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This paper provides a micro-foundation for approximate incentive compati-

bility using ambiguity aversion. In particular, we propose a novel notion of ap-

proximate interim incentive compatibility, approximate local incentive compatibility,

and establish an equivalence between approximate local incentive compatibility

in a Bayesian environment and exact interim incentive compatibility in the pres-

ence of a small degree of ambiguity. We then apply our result to the implementa-

tion of efficient allocations. In particular, we identify three economic settings—

including ones in which approximately efficient allocations are implementable,

ones in which agents are informationally small, and large double auctions—in

which efficient allocations are approximately locally implementable when agents

are Bayesian. Applying our result to those settings, we conclude that efficient al-

locations are exactly implementable when agents perceive a small degree of ambi-

guity.
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1 Introduction

The presence of asymmetrically informed agents greatly restricts the set of imple-

mentable social choice rules. For example, in a variety of mechanism design con-

texts, it is impossible to allocate resources in a way which simultaneously gives

agents perfect incentives to be truthful and ensures efficient outcomes.1 In light of

the impossibility results, an extensive literature examines if it is possible to main-

tain some attractive properties a mechanism can satisfy by imposing a weaker

incentive criterion—approximate incentive compatibility.2 This literature assumes

agents do not misreport when there is a small utility gain. However, if agents are

rational, it is not clear why they content themselves with approximately optimal

choices. The literature usually takes a “reduced form” approach without explicitly

modeling why agents would forgo a small utility gain.

This paper proposes a novel micro-foundation for approximate incentive com-

patibility using ambiguity aversion. In particular, we propose a notion of ap-

proximate interim incentive compatibility, which we call approximate local incentive

compatibility, and establish an equivalence between approximate local incentive

compatibility in a Bayesian environment and exact interim incentive compatibil-

ity in the presence of a small degree of ambiguity. Following Gilboa and Schmeidler

[20], we model ambiguity aversion using the maxmin expected utility model: each

agent faces ambiguity about the distribution of the other agents’ types and eval-

uates each action according to the worst-case expected payoff over all possible

distributions. Small ambiguity can thus be captured by the size of the set of priors

of each agent.

Before defining our notion, recall first the standard notion of approximate in-

centive compatibility: a mechanism is ε-incentive compatible (ε-IC) if the gain from

any lie is at most ε. This notion is normally viewed as only a slight weakening of

incentive compatibility when ε is close to zero. We show in Section 4, however,

1There are numerous impossibility results in the literature, including Myerson and Satterthwaite
[40], Mailath and Postlewaite [34], and Jehiel and Moldovanu [28].
2For instance, see Roberts and Postlewaite [42], McLean and Postlewaite [37], and Che and Tercieux
[11].
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that since the permitted gain from lying can be arbitrarily large relative to the size

of the lie, ε-IC does not impose any restriction on local incentive constraints.

In order to restrict local incentive compatibility, we propose the following no-

tion: a mechanism is ε-locally incentive compatible (ε-LIC) if the gain from any lie is at

most ε times the size of the lie, as measured by the distance between the true type

and the reported type. Sometimes approximate incentive compatibility is justified

by the cost of lying. Then ε-IC is appropriate if there is a fixed cost of lying, while

ε-LIC is appropriate if the cost of lying increases in the size of the lie.3 While our

notion is stronger, many of the mechanisms that are known to be ε-IC are indeed

ε-LIC. For example, we find that the competitive equilibrium mechanism is ε-LIC

in large double auctions.

Our main result is to show that a social choice rule is approximately locally im-

plementable in a Bayesian environment if and only if it is exactly implementable in

the presence of small ambiguity. A social choice rule p is ε-locally implementable

if there exists a transfer scheme x such that the mechanism (p, x) is ε-LIC and fur-

ther satisfies two regularity conditions. In a single object allocation problem with

private values à la Myerson [39], the regularity conditions reduce to the derivative

of each agent’s indirect utility function with respect to his type lying in [0, 1].4

The basic intuition behind our result is that the presence of ambiguity aversion

can weaken incentive constraints. In particular, we show that under a particu-

lar class of transfer schemes, ambiguity aversion has no bite when agents report

truthfully since an agent’s interim payoff from truth-telling does not depend on the

distribution of other agents’ signals. In contrast, misreporting becomes less attrac-

tive because the expected gains are evaluated according to the worst-case beliefs.

Therefore, as opposed to the exogenous weakening of incentive constraints un-

3Such type of lying costs has been studied in the literature. For example, Kartik [29] studies a
model of strategic communication where the informed sender has a lying cost that is proportional
to the size of the lie. Gneezy et al. [21] present a model of lying costs and argue that lying cost
depends on the size of the lie.
4The regularity conditions are trivially satisfied by incentive compatible mechanisms since, by the
envelope theorem, the derivative of an agent’s indirect utility function associated with any incen-
tive compatible mechanism is his expected probability of obtaining the object, which obviously lies
in [0, 1].
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der approximate incentive compatibility, the realization of weaker incentive con-

straints arises endogenously as a result of ambiguity aversion.

Our equivalence result is relevant for two reasons. First, it provides a novel

micro-foundation for the use of approximate incentive compatibility, namely, am-

biguity aversion, other than the usual justification (e.g., lying costs and bounded

rationality). There is both experimental and empirical evidence showing that due

to lack of knowledge about the environment, agents typically perceive some de-

gree of ambiguity and moreover, agents desire strategies that are robust to their

ambiguity.5 In addition, Bose and Renou [7] show that ambiguity can be created

by a planner deliberately through ambiguous mechanisms,6 which can be an ad-

vantage of this justification since lying costs (or bounded rationality) are relatively

more difficult to measure or generate. Second, our equivalence result suggests that

we may use ambiguity as a tool to study Bayesian games since it may be more chal-

lenging to construct a desirable approximate equilibrium in a Bayesian game than

to construct an exact equilibrium in a game with ambiguity.

The leading application for our result is the implementation of efficient allo-

cations. One implication of our result is that the presence of a small degree of

ambiguity suffices for efficient implementation whenever efficient allocations are

approximately locally implementable in a Bayesian environment. We present three

such settings that are widely studied in mechanism design.

First, we show that whenever an approximately efficient social choice rule is

Bayesian implementable, the fully efficient social choice rule is approximately lo-

cally implementable.7 A large literature finds that approximately efficient alloca-

tions are attainable in a wide array of settings and, hence, our result can be imme-

diately applied.8 Moreover, this result may be interesting in its own right because

5Examples of experimental and empirical evidence include Ellsberg [17], Halevy [25], and Aryal
et al. [2].
6Song [47] and Kocherlakota and Song [32] present examples that illustrate how to generate a
sufficient amount of ambiguity for efficient implementation using their approach.
7Even though we restrict our attention to the implementation of efficient and approximate efficient
social choice rules, our result extends straightforwardly to the implementation of any two social
choice rules that are “close” to each other. We discuss this issue in detail in Section 7.
8For instance, see Rustichini et al. [43], Jackson and Manelli [27], and Satterthwaite and Williams
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it establishes a connection between the implementation of an approximately effi-

cient social choice rule and the approximate implementation of the efficient social

choice rule which are shown to co-exist in many mechanism design settings (e.g.,

large double auctions9).

Our result also applies to settings in which agents are informationally small.10

Intuitively, agents are informationally small when the incremental information of

any single agent given the information of everyone else is small. We present two

relevant settings in which the informational size of the agents is small. One in-

stance in which informational smallness arises naturally is when the number of

agents is large. More specifically, we consider large double auctions where the

relative influence of a single trader’s information on the total demand and sup-

ply is limited. Gresik and Satterthwaite [22] show that in double auctions, there is

no budget-balanced mechanism which implements efficient allocations. We verify

that efficient allocations are approximately locally implementable by the compet-

itive equilibrium mechanism. Combining this observation with our main result

yields that given any non-trivial degree of ambiguity, efficient allocations are im-

plementable in a budget-feasible way as long as the market is sufficiently large.

In an economy with interdependent valuations and multi-dimensional signals,

agents are informationally small if an agent’s private information has a small marginal

effect on other agents’ valuations. We find that in such settings, the efficient social

choice rule is approximately locally implementable by a modified Vickrey-Clarke-

Groves (VCG) transfer scheme.

The paper is organized as follows. In Section 2, we introduce a simple frame-

work where agents have one-dimensional signals and private values. In Section

3, we define full insurance mechanisms which play a crucial role in our analysis.

Section 4 contains our main equivalence result. We then apply our result to the

implementation of efficient allocations in Section 5. In Section 6, we show how

[46].
9For example, see Carroll [9].

10Informational smallness has been studied by Gul and Postlewaite [23] and McLean and Postle-
waite [35, 36, 37, 38].
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the ideas extend to more general frameworks. We conclude with discussion and

related literature in the final section.

2 The Model

Information structure. There are N agents, indexed by i ∈ I ≡ {1, ..., N}. They

have to make a collective choice k from a set K ≡ {1, ..., K} of possible social al-

ternatives. Each agent i observes a one-dimensional signal si that is drawn from

Si = [0, 1]. Let S ≡ ∏N
i=1 Si with s as generic element and let S−i ≡ ∏j 6=i Sj with

s−i as generic element. Agent i’s value in social alternative k is given by vi
k(s

i).

Let Ki
0 be the set of alternatives on which agent i’s own information has no

effect, that is,

Ki
0 ≡ {k ∈ K|vi

k(s
i)− vi

k(t
i) = 0, ∀si, ti ∈ Si}.

Let Ki ≡ K \ Ki
0. To avoid triviality, we assume that Ki 6= ∅ for all i. In words,

there exists at least one alternative k ∈ K such that agent i’s value from k depends

on his own information. We further assume that vi
k is twice differentiable and

dvi
k(s

i)

dsi > 0 for all k ∈ Ki and si ∈ Si.

Example 1. Consider a canonical mechanism design problem—a single object al-

location problem. Let K = {1, ..., N}, where k = i represents the object is allocated

to agent i. Suppose there is no allocative externality: vi
j(s

i) = 0 for all si ∈ Si, i ∈ I ,

and j 6= i. Then Ki = {i} for all i ∈ I .

We assume agents have quasilinear preferences: if alternative k is chosen and

agent i obtains a transfer xi, then his utility is given by vi
k(s

i) + xi.

Mechanisms. A social choice rule (SCR) is a function p : S → RK such that

for every s ∈ S , pk(s) ≥ 0 and ∑k∈K pk(s) = 1. A transfer scheme is a function

x : S → RN. A direct revelation mechanism is a pair (p, x) where p is a SCR and

x is a transfer scheme. For reported signals s, the term pk(s) is the probability that

alternative k is chosen and xi(s) represents the transfer to agent i.
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A SCR p is (ex post) efficient if

pk(s) > 0⇒ k ∈ argmax
k̂∈K

N

∑
i=1

vi
k̂(s

i) ∀s ∈ S.

We use p∗ to denote an efficient SCR. For simplicity, we restrict our attention to

deterministic SCRs.11

Interim utilities. Let Σ−i be the Borel algebra on S−i and F i be a set of proba-

bility measures on (S−i, Σ−i). This set represents agent i’s beliefs about the other

agents’ signals. A key assumption here is agent i’s set of beliefs F i is independent

of the realization of his signal, which is an analogue of the “independence of sig-

nals” assumption from Bayesian settings. We assume that F i is weak∗ compact

and convex.

Given a direct mechanism (p, x), agent i’s interim utility from reporting ti

when his signal is si and everyone else reports truthfully is

ui
(p,x)(t

i, si) ≡ min
Fi∈F i

∫
S−i

(
∑

k∈K
pk(ti, s−i)vi

k(s
i) + xi(ti, s−i)

)
dFi(s−i).

The function µi
(p,x) : S i → R defined by µi

(p,x)(s
i) ≡ ui

(p,x)(s
i, si), is called agent i’s

indirect utility function associated with (p, x).

A direct mechanism (p, x) is (interim) incentive compatible (IC) if

µi
(p,x)(s

i) = ui
(p,x)(s

i, si) ≥ ui
(p,x)(t

i, si) ∀si, ti ∈ Si, ∀i ∈ I .12

A SCR p is implementable if there exists a transfer scheme x such that the direct

mechanism (p, x) is incentive compatible.

Environment. An environment is a tuple 〈I ,K,
(
(vi

k)k∈K, Si,F i)
i∈I〉. We as-

sume that the environment is common knowledge, but the realizations of the sig-

nals are private information.

We focus on two special classes of environments. One is a Bayesian environ-

11A SCR p is deterministic if pk(s) = 1 or 0 for all s ∈ S and k ∈ K. All our results extend straight-
forwardly to SCRs that are deterministic almost everywhere. A possible extension to random SCRs
is discussed in Section 7.

12Observe that the definition of interim incentive compatibility only invokes pure strategies. This
is without loss of generality if either of the following assumptions holds: (i) agents cannot reduce
ambiguity by randomizing ex ante; (ii) agents cannot commit to the results of their randomizations.
For a more detailed discussion about these assumptions see Saito [44] and Ke and Zhang [30].
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ment, denoted by EB, in which each agent i’s set of beliefs is a singleton,F i = {Gi}.

We assume that Gi ∈ ∆(S−i) has a continuous density function gi(s−i) > 0 for all

s−i ∈ S−i and i ∈ I .13 For each δ ∈ (0, 1], an environment is called a δ-ambiguity

environment, denoted by Eδ, if for every i ∈ I , there exists Hi ∈ ∆(S−i) such that

agent i’s set of beliefs F i ⊇ Bδ(Hi), where Bδ(Hi) ≡ {Fi ∈ ∆(S−i)|d(Fi, Hi) ≤ δ}

and d is the Prokhorov metric.14 In both environments, we maintain the assump-

tion that each agent’s set of beliefs is independent of the realization of his signal.

A pair of environments (EB, Eδ), where agent i’s belief is Gi in EB and agent i’s

set of beliefs is F i in Eδ, is a corresponding pair of environments if Bδ(Gi) ⊆ F i

for all i ∈ I and other components of the two environments are identical.

3 Full Insurance Mechanisms

In this section, we introduce a class of mechanisms, full insurance mechanisms,

which is fundamental to our results.15

Definition 1. Given a profile of functions µi : Si → R, a full insurance mechanism

with {µi}i∈I is a pair (p, xF) where p is a SCR and xF is given by

xi
F(s) ≡ µi(si)− ∑

k∈K
pk(s)vi

k(s
i) ∀i ∈ I , ∀s ∈ S. (1)

Two features of full insurance mechanisms greatly facilitate our analysis. An

immediate observation from the construction is that if everyone reports truthfully,

the ex post utility of agent i who receives signal si is independent of the other

agents’ reports and equal to µi(si). Thus, each agent i’s interim utility from truth-

telling under the full insurance mechanism (p, xF) with {µi}i∈I is indeed µi(si),

which is irrespective of his beliefs and, consequently, each agent is fully insured

against ambiguity in the interim stage. In contrast, if an agent misreports, his

interim utility is evaluated according to a worst-case belief and, hence, interim

incentive constraints are weakened.
13In a Bayesian environment, we do not require that agents’ beliefs be derived from a common prior
over S. Moreover, Gi does not need to be interpreted as the true distribution from which s−i are
drawn.

14We use Prokhorov metric to measure the distance between probability measures and the definition
is provided in Appendix A. This particular choice of metric is not crucial for our results.

15The class of full insurance mechanisms was first introduced by Bose et al. [8].

8



Second, this class of mechanisms is robust to ambiguity in the sense that if

(p, xF) is incentive compatible in an environment, with or without ambiguity, then

it remains incentive compatible in all environments where agents are more am-

biguity averse.16 Intuitively, this is because each agent’s interim utility when he

reports truthfully remains the same, but his interim utility when he misreports

is lower under a larger set of beliefs. Since truthful revelation is optimal in the

original environment, it remains optimal when agents are in fact more ambiguity

averse.

4 Approximate Bayesian Implementation and Exact Maxmin Imple-

mentation

In this section, we propose a novel notion of approximate interim incentive com-

patibility and provide conditions under which it is equivalent to exact incentive

compatibility in environments with small ambiguity.

4.1 Standard Notion of ε-Incentive Compatibility

We start by presenting the standard notion of approximate incentive compatibility.

Definition 2. For any ε > 0, a mechanism (p, x) is ε-incentive compatible (ε-IC) if

µi
(p,x)(s

i) ≥ ui
(p,x)(t

i, si)− ε ∀si, ti ∈ Si, ∀i ∈ I .

A mechanism is approximately incentive compatible if truthful revelation is ap-

proximately optimal in the sense that no agent can achieve more than a small util-

ity gain by misreporting. As explained in Section 3, ambiguity aversion weakens

agents’ incentives to misreport under full insurance mechanisms. One would then

expect certain equivalence between approximate Bayesian incentive compatibility

and exact incentive compatibility with small ambiguity since incentive constraints

are weakened in both cases. However, the next example demonstrates that this

intuition is not correct.

16Following Ghirardato and Marinacci [19], we say that the agent with the set of priors F is more
ambiguity averse than the agent with the set of priors F ′ if F ⊇ F ′.
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Example 2. Consider the single object allocation problem from Example 1. Sup-

pose vi
i(s

i) = si for all i. Fix 0 < ε < 1. Myerson [39] shows that if a SCR p

is implementable, then each agent’s expected probability of obtaining the object

is nondecreasing in his value. Thus, a necessary condition imposed by incentive

compatibility on the SCR p is∫
pi(ti, s−i)dGi ≥

∫
pi(si, s−i)dGi ∀ti > si, ∀i ∈ I . (2)

By similar arguments, a necessary condition imposed by ε-IC on the SCR p is∫
pi(ti, s−i)dGi +

ε

ti − si ≥
∫

pi(si, s−i)dGi − ε

ti − si ∀ti > si, ∀i ∈ I . (3)

This is clearly a weakening of the monotonicity requirement (2), but is too weak

locally: when ti − si < 2ε, the inequality (3) is trivially satisfied. This suggests that

the standard notion of ε-IC does not impose any restriction locally on the SCR. On

the other hand, Lemma 3.1 in Song [47] provides a necessary condition for p to be

implementable in an ambiguity environment:

max
Fi∈F i

∫
pi(ti, s−i)dFi ≥ min

Fi∈F i

∫
pi(si, s−i)dFi ∀ti > si, ∀i ∈ I . (4)

An inspection of inequalities (3) and (4) indicates that the required degree of am-

biguity for maxmin implementation could be bounded away from zero since ε
ti−si

can be large even when ε is close to zero. In Appendix A.1, we present an example

that provides an explicit lower bound.

4.2 Notion of ε-Local Incentive Compatibility

In order to impose appropriate restrictions on local incentive constraints, we pro-

pose a stronger notion of approximate incentive compatibility.

We see from the inequality in (3) that local incentive constraints are unrestricted

when the permitted gain from misreporting ε is large relative to the size of the lie.

Therefore, it is intuitive to consider the following notion.

