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Optimal trade execution under endogenous order flow∗

Ying Chen†, Ulrich Horst‡, Hoang Hai Tran§

January 9, 2023

Abstract

We consider an optimal liquidation model in which an investor is required to execute meta-orders
during intraday trading periods, and his trading activity triggers child orders and endogenously affects
future order flow, both instantaneously and permanently. Under the assumptions of risk neutrality
and deterministic constants of the impact parameters, we provide closed-form solutions and illustrate
the relationship between trading strategies and feedback effects. The optimal trading strategy is of
hyperbolic form if the feedback effect of current trading on future order flow is not too strong. If the
feedback effect becomes too dominating, a cyclic strategy with possible beneficial round-trips may
emerge. We set up an estimation framework so that parameter estimates can be made directly from
public data and are consistent with the theoretical model. When implementing our model on 110
NASDAQ stocks, the empirical analysis shows that as the level of endogeneity increases, our strategy
provides increasingly better performance than the commonly adopted trading strategy. The empirical
analysis also shows that too strong feedback effects do not exist in practice, thus ruling out statistical
arbitrage.

Keywords. Liquidity Risk, Optimal Trading Strategy, Portfolio Liquidation, Hawkes process

1 Introduction
Self-excitement is an important driver of the clustering of order flow, and hence an important determinant
of price dynamics. In this paper, we consider an optimal liquidation problem under self-exciting order
flow and market impact. We establish the existence of a closed-form optimal liquidation strategy under
three realistic assumptions. The first assumption is that an investor needs to execute meta-orders
during intraday trading periods, when there is less liquidity and their trades can easily be discovered
by other traders. The second assumption is that self-exciting effects are endogenous; the trader’s own
submissions trigger child orders and further influence future price dynamics. The third assumption is
that transaction prices are driven by permanent and instantaneous impacts, where the permanent impact
is determined by order flow imbalance and the instantaneous impact is caused by orderbook dynamics.
Our optimal liquidation strategy illustrates the relationship between trading strategies and feedback
effects. By developing an estimation framework, we can estimate the impact parameters that determine
the strategy directly from public data and simultaneously make them consistent with the theoretical
model. We conduct an empirical analysis using 110 NASDAQ stocks. Our analysis shows that as the
level of endogeneity increases, our strategy provides increasingly better performance than the commonly
adopted time-weighted average price (TWAP) strategy, with an average cost reduction of up to 24.40% .1

∗The data that support the findings of this study are available on request from the corresponding author. The data are
not publicly available due to privacy restrictions. Chen gratefully acknowledges financial support through ‘NRF2021-QEP2-
02-P05 Computer science approaches to quantum computing for finance’. Horst’s work was supported by the Deutsche
Forschungsgemeinsschaft through the CRC/TRR190 (Project number 280092119).

†Department of Mathematics and Risk Management Institute, National University of Singapore, Lower Kent Ridge Road
10, 119076 Singapore, Singapore, email: matcheny@nus.edu.sg

‡Department of Mathematics, and School of Business and Economics, Humboldt-Universität zu Berlin Unter den Linden
6, 10099 Berlin, Germany, email: horst@math.hu-berlin.de

§Department of Statistics & Applied Probability, National University of Singapore, 6 Science Drive 2, Singapore 117546,
Singapore, email: e0045275@u.nus.edu

1During intraday trading periods when the market tends to be flat, TWAP and volume-weighted average price (VWAP)
are eventually same given a fixed volume.
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Optimal liquidation models have received substantial attention in the quantitative finance and financial
mathematics literature. The focus of this literature is on structural market impact models within which
to derive optimal trading strategies.2 Bertsimas and Lo (1998) was one of the first to consider optimal
liquidation under market impacts. Based on a linear impact model, they showed that the TWAP strategy
is optimal. Almgren and Chriss (2000) extended the liquidation problem by including risk-aversion to the
trader’s decision problem. In a mean-variance framework, a closed-form solution was achieved, reflecting
the effects of different levels of liquidity and risk aversion factors. Obizhaeva and Wang (2013) included
the orderbook recovery rate in the impact dynamics and solved for an analytic form containing two block
trades and a TWAP. Subsequent works have mainly focused on market impact functions (Alfonsi et al.
(2010), Gatheral et al. (2012), Curato et al. (2017), Graewe et al. (2018)), different order types including
limit and hidden orders (Cartea and Jaimungal (2015), Kratz and Schöneborn (2015), Cebiroglu and
Horst (2015), Chen et al. (2018)), multi-asset liquidation (Brown et al. (2010), Schöneborn (2016), Horst
and Xia (2019)), model uncertainty (Horst et al. (2022)), stochastic order models (Chen et al. (2017))
and game-theoretic multi-player models (Schied and Zhang (2017), Schied and Zhang (2019), Fu et al.
(2022)).

Clustering effects are not considered in the above mentioned works, that is, the possibility that trading
activity via order submission triggers child orders that affect future order flow. It has, however, long
been argued in the economics literature (Kyle, 1985; Easley and O’Hara, 1992; Admati and Pfleiderer,
2015) that the frequency of transactions carries information about the state of the markets, which leads
to clustering of orders. Engle and Russell (1998) proposed the Autoregressive Conditional Duration
(ACD) model that was among the first to statistically analyzing frequency of transaction data, where
clustering of transactions was found in the IBM transaction data. There have been a substantial empirical
literature also showing the clustering of order arrival, see Dufour and Engle (2000), Ellul et al. (2007).
Order clustering may attribute to several reasons, including but not limited to, e.g. a large number of
sells (or buys) may create a herding effect, where other market participants begin to sell (or buy) in
anticipation of further price declines (or increases); large orders are often cut into smaller orders and
released into the market one by one; and a large number of sells may also attract predatory traders
who employ front-running strategies; see Brunnermeier and Pedersen (2005) or Carlin et al. (2007) for a
detailed analysis of predatory trading.

While Engle and Russell (1998)’s ACD model provided statistical evidence of the clustering effect in
transaction data, its discrete nature makes a direct application difficult in the continuous-time liquidation
models. The Hawkes process (Hawkes and Oakes, 1974) on the other hand provides an appropriate
way to model order clustering as a continuous-time point process. One of the earliest applications was
Bowsher (2007), who argued that a mixture of exponential kernels of the Hawkes process could explain
seasonalities and overnight gaps in NYSE and NASDAQ intraday equity data. Thereafter, the Hawkes
process has been a popular choice in modelling clustering effects in transaction data. Large (2007) used
the Hawkes process to estimate a continuous-time resilience model for the limit order book of the London
Stock Exchange. Bacry et al. (2013) used the Hawkes process to model the tick-by-tick variations in
asset prices of Euro-Bund and Euro-Bobl futures. Da Fonseca and Zaatour (2014) calibrated the Hawkes
process to trade arrival times in major European stocks that exhibit clustering of trades. Lallouache and
Challet (2016) performed maximum likelihood estimation of market orders using EBS forex data, showing
the good performance of the model when applied to 1-hour specific intraday time. The Hawkes process
has also recently received considerable attention in the financial mathematics literature as a powerful tool
for modeling self-exciting order flow and its impact on orderbook dynamics (Abergel and Jedidi, 2015) or
stock price volatility (Jaisson and Rosenbaum, 2015; Horst and Xu, 2022).

In the context of the liquidation model, Hawkes processes were previously employed in different settings
in Alfonsi and Blanc (2016), Cartea et al. (2018) and Amaral and Papanicolaou (2019). It is worth
mentioning that in all these works the intensity of Hawkes’ process is exogenous. It ignores the fact that
the trading activity of a large investor triggers child orders and endogenously affects future order flow.
Endogeneity is not only a stylized fact of market microstructure, but also implies that many classical
liquidation strategies exhibit invariant patterns in execution behavior, such as TWAP/VWAP leaving a
constant stream of “blips” in trading volume that would make the trading behavior of large investors

2This is very different from the financial economics literature where the focus on reasons for trading such as inside or
asymmetric information.
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easily detectable using advanced signal processing techniques such as the Fast Fourier Transform (FFT)
(Song et al. (2015)). Although considerable efforts have been made to obfuscate the flow of meta-orders,
such as the use of dark pools and other advanced order types such as iceberg orders (Angel et al. (2011)),
advanced signal processing coupled with high performance computing power can still easily detect the
trading behavior of large investors. This drawback is particularly evident during quiet trading sessions,
when there is relatively little noise in the order stream and therefore signal processing algorithms can
improve accuracy (Scott et al. (1987)). As a result, the execution of meta-orders leads to high transaction
costs.

We take a different approach in our model: we explicitly incorporate endogeneity into our algorithmic
trading procedure and price the cost of being tracked when executing meta-orders.3 We consider a
challenging scenario in which a large trader needs to execute meta-orders during intraday trading hours.
The trading volume during these sessions is relatively constant and the large trader’s execution order flow
is discovered by other participants in the market. Specifically, our stock price process incorporates a drift
that can be decomposed into the trader’s own trading activity and a stream of child orders generated
endogenously through order arrivals. We show that the dynamics of the self-exciting order flow increase
the fixed transaction cost in exchange for a "rebate" representing the opportunity cost from the Hawkes
process. The rebate takes the form of a negative exponential impact cost. Thus, the total controllable
execution cost is given by the difference between the instantaneous and exponential impact costs. Since
both cost components are non-negative, the trader’s optimization problem is not convex. Non-convex
optimization problems are usually much more complicated to analyze than convex ones because of the
lack of a general verification argument, which entails that first-order conditions are also sufficient.

In our model, the first-order conditions for optimality can be obtained using variational methods. More
precisely, we prove that the optimal liquidation strategy necessarily solves the Wiener-Hopf integral
equation. This is similar in spirit to the work of Gatheral et al. (2012), where the optimal liquidation
strategy solves the Fredholm integral equation. The solution of our Wiener-Hopf integral equation can
be expressed in terms of a second-order ordinary differential equation (ODE) whose solution yields a
candidate optimal strategy. We prove that the candidate strategy is optimal if and only if there is no
statistical arbitrage, i.e., no beneficial round-trips.

The issue of (statistical) arbitrage under market impact is non-trivial. To the best of our knowledge , the
viability of market impact models has been established so far only on a case-by-case basis. Gatheral (2011)
discussed the absence of beneficial round-trips for selected impact functions; Huberman and Stanzl (2004)
showed that only linear impact functions support viable markets when the price impact of transactions
is permanent and independent of time. Alfonsi et al. (2012) showed that in models with instantaneous,
transient and permanent impact components, price impact must decay as a convex decreasing function of
time to rule out price manipulation.

We relate the existence of statistical arbitrage to the strength of the permanent relative to the instantaneous
market impact. Statistical arbitrage does not exist if the instantaneous impact is dominant, i.e., if the
feedback effect of the current trading rate on future order flow is weak enough. In this case, the solution
to our ODE is hyperbolic in form and provides an optimal strategy. If the permanent effect becomes too
dominant, then the solution of the ODE is in trigonometric form and may exhibit cyclical behavior. As
we will show by a simple example, the absence of statistical arbitrage cannot be guaranteed in this case.
Although later the empirical analysis shows that too strong feedback effects do not exist in practice, thus
ruling out statistical arbitrage.

After deriving the optimal solution in a continuous framework, the implementation relies on the estimation
of the parameters of interest. Traditionally, market impact factors are calibrated from the available
proprietary datasets. For instance, Almgren et al. (2005) used a proprietary dataset to regress the market

3The recent work of Fu et al. (2020) introduced a stochastic multi-player framework in which a liquidation model with
transient impact and investor risk aversion is analyzed. It explains the possible feedback of own trades to future order
arrivals. In their model, the market buy and sell order flows follow an exponential Hawkes process whose base intensities
depend on own-trading rates. We retain the assumption that market order dynamics follow an exponential Hawkes process,
but consider a deterministic model with risk-neutral investors and permanent effects. Moreover the verification argument in
Fu et al. (2020) requires both risk aversion and transient (rather than permanent) impact and therefore do not apply to
our setup. Focusing on a deterministic setup and permanent rather than transient impact allows us to obtain closed-form
solutions with parameters that can be calibrated from market data.
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impact factors in the Almgren and Chriss (2000) model. Fraenkle et al. (2011) considered a proprietary
dataset from real trading to estimate market impact of a Volume-Weighted Average Price (VWAP)
trading strategy. Bershova and Rakhlin (2013) computed equal-weighted impact from all orders based on
private data of large institutional orders. Gomes and Waelbroeck (2015) used private data from order
management system of funds to compare market impact of informed versus non-informed meta-orders.
There is no doubt that it is more practically relevant when the impact factors, both permanent and
instantaneous, can be estimated from public data.

We develop an estimation framework that allows the relevant market impact factors and Hawkes processes
to be extracted directly from public market data, while remaining consistent with the theoretical model.
The instantaneous impact parameter is estimated by feeding a hypothetical large-size market order
walking the orderbook, where the execution price is assumed to be linearly proportional to the market
order size and instantaneous factor. The permanent impact is measured as the fundamental price change
per trade based on a linear relationship between price change and order flow imbalance. The dynamics
of order arrivals are assumed to follow a Hawkes process, where the parameters are estimated using
maximum likelihood. Our estimation is consistent with the work of Cartea et al. (2015), Cont et al. (2013),
Filimonov and Sornette (2015) and Hautsch and Huang (2012), but focuses more on the consistency of
the estimation setup with our theoretical model and the orderbook microstructure.

