies between 0.14 and 0.37, with 45 classes having

a lower density than the mean. Clustering, on the other hand, measures all transitive triads

relative to the total number of triads. It is a measure of the probability that two peers of

an individual nominate each other. In our dataset this measure varies between 0.004 and

0.08, indicating rather sparse friendship networks at the class level.

To obtain a better understanding of the network structure and its potential role for

peer effects, we take a look at the summary statistics of the friends’ nominations. The

average number of friends a student named (outdegree) is 5.48, indicating that students
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give considerable thought to nominating their friends. Figure 1 depicts the distribution of

friends. The distribution of outdegrees and indegrees is in the line with the fact that the

networks are sparse. Most of the students name around five classmates that they like, and

very few name more than ten peers.

Our motivation for considering potential heterogeneity in peer effects results from the

observation that the network structures and characteristics vary substantially across net-

works. We hypothesize that network differences might affect how peer effects operate.

Using network graphs, we illustrate how school classes (networks) vary in terms of in-

dividual performance, class size, gender, and network structure. The size of a node is

proportional to the outdegree, its color indicates the GPA score (lighter colors represent

better performance), and the shape of the node indicates the gender. Since plotting all

networks together for visual inspection would give too small a picture to be detected, we

concentrate on four specific classes.

First, we plot the largest and smallest classrooms in Figure 2. Second, Figure 3 depicts

the two networks with the highest and lowest densities in the sample. Without the intention

of stressing the following argument too much, a comparison of the largest with the smallest

network in Figure 2 illustrates that the performance of students might depend on their

degree of connectivity and the class size. For both networks, the better performing students

are slightly more central (being named as friends more often), while particularly in the

larger network, the less well-connected students are also associated with lower performance.

Figure 3 provides further exploratory evidence that the network structure varies across

classrooms. The network on the right, with the least density, reveals two major clusters. In

contrast, the network on the left, with higher density, is centered around a single cluster of

students. In the densest network we find several very popular students, who have average

grades. The least dense classroom corresponds to a boys class, where there are no students

with good grades and the most central ones are again average students. Comparing the
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network graphs for different subjects we hardly find any differences. The four classroom

networks depicted appear very similar if the color of the nodes is based not on the GPA

scores but on the grades in Math and German.

4 Empirical Results

The primary specification in our study is the heterogeneous composite model given by

(2), which incorporates the local-aggregate and the local-average peer effects model as

nested specifications. Although most of the empirical studies focus on peer effects resulting

from norm behavior, and therefore favor the local-average model, ex-ante, both hypotheses

on how peers affect individual educational achievement are reasonable. In fact, the two

effects may complement or even counteract each other. As mentioned above, our main

outcome variable of interest is the GPA. However, since peer effects may operate differently

depending on the subject, we also study the peer effects for Math and German (see Tables

A1 and A2 in the Appendix). As predetermined or exogenous explanatory variables we use

the GPA of the previous year, IQ, and age, as well as their counterparts for the student’s

peer group. As network-specific characteristics we use the relative class size and the fraction

of girls.

As it has been pointed out in Section 2 the exogeneity assumption on the friendship

links conditional on observed characteristics and network fixed effects might fail if there are

unobserved factors affecting both the link formation and the outcome variable. We believe

that by including previous GPA, IQ and age we control for the most important factors (or

proxies for such factors) which might affect the current grades, as well as forming friendship

links. In particular, we believe that previous GPA captures overall school performance at

the beginning of 10th grade, IQ captures cognitive skills, while age proxies certain age

specific skills.
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Table 2 summarizes the estimation results for the composite, local-aggregate, and local-

average models with heterogeneous peer effects based on the IVMD approach with globally

differenced variables. To facilitate the interpretation of the estimation results, we centered

the network-specific characteristics around their means. As a result, the two intercept terms

in (4) reflect the aggregate and average peer effects for a class with mean characteristics.

First and most importantly, our estimation results reveal that taking into account het-

erogeneity in peer effects turns out to be absolutely crucial. We find clear evidence that

both peer effects significantly differ by class size and gender composition. Several studies

that concentrate on homogeneous peer effects fail to provide sufficient statistical evidence

for the existence of peer effects (e.g., Boucher et al. 2014, Liu et al. 2014). Like these

studies, we also find insignificant estimates for our sample when network heterogeneity is

ignored (see Table A3 in the Appendix).

