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Recursive preferences have found widespread application in representative-agent asset-
pricing models and general equilibrium. A majority of these applications exploit two
decision-theoretic properties not shared by the standard model of intertemporal choice:
(i) agents care about the intertemporal distribution of risk and (ii) rates of time prefer-
ence, rather than being exogenously fixed, may vary with the level of consumption. We
investigate what these features imply in the context of a repeated strategic interaction.
Specifically, we identify novel opportunities for the players to manage risk and trade
intertemporally, and characterize when such opportunities lead to an expansion of the fea-
sible set of payoffs. Sharp implications for equilibrium behavior and the folk theorem are
also deduced.
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1 Introduction

In a repeated game with standard preferences and a common discount factor, there are
no gains from intertemporal trade. In fact, under a suitable normalization of utility, the
set of payoffs in the repeated game is equal to that of the stage game. At a first glance,
the conclusion may appear tautological. If the players are equally patient, where is the
heterogeneity that makes trade possible? This paper shows that, far from being tautolog-
ical, the conclusion rests heavily on the assumption of standard preferences. We do so
by adopting a model of recursive utility in the tradition of ? ]. This sets the stage for two
conceptually distinct types of interaction to make a difference: (i) intertemporal trade based
on endogenously generated differences in the players’ rates of time preference, and (ii) a
form of intertemporal hedging based on the fact that risk and time are no longer treated
symmetrically. Since there is no commitment, we also study the ability of the players to
sustain such interactions in equilibrium and, in particular, the folk theorem.

Relative to the more general class of recursive preferences, standard preferences are
predicated on two assumptions – time and state separability. It has been known since ? ]
that if time separability is relaxed, then rates of time preference are no longer a fixed and
“exogenous” parameter but rather a function of consumption. What has proven less clear
is how the covariability between patience and consumption should be signed. The debate
spans many authors and fields of inquiry. We give an overview in Section ??, where we
also raise some novel issues concerning games with different types of outcomes.

The practical implication of relaxing time separability is that differences in the play-
ers’ rates of time preference may emerge endogenously, in the course of the game, creating
opportunities for intertemporal trade. With standard preferences and heterogeneous dis-
counting, the implications of such trade are known to be stark. As was first conjectured by
? ], less patient agents borrow incessantly against any future capital they may be endowed
with and are left immiserated in the long run. Ramsey’s conjecture has been confirmed in
a variety of settings, both competitive and strategic, and played a role in numerous ap-
plications.1 It has also bolstered an enormous interest in the “origins” of discounting and
any heterogeneity therein. In this regard, and in line with arguments put forth by ? ] and
? ], our contribution is to examine the implications of intertemporal trade in a framework
that permits a richer treatment of discounting and does not require any a priori hetero-
geneity. Two central questions arise: Will differences in discounting emerge in the first
place and, if so, will a more patient player be able to sustain the higher level of patience?

1? ] and ? ] confirmed the conjecture in the context of competitive growth economies. Starting with ? ], a
growing literature has considered the strategic implications of intertemporal trade. See ? ], ? ], ? ], ? ], ? ],
among others.
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Before we preview our answers to these questions, we shift attention to our second focus
in this paper.

1.1 The Intertemporal Hedging of Risk

Time and state separability jointly imply that the intertemporal distribution of risk is ir-
relevant. Intimately related is the fact that standard preferences cannot disentangle risk
aversion from the degree of intertemporal substitution. The restrictive nature of these
implications has been well understood in the literature on asset pricing with recursive
utility pioneered by ? ]. In contrast to that literature, which has focused exclusively on
representative-agent models, we examine the role of these implications in an interactive
setup.

Consider a repeated prisoners’ dilemma and let v(CD) be the payoff vector when
player 1 cooperates in every period, while player 2 defects. Likewise, let v(CC) be the
payoff vector when both players cooperate in every period and consider the average pay-
off v

0 = 0.5v(CD) + 0.5v(CC). With standard preferences, v
0 can be attained in two ways.

Flip a coin once and depending on the outcome, play CD forever or CC forever. Call this
play the one-time flip. Alternatively, the players can flip the coin in each period. Call this
the iid flip.

With recursive preferences, the iid and one-time flip are typically not indifferent. A
preference for the iid flip is an example of what is sometimes called correlation aversion,2

where by correlation one means the positive autocorrelation of the one time-flip. While
we use the term as well, it is important to remark that correlation-aversion is not a stan-
dalone property of behavior, but a function of one’s attitudes toward risk vis-à-viz in-
tertemporal smoothing. The one-time flip, in which the outcome of the initial draw gets
propagated forever, offers perfect smoothing across time at the expense of greater risk.
The iid flip reverses the stakes: flipping the coin repeatedly offsets the risk in any given
period (a bad outcome today need not be repeated tomorrow), but destroys the perfect
smoothing across time.

If all players are correlation-averse, the iid flip is a Pareto improvement over the one-
time flip. We show that, except in some special cases, this results in an expansion of the
feasible set as illustrated by the dashed line in Figure ??. The necessary and sufficient
condition is that the game have some conflict of interest by which we mean that no single
action simultaneously maximizes the utility of every player.

Alternatively, suppose the players are correlation-loving, that is, they care more about

2See ? ] for a general definition. Recently, correlation aversion has been the object of increased interest in
experimental as well as theoretical work. See ? ], ? ], ? ], ? ].
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Figure 1: As usual, C stands for “cooperate” and D for “defect”. Extreme points are associated
with the play paths that generate them. The dashed lines in ???? and ???? represent the payoffs
from iid flips. (The acronyms IMI/DMI are defined in Section ??.)

intertemporal smoothing than risk. The dashed line will then curve inward as in Fig-
ure ??. What is more interesting presently are the implications for equilibrium outcomes.
Recall that in a subgame perfect equilibrium (SPE), the individual rationality (IR) con-
straints of each player must hold after every history. In a symmetric game with standard
preferences, this requirement simplifies in that any payoff can be attained by a station-
ary strategy (an iid flip) and, consequently, it is enough to check that the IR constraints
are met ex ante. But presently iid flips are not efficient. In fact, we show that the payoff
v
0 = 0.5v(CD) + 0.5v(CC), which is efficient under correlation affinity, can be attained

only by a one-time flip. But clearly such behavior cannot be an equilibrium for any level

of patience: player 1 will deviate in the history in which he has to cooperate forever while
the other player defects.

1.2 A Model of Endogenous Discounting

Throughout most of the paper, we formalize the implications of both intertemporal trade
and hedging within what is arguably the simplest model of recursive utility. In addition to
delivering sharp characterizations, the model has a strong normative foundation, which
we believe makes it an important benchmark for the study of strategic interactions. In
particular, suppose the discounted sum of payoffs takes the form

vi(a
0, a

1, ...) = gi(a
0) + bi(a

0)gi(a
1) + bi(a

0)bi(a
1)gi(a

2) + . . .

