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This paper provides a micro-foundation for approximate incentive compati-
bility using ambiguity aversion. In particular, we propose a novel notion of ap-
proximate interim incentive compatibility, approximate local incentive compatibility,
and establish an equivalence between approximate local incentive compatibility
in a Bayesian environment and exact interim incentive compatibility in the pres-
ence of a small degree of ambiguity. We then apply our result to the implementa-
tion of efficient allocations. In particular, we identify three economic settings—
including ones in which approximately efficient allocations are implementable,
ones in which agents are informationally small, and large double auctions—in
which efficient allocations are approximately locally implementable when agents
are Bayesian. Applying our result to those settings, we conclude that efficient al-
locations are exactly implementable when agents perceive a small degree of ambi-
guity.
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1 Introduction

The presence of asymmetrically informed agents greatly restricts the set of imple-
mentable social choice rules. For example, in a variety of mechanism design con-
texts, it is impossible to allocate resources in a way which simultaneously gives
agents perfect incentives to be truthful and ensures efficient outcomes.! In light of
the impossibility results, an extensive literature examines if it is possible to main-
tain some attractive properties a mechanism can satisfy by imposing a weaker
incentive criterion—approximate incentive compatibility.> This literature assumes
agents do not misreport when there is a small utility gain. However, if agents are
rational, it is not clear why they content themselves with approximately optimal
choices. The literature usually takes a “reduced form” approach without explicitly
modeling why agents would forgo a small utility gain.

This paper proposes a novel micro-foundation for approximate incentive com-
patibility using ambiguity aversion. In particular, we propose a notion of ap-
proximate interim incentive compatibility, which we call approximate local incentive
compatibility, and establish an equivalence between approximate local incentive
compatibility in a Bayesian environment and exact interim incentive compatibil-
ity in the presence of a small degree of ambiguity. Following Gilboa and Schmeidler
[20], we model ambiguity aversion using the maxmin expected utility model: each
agent faces ambiguity about the distribution of the other agents’ types and eval-
uates each action according to the worst-case expected payoff over all possible
distributions. Small ambiguity can thus be captured by the size of the set of priors
of each agent.

Before defining our notion, recall first the standard notion of approximate in-
centive compatibility: a mechanism is e-incentive compatible (e-IC) if the gain from
any lie is at most . This notion is normally viewed as only a slight weakening of

incentive compatibility when ¢ is close to zero. We show in Section 4, however,

'There are numerous impossibility results in the literature, including Myerson and Satterthwaite
[40], Mailath and Postlewaite [34], and Jehiel and Moldovanu [28].

2For instance, see Roberts and Postlewaite [42], McLean and Postlewaite [37], and Che and Tercieux
[11].



that since the permitted gain from lying can be arbitrarily large relative to the size
of the lie, e-IC does not impose any restriction on local incentive constraints.

In order to restrict local incentive compatibility, we propose the following no-
tion: a mechanism is e-locally incentive compatible (e-LIC) if the gain from any lie is at
most € times the size of the lie, as measured by the distance between the true type
and the reported type. Sometimes approximate incentive compatibility is justified
by the cost of lying. Then e-IC is appropriate if there is a fixed cost of lying, while
¢-LIC is appropriate if the cost of lying increases in the size of the lie.> While our
notion is stronger, many of the mechanisms that are known to be &-IC are indeed
e-LIC. For example, we find that the competitive equilibrium mechanism is e-LIC
in large double auctions.

Our main result is to show that a social choice rule is approximately locally im-
plementable in a Bayesian environment if and only if it is exactly implementable in
the presence of small ambiguity. A social choice rule p is e-locally implementable
if there exists a transfer scheme x such that the mechanism (p, x) is e-LIC and fur-
ther satisfies two regularity conditions. In a single object allocation problem with
private values a la Myerson [39], the regularity conditions reduce to the derivative
of each agent’s indirect utility function with respect to his type lying in [0, 1].4

The basic intuition behind our result is that the presence of ambiguity aversion
can weaken incentive constraints. In particular, we show that under a particu-
lar class of transfer schemes, ambiguity aversion has no bite when agents report
truthfully since an agent’s interim payoff from truth-telling does not depend on the
distribution of other agents’ signals. In contrast, misreporting becomes less attrac-
tive because the expected gains are evaluated according to the worst-case beliefs.

Therefore, as opposed to the exogenous weakening of incentive constraints un-

3Such type of lying costs has been studied in the literature. For example, Kartik [29] studies a
model of strategic communication where the informed sender has a lying cost that is proportional
to the size of the lie. Gneezy et al. [21] present a model of lying costs and argue that lying cost
depends on the size of the lie.

“The regularity conditions are trivially satisfied by incentive compatible mechanisms since, by the
envelope theorem, the derivative of an agent’s indirect utility function associated with any incen-
tive compatible mechanism is his expected probability of obtaining the object, which obviously lies
in [0,1].



der approximate incentive compatibility, the realization of weaker incentive con-
straints arises endogenously as a result of ambiguity aversion.

Our equivalence result is relevant for two reasons. First, it provides a novel
micro-foundation for the use of approximate incentive compatibility, namely, am-
biguity aversion, other than the usual justification (e.g., lying costs and bounded
rationality). There is both experimental and empirical evidence showing that due
to lack of knowledge about the environment, agents typically perceive some de-
gree of ambiguity and moreover, agents desire strategies that are robust to their
ambiguity.® In addition, Bose and Renou [7] show that ambiguity can be created
by a planner deliberately through ambiguous mechanisms,® which can be an ad-
vantage of this justification since lying costs (or bounded rationality) are relatively
more difficult to measure or generate. Second, our equivalence result suggests that
we may use ambiguity as a tool to study Bayesian games since it may be more chal-
lenging to construct a desirable approximate equilibrium in a Bayesian game than
to construct an exact equilibrium in a game with ambiguity.

The leading application for our result is the implementation of efficient allo-
cations. One implication of our result is that the presence of a small degree of
ambiguity suffices for efficient implementation whenever efficient allocations are
approximately locally implementable in a Bayesian environment. We present three
such settings that are widely studied in mechanism design.

First, we show that whenever an approximately efficient social choice rule is
Bayesian implementable, the fully efficient social choice rule is approximately lo-
cally implementable.” A large literature finds that approximately efficient alloca-
tions are attainable in a wide array of settings and, hence, our result can be imme-

diately applied.® Moreover, this result may be interesting in its own right because

SExamples of experimental and empirical evidence include Ellsberg [17], Halevy [25], and Aryal
etal. [2].

®Song [47] and Kocherlakota and Song [32] present examples that illustrate how to generate a
sufficient amount of ambiguity for efficient implementation using their approach.

7Even though we restrict our attention to the implementation of efficient and approximate efficient
social choice rules, our result extends straightforwardly to the implementation of any two social
choice rules that are “close” to each other. We discuss this issue in detail in Section 7.

8For instance, see Rustichini et al. [43], Jackson and Manelli [27], and Satterthwaite and Williams



it establishes a connection between the implementation of an approximately effi-
cient social choice rule and the approximate implementation of the efficient social
choice rule which are shown to co-exist in many mechanism design settings (e.g.,
large double auctions®).

Our result also applies to settings in which agents are informationally small.*
Intuitively, agents are informationally small when the incremental information of
any single agent given the information of everyone else is small. We present two
relevant settings in which the informational size of the agents is small. One in-
stance in which informational smallness arises naturally is when the number of
agents is large. More specifically, we consider large double auctions where the
relative influence of a single trader’s information on the total demand and sup-
ply is limited. Gresik and Satterthwaite [22] show that in double auctions, there is
no budget-balanced mechanism which implements efficient allocations. We verify
that efficient allocations are approximately locally implementable by the compet-
itive equilibrium mechanism. Combining this observation with our main result
yields that given any non-trivial degree of ambiguity, efficient allocations are im-
plementable in a budget-feasible way as long as the market is sufficiently large.

In an economy with interdependent valuations and multi-dimensional signals,
agents are informationally small if an agent’s private information has a small marginal
effect on other agents’ valuations. We find that in such settings, the efficient social
choice rule is approximately locally implementable by a modified Vickrey-Clarke-
Groves (VCG) transfer scheme.

The paper is organized as follows. In Section 2, we introduce a simple frame-
work where agents have one-dimensional signals and private values. In Section
3, we define full insurance mechanisms which play a crucial role in our analysis.
Section 4 contains our main equivalence result. We then apply our result to the

implementation of efficient allocations in Section 5. In Section 6, we show how

[46].

For example, see Carroll [9].
OInformational smallness has been studied by Gul and Postlewaite [23] and McLean and Postle-
waite [35, 36, 37, 38].



the ideas extend to more general frameworks. We conclude with discussion and

related literature in the final section.

2 The Model

Information structure. There are N agents, indexed by i € Z = {1,.., N}. They
have to make a collective choice k from a set £ = {1, ..., K} of possible social al-
ternatives. Each agent i observes a one-dimensional signal s’ that is drawn from
St = [0,1]. Let S = [T~ S' with s as generic element and let S~ = [Tz S/ with
s~ as generic element. Agent i’s value in social alternative k is given by 0! (s').
Let K be the set of alternatives on which agent i’s own information has no

effect, that is,
K = {k € K|vL(s') — vi(t') = 0,Vs', t € S'}.

Let KI = K \ ICS. To avoid triviality, we assume that K # o for all i. In words,
there exists at least one alternative k € K such that agent i’s value from k depends

on his own information. We further assume that v}'( is twice differentiable and

%S(fl) >0forallk € Klands' € S'.

Example 1. Consider a canonical mechanism design problem—a single object al-
location problem. Let £ = {1, ..., N}, where k = i represents the object is allocated

to agent i. Suppose there is no allocative externality: v;(si) =0foralls' € §',i € Z,

and j # i. Then K' = {i} for alli € T.

We assume agents have quasilinear preferences: if alternative k is chosen and
agent i obtains a transfer x’, then his utility is given by v} (s') + x'.

Mechanisms. A social choice rule (SCR) is a function p : § — RX such that
forevery s € S, pr(s) > 0 and Y cx pi(s) = 1. A transfer scheme is a function
x: S — RN, A direct revelation mechanism is a pair (p, x) where p is a SCR and
x is a transfer scheme. For reported signals s, the term py(s) is the probability that

alternative k is chosen and x’(s) represents the transfer to agent i.



A SCR p is (ex post) efficient if

N . .
pr(s) > 0= k € argmax ) vi(s') Vs €S.
kek i=1

We use p* to denote an efficient SCR. For simplicity, we restrict our attention to
deterministic SCRs.!!

Interim utilities. Let £~ be the Borel algebra on S~ and F' be a set of proba-
bility measures on (S, X ~). This set represents agent i’s beliefs about the other
agents’ signals. A key assumption here is agent i’s set of beliefs 7' is independent
of the realization of his signal, which is an analogue of the “independence of sig-
nals” assumption from Bayesian settings. We assume that F' is weak* compact
and convex.

Given a direct mechanism (p,x), agent i’s interim utility from reporting t!
when his signal is s' and everyone else reports truthfully is

uép/x)(ti,si) = ;iréi% /s—i (Y pr(t,s7Hoi(s') + x'(F,s7"))dF (s7).
kek
The function V?p,x) : §' — R defined by yép’x) (s) = uép,x) (s',s'), is called agent i’s
indirect utility function associated with (p, x).

A direct mechanism (p, x) is (interim) incentive compatible (IC) if

iy (5) = ) (5,5) 2 (1) 0616 € 811 € 10

A SCR p is implementable if there exists a transfer scheme x such that the direct
mechanism (p, x) is incentive compatible.

Environment. An environment is a tuple (Z, K, ((v}() ke, S FY) We as-

i€l > ’
sume that the environment is common knowledge, but the realizations of the sig-
nals are private information.

We focus on two special classes of environments. One is a Bayesian environ-

1A SCR p is deterministic if py(s) = 1 or O for all s € S and k € K. All our results extend straight-
forwardly to SCRs that are deterministic almost everywhere. A possible extension to random SCRs
is discussed in Section 7.

120bserve that the definition of interim incentive compatibility only invokes pure strategies. This
is without loss of generality if either of the following assumptions holds: (i) agents cannot reduce
ambiguity by randomizing ex ante; (ii) agents cannot commit to the results of their randomizations.
For a more detailed discussion about these assumptions see Saito [44] and Ke and Zhang [30].



ment, denoted by E?, in which each agent i's set of beliefs is a singleton, 7' = {G'}.
We assume that G' € A(S™") has a continuous density function g'(s~*) > 0 for all
s € S7"and i € Z.13 For each § € (0,1], an environment is called a J-ambiguity
environment, denoted by E’, if for every i € Z, there exists H' € A(S~?) such that
agent i’s set of beliefs 7' D Bs(H'), where Bs(H') = {F' € A(S7")|d(F',H) < &}
and d is the Prokhorov metric.!* In both environments, we maintain the assump-
tion that each agent’s set of beliefs is independent of the realization of his signal.
A pair of environments (E?, E°), where agent i’s belief is G’ in E? and agent i’s
set of beliefs is ' in E’, is a corresponding pair of environments if B;(G') C F!

for all i € 7 and other components of the two environments are identical.

3 Full Insurance Mechanisms

In this section, we introduce a class of mechanisms, full insurance mechanisms,

which is fundamental to our results.!®

Definition 1. Given a profile of functions ],ti : S 3 R, a full insurance mechanism
with {y'};c7 is a pair (p, xp) where p is a SCR and xr is given by

xh(s) = p'(s') — ) pi(s)vi(s') Vie I, Vses. (1)
ke

Two features of full insurance mechanisms greatly facilitate our analysis. An
immediate observation from the construction is that if everyone reports truthfully,
the ex post utility of agent i who receives signal s’ is independent of the other
agents’ reports and equal to y/(s). Thus, each agent i’s interim utility from truth-
telling under the full insurance mechanism (p, xr) with {s'};c7 is indeed u'(s'),
which is irrespective of his beliefs and, consequently, each agent is fully insured
against ambiguity in the interim stage. In contrast, if an agent misreports, his
interim utility is evaluated according to a worst-case belief and, hence, interim

incentive constraints are weakened.

13Tn a Bayesian environment, we do not require that agents’ beliefs be derived from a common prior
over S. Moreover, G' does not need to be interpreted as the true distribution from which s~ are
drawn.

14We use Prokhorov metric to measure the distance between probability measures and the definition
is provided in Appendix A. This particular choice of metric is not crucial for our results.

5The class of full insurance mechanisms was first introduced by Bose et al. [8].

8



Second, this class of mechanisms is robust to ambiguity in the sense that if
(p, xp) is incentive compatible in an environment, with or without ambiguity, then
it remains incentive compatible in all environments where agents are more am-
biguity averse.!® Intuitively, this is because each agent’s interim utility when he
reports truthfully remains the same, but his interim utility when he misreports
is lower under a larger set of beliefs. Since truthful revelation is optimal in the
original environment, it remains optimal when agents are in fact more ambiguity

averse.

