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Abstract: 

In  symmetric  binary‐choice  coordination  games,  the  global‐game  selection  (GGS)  has  been 

proven to predict a high proportion of observed choices correctly. In these games, the GGS is 

identical  to  the  best  response  to  Laplacian  beliefs  about  the  fraction  of  players  choosing 

either  action.  This  paper  presents  an  experiment  on  asymmetric  games  in which  the  GGS 

differs  from  the  best  response  to  Laplacian  beliefs.  It  shows  that  the  best  response  to 

Laplacian  beliefs  is  a  better  predictor  of  behavior  in  these  games  than  the  GGS.  In  the 

considered games, the GGS provides poor guidance and also fails to give the right qualitative 

comparative  statics  predictions.  Simple  cognitive  hierarchy models  yield better  predictions. 

The best response to a Laplacian belief about the distribution of other players’ actions yields 

the best prediction. Comparing maximum  likelihood estimates  for  four probabilistic models 

shows that an estimated global‐game equilibrium fits worse than a rather simple level‐k or 

Laplacian‐belief model combined with a standard error‐response function. 
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1. Introduction 

In  this  paper,  I  argue  that  in  binary‐action  supermodular  games,  the  best  response  to 

Laplacian beliefs may be a better predictor of individual behavior and for comparative‐statics 

of the distribution of actions than the global‐game selection. 

The theory of global games was introduced by Carlsson and van Damme (1993) and 

advanced by Morris and Shin (2003) as a refinement concept for supermodular games with 

multiple Nash equilibria. A game is supermodular if strategies can be ordered such that each 

player  has  an  incentive  to  switch  to  higher  strategies,  if  other  players  choose  higher 

strategies.  Another  term  for  supermodularity  is  strategic  complementarity.  Supermodular 

games  are  common  in  macroeconomics,  investment  and  network  theory,  and  in  the 

description of financial markets. They have increasing best response functions and may have 

multiple Nash equilibria.  

The  global‐game  approach  relaxes  the  assumption  that  the  game  is  common 

knowledge among players. It imbeds the game to be analyzed in a larger class of games. The 

particular game is then assumed to be randomly drawn out of this world of possible games 

(which is expressed by the term global game). Players are not perfectly informed about the 

selected game, but  instead receive private signals. They are, however, perfectly  rational  in 

analyzing their information and deducing the strategies of other players in the global game. 

The class of games and the distribution of signals are common knowledge, so that standard 

equilibrium  concepts  can  be  applied  to  the  global  game.  The most  important  property  of 

global games is that for a sufficiently small variance of private signals, a global game has a 

unique  equilibrium.  If  the  variance  of  private  signals  converges  to  zero,  the  global  game 

converges to the original complete information game. Thus, the convergence point of global 

game equilibria  for  vanishing  noise  in  private  signals  can  be  used  as  a  refinement  for  the 

original  game  with  multiple  equilibria.  This  refinement  is  called  “global‐game  selection” 

(GGS). 

 The  theory  of  global  games  has  been  tested  by  laboratory  experiments  on  games 

with  symmetric  players.1  In  those,  the  GGS  is  identical  to  the  best  response  to  Laplacian 

beliefs about  the proportion of other agents who take  the higher action  (Morris and Shin, 

2003).  The  experiments  have  shown  that  the  distribution  of  actions  observed  in  one‐shot 

games with multiple  equilibria  can be described by  the equilibrium of  a  global  game with 

positive  variance  of  private  signals. Hence,  the  equilibrium of  a  global  game with positive 

variance  can be used  as  an  “as  if”  approach.  Subjects  behave  as  if  they had noisy  private 

signals.  In  repeated  games,  subjects  usually  coordinate  on  one  of  the  equilibria.  While 

                                                 
1 See, for example, Cabrales, Nagel, and Armenter (2007), Heinemann, Nagel, and Ockenfels (2004, 2009), and 
Duffy and Ochs (2012). 
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different groups of players may coordinate on different equilibria2, the chosen equilibria are 

usually between the GGS and the payoff‐dominant equilibrium. Furthermore, changes to the 

payoff  function shift  the actions  in  the direction predicted by  the GGS. Thus, even  though 

the GGS is not a perfect point predictor of behavior in supermodular complete information 

games,  it  indicates  a  lower  bound  to  an  interval  of  strategies  that  can  be  expected  to  be 

observed in these games, and it yields a prediction for qualitative comparative statics that is 

useful in theoretical analyzes of supermodular games3. Furthermore, Heinemann, Nagel and 

Ockenfels  (2009,  henceforth HNO)  have  shown  that  the GGS  provides  good  advice  for  an 

individual player in a one‐shot coordination game. 

This  paper  reports  an experiment on one‐shot  supermodular  games with  complete 

information  and  asymmetric  payoffs  in  which  the  GGS  differs  from  the  best  response  to 

Laplacian beliefs. It shows that the GGS fails to predict the observed responses of subjects to 

changes  in  the payoff  function.  The best  response  to  Laplacian beliefs  and  Level‐k models 

better  describe  observed  behavior.  Furthermore,  the  GGS  gives  a  poor  advice  for  an 

individual player. A player  following  this  strategy would have achieved a payoff below the 

average  realized payoff of our  subjects.  Level‐1 and  the best  response  to Laplacian beliefs 

yield higher expected payoffs. To my knowledge,  this  is  the  first experiment  to  test global 

games in asymmetric coordination games against alternative solution concepts.  

Supermodular games with multiple equilibria are applied to a wide range of  topics: 

currency  and  banking  crises,  government  debt  and  twin  crises,  refinancing  of  short‐term 

credit to firms, competition between trading venues, decisions to join a revolution, poverty 

trap  models,  marketing  of  network  goods,  antitrust  regulation,  and  growth  models  with 

positive  externalities  of  investment.  Yet  the  applications  have  thus  far  been  restricted  to 

binary‐choice games and most theory papers assume that all players share the same payoff 

function. By contrast, real‐world players are typically asymmetric in many of the applications 

outlined  above.  For  example,  large  financial  institutions  can  take  larger  positions  on  the 

foreign‐exchange market and exert a larger impact on the likelihood of a currency crisis than 

small ones. Banks that are highly interconnected via the inter‐bank market, suffer more from 

runs on other banks than pure consumer banks. Firms that are highly dependent on using a 

network  good  (such  as  a  particular  software)  gain more  from  its  proliferation  than  other 

firms.  

In the experiment, all subjects can decide between a safe and a risky action. The safe 

action yields a payoff that is independent of other players’ actions. The payoff for the risky 

action increases in the number of other players who take the risky action. Subjects differ in 

the payoffs that they receive for a given number of risky choices. For some players, the risky 

                                                 
2 See, for examples, VanHuyck, Battaglio, and Beil (1990), Heinemann, Nagel, and Ockenfels (2004) and 
Arifovic, Jiang, and Xu (2013). 
3 These  properties  were  also  demonstrated  by  Schmidt  et  al.  (2003)  who  focus  on  the  risk‐dominant 
equilibrium that is closely related to the GGS. 
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action  may  be  profitable  if  just  a  few  others  opt  for  the  same  action.  For  others,  the 

profitability  of  the  risky  action  requires  that  many  other  players  select  the  risky  action4. 

Subjects play 20 different one‐shot games without  feedback. Some of  these games have a 

unique equilibrium, but most of the games have several equilibria in pure strategies.  

Most of these games are designed in such a way that the GGS predicts that either all 

players  choose  risky  or  all  choose  safe.  The  best  response  to  Laplacian  beliefs,  instead, 

predicts that types with high payoffs from network effects choose risky, while others choose 

safe. In the experiment, the proportion of risky choices differs significantly between subject 

types.  Subjects  who  require  only  a  few  others  to  opt  for  the  risky  choice  to  render  it 

profitable,  are  more  inclined  to  choose  the  risky  option  than  others.  This  asymmetry  in 

behavior is consistent with Laplacian beliefs, but is not predicted by the GGS. The observed 

responses of subjects across games varies with changes in the payoff functions in an intuitive 

and predictable way: the higher the payoffs from risky choices, the more subjects take the 

risky option. These comparative statics are also predicted by Laplacian beliefs, but not by the 

GGS.  

To  compare  the  quality  of  different  solutions  concepts,  their  predictive  power  is 

measured by the probability that a subject’s decision  is  in  line with the respective solution 

concept. While only 60% of  subjects’ decisions  in  the experiment are  in  line with  the GGS 

(not much more than a random prediction), 80% of observed decisions are in line with a best 

response  to  random  behavior  and  with  a  best  response  to  a  uniform  distribution  on  the 

proportion  of  players  who  choose  risky.  Note  that  the  latter  coincides  with  the  GGS  in 

symmetric binary‐choice games.    

Since the GGS does not predict different behavior for different types in our games, it 

also fails to give good advice to individual agents who play the game against some randomly 

selected players  from the subject pool. The best  response to Laplacian beliefs about other 

players’ behavior or about the fraction of agents choosing the higher strategy yields higher 

expected payoffs. 

For  describing  observed  heterogeneity,  we  estimate  a  global  game  with  positive 

variance of private signals and compare  it with an estimated quantal‐response equilibrium 

(QRE)  and  with  noisy  best  responses  to  Laplacian  and  Level‐1  beliefs.  All  four  concepts 

capture  the  observed  qualitative  comparative  statics  properties  and  predict  the  observed 

asymmetry  in  behavior  between  different  types  of  players.  But,  the  fit  of  the  estimated 

global  game  is  not  as  good  as  it  has  been  reported  for  symmetric  coordination  games  in 

HNO. Noisy best responses to Laplacian or Level‐1 beliefs provide a better fit. The estimated 

QRE does worst  in  this  comparison.  The best  response  to  the  estimated  global  game also 

yields  a  higher  expected  payoff  than  the  GGS,  however  the  resulting  expected  payoff  is 

                                                 
4 This is akin to firms who have a symmetric impact on the market of a network good (say, a business software), 
but differ by the payoffs that they receive from network effects. 
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(slightly) smaller than for a best response to Laplacian beliefs, although the global game  is 

already fitted to observations.  

These results indicate that the best response to Laplacian beliefs may be more useful 

than  the  global‐game  approach  for  predicting  or  describing  aggregate  behavior  in 

asymmetric  binary‐choice  coordination  games.  This  is  remarkable  also  because  the  best 

response  to  Laplacian  beliefs  is much  simpler  to  derive.  In  the  concluding  section,  this  is 

discussed  in  the  light  of  various  goals  that  decision makers may  have  in mind when  they 

want to predict the expected outcome of a one‐shot supermodular game. For many research 

questions  and  also  applied  problems,  the  simple  calculation  of  the  best  response  to 

Laplacian beliefs may be more useful than solving a global game.  

  In  the  literature,  the  theory  of  global  games  has  almost  never5  been  applied  to 

asymmetric  games  for  two  reasons:  (i)  deriving  the  GGS  is,  in  general,  challenging  and  a 

simple way for deriving it exists only for symmetric binary‐choice games; (ii) The GGS of an 

asymmetric game with more than two players is, in general, not noise independent. A GGS is 

called  noise  independent  if  it  does  not  depend  on  the  assumed  distribution  of  private 

signals. If noise independence fails, then multiple equilibria are replaced by multiple global‐

game  selections.6  Basteck,  Daniëls,  and  Heinemann  (2013)  show  how  the  GGS  of  a 

supermodular game with more  than 2  strategies or asymmetric players  can be derived by 

splitting the game into smaller games, deriving the GGS for each of these smaller games, and 

patching  the  selected  strategy  profiles  together.  If  a  supermodular  game  can  be 

decomposed  into  binary‐action  games  with  symmetric  players  and  the  global‐game 

selections  for  these games  (that are  straightforward  to derive)  yield a unique GGS  for  the 

larger game, then the GGS of the larger game is also noise independent. The theory part of 

this paper explains this procedure and demonstrates how it can be applied to solve for the 

GGS in the asymmetric games underlying the experiment.  