= gi(a
0) + bi(a

0)vi(a
1, a

2, ...).
(1)
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Above, gi(a) is player i’s stage payoff from an action profile a 2 A and bi(a) 2 (0, 1)
is i’s discount factor as a function of a. If mixed strategies are employed, each player i

computes the induced distribution over pure paths (a
0, a

1, ...) and takes expectations in
the usual way, which one can write as Evi(ã

0, ã
1, ...). We refer to the preferences thus

defined as Uzawa-Epstein (UzE) and note that if the function bi : A ! (0, 1) is constant,
one obtains the standard model of preference, which we refer to as one of exogenous
discounting.3

It is known from ? ] that UzE preferences are the only ones that are recursive, station-
ary, and indifferent to the timing of resolution of uncertainty. Failures of the latter property
have been criticized as they imply that agents are willing to pay for information that is of
no instrumental value to them. See ? ]. In the context of a repeated game, such failures
imply that the players care (for entirely non-strategic reasons) whether a period-t mixed
action is implemented using contemporaneous or past signals. By focusing on UzE pref-
erences, we ensure that such behavior plays no part in our results. Additionally, we note
that UzE preferences retain the full force of Savage’s [? ] Sure Thing Principle or state
separability. In other words, they depart from the standard model only in that they relax
time separability, arguably the standard model’s least appealing feature.

A drawback of UzE preferences is that, while they are sensitive to autocorrelations,
attitudes toward risk and intertemporal smoothing are not fully disentangled. Instead,
as we explain momentarily, they become entangled with properties of the endogenous
discount factor bi : A ! R. It turns out however that our results pertaining to correlation
attitudes do not rely on the specifics of the UzE model. In fact, the expansion of the Pareto
frontier due to intertemporal hedging (the dashed curve in Figure ??) does not require any

restriction on preferences beyond correlation aversion. This is made clear in Section ??.
In Section ??, we also confirm that the implications of correlation affinity discussed in
Section ?? extend to a popular class of preferences introduced by ? ]. These preferences
retain standard discounting while permitting what is arguably the most explicit disen-
tanglement of risk aversion from the degree of intertemporal substitution. But first, we
discuss two assumptions that have been central to the study of endogenous discounting.

1.3 A Debate on Marginal Impatience

Say that player i exhibits decreasing marginal impatience (DMI) if for every a, a
0 2 A

vi(a, a, ...) > vi(a
0, a

0, ...) , bi(a) > bi(a
0).

3? ] introduced a special case of (??) in the absence of uncertainty. The above formulation is due to ? ]
who both generalized the model and extended it to the case of uncertainty, all in a manner that preserves
recursivity.
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? , p.72] was an early proponent of this assumption, noting that the needs of the present
may bear more heavily on a person whose consumption is low. ? , p.30], on the other
hand, noted that DMI leads to “disequilibrium behavior” and argued for the polar case
of increasing marginal impatience (IMI). Later, ? ] motivated IMI as capturing “a di-
minishing marginal utility from wealth accumulation,” with ? ] arguing that the latter is
especially likely at large wealth levels. ? ] also showed that IMI obviates the immiseration
dynamics of ? ] and ensures the existence of a steady state with a non-trivial distribution
of capital, a result which made IMI a staple in the growth literature.4

In the debate about IMI and DMI, attention has so far been focused on consumption
savings problems with a single consumption good, whereby only the level of consumption
matters. Considerations become much more nuanced in settings with different types of
outcomes (as is the case in many classical games). For instance, building on the discussion
in ? ] and ? ], one can argue that reading a book, while less enjoyable than going to the
movies, stimulates the imagination and makes the future more salient, or, but to the same
effect, that going to the movies produces a “visceral” reaction that biases people toward
the present. Of course, for some, reading a book may not only increase patience but
be more desirable as well.5 Accordingly, we believe that one cannot make an a priori
judgment in favor of IMI or DMI, which is why investigate each case in turn. First, we
note an important connection between marginal impatience and correlation attitudes.

1.4 Marginal Impatience and Correlation Attitudes

It is known from ? ] that UzE preferences satisfy IMI (DMI) if and only if they are
correlation-averse (correlation-loving). The intuition is straightforward. Under IMI, low
consumption today increases the marginal utility from an extra unit of consumption to-

morrow, boosting the “hedging benefits” afforded by the iid flip, while simultaneously
reducing the benefits of intertemporal smoothing.

It follows that IMI leads to an expansion of the feasible set due to the hedging ben-
efits of iid flips (Figure ??), while DMI leads to a contraction of the equilibrium payoff

4See the surveys by ? ] and ? ]. We should also note the recent work of ? ], which examines the effects
of happiness on discounting. To the extent that happiness derives from consumption, their results may be
viewed as evidence of DMI.
5We are far from arguing that UzE preferences fully encapsulate the ideas of ? ] and ? ]. To get a sense of
some of the modeling trade-offs, note that the former develop a model in which “imagination” is a stock
variable accumulating over time. By comparison, the stationarity of UzE preferences means that any effect
on patience is transient. The discussion in ? ] may on the other hand suggest a non-stationary model
with (endogenous) present bias. In this context, UzE preferences are best viewed as capturing agents who
are aware of the visceral effects of any outcome, not unlike Becker and Murphy’s [? ] model of rational
addiction.
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set (Figure ??). Of course, correlation attitudes do not fully leverage the endogeneity of
the discount factor and the associated opportunities for intertemporal trade. We turn
attention to those next.

1.5 IMI and Intertemporal Cooperation

In Theorem ??, we show that if conflict of interest holds, then gains from intertemporal
trade expand the feasible set above and beyond what is attainable by iid flips. In spe-
cific games, we can go a step further and characterize efficient outcomes explicitly. Figure
?? depicts a possible scenario for the prisoners’ dilemma. Note first that the unique ef-
ficient and symmetric outcome is for the players to take turns defecting, even though
(CC, CC, ...) is efficient in the space of one-time flips. The efficiency of such alternation,
which we refer to as intertemporal cooperation, stems from differences in the players’ rates
of time preference that emerge along the path. Specifically, under IMI, if the action profile
in some period t favors player i, then player i will attach relatively less weight to the fu-
ture. Efficiency then requires that player j 6= i be rewarded relatively more in the future.
By IMI, j will then be relatively less patient in period t + 1, and so on. In sum, the players’
discount factors seesaw repeatedly along the play path, making alternation efficient.

The second takeaway from Figure ?? is that, with the exception of the extremes in
which one player defects forever while the other cooperates, eventually every efficient
play path becomes one of intertemporal cooperation. An important practical implication
is that the IR constraints of the players become slack over time. In fact, as we show
formally in Section ??, under a modicum of patience, it is enough to check that the IR
constraints hold ex ante.