Second, the way peers affect a student’s performance also matters, as both mechanisms,

the local-aggregate and the local-average one, have a positive impact on a student’s ed-

ucational attainment in a representative classroom with average relative size and gender

composition. Comparing the Wald statistics in the last row of Table 2, we observe that the

heterogeneous local models are rejected in favor of the heterogeneous composite model.

In the composite model both intercepts turn out to be positive at the 1% significance

level. This means that if the peers perform better individually or on average, then so does

the individual. It is important to note that the coefficients of the two local models are not

directly comparable in magnitude. The peer effects due to local-aggregate behavior are

proportional to the number of peers (outdegree of student), i.e., the larger the student’s

peer group, the stronger that student’s performance is affected by their peers. Therefore,

we compute the impact of a one-unit change in the GPA of the peers on the individual’s

GPA, for both models. For a class with average characteristics the local-aggregate effect

would exceed the local-average effect if the student has more than 52 peers. Noting that the
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median outdegree in our sample is 5 (see Figure 1) we can conclude that the local-average

peer effect generally dominates the local-aggregate peer effect.

Interestingly, the coefficients on the female share variable in local-aggregate and local-

average part operate in different directions. The gender effect is large and positive for the

local-average part but small and negative for the local-aggregate part. By interpreting the

local-average effect as a proxy for norm behavior, we can conclude from our estimates that

norm behavior is significantly more prevalent in girls-only classes compared to boys-only

classes. To illustrate the sizes of the effects of the two components, consider two classes of

average relative size – one being a girls-only class while the other class is a boys-only class.

In this case, a student with 5 friends in a girls-only class experiences an overall peer effect

of 0.1841 (= 5× (0.0021− 0.0027× (1− 0.49)) + (0.1099+ 0.1386× (1− 0.49))), while the

corresponding effect for a student with the same number of friends in a boys-only class is

0.0590.

The effect of class size is negative and significant for both peer effect mechanisms,

implying that for larger classrooms, the enhancing contribution of peer behavior diminishes.

Assuming an average female share, the peer effect of the smallest class size is 0.2223, while

for the largest class size the overall peer effect is 0.0142. It is important to emphasize

that this class size effect is novel in the literature, as it operates through peer behavior.

It operates in addition to a potential direct effect of class size on a student’s performance,

which is traditionally considered in studies on the determinants of educational achievement.

Because of the partialling out network-specific level effects the effect of class size on

peer behavior can be seen as a second channel for the impact of class size on educational

achievement. Unlike the conventional direct effect of class size obtained from reduced form

specifications, the effect of class size through peer behavior indicates the role of social

interactions in a classroom, which in turn partially determines the individual performance.

In this sense, our approach also offers a specific structural explanation for the variations in
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Table 2: IVMD Estimation Results for GPA

Heterogeneous Peer Effects Model
Composite Local-aggregate Local-average

Local-aggregate peer effect

Intercept 0.0021∗∗∗ 0.0012∗∗∗

(0.0003) (0.0003)
Relative Class Size -0.0094∗∗∗ -0.0109∗∗∗

(0.0025) (0.0025)
Female Share -0.0027∗∗∗ -0.0010

(0.0008) (0.0008)
Local-average peer effect

Intercept 0.1099∗∗∗ 0.1526∗∗∗

(0.0262) (0.0293)
Relative Class Size -0.3768∗∗∗ -0.3252∗∗∗

(0.1096) (0.1229)
Female Share 0.1386∗∗∗ 0.1432∗∗∗

(0.0326) (0.0353)
Own characteristics

IQ -0.0033∗∗∗ -0.0031∗∗∗ -0.0027∗∗∗

(0.0004) (0.0004) (0.0004)e
Previous GPA 0.7344∗∗∗ 0.7401∗∗∗ 0.7317∗∗∗

(0.0071) (0.0071) (0.0076)
Age -0.0049 -0.0036 -0.0023

(0.0038) (0.0039) (0.0043)
Peers’ characteristics

IQ 0.0002 -0.0003 0.0001
(0.0008) (0.0008) (0.0008)