We apply the model and estimation to perform transaction cost analysis for 110 stocks on the NASDAQ
exchange, which are broadly representative in terms of trading volume, volatility, and tick size. Compared
to the classical TWAP strategy, our trading strategy takes into account the endogeneity of self-excited
order flow and shows a significant cost improvement with an average cost reduction of 12.15-24.40%. We
find that the amount of cost savings is negatively correlated with tick size and volatility, and positively
correlated with average daily traded notional. This implies that less volatile, more liquid and at lower
tick sizes stocks may benefit more from the optimal trading strategy. In addition, we investigate the
sensitivity of execution costs to the level of reflexivity and transaction costs. When the self-exciting ratio
increases by 50%, the execution cost of the optimal strategy increases further by about 9-29%, while
the cost difference with TWAP becomes 20.14-33.93% with increased endogeneity in the market. By
lowering the instantaneous impact, the cost improves significantly up to 61.22-64.20%. We also perform
a counterfactual analysis of the limits of the theoretical model with improbable critical Hawkes under
strong feedback effects.

The paper is organized as follows: Section 2 describes the theoretical framework of our market impact
model and point process dynamics. Section 3 derives the optimal trading strategy and performs a
numerical sensitivity analysis for different model parameters. Section 4 presents the estimation setup and
applies the model to perform transaction cost analysis for 110 stocks in the NASDAQ exchange. Section
5 conducts sensitivity analysis and counterfactual experiments. Section 6 concludes.

2 The liquidation model
We consider an investor that needs to sell a large number x0 of shares within a given time interval [0, T ]
during quiet trading periods using a deterministic4 trading strategy ξ = {ξt}t∈[0,T ]. The corresponding
portfolio process Xξ = {Xξ

t }t∈[0,T ] associated with a strategy ξ satisfies the ODE

dXξ
t = −ξtdt, X0 = x0.

A trading strategy ξ is called admissible if it is square integrable and satisfies the liquidation constraint

Xξ
T = 0.

We allow for both instantaneous and permanent market impact. The instantaneous cost of aggressing
the orderbook is given by ηξt for some positive instantaneous impact factor η (bsp per share) applied
to every share. Permanent impact is specified by an absolutely continuous endogeous process Dξ that
describes the derivation of the transaction price process from an exogenous benchmark price process.

4Within our modelling framework the assumption of deterministic strategies can be made w.l.o.g.
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The benchmark price process is described by Brownian martingale B defined on some probability space
(Ω,F ,P). For an admissible strategy ξ the transaction price process is thus given by

St = S0 +Bt − ηξt −Dξ
t .

2.1 Permanent impact
Following Fu et al. (2020) we assume that market buy/sell orders arrive according to independent
exponential Hawkes processes N b/s with intensities

I
b/s
t = µ

b/s
t + α

∫ t

0

e−β(t−u) dN b/s
u .

The processes µb/s denote the base intensities of the Hawkes processes, while the integral terms specify
the impact of past order arrivals on future order flow. The non-negative terms α and β specify the initial
spike in intensity after the arrival of a new order and the the exponential decay of the intensity function,
respectively.

We assume that all order flows can have self-exciting effect, but are now "in equilibrium“ in the absence of
the large trader, i.e. there is no buy or sell dominated order flow originated from other trader’s meta-order.
In this case, we let µbt = µst ≡ µ. The Hawkes processes are symmetric and the order flow imbalance
N b −Ns is a martingale. In equilibrium, as buy and sell orders arrive at the same rate, the effect cancels.
In other word, only the additional flow from the large trader affects prices. In the presence of the large
trader the buy/sell base intensities change to

µst = µ+ ξt1{ξt>0} and µbt = µ− ξt1{ξt<0},

respectively. In this case the expected intensities satisfy

E[I
b/s
t ] = E[µ

b/s
t ] + α

∫ t

0

e−β(t−u)E[Ib/su ] du

and the expected number Hb/s
t of buy/sell orders arriving by time t equals

H
b/s
t =

∫ t

0

E[Ib/su ] du.

Let us denote by
ω := β − α (2.1)

the self-exciting ratio of the Hawkes process. It then follows from the above and (Polyanin and Manzhirov,
1998, p.144) that the expected number Ht := Hs

t −Hb
t of net-sell orders resulting from the large trader’s

activity is given by

Ht =

∫ t

0

ξs ds+ α

∫ t

0

∫ s

0

e−β(t−r)Irdr ds

=

∫ t

0

ξs ds+ α

∫ t

0

∫ s

0

e−ω(s−r)ξr dr ds

=:

∫ t

0

ξs ds+ Ct.

(2.2)

The process C = {Ct}t∈[0,T ] denotes the expected number of child orders resulting from the large trader’s
activity. Assuming that each share bought/sold permanently increases/decreases market prices by λ basis
points (bsp) on average and putting

γ :=
λα

ω
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we thus suggest the following form of the permanent market impact process:

Dξ
t := λ

(∫ t

0

ξsds+ Ct

)
= λ

∫ t

0

ξsds+ γ

∫ t

0

ξs(1− e−ω(t−s))ds.

(2.3)

Remark 1. In our model the large trader’s activity adds a drift to the benchmark price process that
decomposes into a standard process

(
λ
∫ t

0
ξsds

)
0≤t≤T

that has been considered by many authors before

and a feedback term that captures the impact of the large trader’s activity on future order flow. This term
is new; a related impact term has previously been considered in Fu et al. (2020) albeit in a very different
setting. The special case α = 0 is well understood. In this case the optimal strategy is TWAP, i.e. it is
optimal to liquidate the portfolio at a constant rate.

We assume throughout that the Hawkes process is stable, i.e. each order triggers at most one child order
on average.

Assumption 1. The Hawkes parameters satisfy ω := β − α ≥ 0.

2.2 Execution cost
Let us denote by M0 = x0S0 the initial Mark-to-Market value (MtM) of our portfolio and by

Mξ
T := E

[∫ T

0

Stξtdt

]
.

the expected revenues from trading associated with an admissible trading strategy ξ. Using partial
integration, the liquidation constraint, and the martingale property of Itô integrals, we see that

Mξ
T = x0S0 −

∫ T

0

ηξ2
t dt+

∫ T

0

ξtdD
ξ
t

= x0S0 −
∫ T

0

ηξ2
t dt+ λ

∫ t

0

ξsds+ γ

∫ t

0

ξs(1− e−ω(t−s))ds.

The execution cost due to the permanent impact is given by the sum of the permanent impact due to the
investor’s own trading rate plus the impact cost, due to child order rate as:

λ

∫ T

0

ξt

∫ t

0

ξsdsdt+ γ

∫ T

0

ξt

∫ t

0

ξs(1− e−ω(t−s))dsdt

=

∫ T

0

ξt(λ+ γ)

∫ t

0

ξsdsdt− γ
∫ T

0

ξt

∫ t

0

ξse
−ω(t−s)dsdt

= (λ+ γ)
x2

0

2
− γ

∫ T

0

ξt

∫ t

0

ξse
−ω(t−s)dsdt.

In particular, the self-exciting order flow dynamics increases the fix-cost from λ to λ+ γ bsp per share in
exchange for a “rebate” that takes the form of a negative exponential impact cost.5 The rebate represents
the opportunity cost due to the Hawkes process. Combining the two impact costs the total execution cost
(TC) is given by the sum of a controllable and a fixed cost as:

TC = η

∫ T

0

ξ2
t dt− γ

∫ T

0

ξt

∫ t

0

ξse
−ω(t−s)dsdt︸ ︷︷ ︸

Controllable cost

+ (γ + λ)
x2

0

2︸ ︷︷ ︸
Fixed cost

(2.4)

5By (Gatheral et al., 2012, Proposition 2.6) the “rebate” is indeed non-negative for any admissible trading strategy.
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Remark 2. We emphasize that the controllable cost can be viewed as given by the difference of two
non-negative “competing” impact costs, the instantaneous impact and a permanent impact cost with
exponential impact kernel. If x0 = 0, the fixed cost vanishes. To exclude statistical arbitrage we need to
identify conditions that guarantee that the trading cost is non-negative for x0 = 0, i.e. that no beneficial
round-trip exists. Verifying this condition is not a trivial issue in our case as the optimization problem is
not convex. We address this issue in Section 3.

A broker’s trading decision will depend not only on how market impact arises from own trading activities
but also on a benchmark criterion. The two most popular benchmarks are Implementation Shortfall (IS)
and TWAP. In percentage terms IS is given by

rIS =
M0 −Mξ

T

M0
.

In this case the dominant factor is the fixed amount (γ+λ)
x2
0

2 . While the trading strategy that maximizes
Mξ
T still minimizes the IS benchmark, the controllable portion may only yield only a small improvement

to the trader’s benchmark in which case he may have little incentive to actively manage his trading rate,
and may relegate to the simple TWAP strategy6

ξTWAP
t ≡ x0

T
, t ∈ [0, T ].

The situation is very different if we compare the performance of any two admissible trading strategies as
the absolute difference in performances is independent of the fixed cost. For instance, within our model
the expected revenues from TWAP are given by

MTWAP
T = E

[∫ T

0

ξTWAP
t St dt

]

= M0 − (λ+ γ)
x2

0

2
− x2

0

T
η +

e−ωTx2
0γ(1 + eTω(−1 + ωT ))

T 2ω2
,

(2.5)

and the relative performance of any admissible strategy ξ over TWAP is given by

rTWAP =
Mξ
T −MTWAP

T

MTWAP
T

.

The difference Mξ
T −MTWAP

T depends only on the controllable cost and can hence be substantial. As a
result, the trader may now have an incentive to actively manage his trading rate.

Remark 3. We consider a scenario in which a large trader wants to execute meta-orders during intraday
trading hours. The trading volume during these sessions is relatively constant and the large trader’s
execution order flow is discovered by other participants in the market. Note that another popular benchmark,
VWAP, coincides with the TWAP benchmark under the assumption of constant trading volumes.

3 Optimal execution strategy
Regardless of the specific benchmark – (relative) IS or (relative) TWAP – the trader’s goal is to minimize
the controllable part of the total transaction cost, that is, to minimize the functional

L(ξ) := η

∫ T

0

ξ2
t dt− γ

∫ T

0

ξt

∫ t

0

ξse
−ω(t−s)dsdt (3.1)

over the set of admissible trading strategies. In a first step we are going to identify a candidate optimal
strategy using a variational approach. Subsequently, we establish a sufficient condition for our candidate
strategy to be optimal.

6It is known that TWAP is optimal if α = 0.
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3.1 First and second order conditions for optimality
First order conditions for optimality can be identified using a variational approach. To this end, let X̂
be a candidate optimal portfolio process and ξ̂ be an optimal trading strategy. Let v be an admissible
perturbation of the optimal portfolio; in particular, v is differentiable and satisfies the boundary conditions
v0 = vT = 0. Let ϕ be a scalar, and let

Xt := X̂t + ϕvt, and ξt := ξ̂t + ϕv′t.

Since ξ̂ is supposed to be optimal, d
dϕL(ξ̂ + ϕv′)|ϕ=0 = 0 which is equivalent to∫ T

0

v′t[2ηξ̂t − γ
∫ T

0

ξ̂se
−ω|t−s|ds]dt = 0.

Using integration by parts and the boundary conditions v(0) = 0 and v(T ) = 0 this shows that a necessary
condition for ξ̂ to be optimal is

ξ̂t −
γ

2η

∫ T

0

ξ̂se
−ω|t−s|ds = C (3.2)

for some constant C. The preceding equation is a Wiener-Hopf integral equation of the second kind with
constants limits of integration.

Remark 4. By (Polyanin and Manzhirov, 1998, Page 324 Equation 15), the general solution of the
integral equation (3.2) depends strongly on the sign of a factor

θ := −ω
(
ω − γ

η

)
. (3.3)

In view of Assumption 1 θ < 0 if and only if η(β − α)2 ≥ λα, i.e. if the feedback effect on the price
dynamics is small enough and/or the instantaneous cost factor is large enough. Likewise, θ > 0 if the
feedback effect is strong or the instantaneous impact factor is small enough. The case θ = 0 essentially
corresponds to the case ω = 0, that is to the case where the Hawkes process is in its critical regime where
each order triggers one child order on average.

Assuming that ξ̂ is twice differentiable and differentiating the equation twice suggests that the optimal
strategy solves the second-order ODE

ξ
′′

t + ω(
γ

η
− ω)ξt = −ω2C (3.4)

with boundary conditions

ξ
′

0 − ωξ0 = −ωC

ξ
′

T + ωξT = ωC.
(3.5)

The above boundary value problem yields a necessary condition for optimality. To obtain a sufficient
condition we consider the second derivative of the cost functional. By direct computation we obtain that

d2

dϕ2
L(ξ̂ + ϕv′)|ϕ=0 = η

∫ T

0

(ν′t)
2dt− γ

∫ T

0

ν′t

∫ t

0

ν′se
−ω(t−s)dsdt.

The expression on the right side of the above equation equals the costs of a round-trip. This shows that
the candidate strategy is optimal if and only if no beneficial round-trip/statistical arbitrage exists.