1.6 DMI and Immiseration

Recalling Figure ??, we note that the implications of correlation affinity become less stark
in games which, unlike the prisoners’ dilemma, have multiple individually rational ac-
tion profiles. Then, the implied constant paths (a, a, ...) and the one-time flips among
them will be sustainable in a SPE (for sufficiently high levels of patience). It turns out
however that by leveraging the implications of DMI in terms of intertemporal trade, one
can once again conclude that, no matter the level of patience, the only efficient outcome sustain-

able in a SPE is a symmetric one, if such exists. The logic is simple. Inverting the arguments
just made in the case of IMI, we see that if a player becomes more patient at any point
along an efficient play path, they will sustain the higher level of patience as the game pro-
gresses. In effect, efficiency and DMI create an immiseration dynamic not unlike that of

7



? ]. Moreover, as ? ] first observed in the context of a repeated game with standard pref-
erences and heterogeneous discounting, immiseration may push the players below their
security levels so that, no matter the level of patience, the outcome cannot be sustained
in a SPE. Our key insight relative to ? ] and ? ] is that under endogenous discounting,
immiseration is not unavoidable. Coordinating on a symmetric and efficient outcome,
if such exists, ensures that the players remain equally patient throughout the game and,
hence, that immiseration is never triggered.6

2 The Strategic Environment

There is a finite set of players: I := {1, 2, ..., n}. In the stage game, player i can choose a
pure action ai in a finite, nonsingleton set Ai. Let A := ⇥i2I Ai. In the repeated game, time
is discrete and indexed by t 2 {0, 1, 2, ...}. To focus on the effects of endogenous discount-
ing, we keep things as simple as possible and assume perfect monitoring, the availability
of public randomization, and that “mixtures are observable.” Formally, suppose that at
the start of each period t, nature draws a public signal wt

0 2 [0, 1] and, for each player i,
a private signal wt

i
2 [0, 1]. All signals are drawn from the uniform distribution on [0, 1],

independent of one another and across time. Let at

i
: (wt

0, wt

i
) 7! ai 2 Ai be i’s action

as a function of the observed public and private signal, and let at = (at

i
)i. Let h

0 be the
initial, empty history. Given t > 0, a history h

t = (w0
0, a0, . . . , wt�1

0 , at�1) consists of the
“mixtures” chosen in the past and the realized public signals. A strategy for player i is
a sequence si = (st

i
)t where st

i
maps h

t into at

i
. We let Si be the set of all such strategies

and S = ⇥iSi be the set of all strategy profiles s = (si)i. As is standard, we will often
suppress the signals and instead speak of a mixed action a 2 D(A) being played after a
given history h

t.7

Each strategy profile s 2 S induces a probability distribution on A
• which, abusing

notation slightly, we denote by s as well. Each player i evaluates this distribution accord-
ing to an UzE preference defined by a pair (gi, bi) as in Section ??. A repeated game with
endogenous discounting is thus a tuple (A, (gi, bi)i2I), with vi(s) denoting i’s utility from
a distribution (strategy) s. A strategy s 2 S is a subgame perfect equilibrium (SPE) of

6This analysis, laid out in Theorem ??, formalizes Friedman’s [? ] intuition that DMI leads to “disequilib-
rium behavior.” Note as well that Friedman’s brief remarks do not mention the possibility of coordinating
on a symmetric outcome.
7In the literature, it is common to start with the above setup for the sake of simplicity and then relax the
assumption of “observable mixtures,” which is undoubtedly heavy-handed. We note that the assumption,
which concerns only our folk theorem, is not needed when minmax strategies are pure. If minmax strate-
gies are not pure, we can replace the assumption with a mild strengthening of the “NEU” assumption in
Definition ??. We pursue this extension in a separate paper.
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the game if s induces a Nash equilibrium in the continuation game associated with each
history h

t.
We identify each mixed action a 2 D(A) with two distinct distributions on A

•: (i) an
iid distribution over time, denoted as aiid, and (ii) a distribution aone in which the players
randomize once, according to a, and repeat the realized pure action a 2 A forever after.
As in Section ??, we call these an iid flip and a one-time flip respectively. We note that an
iid flip can be thought of as the outcome of a stationary strategy s 2 S, that is, one such
that for every i, there is a function fi : [0, 1]2 ! A such that st

i
(ht�1)[wt

0, wt

i
] = fi(wt

0, wt

i
)

for all t, h
t�1, and all signal realizations wt

0, wt

i
. If play depends on the time period t but

not on history, then s is history-independent. Any such strategy gives rise to a play path
(a0, a1, ...) 2 (D(A))•, or equivalently a product measure on A

•. We use a to denote a
generic play path (a0, a1, ...) and a to denote a pure play path (a

0, a
1, ...). Given a and

t > 0, we let ta = (at, at+1, ...).
A game (A, (gi, bi)i2I) is symmetric if Ai = Aj for all i, j 2 I and the functions g :

a 7! (g1(a), ..., gn(a)) and b : a 7! (b1(a), ..., bn(a)) are both symmetric. Given a 2 D(A),
we let gi(a) := Âa2A gi(a)a(a) and bi(a) := Âa2A bi(a)a(a), where a(a) is the probability
assigned to a 2 A by a. We use v to denote the function s 7! (v1(s), ..., vn(s)) or a point
in its image. We let v

max

i
:= maxs vi(s) be i’s maximum feasible payoff in the repeated

game and vi := mins�i2S�i
maxsi2Si

vi(si, s�i) be i’s minmax or security level. We also
write vi(a) for vi(a, a, ...) and note that v

max

i
= vi(a) for some a 2 A.8 Finally, we assume

that no player is indifferent among all strategies or, equivalently, that for every i, there are
a
0, a

00 2 A such that vi(a
00) > vi(a

0).

3 Varying Patience when Patience is Endogenous

In a folk theorem, it is standard to vary the level of patience while keeping the stage game

fixed. In this construction, the stage game acts as an anchor ensuring that we have a
family of repeated games representing the same strategic situation while differing only in
the players’ level of patience. A subtle issue arises in the case of endogenous discounting
in that the stage payoffs gi do not have a well-defined ordinal meaning in terms of the
repeated game. Some intuition for this can be gained from consumer choice theory. There,
one typically speaks of the utility of a bundle and, unless utility is additively separable
across goods, it is meaningless to speak of the utility of a single good. Thinking of a play
path as a bundle of stage outcomes, we see that an analogous issue arises in the case of
UzE preferences, which are not time separable. The next lemma, due to ? ], formalizes

8See ? , Lemma 3.4].
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the observation.

Lemma 3.1. Two pairs (gi, bi), (g
0
i
, b0

i
) induce the same UzE preference relation on S if and only

if b0
i
= bi and there are constants q > 0 and g such that g

0
i
= qgi + g(1 � bi).

Thus, if g 6= 0 and discounting is endogenous, the functions gi, g
0
i

need not be cardinal
or even monotone transformations of one another. But if stage payoffs lack a clear ordi-
nal meaning, how does one vary the level of patience while ensuring that the associated
repeated games remain meaningfully related? Our answer involves two steps. Assum-
ing exogenous discounting, we first clarify the ordinal meaning of the stage payoffs (gi)i

in terms of the repeated game. We then characterize the class of repeated games with
endogenous discounting that have this ordinal input in common. The first step is clear.
Let Diid be the set of all iid flips and Done be the set of all one-time flips. If discounting is
exogenous, the von-Neumann-Morgenstern expected-utility theorem shows that (gi, bi)

and (g
0
i
, b0

i
) induce the same preference relation on Diid [ Done if and only if g

0
i
= pgi + q

for some constants p > 0 and q. The next lemma provides an analogous result for the case
of endogenous discounting.