Previous GPA -0.0249 0.084∗∗∗ -0.0465∗

(0.0246) (0.0144) (0.0274)
Age -0.0203∗∗∗ -0.0148∗ -0.023∗∗

(0.0076) (0.0081) (0.0089)

Wald statistics (d.f.) 66.32 (3) 50.83 (3)

Estimates of the three model variants obtained by IVMD estimation. The first
column corresponds to the composite model, the second column corresponds to
the local-aggregate model and the third column corresponds to the local-average
model. Following Liu et al. (2014), we use the average characteristics of the second
order peers as instruments for the local-average part, and the aggregate charac-
teristics of the peers for the local-aggregate part. The Wald statistics test the
composite model against the local models. Robust standard errors are reported
in parentheses. First-stage errors are assumed to be heteroskedastic, ∗p < 0.1;
∗∗p < 0.05; ∗∗∗p < 0.01, N=2165, L=85.

21



class performance.

Figure 4 depicts the size of the combined peer effect over different class sizes and gender

compositions. For larger classes with a low fraction of female students, the peer effect is

negative. Classes with a mean female composition have a negative overall peer effect if the

class size is larger than 34. All in all, the combined peer effect ranges from -0.12 to 0.23.

The coefficients on own IQ and own previous GPA have the expected signs. Not very

surprisingly, the GPA of the previous year is a strong predictor of current performance.

Students with a higher IQ also perform better. Our results do not suggest a significant

impact of age. For the exogenous peer effects, we observe that having smarter or less smart

peers does not have an impact on the individual outcome. Neither does the previous GPA

of the peers. The results show that having older peers helps to have better grades.

Columns 2 and 3 in Table 2 summarize the results from the heterogeneous local models.

The impact of the female share in the local-aggregate model is no longer significant but

has the same sign as in the composite model and is similar in magnitude. In the local-

aggregate model, we see that having peers with better grades has a negative influence on

the individual outcome. Other estimates are similar to those for the composite model.

The IVMD estimates of the heterogeneous local and composite models with grades in

Math and German as dependent variables are given in Tables A1 and A2 in the Appendix.

For these two dependent variables we also find heterogeneity in peer effects in terms of

the class characteristics and the transmission mechanism. With a few exceptions, these

findings for the two subjects are consistent with the findings for the overall GPA score.

However, a notable exception is the significant and negative coefficient on female share for

the local-average effect for Math, which indicates that the role of gender composition in

educational outcomes must be discussed in the light of the field of study. Similarly, the

positive coefficient of class size for Math and German suggests that the role of class size on

peer behavior also depends on the field of study.
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Finally, we also use the Wald test to test the heterogeneous composite model against

its nested specifications. Comparing the Wald statistics in the last row of Table A3 be-

tween the nested homogeneous specifications and their counterparts in the heterogeneous

specifications reveals that the null hypothesis of homogeneous peer effects has to be re-

jected against the heterogeneous peer effects models for all three outcome variables. These

findings hold for the heterogeneous composite model as well as for the heterogeneous local

models.

5 Conclusions

This paper contributes to the growing literature on the empirical analysis of social networks.

In particular, we focus on the role of heterogeneity in network peer effects by accounting

for network-specific factors and different driving mechanisms of peer behavior. For our

empirical study of the role of network peer effects on educational attainment, we use a

unique network dataset of 85 school classes of secondary schools in Germany, which allows

us to exploit exogenous variation in second degree friends to identify the endogenous peer

effects.

For the estimation of peer effects in a set of networks we introduce a Multivariate Instru-

mental Variable approach and its easily implementable Minimum Distance representation

which proves to be a valuable tool to study parametrically rich network environments.

The asymptotic properties of the estimator are based on a large number of networks while

keeping the size of the individual networks bounded.

As network-specific factors, we find that the size of the network (i.e., of a school class)

and gender composition are important determinants of the peer effects, while conventional

model specifications with homogeneous peer effects turn out to be too crude and lead to

insignificant findings. In addition to the network-specific factors, heterogeneity in terms of
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the underlying behavioral assumptions matters. In particular, we can show that a student’s

educational attainment is affected by both the pure size of their peer group, as reflected by

the local-aggregate model, and the norm behavior captured by the local-average model.