Definition 3. For any ε > 0, a mechanism (p, x) is ε-locally incentive compatible

(ε-LIC) if

µi
(p,x)(s

i) ≥ ui
(p,x)(t

i, si)− ε|si − ti| ∀si, ti ∈ Si, ∀i ∈ I .17
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This notion of approximate LIC is more restrictive than the standard one: ε-IC

allows an agent to forgo an ε gain regardless of the lie, whereas ε-LIC allows an

agent to forgo a gain that is proportional to the size of the lie. To see how ε-LIC re-

stricts local incentive constraints, consider again Example 2. Simple manipulation

of ε-LIC constraints implies that∫
pi(ti, s−i)dGi + ε ≥

∫
pi(si, s−i)dGi − ε ∀ti > si, ∀i ∈ I ,

which is clearly weaker than the requirement of incentive compatibility (2) while

stronger than the requirement of ε-IC (3).

4.3 ε-Local Implementation

We next define a notion of approximate local implementation which imposes two

additional restrictions, monotonicity and boundedness, on approximately LIC mech-

anisms.

The definition of monotonicity is standard. A function µ : Rn → R is monotone

if it weakly increases in each argument.

We now define ε-boundedness. For any SCR p, si ∈ Si, and k ∈ K, define

Ak(si, p) ≡ {s−i ∈ S−i|pk(si, s−i) = 1}.

In words, given si ∈ Si, Ak(si, p) is the set of other agents’ signals such that alter-

native k is chosen by the SCR p. Hence, Gi(Ak(si, p)
)

represents agent i’s expected

probability for alternative k evaluated according to belief Gi.

Definition 4. For any Bayesian environment EB and any ε ≥ 0, a mechanism (p, x)

is ε-bounded if for any i ∈ I and si < ti, we have

µi
(p,x)(t

i)− µi
(p,x)(s

i) ≤ ∑
k∈K

wk
(
vi

k(t
i)− vi

k(s
i)
)
, (5)

where {wk}k∈K satisfies (i) 0 ≤ wk ≤ Gi(Ak(ti, p)
)
+ ε for all k and (ii) ∑k∈K wk ≤ 1.

To understand this definition, assume for simplicity that there exists k∗ ∈ Ki

17Our results do not rely on the permitted gain being linear in the size of the lie. This notion of
approximate LIC is equivalent to any notion under which the permitted gain is ε times a function
f (|si − ti|) that is strictly increasing, Lipschitz continuous, and f (0) = 0.
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such that
dvi

k∗ (s
i)

dsi ≥ 1. For any ε-LIC mechanism (p, x) and si < ti, we have

µi
(p,x)(s

i) ≥ ui
(p,x)(t

i, si)− ε|si − ti|

= µi
(p,x)(t

i) + ∑
k∈K

Gi(Ak(ti, p)
)(

vi
k(s

i)− vi
k(t

i)
)
− ε(ti − si).

Recall that vi
k(s

i)− vi
k(t

i) = 0 for all k ∈ Ki
0. Rearranging inequalities above yields

(5) by letting wk = 0 for all k ∈ Ki
0, wk = Gi(Ak(ti, p)

)
for all k ∈ Ki \ {k∗}, and

wk∗ = Gi(Ak∗(ti, p)
)
+ ε. Note that the constructed {wk}k∈K satisfies constraint (i),

so constraint (i) is simply an implication of ε-LIC. However, if ε > 0, it is possi-

ble that ∑k∈K wk = ∑k∈Ki Gi(Ak(ti, p)
)
+ ε > 1 for some ti ∈ Si. Hence, the real

restriction imposed by ε-boundedness over ε-LIC is constraint (ii). The two con-

straints together, roughly speaking, guarantee the existence of a probability mea-

sure {wk}k∈K ∈ ∆(K) that is “close” to the probability measure {Gi(Ak(ti, p)
)
}k∈K

and satisfies (5).

We are now ready to define ε-local implementation.

Definition 5. In a Bayesian environment, a SCR p is ε-locally implementable if

there exists a transfer scheme x such that the mechanism (p, x) is ε-LIC and ε-

bounded, and µi
(p,x) is monotone for all i ∈ I .

Finally, say a SCR p is rich if ∪k∈Ki
0
Ak(si, p) 6= ∅ for all si ∈ [0, 1) and i ∈ I . In

a single object allocation problem, this assumption requires that for each possible

type of agent i, other than the highest type, there exist reports of other agents such

that agent i is not assigned the object.18 Intuitively, focusing on rich SCRs ensures

the existence of a worst case for almost all types and, consequently, ambiguity can

play a role.

4.4 Results

Theorem 4.1. Fix a Bayesian environment EB and a SCR p. For any ε > 0, there exist

δ > 0 and a corresponding δ-ambiguity environment Eδ such that if p is implementable in

Eδ, then it is ε-locally implementable in EB.

18A weaker condition is for each si ∈ [0, 1) such that Gi(Ak(si, p)
)
> 0 for some k ∈ Ki, there exists

k′ ∈ K such that dvi
k(s

i)

dsi >
dvi

k′ (s
i)

dsi and Ak′(si, p) 6= ∅.
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Theorem 4.1 states that if a SCR is exactly implementable with small ambiguity,

then it is approximately locally implementable in a Bayesian environment. The

next result is our main result and establishes the converse.

Theorem 4.2. Fix a Bayesian environment EB and a rich SCR p. For any δ > 0, there

exists ε > 0 such that if p is ε-locally implementable in EB, then p is implementable in any

corresponding δ-ambiguity environment.

A combination of the two theorems allows us to conclude that approximate

local implementation in Bayesian environments and exact implementation in en-

vironments with small ambiguity are equivalent.

We next provide a proof of Theorem 4.2 in the special case of a single object al-

location problem (Example 2). The main insight is that ambiguity aversion weak-

ens incentive compatibility constraints under full insurance mechanisms. Fix a

Bayesian environment EB, a rich SCR p, δ > 0, and a corresponding δ-ambiguity

environment Eδ. Take ε = δ and suppose p is ε-locally implementable by the trans-

fer scheme x with indirect utility functions {µi
(p,x)}i∈I in EB. We are going to show

that the full insurance mechanism (p, xF) with {µi
(p,x)}i is incentive compatible in

Eδ where, in this special case, xF simplifies to

xi
F(s) = µi

(p,x)(s
i)− pi(s)si ∀s ∈ S, ∀i ∈ I .

In words, the transfer scheme is constructed so that the agent who is awarded

the object pays his valuation and every agent receives a reward which is solely

a function of his report. Fix i and si, ti. By the construction of (p, xF), incentive

compatibility in Eδ is equivalent to

µi
(p,x)(s

i) ≥ µi
(p,x)(t

i) + min
Fi∈F i

∫
pi(ti, s−i)(si − ti)dFi. (6)

The left-hand side is the interim utility of agent i who receives and reports si while

the right-hand side is his utility when he reports ti. Note that the utility from

misreporting is evaluated according to a worst-case belief which minimizes the

potential gain and, hence, the incentive constraint is weaker than the one in the

Bayesian environment.
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Suppose first that si > ti. We now show how the ε-LIC of (p, x) in EB and the

monotonicity of µi
(p,x) guarantee (6). The ε-LIC of (p, x) in EB implies

µi
(p,x)(s

i) ≥ µi
(p,x)(t

i) +
( ∫

pi(ti, s−i)dGi − ε
)
(si − ti). (7)

An immediate observation is if
∫

pi(ti, s−i)dGi > ε = δ, since p is rich, there exists

F̂i ∈ Bδ(Gi) ⊆ F i such that∫
pi(ti, s−i)dGi − ε ≥

∫
pi(ti, s−i)dF̂i ≥ min

Fi∈F i

∫
pi(ti, s−i)dFi.19

We thus can conclude that (7) implies (6), that is, the incentive compatibility of

(p, xF) in Eδ. If
∫

pi(ti, s−i)dGi ≤ ε = δ, then minFi∈F i
∫

pi(ti, s−i)dFi = 0 and,

hence, (6) is an immediate consequence of the monotonicity of µi
(p,x) and the as-

sumption si > ti.

Suppose now si < ti. The ε-LIC of (p, x) in EB then implies

µi
(p,x)(t

i) ≤ µi
(p,x)(s

i) +
( ∫

pi(ti, s−i)dGi + ε
)
(ti − si). (8)

If
∫

pi(ti, s−i)dGi ≤ 1− ε, then there exists F̂i ∈ Bδ(Gi) ⊆ F i such that∫
pi(ti, s−i)dGi + ε ≤

∫
pi(ti, s−i)dF̂i ≤ max

Fi∈F i

∫
pi(ti, s−i)dFi.

Combining this with (8) yields

µi
(p,x)(t

i) ≤ µi
(p,x)(s

i) + max
Fi∈F i

∫
pi(ti, s−i)(ti − si)dFi, (9)

which is exactly (6). If
∫

pi(ti, s−i)dGi > 1− ε, then maxFi∈F i
∫

pi(ti, s−i)dFi = 1.

The next lemma completes the proof by showing (9) is an immediate consequence

of the ε-boundedness of µi
(p,x).

Lemma 4.1. Fix a Bayesian environment. Suppose vi
k(s) = si for all k ∈ Ki and i ∈ I .

Then for any ε ≥ 0, an ε-LIC mechanism (p, x) is ε-bounded if and only if

µi
(p,x)(t

i)− µi
(p,x)(s

i) ≤ ti − si ∀si < ti, ∀i ∈ I .

19To be more precise, F̂i can be constructed such that F̂i(Ai(ti, p)) = Gi(Ai(ti, p)) − ε and
F̂i(∪j 6=i Aj(ti, p)) = Gi(∪j 6=i Aj(ti, p)) + ε. Such construction is feasible because ∪k∈Ki

0
Ak(ti, p) =

∪j 6=i Aj(ti, p) 6= ∅.

14



4.5 How Restrictive are Monotonicity and ε-Boundedness

To see how restrictive monotonicity and ε-boundedness are, we first demonstrate

that these two conditions regulate ε-LIC mechanisms only on a subset of signals

and normally become weaker as ε converges to zero. To see this, consider again

Example 2. Recall that Gi(Ai(si, p)
)

is agent i’s expected probability of obtaining

the object under SCR p. Let Ri ≡ {si ∈ Si|ε ≤ Gi(Ai(si, p)
)
≤ 1− ε}. For any ε-LIC

mechanism (p, x) and si < ti, ε-LIC implies(
Gi(Ai(si, p)

)
− ε
)
(ti − si) ≤ µi

(p,x)(t
i)− µi

(p,x)(s
i) ≤

(
Gi(Ai(ti, p)

)
+ ε
)
(ti − si).

For all si, ti ∈ Ri and si < ti, it follows from the first inequality that µi
(p,x)(s

i) ≤

µi
(p,x)(t

i), that is, µi
(p,x) is monotone on Ri; similarly, the second inequality implies

ε-boundedness by letting wj = 0 for all j 6= i and wi = Gi(Ai(ti, p)
)
+ ε. Combin-

ing these two observations, we can conclude that ε-LIC implies monotonicity and

ε-boundedness on Ri. In contrast, on Si \ Ri, the requirement of ε-LIC is too weak

in the sense that it allows for some si < ti,

µi
(p,x)(t

i)− µi
(p,x)(s

i) < 0 or ti − si < µi
(p,x)(t

i)− µi
(p,x)(s

i). (10)

Monotonicity and ε-boundedness are thus imposed only on Si \ Ri to rule these

out. However, observe that this set Si \ Ri shrinks as ε→ 0 under many commonly

used SCRs.20 Therefore, the two restrictions are normally weaker when ε is smaller.

To see the role of monotonicity and ε-boundedness, notice that, similarly to

Bayesian implementation, exact maxmin implementation requires that each agent’s

indirect utility satisfy a generalized envelope formula.21 For example, in a single

object allocation problem, the standard envelope argument implies the derivative

of agent i’s indirect utility µi associated with any incentive compatible mechanism

is a probability of getting the object, which implies dµi(si)
dsi ∈ [0, 1]. Yet it follows

from (10) that an arbitrary ε-LIC mechanism may fail to satisfy this condition. The

20For example, if N = 2, p is the efficient SCR, and Gi is the cdf of the uniform distribution, then
Si \ Ri = [0, ε) ∪ (1− ε, 1].

21See Myerson [39] and Jehiel and Moldovanu [28] for a characterization of incentive compatible
mechanisms in Bayesian environments, and see Song [47] in environments with ambiguity.
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role of monotonicity and boundedness is to ensure the indirect utilities associated

with an ε-LIC mechanism satisfy the generalized envelope formula which is nec-

essary for implementation. More fundamentally, ε-LIC is non-equilibrium-based

no matter how small ε is, whereas incentive compatibility under ambiguity is an

equilibrium concept which requires each agent’s interim utility be a sufficiently

well-behaved function of his private information and, hence, is stronger than ε-

LIC.

Even though monotonicity and ε-boundedness impose additional requirements

on ε-LIC mechanisms, they are actually quite permissive. Almost all commonly

used ε-IC mechanisms are indeed monotone and bounded (see applications in Sec-

tions 5 and 6.2.1).

One instance in which the monotonicity assumption is innocuous is when the

SCR satisfies a weak monotonicity condition. More precisely, if ∑k∈Ki Gi(Ak(si, p)
)

is nondecreasing in si, for any approximately LIC mechanism (p, x) with possibly

non-monotone indirect utility functions, we can modify the transfer scheme x so

that the new mechanism is approximately LIC and the associated indirect utility

functions are monotone. Moreover, the modification preserves the boundedness

property.

Proposition 4.1. Fix a Bayesian environment EB and a SCR p such that ∑k∈Ki Gi(Ak(si, p)
)

is nondecreasing in si for all i ∈ I . For any δ > 0, there is ε ∈ (0, δ] such that if there

exists an ε-LIC mechanism (p, x), we can construct a transfer scheme x̂ such that (p, x̂)

is δ-LIC and µi
(p,x̂) is monotone for all i ∈ I . Furthermore, if (p, x) is δ-bounded, so is

(p, x̂).22

While the definition of ε-boundedness is tedious, there are two cases in which

one can easily verify whether a mechanism is ε-bounded. The first case is when

agents do not have incentives to lie upward. In fact, any mechanism that satisfies

upward incentive compatibility is ε-bounded for all ε ≥ 0. To see this, observe

22We want to point out that the monotonicity condition on p is quite weak. Any efficient SCR
satisfies this condition, but not vice versa. Also, in general mechanism design settings, it is different
from the usual necessary condition imposed by incentive compatibility.
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that given a mechanism (p, x), agent i has no incentive to lie upward if µi
(p,x)(s

i) ≥

ui
(p,x)(t

i, si) for all si < ti, which is equivalent to

µi
(p,x)(t

i)− µi
(p,x)(s

i) ≤ ∑
k∈K

Gi(Ak(ti, p)
)
(vi

k(t
i)− vi

k(s
i)) ∀si < ti.

Taking wk = Gi(Ak(ti, p)
)

for all k ∈ K immediately shows (p, x) is ε-bounded

for all ε ≥ 0. For instance, in the competitive equilibrium mechanism, both buyers

and sellers only have incentives to lie downward.23

The second case is when value functions satisfy a supermodularity condition.

Say a value function vi
k is supermodular in (k, si) if for any k′, k′′ ∈ K, and any

si, ti ∈ Si,
dvi

k′ (s
i)

dsi >
dvi

k′′ (s
i)

dsi implies that
dvi

k′ (t
i)

dti >
dvi

k′′ (t
i)

dti . This is a sorting condi-

tion familiar from mechanism design which allows us to rank social alternatives

according to an agent’s marginal valuation.24 It is easily seen that linear models

satisfy supermodularity. Lemma 4.1 is a corollary of the next more general result.

Proposition 4.2. Fix a Bayesian environment. Suppose vi
k are supermodular in (k, si).

There exists c > 0 such that for any ε ≥ 0, an ε-LIC mechanism (p, x) is cε-bounded if

and only if

µi
(p,x)(t

i)− µi
(p,x)(s

i) ≤ max
k∈K

(
vi

k(t
i)− vi

k(s
i)
)
∀si < ti, ∀i ∈ I . (11)

4.6 Ex Ante Revenue

In the analysis above, we did not make any assumption on the mechanism de-

signer’s preferences. If the mechanism designer and all agents share a common

prior in the Bayesian environment, and the mechanism designer remains ambigu-

ity neutral in any corresponding ambiguity environment, then the mechanism de-

signer’s ex ante revenue in any corresponding ambiguity environment is the same

as her revenue in the Bayesian environment. To see this, note that the expected

social surplus is the same in the two environments since the same SCR is executed.

23It is well known that in the competitive equilibrium mechanism, a buyer has incentive to under-
report his valuation to induce a lower price, whereas a seller has incentive to overreport his cost
to induce a higher price. To see why overreporting cost is actually lying downward, note that for
a seller j with cost cj, his valuation from trading is given by −cj. Given our assumption that each
agent’s valuation increases in his signal, technically, seller j’s signal is −cj.

24A similar assumption is adopted in Bergemann and Välimäki [4, Condition (18)].
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The construction of the full insurance mechanism further implies expected infor-

mational rents are the same. The ex ante revenue, which is the difference between

the expected social surplus and expected informational rents, is thus the same.

5 Applications

We next apply our result to the implementation of efficient allocations. An immedi-

ate implication of Theorem 4.2 is that a small degree of ambiguity ensures efficient

implementation if there exist efficient and approximately LIC mechanisms when

agents are Bayesian. Yet when do such mechanisms typically exist? We provide an

answer to this question by establishing the existence of such mechanisms in two

relevant Bayesian environments.

5.1 Approximate Efficiency and Approximate Implementation

In this section we show that the efficient SCR is approximately locally implementable

whenever an approximately efficient SCR is implementable. The literature pro-

vides a variety of mechanism design settings in which approximate efficiency is

attainable. For instance, Theorem 3.2 in Rustichini et al. [43] shows that in double

auctions, the allocation is asymptotically efficient in any Bayesian Nash equilib-

rium of the competitive equilibrium mechanism.25 Combining their result with

ours yields that efficient allocations are asymptotically locally implementable and,

hence, exactly implementable in large double auctions with small ambiguity.

5.1.1 Notions of approximate efficiency

We start with an intuitive notion of approximate efficiency.

Definition 6. For any ε > 0, a SCR p is ε-ex post efficient if

max
k∈K

N

∑
l=1

vl
k(s

l)− ∑
k∈K

pk(s)
N

∑
l=1

vl
k(s

l) < ε ∀s ∈ S.

Note that maxk∈K ∑N
l=1 vl

k(s
l) is the maximum welfare and ∑k∈K pk(s)∑N

l=1 vl
k(s

l)

is the welfare obtained under the SCR p. Thus, a SCR is ε-ex post efficient if the

welfare loss is less than ε for all types.

25A formal description of large double auction environments and the competitive equilibrium mech-
anism is given in Section 5.2.
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This paper adopts the following weaker notion of approximate efficiency so

that our result covers more cases and is hence stronger.

Definition 7. For any ε > 0, a SCR p is (weakly) ε-efficient if

Gi
(
{s−i ∈ S−i|max

k∈K

N

∑
l=1

vl
k(s

l)− ∑
k∈K

pk(s)
N

∑
l=1

vl
k(s

l) < ε}
)
> 1− ε ∀si ∈ Si, ∀i ∈ I .