Lemma 3.2. Let (gi, bi) be such that vi(a) > vi(a
0) > vi(a

00) for some a, a
0, a

00 2 A. The pair

(g
0
i
, b0

i
) induces the same preference relation on Diid [ Done

as (gi, bi) if and only if (gi, b0
i
) and

(g
0
i
, b0

i
) induce the same preference relation on S and b0

i
= li + (1 � li)bi for some li < 1.

Lemma ?? is mouthful but the upshot is simple: if two UzE preferences agree on Diid [
Done, then (i) it is without loss of generality to assume that they share the same stage
payoffs and (ii) their discount factors must be related in the specified linear fashion.9 These
implications suggest the following approach to the folk theorem. Starting with a repeated
game (A, (gi, bi)i2I), define for each l 2 [0, 1) a discount factor bil and a repeated game
Gl by letting

bil := l + (1 � l)bi and Gl := (A, ((1 � l)gi, bil)i2I).

Then, thinking of l as an overall measure of patience, consider the equilibria of Gl as
l % 1. Also, write G to mean either a single game (A, (gi, bi)i2I) or the family of games
Gl, l 2 [0, 1), induced by it.

A few additional remarks about this approach are in order. First, note that in the
definition of Gl we have scaled the stage payoffs gi by (1�l). This is just a normalization.

9Of course, the stage payoffs g
0
i

can also be scaled differently from gi. Combining Lemmas ?? and ?? gives
all the options. We also note that b0

i
= li + (1 � li)bi if and only if (1 � bi(a))(1 � bi(a

0))�1 = (1 �
b0

i
(a))(1 � b0

i
(a

0))�1 for all a, a
0 2 A, that is, if and only if the ratios of all marginal impatiences are the

same.
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Akin to the “(1 � bi)”-normalization one would do if bi were exogenous, it ensures that
payoffs do not blow up as l % 1. In fact, letting vil be i’s utility function in Gl, observe
that for all a 2 D(A) and l:

vil(a
iid) =

gi(a)
1 � bi(a)

and vil(a
one) = Â

a

a(a)
gi(a)

1 � bi(a)
. (2)

Thus, given the normalization, we not only preserve each player’s ranking on Diid [ Done,
but the utilities of iid and one-time flips as well.10 In view of this, we henceforth sup-
press l and write vi(aiid) and vi(aone). Second, our approach to the folk theorem implies
that the assumptions of IMI/DMI and the corresponding correlation attitudes are all pre-
served as we vary l. This is another sense in which the approach preserves qualitative
features of the game. In fact, all assumptions imposed in this paper are preserved as we
vary l. Thus, when we say that a game G satisfies an assumption, one can understand this
to mean that the original game G0 = (A, (gi, bi)i) satisfies the assumption or equivalently
that all games Gl, l � 0, do. Finally, observe that since UzE preferences are stationary
and histories are public, the players minmaxing an opponent have no use conditioning
on history.11 That is,

Lemma 3.3. For each i, the minmax strategy against player i and i’s best response can be chosen

to be stationary.

It follows immediately that the minmax strategies against a player and the player’s
best response can be chosen independently of l and, given the normalization of payoffs,
that the security levels of all players are independent of l as well. Taking advantage of
Lemma ??, we can also re-scale the original game G0 so that all security levels are zero,12

a normalization we maintain throughout the rest of the paper.

4 A Folk Theorem

Subgame perfection requires that the threat of future punishments be credible. Following
? ], this is typically done by finding strategies that punish a deviation, while simultane-
ously rewarding the players who carry out the punishment. In the case of standard pref-
erences, a general condition under which such asymmetric treatment is possible is the

10Note that if discount factors are exogenous and identical among the players, one can set bi = 0 so that
bil = l and vil(a, a, ...) = gi(a) for each i, a, l, that is, utility reduces to the standard discounted average.

11Similarly, since the public signal is observed by everyone, minmax strategies can be chosen to be indepen-
dent of the public signal.

12Let ĝi := gi � vi(1 � bi). By Lemma ??, (A, (ĝi, bi)i) is strategically equivalent to (A, (gi, bi)i) and all
security levels are zero.
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assumption of non-equivalent utilities (NEU) of ? ]. As formulated in that paper, NEU
says that no two players have identical preferences in the stage game, i.e, for every i, j,
there are a, a0 2 D(A) such that gi(a) > gi(a0) and gj(a)  gj(a0). Under endogenous dis-
counting, some modification is necessary since, as previously explained, stage payoffs do
not have a well-defined ordinal meaning. The analysis so far suggests two options: either
we assume that no two players have identical preferences on Diid or that no two players
have identical preferences on Done. The conditions are logically independent and each
one of them is an extension of the condition in ? ]. We chose the former because, as seen
in Appendix ??, the approach allows us to explore some well-known decision-theoretic
properties of UzE preferences.

Definition 4.1. A repeated game G satisfies Non-Equivalent Utilities (NEU) if for every i, j 2
I, i 6= j, there are a, â 2 D(A) such that vi(aiid) > vi(âiid) and vj(aiid)  vj(âiid).

The next lemma, due to ? ], characterizes NEU in terms of the utility representations
(gi, bi) and shows that the condition is generic.

Lemma 4.1. (gi, bi) and (gj, b j) induce the same preference relation on the set Diid
of iid flips

if and only if there are constants r, q, s, t such that qt > rs and gj = qgi + r(1 � bi) and b j =

1 � sgi � t(1 � bi).

For notational simplicity, we state a folk theorem for the case when on-path behavior
is history-independent, which means that it can be identified with a path a = (a0, a1, ...) 2
(D(A))•. Such play is broad enough to encompass both iid flips and non-constant pure
paths (a

0, a
1, ...), which are used to implement intertemporal hedging and intertemporal

trade respectively. History-dependent play, such as one-time flips, can be easily handled
as well; all one has to do is to require that the IR constraints hold history by history.
To state the theorem, for every # � 0 and l, let SIR

#(l) be the set of all #-sequentially
individually rational paths a 2 (D(A))•, i.e., all paths such that vil(ta) � # for all i, t.

Theorem 4.1. Assume NEU. For every # > 0, there exists l 2 [0, 1) such that for all l 2 (l, 1),
every path a 2 SIR

#(l) can be supported in a SPE of the game Gl.

Remark 4.1. NEU is not required in two-player games, where deviations can be deterred by the

threat of mutual minmaxing. The argument is analogous to that in ? ].

We conclude this section with an important case excluded by our NEU condition (as
well as by the alternative condition in terms of the players’ preferences on Done). Suppose
discounting is exogenous and for every i, j, gi = gj and bi 6= b j. Then, all players have
identical preferences on Diid and NEU fails. Yet, no two players have identical preferences
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on the space S of all strategies. When the latter is true, ? ] say that the game satisfies
Dynamic NEU, which in the present context can be stated as: for every l and i, j, there
exist s, s0 2 S such that vil(s) > vil(s0) and vjl(s0) � vjl(s). Note that s and s0 are not
restricted in any way, nor is it required that they be independent of l. When discounting
is exogenous, ? ] are able to prove a folk theorem under this general condition. Doing the
same for the case of endogenous discounting is an open problem.

5 Increasing Marginal Impatience

Say that a game G satisfies IMI if for each player i and every a, a
0 2 A,

vi(a) > vi(a
0) , bi(a) < bi(a

0).