4 Approximate Bayesian Implementation and Exact Maxmin Imple-

mentation

In this section, we propose a novel notion of approximate interim incentive com-
patibility and provide conditions under which it is equivalent to exact incentive

compatibility in environments with small ambiguity.
4.1 Standard Notion of e-Incentive Compatibility

We start by presenting the standard notion of approximate incentive compatibility.

Definition 2. For any € > 0, a mechanism (p, x) is e-incentive compatible (e-IC) if

”ép X)(Si) =z uép,x)(tifsi) —e Vst eS,Viel.

7

A mechanism is approximately incentive compatible if truthful revelation is ap-
proximately optimal in the sense that no agent can achieve more than a small util-
ity gain by misreporting. As explained in Section 3, ambiguity aversion weakens
agents’ incentives to misreport under full insurance mechanisms. One would then
expect certain equivalence between approximate Bayesian incentive compatibility
and exact incentive compatibility with small ambiguity since incentive constraints
are weakened in both cases. However, the next example demonstrates that this

intuition is not correct.

16Following Ghirardato and Marinacci [19], we say that the agent with the set of priors F is more
ambiguity averse than the agent with the set of priors F' if F O F.



Example 2. Consider the single object allocation problem from Example 1. Sup-
pose vi(s') = s' for all i. Fix 0 < e < 1. Myerson [39] shows that if a SCR p
is implementable, then each agent’s expected probability of obtaining the object
is nondecreasing in his value. Thus, a necessary condition imposed by incentive

compatibility on the SCR p is
/pi(ti,s_i)dGi > /pi(si,s_i)dGi v > st Vie T ()

By similar arguments, a necessary condition imposed by e-IC on the SCR p is

/ piltl,s )G + > / pils',s )G — - fsi VESsVieT (3)

This is clearly a weakening of the monotonicity requirement (2), but is too weak
locally: when # — s’ < 2¢, the inequality (3) is trivially satisfied. This suggests that
the standard notion of e-IC does not impose any restriction locally on the SCR. On
the other hand, Lemma 3.1 in Song [47] provides a necessary condition for p to be

implementable in an ambiguity environment:

max/pZ “NdF' > min /pl NdF VY > s, Vie T 4)
FicFi FieFi

An inspection of inequalities (3) and (4) indicates that the required degree of am-
biguity for maxmin implementation could be bounded away from zero since T S,

can be large even when ¢ is close to zero. In Appendix A.1, we present an example

that provides an explicit lower bound.

4.2 Notion of e-Local Incentive Compatibility

In order to impose appropriate restrictions on local incentive constraints, we pro-
pose a stronger notion of approximate incentive compatibility.

We see from the inequality in (3) that local incentive constraints are unrestricted
when the permitted gain from misreporting ¢ is large relative to the size of the lie.

Therefore, it is intuitive to consider the following notion.

Definition 3. For any € > 0, a mechanism (p, x) is e-locally incentive compatible

(e-LIC) if
V?P,X)(Si) = uip,x)(ti’ sy —els' —t!| Vs, eS ViellV

10



This notion of approximate LIC is more restrictive than the standard one: e-IC
allows an agent to forgo an ¢ gain regardless of the lie, whereas e-LIC allows an
agent to forgo a gain that is proportional to the size of the lie. To see how e-LIC re-
stricts local incentive constraints, consider again Example 2. Simple manipulation

of e-LIC constraints implies that
/pi(ti,s_i)dGi +e> /pi(si,s_i)dGi —e VH>4,VieT,

which is clearly weaker than the requirement of incentive compatibility (2) while

stronger than the requirement of e-IC (3).
4.3 e-Local Implementation

We next define a notion of approximate local implementation which imposes two
additional restrictions, monotonicity and boundedness, on approximately LIC mech-
anisms.

The definition of monotonicity is standard. A function y# : R” — IR is monotone
if it weakly increases in each argument.

We now define e-boundedness. For any SCR p, s € S and k € K, define
Ak(si,p) = {s‘i c S_i|pk(si,s_i) =1}.

In words, given sie s Ak(si, p) is the set of other agents’ signals such that alter-
native k is chosen by the SCR p. Hence, G’ (Ak(si, p)) represents agent i’s expected

probability for alternative k evaluated according to belief G'.

Definition 4. For any Bayesian environment E® and any & > 0, a mechanism (p, x)

is e-bounded if for any i € Z and s' < t/, we have

Wi () = 1y 0 (5) < 1 wi(0h(#) = 0j(sY), 5)
kel

where {wy }rexc satisfies (1) 0 < wy < G'(Ax(t, p)) +eforall kand (ii) e wy < 1.

To understand this definition, assume for simplicity that there exists k* € K

7Qur results do not rely on the permitted gain being linear in the size of the lie. This notion of
approximate LIC is equivalent to any notion under which the permitted gain is ¢ times a function
f(|s" —#]) that is strictly increasing, Lipschitz continuous, and f(0) = 0.

11



dv;'(* (s')

o > 1. For any ¢-LIC mechanism (p, x) and st < t, we have
S

such that

p,x)(ti,si) —¢|s' — #]

o)+ Y G (At p)) (vh(s) — vh(t)) —e(t —s").

ke

=

Recall that v} (s') — v () = 0 for all k € K. Rearranging inequalities above yields
(5) by letting wy = 0 for all k € K, w, = G'(Ax(t,p)) forallk € K"\ {k*}, and
wy = G (Ag (], p)) + e. Note that the constructed {wy }xc satisfies constraint (i),
so constraint (i) is simply an implication of e-LIC. However, if ¢ > 0, it is possi-
ble that Y e wp = Yyexi G (Ax(t, p)) +€ > 1 for some t* € S'. Hence, the real
restriction imposed by e-boundedness over e-LIC is constraint (ii). The two con-
straints together, roughly speaking, guarantee the existence of a probability mea-
sure {wy trexc € A(K) thatis “close” to the probability measure {G' (Ax(t, p)) }rex
and satisfies (5).

We are now ready to define e-local implementation.

Definition 5. In a Bayesian environment, a SCR p is e-locally implementable if
there exists a transfer scheme x such that the mechanism (p, x) is e-LIC and -

bounded, and yép %) is monotone for alli € 7.

Finally, say a SCR p is rich if UkE,CéAk(si, p) # @ foralls' € [0,1) andi € Z. In
a single object allocation problem, this assumption requires that for each possible
type of agent i, other than the highest type, there exist reports of other agents such
that agent 7 is not assigned the object.!® Intuitively, focusing on rich SCRs ensures
the existence of a worst case for almost all types and, consequently, ambiguity can

play arole.
44 Results

Theorem 4.1. Fix a Bayesian environment EP and a SCR p. For any e > 0, there exist
8 > 0and a corresponding 5-ambiguity environment E? such that if p is implementable in

E°, then it is e-locally implementable in EB.

18 A weaker condition is for each s’ € [0,1) such that G'(Ax(s’, p)) > 0 for some k € K, there exists

dot (st dvi/(si) i
k' € K such that vgi[s) > —i=—and Ay (s, p) # @.

12



Theorem 4.1 states that if a SCR is exactly implementable with small ambiguity,
then it is approximately locally implementable in a Bayesian environment. The

next result is our main result and establishes the converse.

Theorem 4.2. Fix a Bayesian environment EP and a rich SCR p. For any § > 0, there
exists e > 0 such that if p is e-locally implementable in EB, then p is implementable in any

corresponding d-ambiguity environment.

A combination of the two theorems allows us to conclude that approximate
local implementation in Bayesian environments and exact implementation in en-
vironments with small ambiguity are equivalent.

We next provide a proof of Theorem 4.2 in the special case of a single object al-
location problem (Example 2). The main insight is that ambiguity aversion weak-
ens incentive compatibility constraints under full insurance mechanisms. Fix a
Bayesian environment E5, a rich SCR p, 6 > 0, and a corresponding J-ambiguity
environment E°. Take ¢ = § and suppose p is e-locally implementable by the trans-
fer scheme x with indirect utility functions { yép,x) }iez in EB. We are going to show
that the full insurance mechanism (p, xg) with { yl(p’x) }i is incentive compatible in

E° where, in this special case, xr simplifies to
xk(s) = yip,x)(si) —pi(s)s' Vs eSS, Viel.

In words, the transfer scheme is constructed so that the agent who is awarded
the object pays his valuation and every agent receives a reward which is solely
a function of his report. Fix i and st . By the construction of (p, xp), incentive
compatibility in E° is equivalent to

Hip) (8) 2 1y (#) + min / pi(t,s~)(s' — t)dF". 6)
The left-hand side is the interim utility of agent i who receives and reports s’ while
the right-hand side is his utility when he reports #. Note that the utility from
misreporting is evaluated according to a worst-case belief which minimizes the
potential gain and, hence, the incentive constraint is weaker than the one in the

Bayesian environment.

13



Suppose first that s' > t. We now show how the -LIC of (p, x) in E? and the
monotonicity of yip v) guarantee (6). The e-LIC of (p, x) in E® implies

:ul&p x) (Sl) / pz dGl — S> (Si — ti). (7)
An immediate observation is if f pi(tl,s’l)dGl > ¢ = ¢, since p is rich, there exists

F' € B;(G') C F' such that

/pl NG —e> /pl “HdF' > min /pl NdF'.1
FieFi

We thus can conclude that (7) implies (6), that is, the incentive compatibility of
(p,xp) in E°. If [ p;(t,s7))dG' < e = ¢, then minpi i [ p;(#,s7)dF' = 0 and,
hence, (6) is an immediate consequence of the monotonicity of yi(p’x) and the as-
sumption s* > t'.

Suppose now s' < t'. The e-LIC of (p, x) in E? then implies

]’ll&p,x) (tl) / pz dGl + 8) ( Si). (8)
If [ pi(t,s7))dG' < 1 — g, then there exists [’ € Bs(G') C F' such that
/pl dG +e < /pZ NdE' < max/pl NdF'.
Fic Fi
Combining this with (8) yields
W) < ui +131€"}’3/pl _§dF, )

which is exactly (6). If [ p;(t, s ))dG' > 1 — ¢, then maxpi 5 [ pi(t, s ")dF' = 1.
The next lemma completes the proof by showing (9) is an immediate consequence

of the e-boundedness of ui ..
(px)

Lemma 4.1. Fix a Bayesian environment. Suppose v'(s) = s' for all k € Kiandi€ T.

Then for any € > 0, an e-LIC mechanism (p, x) is e-bounded if and only if

yip,x)(ti) - yip’x)(si) <t —s Vs <t Viel

YTo be more precise, [’ can be constructed such that F'(A;(t,p)) = G'(A;i(t,p)) — ¢ and
Fi(UiziAj(H, p)) = G'(UjziAj(t, p)) + & Such construction is feasible because UkeKéAk(tl,p) =

Ujridj(t, p) # 2.
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4.5 How Restrictive are Monotonicity and e-Boundedness

To see how restrictive monotonicity and e-boundedness are, we first demonstrate
that these two conditions regulate e-LIC mechanisms only on a subset of signals
and normally become weaker as e converges to zero. To see this, consider again
Example 2. Recall that G'(A;(s’, p)) is agent i’s expected probability of obtaining
the object under SCR p. Let R’ = {s' € S'|e < G'(A;(s',p)) < 1—¢}. Forany ¢-LIC
mechanism (p, x) and s' < t/, e-LIC implies

(G'(Ai(s" p) =) (1= ) < iy () = iy () < G/ (A, p) +e) (# =),
For all s/, # € R and s' < #, it follows from the first inequality that yip,x) (s') <
y’(p,x) (), that is, y’(p,x) is monotone on R’; similarly, the second inequality implies
e-boundedness by letting w; = 0 for all j # i and w; = G'(A;(#, p)) + . Combin-
ing these two observations, we can conclude that e-LIC implies monotonicity and

e-boundedness on R‘. In contrast, on S \ R, the requirement of e-LIC is too weak
in the sense that it allows for some s < #,

Wy () = piy o (5) <0 or £ —s' <l () = pi, () (10)
Monotonicity and e-boundedness are thus imposed only on S*\ R’ to rule these
out. However, observe that this set S’ \ R’ shrinks as ¢ — 0 under many commonly
used SCRs.?? Therefore, the two restrictions are normally weaker when ¢ is smaller.

To see the role of monotonicity and e-boundedness, notice that, similarly to
Bayesian implementation, exact maxmin implementation requires that each agent’s
indirect utility satisfy a generalized envelope formula.?! For example, in a single
object allocation problem, the standard envelope argument implies the derivative
of agent i’s indirect utility y' associated with any incentive compatible mechanism
dp'(s')

d

is a probability of getting the object, which implies == € [0,1]. Yet it follows

1

from (10) that an arbitrary e-LIC mechanism may fail to satisfy this condition. The

20Eor example, if N = 2, p is the efficient SCR, and G' is the cdf of the uniform distribution, then
SI\R' =[0,e) U(1—¢g,1].

2lgee Myerson [39] and Jehiel and Moldovanu [28] for a characterization of incentive compatible
mechanisms in Bayesian environments, and see Song [47] in environments with ambiguity.
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role of monotonicity and boundedness is to ensure the indirect utilities associated
with an e-LIC mechanism satisfy the generalized envelope formula which is nec-
essary for implementation. More fundamentally, e-LIC is non-equilibrium-based
no matter how small € is, whereas incentive compatibility under ambiguity is an
equilibrium concept which requires each agent’s interim utility be a sufficiently
well-behaved function of his private information and, hence, is stronger than e-
LIC.

Even though monotonicity and e-boundedness impose additional requirements
on &-LIC mechanisms, they are actually quite permissive. Almost all commonly
used e-IC mechanisms are indeed monotone and bounded (see applications in Sec-
tions 5 and 6.2.1).

One instance in which the monotonicity assumption is innocuous is when the
SCR satisfies a weak monotonicity condition. More precisely, if Yo i G’ (Ax(s', p))
is nondecreasing in s', for any approximately LIC mechanism (p, x) with possibly
non-monotone indirect utility functions, we can modify the transfer scheme x so
that the new mechanism is approximately LIC and the associated indirect utility

functions are monotone. Moreover, the modification preserves the boundedness
property.

Proposition 4.1. Fix a Bayesian environment EB and a SCR p such that Y i G' (Ax (s, p))
is nondecreasing in s' for all i € I. For any § > 0, there is ¢ € (0,6] such that if there
exists an e-LIC mechanism (p, x), we can construct a transfer scheme X such that (p, X)

is 0-LIC and yip %) is monotone for all i € I. Furthermore, if (p,x) is 6-bounded, so is
(p, %)%

While the definition of e-boundedness is tedious, there are two cases in which
one can easily verify whether a mechanism is e-bounded. The first case is when
agents do not have incentives to lie upward. In fact, any mechanism that satisfies

upward incentive compatibility is e-bounded for all ¢ > 0. To see this, observe

22We want to point out that the monotonicity condition on p is quite weak. Any efficient SCR
satisfies this condition, but not vice versa. Also, in general mechanism design settings, it is different
from the usual necessary condition imposed by incentive compatibility.
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that given a mechanism (p, x), agent i has no incentive to lie upward if yép’x) (s) >

uip %) (t, si) forall s’ < #, which is equivalent to

M) (1) = Hipy(8) < Y G (Ak(t, p)) (0 () = vh(s) V8" < .
kek
Taking wy = G'(Ax(#,p)) for all k € K immediately shows (p, x) is e-bounded
for all € > 0. For instance, in the competitive equilibrium mechanism, both buyers
and sellers only have incentives to lie downward.??
The second case is when value functions satisfy a supermodularity condition.