Roughly speaking, a SCR is (weakly) ε-efficient if each agent i assigns probabil-

ity at least 1− ε to the event that the welfare loss is less than ε.

5.1.2 Pivotality

We make the following assumption on valuations.

Assumption 1 (Pivotality). For any k 6= k′, there exist i 6= j such that

∂
(

∑l vl
k(s

l)−∑l vl
k′(s

l)
)

∂si 6= 0 and
∂
(

∑l vl
k(s

l)−∑l vl
k′(s

l)
)

∂sj 6= 0 ∀s ∈ S.

This assumption requires the difference between the social welfare from any

two alternatives be affected by the information of at least two agents. Intuitively,

Pivotality asserts that at least two agents are potentially pivotal for efficiency con-

siderations. The role of this assumption is discussed in the next section.

Two examples are provided below to help in understanding when Pivotality is

satisfied.

Example 3. Consider the single object allocation problem from Example 1. Take

any two allocations i 6= j. Then ∑l vl
i(s

l)−∑l vl
j(s

l) = vi
i(s

i)− vj
j(s

j), which clearly

depends on i’s and j’s information. Pivotality is thus always satisfied .

Example 4. Consider the bilateral trade problem of Myerson and Satterthwaite

[40]. Let K = {0, 1}, where k = 0 represents no trade and k = 1 represents trade.

The difference between the social welfare from k = 1 and k′ = 0 is the difference

between the buyer’s valuation and the seller’s cost which, obviously, depends on

the information of both the buyer and the seller. Hence, Pivotality is satisfied. An

analogous argument shows that Pivotality is satisfied in the presence of multiple

buyers and sellers, namely, in double auctions.
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5.1.3 Result

Theorem 5.1. Fix a Bayesian environment. Assume Pivotality. For any ε > 0, there

exists a ξ > 0 such that whenever a ξ-efficient SCR is implementable, for some 0 < ξ < ξ,

the efficient SCR is ε-locally implementable.

Theorem 5.1 states that the efficient SCR is approximately locally implementable

whenever an approximately efficient SCR is implementable. To illustrate the re-

sult, we next provide a heuristic proof of Theorem 5.1 in the single object alloca-

tion problem (Example 2). As argued in Example 3, Pivotality is trivially satisfied

in this case. For any ξ, let pξ denote a ξ-efficient SCR. Recall that given a SCR p

and si ∈ Si, Ai(si, p) is the set of the other agents’ signals under which agent i

is assigned the object by p. A key lemma for our result is that as ξ → 0, the set

Ai(si, pξ) converges to the set Ai(si, p∗) for all si ∈ Si and i ∈ I . Intuitively, this

means that for small ξ, allocations specified by the ξ-efficient SCR and by the fully

efficient SCR coincide for most s ∈ S. Consequently, for any ε > 0, there is a ξ > 0

such that for any 0 < ξ < ξ and any ξ-efficient SCR pξ , we have

|Gi(Ai(si, pξ)
)
− Gi(Ai(si, p∗)

)
| ≤ ε ∀si ∈ Si, ∀i ∈ I . (12)

Fix ε > 0. Suppose there exists 0 < ξ < ξ such that pξ is implementable. Let (pξ , x)

denote a ξ-efficient and incentive compatible mechanism with associated indirect

utility functions {µi
(pξ ,x)}i∈I . We are going to show that the efficient SCR p∗ is

ε-locally implementable in the sense of Definition 5 by the full insurance transfer

scheme xF with {µi
(pξ ,x)}i∈I . We first show (p∗, xF) is ε-LIC. Fix i ∈ I and si, ti ∈ Si.

By the construction of the full insurance mechanism, we have µi
(p∗,xF)

= µi
(pξ ,x) and

µi
(pξ ,x)(t

i) = ui
(p∗,xF)

(ti, si)− (si − ti)Gi(Ai(ti, p∗)
)
. (13)

The incentive compatibility of (pξ , x) implies

µi
(pξ ,x)(s

i) ≥ µi
(pξ ,x)(t

i) + (si − ti)Gi(Ai(ti, pξ)
)
. (14)
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Plugging (13) into (14) yields

µi
(pξ ,x)(s

i) ≥ui
(p∗,xF)

(ti, si)− (si − ti)
(

Gi(Ai(ti, p∗)
)
− Gi(Ai(ti, pξ)

))
≥ui

(p∗,xF)
(ti, si)− ε|si − ti|.

(15)

The last inequality follows from (12). Since µi
(p∗,xF)

(si) = µi
(pξ ,x)(s

i), it follows from

(15) that

µi
(p∗,xF)

(si) ≥ui
(p∗,xF)

(ti, si)− ε|si − ti|,

as desired. Since si and ti were arbitrarily chosen, this shows that ε-LIC is satisfied.

Next we verify monotonicity and ε-boundedness. It follows from the incentive

compatibility constraint (14) that µi
(pξ ,x)(s

i) ≥ µi
(pξ ,x)(t

i) whenever si > ti. Thus,

µi
(p∗,xF)

, which is identical to µi
(pξ ,x), is monotone. Similarly, by the incentive com-

patibility constraint µi
(pξ ,x)(t

i) ≥ ui
(pξ ,x)(s

i, ti), we obtain

µi
(pξ ,x)(s

i)− µi
(pξ ,x)(t

i) ≤ (si − ti)Gi(Ai(si, pξ)
)
≤ si − ti, ∀si > ti,

which implies µi
(p∗,xF)

(si)− µi
(p∗,xF)

(ti) ≤ si − ti. Then it follows from Lemma 4.1

that (p∗, xF) is ε-bounded.

To see the role of Pivotality, note that analogous to (12), a key step for our proof

in a general mechanism design setting is to show Gi(Ak(si, pξ)
)
→ Gi(Ak(si, p∗)

)
as ξ → 0. In general, the distance between the two sets Ak(si, pξ) and Ak(si, p∗)

will vary with the specific choice of the ξ-efficient SCR pξ as well as si. The role

of Pivotality is to guarantee that this convergence is uniform on the set of all ξ-

efficient SCRs and on Si.

5.2 Large Double Auctions

5.2.1 Double Auction Environments and Competitive Equilibrium Mechanism

In this section, we consider one of the most widely studied environments in mech-

anism design—large double auctions—in which it is well known that under the

competitive equilibrium mechanism, the gain from biding strategically becomes van-

ishingly small as the size of the market grows.

We consider the simplest double auction environment. There are M sellers who
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each has a good to sell, and M buyers who each would like to buy a good. Let B

denote the set of buyers and S denote the set of sellers. To better identify buyers’

and sellers’ information, we introduce some new notation: let vi ∈ [0, 1] denote

buyer i’s value of the good and ci ∈ [0, 1] denote seller i’s cost. Assume that when

there is no trade, an agent’s value/cost is zero. Also assume that values and costs

are drawn identically and independently according to a continuous distribution

function G in the Bayesian environment.26 Let G2M(s) denote the distribution of

2M agents’ signals s = (v1, ..., vM, c1, ..., cM).

Due to the simplicity of the setting, we can simplify the general mechanism to

the following mechanism: let (pi
B, pi

S, xi
B, xi

S)i=1,...,M be a collection of 4M functions

where pi
B, pi

S : [0, 1]2M → [0, 1] denote an agent’s probability of obtaining a good

(i.e., pi
B is buyer i’s probability of receiving a good, and pi

S is seller i’s probability

of retaining a good); and xi
B, xi

S : [0, 1]2M → R denote the transfer to a buyer and a

seller respectively.

Efficiency requires the goods to be allocated to the agents with the M highest

values/costs. Let p∗B, p∗S denote the efficient SCR. Then

vi > s(M) ⇒ pi
∗B(s) = 1 ∀i ∈ B and ci > s(M) ⇒ pi

∗S(s) = 1 ∀i ∈ S ,

where s(M) is the Mth lowest signal among 2M reported signals.

In large double auctions, the following two properties are typically imposed on

the mechanisms. Say a mechanism (pi
B, pi

S, xi
B, xi

S)i=1,...,M satisfies ex ante budget

balance if ∫ (
∑
i∈B

xi
B(s) + ∑

i∈S
xi

S(s)
)
dG2M(s) ≤ 0 ∀s ∈ [0, 1]2M.

A mechanism (pi
B, pi

S, xi
B, xi

S)i=1,...,M satisfies ex post individual rationality if

vi pi
B(s) + xi

B(s) ≥ 0 and − ci(1− pi
S(s)

)
+ xi

S(s) ≥ 0 ∀s ∈ [0, 1]2M.

We now describe the competitive equilibrium mechanism (CEM). Sellers and

buyers simultaneously submit offers and bids. These offers and bids are arrayed

26All results extend to environments in which the numbers of sellers and buyers are different, and
sellers’ and buyers’ signals are drawn from different distributions.
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in increasing order and the price p is set at the Mth lowest bid/offer. Trade occurs

among sellers whose offers are no more than p and buyers who bid at least p.27 (If

there is a tie at p, ration uniformly at random.28) By construction, if everyone bids

his true value/cost, the resulting allocation is efficient. Moreover, it is straightfor-

ward to see that the CEM satisfies ex post individual rationality and ex ante budget

balance.

5.2.2 Results

Carroll [9] shows that the CEM is asymptotically incentive compatible. Theorem

5.2 shows that the CEM is in fact asymptotically LIC.

Theorem 5.2. Fix a Bayesian double auction environment. For any δ > 0, there exists M

such that for all M > M, the efficient SCR is δ-locally implementable by the CEM.

We apply Theorem 4.2 to double auctions and obtain the following corollary.

Corollary 5.1. Fix a Bayesian double auction environment. For any δ > 0, if the efficient

SCR is δ-locally implementable in the Bayesian environment, then it is implementable in

any corresponding δ-ambiguity environment.29

An immediate implication of Theorem 5.2 and Corollary 5.1 is for any δ > 0,

if the number of traders is sufficiently large, then there exists an efficient and in-

centive compatible mechanism in any δ-ambiguity environment. In addition, this

mechanism is a full insurance mechanism as constructed in (1) and each agent’s

interim payoff from truthful reporting under this mechanism is identical to that in

the CEM.

We next show that the full insurance mechanism satisfies ex post individual

rationality. Recall that in (1), the full insurance transfers are constructed so that

each agent’s ex post payoffs are equal to his interim payoff from truthful reporting

27This mechanism is a special case of k-double auction, which is widely studied in double auction
environments. See Rustichini et al. [43, p.1045] for a more detailed description of the mechanism.

28This is not important since ties occur with probability zero in the Bayesian environment.
29Due to the special structure of double auctions—for an agent, there are essentially only two dis-
tinct allocations—the mapping from δ to ε in Theorem 4.2 is independent of the number of traders.
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under the CEM in the Bayesian environment, which is nonnegative. Therefore, ex

post individual rationality is satisfied in any δ-ambiguity environment.

If the mechanism designer is ambiguity neutral, that is, her belief is given by

G2M in any ambiguity environment, then since the CEM satisfies ex ante budget

balance, the arguments in Section 4.6 imply that the full insurance mechanism sat-

isfies ex ante budget balance in any ambiguity environment.

To summarize, we have shown:

Theorem 5.3. Suppose the mechanism designer is ambiguity neutral. For any δ > 0,

there exists M such that for all M > M, there exist efficient, incentive compatible, ex

ante budget balanced, and ex post individually rational mechanisms in any δ-ambiguity

environment.

6 Extension to Interdependent Values Setting

In this section, we extend Theorem 4.2 to mechanism design settings with interde-

pendent values. Theorem 4.1 also extends to such general settings but the state-

ment and the proof parallel those of Theorem 4.1 and are thus omitted.

6.1 One-dimensional Signals

We first extend Theorem 4.2 to settings with one-dimensional signals and inter-

dependent values. We start with some new notation and definitions. To allow

for interdependence in preferences, we use vi
k(s

i, s−i) to denote agent i’s valuation

from alternative k. We assume that vi
k is twice differentiable and nondecreasing in

sj for all j.

We distinguish two cases depending on the value functions. The first is when

value functions are additively separable. Say vi
k(s

i, s−i) is additively separable if

there exist functions f i
k : Si → R and hi

k : S−i → R such that

vi
k(s

i, s−i) = f i
k(s

i) + hi
k(s
−i) ∀si ∈ Si, ∀s−i ∈ S−i.

This case is special because agent j’s signal does not affect agent i’s own marginal

valuation, that is, ∂2vi
k(s

i,s−i)

∂si∂sj = 0 for all j 6= i and s ∈ S. The private values model in

Section 2 is thus a special case of the interdependent values model with additive
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separability.

Alternatively, the cross derivatives can be bounded away from zero. For any

k ∈ Ki, vi
k(s

i, s−i) is nonseparable if the cross derivatives ∂2vi
k(s

i,s−i)

∂si∂sj are continuous

and ∂2vi
k(s

i,s−i)

∂si∂sj 6= 0 for all j 6= i and s ∈ S.

The definition of ε-boundedness here is the same as Definition 4 with replacing

vi
k by f i

k and ε-local implementation is defined as follows.

Definition 8. In a Bayesian environment, a SCR p is ε-locally implementable if

there exists a transfer scheme x such that (i) the mechanism (p, x) is ε-LIC; (ii)

µi
(p,x) is monotone for all i ∈ I ; and (iii) if values are additively separable, (p, x) is

ε-bounded.

Our main result is stated below.

Theorem 6.1. Fix a Bayesian environment EB and a rich SCR p. Assume either vi
k is

nonseparable for all i and k or vi
k is additively separable for all i and k. For any δ > 0,

there exists ε > 0 such that if p is ε-locally implementable in EB, then p is implementable

in any corresponding δ-ambiguity environment.

Notice that ε-boundedness is only defined under additive separability. Since ε-

boundedness is necessary for implementation with small ambiguity (by Theorem

4.1), a natural question is why a counterpart of ε-boundedness is not needed in

the nonseparable setting. To answer this, consider the following extension of ε-

boundedness to the interdependent values setting: for any Bayesian environment

EB and any ε ≥ 0, a mechanism (p, x) is ε-bounded if for any i ∈ I and si < ti, we

have

µi
(p,x)(t

i)− µi
(p,x)(s

i) ≤ ∑
k∈K

∫
wk(s−i)

(
vi

k(t
i, s−i)− vi

k(s
i, s−i)

)
ds−i, (16)

where {wk(s−i)}k∈K,s−i∈S−i satisfies (i) 0 ≤
∫

wk(s−i)ds−i ≤ Gi(Ak(ti, p)
)
+ ε for all

k ∈ K and (ii) ∑k∈K
∫

wk(s−i)ds−i ≤ 1. When values are nonseparable, vi
k(t

i, s−i)−

vi
k(s

i, s−i) varies with s−i for each k ∈ Ki, which makes inequality (16) easier to

satisfy by constructing {wk(s−i)}k,s−i properly. In contrast, when values are addi-

tively separable, i.e., vi
k(t

i, s−i)− vi
k(s

i, s−i) is constant in s−i, inequality (16) effec-
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tively depends only on {
∫

wk(s−i)ds−i}k rather than {wk(s−i)}k,s−i . Therefore, the

requirement of ε-boundedness is much weaker in the nonseparable case than in

the additively separable case and it is in fact implied by approximate LIC in the

former case.

6.2 Multi-dimensional Signals

We next extend the analysis to allow for multi-dimensional signals and interde-

pendent values. This case is interesting because Jehiel and Moldovanu [28] show

that in such settings, efficient and Bayesian incentive compatible mechanisms gen-

erally do not exist. Our result is then relevant since if we know that the efficient

SCR is approximately locally implementable in some Bayesian environment, then

by applying our result, we can conclude that the efficient SCR is implementable

with small ambiguity. Such an application is provided in Section 6.2.1.

To introduce multi-dimensional signals, we redefine some concepts and nota-

tion in this section. Recall N and K are the number of agents and the number

of social alternatives, respectively. Assume that agent i’s signal si is drawn from

Si ⊆ RK×N. The idea is that coordinate si
kj of si influences the utility of agent j

in alternative k. We assume that the signal spaces Si are compact, convex, and

full-dimensional given the usual topology in RK×N. Agent i’s value in social al-

ternative k is given by vi
k(s

1
ki, ..., sN

ki ). For ease of notation, we will write vi
k(s) or

vi
k(s

i, s−i) instead. As before, we assume that vi
k is twice differentiable and nonde-

creasing in sj
ki for all j. Definitions of additive separability and nonseparability are

extended in the obvious way.

Our most important concept is ε-LIC. There is no unique way of extending

the notion of ε-LIC to multi-dimensional signals. With multi-dimensional signals,

some agent possesses information that is relevant to the other agents, but does not

directly affect the owner of that information. We call such information own-payoff

irrelevant information. Theorem 3.1 in Jehiel and Moldovanu [28] shows that un-

der any incentive compatible mechanism, each agent i’s equilibrium payoff cannot

depend on his own-payoff irrelevant information si
kj, j 6= i. Song [47] extends

this result to environments with ambiguity. Motivated by these observations, we
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propose the following extension. Recall that Ki is the set of alternatives on which

agent i’s own information has an effect.

Definition 9 (Multi-dimensional Signals). For any ε > 0, a mechanism (p, x) is

ε-locally incentive compatible (ε-LIC) if

µi
(p,x)(s

i) ≥ ui
(p,x)(t

i, si)− ε ∑
k∈Ki

|si
ki − ti

ki| ∀si, ti ∈ Si, ∀i ∈ I .

Under this notion of ε-LIC, the indirect utility functions associated with any

ε-LIC mechanism are independent of own-payoff irrelevant information.30

In Appendix D, we extend the definition of ε-boundedness to accommodate

multi-dimensional signals and prove that the statement of Theorem 6.1 remains

true.

6.2.1 Efficient Implementation With Small Informational Size

In this section, we show that in any Bayesian environment where agents are in-

formationally small, the efficient SCR is approximately locally implementable by a

modified VCG transfer scheme.

Our definition of informational size measures the degree to which one agent’s

signal can affect the valuations of other agents.31 Formally, define the informa-

tional size of agent i as

γi ≡ max
j 6=i,k∈K,s∈S

∂vj
k(s

i, s−i)

∂si
kj

.

Recall that si
kj is agent i’s information affecting agent j’s valuation for alternative k.

In the case of private values, the informational size of each agent is 0.

We now define the modified VCG (MVCG) mechanism. Define the general-

30In Section 7, we provide a weaker notion of approximate LIC which allows µi
(p,x) to depend on

own-payoff irrelevant information.
31In our setting, an agent’s value depends directly on other agents’ types. McLean and Postlewaite
[37] study an interdependent values setting in which each agent’s value depends indirectly on
other agents’ types in the sense that each agent’s value is a function of the state of nature and other
agents’ types provide additional information about the state of nature. They adopt a notion of
informational size as the degree to which an agent can alter the posterior distribution on the state
space given the information of other agents. Both notions capture the “informational” influence of
an agent’s type on others but accomplish this in two different interdependent values settings.
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ized VCG transfer scheme as

xi
GVCG(s

i, s−i) ≡∑
k

p∗k(s
i, s−i)∑

j 6=i
vj

k(s
i, s−i)−max

k∈K ∑
j 6=i

vj
k(s

i, s−i),

which represents the cost that agent i imposes on other agents. For every i ∈ I

and si ∈ Si, construct ςi(si) as follows:

ςi
ki(s

i) = si
ki and ςi

kj(s
i) = max{ti

kj|t
i ∈ Si}, ∀k ∈ K, ∀j 6= i.