As was illustrated in Figure ??, IMI expands the Pareto frontier by delivering gains from
both intertemporal hedging and intertemporal trade. The goal of this section is to formal-
ize these observations. Beginning with hedging, let V

one be the payoff set from one-time
flips:

V
one := {v(aone) : a 2 D(A)}.

If a game has standard preferences and a common discount factor, then V
one is equal to

the entire feasible set and, under the discounted average representation, to the payoff set
in the stage game. Thus, with standard preferences, the only way to “improve upon”
V

one is to assume ex ante heterogeneity in discounting, which then delivers gains from
intertemporal trade. By comparison, our results do not require any a priori heterogeneity.
We also note that UzE preferences cannot be distinguished from standard preferences if
attention is restricted to one-time flips.13 This is another sense in which V

one provides
an appropriate benchmark against which to measure the implications of recursive prefer-
ences.

To state our first result, say that G satisfies Conflict of Interest (CI) if there is no action
a 2 A such that vi(a) = v

max

i
for every i.14 Also, given a set A ⇢ Rn and a vector x 2 Rn,

write x >⇤
A if there is no y 2 A such that y � x and x � y for some y 2 A. Finally,

define the Pareto frontier of a set A to be the set of x 2 A for which there is no y 2 A

such that y � x.

Theorem 5.1. Assume IMI. Then, CI holds if and only if there is a 2 D(A) such that v(aiid) >⇤

V
one

. In addition, if CI and NEU hold and V
one

contains some payoff v � 0, then a can be chosen

so that aiid
, or equivalently the path (a, a, ...), can be sustained in a SPE for all l large enough.

13In fact, the same is true of all recursive preferences as defined in ? ].
14Recall that for every i, there is a 2 A such that vi(a) = v

max

i
. Thus, v

max

i
is independent of l.
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The next lemma is key to the proof of Theorem ??. Say that player i is correlation-
averse if vi(aiid) � vi(aone) for each a 2 D(A), with a strict preference whenever vi(a) 6=
vi(a

0) for some a, a
0 2 A in the support of a.

Lemma 5.1. If player i’s preferences (gi, bi) satisfy IMI, then the player is correlation-averse. The

reverse is true if we assume that vi(a) 6= vi(a
0) for all a, a

0 2 A.

Proof. Assume IMI. If a has two actions in its support, then vi(aiid) � vi(aone) if and only
if (vi(a) � vi(a

0))(bi(a) � bi(a
0))  0. The latter inequality is automatically true when

vi(a) = vi(a
0). If vi(a) 6= vi(a

0), the inequality is strict and follows from IMI. For more
than two actions, the argument follows by induction. The reverse direction follows by
analogous arguments.15

Under IMI, any iid flip is a Pareto improvement over the corresponding one-time flip.
The caveat we need to address is that the existence of a Pareto improvement need not
deliver an expansion of the set V

one. In a two-player game, for example, the Pareto im-
provement could simply be a “movement” along a vertical segment (one orthogonal to
the vector (1, 0)) of the frontier of V

one. In fact, if the Pareto frontier of V
one consists of

exactly one vertical and one horizontal segment, or is a singleton, there are no gains from
intertemporal hedging or trade. This is precisely what CI rules out: As we show formally
in Appendix ??, CI holds if and only if the Pareto frontier of V

one has at least one seg-
ment which is orthogonal to a strictly positive vector and isn’t a singleton. In two-player
games, the segment can be visualized as one that is strictly downward sloping but not
vertical.

The proof sketch reveals that apart from CI, which we view as a structural assumption
on the game rather than a preference assumption, Theorem ?? relies only on the assump-
tion of correlation aversion. One may ask: what other well-known preferences exhibit
correlation aversion? In Section ??, we answer this question for a class of preferences
studied in ? ], giving us another case in which the conclusions of Theorem ?? apply.

Going back to UzE preferences, it i clear that Theorem ?? does not fully leverage the
endogeneity of discount factors as it does not take into account opportunities for intertem-
poral trade. To see this formally, let V

iid be the payoff set from iid flips and let conv(Viid)

be its convex hull.

Theorem 5.2. Consider a symmetric game satisfying IMI and CI. For every l, there exists a

feasible payoff v̂ such that v̂ >⇤
conv(Viid).

15? ] was the first to observe the relationship between IMI and correlation aversion, without giving a proof.
Our statement and proof is tailored to the present case of a discrete outcome space.
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C D

C c, c b, d

D d, b 0, 0

Figure 2: The prisoners’ dilemma

The proof of Theorem ?? entails two main steps. First, we show that one can always
find a 2 D(A) such that v(aiid) is on the Pareto frontier of V

iid and vi(aiid) > vk(a
iid) and

bi(a) > bk(a) for some i, k. Then, exploiting the heterogeneity in discounting induced
by a, Lemma ?? constructs a path al 2 (D(A))• such that vl(al) >⇤

conv(Viid). Un-
fortunately, at this levels of generality we do not know if al can be sustained in a SPE
(even if l is large enough). This would be the case if, in addition to the properties already
mentioned, a is such that v(aiid) � 0. Letting # be such that v(aiid) � # > 0, it is then
immediate from the construction that al 2 SIR

#(l) for all l, which is enough for our folk
theorem to kick in.

In specific games, we can characterize efficient outcomes explicitly and say much more
about intertemporal trade and its sustainability in equilibrium. We do so next for the
prisoners’ dilemma.

5.1 The Prisoners’ Dilemma

Let the action space A and the stage payoffs g1, g2 : A ! R be as in Figure ?? where, as
usual, C stands for “cooperate” and D for “defect.” For notational simplicity, we define
discount factors as a function of stage payoffs rather than action profiles.16 In particular,
suppose bi = b � gi for some function b : {b, 0, c, d} ! (0, 1), where b is independent of i

because we are interested in a symmetric game. As is typical in a prisoners’ dilemma, we
assume that

d

1 � b(d)
>

c

1 � b(c)
> 0 >

b

1 � b(b)
. (3)

Consistent with the discussion in Section ??, we note that these inequalities are ordinal
restrictions on preferences in the repeated game. For instance, the first one says that each
player prefers the constant path in which they defect and the other player cooperates to
the play path in which both players cooperate. We also assume that

c

1 � b(c)
>

1
2

b

1 � b(b)
+

1
2

d

1 � b(d)
. (4)

16Take some i and suppose, as is typical in a prisoners’ dilemma, that vi(a) 6= vi(a
0) for all a, a

0 2 A. Then,
under IMI, or DMI, bi(a) 6= bi(a)0 for all a, a

0 2 A. By Lemma ??, we can then normalize i’s utility so that
gi(a) 6= gi(a

0) for all a, a
0 2 A, which means that bi can be viewed either as a function on A or on gi(A).
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(b) Intertemporal cooperation

Figure 3: Two forms of cooperation under IMI

Thus, each player prefers cooperation in every period to receiving their worst or best
play path with equal probability. The assumption helps us highlight the different pre-
dictions brought about by endogenous discounting and, specifically, the possibility that
(CC, CC, ...) may be Pareto dominated even when it is efficient in the space of one-time
flips.