The remainder of this paper is structured as follows: Section 2 gives a short overview 

of some empirical tests on the theory of global games. Section 3 formally introduces global 

games  and  explains  the  decomposition  result  by  Basteck,  Daniëls,  and  Heinemann  (2013) 

that  is  applied  in  Section  4  to  derive  the  GGS  of  the  asymmetric  games  underlying  the 

experiment. Section 5 describes the experimental design and Section 6 derives the results of 

the  experiment.  Section  7  concludes  by  discussing  whether  and  how  global  games  and 

Laplacian beliefs can be used as descriptive theories for coordination games.  

 

 

                                                 
5 A notable exception is Corsetti et al. (2004) 
6 This may still be useful, because the GGSs are closer to each other than the extreme Nash equilibria and also 
share some comparative statics properties.  
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2. Empirical tests of the theory of global games 

Van Huyck, Battaglio, and Beil (1990) show that in a minimum‐effort game, groups of 14 to 

16  players  converge  to  the  risk‐dominant  equilibrium,  while  groups  with  2  players  often 

converge to the payoff dominant equilibrium. Heinemann, Nagel, and Ockenfels (2004) show 

that convergence points of repeated coordination games with groups of 15 are between the 

GGS and  the payoff‐dominant equilibrium. Global‐game equilibria predict  the comparative 

statics  with  respect  to  parameters  of  the  payoff‐function,  but  not  with  respect  to  the 

precision of signals. They also show that behavior in global games (with noisy signals) tends 

to  converge  to  strategies  that  are  more  efficient  than  the  unique  equilibrium.  Cabrales, 

Nagel,  and  Armenter  (2007),  on  the  other  hand,  find  convergence  to  the  unique  Nash 

equilibrium  in  a different  global  game.  Szkup and Trevino  (2020)  test  behavior  in 2‐player 

global games with different noise levels. They corroborate that comparative statics of global‐

game equilibria with respect to the precision of private signals  is reversed to observations. 

For  precision  approaching  infinity,  subjects’  behaviour  approximates  the  payoff‐dominant 

equilibrium. Observations can be explained by a model that allows for “sentiments”  in the 

sense  of  optimism  in  achieving  the  efficient  outcome  with  high  precision  of  signals  and 

pessimism  for  low precision.  They  also  find deviations  from  the unique equilibrium of  the 

global  game  in  direction of more  efficient  payoffs. Using  coordination  games with  perfect 

information,  Arifovic,  Jiang,  and  Xu  (2013)  show  that  there  is  a  path‐dependency  of  the 

outcome  if  the threshold to success of  the risky action varies over  time. Arifovic and Jiang 

(2019) show that extrinsic signals (“sunspots”) may affect behavior  in the neighborhood of 

the GGS.  

If  subjects  behave  as  if  they  have  noisy  private  signals,  the  distribution  of  actions  can  be 

described  by  the  equilibrium  of  a  global  game, where  the  variance  of  private  signals  is  a 

parameter  that  can  be  fitted  to maximize  the  likelihood  of  observations.  HNO  estimate  a 

global game for a one‐shot binary‐choice coordination game with perfect information.  

In the experiment by HNO, N subjects simultaneously had to choose between two options A 

and B. The payoff for A was a fixed amount X ≤ 15 Euros, that varied between the different 

games. The payoff for B was 15 Euros, provided that at least K group members chose B, and 

zero otherwise. The hurdle K was also varied between games. Group size N varied from 4 to 

10  between  sessions,  so  that  the  total  experiment  spanned  a  range  of  90  different 

coordination games. The GGS in these games selects A if and only if  







 


N

K
X

1
115 .       

HNO  estimate  a  global  game  with  positive  variance  of  private  signals  to  describe  the 

distribution of  choices observed  in  the experiment. Subjects were modelled as  if  they had 

different  signals  about  an  underlying  state  parameter,  while  effectively  they  possessed 

perfect  information  about  the  games’  payoffs.  Fitting  the  variance  of  private  signals  to 
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observations, HNO found a surprisingly good fit of actual observations, and the fitted global 

games  also  yielded  acceptable  out‐of‐sample  predictions.  Furthermore, HNO  find  that  the 

GGS is very close to the best response of what subjects actually do. Thus, it can be taken as a 

recommendation  for  individually  optimal  behavior.  From  experiments  on  repeated 

coordination  games,  we  know  that  they  tend  to  follow  best‐response  dynamics:  that  is, 

subjects  coordinate  on  the  strategy  that  is  a  best  response  to  the  first  round(s).7  In  this 

sense,  the  GGS  can  be  used  as  a  descriptive  theory  for  repeated  coordination  games,  at 

least, if they fall into the class tested by HNO.  

To  the  best  of  my  knowledge,  there  are  no  experiments  on  supermodular 

coordination games with asymmetric payoff  functions. Thus, we do not know whether  the 

GGS  can  also  serve  as  a  descriptive  theory  for  these  games.  To  begin  filling  this  gap,  this 

paper  presents  an  experiment  designed  to  test  the  GGS  as  a  selection  theory  for 

coordination games with asymmetric payoff functions.  

 

3. Definition of global game and global‐game selection  

Before we turn to the experiment, this section introduces some theory needed to solve for 

the  GGS  of  the  asymmetric  coordination  games  that  are  employed  in  the  experiment. 

Readers primarily interested in the experiment may wish to skip this section.  

Let  us  start  by  introducing  some  notation  borrowed  from  Basteck,  Daniëls,  and 

Heinemann (2013, henceforth BDH). We denote the set of players by I. Each player i has an 
ordered  finite  action  set  Ai = {0,1,2, … ,mi }. Actions  are denoted by ii Aa  , an action 

profile by 



Ii

iAAa . The lowest and highest action profiles are then given by 0 and m. 

A complete information game Γ is specified by payoff functions  gi : A →R. Game Γ 
is  supermodular  (actions  are  strategic  complements),  if  for  all  i and  for  all  ii aa '  and 

:' ii aa    

).',()','(),(),'( iiiiiiiiiiii aagaagaagaag    

In  words,  supermodularity  implies  that  best‐response  functions  are  non‐decreasing. 

Supermodular games often have multiple equilibria8.  

Following Frankel, Morris, and Pauzner (2003), a global game Gν(u,ϕ,f)  is defined by   

- payoff functions ),,( iii aau  , where  R is called state parameter, such that    

                                                 
7 See, for example Van Huyck, Battaglio, and Beil (1990) or Heinemann, Nagel and Ockenfels (2004). 
8 This has been phrased as a case of “strong strategic complementarities” by Angeletos and Pavan (2004), who 
argue that in this case, constructive ambiguity is better than full transparency, because full transparency bears 
the danger of  coordination on an  inefficient equilibrium, while ambiguity  can be modelled as a global  game 
with a unique equilibrium.   
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 (A1) for  each  state θ, the  complete  information  game  given  by ui (ꞏ,θ) is  a   

     supermodular game, 

(A2)  there  exist  states    and  ,  such  that  the  lowest  and  highest  action  are 

strictly dominant in the games given by  ),( iu  and ),( iu , respectively, 

 (A3)  each ui satisfies  weak  state  monotonicity,  which  means  that  for  all  i and  
   ii aa ~ , the payoff difference ),,(),,~(  iiiiii aauaau    is weakly  increasing  

     in θ. This implies that higher states make higher actions more appealing. 

- a distribution for the state parameter with continuous density ϕ, and 

- a  tuple of density  functions fi  for each i with  finite  support and a  scale parameter 
]1,0( .  In the global game, players do not observe state θ.  Instead, each player i 

receives  a  private  signal iix   , where the idiosyncratic noise term ηi is 

distributed according to density function fi . 

A global game G embeds a complete information game Γ at state θ*, if *),()( auag ii   for 

all players i and for all action profiles a. 

Theorem (analogue to Frankel, Morris, and Pauzner (2003):   

As the scale parameter ν goes to zero,  the global game Gν(u,ϕ,f) has an essentially unique 

limit equilibrium. 

More precisely, denote a pure strategy of the global game by si : R →Ai , such that player i 

chooses action si(xi) when receiving signal xi . There is a strategy combination s, such that for 

ν→0, any equilibrium sν(x) of Gν(ꞏ) converges to s(x) for all x except possibly at the finitely 

many discontinuities of s. 

If  the  global  game’s  limit‐equilibrium  strategy  profile  is  continuous  at  state θ*,  its 

value  at  this  state  determines  a  particular  Nash  equilibrium  of  the  complete  information 

game, called global‐game selection (GGS).   

The  first  question  that  arises  when  defining  a  selection  for  a  class  of  games  with 

multiple equilibria is whether the selection is actually unique. A complete‐information game 

can  be  extended  to  many  different  global  games  distinguished  by  the  extended  payoff 

function u, the prior distribution of the state variable ϕ, and the tuple of noise distributions 

for  private  signals f.  Hence,  we  would  like  to  know  under  which  conditions  the  GGS  is 

independent  of u, ϕ, and f ?  If  it  is  not  independent,  then multiple Nash  equilibria  of  the 

underlying complete‐information game are replaced by potentially different  limit equilibria 

of  the  different  global  games.  Frankel,  Morris,  and  Pauzner  (2003)  show  that  the  GGS  is 

independent of ϕ. BDH show  that  the GGS  is  independent of u.  The combination of  these 

two  results  implies  that  one  may  use  without  loss  of  generality  a  particular  global‐game 

embedding, such as  iii aagau   )(),(  (BDH).   
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Proof: For a sufficiently wide support of ϕ,  ui satisfies the global‐game assumptions (A1) to 

(A3). Obviously, ui embeds g at θ*=0.  

Unfortunately, the GGS may depend on f. This is known since Frankel, Morris, and Pauzner 

(2003) and Morris and Shin  (2003), who constructed  the  first examples of global games  in 

which  the  limit  equilibria  for ν→0 depend  on  the  distribution f. The  GGS  is  called  noise 

independent, if the GGS is independent of the particular density function of private signals f. 

Carlsson  and  Van  Damme  (1993)  had  already  shown  that  for  any  two‐player‐two‐action 

game, the GGS is independent of f. In symmetric 2‐player‐2‐action games, the GGS is actually 

identical  to  the  risk‐dominant  equilibrium defined by Harsanyi  and  Selten  (1988).  Table 1, 

taken  from  BDH  gives  an  overview  of  the  games,  for  which  noise  independence  can  be 

established simply by counting the number of players and actions. It shows that symmetric 

complete‐information  games with  two  actions  for  each  player,  symmetric  2‐player  games 

with 3 actions for each player and asymmetric 2‐player games, in which at least one of the 

players  can  only  choose  between  two  possible  actions  are  noise  independent.  In  these 

games,  the  GGS  can  be  calculated  by  solving  the  simplest  possible  global‐game.  Larger 

games, however, may not be noise independent. For these games, noise independence can 

be  established  by  using  p‐dominance  or  potential  maximizers,  arguably  complicated 

concepts that most applied researchers do not want to go into. 

Table 1. Noise (In)dependence in Supermodular Games  

  Symmetric games      Asymmetric games 

actions  2 each  3 each  4 each    actions  2 each  2 by n  3 each  

2 players  √  √  X    2 players  √  √  X 

3 players  √  X      3 players  X  n.a.   

n players  √        n players  X  n.a.   

Notes:  √  always  noise  independent.  X  counterexample  to  noise  independence  exists.  For 
empty cells, the existence of counterexamples follows from examples in smaller games. 