Note it is possible that the constructed ςi(si) /∈ Si. However, vl
k(ς

i(si), s−i) exists

and, hence, p∗(ςi(si), s−i) is well defined.32 Define the MVCG transfer scheme as

xi
MVCG(s

i, s−i) ≡ xi
GVCG(ς

i(si), s−i) + ∑
k

(
p∗k(ς

i(si), s−i)− p∗k(s
i, s−i)

)
vi

k(s
i, s−i).

The MVCG mechanism is defined by the pair (p∗, xMVCG).

Observe that the MVCG transfer is constructed so that if everyone reports truth-

fully, agent i’s ex post and interim payoffs are independent of his own-payoff ir-

relevant information (si
kj)j 6=i,k∈K. The next lemma shows the MVCG mechanism is

ε-LIC when agents are sufficiently informationally small.

Theorem 6.2. Fix a Bayesian environment. For any ε > 0, there exists γ > 0 such that if

γi < γ for all i ∈ I , the efficient SCR p∗ is ε-locally implementable by the MVCG transfer

scheme xMVCG.

To explain why the MVCG mechanism is ε-LIC, consider a single object allo-

cation problem where values are additively separable. That is, vi
i(s) = f i

i (s
i) +

hi
i(s
−i). By the construction of the MVCG transfer scheme, we can derive an upper

bound on the gain to agent i when his true signal is si but he reports ti and others

report truthfully:(
f i
i (s

i)− f i
i (t

i)
)(

Gi(Ai(ti, p∗)
)
− Gi(Ai(ς

i(ti), p∗)
))

, (17)

where Gi(Ai(s̃i, p∗)
)

is agent i’s probability of getting the object given s̃i. When

agent i’s informational size is small, his own-payoff irrelevant information has lit-

tle effect on the values of the other agents and, hence, on the determination of the

32For every k ∈ K, we have p∗k (ς
i(si), s−i) = 1 if ∑l vl

k(ς
i
kl(s

i), s−i
kl ) > ∑l vl

k′(ς
i
k′ l(s

i), s−i
k′ l) for all k′ 6= k.
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efficient allocation. Since ςi(ti) and ti only differ in the own-payoff irrelevant infor-

mation, for most of the realizations of s−i, the efficient allocation under (ςi(ti), s−i)

is identical to that under (ti, s−i). This means that as γi converges to 0, the set

Ai(ς
i(ti), p∗) converges to the set Ai(ti, p∗). Thus, for any ε > 0, if γi is sufficiently

small, the upper bound on the gain from misreporting (17) is less than ε|si
ii − ti

ii|.

Thus, the MVCG mechanism is ε-LIC.

7 Discussion and Related Literature

An alternative notion of ε-LIC. In Definition 9, we formulate a notion of ε-LIC in

multi-dimensional environments. A more intuitive and also weaker notion is:

Definition 10. For any ε > 0, a mechanism (p, x) is weakly ε-locally incentive

compatible if

µi
(p,x)(s

i) ≥ ui
(p,x)(t

i, si)− ε ‖ si − ti ‖∞ ∀si, ti ∈ Si, ∀i ∈ I .

The two notions, ε-LIC and weak ε-LIC, coincide in one-dimensional environ-

ments, whereas ε-LIC is stronger in multi-dimensional environments. The differ-

ence lies in whether µi
(p,x) is allowed to depend on own-payoff irrelevant infor-

mation. For example, the generalized VCG mechanism is not ε-LIC but is weakly

ε-LIC when agents are sufficiently informationally small. In Appendix F, we show

that the two notions are equivalent when the own-payoff irrelevant information of

the agents has little influence on the determination of allocations.

Extension to general social choice rules. Theorem 5.1 can be extended to any two

SCRs that are “close”, suitably defined, to each other. That is, under appropriately

reformulated assumptions on valuations, if a SCR p is implementable, then any

SCR that is “close” to p is approximately (locally) implementable. We next identify

a precise sense in which two SCRs are close.

For any SCR p, si ∈ Si, and k ∈ K, recall that Ak(si, p) = {s−i ∈ S−i|pk(si, s−i) =

1}. The distance between any two SCRs p and p′ is defined by

dG(p, p′) ≡ sup
i∈I ,si∈Si,k∈K

max{Gi(Ak(si, p) \ Ak(si, p′)
)
, Gi(Ak(si, p′) \ Ak(si, p)

)
}.33
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Indeed, the proof of Theorem 5.1 does not rely on (ε-)efficiency but rather on the

observation that for any ε-efficient SCR pε, we have dG(pε, p∗)→ 0 as ε→ 0.

Even though we restrict our attention to deterministic SCRs, our result can be

extended to a restrictive class of random SCRs. To illustrate, let p′ be a deter-

ministic SCR and p̂ be any (possibly random) SCR. For any ε > 0, define a SCR

p = (1− ε)p′ + ε p̂ as follows: given the report signals, pick the outcome of p′ with

probability 1− ε and pick the outcome of p̂ with probability ε. Such random SCRs

are used in the literature of virtual implementation (e.g., Duggan [16]). With slight

modifications to our current proofs, we can show that for any small ε, if p is im-

plementable, then p′ is approximately locally implementable and, hence, exactly

implementable in the presence of small ambiguity.

Large markets. This paper is closely related to the literature on mechanism design

in large markets. This literature establishes asymptotic efficiency or asymptotic

incentive compatibility of specific mechanisms. For example, see Satterthwaite

and Williams [45], Kojima and Yamashita [33], Williams [48], and Andreyanov and

Sadzik [1]. Our results suggest that in some of the settings where approximate

mechanisms have been established, a small degree of ambiguity may be used to

obtain exact results. Azevedo and Budish [3] and Hatfield et al. [26] propose two

new notions of approximate incentive compatibility, strategy proofness in the large

and strategy proofness within ε in expectation respectively, which lie between the

standard notion of approximate ex post incentive compatibility and approximate

interim incentive compatibility. Yet these two notions do not restrict local incentive

constraints. Our paper proposes a stronger notion of approximate interim incen-

tive compatibility which imposes proper restrictions on local incentive constraints.

Independence assumption. We assume that each agent’s set of beliefs is in-

dependent of the realization of his signal. Since our approach is essentially based

on a generalization of the standard Myersonian approach, our results do not ex-

tend straightforwardly to settings with correlated information. In particular, given

33A more intuitive metric is d(p, p′) ≡ supi∈I ,si∈Si ,k∈K di
H
(
(Ak(si, p), Ak(si, p′)

)
, where di

H is the
Hausdorff metric on S−i. Since Gi is assumed to be absolutely continuous, we have dG(p, p′) → 0
whenever d(p, p′)→ 0, but not vice versa. Therefore, our definition is more permissive.
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an ε-LIC mechanism (p, x) in a Bayesian environment with correlated information,

whether p is implementable with small ambiguity hinges on (i) how agent i’s belief

Gi depends on si in the Bayesian environment (e.g., whether types are affiliated),

(ii) how agent i’s set of beliefs is constructed in the corresponding ambiguity en-

vironments (e.g., whether ambiguity is on a common prior or on the conditional

beliefs directly), and (iii) properties of the mechanism (p, x) (e.g., whether pk(s) is

monotone in sj). For example, if (p, x) is a full insurance mechanism, then Theorem

4.2 continues to hold with a suitable definition of the corresponding ambiguity en-

vironments, regardless of how types are correlated in the Bayesian environment.

Another complication that arises in models with correlated types is the possibil-

ity of using lottery mechanisms, proposed by Cremer and McLean [12, 13]. It is

well-known that using lottery mechanisms can greatly enlarge the set of imple-

mentable SCRs. A straightforward application of lottery mechanisms however has

its limitations in ambiguity environments as the belief used to evaluate a lottery is

endogenously determined and, hence, it is difficult to construct a lottery for each

type with the desired property.34 The connection between approximate Bayesian

implementation and exact maxmin implementation when types are correlated will

be the subject of future work.

Mechanism design with maxmin preferences. This paper adopts the maxmin ex-

pected utility model of Gilboa and Schmeidler [20] to model ambiguity aversion,

which is one of the most commonly adopted model of robust decision-making un-

der uncertainty in mechanism design. For example, Bose et al. [8], Bose and Daripa

[6], Bodoh-Creed [5], and Carroll [10] study revenue maximization with maxmin

agents.35 Wolitzky [49], Song [47], de Castro and Yannelis [14], and Kocherlakota

and Song [32] address the possibility of implementing efficient allocations with

maxmin agents in a variety of economic applications. By comparison, this paper

considers a general implementation problem in a social choice setting that allows

for interdependent valuations and multi-dimensional signals and explores a con-

34See Renou [41] and Song [47] for an analysis of mechanism design problems with ambiguity averse
agents and correlated information.

35Di Tillio et al. [15] and Guo [24] study the effects of introducing ambiguity in mechanisms.
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nection between approximate Bayesian implementation and maxmin implementa-

tion under a small degree of ambiguity.

Another commonly used model of ambiguity in the literature is the smooth

ambiguity model of Klibanoff et al. [31].36 In the smooth ambiguity model, agents’

utilities in general are not quasilinear in transfers and the qualitative implications

of the smooth ambiguity model are similar to those of risk aversion. Moreover,

in the smooth ambiguity model, agents are locally ambiguity neutral and, conse-

quently, smooth ambiguity cannot weaken local incentive constraints as in ε-LIC.

Thus, our results do not extend to the smooth ambiguity model.

The closest work to the current paper is Song [47]. There are two main differ-

ences. First, Song [47] focuses on overturning the impossibility result of Jehiel and

Moldovanu [28] whereas the primary focus of this paper is to establish an equiv-

alence between maxmin implementation with small ambiguity and approximate

implementation. Second, in terms of methodology, Song [47] extends the Myerso-

nian first order approach to environments with maxmin agents. The Myersonian

approach is feasible only if the SCR, value functions, and the sets of priors satisfy

certain conditions.37 In contrast, we do not impose conditions under which the

Myersonian approach applies. Instead, we modify an existing ε-LIC mechanism

to obtain an incentive compatible mechanism in environments with ambiguity. As

a result, we are able to study more general mechanism design problems whereas

Song [47] is limited to single object allocation problems.

36Epstein and Schneider [18] review different models of ambiguity aversion and illustrate differ-
ences in behavior implied by those models.

37For example, in order to apply the Myersonian approach in one-dimensional environments, we
need the following monotonicity constraint on the SCR p: for every i ∈ I , every si, ti, ŝi ∈ Si such

that si < ti, and every s−i ∈ S−i, we have ∑k∈K pk(ti, s−i)
∂vi

k(ŝ
i ,s−i)

∂ŝi ≥ ∑k∈K pk(si, s−i)
∂vi

k(ŝ
i ,s−i)

∂ŝi .
In a linear setting, the weak congruence condition (5.1) in Jehiel and Moldovanu [28] implies this
monotonicity constraint.
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Appendix

A Appendix for Section 4

For any two probability measures F, H ∈ ∆(S−i), the Prokhorov metric is

d(F, H) ≡ inf{ε > 0|F(A) ≤ H
(
Bε(A)

)
+ ε, ∀A ∈ Σ−i},

where Bε(A) ≡ {s−i ∈ S−i| inft−i∈A ‖ s−i − t−i ‖∞≤ ε} and ‖ · ‖∞ denotes the

uniform metric on S−i.

A.1 Example: ε-Incentive Compatibility

In this section, we present a simple example to demonstrate the necessity of using

the notion of ε-LIC rather than ε-IC in Theorem 4.2. More precisely, for any ε > 0,

we construct explicitly a mechanism that is ε-IC in the Bayesian environment. We

then show that as ε converges to 0, the necessary amount of ambiguity for exact

implementation is bounded away from zero.

Consider Example 2 with N = 2. Let Gi(sj) = sj for all i ∈ I and j 6= i. Fix

0 < ε < 1. Consider the following mechanism (p, x):

p1(s1, s2) =

 0 if s1 6= 1− ε, s2 ∈ [0.5, 1],

1 otherwise,
p2(s1, s2) = 1− p1(s1, s2),

and

x1(s1, s2) = −p1(s1, s2)s1 + 0.5s1, x2(s1, s2) = −p2(s1, s2)s2 + max{s2 − 0.5, 0}.

In the Bayesian environment, under p, agent 1’s expected probability of obtaining

the object is 0.5 if s1 6= 1− ε and is 1 if s1 = 1− ε. Thus, (p, x) is not incentive com-

patible as agent 1’s expected probability of obtaining the object is not increasing in

his valuation. However, it is easy to verify that this mechanism is ε-IC.

Suppose F 1 = Bδ(G1) in the δ-ambiguity environment. We next show that

this SCR p is implementable only when δ is bounded away from 0 regardless of

ε. Take any t1 ∈ (1− ε, 1] and s1 = 1− ε. The necessary condition (4) for p to be

implementable implies maxF1∈F1 F1({s2 ∈ [0, 0.5]}) ≥ 1. By the definition of the

Prokhorov metric, this inequality holds only if δ ≥ 0.25.
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A.2 Proof of Theorem 4.1

Define m ≡ maxi∈I ,k∈K,si∈Si
dvi

k(s
i)

dsi . The next lemma follows immediately from the

Mean Value Theorem and the definition of m.

Lemma A1. |vi
k(s

i)− vi
k(t

i)| ≤ m|si − ti| for all si, ti ∈ Si, i ∈ I , and k ∈ K.

Fix a Bayesian environment EB and a SCR p. Take ε > 0. Recall that for any

A ⊆ S−i and δ > 0, Bδ(A) = {s−i ∈ S−i| inft−i∈A ‖ s−i − t−i ‖∞≤ δ}. Let φ(δ) ≡

supi,A∈Σ−i Gi(Bδ(A)
)
− Gi(A). Since Gi is absolutely continuous with respect to

the Lebesgue measure, we obtain limδ→0 φ(δ) = 0. Take 0 < δ ≤ 1 such that φ(δ)+

δ ≤ min{ε, ε
m}, and a δ-ambiguity environment Eδ in which F i = Bδ(Gi) for all i.

Suppose that p is implementable by the transfer scheme x with associated indirect

utility functions µi
(p,x) in Eδ. We are going to show p is ε-locally implementable by

the full insurance transfer scheme xF with {µi
(p,x)}i in EB. By construction, µi

(p,x) is

also agent i’s indirect utility function associated with (p, xF) in EB. We thus need

to show µi
(p,x) is monotone, and (p, xF) is ε-bounded and ε-LIC.

Fix i and si, ti. Since (p, x) is incentive compatible in Eδ, we have

µi
(p,x)(s

i) ≥ min
Fi∈F i

∫
S−i

(
∑

k∈K
pk(ti, s−i)vi

k(s
i) + xi(ti, s−i)

)
dFi(s−i)

≥ µi
(p,x)(t

i) + min
Fi∈F i

∫
S−i ∑

k∈K
pk(ti, s−i)

(
vi

k(s
i)− vi

k(t
i)
)
dFi(s−i).

(A1)

An immediate observation is if si > ti, we have vi
k(s

i)− vi
k(t

i) ≥ 0 for all k and,

hence, µi
(p,x)(s

i) ≥ µi
(p,x)(t

i). That is, µi
(p,x) is monotone, as desired. If si < ti, (A1)

implies there exists F̂i ∈ F i = Bδ(Gi) such that

µi
(p,x)(t

i)− µi
(p,x)(s

i) ≤ ∑
k∈K

F̂i(Ak(ti, p)
)
(vi

k(t
i)− vi

k(s
i)).

Since F̂i ∈ Bδ(Gi) and φ(δ) + δ ≤ ε, the definition of the Prokhorov metric implies

that 0 ≤ F̂i(Ak(ti, p)
)
≤ Gi(Ak(ti, p)

)
+ ε for all k. Since F̂i is a probability distri-

bution, ∑k∈K F̂i(Ak(ti, p)
)
= 1. Taking wk = F̂i(Ak(ti, p)

)
for all k ∈ K yields that

(p, xF) is ε-bounded according to Definition 4.

We now show (p, xF) is ε-LIC. Since F i = Bδ(Gi), we have

min
Fi∈F i

∫
S−i ∑

k∈K
pk(ti, s−i)(vi

k(s
i)− vi

k(t
i))dFi(s−i)
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≥
∫
S−i ∑

k∈K
pk(ti, s−i)(vi

k(s
i)− vi

k(t
i))dGi(s−i)−m(φ(δ) + δ)|si − ti|

≥
∫
S−i ∑

k∈K
pk(ti, s−i)

(
vi

k(s
i)− vi

k(t
i)
)
dGi(s−i)− ε|si − ti|.

The first inequality follows from Lemma A1 and the last inequality follows from

φ(δ) + δ ≤ ε
m . Combining this with (A1) yields

µi
(p,x)(s

i) ≥ µi
(p,x)(t

i) +
∫
S−i ∑

k∈K
pk(ti, s−i)

(
vi

k(s
i)− vi

k(t
i)
)
dGi(s−i)− ε|si − ti|

= ui
(p,xF)

(ti, si)− ε|si − ti|,

where ui
(p,xF)

is i’s payoff under the full insurance mechanism (p, xF) in EB. This

completes the proof.

A.3 Proof of Theorem 4.2

We start with some notation. Let Ki ≡ |Ki|. Define m ≡ mini∈I ,k∈Ki,si∈Si
dvi

k(s
i)

dsi .

Since vi
k is continuously differentiable and dvi

k(s
i)

dsi > 0 for all k ∈ Ki and si ∈ Si, the

compactness of the signal space implies m > 0. Let A0(si, p) ≡ ∪k∈Ki
0
Ak(si, p).

Fix a Bayesian environment EB and a rich SCR p. Take 0 < δ ≤ 1 and a cor-

responding δ-ambiguity environment Eδ. Take ε > 0 such that max{ ε
m , ε} ≤ δ.

Suppose that p is ε-locally implementable by the transfer scheme x with associated

indirect utility functions µi
(p,x) in EB. We are going to show that p is implementable

by the full insurance transfer scheme xF with {µi
(p,x)}i in Eδ. Recall from Section 3

that by construction, µi
(p,x) is also agent i’s indirect utility function associated with

(p, xF) in Eδ. We thus only need to show for all si, ti ∈ Si,

µi
(p,x)(s

i) ≥ ui
(p,xF)

(ti, si)

= µi
(p,x)(t

i) + min
Fi∈F i

∑
k∈K

(vi
k(s

i)− vi
k(t

i))Fi(Ak(ti, p)),
(A2)

where ui
(p,xF)

is i’s interim payoff under (p, xF) in Eδ.