3.2 Small feedback effect (θ < 0)
In this section we give the optimal solution to the liquidation problem for θ < 0 in closed form and
illustrate how the minimal cost depends on various model parameters.
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3.2.1 Theoretical results

The following theorem states that the optimal solution to our liquidation problem is indeed given by the
solution to the boundary value problem 3.4 and 3.5. Its proof is given in the Appendix.

Theorem 1. If θ < 0, then the optimal trading strategy and portfolio process are given by:

ξ̂t = C1 cosh(kt) + C2 sinh(kt) + C3

X̂t =
C1

k
sinh(kt) +

C2

k
cosh(kt)− C2

k
+ C3t

(3.6)

where the constants k, C1, C2 and C3 are given by:

k =

√
ω(ω − γ

η
)

C1 = −
γω2 cosh kT

2

k2ηω cosh(kT2 ) + k3η sinh(kT2 )
C

C2 =
γω2 sinh(kT2 )

k2ηω cosh(kT2 ) + k3η sinh(kT2 )
C

C3 = (1 +
γω

k2η
)C

C =
k3x0η(ω cosh(kT2 ) + k sinh(kT2 ))

kωT (k2η + γω) cosh(kT2 ) + (k4Tη + k2Tγω − 2γω2) sinh(kT2 )
.

Moreover, if x0 > 0, then the cost process

Lt := η

∫ t

0

ξ̂2
udu− γ

∫ t

0

ξ̂u

∫ u

0

ξ̂se
−ω(u−s)dsdu, t ∈ [0, T ] (3.7)

is strictly positive on (0, T ].

Define the cost ratio as
ζ =

γ

η
=
λ

η

α

ω

which measures the ratio between the permanent and instantaneous market impact given the same Hawkes
process’ parameters. We can see from the above theorem that the optimal solution depends only on the
cost ratio ζ and the relative strength ω = β − α of self-exciting of the Hawkes process7. In what follows
we illustrate how the optimal costs vary with the above quantities.

3.2.2 Numerical simulations

We now numerically elaborate the sensitivity of the optimal trading strategy against various values of
the relative strength of self-exciting ω and the cost ratio ζ at 5, 7.5, 10 respectively. These values are
corresponding to the estimation of real data to be reported later. We note that the cost ratio has to be
smaller than the relative strength of self-exciting to ensure θ < 0. Later we will show that when this
condition is violated, it induces statistical arbitrage.

Figure 1 presents a general shape of the optimal trading strategy, and its sensitivity against ω and ζ.
Intuitively, the inverted U-shaped curve of the optimal trading strategy can be interpreted as a balance
between two main cost components in the cost process (3.7). Start with the first component:

η

∫ t

0

ξ̂2
udu

With a straightforward application of the Euler-Lagrange equation, one can see that the function ξt that
minimize the first cost component is ξt = x0

T . In other words, it is a constant line representing a TWAP
7Note that ω is not the same as the branching ratio τ = α

β
of the Hawkes process. Yet, ω can similarly serve as an

effective measure of endogeneity for the point process.
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strategy. If there is only the first cost component, then the TWAP will be optimal. However, TWAP
does not take into account the rebate from the second cost component:

γ

∫ t

0

ξ̂u

∫ u

0

ξ̂se
−ω(u−s)dsdu

Since we know that TWAP is optimal w.r.t the first cost component, any perturbation we add to the
TWAP will increase the first cost component. Therefore, we are essentially exchanging the increase in the
first component for the rebate. Also note that the first cost component is instantaneous, that is, there
is no difference w.r.t the first cost component if we increase the trading rate anywhere. Consequently,
the focus now is where we can increase the trading rate the most to yield the highest rebate. In general,
there are three choices: near the beginning, near the end or at the middle of the trading period:

• If we increase the trading rate near the end of the trading period, it is obviously not optimal. This
is because there will be relatively less time to accumulate the rebate amount given the shares we
executed compared to execute earlier.

• If we increase the trading rate near the beginning of the trading period, it is also not optimal since
the shares used to execute earlier will benefit less from the rebate generated earlier. Moreover, the
shares executed near the end will receive less rebate relatively to executing more in the middle of
the trading period. This is because there is longer duration between the time the rebate is generated
and the time the shares receive it at the end of the trading period.

Therefore, it is reasonable to expect the optimal trading strategy to peak at the middle. The peak would
depend on two factors: the cost ratio ζ and the Hawkes’s ratio ω, that both determine how much the
rebate we can exchange for each point of increase in the instantaneous cost. Specifically, the convexity of
the trading rate increases as ω decreases. The convexity of the trading rate is proportional to the level
of reflexivity in the Hawkes process, which is consistent to the role of ω in the factor θ. Moreover, the
square-root of negative θ is the period of the hyperbolic functions in the optimal solution. Therefore, the
smaller ω is, the smaller θ is, and the longer is the period of the hyperbolic functions. Hence there is
more corresponding change in the shape of the optimal solution.

An increase in the cost ratio ζ has a similar effect to the increase in the Hawkes self-exciting relative
strength. As the permanent market impact increases, the convexity of the trading rate increases. Again,
this attributes to the role of ζ in the factor θ. The smaller θ is, the longer the period of the hyperbolic
functions in the optimal solution. Consequently, the optimal solution is "flatter" for smaller cost ratio,
and vice versa.

Figure 1: Sensitivity analysis with respect to ω and ζ = γ
η for the optimal strategy.

The optimal strategy under self-excitement is different from TWAP. By increasing the trading rate to
peak halfway through the trading period, the optimal trading strategy "overshoots" the controllable cost
above the TWAP for a brief period. The decaying effect of the Hawkes process acts as a gravitational
pull on the controllable cost equation, as the cost reduction on later orders is higher than the increase in
the new cost. The controllable cost is then pulled down, eventually lower than the cost of the TWAP
strategy. Note that there is no real "cost reduction" here, as new child orders still come in and increase
the permanent cost. The reduction comes from the fact that in Equation (2.4), we have already accounted

10



for the permanent cost of child orders without decaying effects, and then "rebated" the savings from the
decaying effects as it happens. This rebate effect depends on the timing of the strategy, and therefore
allows cost optimization.

We plot the difference in controllable cost between the optimal trading strategy and the TWAP strategy
in Figure 2, which shows the effects grow exponentially near the extremes, as high Hawkes’s criticality
and/or permanent market impact factor lead to bigger difference in trading cost between the optimal
trading strategy and the TWAP strategy. Figure 3 displays the cost difference between the optimal
trading strategy and the TWAP with respect to both the self-exciting ratio and cost ratio. As can be
seen from the plot, while the increase in the self-exciting ratio or the increase in permanent market
impact factor widen the difference between the optimal trading strategy and the TWAP strategy, the
combination of both factors results in the widest difference.

Figure 2: Cost difference between the optimal trading strategy and the TWAP with different ω values
(left) and ζ (right). Positive value means the TWAP has higher cost, and vice versa. The higher the ratio,
the higher permanent market impact per order relatively to the instantaneous market impact. Positive
value means the TWAP has higher cost, and vice versa. The cost difference in brackets is expressed as a
ratio against the cost of the TWAP strategy.

Figure 3: Cost difference between the optimal trading strategy and the TWAP with different values for ζ
and ω. The cost difference is expressed as a ratio against the cost of the TWAP strategy.
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3.3 Critical feedback effect (θ = 0)

In this section we consider the critical case θ = 0. If ω = 0, then the liquidation constraint
∫ T

0
ξtdt = x0

along with a partial integration argument yields that

L(ξ) = η

∫ T

0

ξ2
t dt+

∫ T

0

ξt

∫ t

0

ξsdsdt

= η

∫ T

0

ξ2
t dt+

∫ T

0

ξt(x0 −Xt)dt

= x2
0 + η

∫ T

0

ξ2
t dt.

Hence, the case ω = 0 corresponds to a model with only instantaneous price impact and an additional
fixed cost. In this case, it well known that the optimal strategy is TWAP. The preceding analysis is a
special case of the following theorem. The proof is similar to the one of Theorem 1 and is hence omitted.

Theorem 2. Let θ = 0. Then, the optimal strategy has the parabolic form:

ξt = C1 + C2t+ C3t
2

Xt = C1t+ C2
t2

2
+ C3

t3

3

(3.8)

where the constants C1, C2 and C3 are given by:

C1 = (1 +
Tω

2
)C

C2 =
1

2
ω2TC

C3 = −ω
2

2
C

C =
12x0

T (12 + ωT (6 + ωT ))

Moreover, if x0 > 0, then the liquidation cost is strictly positive.

Figure 4 displays the sensitivity of the optimal trading rate against the cost ratio ζ, which in the critical
case equals the relative strength of self-exciting ω unless ω = 0. The change in convexity is similar to the
case of a stationary Hawkes process. In the plot, we also show the cost difference between the TWAP
and the optimal strategy with respect to cost ratio. An increase in ζ results in higher difference in cost,
see the percentage change labelled in parentheses. The optimal trading strategy is the closest to TWAP
without making any oscillation in trading rate. In other words, the convexity of the optimal trading
strategy does not change sign for the trading period.

Figure 4: Sensitivity analysis (left) and cost difference trajectory (right) with respect to cost ratio ζ for
the optimal trading strategy when the factor θ = 0.
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3.4 Strong feedback effect (θ > 0)
If θ > 0, then statistical arbitrage may exist. In fact, let ξ̄ be any nonzero admissible round-trip strategy.
By (Gatheral et al., 2012, Proposition 2.6) the integral∫ T

0

ξ̄t

∫ t

0

ξ̄se
−ω(t−s)dsdt

is strictly positive. Hence, if the instantaneous impact is small enough, then L(ξ̄) < 0. Even very simply
round trips may be beneficial as illustrated by the following example.

Example 1. Let θ > 0 and x0 = 0. Consider a strategy where shares are accumulated at a constant rate
ν from time t = 0 to t = T

2 and then liquidated at the same rate. The revenue of the strategy at time T
will be:

MT = η

∫ T

0

ν2dt− γ
∫ T

2

0

ν

∫ t

0

νe−ω(t−s)dsdt− γ
∫ T

T
2

ν

∫ t

T
2

νe−ω(t−s)dsdt

+γ

∫ T

T
2

ν

∫ T
2

0

νe−ω(t−s)dsdt

= ην2T − γν2Tω + 4e−
Tω
2 − e−Tω − 3

ω2

which can be negative. For ν = 1 we plot the values of MT parameterized by ω and γ
η in Figure (5). As

the cost ratio increases along with Hawkes self-exciting ratio, it results in a larger profit for the round trip
strategy.

Figure 5: Left: Profit and loss (PnL) of the round-trip trading strategy for different values of γη and ω. A
positive value means the strategy makes money from the round trip trade. Right: Controllable cost of
the candidate trading strategy in Theorem (3) for different values of γη and ω. A negative value means
the broker can reduce more than the fixed cost in the total cost equation (2.4).

The above example shows that the solution to our boundary value problem (3.4) and (3.5) may not yield
an optimal trading strategy if θ > 0. As the empirical results reported in the next section suggest that
θ is never positive the following theorem should be viewed as a mere illustration of the rich dynamics
self-exciting effects may generate.
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Theorem 3. Let θ > 0. Then the solution to the boundary value problem (3.4) and (3.5) is given by

ξ̂t = C1 cos(kt) + C2 sin(kt) + C3

where the constants k, C1, C2 and C3 are given by

k =

√
ω(
γ

η
− ω)

C1 = −
γω2 cos(kT2 )

k2ηω cos(kT2 ) + k3η sin(kT2 )
C

C2 = −
γω2 sin(kT2 )

k2ηω cos(kT2 ) + k3η sin(kT2 )
C

C3 = (1 +
γω

k2η
)C

C =
x0

T + Tγω
k2η + 2γω2

k4η−k3ηω cot( kT
2 )

.

Figure 6 displays the change in the trading rate ξ̂ against the different values of ζ and ω. In general, the
difference between the three different cases is the sign change of the optimal strategy’s convexity during
the trading period. The convexity of the trading rate still increases as the Hawkes self-exciting ratio
increases. The increase in the permanent market impact factor relatively to the instantaneous market
impact factor has similar effect to the increase in Hawkes self-exciting ratio. As the permanent market
impact increases, the oscillation rate of the trading rate increases too. As the self-exciting ratio increases,
ξ̂ begins to exhibit cyclicality, taking advantages of the exponentially increasing number of child orders in
Hawkes process.

Figure 6: Sensitivity analysis with respect to ω (left) and γ
η (right) for the optimal trading strategy when

θ > 0.

4 Empirical implementation
In this section, we implement the closed-form solution obtained in the previous section to real data. Our
empirical analysis is based on 110 NASDAQ stocks. We estimate all model parameters, compute optimal
liquidation cost, benchmark the liquidation cost to TWAP and analyze how changing market conditions,
such as Hawkes process’s self-exciting ratio and cost ratio, affect transaction costs.