Our study contributes to the voluminous empirical literature on the determinants of

educational attainment. We show that an increase in the class size alone reduces peer

behavior and may even lead to negative peer effects in very large classes. Unlike many

empirical studies in this field, which are largely based on reduced form approaches, our

approach gives rise to a structural interpretation of why class size and gender composition

matter and why these factors differ across subjects. For instance, our study sheds light on

peer behavior as a specific channel through which class size affects educational attainment.

We regard our study as a promising starting point for more realistic modeling of het-

erogeneous network behavior and for a deeper understanding of how networks operate.

Future work should be devoted to more elaborate specifications of network heterogeneity

(e.g., nonlinear or nonparametric peer effects) as well as to the analysis of the relationship

between network structures (e.g., properties of the adjacency matrices) and the identifica-

tion of network peer effects. In particular, a promising extension of our approach would be

to treat the heterogeneous peer effects within the correlated random coefficient framework.
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A Asymptotic Results

For ease of exposition the results presented in this appendix are based on the local-average

model with heterogeneous peer effects (βa,l = 0, βg,l = βl). To simplify the notation,

we assume that the correlated effect ηl is zero or has been partialled out. Moreover,

we concentrate on one exogenous factor (kx = 1) and one factor driving the peer effects

parameter kv = 1. Thus, the local-average model in vector notation is given by:

yl = γxl + γgx
g
l + βl y

g
l + εl , (l = 1, . . . , L) (12)

where yl is the nl×1 vector of outcome variables, Gl the row normalized adjacency matrix,

xl the exogenous factor, xg
l = Glxl the exogenous factor of the peers. The local-average

outcome of the peers is ygl = Glyl. For the corresponding reduced form expression we have:

yl =
(

Inl
− βlGl

)

−1(

γInl
+ γgGl

)

xl + εl .

If γg+γβl 6= 0 and Inl
, Gl, G

2

l andG3

l are linearly independent, the parameters are identified

(see Bramoullé et al. 2009).

A.1 (Non-) Identification of a single network l

Assuming that there are no isolated individuals we get for the expected outcome of the

peers:

E[ygl | xl, Gl] = γGlxl + (γg + γβl)(G
2

l + βlG
3

l + . . .)

The IV estimator of parameters in (12) is consistent and asymptotically normal for nl → ∞.

Under this assumption Minimum Distance estimation of the heterogeneous peers effects
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model satisfies the classical assumptions of MDE even if the number of networks is fixed.

Assume now that the heterogeneous peer effects parameter βl depends linearly on the

observable factor vl: βl = β0 + β1vl. Even without the presence of endogeneity the k × 1-

dimensional overall parameter vector θ = (γ, γg, β0, β1)
′ of the structural equation

yl =γxl + γgx
g
l + β0y

p
l + β1vly

p
l + εl = Xl θ + εl (13)

are not identified on the network level since the ypl and vly
p
l are proportional such that the

nl × k dimensional regressor matrix Xl =
[

xl xg
l ygl vly

g
l

]

has no full column rank.

A.2 Consistency

Assumption A.1 (System of Peer Effects Networks)

Consider the model for the l-th network as defined in (13) and assume that the following

conditions hold:

(i) {yl,Xl,Zl}Ll=1
is a sequence of iid random matrices with finite moments, where

– Zl =
[

z1,l z2,l . . . znl,l

]

′

with zi,l a q × 1 vector of instrumental variables

– Xl =
[

x1,l x2,l . . .xnl,l

]

′

with xi,l a k × 1 vector of explanatory variables

for network l with q ≥ k and

(ii) E[εi,l| zi,l] = 0

(iii) V [εi,l| zi,l] = σ2

(iv) E
[

zi,l x
′

i,l

]

is a finite q × k - matrix

(v) E
[

zi,l z
′

i,l

]

is a finite, non-singular q × q - matrix

(vi) E
[

xi,l x
′

i,l

]

is a finite k × k - matrix
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(vii) The size of network l is a bounded random variable with 0 < nmin ≤ nl ≤ nmax and

independent of the network variables

Proposition A.1 (Large L consistency)

Given the assumptions A.1 hold, the multivariate IV estimator for heterogeneous networks

θ̂MV IV given by (7) is consistent for large L and random network sizes:

plim
L→∞

θ̂MV IV = θ

Proof A.1 (Large L consistency)

Decompose the MVIV estimator as follows:

θ̂MV IV = θ +
( 1

L
X′ PX

)

−1 × 1

L
X′P ε

and taking the plim on both sides gives:

plim
L→∞

θ̂MV IV = θ +
(

plim
L→∞

1

L
X′ PX

)

−1 × plim
L→∞

1

L
X′ P ε

= θ +
(

plim
L→∞

1

L
X′ PX

)

−1 × 0

= θ ,

where we made use of Lemma A.1 and Lemma A.2 below to show the convergence of the

first plim to a finite invertible matrix and the second plim to a zero vector.