Say a value function v}; is supermodular in (k,s') if for any K/, k" € K, and any

dU ( ) dvl, (s ) dvi/(ti) dv; //( )
i i Kk k k
st e S > —3 pr T

tion familiar from mechanism design which allows us to rank social alternatives

implies that . This is a sorting condi-
according to an agent’s marginal valuation.?* It is easily seen that linear models

satisfy supermodularity. Lemma 4.1 is a corollary of the next more general result.

Proposition 4.2. Fix a Bayesian environment. Suppose v}'( are supermodular in (k,s').
There exists ¢ > 0 such that for any ¢ > 0, an e-LIC mechanism (p, x) is ce-bounded if
and only if

Hip) (F) = Hip ) (sT) < max (U;((tl) — vi(s’)) Vst <t Vi e T. (11)

4.6 Ex Ante Revenue

In the analysis above, we did not make any assumption on the mechanism de-
signer’s preferences. If the mechanism designer and all agents share a common
prior in the Bayesian environment, and the mechanism designer remains ambigu-
ity neutral in any corresponding ambiguity environment, then the mechanism de-
signer’s ex ante revenue in any corresponding ambiguity environment is the same
as her revenue in the Bayesian environment. To see this, note that the expected

social surplus is the same in the two environments since the same SCR is executed.

21t is well known that in the competitive equilibrium mechanism, a buyer has incentive to under-
report his valuation to induce a lower price, whereas a seller has incentive to overreport his cost
to induce a higher price. To see why overreporting cost is actually lying downward, note that for
a seller j with cost ¢/, his valuation from trading is given by —c/. Given our assumption that each
agent’s valuation increases in his signal, technically, seller j’s signal is —c/.

24 A similar assumption is adopted in Bergemann and Vilimaki [4, Condition (18)].
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The construction of the full insurance mechanism further implies expected infor-
mational rents are the same. The ex ante revenue, which is the difference between

the expected social surplus and expected informational rents, is thus the same.

5 Applications

We next apply our result to the implementation of efficient allocations. An immedi-
ate implication of Theorem 4.2 is that a small degree of ambiguity ensures efficient
implementation if there exist efficient and approximately LIC mechanisms when
agents are Bayesian. Yet when do such mechanisms typically exist? We provide an
answer to this question by establishing the existence of such mechanisms in two

relevant Bayesian environments.
5.1 Approximate Efficiency and Approximate Implementation

In this section we show that the efficient SCR is approximately locally implementable
whenever an approximately efficient SCR is implementable. The literature pro-
vides a variety of mechanism design settings in which approximate efficiency is
attainable. For instance, Theorem 3.2 in Rustichini et al. [43] shows that in double
auctions, the allocation is asymptotically efficient in any Bayesian Nash equilib-
rium of the competitive equilibrium mechanism.?> Combining their result with
ours yields that efficient allocations are asymptotically locally implementable and,
hence, exactly implementable in large double auctions with small ambiguity.

5.1.1 Notions of approximate efficiency

We start with an intuitive notion of approximate efficiency.

Definition 6. For any € > 0, a SCR p is e-ex post efficient if
N N
max Zvi(sl) — Y pi(s) Zvi(sl) <e VseS.
kek i3 kek =1

Note that maxgcc YN vl (s!) is the maximum welfare and Yk pi(s) YN, ok (sh)
is the welfare obtained under the SCR p. Thus, a SCR is e-ex post efficient if the

welfare loss is less than ¢ for all types.

25 A formal description of large double auction environments and the competitive equilibrium mech-
anism is given in Section 5.2.
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This paper adopts the following weaker notion of approximate efficiency so

that our result covers more cases and is hence stronger.

Definition 7. For any ¢ > 0, a SCR p is (weakly) e-efficient if
. . . N N . .
G’ ({s_Z € S max Y oi(s)) — Y pi(s) Y ok(s) < e}) >1—-¢ Vs'eS,Viel.
kel i3 kek =1
Roughly speaking, a SCR is (weakly) e-efficient if each agent i assigns probabil-
ity at least 1 — ¢ to the event that the welfare loss is less than .

5.1.2 Pivotality

We make the following assumption on valuations.

Assumption 1 (Pivotality). For any k # k/, there exist i # j such that

(L vi(sh) — X0k (sh)) (X vh(s) fZl vk, (s))

a5’ #0 and 95/

#0 VseS.

This assumption requires the difference between the social welfare from any
two alternatives be affected by the information of at least two agents. Intuitively,
Pivotality asserts that at least two agents are potentially pivotal for efficiency con-
siderations. The role of this assumption is discussed in the next section.

Two examples are provided below to help in understanding when Pivotality is

satisfied.

Example 3. Consider the single object allocation problem from Example 1. Take
any two allocations i # j. Then ¥; vi(s') — ¥ v}(sl) = vi(s") — v§(sj), which clearly

depends on i’s and j’s information. Pivotality is thus always satisfied .

Example 4. Consider the bilateral trade problem of Myerson and Satterthwaite
[40]. Let £ = {0,1}, where k = 0 represents no trade and k = 1 represents trade.
The difference between the social welfare from k = 1 and k' = 0 is the difference
between the buyer’s valuation and the seller’s cost which, obviously, depends on
the information of both the buyer and the seller. Hence, Pivotality is satisfied. An
analogous argument shows that Pivotality is satisfied in the presence of multiple

buyers and sellers, namely, in double auctions.
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5.1.3 Result

Theorem 5.1. Fix a Bayesian environment. Assume Pivotality. For any € > 0, there
exists a & > 0 such that whenever a E-efficient SCR is implementable, for some 0 < & < ¢,

the efficient SCR is e-locally implementable.

Theorem 5.1 states that the efficient SCR is approximately locally implementable
whenever an approximately efficient SCR is implementable. To illustrate the re-
sult, we next provide a heuristic proof of Theorem 5.1 in the single object alloca-
tion problem (Example 2). As argued in Example 3, Pivotality is trivially satisfied
in this case. For any &, let p¢ denote a ¢-efficient SCR. Recall that given a SCR p
and s' € S, A;(s',p) is the set of the other agents’ signals under which agent i
is assigned the object by p. A key lemma for our result is that as { — 0, the set
A;(s!, p°) converges to the set A;(s’, p*) for all s' € S' and i € T. Intuitively, this
means that for small ¢, allocations specified by the ¢-efficient SCR and by the fully
efficient SCR coincide for most s € S. Consequently, for any € > 0, there is a E >0

such that for any 0 < ¢ < ¢ and any ¢-efficient SCR p¢, we have
G (Ai(s',p%)) — G'(Ai(s', p*))| <e Vs €S, Viel. (12)

Fix e > 0. Suppose there exists 0 < & < & such that p® is implementable. Let (p¢, x)
denote a ¢-efficient and incentive compatible mechanism with associated indirect
utility functions { V?pé,x)}id' We are going to show that the efficient SCR p* is
e-locally implementable in the sense of Definition 5 by the full insurance transfer
scheme xr with {Vépé,x)}ief' We first show (p*, xp) is e-LIC. Fixi € Zand s/, t' € S'.

By the construction of the full insurance mechanism, we have ui , = u! and
(p*/xF) (p®x)

B o () =l (E,s)) = (8= )G (A(E, p)). (13)
The incentive compatibility of (p%, x) implies

Ml (1) = e () + (5" = )G (Ai(H, p°)). (14)
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Plugging (13) into (14) yields
Mipéfx)(si) Z”ép*,xp)(ti’si) — (5= 1) (Gi<Ai(tirP*)) —G'(Ai(F, PC))>

zuép*,xF)(ti,si) —g|s’ — #].

(15)

The last inequality follows from (12). Since yép* %) (s') = V?pé‘ %) (s), it follows from
(15) that

e () 2 (£9) =l = ]
as desired. Since s’ and t' were arbitrarily chosen, this shows that e-LIC is satisfied.

Next we verify monotonicity and e-boundedness. It follows from the incentive

DT : i N > i i iS4
compatibility constraint (14) that u (pi,x)(s ) > u (pé‘,x)(t ) whenever s' > t'. Thus,

],t"(p* xp)’ which is identical to Vépé ) is monotone. Similarly, by the incentive com-

patibility constraint Vépé,x) (H)>u

Wit (8) = My o (F) < (' = )G (Ai(s', pf)) < s' =1, W' > 1,

i

(o) (si,t'), we obtain

which implies yép*,xF)(si) - yép*,xﬂ (t)) < s' — .. Then it follows from Lemma 4.1
that (p*, xp) is e-bounded.

To see the role of Pivotality, note that analogous to (12), a key step for our proof
in a general mechanism design setting is to show G'(A(s', p®)) — G'(Ax(s', p*))
as & — 0. In general, the distance between the two sets Ax(s’, p®) and Ax(s', p*)
will vary with the specific choice of the Z-efficient SCR p¢ as well as s'. The role

of Pivotality is to guarantee that this convergence is uniform on the set of all ¢-

efficient SCRs and on S'.
5.2 Large Double Auctions

5.2.1 Double Auction Environments and Competitive Equilibrium Mechanism

In this section, we consider one of the most widely studied environments in mech-
anism design—Ilarge double auctions—in which it is well known that under the
competitive equilibrium mechanism, the gain from biding strategically becomes van-
ishingly small as the size of the market grows.

We consider the simplest double auction environment. There are M sellers who
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each has a good to sell, and M buyers who each would like to buy a good. Let B
denote the set of buyers and S denote the set of sellers. To better identify buyers’
and sellers’ information, we introduce some new notation: let o' € [0,1] denote
buyer i’s value of the good and ¢’ € [0, 1] denote seller i’s cost. Assume that when
there is no trade, an agent’s value/cost is zero. Also assume that values and costs
are drawn identically and independently according to a continuous distribution
function G in the Bayesian environment.?® Let G*M(s) denote the distribution of
M )

2M agents’ signals s = (v!,...,oM,c!, ..., c

Due to the simplicity of the setting, we can simplify the general mechanism to
the following mechanism: let (pk, pg, xk, x’ls)izllm, M be a collection of 4M functions
where pl, p : [0,1]*M — [0,1] denote an agent’s probability of obtaining a good
(i.e., pl is buyer i’s probability of receiving a good, and p¥ is seller i’s probability
of retaining a good); and x%, xé : [0,1]* — R denote the transfer to a buyer and a
seller respectively.

Efficiency requires the goods to be allocated to the agents with the M highest
values/costs. Let p.p, p«s denote the efficient SCR. Then

vi>s(M):>piB(s):1 Vie B and ci>s(M):>piS(s):1 Vies,

where s () is the Mth lowest signal among 2M reported signals.

In large double auctions, the following two properties are typically imposed on
the mechanisms. Say a mechanism ( piB, pis, xiB, xé)izlw M satisfies ex ante budget
balance if

/(ZxB + Y xi(s))dGM(s) <0 Vs € [0,1)2M
ieB €S

A mechanism (p5, piS, xk, xé)izlw M satisfies ex post individual rationality if
v'ph(s) + xh(s) >0 and —c'(1—pi(s)) +x5(s) >0 Vs e [0,1]*M

We now describe the competitive equilibrium mechanism (CEM). Sellers and

buyers simultaneously submit offers and bids. These offers and bids are arrayed

26 All results extend to environments in which the numbers of sellers and buyers are different, and
sellers” and buyers’ signals are drawn from different distributions.
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in increasing order and the price p is set at the Mth lowest bid/offer. Trade occurs
among sellers whose offers are no more than p and buyers who bid at least p.?” (If
there is a tie at p, ration uniformly at random.?8) By construction, if everyone bids
his true value/cost, the resulting allocation is efficient. Moreover, it is straightfor-
ward to see that the CEM satisfies ex post individual rationality and ex ante budget
balance.

5.2.2 Results

Carroll [9] shows that the CEM is asymptotically incentive compatible. Theorem
5.2 shows that the CEM is in fact asymptotically LIC.

Theorem 5.2. Fix a Bayesian double auction environment. For any § > 0, there exists M

such that for all M > M, the efficient SCR is §-locally implementable by the CEM.
We apply Theorem 4.2 to double auctions and obtain the following corollary.

Corollary 5.1. Fix a Bayesian double auction environment. For any & > 0, if the efficient
SCR is d-locally implementable in the Bayesian environment, then it is implementable in

any corresponding 5-ambiguity environment.?’

An immediate implication of Theorem 5.2 and Corollary 5.1 is for any > 0,
if the number of traders is sufficiently large, then there exists an efficient and in-
centive compatible mechanism in any J-ambiguity environment. In addition, this
mechanism is a full insurance mechanism as constructed in (1) and each agent’s
interim payoff from truthful reporting under this mechanism is identical to that in
the CEM.

We next show that the full insurance mechanism satisfies ex post individual
rationality. Recall that in (1), the full insurance transfers are constructed so that

each agent’s ex post payoffs are equal to his interim payoff from truthful reporting

?’This mechanism is a special case of k-double auction, which is widely studied in double auction
environments. See Rustichini et al. [43, p.1045] for a more detailed description of the mechanism.
28This is not important since ties occur with probability zero in the Bayesian environment.

2Due to the special structure of double auctions—for an agent, there are essentially only two dis-
tinct allocations—the mapping from J to € in Theorem 4.2 is independent of the number of traders.
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under the CEM in the Bayesian environment, which is nonnegative. Therefore, ex
post individual rationality is satisfied in any é-ambiguity environment.

If the mechanism designer is ambiguity neutral, that is, her belief is given by
G?M in any ambiguity environment, then since the CEM satisfies ex ante budget
balance, the arguments in Section 4.6 imply that the full insurance mechanism sat-

isfies ex ante budget balance in any ambiguity environment.

To summarize, we have shown:

Theorem 5.3. Suppose the mechanism designer is ambiguity neutral. For any § > 0,
there exists M such that for all M > M, there exist efficient, incentive compatible, ex
ante budget balanced, and ex post individually rational mechanisms in any J-ambiguity

environment.

6 Extension to Interdependent Values Setting

In this section, we extend Theorem 4.2 to mechanism design settings with interde-
pendent values. Theorem 4.1 also extends to such general settings but the state-

ment and the proof parallel those of Theorem 4.1 and are thus omitted.

6.1 One-dimensional Signals

We first extend Theorem 4.2 to settings with one-dimensional signals and inter-
dependent values. We start with some new notation and definitions. To allow
for interdependence in preferences, we use vk (s’,s~') to denote agent i’s valuation
from alternative k. We assume that v} is twice differentiable and nondecreasing in
s/ for all j.