 

It is therefore quite helpful that BDH show that some larger games can be broken down into 

small games,  for which noise  independence can be established by counting the number of 

players  and  actions.  The  idea  behind  their  theorem  rests  on  the  observation  that  any 

equilibrium of a global game is a step function with equilibrium strategy profiles increasing 

in the relevant state variable. Hence, the GGS is also a step function increasing in the state 

variable. When the variance of idiosyncratic noise terms approaches zero, players may only 

need  to  consider  two  action profiles,  namely  those  that  are  played  for  somewhat  smaller 

and somewhat larger states of the world. This rough intuition cannot always be successful in 

describing a GGS, because symmetric 2‐action games are noise  independent and there are 
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examples of  larger games  that are not. However, a simple criterion  for games  that can be 

broken down may reduce the workload for applied researchers to a minimum.   

To get this, consider a supermodular complete information game Γ with joint action 

set A. For action profiles a ≤ a‘, we define the set of action profiles between these two:   

   }.'~|~{]',[ aaaAaaa   

Now, we look at the restricted game Γ|[a,a‘], which is given by restricting the joint action set 

of Γ to the action profiles a and a‘ (inclusive). BDH prove the following Lemma: 

Lemma  (BDH,  2013):  Consider  a  supermodular  game Γ and  a  noise  structure  f.  An  action 

profile an is the unique GGS of Γ, if there is a sequence  maaaa mn  ......0 10  s.t.  

(i) aj  is the unique GGS in Γ|[a j-1 ,a j ] for all j ≤ n, and  

(ii) aj-1 is the unique GGS in Γ|[a j-1 ,a j ] for all j > n.  

Corollary: If all the restricted games are noise independent, then Γ is also noise independent 

and an is the unique noise independent GGS of Γ.  

This result provides a simple solution technique: If you have a game with multiple equilibria, 

first check whether it is supermodular, so that the result applies. Then decompose the game 

by  defining  restricted  sets  of  action  profiles  that  (if  patched  together)  stretch  from  the 

lowest  action  profile  (denoted  by  0)  to  the  largest  action  profile  m.  Note  that  it  is  not 

necessary that all action profiles of the original game are contained in one of the restricted 

sets. We only need the highest action profile of one set being the lowest action profile of the 

next set. So, you need to define a sequence of profiles maaaa mn  ......0 10 .  

Then, derive the GGS for each of the restricted games. This may sound cumbersome, but 

actually,  the  trick  is  in  defining  an  appropriate  sequence  of  profiles  such  that  the GGS  of 

each  restricted  game  is  easy  to  derive.  Now,  if  all  solutions  point  to  the  same  strategy 

profile, this profile is a GGS of the large game. We can mark these selections by arrows as in 

the following example, where a3 is the GGS of the large game9: 

maaaaaa  5432100  

If,  in  addition,  all  small  games  are  noise  independent,  the  large  game  is  also  noise 

independent.  Since  noise  independence  is  guaranteed  for  symmetric  2‐action  games  and 

their GGS is almost trivial to derive, it is advisable to define the sequence of strategy profiles 

in such a way, that all restricted games fall into this class.  

This is certainly not possible for all games, and even if a large game can be broken down 

into restricted 2‐action games, the arrows may not always point into direction of the same 

                                                 
9 The procedure iteratively eliminates strategy profiles as potential solutions for the large game, starting with 
the highest and lowest profiles. Thereby, it generalizes the iterative elimination of dominated strategies. 
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strategy.  In  the  following example,  the arrows point  to  strategy profiles a1 and a4 and we 

cannot say which or whether any of these two profiles is the GGS of the large game10:   

maaaaaa  5432100  

In  such  cases,  we  cannot  use  the  decomposition  result  and  need  other  techniques  for 

calculating the large game’s GGS and for checking whether it is noise independent. However, 

BDH give some examples for symmetric games with more than 2 actions that can easily be 

solved  by  decomposition.  The  application  in  the  next  section  demonstrates  that  the 

decomposition may also be quite helpful for solving games with asymmetric players. 

 

4. An entry game with asymmetric payoff functions 

The  application  is motivated  by  the  problem  of marketing  a  new  network  good  and was 

inspired by Ruffle, Weiss, and Etziony (2015). The payoff to any agent buying a network good 

is  increasing  in  the  number  of  other  agents  who  adopt  the  same  good.  Social  media 

websites, crowdsourcing applications and cellphones are a few examples. Payoffs need not 

be the same for all agents: for some agents, strong network effects already render the good 

profitable when just a few others use the same good. For others, profitability requires that 

many others adopt the good.  

The  problem  of  asymmetric  payoff  functions  also  arises  in  other  applications  of 

supermodular  games,  like  financial  crises,  where  the  network  effects  differ  between 

different  banks  depending  on  how  connected  they  are  with  the  inter‐bank  market. 

Depositors  of  banks  that  are  highly  connected  and  dependent  on  the  stability  of  other 

financial  institutions have  incentives  to withdraw their deposits, while depositors of other, 

less vulnerable banks may find it more profitable to retain their deposits in the bank, even if 

both depositor groups have the same expectation about the number of withdrawn deposits. 

Here, the expected payoff to any agent who keeps his deposits  in the bank is  increasing in 

the number of other agents who choose the same action.   

Table 2 gives an example of such a game. Each entry refers to the player’s net payoff 

when  he  purchases  the  good  as  a  function  of  the  total  number  of  purchasers.  Positive 

numbers mean that the payoff from the network good is higher than its price. For players A, 

B,  and  C,  for  example,  purchase  of  the  good  is  profitable  if  at  least  3  players  adopt  it, 

whereas players J, K, and L profit from buying the good only if all 12 players adopt it. In the 

banking  interpretation  “adopting”  is  equivalent  to  keeping  deposits  and  positive  numbers 

mean that the expected returns from keeping deposits are higher than the return from an 

immediate withdrawal.  

                                                 
10 Presumably, the GGS (eventually depending on the noise distribution) is some strategy profile within [a1,a4], 
because smaller and larger strategy profiles can be eliminated.  
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Table 2. Payoff table of an asymmetric entry game 

)(nvi     Number of adopters n 
Player  i  1  2  3  4  5  6  7  8  9  10  11  12 

A  ‐4  ‐1  2  5  8  11  14  17  20  23  26  29 

B  ‐4  ‐1  2  5  8  11  14  17  20  23  26  29 

C  ‐4  ‐1  2  5  8  11  14  17  20  23  26  29 

D  ‐13  ‐10  ‐7  ‐4  ‐1  2  5  8  11  14  17  20 

E  ‐13  ‐10  ‐7  ‐4  ‐1  2  5  8  11  14  17  20 

F  ‐13  ‐10  ‐7  ‐4  ‐1  2  5  8  11  14  17  20 

G  ‐25  ‐22  ‐19  ‐13  ‐10  ‐7  ‐4  ‐1  2  5  8  11 

H  ‐25  ‐22  ‐19  ‐13  ‐10  ‐7  ‐4  ‐1  2  5  8  11 

I  ‐25  ‐22  ‐19  ‐13  ‐10  ‐7  ‐4  ‐1  2  5  8  11 

J  ‐34  ‐31  ‐28  ‐25  ‐22  ‐19  ‐13  ‐10  ‐7  ‐4  ‐1  2 

K  ‐34  ‐31  ‐28  ‐25  ‐22  ‐19  ‐13  ‐10  ‐7  ‐4  ‐1  2 

L  ‐34  ‐31  ‐28  ‐25  ‐22  ‐19  ‐13  ‐10  ‐7  ‐4  ‐1  2 

 

For  an  abstract  description  of  this  type  of  entry  games  and  for  deriving  the  GGS,  we 

introduce some notation:  )(nvi  = agent‘s payoff from entry (adopting) if n players enter in 

total.  We  assume  that )(nvi  is  increasing  in  n  for  any  player  i.  Thus,  our  game  is 

supermodular. There are M types of players. Agents with the same payoff function belong to 

the same type, while players with different payoff  functions belong  to different  types. We 

consider  games  in which we  can  arrange  all  of  the  types  according  the  following  order: i 
belongs to a higher type than j iff  )()( nvnv ji   for all n with at least one strict inequality. 

In a one‐shot game of  this  type, a pure strategy  for a player  is a decision  to either 

enter the game (adopt the network good) or not. We define a player’s strategy by 1ia  if 

player i enters,  and  0ia  if  player i does  not  enter.  Strategy  combinations  are  partially 

ordered by  the  relation:  'aa    iff  ii aa '  for all i. Define a0 as  the  strategy combination 

where everybody stays out; a1 as the strategy combination where only players of the highest 

type (Type 1, equal to Players A, B, C in Table 2) enter, others stay out; and ak as the strategy 

combination where all players of the high types 1 to k enter and players of lower types stay 

out. Since  there are M different  types, aM is  the strategy combination  in which all players 

enter. Note that ak-1 < ak for all k = 1, …, M. 

Following Basteck, Daniëls, and Heinemann (2013), we can decompose the game into 

restricted  games [ak-1, ak] for  k = 1, …,M.  The  restricted  game [ak-1, ak] consists  of  the 

strategy combinations ak-1, ak, and all strategy combinations  a~  that are strictly in between 

these  two,  i.e. ak-1< a~  < ak. The  strategy  combinations  in  the  restricted  game  share  the 

feature that all players of the high types 1 to k–1 enter and all players of the low types k+1 

to M stay out. Thus, only players of Type k have a choice in this restricted game. For these 

active players, the restricted game is a symmetric binary‐action game with payoffs given by 
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the  k’th block  diagonal  of  the  payoff  matrix.  For  the  game  displayed  in  Table  2,  block 

diagonals are the same for all types. Table 3 shows this block diagonal, which is the relevant 

part of the payoff function of the restricted game: 

Table 3. Payoff table for the restricted game of Type 1 (Players A,B,C) 

)(nvi  number of adopters n 
Player  i 1 2 3

A -4 -1 2
B -4 -1 2
C -4 -1 2

 

In  symmetric  binary‐action  games,  the  GGS  is  given  by  the  best  response  to  a  uniform 

distribution on  the number of entrants  among  the other players.  For  the  restricted game, 

displayed  in  Table  3,  the  expected  payoff  given  a  uniform  distribution  on  the  number  of 

other  players  adopting  is  –1  <  0.  Hence,  the  global  game  selects  the  lowest  strategy 

combination  in the restricted game, such that ai=0 for all players i of Type k. Because the 

block diagonals are the same for all 4 groups of our game, the GGS for each of the restricted 

games [ak-1, ak] for k = 1, …, M is the respective lowest strategy combination,  

432100 aaaaa  .  

It follows that the GGS of the entire game is a0, the strategy combination where no player 

enters.  Since  the  restricted  games  are  noise  independent,  so  is  the  entire  game  (Basteck, 

Daniëls, and Heinemann, 2013).  

  Strikingly,  this  selection does not depend on  the values of  the payoff matrix  in  the 

off‐diagonal blocks! The experiment, however, shows that these off‐diagonal payoffs affect 

behavior in an intuitive manner. The GGS fails to predict this. 

  The  same  procedure  can  also  be  applied  to  asymmetric  supermodular  games with 

different block diagonals. If the block‐diagonal payoffs of high types are weakly higher than 

those of low types, the procedure derives the unique and noise independent GGS. If there is 

only one player per type, the procedure is identical to the iterative elimination of dominated 

strategies.  