4.1 Descriptive statistics
As illustration, we implement the numerical analysis based on five trading days of NASDAQ ITCH tick
data, from 10/01/2019 to 10/07/2019. Specifically, we filter out illiquid stocks that trade less than 25%
of average market trading volume, or $8 millions a day. In total, we consider 110 stocks, which represent
a wide range of stock profiles, with volume from 8.15 (stock: QNST) to 93.92 million (ANSS) per day,
volatility from 0.94 (AAXJ) to 9.00% (VRAY) daily and tick size from 0.47 (ANSS) to 31.79 bps (GPOR).
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Table 1: Summary statistics for each group of stocks based on tick size. The diverse range of traded
notional and volatility indicates that the sample includes stocks from various regimes in the population.
The standard deviation is normalized to percentage points of the mean in the brackets.

Tick (bps) Count Volume (million $/day) Volatility (%/Px)

< 2 25 62.13 (36) 2.05 (37)
2− 4 25 26.92 (59) 2.90 (37)
4− 6 25 24.09 (74) 2.97 (31)
6− 8 19 22.47 (54) 3.20 (45)
> 8 16 19.42 (58) 4.29 (50)

To ensure reasonable coverage, we normalize all the stocks in NASDAQ based on their tick size and split
into five groups, as displayed in the sample descriptive summary of Table 1. In the following, we report
summary results in group only due to space limitations. Details of individual stocks are presented in the
Appendix.

4.2 Estimation setup
We design a scenario where the large trader has to liquidate his position of one individual stock with 10%
of total hourly market shares over a fixed time period T = 1 hour. To implement a real-world continuous
strategy with finite and discrete samples, we split the fixed time period [0, T ] to equidistant discrete-time
grids {ti}ni=0, with ti = i∆t for i = 0, ..., n, and assume that the liquidity trader submits multiples of
average market order sizes (AMO) at each time point ti. We fix the duration between two consecuitive
submission times as

∆t =
1

0.1µ

where µ is the average market order rate to be estimated in Hawkes process.

For each stock, we prepare sample data as follows:

• We filter out the trade and quote data from 10 AM to 3 PM to avoid the microstructure noise
impact of opening/close.

• For trade data, we aggregate multiple orders over short intervals with bin of 100 millisecond to
avoid capturing artificial herding effects.

• For quote data, we build the snapshot of quantity at best bid offer and the price gap compared to
the next level every ∆t time.

• We split the data into subsamples with bin of one hour. In other words, each stock provides 5×5
samples over the five trading days.

4.2.1 Instantaneous impact factor estimation from stochastic orderbook

The instantaneous impact parameter has been estimated by several works before, where the executed
price is assumed to be linearly proportional to market order size and the instantaneous factor can be
estimated by feeding a hypothetical market order of large size by walking the LOB; see Cartea and
Jaimungal (2015) and Chen et al. (2018). While this offers a tractable representation of the orderbook for
mathematical model, it is only an approximation of the visible (observed) orderbook for two reasons:

• Price discretization Stocks often transact in tick size, which determines the minimum price
amount a security can change. Consequently, prices in the orderbook can only be multiplies of tick
size. Thus, the executed price is a step function of the total executed shares.

• Liquidity fluctuation As mentioned in Tóth et al. (2011), the liquidity posted in the visible
orderbook may or may not reflect the true supply and demand of the market. Rather, it is often a
consequence of high frequency market makers adjusting their quotes to avoid adverse selection cost,
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and therefore only a small amount of liquidity posted near the best bid-offer is capturable at any
one time.

Given the stochastic nature of liquidity, one cannot directly use the orderbook data to estimate the
instantaneous cost factor. This advocates to measure the average instantaneous market impact based on
a steady-state profile of the orderbook. We follow the previous works to model orderbook, but account
for price discretization and random fluctuation in standing volume.

We consider a Limit Order Book (LOB) model with total depth of S price levels. The LOB is described
by the bid/ask side liquidities Lb/ai standing at the i-th price level away from the best bid/offer price.
Instead of assuming the price level grid is fixed with equidistance (e.g. 1 tick) which may introduce “holes”
in the book with 0 standing liquidity (Lb/ai0 = 0 for some i0) for certain stocks and bring variations in
book reconstruction, we build (bid side) LOB samples with positive standing liquidities at any price level
as follows:

Let M0 := Lb0. By definition M0 > 0. Let ∆P0 := 0 and S0 := #{i ∈ {0, ..., S} : Lbi > 0}. We now define
a sequence of price offsets ∆Pi and and standing liquidities Mi recursively by

∆Pi := inf{j > ∆Pi−1 : Lbj > 0} and Mi := Lb∆Pi
, i = 1, ..., S0.

In particular, the liquidity standing ∆Pi ticks into the book is given by Mi. The aggregate liquidity up
to price level ∆Pi is denoted

mi =

i∑
j=0

Mj .

The state of the LOB at any given time can be fully described by a random vector {(Mi,∆Pi)}i=0,...S0 .

Compared to simply taking averages of, say 10-second LOB snapshots, a nonparametric density estimation
provides comprehensive stochastic behaviours of the random variables, and more importantly, a better
estimate of transaction cost, especially when the distribution deviates form Gaussian with asymmetry
and/or heavy tails. Estimating joint density of multi vector is challenging. Given that the price grid
is determined by the availability of standing liquidity, we replace the random offsets by their empirical
averages, still denoted ∆Pi. In this case, the offsets are assumed to be deterministic, the distribution of
the vector {Mi}i=0,...,S0

allows to compute the cost function

P (v) :=
1

v
E

 S∑
j=1

1{mj−1<v≤mj}

{
j∑
i=1

Mi−1∆Pi−1 + (v −mj)∆Pj

} .
This is still too complicated; estimating the high dimensional joint distribution of the standing liquidity
is prone to the curse of dimensionality; see Gramacki (2017). To balance bias and variance tradeoff, we
considered the modified function

P̂ (v) =
1

v

S∑
i=0

E
[
mi−1∆Pi−1 + (v −mi)∆Pi

∣∣∣∣mi < v ≤ mi+1

]
P(mi < v ≤ mi+1).

The modified version is clearly biased. It assumes that our order, when clearing up to level i, will be
priced at the most aggressive price ∆Pi instead of the average price

∑i
j=0Mj∆Pj∑i

j=0Mj
. This inflates the price

impact in the estimation, leading to larger value of η. Conversely, it provides a very conservative estimator
of the cost improvement of our trading strategy over TWAP. The numerical benefit of using the modified
function is that it only needs to estimate separately the joint distributions at two levels (mi,mi+1) each
time, which lowers estimation variance and speeds up computation.

We use kernel density to estimate the joint probability density function, denoted fx,y, of two random
variable x = mi and y = mi+1. Let (x1, x2, · · · , xn) and (y1, y2, · · · , yn) be samples drawn from the
distribution of mi and mi+1 we have:

f̂x,y = n−1
n∑
t=1

KH(x−Xt)(y −Yt)
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where KH(x,y) = |H|−1/2K(x,y)|H|−1/2 is the kernel and H is the bandwidth matrix. We consider the
Gaussian kernel8 in our estimation.

To measure our instantaneous market impact, we first simulate the orderbook in its stationary state. We
then submit orders with different size v (multiples of 1, .., 20 average market order sizes9) and compute
the market impact P̂ (v) of each order on the simulated book. Finally, we estimate the instantaneous
market impact factor η in the linear relationship

P̂ (v) = ηv + ε

where ε ∼ N(0, σε) and P̂ (v) is the change in price per share after we submit our market orders of size v.

In the estimation, the density of liquidity is calibrated using kernel density estimation based on the quote
data snapshots at {ti}ni=1 sampled within each bin of T = 1. We consider up to 20 times the size of AMO
or the linearity is not violated10, which in all cases lead up to first S = 5 levels of orderbook data.

4.2.2 Permanent impact factor estimation using order flow imbalance

In the theoretical framework, orders are supposed to have the same permanent impact. In other words,
the value of permanent impact will not be influenced by individual agent’s action and market timing.
While one can measure the change in fundamental price at each trade directly, it often leads to large
variance due to the presence of microstructure noise. To obtain a robust estimation, we measure the
average change in fundamental price after a certain amount of liquidity has been removed from the market.
Specifically, we adopt the idea of Cont et al. (2013), which estimates permanent impact based on the
linear relation between price change and order flow imbalance (OFI), defined as the imbalance between
supply and demand at the best bid and ask prices.

Over a time interval [ti−1, ti], the order flow imbalance is a sum of changes for every liquidity event:

OFIi =

C(ti)∑
s=C(ti−1)+1

es

where C(·) denotes the count of all the best-bid offer (BBO) change events (add/delete/trade) and es
denotes the changes in liquidity at BBO. For a detailed guide how es is measured, we refer to the original
paper Cont et al. (2013). The permanent market impact factor is estimated with a linear regression
equation

∆Pi = λOFIi + εi

where λ is the price impact coefficient applied to each share, ∆Pi refers to the price change over the
time interval, and εi is a noise term. In other words, we estimate the permanent impact at frequency
∆t, that is, the same duration for every interval [ti−1, ti], and balance the bias and variance tradeoff in
the market microstructure. We report the average R-squared of the linear regression for each stock in
Appendix. Similar to the results reported in Cont et al. (2013), the regression fits data reasonably well,
with R-squared around 41.01% – 71.10% .

4.2.3 Hawkes process estimation using maximum likelihood estimation

We use Hawkes process to model the dynamics of order arrivals. There are several issues to be addressed
in the estimation:

• Artificial trade clustering. While the self-exciting effects of Hawkes process are related to the
degree of endogeneity of how much parent orders trigger child orders, there is no detailed information
in public data. In other words, we cannot distinguish the parent-child relationship among the
orders. This is further complicated by the nature of high frequency market data, in which events

8Note that the kernel only serves as a smoothing function for data within the bandwidth, and it does not mean we
assume normal distribution, or any distribution in particular.

9To ensure the assumption of orderbook recovered within ∆t reasonable, we only submit orders of the average market
order’s size, with a trading rate at a fraction of the average market order’s arrival rate.

10We check for linearity in the regression and only use up to X number of AMOs until the linearity is violated.
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are clustering together not due to their relationship, but possibly due to the distribution mechanism
of market data (Filimonov and Sornette (2015)). For example, during a general market event such
an index movement, it is reasonable to expect a flurry of limit orders submitted at almost the same
time as traders are to hedge their position to reduce adverse selection risk. The exchange will first
match each order in FIFO order, then redistribute the trade to every market participant. This
creates an artificial stream of trades that resembles herding effects. We aggregate multiple trades
over a super-short interval of 100 milliseconds to avoid capturing such artificial herding effects in
estimation induced by the microstructure effect.

• Mixture of herding and splitting effect. In addition to endogeneity, the self-exciting effects of
Hawkes process is attributed to the splitting of a big meta-order into multiple child orders (Tóth
et al. (2014)). Without proprietary data, it is hard to obtain the detailed information. Filimonov
and Sornette (2015) shows that the splitting effect results in an overestimation for the Hawkes
process, with the estimated branching ratio close to the critical value of 1. The overestimation will
become more serious for a long sample period. We assume that the Hawkes process is stationary11.
In our estimation, we slice data into the hourly bins and estimate the parameters over each bin.
This alleviates the bias in estimation, but potentially at the cost of larger variance. We take the
median of all the estimates as a robust estimate to balance the bias and variance tradeoff.

• Misspecification of Hawkes’s kernel We chose an exponential kernel in the estimation, in
accordance with the model set up. 12 To verify the accuracy, we performe goodness-of-fit testing of
the residuals of the fitted Hawkes process with the exponential kernel. In general, the exponential
Hawkes process fits the data reasonably well, as the test in general cannot reject the null hypothesis
at 10% significance level.

• Seasonality effect: Diurnal pattern is known in trading, and can be vital in estimating Hawkes
process’s branching ratio using high frequency data. The average number of trades is not constant
over the day, but often follows a U-shape with peaks of trading volumes near the opening and close
auctions. As shown in Wehrli et al. (2021), not controlling the seasonality effect can lead to critical
Hawkes’s branching ratio. Consequently, by removing the open and close and use data from 10 AM
to 3 PM only, we lower the disturbance of seasonal effect to stationarity.

For each sample over T = 1 hour, we conduct the maximum likelihood estimation for the Hawkes process.
The log-likelihood function is as follows:

logL(t1, t2, · · · , tn|) = −µtn +

n∑
i=1

[
α

β
(e−β(tn−ti) − 1)

]
+

n∑
i=1

log(µ+ αA(i))

where A(i) =
∑
tj<ti

e−β(ti−tj), and µ is the average number of market orders over the sample period.
The parameter α is the strength of the self-exciting effect. For α = 1.0, it means a 100% self-exciting
effect, in the sense that each immigrant order will be replicated fully over the sample period if there is no
decay. The parameter β is the strength of the decaying effect. For β = 1.0, it expects a 100% decaying
effect in the exponential term. We report the mean and statistical significance of the estimates using
Anderson Darling test across subsamples of each stock in the Appendix. The statistics show that the fits
of Hawkes process are reasonable.

4.2.4 Summary of estimation

We compute the mean and standard deviation of the estimates across 25 subsamples for each stock. Table
2 presents the summary result of the parameters for the stocks, grouped on tick size. The standard
deviation is reported in the brackets, which is normalized to percentage points of the mean. In general,
the estimates are reasonable and provide robust values to the wide range of stocks. In particular, we find
that:

• The self-exciting ratio α
β is below 1, implying the Hawkes processes are stationary.