Fix i ∈ I and si, ti ∈ Si. Consider first the case si > ti. If ∑k∈Ki Gi(Ak(ti, p)
)
<

ε
m , construct F̂i as follows: F̂i( ∪k∈Ki Ak(ti, p)

)
= 0 and F̂i(A0(ti, p)

)
= 1. Since

δ ≥ ε
m , we have F̂i ∈ Bδ(Gi) ⊆ F i. Since µi

(p,x) is increasing, we have

µi
(p,x)(s

i) ≥ µi
(p,x)(t

i) + ∑
k∈K

(vi
k(s

i)− vi
k(t

i))F̂i(Ak(ti, p))

35



≥ µi
(p,x)(t

i) + min
Fi∈F i

∑
k∈K

(vi
k(s

i)− vi
k(t

i))Fi(Ak(ti, p)),

as desired. Suppose now ∑k∈Ki Gi(Ak(ti, p)
)
≥ ε

m . By the ε-LIC of (p, x),

µi
(p,x)(s

i) ≥ µi
(p,x)(t

i) + ∑
k∈K

(vi
k(s

i)− vi
k(t

i))Gi(Ak(ti, p))− ε|si − ti|. (A3)

Combining (A2) and (A3) indicates it suffices to show for some F̂i ∈ F i,

∑
k∈K

(
vi

k(s
i)− vi

k(t
i)
)
Gi(Ak(ti, p))− ε|si − ti|

≥ ∑
k∈K

(
vi

k(s
i)− vi

k(t
i)
)

F̂i(Ak(ti, p)).
(A4)

Since ∑k∈Ki Gi(Ak(ti, p)
)
≥ ε

m , we can construct F̂i as follows: F̂i(A0(ti, p)
)
=

Gi(A0(ti, p)
)
+ ε

m and F̂i( ∪k∈Ki Ak(ti, p)
)
= Gi( ∪k∈Ki Ak(ti, p)

)
− ε

m . By assump-

tion, ti < si ≤ 1 and, hence, A0(ti, p) 6= ∅. Thus, F̂i is well-defined. Since δ ≥ ε
m ,

we have F̂i ∈ Bδ(Gi) ⊆ F i. It is straightforward to verify that the constructed F̂i

satisfies (A4), as desired.

Suppose si < ti. If Gi(A0(ti, p)
)
≥ ε

m , construct F̂i such that F̂i(A0(ti, p)
)
=

Gi(A0(ti, p)
)
− ε

m and F̂i(∪k∈Ki Ak(ti, p)
)
= Gi(∪k∈Ki Ak(ti, p)

)
+ ε

m . Since δ ≥ ε
m ,

we have F̂i ∈ Bδ(Gi) ⊆ F i. The construction of F̂i yields

∑
k∈K

(
vi

k(t
i)− vi

k(s
i)
)
Gi(Ak(ti, p)) + ε(ti − si)

≤ ∑
k∈K

(
vi

k(t
i)− vi

k(s
i)
)

F̂i(Ak(ti, p)).

Combining this with the ε-LIC constraint (A3) yields (A2), as desired. Suppose

now that Gi(A0(ti, p)
)
< ε

m . Since δ ≥ ε
m ,

∑
k∈Ki

Gi(Ak(ti, p)
)
+ δ ≥ ∑

k∈Ki

Gi(Ak(ti, p)
)
+

ε

m
> 1. (A5)

Without loss of generality, we can relabel the indexes of alternatives in Ki so that

vi
Ki(ti)− vi

Ki(si) ≥ · · · ≥ vi
1(t

i)− vi
1(s

i) > 0. (A6)

If Gi(AKi(ti, p)
)
+ δ ≥ 1, there exists F̂i ∈ F i so that F̂i(AKi(ti, p)

)
= 1. Since (p, x)

is ε-bounded,

µi
(p,x)(t

i)− µi
(p,x)(s

i) ≤ vi
Ki(ti)− vi

Ki(si) = F̂i(AKi(ti, p)
)(

vi
Ki(ti)− vi

Ki(si)
)
.

Since F̂i ∈ F i, the above inequalities imply the desired inequalities in (A2). If
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Gi(AKi(ti, p)
)
+ δ < 1, let l ∈ {2, ..., Ki} be such that

Ki

∑
k=l

Gi(Ak(ti, p)
)
+ δ < 1 and

Ki

∑
k=l−1

Gi(Ak(ti, p) + δ ≥ 1. (A7)

Such l exists by the inequalities in (A5). Construct F̂i as follows:

F̂i(Ak(ti, p)
)
= 0 ∀k = 0, ..., l − 2,

F̂i(Al−1(ti, p)
)
=

l−1

∑
k=0

Gi(Ak(ti, p)
)
− δ,

F̂i(Ak(ti, p)
)
= Gi(Ak(ti, p)

)
∀k = l, ..., Ki − 1,

F̂i(AKi(ti, p)
)
= Gi(AKi(ti, p)

)
+ δ.

By construction, F̂i ∈ Bδ(Gi) ⊆ F i. Since (p, x) is ε-bounded, there exists wk ≤

Gi(Ak(ti, p)
)
+ ε ≤ Gi(Ak(ti, p)

)
+ δ and ∑k∈K wk ≤ 1 such that

µi
(p,x)(t

i)− µi
(p,x)(s

i) ≤ ∑
k∈K

wk
(
vi

k(t
i)− vi

k(s
i)
)
≤ ∑

k∈K
F̂i(Ak(ti, p)

)(
vi

k(t
i)− vi

k(s
i)
)
.

The last inequality follows from (A6) and the construction of F̂i. Since F̂i ∈ F i, this

implies (A2) and completes the proof.

A.4 Proof of Proposition 4.1

Fix a Bayesian environment EB and a SCR p such that ∑k∈Ki Gi(Ak(si, p)
)

is non-

decreasing in si for all i ∈ I . Take δ > 0 and ε = m
m δ. Let (p, x) be an ε-LIC

mechanism with indirect utility functions µi
(p,x). Fix i ∈ I . Define

Ri = {si ∈ Si| ∑
k∈Ki

Gi(Ak(si, p)
)
<

ε

m
} and Ri

+ = Si \ Ri .

The assumption that ∑k∈Ki Gi(Ak(si, p)
)

is nondecreasing implies Ri
+ lies to the

right of Ri .

Lemma A2. The indirect utility function µi
(p,x) is monotone on Ri

+.

Proof. Take si, ti ∈ Ri
+ with si > ti. The definition of m and the ε-LIC constraint

(A3) imply

µi
(p,x)(s

i) ≥ µi
(p,x)(t

i) + (si − ti)
(

m ∑
k∈Ki

Gi(Ak(ti, p))− ε
)
≥ µi

(p,x)(t
i).

The second inequality follows from ti ∈ Ri
+.
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Lemma A3. The indirect utility function µi
(p,x) is Lipschitz continuous on Si.

Proof. For any si, ti ∈ Si, the ε-LIC of (p, x) implies

∑
k∈K

(vi
k(s

i)− vi
k(t

i))Gi(Ak(ti, p))− ε|si − ti| ≤ µi
(p,x)(s

i)− µi
(p,x)(t

i)

≤ ∑
k∈K

(vi
k(s

i)− vi
k(t

i))Gi(Ak(si, p)) + ε|si − ti|.

Combining these two inequalities with Lemma A1 yields

|µi
(p,x)(s

i)− µi
(p,x)(t

i)| ≤ (m + ε)|si − ti|,

as desired.

We are now ready to prove Proposition 4.1. We will construct a transfer scheme

x̂ such that (p, x̂) is δ-LIC and µi
(p,x̂) is monotone. If Ri = ∅, then Lemma A2

implies µi
(p,x) is monotone. Since m ≥ m, we know that δ ≥ ε. Taking x̂ = x

completes the proof. If Ri
+ = ∅, fix a constant α ∈ R. Construct x̂ as follows:

x̂i(s) = α− ∑
k∈K

pk(s)vi
k(s

i) ∀s ∈ S, ∀i ∈ I .

By construction, µi
(p,x̂)(s

i) = α for all si, which is trivially monotone and δ-bounded.

We now show (p, x̂) is δ-LIC. Fix si, ti ∈ Si = Ri . It follows from Lemma A1 and

ti ∈ Ri that

∑
k∈K

(vi
k(s

i)− vi
k(t

i))Gi(Ak(ti, p)) ≤ m|si − ti| ∑
k∈Ki

Gi(Ak(ti, p)) ≤ δ|si − ti|. (A8)

By (A8) and µi
(p,x̂)(t

i) = µi
(p,x̂)(s

i) = α, we obtain

µi
(p,x̂)(s

i) ≥ µi
(p,x̂)(t

i) + ∑
k∈K

(vi
k(s

i)− vi
k(t

i))Gi(Ak(ti, p))− δ|si − ti|

= ui
(p,x̂)(t

i, si)− δ|si − ti|,

as desired.

We now consider the last case where Ri 6= ∅ and Ri
+ 6= ∅. Define µi ≡

infsi∈Ri
+

µi
(p,x)(s

i). Construct x̂ as follows:

x̂i(s) = µi − ∑
k∈K

pk(s)vi
k(s

i) ∀si ∈ Ri

x̂i(s) = µi
(p,x)(s

i)− ∑
k∈K

pk(s)vi
k(s

i) ∀si ∈ Ri
+.
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We first show µi
(p,x̂) is monotone. Take si > ti. If si, ti ∈ Ri

+, the construction

of x̂ and Lemma A2 imply that µi
(p,x̂)(s

i) = µi
(p,x)(s

i) ≥ µi
(p,x)(t

i) = µi
(p,x̂)(t

i). If

si, ti ∈ Ri , the construction of x̂ implies µi
(p,x̂)(s

i) = µi
(p,x̂)(t

i) = µi and, hence, is

trivially monotone. Note that it is impossible that si ∈ Ri and ti ∈ Ri
+ since Ri

+

lies to the right of Ri . Thus, the last possible case is si ∈ Ri
+ and ti ∈ Ri . By the

definition of µi, we have µi
(p,x̂)(s

i) = µi
(p,x)(s

i) ≥ µi = µi
(p,x̂)(t

i). Thus, µi
(p,x̂) is

monotone.

We next show (p, x̂) is δ-LIC. Fix si, ti ∈ Si. If si, ti ∈ Ri
+, the ε-LIC of (p, x)

implies the δ-LIC of (p, x̂) as δ ≥ ε. If si, ti ∈ Ri , the proof follows from the same

argument as in the case of Ri
+ = ∅. Consider now si ∈ Ri

+ and ti ∈ Ri . As argued

above, si > ti. The construction of x̂ and (A8) together imply

ui
(p,x̂)(t

i, si)− δ|si − ti| = µi + ∑
k∈Ki

(vi
k(s

i)− vi
k(t

i))Gi(Ak(ti, p))− δ|si − ti|

≤ µi ≤ µi
(p,x̂)(s

i),

as desired. Suppose ti ∈ Ri
+ and si ∈ Ri . Then ti > si. Let ri ≡ min{s̃i ∈

cl(Ri
+)|µi

(p,x)(s̃
i) = µi}, where cl(Ri

+) is the closure of Ri
+. The existence of ri

follows from Lemma A3. Since ∑k∈Ki Gi(Ak(·, p)
)

is nondecreasing, we have si ≤

ri ≤ ti. By the ε-LIC of (p, x), we have

µi = µi
(p,x)(r

i) ≥µi
(p,x)(t

i) + ∑
k∈Ki

(vi
k(r

i)− vi
k(t

i))Gi(Ak(ti, p))− ε|ri − ti|

≥µi
(p,x)(t

i) + ∑
k∈Ki

(vi
k(s

i)− vi
k(t

i))Gi(Ak(ti, p))− ε|si − ti|

≥ui
(p,x̂)(t

i, si)− δ|si − ti|.

(A9)

The second inequality follows from ri ≥ si and the last inequality follows from the

construction of x̂ and δ ≥ ε. Then since µi
(p,x̂)(s

i) = µi, (A9) implies µi
(p,x̂)(s

i) ≥

ui
(p,x̂)(t

i, si)− δ|si − ti|, as desired.

Finally, we show if (p, x) is δ-bounded, so is (p, x̂). Take si, ti ∈ Si. The con-

struction of x̂ implies that the requirements in Definition 4 are satisfied if si, ti ∈ Ri
+

or si, ti ∈ Ri . Now consider si ∈ Ri , ti ∈ Ri
+ and si < ti. Since (p, x) is δ-bounded,

there exists {wk}k∈K such that 0 ≤ wk ≤ Gi(Ak(ti, p)
)
+ δ for all k, ∑k∈K wk ≤ 1,
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and

µi
(p,x)(t

i)− µi
(p,x)(r

i) ≤ ∑
k∈K

wk
(
vi

k(t
i)− vi

k(r
i)
)
. (A10)

Since si ∈ Ri , we have µi
(p,x̂)(s

i) = µi = µi
(p,x)(r

i) and si ≤ ri. Combining these

two observations with (A10) yields

µi
(p,x̂)(t

i)− µi
(p,x̂)(s

i) ≤ ∑
k∈K

wk
(
vi

k(t
i)− vi

k(s
i)
)
.

This completes the proof.

A.5 Proof of Lemma 4.1 and Proposition 4.2

We prove Proposition 4.2 and the proof of Lemma 4.1 is immediate.

By supermodularity, for each i, we can relabel the indexes of social alternatives

{1, ..., Ki} so that

0 =
dvi

k(s
i)

dsi <
dvi

1(s
i)

dsi ≤ · · · ≤
dvi

Ki(si)

dsi ∀k ∈ Ki
0, ∀si ∈ Si. (A11)

Let Ki ≡ {k ∈ Ki| dvi
k(s

i)

dsi <
dvi

Ki (s
i)

dsi ∀si ∈ Si}. If Ki 6= ∅, let 1
$i ≡ mink∈Ki,s̃i∈Si

( dvi
Ki (s̃

i)

ds̃i −
dvi

k(s̃
i)

ds̃i

)
. Supermodularity implies $i < ∞. If Ki = ∅, let $i ≡ 0. Take ci ≡

max{$i, 1
m} and c ≡ maxi ci. Let w0 = ∑k∈Ki

0
wk.

The result is trivially true when ε = 0. Fix ε > 0, an ε-LIC mechanism (p, x),

and i. We first show (11) implies cε-boundedness. Fix si < ti. It follows from (A11)

that (11) is equivalent to

µi
(p,x)(t

i)− µi
(p,x)(s

i) ≤ vi
Ki(ti)− vi

Ki(si). (A12)

Thus, we only need to show (A12) implies cε-boundedness. If cε ≥ 1, then taking

wKi = 1 and wk = 0 for all k 6= Ki yields the desired result trivially. Thus, suppose

cε < 1. Consider first the case Ki = ∅. Since (p, x) is ε-LIC, we have

µi
(p,x)(t

i)− µi
(p,x)(s

i) ≤
∫

∑
k

pk(ti, s−i)
(
vi

k(t
i)− vi

k(s
i)
)
dGi + ε(ti − si)

= ∑
k∈K

(
vi

k(t
i)− vi

k(s
i)
)
Gi(Ak(ti, p)

)
+ ε(ti − si).

(A13)

If ∑k∈Ki Gi(Ak(ti, p)
)
≤ 1− cε, then take wk = Gi(Ak(ti, p)

)
for all 0 < k < Ki,

wKi = Gi(AKi(ti, p)
)
+ cε, and w0 = 1 − ∑k>0 wk. By construction, conditions

(i) and (ii) in Definition 4 are satisfied. Since c ≥ 1
m , we obtain that c

(
vi

Ki(ti) −
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vi
Ki(si)

)
≥ cm(ti − si) ≥ ti − si. Then by the construction of {wk}k, we obtain

∑
k∈K

(
vi

k(t
i)− vi

k(s
i)
)
Gi(Ak(ti, p)

)
+ ε(ti − si) ≤ ∑

k∈K
wk
(
vi

k(t
i)− vi

k(s
i)
)
.

Combining this inequality with (A13) yields inequality (5), as desired.

If ∑k∈Ki Gi(Ak(ti, p)
)
> 1 − cε, then take w0 = 0, wk = Gi(Ak(ti, p)

)
for all

0 < k < Ki, and wKi = 1−∑k<Ki wk. Since ∑k∈Ki Gi(Ak(ti, p)
)
> 1− cε, we obtain

wKi < Gi(AKi(ti, p)
)
+ cε. Thus, conditions (i) and (ii) are satisfied. To verify

inequality (5), note that Ki = ∅ implies vi
Ki(ti) − vi

Ki(si) = vi
k(t

i) − vi
k(s

i) for all

k ∈ Ki. Thus, ∑k∈K wk
(
vi

k(t
i)− vi

k(s
i)
)
= vi

Ki(ti)− vi
Ki(si). Then inequality (5) is a

direct implication of (A12), as desired.

Suppose now Ki 6= ∅. Let l ∈ {0, 1, ..., Ki − 1} be such that

Gi(A0(ti, p)
)
+

l

∑
k=1

Gi(Ak(ti, p)
)
< cε and Gi(A0(ti, p)

)
+

l+1

∑
k=1

Gi(Ak(ti, p)
)
≥ cε.

If Gi(A0(ti, p)
)
≥ cε, then let l = −1. If

dvi
l+1(s̃

i)

ds̃i =
dvi

Ki (s̃
i)

ds̃i for all s̃i ∈ Si, take wk = 0

for all k ≤ l, wk = Gi(Ak(ti, p)
)

for all l < k < Ki, and wKi = 1−∑k<Ki wk. By the

choice of l, we have wKi < Gi(AKi(ti, p)
)
+ cε. By (A12),

µi
(p,x)(t

i)− µi
(p,x)(s

i) ≤ vi
Ki(ti)− vi

Ki(si) = ∑
k∈K

wk
(
vi

k(t
i)− vi

k(s
i)
)
.

Thus, (p, x) is cε-bounded. If
dvi

l+1(s̃
i)

ds̃i <
dvi

Ki (s̃
i)

ds̃i , supermodularity implies
dvi

Ki (s̃
i)

ds̃i −
dvi

l+1(s̃
i)

ds̃i ≥ 1
$i for all s̃i. Thus,

vi
Ki(ti)− vi

Ki(si)−
(
vi

l+1(t
i)− vi

l+1(s
i)
)
=
∫ ti

si
(

dvi
Ki(s̃i)

ds̃i −
dvi

l+1(s̃
i)

ds̃i )ds̃i ≥ 1
$i (t

i − si). (A14)

Take wk = 0 for all k ≤ l, wl+1 = ∑l+1
k=0 Gi(Ak(ti, p)

)
− cε, wk = Gi(Ak(ti, p)

)
for

all l + 1 < k < Ki, and wKi = 1−∑k<Ki wk = Gi(AKi(ti, p)
)
+ cε. By construction,

conditions (i) and (ii) are satisfied. To see why inequality (5) is satisfied, note that

by ε-LIC,

µi
(p,x)(t

i)− µi
(p,x)(s

i) ≤
∫

∑
k

pk(ti, s−i)
(
vi

k(t
i)− vi

k(s
i)
)
dGi + ε(ti − si)

=∑
k

Gi(Ak(ti, p)
)(

vi
k(t

i)− vi
k(s

i)
)
+ ε(ti − si)

≤ ∑
k∈K

wk
(
vi

k(t
i)− vi

k(s
i)
)
.
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The last inequality follows from (A14) and c ≥ $i. This completes the proof.