5.1.1 First-Best Outcomes

Figure ?? depicts two possibilities for the Pareto frontier in the repeated prisoners’ dilemma.
Consistent with Theorem ??, note that in both cases there are gains from intertemporal
trade. On the left, the path aC := (CC, CC, ...), which we refer to as one of intratemporal
cooperation, is efficient. On the right, the sum of the players’ utilities is maximized not
by aC but by the play paths in which the players take turns defecting:

aA,1 := (DC, CD, DC, CD, ...)

aA,2 := (CD, DC, CD, DC, ...).

We refer to these paths as ones of intertemporal cooperation. Next, we characterize all
efficient play paths for the two scenarios depicted in Figure ??.

Intratemporal Cooperation. Let C1 be the set of paths such that DC is played in at most
one period while CC is played in all other periods. The subscript “1” is used to designate
the fact that the action profile DC, if it occurs, favors player 1. Next, let E1C1 be the set
of paths a 2 A

• such that for some T � 0, depending on the path, a
t = DC for all

t < T and Ta 2 C1. Here, the letter E is mnemonic for the fact that cooperation prevails
eventually, that is, after some period. Define the sets C2 and E2C2 analogously and let

16



EC := E1C1 [ E2C2.17

Intertemporal cooperation. Consider the pairs (DC, CD) and (CD, DC) in A
2 and inter-

pret each such pair as a “simple trade” in which the players swap turns defecting. Let A
be the set of all play paths in which the players make such simple trades in succession:

A := {a 2 A
• : a

2t, a
2t+1 2 {DC, CD} and a

2t 6= a
2t+1 8t}.

One can verify that the sum of utilities, v1l(a) + v2l(a), is the same for all paths a 2 A,
which in the context of Figure ???? means that the payoffs from such paths are dispersed
along the linear segment of the frontier perpendicular to the 45-degree line. Accordingly,
we expand the notion of intertemporal cooperation to include any path a 2 A, not just
the paths aA,1 and aA,2, whose payoffs constitute the extreme points of that segment.
It remains to introduce the play paths along which intertemporal cooperation obtains
eventually. Thus, let E1A be the set of play paths a 2 A

• such that for some T � 0,
depending on the path, a

t = DC for all t < T, and Ta 2 A. Define E2A analogously and
let EA := E1A [ E2A.

We note that the Pareto frontier can take a third form not shown in Figure ??. Thus, for
some l, intra- and inter- temporal cooperation can be simultaneously efficient. The anal-
ysis of this case is notationally cumbersome and delivers few additional insights. Since,
in addition, the case does not arise for any l sufficiently high, we defer its description to
the Online Appendix. Presently, say that a path a 2 (D(A))• is efficient if there is no
strategy s 2 S that gives each player strictly higher utility, and let P(l) be the set of all
efficient pure play paths in Gl. Also, a level of patience l is irregular if intra- and inter-
temporal cooperation are both efficient, that is, if aC, aA,1, aA,2 2 P(l). Else, l is regular.
Finally, let amax,i 2 A

• be a play path attaining i’s maximum payoff. In the context of the
prisoners’ dilemma, the path is unique. For instance, amax,1 = (DC, DC, ...).

Theorem 5.3. Assume IMI. For every regular l 2 [0, 1), the set P(l) of efficient play paths in

the prisoners’ dilemma is either EC [ {amax,1, amax,2} or EA [ {amax,1, amax,2}.

A natural question is whether gains from intertemporal trade persist in the limit as
l % 1. It turns out that the answer is yes: there are pure paths a 2 A

• such that
liml%1 vl(a) >⇤

conv(Viid).18 The Online Appendix provides an example along with
the proof of Theorem ??.

17By definition, C1 contains paths such as (CC, DC, CC, CC, ...) in which there is a single defection in some
period t > 0. Such paths are not shown in Figure ??, since their payoffs are not an extreme point.

18These conclusions should be contrasted with the conclusions reached at the end of Section ??, where we
examine the class of Epstein-Zin preferences.
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5.1.2 Equilibrium Behavior

With intertemporal trade, the incentives to deviate vary over time, i.e., “borrowers” want
to deviate when it’s time to “repay,” not before. This is why the folk theorem asks that the
IR constraints be met at each point in time. As verifying the latter could be quite challenging
in general, it is important to note that Theorem ?? delivers an important simplification.
Namely, since efficient play paths converge to a symmetric outcome over time, the IR
constraints become slack. The only caveat is when cooperation is intratemporal and one
considers paths such as (CC, CC, DC, CC, CC, ...) in which a single defection takes place
at some t > 0. Clearly, for l low enough, such paths are IR but not SIR. To deal with this
problem, let l0 be such that

(1 � l0)d = v2l0(DC, CC, CC, ...) (5)

and let l = max{0, l0}. With grim-trigger strategies, (1 � l)d is the maximum contin-
uation utility of a player who deviates along any path, while v2l(DC, CC, CC, ...) is the
minimum continuation utility of any player at any point in time along a path with a single
defection. Thus, l is a threshold above which all paths with at most one defection can be
sustained in a SPE. The discussion is summarized in the next corollary, where IR

#(l) is
the set of all #-individually rational paths a 2 A

•, i.e., all pure paths a 2 A
• such that

vil(a) � #.

Corollary 5.1. Assume IMI. For every l 2 (l, 1) and # > (1 � l)d, every path a 2 P(l) \
IR

#(l) can be supported in a SPE of the prisoners’ dilemma. If intertemporal cooperation is

efficient for all l, the restriction that l > l can be dropped.

Note that, by Corollary ??, one can first fix l and then find # such that a path a 2 P(l)\
IR

#(l) can be sustained in a SPE. The result complements our folk theorem which, like
other folk theorems, first fixes # and then finds a threshold l above which the respective
SIR paths can be sustained.

6 Decreasing Marginal Impatience

Under DMI, an analogue of Lemma ?? shows that iid flips are Pareto inferior to one-time
flips. Any expansion of the feasible set must therefore come from intertemporal trade, not
hedging. We begin by formalizing the long-term of implications of such trade.

Theorem 6.1. Consider a two-player, symmetric game satisfying DMI. For every l, every effi-

cient path a 2 P(l) is such that either (i) vil(ta) = v
max

i
for some i 2 {1, 2} and t > 0, or (ii)

v1(a
t) = v2(a

t) for all t � 0.
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Intuition for the theorem was given in Section ??. If at some point in time player
i attains higher utility than j, then i will exhibit a greater level of patience. Given an
efficient play path, this means that j’s lifetime utility should be frontloaded, while i’s
utility should be backloaded. It follows that i’s utility will remain higher as the game
progresses and, given DMI, that i will sustain the higher level of patience. This self-
enforcing dynamic continues until i’s utility cannot be backloaded any further, which is
when i’s utility is maximized. If the game has conflict of interest, this also means that j’s
utility is at its minimum along the Pareto frontier, a conclusion not unlike that of Ramsey’s
[? ] immiseration dynamic. The key difference is that under endogenous discounting the
conclusion is not an inevitable consequence of efficiency. If there exists a constant play
path (a, a, ...) that is symmetric (v1(a) = v2(a)) and efficient, coordinating on this path
ensures that differences in discounting do not emerge and that immiseration is effectively
forestalled.19