11This is a necessary condition to obtain closed-form solutions.
12We are aware that many other kernels including power law kernels have been suggested in the literature; see, e.g. Gatheral

(2011) and Hawkes (2018) among many others. The choice of exponential kernels allows us to obtain closed-form solutions.
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Table 2: The average of each parameter grouped by tick size. In general, the estimates are in similar
ranges across groups, suggesting that the estimation method is robust to stock regimes. The standard
deviation is normalized to percentage points of the mean in the brackets.

Tick (bps) α ω λ (bps/shr) η (bps/shr) ζ θ

< 2 4.60 (24) 5.84 (15) 0.00543 (72) 0.00076 (65) 5.47 (14) -2.28 (79)
2− 4 4.89 (21) 5.94 (13) 0.00805 (46) 0.00117 (46) 5.63 (14) -1.82 (45)
4− 6 5.43 (35) 6.65 (26) 0.00757 (42) 0.00099 (44) 6.32 (27) -2.20 (66)
6− 8 5.07 (38) 6.45 (24) 0.00674 (61) 0.00091 (63) 5.72 (26) -4.85 (57)
> 8 5.29 (25) 6.50 (16) 0.00584 (77) 0.00076 (73) 5.97 (16) -3.55 (50)

• The cost ratio λ
η is higher than 1, that is, permanent impacts are higher than the instantaneous

ones.

• The factor θ is below 0, indicating the optimal solutions are of the hyperbolic form and absence of
statistical arbitrage.

Estimates and goodness-of-fit measures for each individual stock are reported in Appendix D.

4.3 Transaction cost analysis
We now present the summary of the cost estimates – absolute execution cost for TWAP and optimal
strategies (Opt) as well as relative performance measure rTWAP – of each stock. Table (3) reports the
costs with various strategies, along with histogram of cost saving measures in Figure (7). In general, our
optimal strategy allows the trader to liquid his position with 12.15− 24.40% cost reduction. The cost
improvement reaches higher for the stocks with smaller tick size. This makes sense as smaller tick stocks
are cheaper to trade instantly, while larger tick size means thicker queue size due to queue priority. As a
result, smaller tick stocks have higher cost ratio and consequently higher difference between the optimal
strategy and the TWAP. In a further investigation, we measure the correlations between cost savings of
the 110 stocks versus tick size, volatility, and volume respectively, see Table (4) and Figure (8). It shows
that the amount of cost savings is negatively correlated with both tick size and volatility. The amount of
cost savings is positively correlated with average daily traded notional. This implies comparatively less
volatile, more liquid stock at lower tick size may benefit more from the optimal trading strategy.

Section (3) shows the endogeneity will affect the performance of rTWAP through the ratio γ
η and permanent

impact ω. When performing a linear model to the empirical data, we obtain

rTWAP = −36.483ω + 42.436
γ

η
+ ε

where both coefficients are significant and R2 = 85%. The fitted model implies that either lower values of
ω or higher ratio γ

η , i.e. higher level of endogeneity, lead to larger value of rTWAP . For example, one unit
decrease in ω, while keeping the ratio constant, will push up rTWAP by roughly 36%. This is confirmed
in Figure (9), where we plot the sensitivity of different inputs in the empirical performance of the optimal
strategy against TWAP.

19



Table 3: The average and range of cost measures grouped by tick size. Cost measures TWAP and Opt
are in bps per shares, while rTWAP (%) is in percentage points. The standard deviation is normalized to
percentage points of the mean in the brackets. The TWAP95/Opt95 and TWAP99/Opt99 are 95− th and
99− th quantiles of the cost measures, respectively.

Tick (bps) TWAP Opt rTWAP (%) TWAP95 Opt95 TWAP99 Opt99

< 2 0.27 (64) 0.23 (77) 24.40 (76) 0.08-0.54 0.03-0.50 0.07-0.69 0.03-0.65
2− 4 0.36 (51) 0.29 (57) 21.91 (47) 0.12-0.62 0.07-0.53 0.09-0.91 0.06-0.79
4− 6 0.45 (61) 0.36 (70) 23.70 (62) 0.14-0.86 0.07-0.75 0.13-1.18 0.07-1.05
6− 8 0.75 (87) 0.69 (92) 12.15 (100) 0.13-2.49 0.09-2.39 0.10-2.51 0.05-2.42
> 8 0.50 (60) 0.44 (63) 14.06 (55) 0.04-0.94 0.03-0.85 0.04-0.94 0.03-0.85

Table 4: Correlation of cost saving measure against volatility, tick size and average daily trade notional.
In general, trade notional and tick size are correlated with the amount of cost savings in percentage
points. This implies more liquid stock at lower tick size and less volatile may benefit more from the
optimal trading strategy.

Volatility TickBps TradeNotional
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Figure 7: Histogram of rTWAP in percentage points. The cost savings are distributed evenly across
stocks.
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Figure 8: Scatter plots of rTWAP against daily volatility and daily trade notional in millions. Each
stock is categorized according to its tick size in basis points. Most of the improvements can be seen
concentrated in smaller tick size, less volatile, highly liquid stocks.
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Table 5: Sensitivity analysis with respect to decreasing self-exciting ratio ω. Columns with (ω) are new
cost measures when the parameter increases 50%. The standard deviation is normalized to percentage
points of the mean in the brackets.

Tick (bps) TWAP TWAP(ω) Opt Opt(ω) rTWAP (%) rTWAP (%)(ω)

< 2 0.27 (64) 0.19 (54) 0.23 (77) 0.14 (69) 24.40 (76) 32.55 (48)
2− 4 0.36 (51) 0.26 (46) 0.29 (57) 0.18 (53) 21.91 (47) 32.65 (28)
4− 6 0.45 (61) 0.32 (54) 0.36 (70) 0.22 (64) 23.70 (62) 33.93 (39)
6− 8 0.75 (87) 0.48 (82) 0.69 (92) 0.40 (90) 12.15 (100) 20.14 (61)
> 8 0.50 (60) 0.33 (58) 0.44 (63) 0.26 (61) 14.06 (55) 24.03 (35)
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Figure 9: Sensitivity analysis with respect to ω and γ
η for the optimal strategy based on empirical data.

5 Counterfactual experiments and sensitivity analysis
Here, we conduct some counterfactual experiments to show when the parameters deviate from the
estimation due to either market condition change or misspecification in estimation, how sensitive is
execution cost exposed to the liquidity trader. We perform sensitivity analysis by changing the self-exciting
ratio of the Hawkes process and the cost ratio between permanent and instantaneous market impact.

5.1 Sensitivity of execution cost with respect to level of reflexivity
In our experiment, we apply 50% decrease to the self-exciting ratio ω. Specifically, we fix α and apply
changes to β only. As such, the self-exciting ratio decreases, along with the increase of the branching
ratio. As suggested in Filimonov and Sornette (2012), an increase in Hawkes process’ branching ratio may
indicate increase in the level of reflexivity in the financial markets. As Hawkes process reaches criticality,
we can assume that price changes are due to endogenous feedbacks, as opposed to exogenous news. It can
also mean the order routing algorithm is prematurely leaking his order flow, and therefore his self-exciting
ratio is higher than market. Another caveat is that since arbitrage may appear when the oscillation factor
θ is non-negative, we cap the increase of the self-exciting ratio up to the upper limit implied by θ = −0.5.

Table (5) reports the numerical results. When decreasing the self-exciting ratio by 50% and keeping other
cost parameters the same, the execution cost of the optimal strategy further improves by roughly 9− 29%,
while the cost difference between the TWAP and the optimal strategy changes to between 20.14− 33.93%
under rising endogeneity in the markets.
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Table 6: Sensitivity analysis with respect to rising cost ratio ζ by 50%. Columns with (ζ) are new cost
measures when cost ratio increases. The standard deviation is normalized to percentage points of the
mean in the brackets.

Tick (bps) TWAP TWAP(ζ) Opt Opt(ζ) rTWAP (%) rTWAP (%)(ζ)

< 2 0.27 (64) 0.10 (36) 0.23 (77) 0.04 (38) 24.40 (76) 61.22 (7)
2− 4 0.36 (51) 0.15 (43) 0.29 (57) 0.06 (42) 21.91 (47) 61.85 (6)
4− 6 0.45 (61) 0.17 (45) 0.36 (70) 0.06 (48) 23.70 (62) 64.20 (10)
6− 8 0.75 (87) 0.14 (55) 0.69 (92) 0.05 (62) 12.15 (100) 63.48 (9)
> 8 0.50 (60) 0.12 (51) 0.44 (63) 0.04 (52) 14.06 (55) 64.18 (8)

Table 7: Counterfactual experiments with respect to the case of critical feedback (θ = 0). Columns with
(0) are new cost measures when Hawkes’s self-exciting ratio increases to reach the critical feedback values.
The standard deviation is normalized to percentage points of the mean in the brackets.

Tick (bps) TWAP TWAP(0) Opt Opt(0) rTWAP (%) rTWAP (%)(0)

< 2 0.27 (64) 0.10 (37) 0.23 (77) 0.03 (38) 24.40 (76) 66.68 (6)
2− 4 0.36 (51) 0.15 (42) 0.29 (57) 0.05 (41) 21.91 (47) 67.51 (5)
4− 6 0.45 (61) 0.17 (45) 0.36 (70) 0.05 (47) 23.70 (62) 69.57 (8)
6− 8 0.75 (87) 0.17 (63) 0.69 (92) 0.06 (76) 12.15 (100) 67.04 (9)
> 8 0.50 (60) 0.14 (52) 0.44 (63) 0.04 (51) 14.06 (55) 68.82 (7)

5.2 Sensitivity of execution cost with respect to cost of trading
While we estimate the impact factor using public data, the trader may face different cost ratios in certain
scenarios. For example, the cost of aggressing the book may be much lower by utilizing some liquidity
seeking algorithms. This in turn translates to higher cost ratio, which may change the cost difference
between the optimal strategy and the TWAP strategy. Similar to the sensitivity analysis with respect to
the self-exciting ratio, we change the cost ratio ζ by increasing the ratio λ

η by 50%

and cap the increase up to the upper limit determined by θ = −0.5. For ease of comparison, we keep the
permanent impact factor λ constant and decrease the instantaneous impact factor η only to match the
target λ

η ratio.

Table (6) reports the numerical results. By lowering the instantaneous impact and keeping the permanent
market impact and Hawkes’s parameters the same, it pushes a significant cost improvement by up to five
times. The cost difference ranges in 61.22− 64.20% . In this case, liquidity trader would be more willing
to convert to the optimal trading strategy when the instantaneous cost drops. It indicates as the cost of
aggressing the book is lowering, the TWAP performs relatively worse.

5.3 Execution cost under critical feedback effect (θ = 0)
We consider a scenario when the self-exciting ratio ω equals γ

η , leading to the critical feedback effect
(i.e. θ = 0). We perform cost analysis under this practically improbable situation and demonstrates
the limit of what the optimal trading strategy can achieve. Table (7) shows the results. As expected,
under the critical Hawkes process, the cost improvement across tick size groups reaches the highest level
compared to the previous experiments. In other words, those are the highest cost savings from deploying
the optimal trading strategy without arbitrage, given the same cost ratio, which can be considered as
approximation of the lower bounds of execution costs. The cost difference now widens to 66.68− 69.57%
between the optimal strategy and the TWAP.
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Table 8: Counterfactual experiments with respect to the case of strong feedback effect (θ > 0). Columns
with pluses are new cost measures when the self-exciting ratio increases to reach the strong feedback
values. Note that only the cost of the strategy is reported, as other cost measures do not apply in this
case. The profit of the round-trip strategy in Example (1) with trading rate ν = 1 is also reported in the
last column.

Tick (bps) Opt Opt+ Round-trip

< 2 0.23 -2.58 0.00039
2− 4 0.29 -3.98 0.00059
4− 6 0.36 -5.13 0.00048
6− 8 0.69 -4.44 0.00047
> 8 0.44 -3.94 0.00036

5.4 Execution cost and arbitrage under strong feedback effect (θ > 0)
Under strong feedback effect, arbitrage opportunity may exist. The principal agent who initiates the
self-exciting effect and/or exploits the need of liquidation can profit from other investors, or in other
words, in a form of predatory trading (Brunnermeier and Pedersen (2005)). Under this transient condition,
a predatory agent can manipulate the self-exciting Hawkes and triggers price increase. In this case, other
investors (e.g. a short-seller) may have to to cover his position (i.e. "short squeeze") and Hawkes process
reaches criticality.

In our model, it is analogous to the case when θ > 0, where the ratio γ
η is larger than ω. The liquidity

trader (predator) can estimate a theoretical value of profit under this scenario. In contrast, a broker,
who may not seek predatory trading, still has incentive to liquidate as much as possible when a strong
feedback effect is present. Only under strong feedback effect (i.e. θ > 0), the broker can reduce more
than the fixed cost as in Equation (2.4).

Table (8) reports both the profit of an arbitrageur and the controllable cost of a broker who utilizes the
candidate strategy in Section (3), when ω is reduced to half of γη and thus θ > 0. There is consistent
profit of the round-trip strategy, which shows that arbitrage is possible under strong feedback effect across
the tick size groups. Simultaneously, the cost reduction from a broker’s perspective is significantly higher
under strong feedback effect than under a normal scenario, incentivizing market participants to increase
trading activity to exploit it until no longer possible.