Next we show that if (p, x) is cε-bounded, then it satisfies (11). By cε-boundedness,

µi
(p,x)(t

i)− µi
(p,x)(s

i) ≤ ∑
k∈K

wk
(
vi

k(t
i)− vi

k(s
i)
)
≤ max

k

(
vi

k(t
i)− vi

k(s
i)
)
∀si < ti,

where the last inequality follows from wk ≥ 0 for all k and ∑k wk ≤ 1.

B Proof of Theorem 5.1

For simplicity, denote Ek(si) ≡ Ak(si, p∗) for all si, k, and i. Lemmas B4 to B8 below

establish a key step of the proof of Theorem 5.1: for all k, si, and ξ-efficient SCR pξ ,

the set Ak(si, pξ) converges to the set Ek(si) as ξ → 0.

Fix ξ > 0 and a ξ-efficient SCR pξ . For each i ∈ I and si ∈ Si, define

O(si, pξ) ≡ {s−i ∈ S−i|max
k∈K

N

∑
l=1

vl
k(s

l)− ∑
k∈K

pξ
k(s)

N

∑
l=1

vl
k(s

l) ≥ ξ}.

For each si and each k ∈ K, let A+
k (s

i, pξ) ≡ Ak(si, pξ) ∩O(si, pξ) and A−k (s
i, pξ) ≡

Ak(si, pξ) \ A+
k (s

i, pξ). For each i ∈ I , si ∈ Si, and k ∈ K, define

Aξ
k(s

i) ≡ {s−i ∈ S−i|max
k′ 6=k

N

∑
l=1

vl
k′(s

l)−
N

∑
l=1

vl
k(s

l) ≤ −ξ},

Aξ
k(s

i) ≡ {s−i ∈ S−i|max
k′ 6=k

N

∑
l=1

vl
k′(s

l)−
N

∑
l=1

vl
k(s

l) < ξ}.

For any s−i ∈ Ek(si), maxk′ 6=k ∑N
l=1 vl

k′(s
l)−∑N

l=1 vl
k(s

l) ≤ 0. Thus,

Aξ
k(s

i) ⊆ Ek(si) ⊆ Aξ
k(s

i) ∀si ∈ Si, ∀i ∈ I , ∀k ∈ K. (B15)

Lemma B4. For every i ∈ I , si ∈ Si, and k ∈ K, we have A+
k (s

i, pξ) ∩ Ek(si) = ∅.

Proof. Note that A+
k (s

i, pξ) ⊆ {s−i ∈ S−i|maxk′∈K ∑N
l=1 vl

k′(s
l)− ∑N

l=1 vl
k(s

l) ≥ ξ}.

It follows from the definition of Ek(si) that s−i /∈ A+
k (s

i, pξ) for any s−i ∈ Ek(si).

Lemma B5. Aξ
k(s

i) \O(si, pξ) ⊆ A−k (s
i, pξ) ⊆ Aξ

k(s
i) for all k ∈ K, si ∈ Si, and i ∈ I .

Proof. Fix k ∈ K, i ∈ I , and si ∈ Si. We first prove Aξ
k(s

i) \O(si, pξ) ⊆ A−k (s
i, pξ)

by way of contradiction. Take s−i ∈ Aξ
k(s

i) \O(si, pξ). Suppose that s−i /∈ A−k (s
i, pξ).

Since A+
k (s

i, pξ) ⊆ O(si, pξ), we know that s−i /∈ A+
k (s

i, pξ). Then there exists k̃ 6= k

such that s−i ∈ Ak̃(s
i, pξ). Since s−i ∈ Aξ

k(s
i), we have

∑
l

vl
k(s

l) ≥ max
k′ 6=k

∑
l

vl
k′(s

l) + ξ ≥∑
l

vl
k̃(s

l) + ξ.
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Moreover, s−i ∈ Aξ
k(s

i) implies k is efficient given (si, s−i) and, hence,

max
k′

∑
l

vl
k′(s

l)−∑
l

vl
k̃(s

l) = ∑
l

vl
k(s

l)−∑
l

vl
k̃(s

l) ≥ ξ.

Thus, s−i ∈ A+
k̃
(si, pξ) ⊆ O(si, pξ), which contradicts that s−i /∈ O(si, pξ).

We now prove A−k (s
i, pξ) ⊆ Aξ

k(s
i). Take s−i ∈ A−k (s

i, pξ). If s−i ∈ Ek(si), then

(B15) implies s−i ∈ Aξ
k(s

i). If k is not efficient, the choice of s−i implies that

max
k′∈K∑

l
vl

k′(s
l)−∑

l
vl

k(s
l) = max

k′ 6=k
∑

l
vl

k′(s
l)−∑

l
vl

k(s
l) < ξ.

Thus, s−i ∈ Aξ
k(s

i). This completes the proof.

Since vl
k are continuously differentiable and signal spaces are convex and com-

pact, Pivotality implies there is b > 0 such that for any i ∈ I and k 6= k′, there exists

j 6= i such that either
∂
(

∑l vl
k(s

l)−∑l vl
k′ (s

l)
)

∂sj ≥ b for all s ∈ S or
∂
(

∑l vl
k(s

l)−∑l vl
k′ (s

l)
)

∂sj ≤

−b for all s ∈ S.

Lemma B6. Assume Pivotality. Then S−i \ Aξ
k(s

i) ⊆ B 2ξ
b

(
S−i \ Aξ

k(s
i)
)

for all si ∈ Si,

k ∈ K, and i ∈ I .

Proof. Fix i ∈ I , si ∈ Si, and k ∈ K. Take s−i ∈ Aξ
k(s

i) \ Aξ
k(s

i). Since S−i \

Aξ
k(s

i) ⊆ S−i \ Aξ
k(s

i), we only need to show there exists t−i ∈ S−i \ Aξ
k(s

i) such

that ‖ s−i − t−i ‖∞≤ 2ξ
b . Let k̂ ∈ argmaxk′ 6=k ∑l vl

k′(s
i, s−i). Suppose first there

exists j 6= i such that
∂
(

∑l vl
k(s

l)−∑l vl
k̂
(sl)
)

∂sj ≥ b for all s ∈ S. Construct a t such that

tj = sj − 2ξ
b and tl = sl for all l 6= j. By construction, ‖ s−i − t−i ‖∞= 2ξ

b . We are

going to show that t−i ∈ S−i \ Aξ
k(s

i). Observe that

max
k′ 6=k

∑
l

vl
k′(t

l)−∑
l

vl
k(t

l) ≥∑
l

vl
k̂(t

l)−∑
l

vl
k(t

l) ≥∑
l

vl
k̂(s

l)−∑
l

vl
k(s

l) + 2ξ > ξ,

as desired. Suppose now there exists j 6= i such that
∂
(

∑l vl
k(s

l)−∑l vl
k̂
(sl)
)

∂sj ≤ −b for all

s ∈ S. Construct a t such that tj = sj + 2ξ
b and tl = sl for all l 6= j. By construction,

‖ s−i − t−i ‖∞= 2ξ
b . Since

max
k′ 6=k

∑
l

vl
k′(t

l)−∑
l

vl
k(t

l) ≥∑
l

vl
k̂(t

l)−∑
l

vl
k(t

l) ≥∑
l

vl
k̂(s

l)−∑
l

vl
k(s

l) + 2ξ > ξ,

we obtain t−i ∈ S−i \ Aξ
k(s

i). This completes the proof.38

38If the constructed t−i /∈ S−i, we can enlarge the set of signals to include t−i and extend agent i’s
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For any ξ > 0, let βξ ≡ maxsi∈Si,k∈K,i∈I

(
Gi(Aξ

k(s
i)
)
− Gi(Aξ

k(s
i)
))

.

Lemma B7. Assume Pivotality. Then limξ→0 βξ = 0.

Proof. Lemma B6 implies that for every i ∈ I , si ∈ Si, and k ∈ K,

Gi(Aξ
k(s

i)
)
− Gi(Aξ

k(s
i)
)
= Gi(S−i \ Aξ

k(s
i) \

(
S−i \ Aξ

k(s
i)
))

≤ Gi(B 2ξ
b

(
S−i \ Aξ

k(s
i)
)
\
(
S−i \ Aξ

k(s
i)
))

.

Since Gi is absolutely continuous with respect to the Lebesgue measure, we obtain

limξ→0 βξ = 0.

Recall that the distance between any two SCRs p and p′ is

dG(p, p′) = sup
i∈I ,si∈Si,k∈K

max{Gi(Ak(si, p) \ Ak(si, p′)
)
, Gi(Ak(si, p′) \ Ak(si, p)

)
}.

The next lemma states that dG(pξ , p∗)→ 0 as ξ → 0.

Lemma B8. Assume Pivotality. For any ε > 0, there exists a ξ > 0 such that dG(pξ , p∗) ≤

ε for all ξ-efficient SCR pξ and 0 < ξ < ξ.

Proof. Take ε > 0. Let ξ > 0 be such that βξ + ξ ≤ ε. The existence of such ξ follows

from Lemma B7. Fix 0 < ξ < ξ, ξ-efficient SCR pξ , i ∈ I , si ∈ Si, and k ∈ K. We

first show that Gi(Ek(si) \ Ak(si, pξ)
)
≤ ε. Observe that

Gi(Ek(si) \ Ak(si, pξ)
)
= Gi(Ek(si) \ A−k (s

i, pξ)
)
≤ Gi(Aξ

k(s
i) \ A−k (s

i, pξ)
)

≤Gi(Aξ
k(s

i)
)
− Gi(Aξ

k(s
i)
)
+ Gi(O(si, pξ)

)
≤ βξ + ξ ≤ ε.

The first equality follows from Ak(si, pξ) = A+
k (s

i, pξ)∪ A−k (s
i, pξ) and Lemma B4;

the first inequality follows from (B15); the second inequality follows from Lemma

B5; the third inequality follows from the definition of βξ and Gi(O(si, pξ)
)
≤ ξ.

We next show Gi(Ak(si, pξ) \ Ek(si)
)
≤ ε. Since Ak(si, pξ) = A+

k (s
i, pξ) ∪

A−k (s
i, pξ), Lemma B4 implies that

Gi(Ak(si, pξ) \ Ek(si)
)
= Gi(A+

k (s
i, pξ) ∪ A−k (s

i, pξ) \ Ek(si)
)

= Gi(A+
k (s

i, pξ)
)
+ Gi(A−k (s

i, pξ) \ Ek(si)
)
.

(B16)

beliefs to this larger domain with Fi({t−i}) = 0 for all Fi ∈ F i. Then all our results remain valid.
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Observe that

Gi(A−k (s
i, pξ) \ Ek(si)

)
≤ Gi(Aξ

k(s
i) \ Ek(si)

)
≤ Gi(Aξ

k(s
i)
)
− Gi(Aξ

k(s
i)
)
≤ βξ . (B17)

The first inequality follows from Lemma B5; the second inequality follows from

(B15); the last inequality follows from the definition of βξ . Since A+
k (s

i, pξ) ⊆

O(si, pξ) and pξ is ξ-efficient, we have Gi(A+
k (s

i, pξ)
)
≤ Gi(O(si, pξ)

)
≤ ξ for

every k ∈ K. Combining this observation with (B16) and (B17) yields the desired

result.

We are now ready to prove Theorem 5.1. Define κ ≡ maxi Ki. Fix ε > 0. By

Lemma B8, there exists a ξ > 0 such that dG(pξ , p∗) ≤ min{ε, ε
mκ} for all ξ-efficient

SCR pξ and 0 < ξ < ξ. Suppose there exist 0 < ξ < ξ and ξ-efficient SCR pξ such

that pξ is implementable by the transfer scheme x. We are going to show that p∗ is

ε-locally implementable by xF with {µi
(pξ ,x)}i∈I .

Fix i ∈ I and si, ti ∈ Si. We first show that (p∗, xF) is ε-LIC. By the construction

of (p∗, xF), we know that µi
(p∗,xF)

= µi
(pξ ,x) and

ui
(p∗,xF)

(ti, si) = µi
(pξ ,x)(t

i) +
∫

∑
k

p∗k(t
i, s−i)

(
vi

k(s
i)− vi

k(t
i)
)
dGi

= µi
(pξ ,x)(t

i) + ∑
k

∫
Ek(ti)

(
vi

k(s
i)− vi

k(t
i)
)
dGi.

Then (p∗, xF) is ε-LIC if

µi
(pξ ,x)(s

i) ≥ µi
(pξ ,x)(t

i) + ∑
k

∫
Ek(ti)

(
vi

k(s
i)− vi

k(t
i)
)
dGi − ε|si − ti|. (B18)

Since (pξ , x) is IC, we have µi
(pξ ,x)(s

i) ≥ ui
(pξ ,x)(t

i, si), which implies

µi
(pξ ,x)(s

i)− µi
(pξ ,x)(t

i) ≥∑
k

∫
Ak(ti,pξ)

(
vi

k(s
i)− vi

k(t
i)
)
dGi. (B19)

Combining this inequality with (B18), we obtain that (p∗, xF) is ε-LIC if

∑
k∈Ki

∫
Ak(ti,pξ)

(
vi

k(s
i)− vi

k(t
i)
)
dGi ≥ ∑

k∈Ki

∫
Ek(ti)

(
vi

k(s
i)− vi

k(t
i)
)
dGi − ε|si − ti|.

Thus, we only need to show this inequality holds. If si > ti, by Lemma A1 and the

choice of ξ, we obtain that

∑
k∈Ki

( ∫
Ek(ti)

(
vi

k(s
i)− vi

k(t
i)
)
dGi −

∫
Ak(ti,pξ)

(
vi

k(s
i)− vi

k(t
i)
)
dGi
)
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≤ ∑
k∈Ki

∫
Ek(ti)\Ak(ti,pξ)

(
vi

k(s
i)− vi

k(t
i)
)
dGi ≤ ∑

k∈Ki

m(si − ti)Gi(Ek(ti) \ Ak(ti, pξ))

≤κm(si − ti)dG(pξ , p∗) ≤ ε|si − ti|,

as desired. The case in which si < ti can be dealt with analogously.

We next show µi
(p∗,xF)

is monotone, which is equivalent to showing µi
(pξ ,x) is

monotone. Note that for any si > ti, we have vi
k(s

i)− vi
k(t

i) ≥ 0 for all k. Then it

follows immediately from the incentive constraint (B19) that µi
(pξ ,x)(s

i) ≥ µi
(pξ ,x)(t

i),

as desired.

Finally, we show that (p∗, xF) is ε-bounded. For any si > ti, the incentive com-

patibility of (pξ , x) implies

µi
(pξ ,x)(s

i)− µi
(pξ ,x)(t

i) ≤ ∑
k∈K

Gi(Ak(si, pξ)
)(

vi
k(s

i)− vi
k(t

i)
)
.

Since Gi is a probability distribution, ∑k∈K Gi(Ak(si, pξ)) = 1. Moreover, the

choice of ξ implies that for every k ∈ K,

Gi(Ak(si, pξ)
)
− Gi(Ek(si)

)
≤ dG(pξ , p∗) ≤ ε.

Taking wk = Gi(Ak(si, pξ)) for all k ∈ K completes the proof.

C Proof of Theorem 5.2

The proof consists of two steps: the first step is to show the CEM is asymptotically

LIC; the second step is to show the CEM is asymptotically bounded and indirect

utility functions are monotone. Fix δ > 0. We first show that there exists M such

that if M > M, the CEM is δ-LIC. In the proofs below, we focus on sellers and

similar arguments apply to buyers. Suppose seller j with cost cj bids ĉj. The other

buyers’ and sellers’ offers/bids are arrayed in increasing order s(1) ≤ ... ≤ s(2M−1).

There are three cases to consider. If ĉj ≤ s(M−1), the price is s(M−1) and seller j

trades; if s(M−1) < ĉj ≤ s(M), the price is ĉj and seller j trades; if s(M) < ĉj, seller j

does not trade. Let F(M−1) denote the distribution of s(M−1) and Pr(s(M−1) < ĉj ≤

s(M)) denote the probability that ĉj lies between s(M−1) and s(M). Seller j’s utility

under the CEM is given by

uj(ĉj, cj) =
∫ 1

ĉj
(s(M−1) − cj)dF(M−1) + (ĉj − cj)Pr(s(M−1) < ĉj ≤ s(M)).
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Observe that for any ĉj < cj,

uj(cj, cj)− uj(ĉj, cj) = (cj − ĉj)Pr(s(M−1) < ĉj ≤ s(M)) +
∫ cj

ĉj
(cj − s(M−1))dF(M−1) > 0.

Thus, a seller will not underreport his cost. Suppose now that ĉj > cj. Note that

uj(ĉj, cj)− uj(cj, cj) < (ĉj − cj)Pr(s(M−1) < ĉj ≤ s(M))

= (ĉj − cj)
(2M− 1)!
(M− 1)!M!

G(ĉj)M−1(1− G(ĉj)
)M.

By Stirling’s Approximation, we have (2M−2)!
(M−1)!(M−1)! ≤

4M−1√
π(M−1)

. Also, G(ĉj)
(
1−

G(ĉj)
)
≤ 1

4 . Thus, there exists M such that for all M > M,

(2M− 1)!
(M− 1)!M!

G(ĉj)M−1(1− G(ĉj)
)M ≤ 2M− 1

M
4M−1√

π(M− 1)
1

4M−1 =
2M− 1

M
√

π(M− 1)
< δ.

Hence, uj(cj, cj) > uj(ĉj, cj)− δ(ĉj − cj) for all M > M, as desired.

We next show CEM is δ-bounded and indirect utility functions associated with

the CEM, denoted by µi, are monotone. Notice that for a seller j, his valuation from

trading is −cj. Thus, by Lemma 4.1, we only need to show

0 ≤ µj(cj)− µj(ĉj) ≤ ĉj − cj ∀cj < ĉj. (C20)

Take a seller j and cj < ĉj. By construction of the mechanism,

µj(cj)− µj(ĉj) =
∫ 1

cj
(s(M−1) − cj)dF(M−1) −

∫ 1

ĉj
(s(M−1) − ĉj)dF(M−1)

=
∫ ĉj

cj

(
1− F(M−1)(x)

)
dx.

Clearly, the inequalities in (C20) are satisfied.

D Proof of Theorem 6.1

Theorem 6.1 holds in both one- and multi-dimensional environments. We here

provide a proof of Theorem 6.1 in the case of multi-dimensional signals. The proof

for one-dimensional signals can be derived as a special case and, hence, omitted.

With interdependent values, a full insurance transfer scheme is constructed as

in (1) with replacing vi
k(s

i) by vi
k(s). The definition of ε-boundedness also needs to

be modified when signals are multi-dimensional. Let

L+(si, ti) ≡ {k ∈ Ki|si
ki ≥ ti

ki} and L−(si, ti) ≡ Ki \ L+(si, ti) ∀si, ti ∈ Si, ∀i ∈ I .