We distinguish two cases depending on the value functions. The first is when
value functions are additively separable. Say vi (s',s™') is additively separable if

there exist functions f : S' — Rand ki : S~ — R such that
vl (s',s7") = fi(s') + hi(s™)) Vs' €S, Vs €S

This case is special because agent j’s signal does not affect agent i’s own marginal
0%vi(s',s )
0si0s/
Section 2 is thus a special case of the interdependent values model with additive

valuation, that is, = Oforallj # iand s € S. The private values model in
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separability.

Alternatively, the cross derivatives can be bounded away from zero. For any

9%l (s,s77)

Seipg  are continuous

ke Ki, vf{(si s~') is nonseparable if the cross derivatives
a i
an d% #0forallj #iands € S.
The definition of e-boundedness here is the same as Definition 4 with replacing

U;‘( by f,i and e-local implementation is defined as follows.

Definition 8. In a Bayesian environment, a SCR p is e-locally implementable if
there exists a transfer scheme x such that (i) the mechanism (p, x) is e-LIC; (ii)
i

Fp) is monotone for all i € Z; and (iii) if values are additively separable, (p, x) is

e-bounded.
Our main result is stated below.

Theorem 6.1. Fix a Bayesian environment EP and a rich SCR p. Assume either U;( is
nonseparable for all i and k or v\, is additively separable for all i and k. For any 6 > 0,
there exists & > O such that if p is e-locally implementable in EP, then p is implementable

in any corresponding d-ambiguity environment.

Notice that e-boundedness is only defined under additive separability. Since &-
boundedness is necessary for implementation with small ambiguity (by Theorem
4.1), a natural question is why a counterpart of e-boundedness is not needed in
the nonseparable setting. To answer this, consider the following extension of e-
boundedness to the interdependent values setting: for any Bayesian environment
E? and any € > 0, a mechanism (p, x) is e-bounded if for any i € Z and st <t we

have
yi(p,x)(ti)— i ) < Z/wk (v (H,s7) —vi(s,s7))ds T, (16)

where {wy(s™) }rex o-icsi satisfies (1) 0 < [wy(s™)ds™ < G'(Ax(t, p)) + e forall
k € K and (ii) Yyex [ wi(s~")ds™" < 1. When values are nonseparable, vk(tl s —
vk(s ', 57} varies with s~ for each k € K, which makes inequality (16) easier to
satisfy by constructing {wy (s %)} ks—i properly. In contrast, when values are addi-

tively separable, i.e., vi(t,s7%) — vi(s',s7') is constant in s/, inequality (16) effec-
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tively depends only on { [ wy(s™')ds ™'} rather than {wy (s ™)} . Therefore, the
requirement of e-boundedness is much weaker in the nonseparable case than in
the additively separable case and it is in fact implied by approximate LIC in the

former case.
6.2 Multi-dimensional Signals

We next extend the analysis to allow for multi-dimensional signals and interde-
pendent values. This case is interesting because Jehiel and Moldovanu [28] show
that in such settings, efficient and Bayesian incentive compatible mechanisms gen-
erally do not exist. Our result is then relevant since if we know that the efficient
SCR is approximately locally implementable in some Bayesian environment, then
by applying our result, we can conclude that the efficient SCR is implementable
with small ambiguity. Such an application is provided in Section 6.2.1.

To introduce multi-dimensional signals, we redefine some concepts and nota-
tion in this section. Recall N and K are the number of agents and the number
of social alternatives, respectively. Assume that agent i’s signal s’ is drawn from
St C RK*N_ The idea is that coordinate s;'{]. of s' influences the utility of agent j
in alternative k. We assume that the signal spaces S’ are compact, convex, and
full-dimensional given the usual topology in RK*N. Agent i’s value in social al-
ternative k is given by vl (sl ..., sN). For ease of notation, we will write v’ (s) or
U;;(si, s7') instead. As before, we assume that v;'( is twice differentiable and nonde-
creasing in s£ . for all j. Definitions of additive separability and nonseparability are
extended in the obvious way.

Our most important concept is e-LIC. There is no unique way of extending
the notion of e-LIC to multi-dimensional signals. With multi-dimensional signals,
some agent possesses information that is relevant to the other agents, but does not
directly affect the owner of that information. We call such information own-payoff
irrelevant information. Theorem 3.1 in Jehiel and Moldovanu [28] shows that un-
der any incentive compatible mechanism, each agent i’s equilibrium payoff cannot
depend on his own-payoff irrelevant information s;{]-, j # i. Song [47] extends

this result to environments with ambiguity. Motivated by these observations, we
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propose the following extension. Recall that K is the set of alternatives on which

agent i’s own information has an effect.

Definition 9 (Multi-dimensional Signals). For any ¢ > 0, a mechanism (p, x) is
e-locally incentive compatible (e-LIC) if
yép,x)(si) > u"(p,x)(t’l,si) —¢ Z |st. —ti.| Vst € S,Viel.
ket

Under this notion of e-LIC, the indirect utility functions associated with any
¢-LIC mechanism are independent of own-payoff irrelevant information.>

In Appendix D, we extend the definition of e-boundedness to accommodate
multi-dimensional signals and prove that the statement of Theorem 6.1 remains
true.

6.2.1 Efficient Implementation With Small Informational Size
In this section, we show that in any Bayesian environment where agents are in-
formationally small, the efficient SCR is approximately locally implementable by a
modified VCG transfer scheme.

Our definition of informational size measures the degree to which one agent’s
signal can affect the valuations of other agents.3! Formally, define the informa-
tional size of agent i as

'YiE max —av;‘(Sils_i).

i#ikek ses i

jELkEK s€ aSk y
Recall that s;{ ; is agent i’s information affecting agent j’s valuation for alternative k.
In the case of private values, the informational size of each agent is 0.

We now define the modified VCG (MVCG) mechanism. Define the general-

30In Section 7, we provide a weaker notion of approximate LIC which allows yip v o depend on

own-payoff irrelevant information.
3In our setting, an agent’s value depends directly on other agents’ types. McLean and Postlewaite
[37] study an interdependent values setting in which each agent’s value depends indirectly on
other agents’ types in the sense that each agent’s value is a function of the state of nature and other
agents’ types provide additional information about the state of nature. They adopt a notion of
informational size as the degree to which an agent can alter the posterior distribution on the state
space given the information of other agents. Both notions capture the “informational” influence of
an agent’s type on others but accomplish this in two different interdependent values settings.
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ized VCG transfer scheme as
. ]' .
Xgveg(s Zpk PIACES 1,?65}%‘27’1( ),
j#i j#i
which represents the cost that agent i imposes on other agents. For every i € 7

and s’ € S, construct ¢'(s') as follows:

c.(s") =s., and Efcj(si) = max{t};j|ti €S}, VkeK,Vj#i

Note it is possible that the constructed ¢'(s') ¢ S'. However, vl (¢'(s'),s™7) exists
and, hence, p*(¢'(s'),s ) is well defined.>? Define the MVCG transfer scheme as

Yyveg(s',57) = x6yec (S ) + Z ),s71) = pi(s’,s7)) vk (s, s 7).

The MVCG mechanism is defined by the pair (p*, xpvcg)-

Observe that the MVCG transfer is constructed so that if everyone reports truth-
fully, agent i’s ex post and interim payoffs are independent of his own-payoff ir-
relevant information (s}c ].) j#ikek- The nextlemma shows the MVCG mechanism is

e-LIC when agents are sufficiently informationally small.

Theorem 6.2. Fix a Bayesian environment. For any e > 0, there exists v > 0 such that if
v < v foralli € T, the efficient SCR p* is e-locally implementable by the MV CG transfer

scheme Xp1ycG-

To explain why the MVCG mechanism is e-LIC, consider a single object allo-
cation problem where values are additively separable. That is, vi(s) = f/(s') +
h; (s=7). By the construction of the MVCG transfer scheme, we can derive an upper
bound on the gain to agent i when his true signal is s’ but he reports # and others

report truthfully:
(fi(s") = £th) (Gi(Ai(ti,p ) — G (Ai(E(t), p*)))’ "

where G'(A;(§, p*)) is agent i’s probability of getting the object given &. When
agent i’s informational size is small, his own-payoff irrelevant information has lit-

tle effect on the values of the other agents and, hence, on the determination of the

2For every k € K, we have pj(¢'(s'),s7%) = 1if T vk (54, (s"),5;,) > Ly 0k (5L (s7), s)) forall K # k.

28



efficient allocation. Since ¢’ () and ' only differ in the own-payoff irrelevant infor-
mation, for most of the realizations of s, the efficient allocation under (Ei (ti), s7)
is identical to that under (#,s~"). This means that as 7/ converges to 0, the set
A;(T'(t), p*) converges to the set A;(t!, p*). Thus, for any e > 0, if 7/ is sufficiently
small, the upper bound on the gain from misreporting (17) is less than e|s. — £..|.

Thus, the MVCG mechanism is e-LIC.

7 Discussion and Related Literature

An alternative notion of ¢-LIC. In Definition 9, we formulate a notion of ¢-LIC in

multi-dimensional environments. A more intuitive and also weaker notion is:

Definition 10. For any ¢ > 0, a mechanism (p, x) is weakly e-locally incentive

compatible if

oy (1) = ul, o (#,s)) —e || s’ =t |l Vs, H €S, Viel

The two notions, e-LIC and weak e-LIC, coincide in one-dimensional environ-

ments, whereas e-LIC is stronger in multi-dimensional environments. The differ-
ence lies in whether yép,x) is allowed to depend on own-payoff irrelevant infor-
mation. For example, the generalized VCG mechanism is not e-LIC but is weakly
e-LIC when agents are sufficiently informationally small. In Appendix F, we show
that the two notions are equivalent when the own-payoff irrelevant information of
the agents has little influence on the determination of allocations.
Extension to general social choice rules. Theorem 5.1 can be extended to any two
SCRs that are “close”, suitably defined, to each other. That is, under appropriately
reformulated assumptions on valuations, if a SCR p is implementable, then any
SCR that is “close” to p is approximately (locally) implementable. We next identify
a precise sense in which two SCRs are close.

Forany SCR p,s' € S',and k € K, recall that Ai(s', p) = {s7' € S7|px(s,s7") =
1}. The distance between any two SCRs p and p’ is defined by

do(p,p') = sup  max{G'(Ax(s, p) \ Ax(s', 1)), G'(Ak(s', ") \ A(s', p)) 1.3
i€eZ,;steSt kel
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Indeed, the proof of Theorem 5.1 does not rely on (e-)efficiency but rather on the
observation that for any e-efficient SCR p*, we have dg(p®, p*) — 0ase — 0.

Even though we restrict our attention to deterministic SCRs, our result can be
extended to a restrictive class of random SCRs. To illustrate, let p’ be a deter-
ministic SCR and p be any (possibly random) SCR. For any ¢ > 0, define a SCR
p = (1 —¢€)p’ + ¢p as follows: given the report signals, pick the outcome of p’ with
probability 1 — e and pick the outcome of p with probability e. Such random SCRs
are used in the literature of virtual implementation (e.g., Duggan [16]). With slight
modifications to our current proofs, we can show that for any small ¢, if p is im-
plementable, then p’ is approximately locally implementable and, hence, exactly
implementable in the presence of small ambiguity.

Large markets. This paper is closely related to the literature on mechanism design
in large markets. This literature establishes asymptotic efficiency or asymptotic
incentive compatibility of specific mechanisms. For example, see Satterthwaite
and Williams [45], Kojima and Yamashita [33], Williams [48], and Andreyanov and
Sadzik [1]. Our results suggest that in some of the settings where approximate
mechanisms have been established, a small degree of ambiguity may be used to
obtain exact results. Azevedo and Budish [3] and Hatfield et al. [26] propose two
new notions of approximate incentive compatibility, strategy proofness in the large
and strategy proofness within e in expectation respectively, which lie between the
standard notion of approximate ex post incentive compatibility and approximate
interim incentive compatibility. Yet these two notions do not restrict local incentive
constraints. Our paper proposes a stronger notion of approximate interim incen-
tive compatibility which imposes proper restrictions on local incentive constraints.

Independence assumption. We assume that each agent’s set of beliefs is in-
dependent of the realization of his signal. Since our approach is essentially based
on a generalization of the standard Myersonian approach, our results do not ex-

tend straightforwardly to settings with correlated information. In particular, given

33 A more intuitive metric is d(p, p’) = sup;c7 sicsirexc g ((A(s', p), Ar(s', p')), where di; is the
Hausdorff metric on S~/. Since G' is assumed to be absolutely continuous, we have dg(p,p’) — 0
whenever d(p,p’) — 0, but not vice versa. Therefore, our definition is more permissive.
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an e-LIC mechanism (p, x) in a Bayesian environment with correlated information,
whether p is implementable with small ambiguity hinges on (i) how agent i’s belief
G' depends on s’ in the Bayesian environment (e.g., whether types are affiliated),
(ii) how agent i’s set of beliefs is constructed in the corresponding ambiguity en-
vironments (e.g., whether ambiguity is on a common prior or on the conditional
beliefs directly), and (iii) properties of the mechanism (p, x) (e.g., whether pi(s) is
monotone in s/). For example, if (p, x) is a full insurance mechanism, then Theorem
4.2 continues to hold with a suitable definition of the corresponding ambiguity en-
vironments, regardless of how types are correlated in the Bayesian environment.
Another complication that arises in models with correlated types is the possibil-
ity of using lottery mechanisms, proposed by Cremer and McLean [12, 13]. It is
well-known that using lottery mechanisms can greatly enlarge the set of imple-
mentable SCRs. A straightforward application of lottery mechanisms however has
its limitations in ambiguity environments as the belief used to evaluate a lottery is
endogenously determined and, hence, it is difficult to construct a lottery for each
type with the desired property.>* The connection between approximate Bayesian
implementation and exact maxmin implementation when types are correlated will
be the subject of future work.

Mechanism design with maxmin preferences. This paper adopts the maxmin ex-
pected utility model of Gilboa and Schmeidler [20] to model ambiguity aversion,
which is one of the most commonly adopted model of robust decision-making un-
der uncertainty in mechanism design. For example, Bose et al. [8], Bose and Daripa
[6], Bodoh-Creed [5], and Carroll [10] study revenue maximization with maxmin
agents.35 Wolitzky [49], Song [47], de Castro and Yannelis [14], and Kocherlakota
and Song [32] address the possibility of implementing efficient allocations with
maxmin agents in a variety of economic applications. By comparison, this paper
considers a general implementation problem in a social choice setting that allows

for interdependent valuations and multi-dimensional signals and explores a con-

34See Renou [41] and Song [47] for an analysis of mechanism design problems with ambiguity averse
agents and correlated information.
35Di Tillio et al. [15] and Guo [24] study the effects of introducing ambiguity in mechanisms.
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nection between approximate Bayesian implementation and maxmin implementa-
tion under a small degree of ambiguity.