 

5. Experimental design 

The  experiment  consists  of  four  sessions,  each  with  12  participants,  conducted  in  the 

experimental  economics  laboratory of  Technische Universität Berlin.  Subjects were  invited 

via ORSEE (Greiner 2015), the experiment was programmed with z‐tree (Fischbacher 2007).  
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Each  subject  played  20  different  supermodular  one‐shot  games  in  random  order 

without feedback11. In each game, each subject had to decide between two options: “enter” 

or  “not  enter”.  The  payoff  for  not  entering  was  34  experimental  currency  units  (ECU), 

independent of what the other participants decided. This number was the same in all games 

and  appeared  on  the  screen  for  every  game.  The  payoff  for  entering  depended  on  the 

subject’s,  role  in  the particular  game and on  the other participants’ decisions  in  the  same 

game.  

In each game, there were 12 roles, called A, B, C, … , L. Roles were randomly assigned 

to the 12 participants such that each role was assumed by one participant. The random role 

assignment  was  done  for  each  game  independently  of  the  roles  or  decisions  in  previous 

games,  except  that  no  subjects  ever  got  the  same  role  in  two  consecutive  games.  The 

payoffs for “enter” were displayed on the screen as in the in the following Table 4: 

Table 4. Sample payoff table shown in the instructions for the experiment 

  number of entrants                   
Role  1  2  3  4 5 6 7 8 9  10  11 12

A  39  40  41  42 43 44 45 46 47  48  49 50
B  37  38  39  40 41 42 43 44 45  46  47 48
C  35  36  37  38 39 40 41 42 43  44  45 46

D  33  34  35  36 37 38 39 40 41  42  43 44
E  31  32  33  34 35 36 37 38 39  40  41 42
F  29  30  31  32 33 34 35 36 37  38  39 40

G  27  28  29  30 31 32 33 34 35  36  37 38
H  25  26  27  28 29 30 31 32 33  34  35 36
I  23  24  25  26 27 28 29 30 31  32  33 34

J  21  22  23  24 25 26 27 28 29  30  31 32
K  19  20  21  22 23 24 25 26 27  28  29 30
L  17  18  19  20 21 22 23 24 25  26  27 28

 

Each row displays the payoffs to the subject with the corresponding role. The player’s own 

role  in  each  game  was  highlighted  as  Role  D  in  Table  4.  For  each  player,  there  were  12 

possible  payoffs.  The  payoff  each participant  received  for  a  game was  determined  by  the 

total number of participants that decided to enter  in this game. For example,  if  the player 

with role D entered in this game and there were, for example, 6 players (including himself) 

who entered in this game, then he received a payoff of 38 ECU.  

All of these rules were given to subjects in written instructions (see Appendix C) and 

read aloud at the start of a session. Before subjects could make decisions in the 20 games, 

they  had  to  answer  comprehensive  questions  to make  sure  that  they  understood  how  to 

read  the  payoff  tables.  In  each  of  the  20  rounds,  each  subject  decided  for  one  of  the  20 

                                                 
11 So, behavior in any game cannot be affected by the outcome of another game.  
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games. Once all 12 subjects made and confirmed their decisions, the round ended and the 

next game started. Subjects did not  receive any  feedback about others’ behavior between 

games. Once all 20 games had been completed, each subject received a  list containing the 

results of the games. This list showed the game number (1‐20) and displayed for each game: 

the  subject’s  own  role  (A‐L),  her  or  his  decision  (“enter”  or  “not  enter”),  the  number  of 

participants who chose to “enter” in this game, and her or his own payoff for this game. The 

screen also  showed  the  sum of  the  subject’s payoffs over all  20 games. At  the end of  the 

experiment,  subjects  were  paid  1  Euro  for  every  40  ECU  they  earned  in  the  experiment. 

Sessions took less than an hour and subjects earned between 13 and 19 Euros each.  

The payoff  functions  for  the 20 games used  in  this  experiment are displayed along 

with subjects’ choices  in Appendix A. The games varied  in the number of  types  (1, 2, 4, or 

12), in whether the GGS predicts entry or no entry (same prediction for all types except for 

Game 20), and in the off‐diagonal payoffs. 2 games have symmetric payoffs for all players (1 

type)  and  4  games  have  12  different  types  and,  thus,  a  unique  equilibrium  that  can  be 

calculated by iterative elimination of dominated strategies.  

Hypotheses:  Given  the  results  of  previous  experiments  on  coordination  games,  in 

particular  from  HNO,  we  hypothesize  that  (i)  changes  in  payoffs  that  leave  the  GGS 

unaffected have no significant impact on subjects’ behavior and (ii) playing the GGS strategy 

yields a higher expected payoff  than actual behavior or other pre‐specified strategies. The 

next section shows that both hypotheses can be clearly rejected. 

 

6. Experimental results 

This section first gives a descriptive review of subjects’ decisions in the 20 games. Then, we 

analyze how well the GGS predicts observed choices and compare this measure of predictive 

power with other selection theories  for binary‐choice coordination games. Following HNO, 

we then compare the expected payoff of a player who plays either of these selections given 

the  observed  distribution  of  choices  by  others.  Thereby, we  test which  theories  are  best‐

suited to provide a recommendation for an individual player. Then, we test the comparative 

statics properties of the different solution concepts. Finally, we estimate a global game with 

positive variance of private signals and compare its predictive power to an estimated quantal 

response equilibrium  (QRE)  and  to probabilistic  responses  to  Laplacian  and  level‐k beliefs. 

We also look at the predictive power and at the expected payoffs of best responses to the 

estimated  probabilistic  solution  concepts.  We  compare  those  with  predictive  power  and 

expected payoffs from the best selection theory. Thereby, we analyze whether the effort of 

gathering data and estimating a probabilistic model helps in achieving good point predictions 

of behavior or recommendations for an individual player.  
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Appendix A displays  the payoff  tables  for  the 20 games. These  tables also state  for 

each game and for each role how many subjects in this role decided to enter. As there were 

4  sessions,  the  maximum  number  of  entrants  per  role  is  4.  The  maximum  number  of 

entrants per game  is 48. Since all games were played without  feedback, we can aggregate 

the results across all four sessions.  

- Games  1  to  10  have  4  types  of  players  and  5  Nash  equilibria  in  pure  strategies.12 

Games 1 to 4, 9, and 10 have the same payoffs in the block diagonals that determine 

the GGS. Here, the GGS is that no player enters. The games vary in their off‐diagonal 

payoffs and so did the observed total number of entries that varied from 10 subjects 

(out of 48) in Game 1 to 30 subjects in Game 10. Games 5 to 8 have higher payoffs in 

the block diagonals  and here,  the GGS  is  that  all  players  enter.  The observed  total 

number of entries varied from 22 to 29.  

- Games 11 to 14 have 2 types of players and 3 Nash equilibria in pure strategies. The 

GGS for Game 11 is that all players enter. For the other 3 games, the GGS is that no 

player enters. The observed number of entrants is 31 in Game 11. It varies from 16 to 

20 in Games 12 to 14.  

- Games 15 and 16 are symmetric games (1 type of players). In both games everybody 

entering and nobody entering are the 2 Nash equilibria in pure strategies. The GGS is 

the same for both games: no player enters. We observe 27 entries in Game 15 and 9 

in Game 16. 

- Games 17 to 20 have 12 types each. These games have unique equilibria that can be 

derived by iterative elimination of dominated strategies. In Game 17, the equilibrium 

is  that everybody enters. We observe  that 20  (out of 48) subjects enter. Games 18 

and  19  have  the  equilibrium  that  nobody  enters.  We  observe  32  and  16  entries, 

respectively.  Game  20  has  a  unique  equilibrium  in  which  Types  A  to  H  enter  and 

Types  I  to L do not enter. We observe that 27 out of 32 players  in the roles A to H 

enter and none of the 16 players in roles I to L. 

6.1 Predictive Power of Selection Theories 

This  subsection  compares  selection  theories  that  prescribe  a  pure  strategy  to  any  generic 

binary‐choice game with an eventual indifference between the two actions for a zero‐set of 

parameters, in which case we attribute probability .5 to both actions.  

The predictive power of a selection theory is measured by the proportion of observed 

decisions  that  is  correctly  predicted  by  the  respective  theory.  Since  for many  games  and 

roles, different subjects choose different actions, selection theories cannot perfectly fit the 

data. At best, a selection predicts for each game and for each role the action that is chosen 

                                                 
12 The equilibria are (i) nobody enters, (ii) only Players A‐C enter, (iii) Players A‐F enter, (iv) Players A‐I enter, (v) 
all players enter. 
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by the majority of subjects. The average proportion of decisions that is taken by the majority 

of subjects across all games and roles, thus, serves as an upper benchmark for a selection’s 

predictive power. The lower benchmark is given by a random prediction (0.5) for all games 

and roles. We compare the predictive power of the GGS with four other selection theories:  

- “Laplacian”,  defined  as  the  best  response  to  a  uniform  distribution  (Laplacian 

belief13) on the number of other players who chose B in the same game. In symmetric 

binary  choice  games  with  strategic  complementarities,  the  Laplacian  strategy 

coincides with the GGS. 

- “Level‐1”, defined as the best response to every other subject choosing either action 

with  probability  .5.  The  concept  of  levels  of  reasoning  has  been  shown  to  predict 

many subjects’ choices in some supermodular games like the guessing game (Nagel, 

1995).  

- Payoff‐dominant equilibrium (PDE), defined as the equilibrium strategy combination 

that yields the highest payoffs for all players, amongst all equilibria.  

- Maximin,  defined  as  the  strategy  that  yields  the  highest  payoff  for  an  individual 

player if no other player enters. 

- Best  possible  prediction,  defined  as  the  strategy  that  is  taken  by  the  majority  of 

subjects  in the same game and role. As explained above, no selection can predict a 

larger proportion of observed decisions than this benchmark. 

Table 5 states the proportion of observed choices that coincides with the predictions by each 

of  these  selection  theories.  We  distinguish  asymmetric  games  with  multiple  equilbria, 

(Games 1‐14), symmetric games (15‐16), and games with a unique equilibrium (17‐20). Note 

that GGS  and  Laplacian  are  identical  concepts  in  symmetric  games,  and GGS  and  PDE  are 

both equilibrium refinements. Thus, they select the same strategy combination if the game 

has a unique equilibrium, while Laplacian, Level‐1, and Maximin may select non‐equilibrium 

strategies.  Figure  2  normalizes  the  predictive  power  with  random  prediction  as  zero  and 

maximum possible probability as 100.   

Table 5. Proportion of observed choices in line with the respective selection theory 

  GGS  Laplacian  Level‐1  PDE  Maximin  Best possible 

Asymmetric games with 
multiple equilibria 

.595  .815  .815  .455  .544  .827 

Symmetric games  .625  .625  .625  .375  .625  .687 
Games with unique 
equilibrium 

.589  .859  .833  .589  .599  .891 

All games  .597  .805  .800  .474  .564  .826 

 

                                                 
13 The term „Laplacian“ for this strategy was coined by Morris and Shin (2003), p.57.   
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While  only  60% of  subjects’  decisions  in  the  experiment  are  in  line with  the GGS,  80% of 

observed decisions are in line with a best response to random behavior (Level‐1) and with a 

best response to Laplacian beliefs. These results are remarkable as they are rather close to 

the maximum possible predictive power that a selection can have (benchmark).  

Figure 2: Predictive power of selection theories relative to benchmarks (random = 0, best 

possible = 1)  

 

Another measure for the quality of selection theories is the percentage of games and 

roles for which a theory predicts the choice taken by the majority of subjects. The Laplacian 

strategy  yields  the best possible prediction  in  92% of  all  games and  roles,  Level‐1  in  90%, 

GGS  and  PDE  in  60%,  and  Maximin  in  63%.  A  random  selection  would  give  the  best 

prediction in 51% of all games and roles14.  