Lemma A.1 (Weak Convergence of 1

L
X′ PX)

Given the assumptions stated in Assumption A.1 hold, then

plim
L→∞

1

L
X′ PX = E [nl] E

[

xi,l z
′

i,l

]

E
[

zi,l z
′

i,l

]

−1

E
[

zi,l x
′

i,l

]

.
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Proof A.2 (Lemma A.1)

Decompose the probability limit into the three parts:

plim
L→∞

1

L
X′ PX =plim

X′ Z

L

(

plim
Z′ Z

L

)

−1

plim
Z′ X

L

=E [nl] E
[

xi,l z
′

i,l

]

E
[

zi,l z
′

i,l

]

−1

E
[

zi,l x
′

i,l

]

,

where the first and the last (transposed) term arise from:

plim
L→∞

1

L
X′ Z =plim

L→∞

1

L

L
∑

l=1

X′

l Zl

=E [X′

l Zl]

=E

[

nl
∑

i=1

xi,l z
′

i,l

]

=Enl
E

[

nl
∑

i=1

xi,l z
′

i,l

∣

∣

∣

∣

∣

nl

]

=E
[

nl E
[

xi,l z
′

i,l

]]

=E [nl] E
[

xi,l z
′

i,l

]

.

The second equality arises from weak law of large numbers based on assumption (i), while

the fourth and the fifth equality arise from the law of iterated expectations and the inde-

pendence assumption (vii), respectively.
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For the second term the following property holds:

plim
L→∞

1

L
Z′ Z =plim

L→∞

1

L

L
∑

l=1

Z′

l Zl

=E [Z′

l Zl]

=E

[

nl
∑

i=1

xi,l z
′

i,l

]

=E [nl] E
[

zi,l z
′

i,l

]

.

Invertability of E
[

zi,l z
′

i,l

]

is assumed by (v).

Lemma A.2 (Weak Convergence of 1

L
X′ P ε)

Given the assumptions stated in Assumption A.1 hold, then

plim
L→∞

1

L
X′ P ε = 0 .

Proof A.3 (Lemma A.2)

Decompose the probability limit into the three parts:

plim
L→∞

1

L
X′ P ε =plim

X′ Z

L

(

plim
Z′ Z

L

)

−1

plim
Z′

ε

L

=E [nl] E
[

xi,l z
′

i,l

]

E
[

zi,l z
′

i,l

]

−1 × 0

=0.

The convergence proofs of the first two terms are given by Lemma A.1. For the last term
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we have:

plim
L→∞

1

L
Z′

ε =plim
L→∞

1

L

L
∑

l=1

Z′

l εl

=E [Z′

l εl]

=E

[

nl
∑

i=1

zi,l εi,l

]

=Enl

[

E

[

nl
∑

i=1

zi,l εi,l

∣

∣

∣

∣

∣

nl

]

]

=E [nl E [zi,l εi,l]]

=0,

where we made use again from the iid assumption across the networks and the validity of

the instruments (ii).

A.3 Asymptotic Normality

Proposition A.2 (Asymptotic Normality)

Assume the Assumptions A.1 hold, but replace Assumption (iii) by the Assumption (iii)’

V [zi,l εi,l] = E
[

ε2i,l zi,l z
′

i,l

]

is a finite non-singular matrix, then the asymptotic distribution

of the multivariate IV estimator under heteroskedasticity is given by:

√
L
(

θ̂MV IV − θ
) d−→N

(

0,Λ−1ΦΛ−1
)

, (14)

with Φ =E [Z′

l εlε
′

l Zl]

Λ =E [X′

l Zl] E [Z′

l Zl]
−1

E [Z′

l Xl] ,

Proof A.4 (Asymptotic Normality)
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Scale the stabilizing transformation by L and
√
L as follows:

√
L
(

θ̂MV IV − θ
)

=
( 1

L
X′ PX

)

−1 × 1

L
X′ P ε = A−1

L bL

where weak convergence of AL ≡ 1

L
X′ PX to a finite matrix has already been shown by

Lemma A.1. Moreover, for the random vector bL can be decomposed as:

bL ≡
( 1

L
X′ Z

)( 1

L
Z′ Z

)

−1 1√
L
Z′

ε

As the weak law of large number and the central limit theorem hold the last term converges

to a normally distributed vector:

1√
L
Z′

ε
d−→ N (0,Φ) ,

with Φ = E [Z′

l εlε
′

l Zl]. Consequently, we obtain for the limiting distribution of bL

bL
d−→ N

(

0,E [X′

l Zl] E [Z′

l Zl]
−1

ΦE [Z′

l Zl]
−1

E [Z′

l Xl]
)

,

The limiting distribution of A−1

L bL yields (14).

A.4 Equivalence of MVIV and IVMD estimation

Proposition A.3 (Equivalence of Estimators)

For a homoskedastic design with V [εi,l] = σ2 ∀i, l and independent networks the Minimum

Distance estimator θ̂MD given by (11) and the MVIV estimator θ̂MV IV given by (7) are

numerically equivalent.
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Proof A.5 (Equivalence of Estimators)

Under homoskedasticity all true optimal weighting matrices Ω−1

l are scaled by the same

factor 1/σ2, so that it does not affect the MD estimator. Thus ignoring the scaling factor

the optimal weighting matrix is Ω̂−1

l = W′

l Pl Wl with Wl =
[

Xl X
g
l y

g
l ].

Define the MD estimator (11) as the product of the two matrices A−1 and B such that

θ̂MD(Ω̂
−1) = A−1B. For the first term we get:

A ≡ M ′Ω̂−1M =
∑

l

M ′

l Ω̂
−1

l Ml =
∑

l

M ′

l W
′

l Pl Wl Ml

=
∑

l

X′

l Pl Xl ,

where we used Wl Ml = Xl to obtain the last equality. The second term is given by:

B ≡ M ′Ω̂−1π̂ =
∑

l

M ′

l Ω̂
−1

l π̂l =
∑

l

M ′

l W
′

l Pl Wl π̂l

Decomposing the first-stage IV estimate π̂l into the true parameter vector πl = Mlθ and

the error term part yields:

B =
∑

l

X′

l Pl Wl

(

Mlθ + (W′

l Pl Wl)
−1

W′

l Pl εl
)

=
∑

l

X′

l Pl Xl θ +
∑

l

X′

l Pl Wl (W
′

l Pl Wl)
−1

W′

l Pl εl

=
∑

l

X′

l Pl Xl θ +
∑

l

M ′

l W
′

l Pl εl

=
∑

l

X′

l Pl Xl θ +
∑

l

X′

l Pl εl

Combining both terms:

θ̂IV MD = A−1B =

(

∑

l

X′

l Pl Xl

)

−1(

∑

l

X′

l Pl Xl θ +
∑

l

X′

l Pl εl

)

= θ +

(

∑

l

X′

l Pl Xl

)

−1(

∑

l

X′

l Pl εl

)

= θ̂IV
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B Figures

Figure 1: Distribution of naming friends
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Histogram of the names given as friends (outdegrees) and individuals named as friends
(indegrees). The median (mean) for the outdegrees and as well as for the indegrees is 5
(5.8). Source: NRW Gymnasiasten-Studie.

Figure 2: The largest and the smallest classroom networks
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The size of a node is proportional to its outdegree, its color indicates the GPA score (lighter
colors representing better performance), and the shape of the node indicates the gender, i.e.,
circles represent female students and squares represent male students. Left: Largest classroom
network, n = 35, density = 0.15, clustering = 0.007, girls class. Right: smallest classroom, n =
18, density = 0.26, clustering = 0.03, female ratio = 0.33. Source: NRW Gynasiasten-Studie.
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Figure 3: Classroom networks with the highest and the lowest density
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[4.5,5)

The size of a node is proportional to its outdegree, its color indicates the GPA score (lighter
colors representing better performances), and the shape of the node indicates the gender, i.e.,
circles represent female students and squares represent male students. Left: Densest classroom
network, n = 24, density = 0.37, clustering = 0.07, female ratio = 0.37. Right: least dense
classroom network, n = 30, density = 0.14, clustering = 0.004, boys class. Source: NRW

Gynasiasten-Studie.