6 Conclusion
We consider an optimal liquidation problem in which a large trader wants to execute meta-orders during
intraday trading hours. The large trader’s execution endogenously triggers child orders and his order
flow is discovered by other participants in the market. By incorporating endogeneity and market impact,
the theoretical model takes into account the market microstructure of orders and allows for an in-depth
discussion of the composition of execution costs under three types of exponential Hawkes processes. We
demonstrate the relationship between the dynamics of self-exciting order flow and transaction costs and
discuss the conditions for the existence of statistical arbitrage. We also develop an estimation framework
that allows the parameters to be calibrated directly from real-world data and simultaneously remain
consistent with the theoretical model. This enhances the practical feasibility of the optimal liquidation
strategy. Numerical performance shows that the optimal strategy provides increasingly better performance
than the commonly adopted trading strategy TWAP as the level of endogeneity increases.
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A Proof of Theorem 1
In this appendix, we solve the integral equation (3.2) and prove that the solution to the corresponding
boundary value problem yields an optimal trading strategy if θ < 0.
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A.1 First-order condition
If θ < 0, then it follows from (Polyanin and Manzhirov, 1998, Page 324 Equation 15) that the general
solution to the ODE (3.4) is of the form

ξt = C1 cosh(kt) + C2 sinh(kt) + C

[
1 +

γω

k2η

]
ξ
′

t = C1k sinh(kt) + C2k cosh(kt)

for some constants C1, C2 and C. Using that

ξ0 = C1 + (1 +
γω

k2η
)C

ξT = C1 cosh(kT ) + C2 sinh(kT ) + (1 +
γω

k2η
)C

ξ
′

0 = C2k

ξ
′

T = C2k cosh(kT ) + C1k sinh(kT )

for any given C, the boundary conditions

ξ
′

0 − ωξ0 = −ωC

ξ
′

T + ωξT = ωC.

yield a system of two linear equations with the 2 unknowns C1 and C2 than can be solved explicitly in
terms of C:

C1 = −
γω2 cosh kT

2

k2ηω cosh
(
kT
2

)
+ k3η sinh(kT2 )

C

C2 =
γω2 sinh(kT2 )

k2ηω cosh
(
kT
2

)
+ k3η sinh(kT2 )

C

Lastly, to solve for C, we use the liquidation constraint

Xξ
T = x0 −

∫ T

0

ξtdt = 0

This is equivalent to:∫ T

0

ξtdt = C

[
T +

Tγω

k2η
−

2γω2 sinh
(
kT
2

)
k3ηω cosh

(
kT
2

) + k4η sinh

(
kT

2

)]
= x0

that is, the total number of shares liquidated equals to the initial position. Consequently, we see that

C =
k3x0η(ω cosh

(
kT
2

)
+ k sinh

(
kT
2

)
kωT (k2η + γω) cosh

(
kT
2

)
+ (k4Tη + k2Tγω − 2γω2) sinh(kT2 )

.

A.2 Second-order condition - Verification
Our verification result uses Fourier transforms. There are different conventions of Fourier transform in
circulation. We define the Fourier transform of an integrable function f : R→ C as

f̂(k) =

∫
R
f(x)e−2πikxdx

and recall the following results. The first result states that the L2-norm of a square integrable function
and its Fourier transforms coincide.
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Theorem 4. (Plancherel theorem) For any square integrable function f : R→ C it holds that∫
R
|f(x)|2dx =

∫
R
|f̂(ξ)|2dξ

The inversion formula states that for many types of functions, it is possible to recover a function from its
Fourier transform.

Theorem 5. (Inversion formula) Let f : R→ C be a smooth integrable function. Then,

f(x) =

∫
R
e2πix·ξ f̂(ξ) dξ.

The next lemma shows that an exponential decay function can be represented as the Fourier transform of
a Lorentzian measure. The proof is standard; we give it for the convenience of the reader.

Lemma 1. (Exponential decay function as the Fourier transform of a Lorentzian measure) For any
ω > 0,

e−ω|x| =

∫
R

2ω

ω2 + 4π2t2
e−2πitxdt

Proof. We will apply the Fourier transform to the function f(x) = e−ω|x| and then use the inversion
formula to invert it. We have

f̂(t) =

∫
R
e−ω|x|e−2πitxdx

=

∫ 0

−∞
eωxe−2πitxdx+

∫ ∞
0

e−ωxe−2πitxdx

=

∫ 0

−∞
e(ω−2πit)xdx+

∫ ∞
0

e−(ω+2πit)xdx

=
e(ω−2πit)x

ω − 2πit

∣∣∣∣0
−∞
− e−(ω+2πit)x

ω + 2πit

∣∣∣∣∞
0

=
2ω

ω2 + 4π2t2
.

Now, by the inversion formula we have:

e−ω|x| = e−ω|−x|
∫
R

2ω

ω2 + 4π2t2
e−2πitxdt.

To prove that the candidate optimal strategy is indeed optimal, we now fix an admissible strategy ξ.
Setting Ξt := 1[0,T ](t)ξt for t ∈ R we get that

L(ξ) = η

∫ T

0

ξ2
t − γ

∫ T

0

ξt

∫
t>s

ξse
−ω(t−s)dsdt

= η

∫
R

Ξt
2 − γ

∫
R

Ξt

∫
t>s

Ξse
−ω(t−s)dsdt.

Using Plancherel’s theorem and the symmetry of the exponential kernel, we have:

L(ξ) = η

∫
R
|Ξ̂z|2dz − γ

1

2

∫
R

Ξt

∫
R

Ξse
−ω|t−s|dsdt.
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Since the exponential decay function is the Fourier transform of a Lorentzian function, this yields:

L(ξ) = η

∫
R
|Ξ̂z|2dz − γ

1

2

∫
R

Ξt

∫
R

Ξs

∫
R

2ω

ω2 + 4π2z2
e−2πi(t−s)zdzdsdt

= η

∫
R
|Ξ̂z|2dz − γ

∫
R

Ξte
−2πiztdt

∫
R

Ξse
2πizsds

∫
R

ω

ω2 + 4π2z2
dz

= η

∫
R
|Ξ̂z|2dz − γ

(∫
R

Ξte
−2πiztdt

)(∫
R

Ξse−2πizsds

)∫
R

ω

ω2 + 4π2z2
dz

= η

∫
R
|Ξ̂z|2dz − γ

∫
R
|Ξ̂z|2

ω

ω2 + 4π2z2
dz

=

∫
R
|Ξ̂z|2

(
η − γ ω

ω2 + 4π2z2

)
dz.

From this we immediately see that L(ξ) ≥ 0 if ω ≥ γ
η . In particular, the cost of any round-trip is

non-negative. �

A.3 Positivity of trading costs
To prove that the function defined in (3.7) is strictly positive for all t ∈ (0, T ] it is enough to prove that

ξt and ηξ̂t −
∫ t

0

γξ̂se
−ω(t−s)ds

have the same sign. To this end, we rewrite the optimal trading strategy rewritten as:

ξt = C

{
1 +

γω

k2η
+

[
sinh(kt) sinh

(
kT

2

)
− cosh(kt) cosh

(
kT

2

)]
C1

}
.

Since we are only interested in the sign of ξt we now perform a series of simplifications, each of which
does not change the sign of the trading rate. First, we may set C = 1 in which case ξt simplifies to

ξt = 1 +
γω

k2η
− cosh

[
k

(
t− T

2

)]
γω2

k2ηω cosh
(
kT
2

)
+ k3η sinh

(
kT
2

) .
Using the identity cosh(x) cosh(y)− sinh(x) sinh(y) = cosh(x− y), we have that

ξt = 1 +
γω

k2η

[
1−

ω cosh
(
k
(
t− T

2

))
ω cosh

(
kT
2

)
+ k sinh

(
kT
2

)] .
For the unity constant, we have

η −
∫ t

0

γe−ω(t−s)ds = (η − γ

ω
)t+

γ(1− e−tω)

ω2
> 0.

Hence, we may further simplify ξt to

ξt = 1−
ω cosh

(
k
(
t− T

2

))
ω cosh

(
kT
2

)
+ k sinh

(
kT
2

)
=
k sinh

(
kT
2

)
+ ω cosh

(
kT
2

)
− ω cosh

(
k
(
t− T

2

))
ω cosh

(
kT
2

)
+ k sinh

(
kT
2

)
and, since the denominator is positive using the identity cosh(x)−cosh(y) = 2 sinh(x+y

2 ) sinh(x−y2 ) further
to

ξt = k sinh

(
kT

2

)
+ ω cosh

(
kT

2

)
− ω cosh

(
k

(
t− T

2

))
= k sinh

(
kT

2

)
+ 2ω sinh (kt/2) sinh (k(T − t)/2)) .
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This shows that ξt is strictly positive on [0, T ] Moreover, (using Mathematica)

ηEt −
∫ t

0

γEse
−ω(t−s)ds =

e−tω

ω
k
(
(etω − 1)ηk cosh[kT/2]

+etωηω sinh[k(T − t)/2] + (etω − 1)(ηω − γ) sinh(kT/2)
)

which is non-negative given the condition ω > γ
η . This proves the desired result.

B Miscellaneous

B.1 Square-root law market impact and benchmark
A standard method to measure market impact is the square-root formula, which is:

∆P = cσ

√
x0

V

where ∆P is the price change from executing x0 shares, with σ is the volatility of the fundamental price
and V is average daily market volume. c is a constant that depends on market, but often of order unity;
see, for example, Tóth et al. (2011) for more details. The corresponding square root cost formula is then

cσ

√
x0

V
x0.

While the square root does not factor directly in our estimation, it serves as a good benchmark for
reasonable estimation of market impact. We would expect the market impact generated by square-root
law to be in the same magnitude as our fixed cost component in the total cost equation (2.4). The fixed
cost can be decomposed into a market linear impact component and the number of shares executed as

(γ + λ)
x0

2
x0

The results (assuming c = 1) are presented in Table 16 and Table 17. In general, the fixed cost and
square-root cost are in the same magnitude, implying our cost calculation is reasonable.

B.2 Goodness-of-fit testing for Hawkes process using Anderson-Darling test
The goodness-of-fit for the estimation of Hawkes processes can formally be tested using residual analysis.
Specifically, consider a univariable Hawkes process N with conditional density i(t), and the corresponding
compensator function I(t)

I(t) =

∫ t

0

i(s)ds

Define a scaled point process S for all {ti : i ∈ Nt} where

S(ti) = I(ti)

then S is a standard Poisson process (Daley and Vere-Jones (2003)). The goodness-of-fit test then can be
performed on the residual process R where

R(ti) = Si − Si−1

under the null hypothesis that R is exponentially distributed with rate 1. We use the Anderson-Darling
test (Anderson and Darling (1952)) to test if sample residuals came from a population with a standard
exponential distribution. While the exact critical values depend on number of observations in each stock,
a rough estimation of critical values against significance levels is provided in Table (9).

C Empirical results
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Table 9: Anderson-Darling critical value table for standard exponential distribution for 200 observations.
Significance level 15% 10% 5% 2.5% 1%

Critical value 0.919 1.075 1.337 1.601 1.951

Table 10: The average of goodness of fit measures and the general statistics per symbol (from index 1 to
37). Residual statistic refers to the Anderson-Darling test statistic for the Hawkes process, while OFI R2
refer to the R-squared measure of the linear regression for the permanent impact factors. In general, the
goodness of fit measures are in the expected range.

symbol Tick Volume Volatility Residual statistic OFI R2

ANSS 0.470 93.920 1.695 1.069 36.563
JKHY 0.700 55.491 1.181 1.040 29.121
FFIV 0.730 90.035 1.797 0.972 39.152
AZPN 0.780 51.697 2.252 1.108 26.838
PFPT 0.810 84.907 2.254 1.419 30.714
BLUE 0.910 68.981 2.648 1.294 42.912
NDAQ 1.010 70.441 1.431 0.990 59.320
MRTX 1.110 53.630 3.688 0.990 25.594
GRMN 1.210 85.427 1.585 1.362 40.873
BPMC 1.210 35.373 2.770 0.958 38.654
UTHR 1.230 40.201 1.741 1.094 35.246
INCY 1.250 86.779 1.942 1.064 54.772
VSAT 1.290 25.463 1.354 0.932 25.436
QRVO 1.350 85.128 1.738 1.180 38.454
EXPD 1.370 66.622 1.503 1.199 53.799
OLLI 1.410 91.053 3.901 1.041 47.076
AAXJ 1.490 85.619 0.942 1.139 65.364
YY 1.670 56.451 2.201 1.144 31.539
FIVN 1.790 41.790 3.102 1.014 28.398
PFG 1.790 60.807 1.660 1.235 60.055
BPOP 1.840 27.665 1.457 1.052 29.692
XRAY 1.860 84.242 1.249 0.751 80.312
AMBA 1.900 35.495 2.948 1.254 36.716
FLIR 1.940 39.007 1.636 1.038 63.165
GBT 1.960 37.025 2.534 0.925 25.530
APPN 2.140 32.233 3.514 1.061 33.078
HUBG 2.280 11.090 2.058 0.641 25.799
FGEN 2.360 22.600 2.532 1.063 30.846
PLAY 2.480 38.940 2.038 1.167 46.816
ACGL 2.500 50.322 1.155 0.836 83.466
RGNX 2.520 22.328 3.918 0.894 42.310
PCRX 2.530 27.176 2.207 1.229 35.101
ADPT 2.670 18.939 4.951 1.169 27.943
MMSI 2.690 32.375 5.064 1.124 31.065
SHOO 2.950 22.166 2.649 1.239 31.250
MOMO 2.960 77.758 2.851 0.919 74.486
CORE 3.010 8.411 2.075 0.761 27.877
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Table 11: The average of goodness of fit measures and general statistics per symbol (from index 38 to
74). Residual statistic refers to the Anderson-Darling test statistic for the Hawkes process, while OFI R2
refer to the R-squared measure of the linear regression for the permanent impact factors. In general, the
goodness of fit measures are in the expected range.