Definition 11 (Multi-dimensional Signals). For any Bayesian environment EB with
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additively separable value functions and any ε ≥ 0, a mechanism (p, x) is ε-

bounded if for any i ∈ I and si, ti ∈ Si with L+(si, ti) 6= ∅, we have

µi
(p,x)(s

i)− µi
(p,x)(t

i) ≤ ∑
k∈L+(si,ti)

wk
(

f i
k(s

i)− f i
k(t

i)
)
, (D21)

where {wk}k∈L+(si,ti) satisfies (i) 0 ≤ wk ≤ Gi(Ak(ti, p)
)
+ ε for all k ∈ L+(si, ti)

and (ii) ∑k∈L+(si,ti) wk ≤ 1.

It is easily seen that, with the suitably modified definitions, all our results and

proofs in the case of private values directly extend to the case of interdependent

and additively separable values. We next prove Theorem 6.1 with nonseparable

values.

We start with some notation and preliminary lemmas. Let Di
k(s

i, ti, s−i) ≡

vi
k(s

i, s−i)− vi
k(t

i, s−i). Also define

m ≡ max
i∈I ,k∈Ki,s∈S

∂vi
k(s

i, s−i)

∂si
ki

and m ≡ min
i∈I ,k∈Ki,s∈S

∂vi
k(s

i, s−i)

∂si
ki

Lemma D9. Fix a Bayesian environment and ε > 0 . Let (p, x) be an ε-LIC mech-

anism with monotone indirect utility functions. Then for all i ∈ I , si, ti ∈ Si, and

L′ ⊆ L+(si, ti),

µi
(p,x)(s

i)− µi
(p,x)(t

i) ≥ ∑
k∈L′∪L−(si,ti)

( ∫
Ak(ti,p)

Di
k(s

i, ti, s−i)dGi − ε|si
ki − ti

ki|
)

.

Proof. Fix i ∈ I , si, ti ∈ Si, and L′ ⊆ L+(si, ti). Construct s̃i as follows:

s̃i
ki = si

ki ∀k ∈ L′ ∪ L−(si, ti), and s̃i
ki = ti

ki ∀k ∈ L+(si, ti) \ L′.

By definition, we have si
ki ≥ ti

ki for all k ∈ L+(si, ti) and, hence, the construction of

s̃i implies si
ki ≥ s̃i

ki for all k. That is, L−(si, s̃i) = ∅. Since µi
(p,x) is monotone, we

obtain µi
(p,x)(s

i) ≥ µi
(p,x)(s̃

i). Thus,

µi
(p,x)(s

i)− µi
(p,x)(t

i) ≥ µi
(p,x)(s̃

i)− µi
(p,x)(t

i)

≥ ∑
k∈L′∪L−(si,ti)

( ∫
Ak(ti,p)

Di
k(s

i, ti, s−i)dGi − ε|si
ki − ti

ki|
)

.

The second inequality follows from ε-LIC and the construction of s̃i.

For every si ∈ Si, let e(si) ≡ {ti ∈ Si|si
ki = ti

ki, ∀k ∈ K}. Any two signals in e(si)

only differ in own-payoff irrelevant information.
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Lemma D10. Fix ε ≥ 0. For any ε-LIC mechanism (p, x), µi
(p,x)(s

i) = µi
(p,x)(t

i) for all

si ∈ Si, ti ∈ e(si), and i ∈ I .

Proof. Fix i ∈ I , si ∈ Si, and ti ∈ e(si). Since ti ∈ e(si), we have si
ki = ti

ki and, hence,

vi
k(s

i, s−i) = vi
k(t

i, s−i) for all k ∈ K and s−i ∈ S−i. Since (p, x) is ε-LIC,

µi
(p,x)(s

i) ≥ µi
(p,x)(t

i) +
∫

∑ pk(ti, s−i)Di
k(s

i, ti, s−i)dGi − ε ∑
k∈Ki

|si
ki − ti

ki| = µi
(p,x)(t

i).

Reversing the roles of si and ti yields µi
(p,x)(t

i) ≥ µi
(p,x)(s

i). Thus, µi
(p,x)(s

i) =

µi
(p,x)(t

i).

For every SCR p, k ∈ K, and si, ti ∈ Si, let Di
k,p(si, ti) ≡ sups−i∈Ak(si,p) Di

k(s
i, ti, s−i)

and Ci
k,p(s

i, ti) ≡ {s−i ∈ S−i|Di
k,p(si, ti) = Di

k(s
i, ti, s−i)}. By the definition of

Di
k,p(si, ti) and the compactness of S−i, we have Ci

k,p(s
i, ti) 6= ∅. For every SCR p,

ξ > 0, k ∈ K, and si, ti ∈ Si, define

S̃−i
ξ,k,p(s

i, ti) ≡ {s−i ∈ Ak(si, p)|Di
k,p(s

i, ti)− ξ(si
ki − ti

ki) ≥ Di
k(s

i, ti, s−i)}.

Recall that Ki = |Ki|, κ = maxi Ki, and A0(si, p) ≡ ∪k∈Ki
0
Ak(si, p). For any SCR p,

i ∈ I , and si ∈ Si, define K̃i
p(si) ≡ {k ∈ K|Gi(Ak(si, p)

)
> 1

Ki+1}. Let S̃i
p ≡ {si ∈

Si|Gi(A0(si, p)
)
< 1

Ki+1}. Finally, for any s−i ∈ S−i and sj
kl, let s−i \ sj

kl denote the

coordinates of s−i other than sj
kl.

Lemma D11. There exist 0 < ξ < m and 0 < η < 1
κ+1 such that Gi(S̃−i

ξ,k,p(s
i, ti)

)
≥ η

for all SCR p, si ∈ S̃i
p, ti ∈ Si, k ∈ K̃i

p(si), and i ∈ I .

Proof. Fix 0 < η < 1
κ+1 . By nonseparability, there exists τ > 0 such that | ∂

2vi
k(s

i,s−i)

∂si
ki∂sj

ki

| ≥

τ for all k ∈ Ki, j 6= i, i ∈ I and s ∈ S. This implies that given any s−i ∈ Ci
k,p(s

i, ti),

for any signal s̃−i so that s̃j
ki 6= sj

ki for some j 6= i and s̃−i \ s̃j
ki = s−i \ sj

ki, we have

s̃−i /∈ Ci
k,p(s

i, ti). Thus, the set Ci
k,p(s

i, ti) has an empty interior. Since gi is continu-

ous and S−i is compact, there exists C > 0 such that gi(s−i) < C for all s−i ∈ S−i

and i ∈ I . Then there exists δ > 0 such that Gi(Bδ(Ci
k,p(s

i, ti))
)
< 1

κ+1 − η for all

si, ti ∈ Si, k ∈ Ki, i ∈ I , and SCR p. Take 0 < ξ < min{m, τδ}.

Fix a SCR p, i ∈ I , si ∈ S̃i
p, and ti ∈ Si. Since si ∈ S̃i

p, we know that K̃i
p(si) 6= ∅.

Otherwise, we have ∑k̂∈K Gi(Ak̂(s
i, p)

)
< 1, a contradiction. Take k ∈ K̃i

p(si).

49



Assume that ∂2vi
k(s

i,s−i)

∂si
ki∂sj

ki

> 0 for all j 6= i and s−i ∈ S−i. The other cases follow from

analogous arguments. Note that if si
ki ≤ ti

ki, then S̃−i
ξ,k,p(s

i, ti) = Ak(si, p). Since

k ∈ K̃i
p(si), we have Gi(S̃−i

ξ,k,p(s
i, ti)

)
= Gi(Ak(si, p)

)
> 1

κ+1 > η, as desired. Thus,

assume that si
ki > ti

ki. Take any ŝ−i ∈ Ak(si, p) \ Bδ

(
Ci

k,p(s
i, ti)

)
. We next show

that there exists t−i ∈ Ci
k,p(s

i, ti) such that tl
ki − ŝl

ki ≥ 0 for all l 6= i. Take any

s̃−i ∈ Ci
k,p(s

i, ti) and by way of contradiction, suppose that there exists j′ 6= i such

that s̃j′

ki − ŝj′

ki < 0. Construct s−i such that sl
ki = max{ŝl

ki, s̃l
ki} for all l 6= i. For the

other dimensions, if sl
ki = ŝl

ki, then sl
k′l′ = ŝl

k′l′ ; similarly, if sl
ki = s̃l

ki, then sl
k′l′ = s̃l

k′l′ .

By construction, s−i ∈ S−i where sl
ki ≥ s̃l

ki for all l 6= i and sj′

ki = ŝj′

ki > s̃j′

ki. Since
∂2vi

k(s
i,s−i)

∂si
ki∂sj

ki

> 0 for all j 6= i, we obtain

Di
k(s

i, ti, s−i) > Di
k(s

i, ti, s̃−i) = Di
k,p(s

i, ti). (D22)

It follows from the definition of Di
k,p(si, ti) and the choice of ŝ−i that Di

k,p(si, ti) >

Di
k(s

i, ti, ŝ−i). Combining the latter inequality with (D22) yields Di
k(s

i, ti, s−i) >

Di
k(s

i, ti, ŝ−i). Then by continuity, there exists t−i ∈ S−i such that ŝl
ki ≤ tl

ki ≤ sl
ki for

all l 6= i and Di
k(s

i, ti, t−i) = Di
k,p(si, ti), that is, t−i ∈ Ci

k,p(s
i, ti).

Since ŝ−i /∈ Bδ

(
Ci

k,p(s
i, ti)

)
, there exists j 6= i such that tj

ki − ŝj
ki > δ. Therefore,

Di
k,p(s

i, ti)− Di
k(s

i, ti, ŝ−i) = Di
k(s

i, ti, t−i)− Di
k(s

i, ti, ŝ−i)

=
∫ si

ki

ti
ki

(
∂vi

k(θ, t−i
ki )

∂θ
−

∂vi
k(θ, ŝ−i

ki )

∂θ
)dθ ≥ τδ(si

ki − ti
ki) > ξ(si

ki − ti
ki).

Thus, S̃−i
ξ,k,p(s

i, ti) ⊇ Ak(si, p) \ Bδ

(
Ci

k,p(s
i, ti)

)
. By the choice of δ, we conclude that

Gi(S̃−i
ξ,k,p(s

i, ti)
)
≥ Gi(Ak(si, p) \ Bδ(Ci

k,p(s
i, ti))

)
> η, as desired.

We are now ready to prove Theorem 6.1. Fix a Bayesian environment EB and

a rich SCR p. Take 0 < δ ≤ 1 and a δ-ambiguity environment Eδ. Lemma D11

implies that there exist 0 < ξ < m and 0 < η < 1
κ+1 such that Gi(S̃−i

ξ,k,p(s
i, ti)

)
≥ η

for all si ∈ S̃i
p, ti ∈ Si, k ∈ K̃i

p(si), and i ∈ I . Take ε > 0 such that εκ
m + εκ(m−ξ)

ξ(m−ξ)
≤ δ

and εκ(m−ξ)
ξ(m−ξ)

≤ η. Suppose that p is ε-locally implementable by the transfer scheme

x with associated indirect utility functions µi
(p,x) in EB. We are going to show that

p is implementable by the full insurance transfer scheme xF with {µi
(p,x)}i in Eδ.

Recall from Section 3 that by construction, µi
(p,x) is also agent i’s indirect utility
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function associated with (p, xF) in Eδ. We thus only need to show for all si, ti ∈ Si,

µi
(p,x)(s

i) ≥ ui
(p,xF)

(ti, si) = µi
(p,x)(t

i) + min
Fi∈F i

∫
∑ pk(ti, s−i)Di

k(s
i, ti, s−i)dFi, (D23)

where ui
(p,xF)

is i’s interim payoff under (p, xF) in Eδ.

Fix i ∈ I and si, ti ∈ Si. If ti ∈ e(si), Lemma D10 implies µi
(p,x)(s

i) = µi
(p,x)(t

i).

Since ti ∈ e(si), we have Di
k(s

i, ti, s−i) = 0 for all s−i. Therefore,

µi
(p,x)(s

i) = µi
(p,x)(t

i) = µi
(p,x)(t

i) + min
Fi∈F i

∫
∑ pk(ti, s−i)Di

k(s
i, ti, s−i)dFi,

as desired. Now suppose ti /∈ e(si). That is, there exists k ∈ Ki such that |si
ki −

ti
ki| 6= 0. Since si and ti are fixed, we write L+ and L− in place of L+(si, ti) and

L−(si, ti) respectively. Let L++ ≡ {k ∈ L+|Gi(Ak(ti, p)
)
≥ ε

m}. Lemma D9 implies

µi
(p,x)(s

i) ≥ µi
(p,x)(t

i) + ∑
k∈L++∪L−

( ∫
Ak(ti,p)

Di
k(s

i, ti, s−i)dGi − ε|si
ki − ti

ki|
)
. (D24)

Combining (D24) and (D23) indicates that it suffices to show that there exists a F̂i

such that F̂i ∈ F i and

∑
k∈L++∪L−

( ∫
Ak(ti,p)

Di
k(s

i, ti, s−i)dGi − ε|si
ki − ti

ki|
)

≥
∫

∑ pk(ti, s−i)Di
k(s

i, ti, s−i)dF̂i.
(D25)

The rest of the proof is to construct such a F̂i explicitly in all possible cases.

Suppose first that L− = ∅. Construct F̂i as follows:

[F̂i(Ak(ti, p)
)
= Gi(Ak(ti, p)

)
− ε

m
∀k ∈ L++], [F̂i(Ak(ti, p)

)
= 0 ∀k ∈ Ki \ L++],

F̂i(A0(ti, p)
)
= Gi(A0(ti, p)

)
+

Ki

∑
k=1

(
Gi(Ak(ti, p)

)
− F̂i(Ak(ti, p)

))
.

By construction, ∑Ki

k=1
(
Gi(Ak(ti, p)

)
− F̂i(Ak(ti, p)

))
≤ Kiε

m . Since δ ≥ Kiε
m , F̂i ∈

Bδ(Gi) ⊆ F i. The construction of F̂i yields

∑
k∈L++

∫
Ak(ti,p)

Di
k(s

i, ti, s−i)dGi − ε ∑
k∈L++

|si
ki − ti

ki| ≥ ∑
k∈Ki

∫
Ak(ti,p)

Di
k(s

i, ti, s−i)dF̂i.

Thus, (D25) is satisfied. Suppose now L− 6= ∅. Suppose also that

Gi(A0(ti, p)
)
+ ∑

k∈L+\L++

Gi(Ak(ti, p)
)
+ |L++| ε

m
≥ |L−| ε

m
. (D26)

Then construct F̂i as follows:

[F̂i(Ak(ti, p)
)
= Gi(Ak(ti, p)

)
+

ε

m
∀k ∈ L−], [F̂i(Ak(ti, p)

)
= 0 ∀k ∈ L+ \ L++],
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F̂i(Ak(ti, p)
)
= Gi(Ak(ti, p)

)
− ε

m
∀k ∈ L++,

F̂i(A0(ti, p)
)
= Gi(A0(ti, p)

)
+ ∑

k∈L+\L++

Gi(Ak(ti, p)
)
+ (|L++| − |L−|) ε

m
.

By (D26), F̂i is well defined. Since δ ≥ Kiε
m , we have F̂i ∈ Bδ(Gi) ⊆ F i. It is

straightforward to verify that the construction of F̂i implies (D25). Suppose now

Gi(A0(ti, p)
)
+ ∑

k∈L+

Gi(Ak(ti, p)
)

≥|L−| ε

m
> Gi(A0(ti, p)

)
+ ∑

k∈L+\L++

Gi(Ak(ti, p)
)
+ |L++| ε

m
.

(D27)

Then construct F̂i as follows:

[F̂i(Ak(ti, p)
)
= Gi(Ak(ti, p)

)
+

ε

m
∀k ∈ L−], [F̂i(Ak(ti, p)

)
= 0 ∀k ∈ L+ \ L++],

F̂i(A0(ti, p)
)
= 0, ∑

k∈L++

F̂i(Ak(ti, p)
)
= Gi(A0(ti, p)

)
+ ∑

k∈L+

Gi(Ak(ti, p)
)
− |L−| ε

m
,

Gi(Ak(ti, p)
)
− |L−| ε

m
≤ F̂i(Ak(ti, p)

)
≤ Gi(Ak(ti, p)

)
− ε

m
∀k ∈ L++.

Notice that F̂i may not be unique but such F̂i exists due to (D27). Since δ ≥ Kiε
m , we

have F̂i ∈ Bδ(Gi) ⊆ F i. It is straightforward to verify that (D25) follows directly

from the construction of F̂i. Finally, suppose

Gi(A0(ti, p)
)
+ ∑

k∈L+

Gi(Ak(ti, p)
)
< |L−| ε

m
. (D28)

For every k ∈ L−, define

s−i
k ∈ argmax

s−i∈Ak(ti,p)

vi
k(t

i, s−i)− vi
k(s

i, s−i)

ti
ki − si

ki
and mi

k =
vi

k(t
i
ki, s−i

k )− vi
k(s

i
ki, s−i

k )

ti
ki − si

ki
.39

Also, let k∗ ∈ argmaxk∈L− Di
k(t

i, si, s−i) and k ∈ argmaxk∈L−
(
ti
ki − si

ki
)
. By the

choice of ε, we have ε
m < 1

Ki(Ki+1) . Then (D28) implies

Gi(A0(ti, p)
)
+ ∑

k∈L+

Gi(Ak(ti, p)
)
< |L−| ε

m
≤ 1

Ki + 1
.

Hence, ti ∈ S̃i
p and K̃i

p(ti) 6= ∅. If k∗ /∈ K̃i
p(ti) ∩ L−, take k̃ ∈ K̃i

p(ti) ∩ L−; other-

39Since Ak(ti, p) might be an open set, it is possible that s−i
k does not exist. Then we can take a signal

s−i
k ∈ Ak(ti, p) such that mi

k > supt−i∈Ak(ti ,p)
vi

k(t
i
ki ,t
−i
ki )−vi

k(s
i
ki ,t
−i
ki )

ti
ki−si

ki
− ε for some small ε > 0.
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wise, take k̃ = k∗. Let λ = Kiε(m−ξ)
ξ(m−ξ)

≥ Kiε
ξ . Construct F̂i as follows:40

F̂i(A0(ti, p)
)
+ ∑

k∈L+

F̂i(Ak(ti, p)
)
= 0, F̂i(S̃−i

ξ,k̃,p
(ti, si)

)
= Gi(S̃−i

ξ,k̃,p
(ti, si)

)
− λ,

F̂i(Ak̃(t
i, p) \ S̃−i

ξ,k̃,p
(ti, si)

)
= Gi(Ak̃(t

i, p) \ S̃−i
ξ,k̃,p

(ti, si)
)
,

F̂i(s−i
k∗ ) = λ + Gi(A0(ti, p)

)
+ ∑

k∈L+

Gi(Ak(ti, p)
)
, F̂i(Ak∗(ti, p) \ {s−i

k∗ }) = Gi(Ak∗(ti, p)
)
,

F̂i(Ak(ti, p)
)
= Gi(Ak(ti, p)

)
∀k ∈ L− \ {k∗, k̃}.