Another commonly used model of ambiguity in the literature is the smooth
ambiguity model of Klibanoff et al. [31].3¢ In the smooth ambiguity model, agents’
utilities in general are not quasilinear in transfers and the qualitative implications
of the smooth ambiguity model are similar to those of risk aversion. Moreover,
in the smooth ambiguity model, agents are locally ambiguity neutral and, conse-
quently, smooth ambiguity cannot weaken local incentive constraints as in e-LIC.
Thus, our results do not extend to the smooth ambiguity model.

The closest work to the current paper is Song [47]. There are two main differ-
ences. First, Song [47] focuses on overturning the impossibility result of Jehiel and
Moldovanu [28] whereas the primary focus of this paper is to establish an equiv-
alence between maxmin implementation with small ambiguity and approximate
implementation. Second, in terms of methodology, Song [47] extends the Myerso-
nian first order approach to environments with maxmin agents. The Myersonian
approach is feasible only if the SCR, value functions, and the sets of priors satisfy
certain conditions.?’ In contrast, we do not impose conditions under which the
Myersonian approach applies. Instead, we modify an existing e-LIC mechanism
to obtain an incentive compatible mechanism in environments with ambiguity. As
a result, we are able to study more general mechanism design problems whereas

Song [47] is limited to single object allocation problems.

36Epstein and Schneider [18] review different models of ambiguity aversion and illustrate differ-
ences in behavior implied by those models.

%For example, in order to apply the Myersonian approach in one-dimensional environments, we
need the following monotonicity constraint on the SCR p: for every i € Z, every s',t, 8" € S’ such

i B} i
that s' < #, and every s~ € S/, we have Yycx pi(t,s ’1)% > Yrer pr(s, s’l)%.

In a linear setting, the weak congruence condition (5.1) in Jehiel and Moldovanu [28] implies this
monotonicity constraint.
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Appendix

A Appendix for Section 4
For any two probability measures F, H € A(S™'), the Prokhorov metric is
d(F,H) = inf{e > 0|F(A) < H(B:(A)) +¢ VA € 27},

where B¢(A) = {s7' € S7/|inficy || s =t [[»< €} and || - || denotes the
uniform metric on S~
A.1 Example: e-Incentive Compatibility
In this section, we present a simple example to demonstrate the necessity of using
the notion of e-LIC rather than &-IC in Theorem 4.2. More precisely, for any ¢ > 0,
we construct explicitly a mechanism that is e-IC in the Bayesian environment. We
then show that as e converges to 0, the necessary amount of ambiguity for exact
implementation is bounded away from zero.

Consider Example 2 with N = 2. Let G'(s/) = ¢/ foralli € Z and j # i. Fix

0 < e < 1. Consider the following mechanism (p, x):

0 ifs!#1—¢ s2€]05,1],
pi(s',s%) = pa(s',s?) = 1—pi(s',s%),
1 otherwise,
and
xl(s!,s2) = —py(st,s?)s! + 0.5, x2(s!,52) = —pa(st,s?)s? + max{s? — 0.5,0}.

In the Bayesian environment, under p, agent 1’s expected probability of obtaining
the objectis 0.5if s! # 1 —eandis 1ifs! = 1 —e. Thus, (p, x) is not incentive com-
patible as agent 1's expected probability of obtaining the object is not increasing in
his valuation. However, it is easy to verify that this mechanism is &-IC.

Suppose F! = B;(G!) in the 6-ambiguity environment. We next show that
this SCR p is implementable only when ¢4 is bounded away from 0 regardless of
e. Take any t! € (1 —¢,1] and s! = 1 — . The necessary condition (4) for p to be
implementable implies maxpi . 71 F1({s* € [0,0.5]}) > 1. By the definition of the
Prokhorov metric, this inequality holds only if 6 > 0.25.
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A.2 Proof of Theorem 4.1

dvi (")
ds?

Mean Value Theorem and the definition of m.

Define 1 = maX;c7 yeic sicsi . The next lemma follows immediately from the

Lemma A1. [vi(s') — vi(#)| <m|s' — /| forall ', € S',i € T,and k € K.

Fix a Bayesian environment E® and a SCR p. Take ¢ > 0. Recall that for any
ACS " andé >0, Bs(A) = {s7' € S7|inf,micy || s7F —t7 [|< 6}. Let ¢(6) =
sup; 4cxi G'(Bs(A)) — G'(A). Since G is absolutely continuous with respect to
the Lebesgue measure, we obtain lims_,o ¢(6) = 0. Take 0 < § < 1such that ¢(5) +
6 < min{e, £}, and a s-ambiguity environment E’ in which 7’ = B;(G') for all i.
Suppose that p is implementable by the transfer scheme x with associated indirect
utility functions Vip,x) in E°. We are going to show p is e-locally implementable by
the full insurance transfer scheme xr with {yép’x) }; in EB. By construction, yép,x) is
also agent i’s indirect utility function associated with (p, xr) in EZ. We thus need
to show yép/x) is monotone, and (p, xr) is e-bounded and e-LIC.

Fix i and s/, t'. Since (p, x) is incentive compatible in E°, we have

i i > . tl + tl — dFl —i
”<pfx><s>—;%;/ (L Pl s~ ol 4 2857 aFis )
. (A
> 1 + / l AL tl dFZ —1 .
> Wi min lkgcpk (0(s") — vp(£))dF (s ™)

An immediate observation is if s' > #, we have v (s') — i (#/) > 0 for all k and,
hence, (., . (s) > Vl(y,x) (tl?. That is., H(p,v) 18 monotone, as desired. If s* < t, (A1)
implies there exists F' € Fi = Bs(G') such that

]’lip x)(ti) - Véplx)(si) < kZ’C ﬁi(Ak(ti, P)) (U;((ti) _ Z);((Si)).

Since F! € B;(G') and ¢(5) + 6 < ¢, the definition of the Prokhorov metric implies
that 0 < F/(A(t,p)) < G'(Ak(t, p)) + ¢ for all k. Since F' is a probability distri-
bution, Yyex F'(Ax(#,p)) = 1. Taking wy = F'(Ag(#, p)) for all k € K yields that
(p, xp) is e-bounded according to Definition 4.

We now show (p, xp) is e-LIC. Since F* = Bs(G'), we have
mm/ Z pr(t v’ i) —v};(ti))dFi(s_i)

FicFi JS—i kek
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/ ) e ) (0l (s') — vl (£))dG (s7) —m(p(8) + ) |s' — ¢
Z/i Y- pe(t,s7) (0p(s)) — 0p(#))dGi (s ™) — e’ — £,

The first inequality follows from Lemma A1l and the last inequality follows from

p(0)+o6 < £ Combining this with (A1) yields

Bl ) 2 o (E) + [T pilts™) (0}(s') = oh())dGi(s™) —els' — £
~kek

uép,xF)(t",si) —g|s' — #],

where ué ) is i’s payoff under the full insurance mechanism (p, x¢) in EB. This

P,XF

completes the proof.

A.3 Proof of Theorem 4.2

dvt (s')
ds!

Since vl is continuously differentiable and dvk( ) > 0forallk € K'and s € S, the

We start with some notation. Let K' = |K|. Define m = MiN;e 7 ki siesi

compactness of the signal space implies m > 0. Let Ao(s', p) = Uje Ki Ar(s', p).

Fix a Bayesian environment EB and a rich SCR p. Take 0 < 6 < 1 and a cor-
responding J-ambiguity environment E°. Take ¢ > 0 such that max{, e} < .
Suppose that p is e-locally implementable by the transfer scheme x with associated
indirect utility functions ,uép,x) in EB. We are going to show that p is implementable
by the full insurance transfer scheme xr with {yép,x) };in E°. Recall from Section 3
that by construction, ‘ul(p,x) is also agent i’s indirect utility function associated with

(p, xr) in E°. We thus only need to show for all s/, € &/,

Ml (57) = 1y (F,5)
, (A2)
(

= by () + i, 3 (045" — ok () F (A )

where uép/xp) isi’s .inferim.payoff under (p, xp) in E°. |
Fixi € Zand s, t' € S'. Consider first the case s' > . If Y, ., G'(Ar(t, p)) <
=, construct F' as follows: F'( Upcxi Ax(t, p)) = 0and F'(Ap(#,p)) = 1. Since

0 > 4, wehave Fe B(;(Gi) C Fi. Since ,ué y) Is increasing, we have
B o) = () + X (04 — ol (#) P (A(E, )
ke
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> Wiy (#) + min, 3 (04(s") = ok () F(A(E, p)),
FeF e

as desired. Suppose now Y ;i G’ (Ak(ti, p)) > £. By the ¢&-LIC of (p, x),

£
e

M (5) > 1 o () + 1 (0h(s) — op(#)) GH(Ak(E, p)) —els' — ] (A3)
kel

Combining (A2) and (A3) indicates it suffices to show for some Fie F,

Y (0l (s') — 0l (£)) Gl (A(E, p)) — s’ — £
Kk S (Ad)
> Y (oh(s) — ol () B (A(E, p)).

ke

Since Yycii G'(Ax(t,p)) > &, we can construct F' as follows: F'(Ag(t,p)) =
G (Ao(t, p)) + i and F'(Upeir Ag(F, p)) = G'(Ueri Ax(F, p)) — - By assump-
tion, t < s' < 1 and, hence, Ag(t, p) # @. Thus, F! is well-defined. Since § > é,
we have F' € B;(G') C F'. It is straightforward to verify that the constructed F
satisfies (A4), as desired.

Suppose s' < . If G'(Ao(t, p)) > &, construct F' such that F'(Ag(#,p)) =
G'(Ao(t,p)) — & and F' (Ureri Ax(, p)) = G'(Ureri Ax(t, p)) + 5. Since 6 >

#) C F'. The construction of F! yields

0i(s) G (Ak(t', p)) +e(t — )
< Y (@) = oi(s)) F'(Ax(E, p)).

keK
Combining this with the e-LIC constraint (A3) yields (A2), as desired. Suppose

now that G'(Ay(#, p)) < - Since 6 > =
Y G A, p)) +5> Y G(A(t,p)) + = > 1. (A5)
A , m
ket ket -
Without loss of generality, we can relabel the indexes of alternatives in K’ so that

&
m’
we have F! € B;

Y (k¥

ke

(G
) —

vl (H) — vl (sT) > - > 0l (H) — v (sT) > 0. (A6)
If G'(Agi(t, p)) + 6 > 1, there exists F' € F' so that F' (A (#, p)) = 1. Since (p, x)
is e-bounded,

V(P x)(tz) V&P x)(si) < (1) = 0l (s) = F'(Aga(F, p)) (i () = 0 (5)).

Since F' € F', the above inequalities imply the desired inequalities in (A2). If
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G'(Aki(t,p)) +6 < 1,let] € {2,..., K} be such that

Ki
Y G (A(t,p)) +d<1 and Y G'(A(t,p)+d>1. (A7)
= k=1-1

Such [ exists by the inequalities in (A5). Construct F' as follows:

Fi(A(t,p)) =0 Vk=0,..1-2,

Fi(A 1 (H, ZG Ai(t — 4,

Fl(A(t,p)) = G'(Ak(t,p)) Vk=1,.,K -1,

Fi(Agi(F,p)) = G (Ai(, p)) + 6.
By construction, F € Bs(G') C F'. Since (p, x) is e-bounded, there exists w; <
G'(Ak(t,p)) + e < G'(A(t,p)) + 6 and Zkelc wy < 1 such that

V?PIX)(#) - yl&PIX)(Si) < Y wp(vp(t) —op(s)) < Y F(A(F oL (1) — vi(s).
ke kel

The last inequality follows from (A6) and the construction of F'. Since F € F', this
implies (A2) and completes the proof.
A.4 Proof of Proposition 4.1
Fix a Bayesian environment E® and a SCR p such that Y, G'(Ax(s, p)) is non-
decreasing in s’ for all i € Z. Take 6 > 0 and ¢ = Z4. Let (p,x) be an ¢-LIC
mechanism with indirect utility functions yép,x). Fix i € Z. Define

Ri={s'€ s Y G'(Ak(s,p)) < %} and R, =S'\R'.

ket -

The assumption that Y i G' (Ax(s, p)) is nondecreasing implies R, lies to the

right of R'.
Lemma A2. The indirect utility function yép ) s monotone on RL.

Proof. Take st e Ri with s > #. The definition of m and the ¢-LIC constraint
(A3) imply

oo ) 2 Hlgsg () = ) 1 AN ) =€) 2 (1),
kekt
The second inequality follows from # € R, . O
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Lemma A3. The indirect utility function yép %) is Lipschitz continuous on S.

Proof. For any s',t' € S, the e-LIC of (p, x) implies
Y (6h(s) — o ()G (A, p)) —elsi — £] < gl () — py o (F)

< ) (0h(s) — 0k(£)) G (Ax(s', p)) +els' — .
kek
Combining these two inequalities with Lemma A1 yields

1 (8) = b, o ()] < (7 +e)|s' — ],
as desired. -

We are now ready to prove Proposition 4.1. We will construct a transfer scheme
% such that (p, %) is J-LIC and yi ¢) is monotone. If R = @, then Lemma A2
implies yép x) 18 monotone. Since m > m, we know that § > e. Taking £ = x

completes the proof. If R', = &, fix a constant « € IR. Construct £ as follows:

ti(s) =a— Y pr(s)vi(s’) VseSViel.
kek

By construction, yép 2) (s') = a forall s', which is trivially monotone and J-bounded.

We now show (p, £) is 0-LIC. Fix s/, # € S = Ri. Tt follows from Lemma A1l and

t € R that
Y. (vi(s) = 0p(#)) G (Ak(E, p)) < mls' — £ Y G'(Ax(t,p)) <d|s' — . (A8)
kek keKi

By (A8) and yép JE)(t‘i) = y’tp f)(si) = «, we obtain

Mo (5) > iy o () + Y (0h(s") = o} (1)) G/ (A(F, p)) — 65" — £
kel

uép,f)(ti,si) —Jlst —t1],
as desired.
We now consider the last case where R' # @ and R, # @. Define Ei =

infgepi ]/ti px) (s'). Construct % as follows:

-Y pi(s)vi(s’) Vs' € R
ke

#() = (&) = L pelo)OAs) ¥ € R
ke
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We first show yip %) is monotone. Take st > #. If s/, € R, the construction
of £ and Lemma A2 imply that o, )( st) = y(p x)( st) > Vl(g,x)(tl) .: ]j(p,}?)(tl), If
st,# € R!, the construction of £ implies y( )( st) = V(p x)(t’) = p' and, hence, is
trivially monotone. Note that it is impossible that s € R’ and # € R’, since R’
lies to the right of R’. Thus, the last possible case is s' € R}, and # € R'. By the
definition of y', we have ptl(p/ﬁ)(sl) = ]’ll(p,x)(sl) > = yl(p/ﬁ)(tl). Thus, Vl(p,a?) is
monotone.