  Furthermore,  in 234 out of 240 games and roles  (97.5%) the Laplacian strategy  is a 

weakly better predictor of observed behavior than the GGS. For Level‐1, this number is 235 

(97.9%). It should be noted that Laplacian and Level‐1 strategies coincide in 230 (96%) of our 

games and roles15. Thus, it is not surprising that their predictive power is almost the same.   

  In order to check how robust these results are, we compare the predictive power of 

the same solution concepts for the symmetric coordination games used in the experiment by 

HNO  using  the  same  criteria.  In  their  experiment,  there  were  299  subjects  in  total,  each 

playing  30  different  binary‐choice  games.  Here,  the  GGS  correctly  predicted  75%  of  the 

299x30=8970 choices and gave the best prediction in 77 games (86%), Level‐1 predicted 71% 

of  all  choices  and  gave  the  best  prediction  in  70  games  (78%)16.  For  PDE  the  respective 

                                                 
14 This number exceeds 50%, because in 7 out of 240 games and roles, exactly half of all subjects of the 
respective type chose the risky option, so that either prediction is the best possible.  
15 Out of the 10 cases, in which Laplacian and Level‐1 differed, Laplacian gave the better prediction in 6 cases, 
Level‐1 in the other 4. 
16 In 8 out of 9 games, in which GGS and Level‐1 prescribe different actions, the GGS predicted the majority of 
choices. 
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numbers are 60.5% (62%), and for Maximin 47.8% (48%). The benchmark was 78.1% (100%). 

Thus, in symmetric binary choice games, the GGS has the highest predictive power. Since the 

GGS  is  identical  to  the  Laplacian  strategy  in  symmetric  games, we may  conclude  that  the 

best  response  to  a  Laplacian  belief  about  the  proportion  of  players  who  take  the  higher 

action gives the best point predictions for symmetric and asymmetric binary‐choice games 

with strategic complementarities.  

Result 1: The best response to a uniform distribution on the proportion of other players who 

take the higher action  (“Laplacian” strategy) predicts more choices correctly  than the GGS, 

Level‐1, PDE, or Maximin.  

6.2 Expected Payoffs resulting from Selection Theories 

Suppose  you want  to  give  an  advice  to  a  depositor  of  a  bank  or  to  a  firm manager who 

considers  adopting  a  new  software.  A  player  who  happens  to  participate  in  a  one‐shot 

coordination  game,  would  like  to  know  which  strategy  is  associated  with  the  highest 

expected  payoffs.  As  he  does  not  know  yet  the  behavior  of  other  players  who  decide 

simultaneously, such a strategy must be defined ex‐ante and the selection theories that we 

discussed  in  the  last  subsection  are  obvious  candidates.  Table  6  provides  the  expected 

payoffs  that  a  player  obtains  when  following  either  of  these  strategies  in  a  randomly 

selected game and role with randomly selected players from our subject pool. We compare 

these  values  to  the  expected  payoff  from  random  behavior  (entry  with  probability  .5), 

subjects’ actual choices, and best response to the observed distribution of choices. The third 

line normalizes these payoffs to those from the best response (100%) and random behavior 

(0%). 

   Table 6. Expected payoff associated with the respective strategies 

  Random  GGS  Laplacian Level‐

1 

PDE  Maximin Actual 

choices 

Best 

response

Exp’d payoff  31.39  33.95  35.97  36.08  28.97  34.20  35.51  36.27 

Exp’d payoff 

(normalized) 

0%  52%  94%  96%  ‐50%  58%  84%  100% 

 

  Level‐1  and  Laplacian  yield  higher  expected  payoffs  than  subjects’  average  choices 

and come rather close to the maximum possible expected payoff, given by a best response 

to observed behavior. The GGS, instead, provides a poor recommendation by which subjects 

would obtain lower expected payoffs than they actually achieved (on average).  

  In  HNO,  the  GGS  yielded  the  highest  expected  payoff.  Using  their  data,  expected 

payoffs from the GGS (normalized) were € 11.75 (97%), Level‐1 € 11.43 (84%), PDE € 8.29 (‐

40%), Maximin € 8.25 (‐42%), and random € 9.31 (0%). Actual choices yielded an average of 
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€ 10.36  (42%) and a best  response  to  the observed distribution would have given € 11.82 

(100%). As Laplacian equals  the GGS  in symmetric games, we may conclude that Laplacian 

and  Level‐1  give  the  best  recommendations  for  an  individual  player  in  symmetric  and 

asymmetric binary‐choice games with strategic complementarities.  

Result  2:  The  expected payoff  for  a player who  follows either  the  Laplacian or  the  Level‐1 

strategy is higher than the expected payoff from the GGS, PDE, Maximin, or actual behavior.  

6.3 Comparative Statics 

The different payoff  functions  in  the 20 games of  the experiment were designed  in such a 

way  that we can  test  several  comparative  statics properties on which  the aforementioned 

selection  theories  give different predictions.  In  all  games with different  types, we observe 

that high‐type players (A, B, C…) tend to opt for B more frequently than low types (… J, K, L). 

Thus, our first test is whether subjects of higher types enter more frequently than subjects 

of  lower  types  within  the  same  game.  In  the  asymmetric  games  with  multiple  equilibria 

(Games  1‐14),  GGS,  PDE  and  Maximin  predict  the  same  decisions  by  all  types,  while 

Laplacian and Level‐1 predict entry by high types and no entry by low types in each of these 

games. If we look at the correlation between types and entries, we find that the proportion 

of  subjects who  enter  is  highly  correlated with  their  type. We  run  linear  regressions with 

fixed effects for each game:  

Number of entrants = α + β x Type-number. 

For games with 4 types the estimated α = 11.05 (1.03), and β = –3.42 (.24). For games with 2 

types  we  estimate α = 38 (.74),  and β = –15 (.4).  Numbers  in  parentheses  are  standard 

errors. In both regressions “Type” is highly significant (p= .1%).  

Another (non‐parametric) test  just counts how often higher types enter more often 

than the next lower type in the same game. In Games 1‐14, higher types enter more often 

than  the  next  lower  type  in  29  cases,  less  often  in  2  cases,  and  equally  often  in  3  cases, 

thereof 2 cases with zero entries for both types. Thereby, we can reject that the proportion 

of entries is the same across types in the same game (Wilcoxon signed rank test, p<1%).   

Result 3: Players of higher types enter more often than players of lower types.  

For  comparisons  between  games,  let  us  say  that  a  game  is  “higher”  than  another 

game if all payoffs in the first game are weakly larger than the payoffs in the second game 

with at least one strict inequality. The second comparative statics property concerns the off‐

diagonal payoffs. As explained above, only entries in the block‐diagonal matrices affect the 

GGS. Games 1  to 4, 9 and 10 have  the  same block diagonals,  according  to which  the GGS 

predicts no entries, but vary  in  their off‐diagonal payoffs. Game 2 has higher payoffs  than 

Game 1  in cells above the diagonal blocks, Game 3 has higher payoffs than Game 1 below 

the diagonal blocks, Game 4 has higher payoffs than Games 2 and 3 on either side. Game 9 

has higher payoffs than Game 3 below the diagonal, and Game 10 has higher payoffs than 



 21

Games 4 and 9 on either side. Games 5 to 8 can be ordered in the same way as Games 1 to 

4. Amongst  the games with 2  types, Game 13 has higher payoffs above  the diagonal  than 

Game 12.  Finally, Game 18 has higher payoffs  below  the diagonal  than Game 19.  Table 7 

summarizes  the  independent comparisons between games  that are driven by variations  in 

off‐diagonal payoffs. The partial order of games is displayed in the first and fourth column of 

Table 7. The columns to the right of these pairs of games indicate the number of entrants in 

the  lower and  in  the higher game(s) of  the  respective pairs. Dependent comparisons have 

been left out. We find that in 9 of these independent pairs higher off‐diagonal payoffs lead 

to more entries with one opposing case. The positive impact of off‐diagonal payoffs on the 

number of entries is significant at 5% according to the Wilcoxon signed‐rank test.  

Result 4: Higher off‐diagonal payoffs raise the number of entrants.  

 

Table 7. Effect of higher off‐diagonal payoffs on the number of entries 

Pair of 
games 

entrants in 
lower game 

entrants in  
higher game(s) 

  Pair of 
games 

entrants in 
lower game 

entrants in  
higher game(s) 

1 < 2  10  17    5 < 6  26  22 

1 < 3  10  15    5 < 7  26  29 

2, 3 < 4  17,  15  21    6, 7 < 8  22,  29  29 

3 < 9  15  21    12 < 13  19  20 

4, 9 < 10  21,  21  30    19 < 18  16  32 

 

The third comparative statics prediction that we want to test is whether an overall increase 

in payoffs (including the block diagonals) raises the number of entrants. Here, we compare 

games  for which  the  payoffs  in  one  game  are  equal  to  the  payoffs  in  another  game  plus 

some constant,   )()( nvnv ii ,  and  for which  the GGS predicts entry  in  the higher game 

and no entry  in the lower gamer. Table 8 summarizes these comparisons. Here, the higher 

games  always  have  more  entrants,  which  is  significant  at  5%  according  to  the  Wilcoxon 

signed‐rank test.  

Result 5: A  constant  increase  in all payoffs,  such  that  the GGS predicts entry  in  the higher 

game and no entry in the lower game leads to more entries in the higher than in the lower 

game.  
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Table 8. Effect of a constant increase in payoffs on the number of entries 

Pair of 
games (δ) 

entrants in 
lower game 

entrants in  
higher game(s) 

  Pair of 
games (δ) 

entrants in 
lower game 

entrants in  
higher game(s) 

1 < 5 (3)  10  26    12 < 11 (5)  19  31 

2 < 6 (3)  17  22    14 < 13 (3)  16  20 

3 < 7 (3)  15  29    16 < 15 (8)    9  27 

4 < 8 (3)  21  29         

 

The GGS only predicts the comparative statics stated in Results 5, while Results 3 and 4 go 

against  its  predictions.  PDE  and  Maximin  strategy  predict  none  of  the  three  results.  The 

Laplacian and the Level‐1 strategy, instead, predict all three results.     

6.4 Modelling heterogeneous behavior 

Selection  theories  may  predict  a  large  number  of  choices  correctly,  but  they  can  neither 

account  for nor predict  the heterogeneity of  individual  choices within  the same game and 

role.  To account  for heterogeneity, probabilistic models  assign  some probability  for either 

choice to each game and role. Ideally, such a probabilistic model would predict the observed 

distribution of choices.  

  There are many possible ways of formulating probabilistic models. HNO fitted logistic 

functions and two global games to their data. As explained in Section 2, the estimated global 

games provided a nice fit of these data, even though there were some systematic deviations, 

and they also gave reasonable predictions out of sample. Alternatives to these approaches 

are  quantal  response  equilibria  (QRE)  or  any  choice  function  that  adds  some noise  to  the 

prescriptions of a selection theory.  

  Here,  we  estimate  a  global  game  with  positive  variance  of  private  signals  on 

monetary payoffs  and  compare  its  predictive power  to  an estimated QRE. We also define 

noisy responses to Laplacian beliefs and Level‐1, by assuming that subjects choose the action 

with the higher expected payoff (given their beliefs) with some probability defined by a logit 

response function. Each of the four models has one free parameter that we estimate using 

the data from the experiment. We compare their  log‐likelihoods to evaluate the predictive 

power of these estimated models.  