By the choice of ε, we have λ ≤ η ≤ Gi(S̃−i
ξ,k̃,p

(ti, si)
)
. Thus, the constructed F̂i

is feasible. Since δ ≥ Kiε(m−ξ)
ξ(m−ξ)

+ Kiε
m , we know that F̂i ∈ Bδ(Gi) ⊆ F i. By the

construction of F̂i, we obtain

∑
k∈L−

∫
Ak(ti,p)

Di
k(s

i, ti, s−i)dGi − ∑
k∈K

∫
Ak(ti,p)

Di
k(s

i, ti, s−i)dF̂i

≥λ
(
mi

k∗(t
i
k∗i − si

k∗i)− (mi
k̃ − ξ)(ti

k̃i − si
k̃i)
)
.

(D29)

By the definition of L++, we obtain∫
Ak(ti,p)

Di
k(s

i, ti, s−i)dGi ≥ m(si
ki − ti

ki)G
i(Ak(ti, p)

)
≥ ε(si

ki − ti
ki) ∀k ∈ L++. (D30)

It follows from (D30) and (D29) that (D25) is satisfied if

mi
k∗(t

i
k∗i − si

k∗i)− (mi
k̃ − ξ)(ti

k̃i − si
k̃i) ≥

ε

λ ∑
k∈L−

(ti
ki − si

ki).

If k̃ = k, then

mi
k∗(t

i
k∗i − si

k∗i)− (mi
k̃ − ξ)(ti

k̃i − si
k̃i) ≥ mi

k̃(t
i
k̃i − si

k̃i)− (mi
k̃ − ξ)(ti

k̃i − si
k̃i)

=ξ(ti
k̃i − si

k̃i) ≥
ε

λ
Ki(ti

ki − si
ki) ≥

ε

λ ∑
k∈L−

(ti
ki − si

ki).

The first inequality follows from the definition of k∗; the second inequality follows

from the assumption that k̃ = k and λ ≥ ε
ξ Ki. Suppose now k̃ 6= k. If

(mi
k̃ − ξ)(ti

k̃i − si
k̃i) ≤ (mi

k − ξ)(ti
ki − si

ki), (D31)

then

mi
k∗(t

i
k∗i − si

k∗i)− (mi
k̃ − ξ)(ti

k̃i − si
k̃i) ≥ mi

k(t
i
ki − si

ki)− (mi
k − ξ)(ti

ki − si
ki)

=ξ(ti
ki − si

ki) ≥
ε

λ
Ki(ti

ki − si
ki) ≥

ε

λ ∑
k∈L−

(ti
ki − si

ki).

40When k̃ = k∗, let F̂i(Ak∗(ti, p) \
(
{s−i

k∗ } ∪ S̃−i
ξ,k∗ ,p(t

i, si)
))

= Gi(Ak∗(ti, p) \ S̃−i
ξ,k∗ ,p(t

i, si)
)
.
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If the inequality in (D31) is reversed, then

mi
k∗(t

i
k∗i − si

k∗i)− (mi
k̃ − ξ)(ti

k̃i − si
k̃i) ≥ mi

k̃(t
i
k̃i − si

k̃i)− (mi
k̃ − ξ)(ti

k̃i − si
k̃i)

=ξ(ti
k̃i − si

k̃i) > ξ
mi

k
− ξ

mi
k̃ − ξ

(ti
ki − si

ki) ≥
ε

λ
Ki(ti

ki − si
ki) ≥

ε

λ ∑
k∈L−

(ti
ki − si

ki).

The second inequality follows from the violation of (D31); the third inequality fol-

lows from λ = Kiε(m−ξ)
ξ(m−ξ)

≥ Kiε(mi
k̃−ξ)

ξ(mi
k
−ξ)

.

E Proof of Theorem 6.2

We start with some notation and a preliminary lemma. For every i ∈ I and si ∈ Si,

let e(si) ≡ {ti|ti
ki = si

ki, ti
kj ∈ Si

kj, ∀k ∈ K, ∀j 6= i}. Note that, by definition, ςi(si) ∈

e(si). It is possible that ti /∈ Si for some ti ∈ e(si) but Ek(ti) is well defined for all

ti ∈ e(si). Let d̃ ≡ maxi∈I ,j 6=i,k∈K(maxsj∈Sj sj
ki −minsj∈Sj sj

ki).

Lemma E12. For any ε > 0, there exists γ > 0 such that if γi < γ for all i ∈ I , then

Gi(Ek(si) \ Ek(ti)
)
≤ ε for all si, ti ∈ e(s̃i), s̃i ∈ Si, k ∈ K, and i ∈ I .

Proof. Take γ > 0 such that

sup
i∈I ,s̃i∈Si,ti∈e(s̃i)

Gi(B γd̃
m

(
Ek(ti)

))
− Gi(Ek(ti)

)
≤ ε. (E32)

Such γ exists since Gi is absolutely continuous with respect to the Lebesgue mea-

sure.

Fix i ∈ I , s̃i ∈ Si, si, ti ∈ e(s̃i), and k ∈ K. We first show that Ek(si) ⊆

B γi d̃
m

(
Ek(ti)

)
. Take s−i ∈ Ek(si) \ Ek(ti). It suffices to show there exists t−i ∈ Ek(ti)

such that ‖ s−i − t−i ‖∞≤ γi d̃
m . We are going to construct one: let tj for j 6= i be such

that

tj
kj = sj

kj +
γid̃
m

, tj
k′ j = sj

k′ j −
γid̃
m

, ∀k′ 6= k, tj
k̂l
= sj

k̂l
∀l 6= j, ∀k̂ ∈ K.

By construction, ‖ s−i − t−i ‖∞= γi d̃
m . We now show that t−i ∈ Ek(ti).41 By con-

struction, we have tj
kj = sj

kj +
γi d̃
m and tl

kj = sl
kj for all j 6= i, l 6= j, l 6= i. Since

41If t−i /∈ S−i, we can enlarge the set of signals to include t−i and extend agent i’s belief to this larger
domain with gi(t−i) = 0. Then all our results remain valid.
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si
kj − ti

kj ≤ d̃, we obtain

vj
k(t

i
kj, t−i

kj )− vj
k(s

i
kj, s−i

kj ) = vj
k(t

i
kj, sj

kj +
γid̃
m

, s−i−j
kj )− vj

k(s
i
kj, sj

kj, s−i−j
kj )

≥ m
γid̃
m
− γid̃ = 0 ∀j 6= i,

(E33)

where s−i−j
kj = (sl

kj)l 6=i,l 6=j. Since si
ki = ti

ki and sj
ki = tj

ki, we have vi
k(t

i
ki, t−i

ki ) =

vi
k(s

i
ki, s−i

ki ). Combining this observation with (E33) yields

∑
l

vl
k(t

i
kl, t−i

kl ) ≥∑
l

vl
k(s

i
kl, s−i

kl ). (E34)

Similarly, by the construction of t−i, we have tj
k′ j = sj

k′ j −
γi d̃
m and tl

k′ j = sl
k′ j for all

j 6= i, l 6= j, l 6= i. Since ti
k′ j − si

k′ j ≤ d̃, we obtain

vj
k′(s

i
k′ j, s−i

k′ j)− vj
k′(t

i
k′ j, t−i

k′ j) = vj
k′(s

i
k′ j, sj

k′ j, s−i−j
k′ j )− vj

k′(t
i
k′ j, sj

k′ j −
γid̃
m

, s−i−j
k′ j )

≥ m
γid̃
m
− γid̃ = 0 ∀j 6= i, ∀k′ 6= k.

(E35)

Since si
k′i = ti

k′i and sj
k′i = tj

k′i, we have vi
k′(s

i
k′i, s−i

k′i) = vi
k′(t

i
k′i, t−i

k′i) for all k′ 6= k.

Combining this observation with (E35) yields

∑
l

vl
k′(s

i
k′l, s−i

k′l) ≥∑
l

vl
k′(t

i
k′l, t−i

k′l) ∀k′ 6= k. (E36)

Since s−i ∈ Ek(si), we have ∑l vl
k(s

i
kl, s−i

kl ) ≥ ∑l vl
k′(s

i
k′l, s−i

k′l) for all k′ 6= k. Combin-

ing this inequality with (E34) and (E36) yields ∑l vl
k(t

i
kl, t−i

kl ) ≥ ∑l vl
k′(t

i
k′l, t−i

k′l) for

all k′ 6= k. That is, t−i ∈ Ek(ti). Therefore, Ek(si) ⊆ B γi d̃
m

(
Ek(ti)

)
.

Since γi < γ, (E32) implies

Gi(Ek(si) \ Ek(ti)
)
≤ Gi(B γd̃

m

(
Ek(ti)

))
− Gi(Ek(ti)

)
≤ ε,

as desired.

We now prove Theorem 6.2. Fix γ > 0 such that if γi < γ for all i ∈ I , then

Gi(Ek(si) \ Ek(ti)
)
≤ min{ε, ε

m} for all si, ti ∈ e(s̃i), s̃i ∈ Si, k ∈ K, and i ∈ I .

By Lemma E12, such γ exists. We are going to show that the MVCG mechanism

satisfies (i)–(iii) in Definition 8. Fix i ∈ I and si, ti ∈ Si. Since p∗ is efficient,

∑
k

p∗k (ς
i(si), s−i)∑

j
vj

k(ς
i
kj(s

i), s−i
kj )−∑

k
p∗k (ς

i(ti), s−i)∑
j

vj
k(ς

i
kj(s

i), s−i
kj ) ≥ 0. (E37)
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By construction, ςi
kj(s

i) = ςi
kj(t

i) for all k ∈ K and all j 6= i. Thus,

max
k

∑
j 6=i

vj
k(ς

i
kj(t

i), s−i
kj )−max

k
∑
j 6=i

vj
k(ς

i
kj(s

i), s−i
kj ) = 0 ∀s−i ∈ S−i

∑
j 6=i

(
vj

k(ς
i
kj(s

i), s−i
kj )− vj

k(ς
i
kj(t

i), s−i
kj )
)
= 0 ∀s−i ∈ S−i, ∀k ∈ K.

(E38)

Let µi
MVCG denote the indirect utility function of agent i associated with the MVCG

mechanism. By construction, we know that

µi
MVCG(s

i)− µi
MVCG(t

i)

=
∫ (

∑
k

p∗k(ς
i(si), s−i)∑

j
vj

k(ς
i
kj(s

i), s−i
kj )−∑

k
p∗k(ς

i(ti), s−i)∑
j

vj
k(ς

i
kj(s

i), s−i
kj )

+ max
k

∑
j 6=i

vj
k(ς

i
kj(t

i), s−i
kj )−max

k
∑
j 6=i

vj
k(ς

i
kj(s

i), s−i
kj ) + ∑

k
p∗k(ς

i(ti), s−i)Di
k(s

i, ti, s−i)

+ ∑
k

p∗k(ς
i(ti), s−i)∑

j 6=i

(
vj

k(ς
i
kj(s

i), s−i
kj )− vj

k(ς
i
kj(t

i), s−i
kj )
))

dGi.

Plugging (E37) and (E38) into the equality above yields

µi
MVCG(s

i)− µi
MVCG(t

i) ≥
∫

∑
k

p∗k(ς
i(ti), s−i)Di

k(s
i, ti, s−i)dGi. (E39)

Clearly, if L−(si, ti) = ∅, the inequality above implies µi
MVCG(s

i)− µi
MVCG(t

i) ≥ 0.

Thus, µi
MVCG is monotone. We next show that the MVCG mechanism is ε-LIC, that

is,

µi
MVCG(s

i) ≥ µi
MVCG(t

i) +
∫

∑
k

p∗k(t
i, s−i)Di

k(s
i, ti, s−i)dGi − ε ∑

k∈Ki

|si
ki − ti

ki|.

Combining this with (E39), we can see that a sufficient condition for ε-LIC is∫
Ek(ς

i(ti))
Di

k(s
i, ti, s−i)dGi ≥

∫
Ek(ti)

Di
k(s

i, ti, s−i)dGi − ε|si
ki − ti

ki| ∀k ∈ Ki.

Since ςi(ti) ∈ e(ti), the definition of m and the choice of γ imply for any k ∈

L+(si, ti),∫
Ek(ti)

Di
k(s

i, ti, s−i)dGi −
∫
Ek(ς

i(ti))
Di

k(s
i, ti, s−i)dGi ≤

∫
Ek(ti)\Ek(ς

i(ti))
Di

k(s
i, ti, s−i)dGi

≤ m|si
ki − ti

ki|G
i(Ek(ti) \ Ek(ς

i(ti))
)
≤ m|si

ki − ti
ki|

ε

m
= ε|si

ki − ti
ki|,

as desired. The proof for k ∈ L−(si, ti) follows analogous arguments. Thus, the

MVCG mechanism is ε-LIC.

Finally, we show that if values are additively separable, the MVCG mechanism
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is ε-bounded. Note that (E39) is equivalent to

µi
MVCG(t

i)− µi
MVCG(s

i) ≤∑
k

Gi(Ek(ς
i(ti))

)(
f i
k(t

i)− f i
k(s

i)
)

≤ ∑
k∈L+(ti,si)

Gi(Ek(ς
i(ti))

)(
f i
k(t

i)− f i
k(s

i)
)
.

Since Gi(Ek(ς
i(ti))

)
is the probability that k is chosen, ∑k∈L+(ti,si) Gi(Ek(ς

i(ti))
)
≤

1. Moreover, since γi < γ and ςi(ti) ∈ e(ti), it follows from Lemma E12 that

Gi(Ek(ς
i(ti))

)
≤ Gi(Ek(ti)

)
+ ε ∀k ∈ L+(ti, si).

Taking wk = Gi(Ek(ς
i(ti))

)
for all k ∈ L+(ti, si) completes the proof.

F An Alternative Notion of Approximate Local Incentive Compatibility

This section provides conditions under which ε-LIC and weak ε-LIC are equivalent

in multi-dimensional environments.

Definition 12. For any ε > 0, a SCR p is ε-robust to own-payoff irrelevant infor-

mation (ε-robust) if Gi(Ak(si, p) \ Ak(ti, p)
)
≤ ε for all si ∈ Si, ti ∈ e(si), k ∈ K,

and i ∈ I .

In words, a SCR p is ε-robust if the expected probability assignments do not

vary much as own-payoff irrelevant information varies. In the case of private val-

ues and the case of one-dimensional signals, any SCR is ε-robust for all ε ≥ 0, as

the set e(si) is a singleton. Another instance in which a SCR p is ε-robust is when p

is solely a function of valuations vi
k and the marginal effect of agent j’s information

on vi
k is relatively small for all j 6= i. By Lemma E12, for any ε > 0, the efficient

SCR is ε-robust if agents are sufficiently informationally small.

We next impose a restriction on the signal spaces. We assume that the corre-

spondence e(·) admits a Lipschitz selection: there exists a selection ςi(si) ∈ e(si)

such that ςi(si) is Lipschitz continuous in (si
ki)k∈Ki .

The next lemma presents the equivalence result.

Lemma F13. For any ε > 0, there exists ξ > 0 such that for any ξ-robust SCR p and any

weakly ξ-LIC mechanism (p, x̃), we can find a transfer scheme x such that (p, x) is ε-LIC.
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Proof. Fix ε > 0. Since e(·) admits a Lipschitz selection, there exists Λ > 0 such

that
∂ςi

k′ j(s
i)

∂si
ki

< Λ for all si ∈ Si, k ∈ Ki, k′ ∈ K, i ∈ I , and j 6= i. Recall that

m = maxi∈I ,k∈K,s∈S
∂vi

k(s
i
ki,s
−i
ki )

∂si
ki

. Take ξ = ε
m+Λ . Take a ξ-robust SCR p and a weakly

ξ-LIC mechanism (p, x̃). Construct a transfer scheme x as follows:

xi(si, s−i) = −∑
k

pk(si, s−i)vi
k(s

i, s−i) + µi
(p,x̃)(ς

i(si)) ∀si ∈ Si, ∀s−i ∈ S−i, ∀i ∈ I .

We are going to show that (p, x) is ε-LIC. Fix i and si, ti. Observe first that for every

k ∈ L+(si, ti), we have∫
pk(ti, s−i)Di

k(s
i, ti, s−i)dGi −

∫
pk(ς

i(ti), s−i)Di
k(s

i, ti, s−i)dGi

≤
∫

Ak(ti,p)\Ak(ςi(ti),p)
Di

k(s
i, ti, s−i)dGi

≤Gi(Ak(ti, p) \ Ak(ς
i(ti), p)

)
m(si

ki − ti
ki) ≤ mξ|si

ki − ti
ki|.

The second inequality follows from the definition of m; the last inequality follows

from the assumption that p is ξ-robust. By an analogous argument, the same con-

clusion holds for all k ∈ L−(si, ti). Thus, for every k ∈ Ki,∫
pk(ς

i(ti), s−i)Di
k(s

i, ti, s−i)dGi ≥
∫

pk(ti, s−i)Di
k(s

i, ti, s−i)dGi −mξ|si
ki − ti

ki|. (F40)

By the construction of x and the weak ξ-LIC of (p, x̃), we obtain

µi
(p,x)(s

i)− µi
(p,x)(t

i) = µi
(p,x̃)(ς

i(si))− µi
(p,x̃)(ς

i(ti))

≥
∫

∑
k∈K

pk(ς
i(ti), s−i)Di

k(s
i, ti, s−i)dGi − ξ ‖ ςi(si)− ςi(ti) ‖∞

=
∫

∑
k∈Ki

pk(ς
i(ti), s−i)Di

k(s
i, ti, s−i)dGi − ξ ‖ ςi(si)− ςi(ti) ‖∞ .

The last equality follows from Di
k(s

i, ti, s−i) = 0 for all k ∈ Ki
0 and s−i ∈ S−i.

Combining this inequality with (F40) yields

µi
(p,x)(s

i)− µi
(p,x)(t

i)

≥
∫

∑
k∈Ki

pk(ti, s−i)Di
k(s

i, ti, s−i)dGi −mξ ∑
k∈Ki

|si
ki − ti

ki| − ξ ‖ ςi(si)− ςi(ti) ‖∞

≥
∫

∑
k∈Ki

pk(ti, s−i)Di
k(s

i, ti, s−i)dGi − ε ∑
k∈Ki

|si
ki − ti

ki|.

The last inequality follows from ‖ ςi(si) − ςi(ti) ‖∞≤ Λ ∑k∈Ki |si
ki − ti

ki| and the
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construction of ξ. It follows from the construction of x that

µi
(p,x)(s

i) ≥ µi
(p,x)(t

i) +
∫

∑
k∈Ki

pk(ti, s−i)Di
k(s

i, ti, s−i)dGi − ε ∑
k∈Ki

|si
ki − ti

ki|

= ui
(p,x)(t

i, si)− ε ∑
k∈Ki

|si
ki − ti

ki|.

That is, the mechanism (p, x) is ε-LIC.
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