We next show (p, %) is 6-LIC. Fix ', t' € S'. If s',# € R',, the e-LIC of (p,x)
implies the ¢-LIC of (p, %) as 6 > ¢. If sl e Rf, the proof follows from the same
argument as in the case of R, = &. Consider now s’ € R}, and # € R. As argued
above, s’ > t'. The construction of £ and (A8) together imply

o (#,51) = ols' — #] = i + Y0 (0h(s') — 0 ()G (Ax(F, p)) — bl — ¢
keKi
< S (),
as desired. Suppose t# € R’ and s’ € R'. Then t > s'. Letr = min{§ €
cl(Rﬂr)|yép,x)(§i) = ﬁi}’ where cI(R,) is the closure of R'.. The existence of r!
follows from Lemma A3. Since } ;i G! (Ak(', p)) is nondecreasing, we have st <

ri < t. By the e-LIC of (p,x) we have

i= i, o () 2p, o (8) + Y (9h(r) — 0l ()G (A(F, p)) — el — ¢
keKi
z;tzp,x)(tf) + ¥ (0h(s") — o ()G (Ax(F, p)) —els' —£i]  (A9)
keKi

>u( )( s') — 8|s’ — t.
The second inequality follows from r > s’ and the last inequality follows from the
construction of £ and § > e. Then since ;ﬂtm)(si) = ﬁi’ (A9) implies yim)(si) >
Ui, 5) (t,s') — 6|s' — t!|, as desired.

Finally, we show if (p, x) is é-bounded, so is (p, £). Take s',#' € S'. The con-
struction of £ implies that the requirements in Definition 4 are satisfied if s, € R’
ors,t € R'. Now considers’ € R, # € Ri+ and s’ < . Since (p, x) is 6-bounded,
there exists {wy }rex such that 0 < wy < G'(Ax(#,p)) + 6 forall k, Ve wi < 1,
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and

Ml () = By (1) < Z}C wi (o} () — 03 (). (A10)
ke

Since s' € R, we have yip f)(si) = Ei = yi (r') and s' < r'. Combining these

p.x)
two observations with (A10) yields

Flo (1) = iy () < 1 (0} (t) = o).
ke

This completes the proof.
A.5 Proof of Lemma 4.1 and Proposition 4.2

We prove Proposition 4.2 and the proof of Lemma 4.1 is immediate.
By supermodularity, for each i, we can relabel the indexes of social alternatives
{1, .., K'} so that
dvi(s')  doi (s7) vl (s') o
0=—kr 2 <o < K2 ke K, Vs € S All
ds’ s T s 0 (A1)
dvé(i (s')

dvé(l. (5%
dgt

LetK' = {k € ICl|dv’<( ) <

dvy (5')
dst

max{o’, %} and ¢ = max; ¢’. Let wy = Zkelcé Wk

Vst € Sz’}_ If K #+ O, leté = minkegilgiesi (

). Supermodularity implies ¢! < co. If K' = &, let ¢ = 0. Take ¢’ =

The result is trivially true when ¢ = 0. Fix ¢ > 0, an &-LIC mechanism (p, x),
and i. We first show (11) implies ce-boundedness. Fix st < #. Tt follows from (A11)
that (11) is equivalent to

Ml () = ) (8") < 0a(t) = 0 (57). (A12)
Thus, we only need to show (A12) implies ce-boundedness. If ce > 1, then taking

wyi = 1and wy = 0 for all k # K’ yields the desired result trivially. Thus, suppose

ce < 1. Consider first the case K' = @. Since (p, x) is e-LIC, we have

o (F) = il (s /zpk ) (0 (F) — 0 (s))dG! + e(F — )
—Z i ))Gl(Ak( p))+s(ti—si).

keK
If Yrcii G (Ak(H,p)) < 1—ce, then take wy = G'(Ax(t,p)) forall 0 < k < K,

(A13)

wyi = G'(Axi(t,p)) +ce, and wy = 1 — Yyowg. By construction, conditions

(i) and (ii) in Definition 4 are satisfied. Since ¢ > %, we obtain that c(v%i(ti) —
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0t (s')) > em(t —s') > ' — 5. Then by the construction of {wy },, we obtain

Y (vh(F) —0k(s) G (A, p)) +e(t —s') < ¥ wi(ok(t) — 0i(s")).
ke ke
Combining this inequality with (A13) yields inequality (5), as desired.

If Yrexi G (Ak(t,p)) > 1 — ce, then take wy = 0, wy = G'(Ax(#,p)) for all
0 <k <K,and wyi =1— Y_gi wg. Since Yo xi G' (Ar(, p)) > 1 — ce, we obtain
wgi < G'(Axi(t,p)) + ce. Thus, conditions (i) and (ii) are satisfied. To verify
inequality (5), note that K’ = & implies v () — sz(s ) = vi(t) — vi(s') for all
k € KU Thus, Yyer wi (v} (t) — v} (s)) = vl (£) — 0l (s). Then inequality (5) is a
direct implication of (A12), as desired.

Suppose now K # @. Letl € {0,1,...,K* — 1} be such that

‘ ‘ 1 ‘ ’ ‘ ) +1 .

G'(Ao(t,p)) + Y G'(Ar(t,p)) <ce and G'(Ao(t,p)) + Y G'(Ax(t,p)) > ce.
k=1 k=1

If G'(Ao(t, p)) > ce, thenlet] = —1. If d”l+1( ?) _ o (ﬂ) forall§ € §, take wy = 0

forall k < I, wy = G'(Ax(#, )) forall I < k <K, and wgi =1 — Y ;i Wi. By the

choice of I, we have wy; < G'(Axi(t, p)) + ce. By (A12),
I’ll&p,x)(ti) - ]’ll&p, )( ) <v (t _vKl kgcwk Uk — U;{(Si)).

i (g i (5

g .
Thus, (p, x) is ce-bounded. If v’;;(s) < ’;’SE ) , supermodularity implies % —

dot gl
Ulgli(s ) > L forall §. Thus,
5 Q
o o S S g odoi (3 dol (8. 1 ..
UlKi(tl) - UZKi(SZ) - (U;H(tl) - v§+1(sl)) = /si ( ZSTZ' - l:;;i )ds' > E(tl —s'). (Al4)

Take wy = 0 forallk < I, w4y = Yiih G (Ar(t, p)) — ce, wy = G'(Ax(t!, p)) for
alll+1 <k <K,andwg =1— Y g wx = G'(Agi(#, p)) + ce. By construction,
conditions (i) and (ii) are satisfied. To see why inequality (5) is satisfied, note that

by e-LIC,
g () = bl < [ NACERICIORECHEERSCREY
= ;G"(Akaép)) (0h(#) = h(s)) +e(# = s')
< Y we(oh(t) — o).
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The last inequality follows from (A14) and ¢ > ¢'. This completes the proof.
Next we show thatif (p, x) is ce-bounded, then it satisfies (11). By ce-boundedness,
yép’x)(ti) _ ﬂép,x)(si) < kgc wi (0L (1) —vi(s) < max (v}((ti) - v};(si)> Vst < #)
where the last inequality follows from wy > 0 for all k and ) ; wy < 1.

B Proof of Theorem 5.1
For simplicity, denote & (s') = A (s, p*) for all s, k, and i. Lemmas B4 to B8 below
establish a key step of the proof of Theorem 5.1: for all k, s, and &-efficient SCR p?,
the set Ay (s', p°) converges to the set £(s') as & — 0.
Fix & > 0 and a &-efficient SCR p¢. For eachi € Z and s € S/, define
O(s', p*) ={s~' €57 rlpe%l_ilvi(sl) - Y il ka ) > ¢}

keK
For each s’ and each k € K, let Al (s, p°) = Ar(s’, p5) N O(s ,p°) and AL (s), p%) =
Ar(s', p8) \ Al (s, p°). Foreachi € Z,s' € S, and k € K, define

N N
Ag(sl) ={s'eS 1|max20i,(sl) va{(sl) < —¢},
k'#k 1:1 =1
Ap(s) ={ste S mavaf(/(sl) — Y ol(sh) < &}
K#k 13 =1

Forany s~ € &(s'), maxy YN, v,l{,(sl) -¥N, vl (s') < 0. Thus,
AS(s') C E(s') CAL(s)) Vs € S VieT,VkeK. (B15)
Lemma B4. Foreveryi € Z,s' € S, and k € K, we have A" (s, p°) N & (s') = @.

Proof. Note that A (s', p¢) C {s7 € S~ | maxper LY vk (s)) — LI, ol (s!) > ¢}
It follows from the definition of &(s') thats™' ¢ A, (s', p¢) forany s~/ € &(s'). O
Lemma B5. Ag( N\O(s', pb) C A; (s, pb) C Ak( N forallk € K,s' € St,andi € T.
Proof. Fixk € K,i € T,and s' € S'. We first prove Ag(si) \ O(s, p°) C A_ (s, p°)
by way of contradiction. Take s~ € Ag(si) \ O(s, p°). Suppose thats ' & A, (s', p°).
Since A} (s', p°) C O(s, p*), we know thats ™ ¢ A (s, p®). Then there exists k # k
such that s/ € Az(s!, p%). Since s~ € A% (s'), we have

ka >rkrl1;?20k, —|—§>Zv
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Moreover, s~ € Ag(si) implies k is efficient given (si, s_i) and, hence,

H}{?XZ%/(SZ) =Y o) = Yois) - Yo >
! ! ! !
Thus, s~ € AIZ: (s, p®) C O(s', p%), which contradicts that s~ ¢ O(s’, p%).
We now prove AL (s, pf) C AS(s'). Takes ' € AL (s, p°). I s70 € &(s"), then

(B15) implies s~ € Ag( ). If k is not efficient, the choice of s~/ implies that
Il I (ol Il
/ - = / - <
max Lok () — Lokl =maxd ol () ~ Fui(s) <&
Thus, s~ € Ag( !). This completes the proof. O

Since vf{ are continuously differentiable and signal spaces are convex and com-

pact, Pivotality implies there is b > 0 such that forany i € Z and k # k/, there exists

a<zlv§<(sl)7.21 (1) >bforalls € Sor o5 vi(sz)iD (<) <
ds/ - ds/ -

j # i such that either
—bforalls € S.

Lemma B6. Assume Pivotality. Then S~ \Ag(sl) - Bzg (5 \AC( ) foralls' € S,
ke IC,andi € T.

Proof. Fixi € I, s' € S, and k € K. Take s~/ € AS(s )\ AS(s'). Since S\
AC( ) C s \A‘:( #), we only need to show there exists t =/ € S~ \Ag( ?) such
that || s7/ — t77 ||o< 27‘:. Let k € argmax, . ¥ vk, (s',s7"). Suppose first there
exists j # i such that (T -Eroj)

s/
H=s — 25 and t! = ¢! for all | # j. By construction, || s/ — t77 ||eo= 27'5 We are

> b for all s € S. Construct a f such that

going to show that t ' € S\ Ag( !). Observe that

g}gngw )= Lot = Yop(#) = Yokt > Yoop(s) - o) +28 > ¢,
l ) ) )

I
o( Xy ok(sh)-Liok(s))

as desired. Suppose now there exists j ;é i such that 7 < —bforall

s € S. Construct a t such that #/ = s/ —|— Cand t! = s forall I # j- By construction,

|57 —t7 o= 25 . Since

f,{,‘iﬁsz BN ES AR IAGESWACH ka ) +28>¢,
! I I I

we obtain t— € S\ Ak (s'). This completes the proof.® O

381f the constructed t~ ¢ S~/, we can enlarge the set of signals to include ¢~ and extend agent i’s
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For any & > 0, let Bz = maXicgi reic icz (Gi(zg(si)) -G (Ag(#)))
Lemma B7. Assume Pivotality. Then limg_,o Bz = 0.

Proof. Lemma B6 implies that for every i € Z,s' € S',and k € K,
G (A (s) — G(AF(s) = G'(S T\ AF(s) \ (ST\ AL(s)))
<G (By (57 \AL)) \ (57 AL)
Since G' is absolutely continuous with respect to the Lebesgue measure, we obtain

Recall that the distance between any two SCRs p and p’ is

do(p,p') = sup  max{G'(Ax(s',p) \ Ak(s', 1)), G (Ax(s', p') \ Ax(s', p)) }-
icZ,steS kel

The next lemma states that dg(p®, p*) — 0as & — 0.

Lemma B8. Assume Pivotality. Forany e > 0, there existsa & > 0such that dg(p®, p*) <
¢ for all &-efficient SCR pé and 0 < & < &.

Proof. Takee > 0. Let¢ > Obe such that Bz +§ < e. The existence of such ¢ follows
from Lemma B7. Fix 0 < ¢ < ¢, ¢-efficient SCR pg, ieZ seS andk e K. We
first show that G (& (s) \ Ax(s, p®)) < e. Observe that
G (&k(s") \ Ax(s, p¥)) = G (&(s") \ Af (5, p%)) < G (AL(s) \ A (5", p%))
SGi(Zg(si)) — GH(AS(s")) + G (O(s, p°)) < B +E <.
The first equality follows from A (s, p¢) = Al (s, p*) U AL (s', p®) and Lemma B4;
the first inequality follows from (B15); the second inequality follows from Lemma
B5; the third inequality follows from the definition of Bz and G'(O(s, p%)) < €.
We next show G'(Ax(s’, p°) \ &(s)) < e Since Ag(s',pt) = Af (s, p*) U
A; (s, p°), Lemma B4 implies that
G (Ak(s', p) \ &(s)) = GI (AL (%, p°) U AL (5, 1°) \ Ek(s)))
= G'(A{ (s, 1)) + G (A (s, p°) \ Ek(s")).-

beliefs to this larger domain with F/({t~#}) = 0 for all F! € F". Then all our results remain valid.

(B16)
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Observe that
G/ (A (s',p%) \ &(s) < G(AR(s) \ &(s")) < G'(AL(s")) — GI(AL(s) < Be. (B17)
The first inequality follows from Lemma B5; the second inequality follows from
(B15); the last inequality follows from the definition of Bz. Since A,j(si, p¢) C
O(s', p®) and p¢ is g-efficient, we have G' (A (s',p®)) < G'(O(s',p%)) < € for
every k € K. Combining this observation with (B16) and (B17) yields the desired

result. O]

We are now ready to prove Theorem 5.1. Define x = max; K’. Fix e > 0. By
Lemma B8, there exists a ¢ > 0 such that dg(p¢, p*) < min{e, £} for all -efficient
SCR p¢ and 0 < & < ¢. Suppose there exist 0 < & < ¢ and &-efficient SCR p¢ such
that p¢ is implementable by the transfer scheme x. We are going to show that p* is
e-locally implementable by xp with {Vipé,x) Yiet.

Fixi € ZTand s, t' € S'. We first show that (p*, xp) is e-LIC. By the construction
of (p*, x), we know that yi xp) = Hépé‘ 0 and

”ép*,xp)(tifsi) pé‘x +/2Pk vi(s') — v (t))dG'
t))dG'.
NGRS M ANCICECIG)
Then (p*, x) is e-LIC if
He (8 = il +2/€k ., ol (E))dG —els — ], (B18)

Since (p¢, x) is IC, we have ;4( )(SZ) > uépg )(tl s'), which implies

Hipt 0 (8) = My Z/Ak ) (vk(s) — vi(t))dG". (B19)

Combining this inequahty with (B18), we obtain that (p xp) is e-LIC if

). /A ) — vi(t))dG' > Z/ —oh(t)dG' —¢|s' — #|.

kekci * Akt Pé ke
Thus, we only need to show this inequality holds. If s' > |, by Lemma A1 and the

choice of ¢, we obtain that

L ([, @k —ei)ac = [ (ks ~ o} (1)ac)

keKi k(t])
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ST L a2 )G < T s — F)GEE)\ Al )

kerci I SN AK(E.pE) kek:
<x(s’ — ) (pf, p) < els’ — 1],
as desired. The case in which s < # can be dealt with analogously.