Theorem ?? has obvious implications for equilibrium behavior. Suppose, as is true in
many games, that a player’s minimum on the Pareto frontier is below their security level.
It follows that, no matter the level of patience, an efficient play path (a0, a1, ...) can arise in
a SPE only if v1(at) = v2(at) for all t. Now, in general there may be no efficient play
path that meets this condition. This is so even when there is an action a 2 A such that
v1(a) = v2(a) and v(a) is on the Pareto frontier of V

one: the path (a, a, ...) may be Pareto
dominated by a one-time randomization among non-constant play paths featuring gains
from intertemporal trade. As we establish in Section ?? however, (CC,CC,...) is efficient in
the prisoners’ dilemma. Thus,

Corollary 6.1. Under DMI, (CC, CC, ...) is the only efficient path that can arise in a SPE of the

prisoners’ dilemma.
20

6.1 Does the Feasible Set Expand? A Sufficient Condition

Theorem ?? does not show whether intertemporal trade results in an expansion of the
feasible set. As was the case under IMI, CI is a necessary condition. Interestingly, CI is
not sufficient under DMI. Consider the prisoners’ dilemma. The actions that generate
differences in discounting are CD and DC. If CD is played, the logic behind Theorem ??
tells us that 2’s utility should be backloaded. But since CD is already as good as it gets

19If there are multiple paths (a, a, ...) that attain the same symmetric payoff, then one can also alternate
among the respective pure actions without triggering any differences in discounting. Case (ii) in Theorem
?? factors in this possibility.

20In contrast to the discussion in Section ??, note that Corollary ?? is deduced as an implication of intertem-
poral trade, not correlation affinity. The implications of the latter are studied in Section ??.
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for player 2, this can only be done by repeating CD forever after, leading to a constant play

path. Because intertemporal hedging is not a factor either, we see that the feasible set is
equal V

one, which apropos proves the efficiency of (CC, CC, ...) asserted in the lead-up to
Corollary ??.

To ensure that the feasible set expands, we need an action profile a 2 A that generates
differences in discounting without automatically maximizing the utility of any player.
Formally, say that a two-player game G satisfies Richness if there is a

r 2 A such that v(a
r)

is on the Pareto frontier of V
one and v

max

i
> vi(a

r) > vj(a
r) for some i 2 {1, 2} and j 6= i.21

Theorem 6.2. Consider a two-player, symmetric game satisfying DMI and Richness. For each l,

there exists a feasible payoff vl such that vl >⇤
V

one
. If the action profile a

r
in the statement of

Richness is such that v(a
r) � 0, then for all l sufficiently large, the payoff vl can be chosen so it

arises in a SPE.

We give a sketch of the proof. By symmetry, it is without loss of generality to assume
that a

r is such that v
max

2 > v2(a
r) > v1(a

r). As in Figure ??, let v(a
⇤) be the extreme point

of V
one immediately to the left of v(a

r) and consider the path (a
r

�T
, a

⇤
T
) 2 A

• such that a
⇤

is played in period T and a
r in all other periods. Fixing l, we first claim that for T large

enough, the path generates gains from intertemporal trade, that is, vl(a
r

�T
, a

⇤
T
) >⇤

V
one.

The intuition is simple. Since v2(a
r) > v1(a

r), player 2 attains a higher level of patience
at the start of the path when a

r 2 A is played. Efficiency then requires that 2’s utility
be backloaded, which is achieved by playing a

⇤ in period T. This gives us some gains
from intertemporal trade. To obtain a first-best outcome, the logic behind Theorem ??
tells us that 2’s utility should continue to rise until it is fully maximized. However, as this
may violate the IR constraints of player 1 and we want to show that gains from trade can
be sustained in a SPE, the path (a

r

�T
, a

⇤
T
) sacrifices some efficiency by switching back to

a
r 2 A after a

⇤ 2 A is played. The switch may appear extreme but serves an important
purpose. Suppose as in the second part of the theorem that v(a

r) � 0 and recall that, by
construction, v1(a

⇤) < v1(a
r). It follows that for a given l and T, (a

r

�T
, a

⇤
T
) is SIR if and

only if (a
⇤, a

r, a
r, ...) is IR. That is, the level of patience at which one can sustain (a

r

�T
, a

⇤
T
) is

independent of T. Therefore, by first choosing a sufficiently high l and then a sufficiently
large T, we can ensure that the path (a

r

�T
, a

⇤
T
) is both an equilibrium outcome and delivers

gains from intertemporal trade.
To conclude this section, consider Figure ?? again, where v(a

r) is on the frontier of V
one

but not an extreme point. Clearly, gains from intertemporal trade will continue to exist if
v(a

r) is moved slightly below the frontier. Thus, despite being a rather weak requirement,
21In a symmetric game, Richness implies CI. Indeed, suppose there is a 2 A such that v(a) = (vmax

1 , v
max

2 ).
By symmetry, v

max

1 = v
max

2 > v2(a
r). But then v(a) � v(a

r) and v(a
r) cannot be on the frontier of V

one.
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Richness is not necessary for the existence of such gains. Note however that exactly how
far v(a

r) can be moved is a quantitative question: one must weigh the benefits of the
induced heterogeneity in discounting, b1(a

r) 6= b2(a
r), against the inefficiency of playing

a
r. Accordingly, we believe that Richness and the present analysis paint a reasonably

complete picture as to when and whether gains from intertemporal trade exist under
DMI.

6.2 Prisoners’ Dilemma: The Limit Set of Equilibrium Payoffs

Returning to the prisoners’ dilemma, consider Figure ?? and note that, as argued in Sec-
tion ??, the feasible set is equal to V

one. In Section ??, we also argued that because iid
flips are inefficient under correlation affinity, a payoff such as v̂ can be attained only by
a one-time flip between CC and CD and such play cannot be an equilibrium for any level

of patience.22 Presently, we go a step further and show that iid flips, whose stationarity
helps ensure that the IR constraints are met after every history, fully delineate what can
be attained in a SPE. In other words, and oversimplifying slightly, if the IR constraints
cannot be met in a stationary way, they cannot be met in any other way. To state the result
formally, let vil(s | h

t) be i’s utility in the subgame given a history h
t and a strategy s 2 S,

and let

V
⇤(l) = {vl(s) : s 2 S s.t. vl(s | h

t) � 0 8h
t, t}.

22This is another way to deduce the conclusion of Corollary ??.
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V
⇤(l) is the payoff set from strategies that meet the IR constraints after every history, a

necessary condition for subgame perfection.

Theorem 6.3. In the prisoners’ dilemma under DMI, V
⇤(l) = conv(Viid \ R2

+) for each l.

Figure ?? shows the Pareto frontier of conv(Viid \ R2
+). We note that any payoff in

conv(Viid \ R2
+) can be attained by an individually rational iid flip or by a one-time

randomization among such flips.23 It follows from our folk theorem that any payoff
v 2 conv(Viid \ R2

+) such that v � 0 can be sustained in a SPE for l large enough.
In particular, conv(Viid \ R2

+) is the limit of the set of equilibrium payoffs as l % 1.