Figure 4: Peer Effects by Class Size and Gender Composition

Surface of peer effect by gender composition and class size for an outdegree of 5 based on the
parameter estimates of the composite model given in Table 2. The peer effect denotes the
change in a student’s GPA score due to a one-unit change in the GPA of all peers assuming a
median outdegree of 5.
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C Tables

Table A1: IV-MD Estimation Results: German

Heterogeneous Peer Effects Model
Composite Local-aggregate Local-average

Local-aggregate peer effect

Intercept 0.0024∗∗∗ 0.0016∗∗

(0.0007) (0.0007)
Relative Class Size 0.0049 0.0053

(0.0055) (0.0056)
Female Share -0.005∗∗∗ -0.0029∗

(0.0016) (0.0016)
Local-average peer effect

Intercept 0.0338 0.1442∗∗∗

(0.0267) (0.0311)
Relative Class Size 0.8538∗∗∗ 0.576∗∗∗

(0.1805) (0.2017)
Female Share 0.2476∗∗∗ 0.2099∗∗∗

(0.0525) (0.0580)
Own characteristics

IQ -0.0046∗∗∗ -0.0058∗∗∗ -0.0053∗∗∗

(0.0009) (0.0009) (0.0010)
Previous GPA 0.8238∗∗∗ 0.8722∗∗∗ 0.8458∗∗∗

(0.0160) (0.0165) (0.0172)
Age -0.0508∗∗∗ -0.0496∗∗∗ -0.0653∗∗∗

(0.0088) (0.0092) (0.0097)
Peers’ characteristics

IQ 0.0025 -0.0013 0.0059∗∗∗

(0.0017) (0.0018) (0.0018)
Previous GPA 0.0107 0.0191 0.0202

(0.0390) (0.0329) (0.0440)
Age 0.0023 -0.0315∗ 0.0343∗∗

(0.0165) (0.0181) (0.0172)

Wald statistics (d.f.) 24.48 (3) 46.38 (3)

Estimates of the three model variants obtained by IVMD estimation.
The first column corresponds to the composite model, the second col-
umn corresponds to the local-aggregate model and the third column cor-
responds to the local-average model estimation results. Following Liu
et al. (2014), we use the average characteristics of the second order peers
as instruments for the local-average part, and the aggregate character-
istics of the peers for the local-aggregate part. The Wald statistics test
the composite model against the local models. Robust standard errors
are reported in parentheses. First-stage errors are assumed to be het-
eroskedastic, ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01, N=2165, L=85.
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Table A2: IV-MD Estimation Results: Math

Heterogeneous Peer Effects Model
Composite Local-aggregate Local-average

Local-aggregate peer effect

Intercept 0.0004 -0.0002
(0.0007) (0.0008)

Relative Class Size 0.0107∗ 0.0037
(0.0064) (0.0066)

Female Share -0.0047∗∗∗ -0.0036∗

(0.0018) (0.0019)

Local-average peer effect

Intercept -0.0146 -0.0001
(0.0285) (0.0338)

Relative Class Size 1.2058∗∗∗ 0.4928∗∗

(0.1946) (0.2335)
Female Share -0.1942∗∗∗ -0.1405∗∗

(0.0551) (0.0614)

Own characteristics

IQ -0.0162∗∗∗ -0.0172∗∗∗ -0.0171∗∗∗

(0.0011) (0.0012) (0.0012)
Previous GPA 0.8370∗∗∗ 0.8178∗∗∗ 0.8678∗∗∗

(0.0197) (0.0207) (0.0216)
Age 0.0695∗∗∗ 0.0615∗∗∗ 0.0626∗∗∗

(0.0106) (0.0111) (0.0122)

Peers’ characteristics

IQ 0.0185∗∗∗ 0.0143∗∗∗ 0.0109∗∗∗

(0.0020) (0.0022) (0.0024)
Previous GPA -0.0938∗∗ 0.025 -0.0929∗∗

(0.0416) (0.0386) (0.0460)
Age 0.0036 0.0583∗∗∗ 0.0577∗∗

(0.0216) (0.0212) (0.0237)