symbol Tick Volume Volatility Residual statistic OFI R2

BECN 3.010 20.283 3.074 1.122 31.468
TLRY 3.060 51.187 4.724 1.100 26.106
ACIW 3.180 21.586 1.839 0.754 61.509
ARWR 3.220 40.316 3.298 1.080 52.136
CATM 3.300 14.756 2.682 0.791 26.466
SLGN 3.320 12.144 1.170 0.939 37.447
PPC 3.420 31.036 1.986 1.084 68.245
PDCE 3.550 42.968 3.670 1.224 51.914
APLS 3.670 14.353 3.517 0.844 28.977
FHB 3.810 18.201 1.469 1.073 65.118
VCYT 3.880 16.668 3.658 1.126 26.943
NSTG 3.970 12.034 3.546 1.054 27.579
RDUS 4.000 13.151 2.773 0.760 31.261
HCSG 4.010 21.587 3.593 0.866 41.445
NTNX 4.110 89.122 3.396 1.085 76.948
BCOR 4.160 9.861 3.002 0.954 36.839
IRDM 4.230 18.724 2.902 0.987 31.307
SABR 4.340 37.143 1.384 0.873 76.742
SFIX 4.400 65.906 3.297 0.790 58.067
DENN 4.490 10.146 1.269 1.181 38.205
AERI 4.510 25.962 3.934 1.286 36.199
CARA 4.530 15.945 3.230 1.125 35.094
AIMT 4.610 20.501 3.713 1.018 33.422
IOVA 4.680 26.899 2.828 1.316 46.464
HAIN 4.730 24.093 2.570 0.947 80.205
MTSI 4.980 11.976 2.728 1.185 42.182
BLDR 5.130 21.257 1.955 1.010 82.385
PENN 5.210 31.640 2.149 0.730 78.538
GOSS 5.240 8.684 4.808 0.921 31.964
INSM 5.330 22.642 3.376 1.303 36.882
HOMB 5.360 10.983 1.771 1.000 65.677
HRTX 5.400 17.204 3.162 1.160 34.804
LSCC 5.410 34.718 3.318 1.084 67.626
FATE 5.580 13.129 3.669 1.158 31.986
PETS 5.610 16.283 4.946 0.774 39.979
SVMK 5.690 21.277 2.900 1.410 60.608
ONB 5.830 15.219 1.349 0.744 84.091
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Table 12: The average of goodness of fit measures and general statistics per symbol (from index 75 to
110). Residual statistic refers to the Anderson-Darling test statistic for the Hawkes process, while OFI
R2 refer to the R-squared measure of the linear regression for the permanent impact factors. In general,
the goodness of fit measures are in the expected range.

symbol Tick Volume Volatility Residual statistic OFI R2

TVTY 5.910 11.451 2.986 1.043 62.479
LAUR 6.050 20.994 2.021 1.174 80.312
UMPQ 6.140 20.685 1.597 0.748 80.308
CVET 6.150 31.268 7.033 1.378 79.299
HALO 6.170 11.764 1.647 1.062 42.199
RTRX 6.620 9.330 4.129 0.686 43.557
UPWK 6.670 13.584 2.429 1.060 59.427
MRNA 6.690 31.120 3.235 1.128 62.285
IMMU 6.760 30.598 3.724 1.010 79.406
GLNG 6.900 18.958 3.405 1.161 68.000
FEYE 6.940 50.983 2.055 1.050 81.132
REGI 7.040 10.635 2.856 0.705 46.641
GT 7.290 47.864 2.767 0.847 82.756
NWSA 7.320 33.603 1.575 1.143 77.699
CHNG 7.450 17.828 3.017 0.911 43.489
QNST 7.500 8.155 4.457 0.846 72.596
NAVI 7.660 24.800 2.417 0.962 79.896
WIFI 7.760 9.220 3.411 1.293 47.949
SONO 7.870 15.684 2.778 0.766 74.574
PAYS 7.930 19.838 6.256 0.889 45.796
ISBC 8.810 20.013 1.309 1.139 79.714
TTMI 8.980 11.311 3.035 0.717 74.316
VLY 9.220 17.048 1.531 0.880 80.777
AMAG 9.280 11.548 5.279 0.784 50.451
SGMO 9.500 15.949 2.624 0.890 74.397
MDRX 9.640 16.961 2.095 0.908 77.541
FLEX 9.750 50.250 2.835 0.921 76.403
PBYI 10.040 14.636 5.170 0.958 55.007
IRWD 10.540 16.607 2.541 1.074 61.217
TELL 13.470 13.972 5.112 1.209 56.174
APPS 15.760 12.742 3.546 1.061 66.321
CPRX 18.930 10.320 4.923 0.634 76.050
VRAY 19.990 10.496 9.004 0.977 67.951
OAS 27.260 43.796 6.663 0.823 79.271
ENDP 28.970 28.630 7.775 0.917 82.565
GPOR 31.790 16.424 5.200 0.954 79.379

34



Table 13: The estimated paramaters λ, η and α per symbol (from index 1 to 37). The significance level of
the estimated parameters is denoted in number of stars next to the number. Three, two, and one star(s)
are correspoding to the 1%, 5% and 10% significance levels. Note that ζ, ω and θ are computed from the
estimated paramaters and thus no significance is reported. Similarly, β has the same significance level as
α given the residual test in Subsection (B.2), and therefore is omitted here.

symbol Tick α ω λ η ζ θ

ANSS 0.470 3.84*** 5.137 0.00300*** 0.00048*** 4.725 -2.116
JKHY 0.700 5.23*** 6.228 0.00312*** 0.00047*** 5.643 -3.642
FFIV 0.730 3.88** 5.370 0.00451*** 0.00064*** 5.069 -1.620
AZPN 0.780 2.81*** 4.258 0.00375** 0.00059*** 4.160 -0.418
PFPT 0.810 4.93*** 5.504 0.00384** 0.00063*** 5.493 -0.058
BLUE 0.910 7.12*** 7.862 0.00793*** 0.00102*** 7.023 -6.597
NDAQ 1.010 5.73** 6.900 0.00475*** 0.00058*** 6.765 -0.929
MRTX 1.110 5.82** 6.870 0.01155* 0.00154*** 6.370 -3.433
BPMC 1.210 2.74** 4.905 0.02186*** 0.00278*** 4.402 -2.465
GRMN 1.210 3.23*** 4.467 0.00266*** 0.00043*** 4.442 -0.112
UTHR 1.230 4.33*** 5.987 0.00673** 0.00091*** 5.366 -3.716
INCY 1.250 3.17*** 5.189 0.00531*** 0.00064*** 5.062 -0.662
VSAT 1.290 4.75** 5.666 0.00429** 0.00072*** 5.029 -3.609
QRVO 1.350 3.75*** 5.063 0.00300** 0.00047*** 4.699 -1.846
EXPD 1.370 4.71*** 5.806 0.00423*** 0.00059*** 5.800 -0.030
OLLI 1.410 5.22*** 6.539 0.00464** 0.00060*** 6.135 -2.638
AAXJ 1.490 5.51*** 6.776 0.00060*** 0.00008*** 6.025 -5.087
YY 1.670 5.29*** 6.335 0.00560* 0.00074*** 6.294 -0.263
PFG 1.790 6.17*** 7.040 0.00452*** 0.00060*** 6.629 -2.894
FIVN 1.790 4.17** 5.219 0.00626*** 0.00097*** 5.156 -0.332
BPOP 1.840 3.37*** 4.682 0.00409* 0.00065*** 4.532 -0.703
XRAY 1.860 4.22** 5.590 0.00289*** 0.00043*** 5.051 -3.015
AMBA 1.900 4.61*** 6.085 0.00461*** 0.00067*** 5.245 -5.115
FLIR 1.940 4.65*** 6.066 0.00486*** 0.00064*** 5.822 -1.479
GBT 1.960 5.84** 6.452 0.00719* 0.00112*** 5.803 -4.185
APPN 2.140 4.46*** 5.869 0.00766** 0.00108*** 5.395 -2.780
HUBG 2.280 5.30* 6.180 0.00630* 0.00092*** 5.871 -1.909
FGEN 2.360 3.72*** 4.938 0.00951** 0.00151*** 4.763 -0.865
PLAY 2.480 3.82*** 5.149 0.00629*** 0.00097*** 4.816 -1.713
ACGL 2.500 5.07** 5.930 0.00237*** 0.00036*** 5.567 -2.152
RGNX 2.520 5.67** 6.462 0.01711*** 0.00250*** 5.999 -2.992
PCRX 2.530 4.12*** 5.260 0.00572** 0.00091*** 4.927 -1.749
ADPT 2.670 3.67*** 5.251 0.01618* 0.00236*** 4.793 -2.404
MMSI 2.690 6.50*** 6.587 0.00567** 0.00091*** 6.133 -2.993
SHOO 2.950 7.06*** 7.160 0.00425* 0.00061*** 6.829 -2.369
MOMO 2.960 4.33** 6.338 0.00387*** 0.00044*** 6.081 -1.630
CORE 3.010 5.10** 5.986 0.00881** 0.00136*** 5.522 -2.782
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Table 14: The estimated paramaters λ, η and α per symbol (from index 38 to 74). The significance level
of the estimated parameters is denoted in number of stars next to the number. Three, two, and one
star(s) are correspoding to the 1%, 5% and 10% significance levels. Note that ζ, ω and θ are computed
from the estimated paramaters and thus no significance is reported. Similarly, β has the same significance
level as α given the residual test in Subsection (B.2), and therefore is omitted here.

symbol Tick α ω λ η ζ θ

BECN 3.010 3.80*** 5.061 0.00523* 0.00083*** 4.725 -1.697
TLRY 3.060 7.45*** 8.457 0.01177** 0.00126*** 8.236 -1.869
ACIW 3.180 4.81** 5.945 0.00484** 0.00070*** 5.618 -1.946
ARWR 3.220 5.28*** 6.404 0.01086*** 0.00142*** 6.314 -0.577
CATM 3.300 3.04** 4.489 0.00603* 0.00096*** 4.246 -1.089
SLGN 3.320 5.26** 5.826 0.00545** 0.00087*** 5.630 -1.140
PPC 3.420 4.39*** 5.450 0.00505*** 0.00076*** 5.355 -0.514
PDCE 3.550 5.65*** 6.518 0.00692*** 0.00099*** 6.038 -3.123
APLS 3.670 4.11** 5.422 0.01067** 0.00157*** 5.151 -1.470
FHB 3.810 5.11*** 5.881 0.00531*** 0.00079*** 5.835 -0.271
VCYT 3.880 5.63*** 6.046 0.01208** 0.00191*** 5.874 -1.040
NSTG 3.970 4.88*** 5.941 0.01186** 0.00171*** 5.706 -1.396
RDUS 4.000 4.10** 5.912 0.01138** 0.00146*** 5.408 -2.980
HCSG 4.010 6.29** 6.826 0.00686** 0.00102*** 6.196 -4.296
NTNX 4.110 5.79*** 7.481 0.00474*** 0.00049*** 7.454 -0.205
BCOR 4.160 3.95** 5.435 0.00974** 0.00146*** 4.860 -3.123
IRDM 4.230 5.52** 6.595 0.00635** 0.00088*** 6.062 -3.516
SABR 4.340 4.95** 6.003 0.00269*** 0.00038*** 5.807 -1.177
SFIX 4.400 10.74** 12.832 0.00724*** 0.00048*** 12.722 -1.401
DENN 4.490 4.45*** 5.748 0.00558** 0.00083*** 5.205 -3.121
AERI 4.510 6.51*** 7.294 0.00969*** 0.00119*** 7.259 -0.256
CARA 4.530 3.10*** 4.918 0.01091*** 0.00142*** 4.822 -0.474
AIMT 4.610 7.87** 7.914 0.00999** 0.00129*** 7.699 -1.704
IOVA 4.680 5.75*** 7.160 0.01087*** 0.00129*** 6.798 -2.590
HAIN 4.730 4.56** 5.572 0.00410*** 0.00064*** 5.226 -1.931
MTSI 4.980 5.14*** 6.343 0.00758** 0.00105*** 5.862 -3.050
BLDR 5.130 5.41** 6.413 0.00393*** 0.00055*** 6.063 -2.240
PENN 5.210 4.11* 5.514 0.00502*** 0.00071*** 5.292 -1.225
GOSS 5.240 4.27** 6.026 0.01731** 0.00220*** 5.572 -2.737
INSM 5.330 4.38*** 5.595 0.00976** 0.00142*** 5.382 -1.194
HOMB 5.360 3.37** 4.668 0.00648*** 0.00105*** 4.474 -0.905
HRTX 5.400 9.91*** 9.513 0.00616** 0.00073*** 8.809 -6.698
LSCC 5.410 6.28*** 7.018 0.00628*** 0.00085*** 6.633 -2.705
FATE 5.580 3.61*** 5.377 0.01092** 0.00149*** 4.918 -2.466
PETS 5.610 2.34** 3.967 0.00952** 0.00145*** 3.875 -0.366
SVMK 5.690 6.95*** 7.904 0.00614*** 0.00072*** 7.481 -3.345
ONB 5.830 4.81* 6.263 0.00272*** 0.00034*** 6.068 -1.221
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Table 15: The estimated paramaters λ, η and α per symbol (from index 75 to 110). The significance
level of the estimated parameters is denoted in number of stars next to the number. Three, two, and one
star(s) are correspoding to the 1%, 5% and 10% significance levels. Note that ζ, ω and θ are computed
from the estimated paramaters and thus no significance is reported. Similarly, β has the same significance
level as α given the residual test in Subsection (B.2), and therefore is omitted here.