In order to judge whether modelling the distribution of choices helps a participant of 

a one‐shot game to obtain higher payoffs, we calculate the expected payoffs resulting from 

best responses to the four estimated models and compare those with the expected payoffs 

of selection theories displayed in Table 6.  
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First,  we  define  a  global‐game  that  embeds  the  coordination  games  used  in  the 

experiment.  Following  BDM,  we  define  the  payoff  for  entry  as  )(nvi ,  where    is  a 

random variable with infinite variance. For any given  , players receive i.i.d. private signals 

with normal distribution  ),(~ 2Nxi . The standard deviation of private signals   allows 

heterogeneous behavior and can be estimated to fit the observations of an experiment. 

A  global‐game  equilibrium  is  a  vector  of  thresholds  12,...1)( i
ix  for  each  of  the  12 

players.  Of  course,  all  players  who  belong  to  the  same  type  (i.e.  have  the  same  payoff 

function), also have the same equilibrium threshold so that a global game has M different 

thresholds for the M types. The equilibrium is characterized by the following two conditions 

(1) Given  that  the  true  realization  is 0 ,  the  probability  that  player    j enters  is 
)/(1)( jj

j xxxprob  , with    denoting  the  cumulative  standard  normal 

distribution. 

(2) Player i is indifferent at signal  ix , if and only if 0)|)((  i
ii xxnvE  .  

Appendix B provides  the details of  how  the  likelihood  function  is  constructed. Maximizing 

the  loglikelihood,  we  estimate  a  standard  deviation  of  signals    of  about  7.  The 

loglikelihood  at  this  value  is  –478.9  (average  loglikelihood  =  –.499).  Figure  3  displays  the 

loglikelihood depending on  . One gets the impression that it  is rather flat at the top and 

does not fall much for an increasing  , so that the estimate of   is rather imprecise17. Since 

there are 960 decisions  in  total,  the  loglikelihood of  random predictions  is 960 x  ln(.5) = – 

665.  

Figure 3: Loglikelihood 

 
  

                                                 
17 The likelihood is not significantly lower for σ=6 or σ=8. 



 24

For the QRE, we use a standard definition with a logistic choice function according to which a 

subject in Role i enters with probability  

)34exp()|)((exp(

))|)((exp(












ii

ii
i pnvE

pnvE
p ,     (1) 

where  ip  is  the  vector  of  entry  probabilities  for  all  other  subjects.  Subjects  of  the  same 

type enter with the same probability. Hence, the QRE of a game is given by M probabilities 

that  solve  the  M  equations  (1)  simultaneously.  The  computational  complexity  of  solving 

these equations is lower than for solving the equations defining a global‐game equilibrium, 

because the equations need to be evaluated only at  the true payoffs, while a global game 

needs to evaluate similar equations for all possible realizations of θ. The maximum‐likelihood 

estimation of  the  rationality parameter  in  the QRE yields λ  =  .07.  The  loglikelihood at  this 

value –521.0  (average  loglikelihood = –.543), which  is  clearly  lower  than  the  result  for  the 

estimated global game. Reason  is  that the estimated QRE predicts rather small differences 

between entry probabilities of high and low types of the same game. The estimated global 

game also predicts  smaller  differences between entry probabilities of different  types  than 

observed in the experiment, yet it captures these differences better than the QRE.  

  Noisy  responses  to  Laplacian  and  Level‐1  beliefs  are modelled  by  a  logit  response 

function  to  the  respective beliefs.  Their  construction does not  require  solving  complicated 

equation systems. Here, a subject in Role i enters with probability  

)34exp())((exp(

))((exp(








nvE

nvE
p

i

i
i ,       

where the expected payoffs  )(( nvE i  are simply derived from a uniform distribution on n for 

Laplacian beliefs (that can be calculated by head) and from a binomial distribution for Level‐

1 beliefs. The maximum‐likelihood estimates are λ =  .184 for Laplacian beliefs and λ =  .170 

for Level‐1 beliefs. The maximum loglikelihood is –456.8 (average loglikelihood = –.476) for 

Laplacian and –463.8  (–.483)  for  Level‐1 beliefs. Both numbers are  clearly higher  than  the 

maximum  likelihood  of  the  estimated  global  game18.  They  correspond  to  an  average 

likelihood  per  observation  of  62.1%  and  61.7%  respectively,  compared  to  60.7%  in  the 

estimated global game and 58.1% in the estimated QRE.  It  is stunning that the model with 

lowest computational complexity (“noisy Laplacian”) yields the best fit of data. 

Result 6: The estimated noisy response to Laplacian beliefs about the number of entrants fits 

the  observed  distribution  of  choices  better  than  estimated  global  game,  QRE  or  noisy 

response to Level‐1 beliefs.  

All  four  models  of  heterogeneous  behavior  give  the  observed  comparative  statics 

predictions stated  in  results 3  to 5. A global game with positive variance of private signals 

predicts higher entry probabilities by higher types, because the off‐diagonal payoffs lead to 

                                                 
18 Loglikelihoods of the four models are summarized in Table 9 
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different threshold values for different types. This is an important difference to the GGS that 

fails to make this distinction. 

Does it help a player who participates in a randomly selected one‐shot coordination 

game  to  know  any  of  the  estimated models?  The  expected  payoffs  of  best  responses  to 

either of  the estimated models of heterogeneous behavior  are given  in Table 9.  The  third 

line  relates  these  payoffs  to  those  from  the  best  response  (100%)  and  random  behavior 

(0%). All four models yield similar expected payoffs. Comparing them with expected payoffs 

stated  in  Table  6  shows  that  all  of  these  best  responses  provide  higher  expected  payoffs 

than following the GGS and they all provide improvements over actual choices. However, the 

Level‐1 strategy yields a (slightly) higher expected payoff than best responses to any of the 

estimated models of heterogeneous behavior and  the Laplacian  strategy  that  requires  the 

lowest  computational  effort  is  only  slightly  outperformed  by  the  best  response  to  the 

estimated  noisy  Level‐1  model.  Thus,  we  may  conclude  that  an  estimated  model  of 

heterogeneous behavior would not have helped a player in the experiment to make better 

decisions, even though these models have been fitted to match observations.    

Result  7:  Best  responses  to  different  estimated  models  of  heterogeneous  behavior  yield 

similar  expected  payoffs,  comparable  to  but  not  higher  than  expected  payoffs  for  the 

Laplacian and the Level‐1 strategy.  

Table 9. Expected payoffs of best responses to estimated models 

Estimated Model  Global game  QRE  Noisy Laplacian  Noisy Level‐1 

Expected payoff from 

best response 

35.87  35.83  35.95  36.03 

Expected payoff 

(normalized) 

92%  91%  93%  95% 

Predictive power of 

best response 

.786  .786  .801  .799 

 

In  the  last  line,  Table  9  also  states  the  predictive  power  in  terms  of  the  proportion  of 

observed decisions that are correctly predicted by the respective best response. Note that 

this prediction would only be useful out of  sample, because  it  requires  the data  from  the 

current experiment. As  the models are  fitted  to observations,  the predictive power out of 

sample  is  likely  to be  lower. A comparison with  the predictive power of abstract  selection 

theories  in  the  last  row  of  Table  5  shows  that  the  best  responses  to  random  behavior 

(Laplacian  strategy  and  Level‐1)  yield  predictions  that  are  equally  good  as  the  in‐sample 

predictions from best responses to fitted models of heterogeneous behavior. This underlines 

the robustness of Result 1. 
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7. Conclusions 

Table 10. Comparison of solution concepts 

  GGS  Laplacian  Level‐1  Noisy  
Laplacian 

Noisy 
Level‐1 

Global 
game 

QRE 

% correct 
predictions 

59.7%  80.5%  80.0%         

Loglikelihood  ‐ infinity  ‐ infinity  ‐ infinity  ‐ 457  ‐ 464  ‐ 479  ‐ 521 

Expected payoff in 
% of maximum 

52%  94%  96%  93%  95%  92%  91% 

Qualitative 
comparative statics 

no  yes  yes  yes  yes  yes  yes 

Computational 
complexity 

Very 
low 

Lowest  low  low  low  Very 
high 

high 

 

Table  10  summarizes  the  main  results  of  this  experiment.  Given  these  results  and  the 

previous tests of the theory of global games in symmetric games, we can draw the following 

conclusions  for  global  games  as  a  descriptive  theory  for  supermodular  binary‐action 

coordination games with complete information: 

1. The  predictive  power  of  global  games  depends  on  the  nature  of  the  game.  For 

symmetric  games,  the  GGS  correctly  predicts  most  actions,  yields  the  highest 

expected  payoff,  and  also  predicts  the  qualitative  comparative  statics  that  are 

observed in experiments. For asymmetric games this need not be true. The present 

paper provides a counter‐example. Here, the best response to Laplacian beliefs about 

the number of agents who take either action provides the best prediction of actions, 

a  high  expected  payoff  for  an  individual  player,  and  a  correct  prediction  of  the 

qualitative comparative statics. In symmetric games, the GGS is identical to the best 

response to Laplacian beliefs. Thus, the latter may dominate the GGS in its predictive 

power.  Finding  out  whether  this  generally  holds  for  binary‐action  supermodular 

games with complete information, requires further experiments on other asymmetric 

games.  

2. In  symmetric  one‐shot  coordination  games,  the  equilibrium  of  a  global  game with 

positive variance yields a good fit of the heterogeneity of observed choices and can, 

thus, be used as a descriptive theory. In this experiment on an asymmetric game, the 

predictive power of a fitted global game is outperformed by a logit response function 

to Laplacian beliefs.  
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3. In repeated symmetric coordination games, groups converge to an equilibrium that is 

somewhere  between  the  GGS  and  the  payoff‐dominant  equilibrium.  As  repeated 

coordination games most often convergence to the best  response of choices  in  the 

first  period,  this  result  cannot  be  expected  to  hold  for  repeated  asymmetric 

coordination games. As observed choices  in  the asymmetric one‐shot games of  the 

experiment  were  often  below  the  GGS,  we  hypothesize  that  repetitions  of  these 

games may  lead  to  equilibria  that  are  lower  than  the GGS. Whether  the  Laplacian 

strategy, instead, can serve as a lower bound, is a matter of future research.   

For theorists working with supermodular coordination games, these results are good news. 

In order to assess the comparative statics properties, they do not need to construct a global 

game  but  can  get  reliable  predictions  from  the  best  response  to  Laplacian  beliefs  that  is 

much easier to calculate and analyze also in algebraic form. The best response to Laplacian 

beliefs also provides the best point predictions and this seems to be true also for asymmetric 

games  (at  least  the ones  tested  in  the present experiment).  This  allows  theorists  to easily 

extend their models to asymmetric set‐ups, e.g. bank‐run models with banks or depositors 

of different size.  

Depending  on  the  goals,  a  theorist may  require  a  probabilistic model  that  yields  a 

prediction not only about the final aggregate outcome, i.e. whether a banking crisis occurs or 

not, but also yields a description of the distribution of actions, i.e. which share of depositors 

(depending  on  size)  may  be  expected  to  withdraw  deposits.  This  distribution  may  be 

important  for  evaluating  how  much  liquidity  needs  to  be  provided  in  order  to  avoid  a 

banking crisis or what the best limits are for a deposit insurance. For these questions, noisy 

Laplacian beliefs give the best answer.  

Consider,  for  example,  a  regulator  who  wants  to  assess  the  contribution  of  an 

individual bank’s failure to a systemic crisis or a central bank that needs to decide whether it 

should let a distressed bank fail, support it as lender of last resort, or inject liquidity into the 

market. Here, the main question is whether the failure of the distressed institution with or 

without  liquidity  provision  to  the  market  leads  to  a  systemic  crisis.  Thus,  the  aggregate 

outcome  is  of  primary  importance.  The  precise  distribution  of  withdrawn  deposits  is  of 

secondary importance. However, miscoordination among depositors is also associated with 

losses  to  those who  are on  the wrong  side  (withdraw,  although  the  bank  survives  or  vice 

versa),  even  if  these  losses  are  small  in  comparison  to  the  welfare  losses  caused  by  a 

contagious financial crisis.  