Wals statistics (d.f.) 8.61 (3) 56.23 (3)

Estimates of the three model variants obtained by IVMD estimation. The first col-
umn corresponds to the composite model, the second column corresponds to the
local-aggregate model and the third column corresponds to the local-average model
estimation results. Following Liu et al. (2014), we use the average characteristics
of the second order peers as instruments for the local-average part, and the aggre-
gate characteristics of the peers for the local-aggregate part. The Wald statistics
test the composite model against the local models. Robust standard errors are re-
ported in parentheses. First-stage errors are assumed to be heteroskedastic, ∗p < 0.1;
∗∗p < 0.05; ∗∗∗p < 0.01, N=2165, L=85.

39



Table A3: Homogeneous Model Estimates

GPA German Math
(1) (2) (3) (1) (2) (3) (1) (2) (3)

Aggregate Peer Effect 0.0007 0.0008 0.0030∗∗ 0.0030∗∗ 0.0014 0.0012
(0.0006) (0.0006) (0.0012) (0.0012) (0.0015) (0.0014)

Average Peer Effect 0.8025 0.4181 -0.0977 -0.0277 0.2464 0.1863
(0.6213) (0.6822) (0.6231) (0.6381) (0.6165) (0.6191)

Own characteristics

IQ -0.0032∗∗∗ -0.0032∗∗∗ -0.0032∗∗∗ -0.0061∗∗∗ -0.0062∗∗∗ -0.0063∗∗∗ -0.0197∗∗∗ -0.0195∗∗∗ -0.0197∗∗∗

(0.0008) (0.0008) (0.0008) (0.0016) (0.0016) (0.0016) (0.0022) (0.0021) (0.0022)
Previous GPA 0.7295∗∗∗ 0.7351∗∗∗ 0.7322∗∗∗ 0.7971∗∗∗ 0.7966∗∗∗ 0.7969∗∗∗ 0.8093∗∗∗ 0.8059∗∗∗ 0.8083∗∗∗

(0.0164) (0.0150) (0.0159) (0.0309) (0.0308) (0.0310) (0.0377) (0.0371) (0.0376)
Age -0.0095 -0.0159∗∗ -0.0130 -0.0616∗∗∗ -0.0608∗∗∗ -0.0629∗∗∗ 0.0297 0.0318 0.0294

(0.0102) (0.0079) (0.0102) (0.0178) (0.0166) (0.0178) (0.0219) (0.0213) (0.0219 )
Peers’ characteristics

IQ 0.0034 0.0014 0.0024 0.0029 0.0032 0.0029 0.0125 0.0078∗ 0.0112
(0.0024) (0.0016) (0.0024) (0.0039) (0.0035) (0.0040) (0.0128) (0.0044) (0.0128)

Previous GPA -0.5522 0.0607∗∗ -0.2548 0.1640 0.0766 0.1191 -0.2161 -0.0112 -0.1582
(0.4798) (0.0297) (0.5247) (0.5613) (0.0613) (0.5756) (0.5190) (0.0730) (0.5181)

Age -0.0122 -0.0268 -0.0192 -0.0567 -0.0516 -0.0535 0.0203 0.0276 0.0223
(0.0217) (0.0174) (0.0219) (0.0497) (0.0340) (0.0506) (0.0472) (0.0436) (0.0471)

Wald statistics (d.f.) 63.84 (4) 26.30 (2) 20.39 (2) 53.85 (4) 3.36(2) 23.28 (2) 68.90 (4) 3.51 (2) 9.04 (2)

IV estimates for the three models. For each outcome variable, the first column presents the results for the composite model, the second column presents
the results for the local-aggregate model, and the third column presents the results for the local-average model estimation results. Following Liu et al.
(2014), we use the average characteristics of the second order peers as instruments for the local-average part, and the aggregate characteristics of the
peers for the local-aggregate part. The Wald statistics test the heterogeneous models against the homogeneous models. Robust standard errors are
in parentheses. Robust standard errors are in parentheses. First-stage errors are assumed to be heteroskedastic. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01,
N=2165, L=85.

40