symbol Tick α ω λ η ζ θ

TVTY 5.910 5.57*** 7.792 0.00883*** 0.00085*** 7.404 -3.020
LAUR 6.050 2.96*** 4.775 0.00244*** 0.00038*** 3.948 -3.947
UMPQ 6.140 3.26* 4.837 0.00242*** 0.00035*** 4.678 -0.771
CVET 6.150 2.71*** 4.967 0.00681*** 0.00094*** 3.930 -5.154
HALO 6.170 3.60*** 5.092 0.00901*** 0.00131*** 4.864 -1.158
RTRX 6.620 4.99* 6.186 0.01371*** 0.00197*** 5.611 -3.559
UPWK 6.670 3.13*** 5.142 0.00749*** 0.00108*** 4.239 -4.646
MRNA 6.690 9.04*** 9.712 0.01044*** 0.00108*** 8.991 -7.004
IMMU 6.760 7.01** 8.540 0.00705*** 0.00071*** 8.106 -3.698
GLNG 6.900 3.64*** 5.368 0.00601*** 0.00081*** 5.017 -1.889
FEYE 6.940 4.92*** 5.842 0.00137*** 0.00022*** 5.316 -3.072
REGI 7.040 8.47* 8.100 0.01099*** 0.00164*** 6.984 -9.037
GT 7.290 5.38** 6.061 0.00199*** 0.00029*** 6.022 -0.236
NWSA 7.320 3.98*** 5.670 0.00094*** 0.00014*** 4.775 -5.077
CHNG 7.450 5.63** 6.525 0.00698*** 0.00106*** 5.693 -5.427
QNST 7.500 5.29** 6.698 0.00898*** 0.00125*** 5.654 -6.996
NAVI 7.660 4.22** 6.228 0.00129*** 0.00017*** 5.104 -7.000
WIFI 7.760 5.88*** 7.277 0.01230*** 0.00167*** 5.942 -9.714
SONO 7.870 8.47** 9.878 0.00457*** 0.00044*** 8.894 -9.722
PAYS 7.930 3.69** 5.592 0.01323*** 0.00179*** 4.858 -4.106
ISBC 8.810 5.83*** 7.009 0.00114*** 0.00014*** 6.729 -1.963
TTMI 8.980 5.34* 6.111 0.00575*** 0.00092*** 5.454 -4.011
VLY 9.220 5.28** 6.311 0.00121*** 0.00017*** 6.145 -1.050
AMAG 9.280 5.66** 6.712 0.01436*** 0.00188*** 6.442 -1.813
SGMO 9.500 4.33** 5.845 0.01025*** 0.00142*** 5.363 -2.817
MDRX 9.640 5.30** 6.134 0.00237*** 0.00037*** 5.537 -3.666
FLEX 9.750 4.37** 5.754 0.00077*** 0.00012*** 4.983 -4.435
PBYI 10.040 5.31** 7.146 0.01393*** 0.00157*** 6.604 -3.875
IRWD 10.540 6.86*** 7.059 0.00823*** 0.00124*** 6.444 -4.336
TELL 13.470 8.43*** 9.317 0.01094*** 0.00117*** 8.436 -8.214
APPS 15.760 4.88*** 6.745 0.00760*** 0.00092*** 5.981 -5.153
CPRX 18.930 5.45* 6.993 0.00612*** 0.00075*** 6.352 -4.488
VRAY 19.990 6.50** 6.749 0.00577** 0.00089*** 6.252 -3.351
OAS 27.260 2.17** 3.823 0.00104*** 0.00016*** 3.702 -0.459
ENDP 28.970 4.59** 6.136 0.00189*** 0.00025*** 5.732 -2.480
GPOR 31.790 4.34** 6.150 0.00202*** 0.00026*** 5.388 -4.682
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Table 16: The cost measures per symbol (from index 1 to 37). CR is the square-root cost per share, while
CS is the fixed cost per share, as explained in Subsection (B.1)

symbol Tick CR (bps/share) CS (bps/share) TWAP Opt rTWAP (%)

ANSS 0.470 68.748 37.985 0.141 0.122 13.361
JKHY 0.700 45.798 33.821 0.120 0.108 10.099
FFIV 0.730 83.012 108.220 0.287 0.234 18.521
AZPN 0.780 98.851 48.599 0.109 0.071 34.843
PFPT 0.810 87.327 75.574 0.082 0.031 62.834
BLUE 0.910 113.948 176.070 0.552 0.511 7.394
NDAQ 1.010 55.335 91.990 0.102 0.065 36.548
MRTX 1.110 135.234 171.453 0.437 0.381 12.716
BPMC 1.210 77.781 114.860 0.462 0.414 10.407
GRMN 1.210 59.715 67.420 0.107 0.051 52.416
UTHR 1.230 71.092 95.864 0.357 0.324 9.181
INCY 1.250 79.090 154.203 0.247 0.164 33.657
VSAT 1.290 53.640 40.780 0.190 0.173 8.583
QRVO 1.350 66.244 87.375 0.303 0.257 15.008
EXPD 1.370 55.822 96.190 0.087 0.029 66.382
OLLI 1.410 159.046 177.617 0.410 0.346 15.506
AAXJ 1.490 35.559 19.649 0.072 0.066 7.803
YY 1.670 93.979 177.333 0.164 0.073 55.151
PFG 1.790 69.884 163.553 0.346 0.292 15.746
FIVN 1.790 104.424 95.314 0.139 0.076 45.489
BPOP 1.840 64.878 71.080 0.166 0.118 29.154
XRAY 1.860 49.156 123.477 0.482 0.431 10.416
AMBA 1.900 154.226 149.746 0.734 0.688 6.241
FLIR 1.940 72.717 128.638 0.240 0.184 23.456
GBT 1.960 92.819 133.398 0.500 0.455 9.101
APPN 2.140 119.067 106.777 0.339 0.297 12.408
HUBG 2.280 72.651 36.870 0.082 0.066 19.405
FGEN 2.360 102.550 145.804 0.340 0.248 27.136
PLAY 2.480 69.588 123.334 0.387 0.323 16.558
ACGL 2.500 53.453 118.593 0.321 0.269 16.398
RGNX 2.520 140.136 231.109 0.640 0.555 13.379
PCRX 2.530 78.489 88.737 0.275 0.229 16.757
ADPT 2.670 150.501 128.465 0.476 0.419 12.078
MMSI 2.690 169.474 109.786 0.306 0.264 13.783
SHOO 2.950 119.596 112.714 0.210 0.169 19.458
MOMO 2.960 130.585 314.685 0.520 0.401 22.901
CORE 3.010 121.410 141.637 0.453 0.395 12.806
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Table 17: The cost measures per symbol (from index 38 to 74). CR is the square-root cost per share,
while CS is the fixed cost per share, as explained in Subsection (B.1)

symbol Tick CR (bps/share) CS (bps/share) TWAP Opt rTWAP (%)

BECN 3.010 118.883 83.621 0.275 0.231 16.275
TLRY 3.060 137.281 293.005 0.285 0.204 28.571
ACIW 3.180 79.399 112.002 0.272 0.223 18.090
ARWR 3.220 118.246 330.965 0.362 0.206 43.249
CATM 3.300 102.179 71.481 0.228 0.182 20.266
SLGN 3.320 44.417 60.186 0.118 0.086 27.140
PPC 3.420 80.417 158.833 0.241 0.145 39.838
PDCE 3.550 156.319 357.596 0.993 0.865 12.958
APLS 3.670 157.965 199.408 0.497 0.396 20.421
FHB 3.810 60.171 115.412 0.129 0.061 52.359
VCYT 3.880 147.612 245.324 0.422 0.295 30.059
NSTG 3.970 167.450 230.058 0.456 0.347 23.924
RDUS 4.000 107.158 151.290 0.472 0.417 11.629
HCSG 4.010 100.177 88.628 0.290 0.262 9.752
NTNX 4.110 105.975 299.902 0.178 0.066 63.005
BCOR 4.160 145.431 161.679 0.690 0.625 9.487
IRDM 4.230 121.029 160.520 0.466 0.412 11.597
SABR 4.340 45.760 86.474 0.152 0.110 27.456
SFIX 4.400 114.110 461.443 0.136 0.071 47.740
DENN 4.490 52.704 77.782 0.292 0.261 10.508
AERI 4.510 139.967 272.170 0.190 0.076 59.864
CARA 4.530 128.853 204.231 0.332 0.207 37.727
AIMT 4.610 205.796 578.042 0.674 0.482 28.483
IOVA 4.680 112.071 387.380 0.689 0.565 17.936
HAIN 4.730 90.818 105.984 0.308 0.257 16.613
MTSI 4.980 156.338 268.951 0.765 0.667 12.728
BLDR 5.130 83.686 144.894 0.323 0.266 17.654
PENN 5.210 67.629 142.904 0.302 0.229 24.155
GOSS 5.240 193.095 216.793 0.606 0.526 13.173
INSM 5.330 126.153 293.323 0.604 0.453 25.056
HOMB 5.360 81.269 138.495 0.372 0.281 24.588
HRTX 5.400 237.154 656.579 1.268 1.140 10.113
LSCC 5.410 129.356 339.207 0.697 0.581 16.745
FATE 5.580 160.337 255.260 0.882 0.774 12.228
PETS 5.610 134.171 101.666 0.241 0.158 34.440
SVMK 5.690 95.742 152.292 0.261 0.219 16.086
ONB 5.830 58.194 79.312 0.122 0.088 28.042
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Table 18: The cost measures per symbol (from index 75 to 110). CR is the square-root cost per share,
while CS is the fixed cost per share, as explained in Subsection (B.1)

symbol Tick CR (bps/share) CS (bps/share) TWAP Opt rTWAP (%)

TVTY 5.910 144.991 241.729 0.356 0.294 17.408
LAUR 6.050 88.242 95.596 0.690 0.654 5.263
UMPQ 6.140 55.902 63.139 0.137 0.098 28.562
CVET 6.150 279.666 319.957 2.484 2.390 3.810
HALO 6.170 65.524 176.743 0.431 0.332 22.830
RTRX 6.620 170.683 261.373 0.905 0.812 10.257
UPWK 6.670 82.056 124.614 0.829 0.788 4.911
MRNA 6.690 102.223 419.080 0.748 0.674 9.950
IMMU 6.760 148.241 421.324 0.604 0.506 16.224
GLNG 6.900 134.107 204.667 0.583 0.489 16.051
FEYE 6.940 76.399 123.090 0.455 0.405 11.013
REGI 7.040 99.314 203.394 0.850 0.803 5.603
GT 7.290 71.808 88.165 0.091 0.041 55.051
NWSA 7.320 37.404 22.306 0.129 0.122 5.403
CHNG 7.450 87.843 146.305 0.657 0.613 6.649
QNST 7.500 170.589 144.054 0.731 0.695 4.899
NAVI 7.660 71.902 36.506 0.215 0.206 4.129
WIFI 7.760 181.352 450.175 2.511 2.421 3.570
SONO 7.870 122.412 203.433 0.446 0.404 9.526
PAYS 7.930 131.132 151.647 0.720 0.669 7.069
ISBC 8.810 36.387 28.502 0.045 0.035 22.266
TTMI 8.980 88.596 93.264 0.389 0.355 8.677
VLY 9.220 40.365 24.387 0.036 0.025 31.227
AMAG 9.280 133.055 180.220 0.308 0.239 22.543
SGMO 9.500 80.458 254.180 0.814 0.715 12.150
MDRX 9.640 66.643 72.959 0.276 0.249 9.756
FLEX 9.750 69.527 39.776 0.202 0.189 6.755
PBYI 10.040 147.196 289.481 0.675 0.595 11.861
IRWD 10.540 83.468 306.640 0.943 0.846 10.220
TELL 13.470 154.455 357.936 0.823 0.759 7.745
APPS 15.760 106.590 237.706 0.832 0.769 7.605
CPRX 18.930 192.866 326.459 0.944 0.853 9.657
VRAY 19.990 241.404 170.761 0.480 0.419 12.692
OAS 27.260 125.666 68.967 0.190 0.134 29.635
ENDP 28.970 195.489 172.958 0.439 0.373 15.002
GPOR 31.790 144.696 139.360 0.583 0.541 7.194
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