Thus,  the choice of an appropriate solution concept may depend on the goal.  If we 

want to predict behavior of a single depositor or a single agent whom we want to get as a 

customer for a network good, a simple selection theory, like the best response to Laplacian 

beliefs,  may  be  sufficient  and,  given  the  computational  burden  associated  with  other 
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concepts, the best concept to apply. The same may be true if we want to give advice to an 

individual agent in a one‐shot coordination game.  

If we are  interested  in  the distribution of  choices,  a probabilistic model accounting 

for the heterogeneity of choices is indispensable. Note however, that all models that can be 

used to describe heterogeneous behavior need a parameter steering the diversity of choices. 

In a global game, this is the precision of private signals. The true variance of private signals is 

likely  too  small,  because we  see  that  behavior  in  games with  complete  information  (zero 

variance  of  private  signals)  is  best  fitted  by  a  global  game  with  a  positive  variance. 

Unfortunately,  estimated  variances  of  private  signals  have  a  dimension  that  limits  their 

external validity. For example, I can hardly take the estimated standard deviation of 7 Euros 

that maximizes  the  loglikelihood of observations  in  the presented experiment and assume 

that  the same standard deviation gives me a good prediction  for a bank  run game, where 

payoffs are in the magnitude of thousands of Euros. Noisy Laplacian beliefs, instead, need a 

parameter  for  rationality.  This  has  no  dimension  and may  have  a  higher  external  validity. 

Hence, one can use the rationality parameter estimated with data from past financial crises 

on  very  distinct markets  or  even  from  experiments  like  the  one  presented  here,  and  use 

them to calibrate a new model.  

The obvious downside of Laplacian beliefs as a selection theory is that they are only 

defined  in binary  choice  games  (e.g.,  extend or withdraw credit). When  it  comes  to more 

than two decision alternatives, level‐1 can still be applied, but we do not know yet how well 

its  predictions  perform  in  comparison  to  other  concepts  when  there  are  more  than  two 

decision alternatives. As shown for the present experiment on binary‐choice games, level‐1 

may provide predictions that are almost as good as Laplacian beliefs, and the computational 

complexity is not much higher. Noisy level‐1 also yields a good fit of observed heterogeneity 

and requires the same dimensionless rationality parameter.  

  The  models  tested  in  this  experiment  can  be  ordered  by  their  computational 

complexity that also matters for the decision which concept to use for analyzing an applied 

coordination problem. The best response to Laplacian beliefs can be calculated by head:  it 

just requires to compare the average payoffs of the two actions, A and B, over the potential 

number of other agents choosing the same action. The Level‐1 strategy requires calculating a 

binomial  distribution.  Their  probabilistic  versions  plug  the  expected  payoffs  in  a  logit 

function. QRE involves solving a system of equations of logit functions, and the global game 

equilibrium needs  to  evaluate  such  a  system of  equations  not  only  for  the  payoffs  of  the 

actual game, but simultaneously for all other potential payoffs in the conditional support of 

the  state  space.  Surprisingly,  the  present  results  support  the  least  complex  solution 

concepts.  
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Appendix A. Games used in the experiment and observed choices 

The  following  tables aggregate  the payoff  for players of  the same  type  in one  line. So,  for 

example, Game 1 has 4 types: Players with roles A, B and C are of the same type and, thus, 

have the same payoffs conditional on the total number of entrants. Note that there were 4 

sessions and, thus, 4 observations for each role. The last two columns display the Laplacian 

and the Level‐1 strategy: “0” means no entry, “1” means entry. 

 
Game 1 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A – C  30  33  36  36  36  36  36 36 36 36 36 36 9 1 1 
D – F 0  0  0  30  33  36  36 36 36 36 36 36 1 0 0 
G – I  0  0  0  0  0  0  30 33 36 36 36 36 0 0 0 
J – L  0  0  0  0  0  0  0 0 0 30 33 36 0 0 0 

             Total     10   
 
 
Game 2 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A – C  30  33  36  39  42  45  48 51 54 57 60 63 12 1 1 
D – F 0  0  0  30  33  36  39 42 45 48 51 54 4 0 1 
G – I  0  0  0  0  0  0  30 33 36 39 42 45 1 0 0 
J – L  0  0  0  0  0  0  0 0 0 30 33 36 0 0 0 

             Total     17  
 
Game 3 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A – C  30  33  36  36  36  36  36 36 36 36 36 36 10 1 1 
D – F 21  24  27  30  33  36  36 36 36 36 36 36 5 0 1 
G – I  9  12  15  21  24  27  30 33 36 36 36 36 0 0 0 
J – L  0  3  6  9  12  15  21 24 27 30 33 36 0 0 0 

             Total     15   
 
Game 4 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A – C  30  33  36  39  42  45  48 51 54 57 60 63 11 1 1 
D – F 21  24  27  30  33  36  39 42 45 48 51 54 7 1 1 
G – I  9  12  15  21  24  27  30 33 36 39 42 45 2 0 0 
J – L  0  3  6  9  12  15  21 24 27 30 33 36 1 0 0 

             Total     21   
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Game 5 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A – C  33  36  39  39  39  39  39 39 39 39 39 39 12 1 1 
D – F 3  3  3  33  36  39  39 39 39 39 39 39 9 0 1 
G – I  3  3  3  3  3  3  33 36 39 39 39 39 2 0 0 
J – L  3  3  3  3  3  3  3 3 3 33 36 39 3 0 0 

             Total     26  
 
Game 6 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A – C  33  36  39  42  45  48  51 54 57 60 63 66 12 1 1 
D – F 3  3  3  33  36  39  42 45 48 51 54 57 7 1 1 
G – I  3  3  3  3  3  3  33 36 39 42 45 48 1 0 0 
J – L  3  3  3  3  3  3  3 3 3 33 36 39 2 0 0 

             Total     22   
 
Game 7 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A – C  33  36  39  39  39  39  39 39 39 39 39 39 12 1 1 
D – F 24  27  30  33  36  39  39 39 39 39 39 39 10 1 1 
G – I  12  15  18  24  27  30  33 36 39 39 39 39 5 0 0 
J – L  3  6  9  12  15  18  24 27 30 33 36 39 2 0 0 

             Total     29   
 
Game 8 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A – C  33  36  39  42  45  48  51 54 57 60 63 66 11 1 1 
D – F 24  27  30  33  36  39  42 45 48 51 54 57 11 1 1 
G – I  12  15  18  24  27  30  33 36 39 42 45 48 6 0 0 
J – L  3  6  9  12  15  18  24 27 30 33 36 39 1 0 0 

             Total     29  
 
Game 9 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A – C  30  33  36  36  36  36  36 36 36 36 36 36 11 1 1 
D – F 30  30  30  30  33  36  36 36 36 36 36 36 6 0 1 
G – I  30  30  30  30  30  30  30 33 36 36 36 36 3 0 0 
J – L  30  30  30  30  30  30  30 30 30 30 33 36 1 0 0 

             Total     21   
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Game 10 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A – C  30  33  36  39  42  45  48 51 54 57 60 63 12 1 1 
D – F 30  30  30  30  33  36  39 42 45 48 51 54 9 1 1 
G – I  30  30  30  30  30  30  30 33 36 39 42 45 7 0 0 
J – L  30  30  30  30  30  30  30 30 30 30 33 36 2 0 0 

             Total     30   
 
Game 11 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A – F  29  32  35  38  41  44  44 44 44 44 44 44 23 1 1 
G – L  11  11  11  11  11  11  29 32 35 38 41 44 8 0 0 

             Total     31   
 
Game 12 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A – F  24  27  30  33  36  39  39 39 39 39 39 39 17 1 1 
G – L  6  9  12  15  18  21  24 27 30 33 36 39 2 0 0 

             Total     19   
 
Game 13 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A – F  24  27  30  33  36  39  42 45 48 51 54 57 17 1 1 
G – L  6  6  6  6  6  6  24 27 30 33 36 39 3 0 0 

             Total     20   
 
Game 14 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A – F  21  24  27  30  33  36  39 42 45 48 51 54 16 1 1 
G – L  21  24  27  30  33  36  39 42 45 48 51 54 0 0 0 

             Total     16   
 
Game 15 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A – L  8  12  16  20  24  28  32 36 40 44 48 52 27 0 0 
 
Game 16 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A – L  0  4  8  12  16  20  24 28 32 36 40 44 9 0 0 
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Game 17 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A  35  35  35  35  35  35  35 35 35 35 35 35 4 1 1 
B 33  35  35  35  35  35  35 35 35 35 35 35 4 1 1 
C 31  33  35  35  35  35  35 35 35 35 35 35 4 1 1 
D 29  31  33  35  35  35  35 35 35 35 35 35 3 .5 1 
E 27  29  31  33  35  35  35 35 35 35 35 35 2 0 1 
F 25  27  29  31  33  35  35 35 35 35 35 35 0 0 1 
G 23  25  27  29  31  33  35 35 35 35 35 35 1 0 0 
H 21  23  25  27  29  31  33 35 35 35 35 35 0 0 0 
I 19  21  23  25  27  29  31 33 35 35 35 35 0 0 0 
J 17  19  21  23  25  27  29 31 33 35 35 35 1 0 0 
K  15  17  19  21  23  25  27 29 31 33 35 35 1 0 0 
L  13  15  17  19  21  23  25 27 29 31 33 35 0 0 0 

             Total     20   
 
Game 18 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A  33  35  37  39  41  43  45 47 49 51 53 55 4 1 1 
B 33  33  35  37  39  41  43 45 47 49 51 53 4 1 1 
C 33  33  33  35  37  39  41 43 45 47 49 51 4 1 1 
D 33  33  33  33  35  37  39 41 43 45 47 49 4 1 1 
E 33  33  33  33  33  35  37 39 41 43 45 47 3 1 1 
F 33  33  33  33  33  33  35 37 39 41 43 45 4 1 1 
G 33  33  33  33  33  33  33 35 37 39 41 43 3 1 0 
H 33  33  33  33  33  33  33 33 35 37 39 41 3 1 0 
I 33  33  33  33  33  33  33 33 33 35 37 39 2 .5 0 
J 33  33  33  33  33  33  33 33 33 33 35 37 1 0 0 
K  33  33  33  33  33  33  33 33 33 33 33 35 0 0 0 
L  33  33  33  33  33  33  33 33 33 33 33 33 0 0 0 

             Total     32   
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Game 19 

      Payoffs conditional on the number of entrants  Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A  33  35  37  39  41  43  45 47 49 51 53 55 3 1 1 
B 31  33  35  37  39  41  43 45 47 49 51 53 4 1 1 
C 29  31  33  35  37  39  41 43 45 47 49 51 3 1 1 
D 27  29  31  33  35  37  39 41 43 45 47 49 1 1 1 
E 25  27  29  31  33  35  37 39 41 43 45 47 3 1 1 
F 23  25  27  29  31  33  35 37 39 41 43 45 1 .5 .5 
G 21  23  25  27  29  31  33 35 37 39 41 43 1 0 0 
H 19  21  23  25  27  29  31 33 35 37 39 41 0 0 0 
I 17  19  21  23  25  27  29 31 33 35 37 39 0 0 0 
J 15  17  19  21  23  25  27 29 31 33 35 37 0 0 0 
K  13  15  17  19  21  23  25 27 29 31 33 35 0 0 0 
L  11  13  15  17  19  21  23 25 27 29 31 33 0 0 0 

             Total     16   
 
Game 20 

      Payoffs conditional on the number of entrants   Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no. of entrants cian 1 

A  49  49  49  49  49  49  49 49 49 49 49 49 4 1 1 
B 45  47  47  47  47  47  47 47 47 47 47 47 4 1 1 
C 41  43  45  45  45  45  45 45 45 45 45 45 4 1 1 
D 37  39  41  43  43  43  43 43 43 43 43 43 4 1 1 
E 33  35  37  39  41  41  41 41 41 41 41 41 4 1 1 
F 29  31  33  35  37  39  39 39 39 39 39 39 4 1 1 
G 25  27  29  31  33  35  37 37 37 37 37 37 3 0 1 
H 21  23  25  27  29  31  33 35 35 35 35 35 2 0 0 
I 17  19  21  23  25  27  29 31 33 33 33 33 0 0 0 
J 13  15  17  19  21  23  25 27 29 31 31 31 0 0 0 
K  9  11  13  15  17  19  21 23 25 27 29 29 0 0 0 
L  5  7  9  11  13  15  17 19 21 23 25 27 0 0 0 

             Total     29   
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Appendix B. Estimating the global‐game equilibrium  
 
The net payoff for entry by agent i given that a total of n agents are entering is  )(nvi . Extend 

this  by  a  state  variable,  such  that  the payoff  for  entry  is  )(nvi .  Assume  that  the  state 

variable  has  an  improper  uniform  distribution  on  the  reals  (=>  dominance  regions  exist). 