We next show pu (p* xp) 18 mf)not?ne, which 1's e.qulva'ler'fc to showing u (pt,x) 18
monotone. Note that for any s’ > t', we have v} (s') — v} (t') > 0 for all k. Then it
follows immediately from the incentive constraint (B19) that yépg %) (st) > Hipé %) (t),
as desired.

Finally, we show that (p*, xr) is e-bounded. For any s’ > #, the incentive com-
patibility of (p%, x) implies

Mgt (8) = My o (F) < k[}jc G (Ax(s, p%)) (0L (s') — oL ().

Since G' is a probability distribution, Y cx G'(Ak(s', p%)) = 1. Moreover, the
choice of ¢ implies that for every k € K,

G'(A(s', %)) — G'(&(s) <da(p,p") <&
Taking wy, = G'(Ax(s', p®)) for all k € K completes the proof.
C Proof of Theorem 5.2

The proof consists of two steps: the first step is to show the CEM is asymptotically
LIC; the second step is to show the CEM is asymptotically bounded and indirect
utility functions are monotone. Fix § > 0. We first show that there exists M such
that if M > M, the CEM is 6-LIC. In the proofs below, we focus on sellers and
similar arguments apply to buyers. Suppose seller j with cost ¢/ bids ¢/. The other
buyers’ and sellers’ offers/bids are arrayed in increasing order sy < ... < sop_1)-
There are three cases to consider. If & < S(m—1), the price is s(j;_y) and seller j
trades; if s(p_1) < o< S(m), the price is ¢/ and seller j trades; if S(m)y < ¢/, seller j
does not trade. Let F();_1) denote the distribution of s(;_1) and Pr(s(p_1) < o <
s(m)) denote the probability that ¢/ lies between s(m—1) and s(pp). Seller j’s utility
under the CEM is given by

w(d,d) = / (s(m—1) — )dF(pp—1) + (€ — )Pr(spm—1) < & <sppp)-

el
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Observe that for any & < d,
S o o , J
w(d,d) = (d,d) = (d —&)Pr(sipmn) <& <spy) + / (¢) = s(m—1))dFp—1) > 0.
o
Thus, a seller will not underreport his cost. Suppose now that ¢/ > ¢/. Note that

w (@, ) —ul(d,cd) < (& — cf)Pr(s(M_l) <éd < s(m))

—_ (Al i\ (2M—1)! A\ M—1 A1\ M
e . . (2M—-2)! gM-1 o
By Stlrllng s Approximation, we have M=TIM=T)T = N Also, G(&/)(1 —
G(?)) < %. Thus, there exists M such that for all M > M,
M -1 _ Mot oM _2M—1  4M-1 1 2M —1
G(¢ 1—G(¢ < = < 4.
- C@T (1= GE) T == VM —1)4MT T M /(M- 1)

Hence, uj(cj, cj) > uj(éj, cj) - 5(6f - cj) for all M > M, as desired.
We next show CEM is d-bounded and indirect utility functions associated with
the CEM, denoted by y//, are monotone. Notice that for a seller j, his valuation from

trading is —c/. Thus, by Lemma 4.1, we only need to show
0<pl(d)—w(@)y<d—c Ve <él. (C20)
Take a seller j and o< dl. By construction of the mechanism,

. . 1 ) 1 .
wid)—w() = / (S(M—1) - C])dF(M—l) - /g (S(M—1) - 5])dF(M—1)

cl

ol
Clearly, the inequalities in (C20) are satisfied.
D Proof of Theorem 6.1

Theorem 6.1 holds in both one- and multi-dimensional environments. We here
provide a proof of Theorem 6.1 in the case of multi-dimensional signals. The proof
for one-dimensional signals can be derived as a special case and, hence, omitted.
With interdependent values, a full insurance transfer scheme is constructed as
in (1) with replacing v (s') by 0! (s). The definition of e-boundedness also needs to

be modified when signals are multi-dimensional. Let
LY (s, t) ={ke K'|si, > t.} and L™ (s, ) = K'\ LT(s',¢') Vs, € S,Vie T
Definition 11 (Multi-dimensional Signals). For any Bayesian environment E® with
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additively separable value functions and any ¢ > 0, a mechanism (p,x) is &-
bounded if for any i € 7 and st e S with L+(si, t') # @&, we have
iy (5) = 1 () < ) we(f(S) = fit), (D21)
keL*+ (st t)
where {wy}icp+(si ) satisties (i) 0 < wy < G'(Ak(t,p)) +eforallk € LT(s,t)
and (ii) Y yep+ (o i) Wk < 1.

It is easily seen that, with the suitably modified definitions, all our results and
proofs in the case of private values directly extend to the case of interdependent
and additively separable values. We next prove Theorem 6.1 with nonseparable
values.

We start with some notation and preliminary lemmas. Let Di(s',#,s7%) =
vl (s, s7") — vt (#,577). Also define

L av;{(s",s_") ) av;'c(si,s_")
m= max ———— and m= min ———
ieT keKiseS dsy; ieT kekKises dsy;

Lemma D9. Fix a Bayesian environment and ¢ > 0. Let (p,x) be an e-LIC mech-
anism with monotone indirect utility functions. Then for all i € I, s',t € S, and
L' C L*(s,t),
‘ul&p,x) (Si) - ‘uip,x)(ti) > Z (/A ; Dlic(si’ tifs_i)dGi - €|S;<i - t;'ci|) .
keL/UL~ (si,t) k(thp)
Proof. Fixi € Z,s',t € S\, and L' C L*(s',t). Construct § as follows:
§.=s. VkeL'UL (s,t), and 3. =t VkeL"(s,t)\L.
By definition, we have S;a > tfa. forallk € LT (si, ti) and, hence, the construction of
§" implies s;'a. > §§d for all k. Thatis, L~ (s',5') = @. Since ]/tép %) is monotone, we
obtain yl(p,x)(sl) > y‘(p,x)(?). Thus,

i

M) (57) = 1l () = {9 (5) = iy (H)
> % ([ DI G el ).

keL/UL— (st )

The second inequality follows from e-LIC and the construction of &'. O

Forevery s’ € S, lete(s') = {t' € S'|st. = .., Vk € K}. Any two signals in e(s')

only differ in own-payoff irrelevant information.
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Lemma D10. Fix ¢ > 0. For any e-LIC mechanism (p, x), V?p x)(si) = yi (t) for all

ste St ee(st), andi € T.

p.X)

Proof. Fixi € I,s' € S',and ' € e(s'). Since t € e(s'), we have st = #!. and, hence,
vl (sl,s7") = vl ( s™) forallk € K and s~ € S~ Since (p, x) is e-LIC,

yép,x)(s) +/2Pk ODL(s, #,s7AG — € Y sk — th| = Vip,x)(ti)-
kekKi

R‘eversi.ng the roles of s' and # yields yip’x)(ti) > yép,x)(si). Thus, yép’x) (s') =
Vl(p,x)(tl)' O

Forevery SCR p, k € K,ands/,t € S, letﬁilr,(si, t) = SUP,-ic A, (5ip) Di(s',t,s7)
agd C]i(,;7 (si,t) = {s7 € S‘ilbi,p(si, t') = Di(s',#,s7")}. By the definition of
ﬁ;(,p(si, t') and the compactness of S/, we have C,i(/p(si, t') # @. For every SCR p,

&>0,keK,and st € S, define

Serp(s't) = {s™" € Ax(s', p)[Diy(s', 1)) = &(shy — 1) = Di(s', #,s7)}.
Recall that K’ = |K!|, x = max; K, and Ag(s’, p) = UkeKéAk(Si p). For any SCR p,
i€Zands € S, define Ki,(s') = {k € K|G'(A(s', p)) > ' > ) Let§, = {s' €
S'|G'(Ao(s',p)) < K%rl} Finally, for any s~' € S~ and s}, let s~ \Skl denote the

coordinates of s~ other than s{d.

Lemma D11. There exist 0 < §{ < mand 0 < 5 < 17 such that G’(SNéT;(p(si, t)) > 7
forall SCR p, s' € S;,, teS ke ]C;,(S’), andi € L.

kassi)’

Proof. Fix0 <7 < By nonseparability, there exists T > 0 such that |

K+1

1
E)sklaskl

Tforallk € lCl,j #1,i € Zand s € S. This implies that given any sleCl ’p(s t),
for any signal §~/ so that s~;a. #* s;a. for some j # iand §7' \ sii =57\ s;a., we have
s ¢ C,i, p(si, t'). Thus, the set Clic,p (s',#) has an empty interior. Since ¢’ is continu-
ous and S~ is compact, there exists C > 0 such that g(s™/) < C foralls~/ € S~!
and i € Z. Then there exists § > 0 such that G"(B(;(C,"{’p(s", t))) < w3 —n forall
si,t €S, ke Ki,i € T,and SCR p. Take 0 < ¢ < min{m, 76}.

FixaSCRp,i € Z, sl e g;, and t' € S'. Since s’ € S;, we know that Iq,(si) #+ .
Otherwise, we have Y, G'(Ai(s',p)) < 1, a contradiction. Take k € Ki(s').
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02 vk(s s7H)

Assume that > 0 forall j #iands~' € S™'. The other cases follow from

si.ds]
analogous argurﬁerﬁl’cs Note that if s, < #, then Sgllc (s, ) = Ag(s',p). Since
k € Ki)(s'), we have Gl(Sg;c (s',t)) = G'(Ak(s', p)) > g > 1, as desired. Thus,
assume that s, > ti.. Take any §7' € Ai(s',p) \ B&(C;{,p (s',#)). We next show
that there exists t~# € C,i(,p(si, t1) such that tl — §§( 0 for all I # i. Take any
il e C,i’p(si, t') and by way of contradiction, suppose that there exists j’ # i such
that 5;{;. - §§;. < 0. Construct 5~/ such that &, = max {3} ,& } for all | # i. For the
other dimensions, if 55(1. = §fﬂ., then 55«1/ = §§<’l' ; similarly, if 55(1. = §;ﬂ., then §§(,l, = §§(,l,.

P— —i - i - J _d o d
Bylcolnsltructlon, s ' € S wheres,; > 8 forall [ # i and S, = 8, > 8- Since
azvk(s S

i ]
aSk1a ki

> 0 for all j # i, we obtain

Di(s',#,57") > Di(s!, #,57) = Dy (', ). (D22)
It follows from the definition of 5;{ p(si t') and the choice of 7/ that 5;; p(si t) >
Di(s!,#,57"). Combining the latter inequality with (D22) yields Di(s’,#,57") >
Di(s!,#,37"). Then by continuity, there exists t— € S~ such that §l, < #l. <&, for
alll #iand Di(s',#,t77) = ka(s '), thatis, t ' € Cj (s', ).

Since §77 ¢ By ( k,p(s ,)), there exists j # i such that tkZ — Skz > 4. Therefore,

Dy, (s, ) — Di(s',#,§7%) = Di(s!, ¥, ") — Di(s", #,677)
s 0L (0, 8’0;((9 5.

= i ( Y 90 )de > T‘S(Sfa' - t;ci) > g(sfa' - tfci)'
Thus, SC}{p(si, t) D Ax(s', p) \ Bs (C,i’p(si, t')). By the choice of §, we conclude that
G (ngc (s, ) > G (Ax(s', p) \ Bg(C,i/p(si, t'))) > 1, as desired. O

We are now ready to prove Theorem 6.1. Fix a Bayesian environment E? and

a rich SCR p. Take 0 < 4 < land a (5—arnbiguity environment E°. Lemma D11

K—|—1

forall s’ € Sl,t‘Z €S ke ICI( ) and i € 7. Take ¢ > 0 such that & —l—eg((n’f g)) <9
ex(M—{)

and Fmg) =1 Suppose that p is e-locally implementable by the transfer scheme

implies that there exist 0 < ¢ < m and 0 < # < —~ such that GZ(S’:?;C (s, t)) > 7

x with associated indirect utility functions y(p v N EB. We are going to show that
p is implementable by the full insurance transfer scheme xp with { P‘ép x)}i in E°.

Recall from Section 3 that by construction, yép %) is also agent i’s indirect utility
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function associated with (p, xr) in E°. We thus only need to show for all si,tesi

;ﬂ&p,x)(si) > uép/xp)(ti,si) = yépx (t) + mm /Zpk “HDi(s',#,s7")dF!, (D23)
where uép,xF) is i’s interim payoff under (p, xp) in E°.
Fixi € Tand s’ t' € S If ' € e(s'), Lemma D10 implies ,uz(p,x)(s‘) = yl(p,x)(tl).
Since t' € e(s'), we have Dj(s',t',s7") = 0 for all s~". Therefore,

o ) = i) = #o ) + i, [ 57 DYE 57

as desired. Now suppose t' ¢ e(s'). That is, there exists k € K such that |S§<i —
ti.] # 0. Since s’ and #' are fixed, we write L™ and L~ in place of L*(s’,#)) and
L~ (s',#) respectively. Let L™+ = {k € L¥|G'(Ax(#,p)) > &}. Lemma D9 implies

Mo ) Z W)+ 1 ( /A iy DA 570G — el — ). 029

keL*++UL~
Combining (D24) and (D23) indicates that it suffices to show that there exists a F'

such that ﬁi € Fland
D st sTHAG —elst. — ¢t
/Ak tl k ) | ki k1|)

/Zpk “HDi(s', H,s7)dF".

The rest of the proof is to construct such a F! explicitly in all possible cases.

k€L++UL— (D25)

Suppose first that L~ = @. Construct F! as follows:

(B (At p)) = GH (At p)) — = Vke L], [Fi(A(t,p)) =0 VkeK'\L™]

F'(Ao(t, p)) = G'(Ao(t, p)) + ; (G'(Ak(t', p)) — F'(Ax(t, p))).