Agents  receive  i.i.d. private signals  ),(~ 2Nxi . A global‐game equilibrium  is a vector of 

thresholds, such that    

(1) each agent enters [does not enter] if his signal exceeds [falls short of] the threshold, and  

(2) an agent receiving the threshold signal is indifferent. 

Players  are  denoted  by  },...,1{ Ni ,  denote  the  type  of  player  i  by  )(ik .  In 

equilibrium,  players  of  the  same  type  have  the  same  threshold.  Denote  the  equilibrium 

threshold of type  k  by  kx . We have  12N . The number of types varies over 1, 2, 4, and 12.  

In our games, we can order types such that  )()( jkik    if and only if vi(n) ≥ vj(n) for 

all n, with at  least one strict  inequality. For example,  in the games with four types, players 

ABC  belong  to  Type  1,  players  DEF  are  Type  2,  and  so  on.  Due  to  the  order  of  types, 
1 kk xx .  

(1) Given that the true realization of  0 , the probability that player  j  enters is     

    )()( 1)( jkjk
j xxxprob                 (1) 

with   denoting the cumulative standard normal distribution. For any given value of σ, this 

is the probability for a subject entering that we use in the Maximum‐likelihood estimation. 

Before we can do so, we need to find the thresholds that are associated with a particular σ. 

This  comes  from  condition  (2).  The  second  step  is  then  to  find  the  σ  that maximizes  the 

likelihood of observations. 

(2) An arbitrary agent  i  is indifferent at signal  )(ik
i xx  , if and only if  

   0)|)((  ii xnvE  .                  (2) 

 


 









  dxfnventeragentsothernprobxnvE ii

N

n
ii )|()()|1()|)((

1

      (3)  

and  ii xxE )|( ,    where    





 





 i

i

x
xf )|(   and     is  the  non‐cumulative  standard 

normal distribution. Note that we can reformulate  






  dxfenteragentsothernprobnvxnvE i

N

n
iii )|()|1()()|)((

1

 .       (4) 

Denote  the  conditional  probability  that  (n – 1)  other  subjects  enter  conditional  on 

signal xi by 

   




   dxfenterithanagentsothernprobxnp ii
i )|()|1()|1(ˆ .    (5) 

The tricky part is to describe this probability.  
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Some helpful notation: Denote the conditional probability that another agent of type 

k enters given state   by   








 





)(
)( 1)|(

jk
jk

j
k x

xxprobp ,           (6) 

and  the  conditional  probability  that m  agents  of other  types  than  )(ik   enter,  for  a  given 

state  , by  )|(~ mp i .  

12  types with 1 agent each  (Games 17‐20):   Note  that  the other games are  special 

cases with subjects of the same type having the same threshold in equilibrium. So, I do not 

lay out those games explicitly. 

Games  17‐20  are  actually  dominance  solvable  and  have  a  unique  equilibrium.  The 

global  game may  yield  a  better  description  of  behavior  anyway.  It  basically  accounts  for 

strategic  uncertainty  in  a  game  where  deduction  should  eliminate  this  uncertainty.  We 

know, however, from observations that people are uncertain and do not put probability 1 on 

others’  rationality,  leave  alone higher‐order  rationality.  The  logit  equilibrium  captures  this 

already (see also Kübler & Weizsäcker, 2004). 

So, let us continue the assumption that players are uncertain about which game they 

are  playing  (that  is: θ is  uncertain).  As  an  equilibrium  can  be  described  by  a  vector  of 

thresholds  1 kk xx , we can continue to use the indifference condition 

ii
i

N

n
i

N

n
iiii xxnpnvdxfenteragentsothernprobnvxnvE  
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

and 

)|1( enteragentsothernprob   

= )|1()|1(~  enterithantypesotherfromagentsnprobnp i 
, 

which is the probability that n – 1 of the other signals are below the individual thresholds xk, 

)(ikk  .  For each agent  (of another  type),  this probability  is  given by  kp .  The probability 

)|1(~  np i  is the solution to a combinatorial problem.  

Any combination of n – 1 of other agents must be accounted for with the probability 

that these n – 1 agents enter. The latter is the product of  kp  for the n – 1 different agents k. 

So,  )|1(~  np i  is the sum_(over all possible combinations of n – 1 of other agents) of the 

products of these agents’ entry probabilities,  

)|1(~  np i =  







 
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k

ncombinatiok

k

ncombinatiokagentsothernofnscombinatioall

pp  . 

Let us here use the letters i, j, k, … for agents and types (because each agent is one type). 
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Using these equations, we first calculate the vector of thresholds  12,...1)( k
kx   for each game 

and for a discrete grid of values for   20,...,2,1 . Then, we use Equation (1) to calculate for 
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each   the likelihood of entry in the respective global‐game equilibrium and the likelihood 

for  the  observed  number  of  entrants.  Summing  up  the  log‐likelihoods  over  all  games  and 

players  yields  the  log‐likelihood  function  displayed  in  Figure  4.  Because  the  likelihood 

function  is  rather  flat,  a  finer  grid  around  the  maximizing  integer  value  of     would  not 

substantially increase the maximum log‐likelihood. 
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Appendix C. Instructions and Quiz 
 

Instructions 
 
Welcome to this experiment in the economics of decision-making.  Please read these 
instructions carefully as they explain how you earn money from the decisions you make in 
today’s experiment.  No talking is permitted for the duration of today’s session.  If you have a 
cell phone, please turn off the ringer.  
 
You are 12 participants in today’s session and your earnings depend on your own decisions 
and on the decisions of the other participants.  
 

1. Rules of the games 

Today’s session consists of 20 small games. In each game you have to decide between two 
options: “enter” or “not enter”.  
 
If you do not enter, your payoff is 34 experimental currency units (ECU), independent of what 
the other participants decide. If you enter, your payoff will depend on your role in this game 
and on the decisions of the other participants in the same game.  
 
In each game, there are 12 roles, called A, B, C, … , L. You and each of the other 11 
participants in this session will be randomly assigned to one of the 12 roles such that each role 
is assumed by one participant. The random role assignment will be done for each game 
independent of the roles or decisions in previous games, except that you will never get the 
same role in two consecutive games. 
 
The payoffs for “enter” will be displayed in a table of the following format:  
 

 number of entrants    
role 1 2 3 4 5 6 7 8 9 10 11 12
A 39 40 41 42 43 44 45 46 47 48 49 50
B 37 38 39 40 41 42 43 44 45 46 47 48
C 35 36 37 38 39 40 41 42 43 44 45 46
D 33 34 35 36 37 38 39 40 41 42 43 44
E 31 32 33 34 35 36 37 38 39 40 41 42
F 29 30 31 32 33 34 35 36 37 38 39 40
G 27 28 29 30 31 32 33 34 35 36 37 38
H 25 26 27 28 29 30 31 32 33 34 35 36
I 23 24 25 26 27 28 29 30 31 32 33 34
J 21 22 23 24 25 26 27 28 29 30 31 32
K 19 20 21 22 23 24 25 26 27 28 29 30
L 17 18 19 20 21 22 23 24 25 26 27 28
 
The rows display the possible payoffs for all participants. For each participant, there are 12 
possible payoffs. The payoff each participant receives is determined by the total number of 
participants who decide to enter. 
 
In each of the 20 games, your role will be highlighted boldface. So, for the above game, your 
role is “D”. For example, if 6 participants (including yourself) decide to “enter” in this game, 
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then you receive a payoff of 38 ECU. If you are the only one who decides to “enter,” you 
receive 33 ECU. If all 12 participants decide to “enter,” then you get 44 ECU.    
 
If the participant with role G decides to “enter” and there are 6 participants (including 
participant G) who enter in this game, then participant G receives 32 ECU. 
 
Recall that the payoff from not entering is always 34 ECU, independent of what the other 
participants decide.  
 
In order to make your decision, click on one of the two circles indicating “enter” or “not 
enter” and confirm your decision by clicking the red OK-button. You may change your 
decision until you click the OK-button.  
 
If you have not made your decision within 3 minutes, there will appear a line asking you to 
decide and confirm your decision.  
 
Only when all participants made a decision and confirmed it, the session will continue with a 
new game.  
  

2. End of a game 

Once all 12 participants have made and confirmed their decisions, the game ends. At the 
completion of the game, you will not be informed of the outcome of the game. Instead, you 
will receive this information for all games only after the completion of all 20 games. 
 
Once you confirm your decision by clicking the OK-button, you will see a screen asking you 
to wait for the next game until the other participants made their decision. If you were the last 
player to decide in this game, the next game will start immediately after you click the OK-
button. 
 
Once a game ends, the next game starts and all participants will be assigned new roles and see 
a new screen containing a payoff table with their own roles highlighted.  

 

3. Information phase 

Once all 20 games have been completed, you will receive a list containing the results of the 
games. This list will show the game number (1-20) and display for each game: your role (A-
L), your decision (“enter” or “not enter”), the number of participants who chose to “enter” in 
this game, and your own payoff for this game.  

The screen will also show you the sum of your payoffs over all 20 games. 

Example:  

Game no.    your role  your decision  number of participants who entered  your payoff (ECU) 
  1    D  enter    6          38 
  2    B  not enter  9          34 
  3    H  enter    3          26 
… 
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Note that you will never learn which roles the other participants had in the various games, nor 
how they decided in any of the games. You will be informed only of the total number of 
entrants. 

 

4. Payment 

Once you complete the receipt, you will be paid. For every 40 ECU that you earned in the 
experiment, you will receive 1 Euro. The amount will not be rounded up or down. 

 

5. Questions 

It is important that you understand the instructions. If you have a question about any aspect of 
these instructions, please raise your hand and we will come to you and answer your question 
in private. 

Never ask questions aloud! 

 

6. Quiz  

To make sure that you understood the instructions, we ask that you answer the following quiz 
questions in the spaces provided. The numbers in these quiz questions are merely illustrative; 
the actual numbers in the experiment may be quite different. In answering these questions, 
please feel free to consult the instructions. After all participants have completed this quiz, the 
first game will start. 

Please look at the following payoff table.  
… 
a) What is your own role in this game? 
b) What is you payoff if you enter and 9 participants (including yourself) enter in this game? 
c) What is the payoff to player B if he enters and there are 5 players in total who enter in this 

game? 
d) What is the payoff to the player with role A, if he does not enter? 
e) What is your payoff if you do not enter?  

 

 

  
 