I
=

By construction, Zklil (G (A(t,p)) — FI(Ak(t,p))) < % Since § > %, I e
Bs(G') C F'. The construction of F' yields
Y. / " )D,i(si,ti NAG' — ¢ ) sk, — .| > ) / Di(s',t,s7")dF".
k(t,p

keL++ / Arlt keL++ reri  A(tp)
Thus, (D25) is satisfied. Suppose now L~ # &. Suppose also that
Gl(Ao(t,p) + ¥ GAH,p) + LT[> >|L7|>. (D26
keLT\L++ m m

Then construct F as follows:

[F'(Ax(F,p)) = G'(Ax(t, p)) +% VkeL7], [E(Ag(t,p)) =0 VkeLT\LT*],
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Fi(Ac(F,p)) = G'(Ax(t, p)) — Vk e LT,

IS e

Bt p) = G ) + 5 G p) + (L= 1)
keLt\Lt+

By (D26), F! is well defined. Since § > I%E, we have F' € Bs(G') C F'. Itis

IS | e

straightforward to verify that the construction of F/ implies (D25). Suppose now

G'(Ao(t,p)) + Y G'(Ak(t,p))
keL+ (D27)

>IL7[= > Gl (Aot )+ Y Gl(A(E, p)) + LHF
m keL+\Lt+ m

Then construct F as follows:
Pl p)) = G (AWE,p) + = VKe L) [F(Ax(t,p) =0 WkeLF\L)

Flaod,p) =0, ¥ FAEp) =G Adlf,p) + ¥ GAuE, ) =1L,

kelL++ kelLt+

G (A(t,p)) — |L‘|% < FI(A(t,p)) < G(A(F, p)) —% Vk e LT,

Notice that F' may not be unique but such F! exists due to (D27). Since § > %, we
have F! € Bs(G') C F'. It is straightforward to verify that (D25) follows directly

from the construction of . Finally, suppose

G'(Ao(t,p)) + ¥ G (A, p)) < IL7| = (D28)
keL+ m

For every k € L™, define

vi(tifs_i) - U;;(Sirs_i) v;c(t;ci’gk_i) - U;c(s;ci’gk_i) 39

and m = PR
ki~ ki

§k_1 € argmax : .
i i B.—gt,
s—ieAr(t,p) ki ki

Also, let k* € argmax; ;- Di(#,s',s7") and k € argmax,_,- (#;, — si.). By the

choice of ¢, we have . < m Then (D28) implies
G'(Ao(t,p)) + G'(Ax(t, <|L7|= < ——.
(Aoltp) + T G (Altp) < 171 < s

Hence, t' € Sﬁ, and IC;,(ti) #+ @ Ifk* ¢ IC;(ti) NL~, take k € IC;(ti) N L~; other-

%Since A (#, p) might be an open set, it is possible that 5 " does not exist. Then we can take a signal
LG AC )

5.7 € Ag(t, p) such that 7, > SUP-ic A, (i p) =y — € for some small € > 0.
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wise, take k = k*. Let A = I%ET—_C@):) > I%s Construct F! as follows:*°
Fiaot,p) + ¥ Fl(A(t,p) =0, F(S; (F,s) =G'(Sp (£,s) = A,

kelt

Fi(Ag(f,p)\S1 () = G (Ap(t, )\ 5,1 (1,51),

Fi(sp) = A+ G (Ao(t, p)) + Y G (At p)), Fl(Aw(t,p)\ {5}) = G'(Ax: (. p)),
keL+

FI(AE,p)) = G (A(E,p)) ke L\ (kK.

By the choice of ¢, we have A < 5 < Gi(gglép(ti, s')). Thus, the constructed F’

is feasible. Since § > % + %S, we know that F € Bs(G') C F'. By the

construction of F?, we obtain

D s hac - [
keZL /Ak(t%ri) ¢ k;C A(tp)

By the definition of LT, we obtain

D};(si, t s_i)dl:“i
(D29)

/A ) Di(s',t,s )G > m(sh; — t,) G (Ax(t, p)) > e(sh; — ;) Vk € LT, (D30)
k(t.p
It follows from (D30) and (D29) that (D25) is satisfied if

M (b — Spe) — (Mg — §) (b, — s5.) = 1 Y (ti — sk)-
keL~

If k = k, then
m;c* (t;;*i - S;'c*i) - (m;} - C)(t}a - S;;a') > m;}( ;;{1' - S;;(i) - (m;} - g)( ;;ci - S;;{Z')
:g(t;}i - S;}i) > XKZ(tZEi - SZEZ') > X Z (t;d - S;ci)'
The first inequality follows from the definition of k*; the second inequality follows

£

from the assumption that k = k and A > é,Ki. Suppose now k # k. If
(M — &) (t, — sp,) < (7L — &) (t, — st,), (D31)
then
m;{* (t;{*i - S;c*i) - (m;} - C)(t;ﬂ - S;;a‘) > m%(t%l - S%j) - (mlE - C)(tl@ - S%,‘)

(4 i € iy i
=ty — sg) 2 7K (g — s)

OWhen k = k*, let £ (A (#,p) \ ({s./} U S~a,i*/p(ti,si))) =G/ (A (t,p) \ Sgli*,p(ti’ s')).
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If the inequality in (D31) is reversed, then

i (bes = Sies) — (7 — €) (b, — sp,) > (1, — si,) — (7 — §) (b, — s)
. . ml — . . e .. . € . .
_ k
=0l sk > =) 2 K0 k) 2 1 B (sl
The second inequality follows from the violation of (D31); the third inequality fol-
Kie(m—g) ~ K'e(m—¢)
¢m—=¢) = g(m—¢)

lows from A =

E Proof of Theorem 6.2

We start with some notation and a preliminary lemma. For everyi € Zand s’ € S/,
lete(s') = {t|t,, = Skz’tkj € Sij,Vk € K,Vj # i}. Note that, by definition, ¢'(s") €
e(s'). Tt is possible that t' ¢ S' for some ' € &(s') but & (') is well defined for all

| e B(q 7y j - j
t € e(s'). Letd = max;er,j+ikek (MaXgicg) §; — Mingcgj sy;)-

Lemma E12. For any e > 0, there exists oy > 0 such that if ' < «y forall i € I, then
G (E(s) \ E(t) < eforalls',t' € e(5),§ € S\, ke K, andi € T.

Proof. Take v > 0 such that
sup  G'(BL(&(t)) — G (&(H)) <. (E32)
€T3 esitice(s) n
Such 1 exists since G' is absolutely continuous with respect to the Lebesgue mea-
sure.
Fixi € Z,5 € S, st € ¢(§), and k € K. We first show that &(s') C
B7 (E(t)). Take s € E(s') \ E(t). It suffices to show there exists t ' € & (#)

such that || s/ — t 7 || < %. We are going to construct one: let #/ for j # i be such

that

g d i , P s
’Y_

R

By construction, || s7' — 7' [o= LZ. We now show that t =/ € &(t').*! By con-

struction, we have t{(]. = s{(]. + %d and t;cj = sk]. forall j # i,1 # j,I # i. Since

Mpfpig s , we can enlarge the set of signals to include ¢~ " and extend agent i's belief to this larger
domain w1th ¢'(t7) = 0. Then all our results remain valid.
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s;{j - t;{j < d, we obtain

o . e 7 S

. (E33)
> mﬁ —Yd=0 Vj#i
zm- Ya= Il
where skfji*j = (Sij)l;éi,l;éj- Since st, = ti. and s;{l = t;ﬂ, we have vt (#, t,;i) =

vi (s, s;'). Combining this observation with (E33) yields

Lo L
Y vt tg') > Y oi(shasig)- (E34)
1 l

Similarly, by the construction of t~1 we have t{(,]. = s{(,] —xre and t;« = Sk' for all

j#1i,1#j,1# 1. Since ti,]. — s;'(,]. < d, we obtain

o S ij
— _ ] —j J J
U{{,(S;(/j,sk,]) vk’(tk’]’tk’]) Uk'(sk’]'sk’] Sk’] ) vk’(t;C/]"Sk’]'_ m ’ k’]
- (E35)
> m %—ﬁ:o Vj £ i, VK # k.
Since st,, = ti,. and s{(, = t;{,l, we have v}, (st s,;ll) = o}, (8, t];:) for all k' # k.
Combining this observation with (E35) yields

ZU;C/(S;{/Z,S];;) Z Zvi/(t;{/l, tl;ll) Vk/ 7é k. (E36)
I

Since s~ € &(s'), we have Y vl (s;, s,;') > Yy vk (sh,, s,1) for allk’ # k. Combin-
ing this inequality with (E34) and (E36) yields ¥, vl (t,,t,;') > Yok (t,,, t,1) for
all k' # k. Thatis, =/ € & (). Therefore, &(s') C B.i; (Ex(t)).

L
m

Since 7* < 7, (E32) implies
G (Ex(s) \ &(t)) < G'(Bu (&(F))) — G'(&(1)) <&
as desired. n
We now prove Theorem 6.2. Fix ¢ > 0 such that if 4/ < 7 for alli € Z, then
G (&(s) \ & (') < min{e, £} forall s',# € &(5'), 5" € S\, k € K,and i € Z.
By Lemma E12, such 7 exists. We are going to show that the MVCG mechanism

satisfies (i)—(iii) in Definition 8. Fix i € Z and s/, € S'. Since p* is efficient,

;Pi(?(si)fs_i)xvi@ij 56 Zpk Zv] (chi(s), 5) > 0. (E37)
]
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By construction, C;'(].(si) = C;;j(ti) forall k € K and all j # i. Thus,
m]?vai(C};j(ti),s,;j ) — mavak gk] 51, sk’].i) =0 Vsies™
j#i j#i
Y. (vi(@ij(si),s,:ji) — vi(Cij(tl),s,:jl)) =0 Vs 'eS,Vkek.
j#i
Let i}, denote the indirect utility function of agent i associated with the MVCG

(E38)

mechanism. By construction, we know that
#mvee(s') — e ()

= [ (e s7) Teliel e s5) - DA™ Dol

k

max Dol (e )5 - max&vk gli(s >sk;>+;pz<cl<tl>,s1>Dz<sl,tz,sf>
jFi j#i

L pE), ) L (@) — oy (1), 5) ) .
k j#i
Plugging (E37) and (E38) into the equality above yields

Havee(s) = Mveg (t /Zpk “Dy(s', #,s7)dG'. (E39)

Clearly, if L~ (s', /) = @, the inequality above implies 3}, ;1,0 (s') — 'y o () > 0.
Thus, pt ¢ is monotone. We next show that the MVCG mechanism is e-LIC, that
is,
Hvec(s') 2 Huvea () + / Y pi(t, s )Di(s', #,57)dG  —e Y [sjy — tigl-
k keKi
Combining this with (E39), we can see that a sufficient condition for e-LIC is

/Sk(gi(ti)) D,i{(si, ti,s_i)dGi > /Sk(ti) D,i{(si, ti,s_i)dGi — e]sfﬂ- — t;(i| Vk € K.
Since ¢'(#') € e(t'), the definition of m and the choice of  imply for any k €
LT (st t),

/sk<tf> P £ )6 /E @ () Dils' £,571)dG" < /skw)\sk(gf(tf))
< Tls}y — Hel G (Ex(F) \ & (G (1)) < sl — byl = el — thl,
as desired. The proof for k € L~ (s',#') follows analogous arguments. Thus, the

MVCG mechanism is e-LIC.

D,i((si, # s*i)dGi

Finally, we show that if values are additively separable, the MVCG mechanism
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is e-bounded. Note that (E39) is equivalent to

vee(t) = v (s) < Y GH (&G (1)) (fi(t) = fi(sh)

k
< Y G&EE)) () — fils).
keLT (f,s')
Since G'(&(¢'(#))) is the probability that k is chosen, Yrer+(is) G (& E(H)) <
1. Moreover, since o' < v and ¢'(t') € &(t'), it follows from Lemma E12 that
G (& (H))) < G (&(H)) +e Vke Lt(#,s).

Taking wy = G'(&(¢'(t))) for all k € L*(#,s") completes the proof.
F An Alternative Notion of Approximate Local Incentive Compatibility

This section provides conditions under which e-LIC and weak e-LIC are equivalent

in multi-dimensional environments.

Definition 12. For any € > 0, a SCR p is e-robust to own-payoff irrelevant infor-
mation (e-robust) if G'(Ax(s', p) \ Ax(t,p)) < eforalls’ € S\, # € e(s'), k € K,
andi € 7.

In words, a SCR p is e-robust if the expected probability assignments do not
vary much as own-payoff irrelevant information varies. In the case of private val-
ues and the case of one-dimensional signals, any SCR is e-robust for all € > 0, as
the set e(s) is a singleton. Another instance in which a SCR p is e-robust is when p
is solely a function of valuations vf( and the marginal effect of agent j’s information
on vf( is relatively small for all j # i. By Lemma E12, for any ¢ > 0, the efficient
SCR is e-robust if agents are sufficiently informationally small.

We next impose a restriction on the signal spaces. We assume that the corre-
spondence e(-) admits a Lipschitz selection: there exists a selection ¢/(s') € e(s’)
such that ¢(s') is Lipschitz continuous in (st.) e -

The next lemma presents the equivalence result.

Lemma F13. For any € > 0, there exists { > 0 such that for any ¢-robust SCR p and any
weakly ¢-LIC mechanism (p, %), we can find a transfer scheme x such that (p, x) is e-LIC.

57



Proof. Fix ¢ > 0. Since e(-) admits a Lipschitz selection, there exists A > 0 such
that —4— gk/( ?) < Aforalls’ € S, k€ K,k € K,i € Z,and j # i. Recall that

l

M = MaX;cT kek ses M Take § = 7. Take a ¢-robust SCR p and a weakly

¢-LIC mechanism (p, ¥ ) Construct a transfer scheme x as follows:
xi(s',s7) = — ;pk(si,s_i)v};(si,s_i) + yéplf)(gi(si)) Vsi € §',Vs™ € ST, Vi e T.

We are going to show that (p, x) is e-LIC. Fix i and s, /. Observe first that for every
k € L*(s',t), we have

/ﬁ% TDi(s' s )dGi— /pk@%FLs‘5Di@5FAf0dGi

D! si, ti, s dG!
lAmlnm<<m>k( )

<G'(A(t', p) \ Ak(¢'(F), p)) (i — thy) < TG]sj; — -
The second inequality follows from the definition of 7; the last inequality follows

from the assumption that p is {-robust. By an analogous argument, the same con-

clusion holds for all k € L= (s, t'). Thus, for every k € K,

[ el (t),s DI s TG = [ pilt, s DS 5 )AG — Tals); — tyl. (F40)
By the construction of x and the weak ¢-LIC of (p, ¥), we obtain
ﬂ@@@ﬁ—ﬂ@mﬁﬁZﬂ@ﬁ@%ﬂ)—u@@@%ﬁ)

> [ ¥ pele'(t), s )DYS 570G ¢ | 65— 6'(F) e

ke

= [ T pdce),s DY s G~ ¢ ) ¢ — 6 1) [l

ke
The last equality follows from Di(s’,#,,s™") = 0 forall k € Kj and s~ € S7".

Combining this inequality with (F40) yields

u@@@U—ui>OU

> [ pilt, s DY E,s7dG g X [sly — il = £ 11 €1(5) — 6'(H) [
k€K7 ke]Cl

/ Y pilt “Di(s' s )dG — € )3 [ski — il
keKi keKi

The last inequality follows from || ¢'(s") — ¢'(#) [l< A Yjeii |sk; — ti.| and the
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construction of ¢. It follows from the construction of x that

V?P/X)(Si) +/ Z pr(t Dk(s t,s7)dG' —e Z |S;.ci_t;ci|

keKi keKi
- ul(p ¢ Z |Skz tkz
keKi
That is, the mechanism (p, x) is e-LIC. O
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