7 Epstein-Zin Preferences

In this final section, we shift attention to a popular class of preferences introduced by
? ]. The goal is to deliver another formalization of the implications of correlation atti-
tudes discussed in Section ??. We begin with some conceptual issues that arise when the
preferences in question, henceforth EZ preferences, are used in a game-theoretic context.

7.1 Setup: Physical Outcomes and Temporal Lotteries

In the standard model of repeated games, stage payoffs are cardinal payoffs typically in-
terpreted as encoding the players’ risk attitudes. In fact, they serve a double purpose in
that they also encode the players’ attitudes toward intertemporal smoothing. With EZ
preferences, however, attitudes toward risk and intertemporal smoothing are fully inde-
pendent of one another. Accordingly, we need two “cardinal scales” and a way to convert
between them. To achieve that, it is convenient to assume that stage outcomes take the
form of a physical, infinitely divisible good, in terms of which one can compute certainty
equivalents. More precisely, let i’s stage outcomes be consumption levels described by a
function gi : A ! R+. Then, assuming for the sake of simplicity that the game is symmet-
ric, let C := conv(gi(A)) to be the convex hull of consumption levels that can arise in the
context of a game and let r, s : C ! R be strictly increasing functions whose curvatures
represent the players’ risk attitudes and respectively the desire to smooth consumption
over time.

23To see what we mean by this, take a, a0 2 D(A) and p 2 (0, 1). Then, partition [0, 1], the range of the
period 0 public signal, into [0, p] and (p, 1], and partition those intervals further so as to implement a and
a0 respectively. Finally, consider the play such that if w0

0 2 [0, p], a is played forever after; else a0 is played
forever after.
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We need one more tweak to the standard setup before we can introduce EZ prefer-
ences formally. Namely, since EZ preferences are sensitive to the timing of resolution of
uncertainty, we cannot identify a strategy s 2 S with the induced distribution over play
paths. Instead, we must encode the timing of resolution of uncertainty and look at what is
known as the induced temporal lottery or probability tree. To avoid unnecessary technicali-
ties, we give only a heuristic definition of these objects; the formal details are well-known
and can be found in ? ]. As a first step, let us for the moment ignore the possibility of
randomization in the initial period. Each infinite probability tree can then be visualized
as a pair (a, µ), where a 2 A is the action played in period 0 and µ is a distribution over
infinite probability trees, one of which will prevail in period 1. This recursive structure
means that we can define the space D of infinite probability trees as the unique (up to
homeomorphism) set satisfying D = A ⇥ D(D). Since, of course, randomization in the
initial period is possible, the actual set of infinite probability trees is D(D) rather than D.

7.2 EZ Utility

We are ready to define the class of EZ preferences. Given a function vi : D ! R and a
distribution µ 2 D(D), let Eµvi be the expectation of vi. Then, vi : D ! R is implicitly
defined as the solution to the equation:

vi(a, µ) = rs
�1�(1 � b)s(gi(a)) + bsr

�1(Eµvi)
�

8(a, µ) 2 A ⇥ D(D) = D, (6)

where b 2 (0, 1) is the players’ common and fixed discount factor and rs
�1 denotes the

composition of r and s
�1, etc.24 To understand equation (??), note first that we have

written it so that the utility function vi is denominated in r-utils. Then, starting backward,
we apply sr

�1 to the continuation utility Eµvi so as to convert the latter into s-utils. This
allows us to aggregate across time by computing the discounted average with current
utility. Applying rs

�1 to that average converts utility back into r-utils. Finally, note that
having defined utility in r-utils, the utility of µ 2 D(D) is simply Eµvi.

Some examples may cast further light on (??). The utility of a path (a
0, a

1, ...) 2 A
• of

pure actions is

vi(a
0, a

1, ...) = rs
�1�(1 � b)Ât

bt
s(gi(a

t))
�
. (7)

Since rs
�1 is just an increasing transformation, we see that preferences over pure play

paths conform to the standard model of discounted utility, with s capturing the desire to
smooth consumption over time. On the other hand, given a 2 D(A), the utility of the

24We assume throughout that r, s are such that equation (??) has a unique solution. A well-known case is
when both r, s are homothetic. Other cases can be found in ? ].
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one-time flip aone is:

vi(a
one) = Âa

a(a)r(gi(a)). (8)

We see that the curvature of r reflects risk aversion, as intended. We also note that (??) is
the cardinal payoff in the stage game. Thus, denominating vi : D ! R in r-utils ensures
that payoffs in the repeated game are measured in the same units as stage payoffs.

7.3 Correlation Aversion

Write (b, r, s) for an EZ preference on D(D) and (A, (gi)i, b, r, s) for a symmetric repeated
game with EZ preferences. The game is connected if gi(A) = C for some i (the choice of
i is immaterial by symmetry). Also, say that r is a strictly concave transformation of s if
there is a strictly concave function f : s(C) ! r(C) such that r(c) = f (s(c)) for all c 2 C.
Our first result in this section characterizes when EZ preferences are correlation-averse.

Lemma 7.1. If r is a strictly concave transformation of s, then the EZ preference (b, r, s) is

correlation-averse. The converse is true as well if we assume that the game is connected and both

r and s are twice continuously differentiable.
25

The intuition behind Lemma ?? is simple. The greater curvature of r implies that a
player is more concerned with risk than intertemporal smoothing which, as explained in
Section ??, makes iid flips preferable to one-time flips. The converse is true under natural
conditions.

Lemma ?? gives us another case in which we can invoke Theorem ?? and obtain an
expansion of V

one due to intertemporal hedging. Our next result goes a step further and
characterizes the Pareto frontier of the feasible payoff set. First, define the strong Pareto
frontier of a set A ⇢ Rn to be the set of x 2 A for which there is no y 2 A such that y � x

and y 6= x. Also, say that µ 2 D(D) is trivially randomized if vi(a
0, µ0) = vi(a

00, µ00) for
all i and (a

0, µ0), (a
00, µ00) 2 D in the support of µ; the same is true for all elements in the

support of each µ0 such that (a
0, µ0) is in the support of µ for some a

0, and so on. In other
words, µ is trivially randomized if after each history, the players are indifferent about what
happens next.

Theorem 7.1. Suppose r is a strictly concave transformation of s and b > 1 � |A|�1
. Then, the

Pareto frontier of the set V of feasible payoffs in a repeated game (A, (gi)i, b, r, s) is equal to the

Pareto frontier of V
pure := {v(a

0, a
1, ...) : (a

0, a
1, ...) 2 A

•}. In addition, any payoff on the

strong Pareto frontier of V can be attained only by a pure play path or a trivially randomized µ.

25Contemporaneously with us, ? ] has obtained a related but logically independent result which gives a
sufficient condition for a more special class of EZ preferences to exhibit a more general notion of correlation
aversion.
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The intuition is once again simple. Since the players are more concerned with risk
than intertemporal smoothing, they avoid randomization in any efficient outcome. To
understand why the restriction on b is needed, recall from (??) that the utility of a pure
path is just the standard discounted average (subject to the rs

�1 change of units).26 More-
over, it is known from ? ] that if b > 1 � |A|�1, the set of discounted-average payoffs
from pure paths is convex. This allows us to prove that any µ 2 D(D) is Pareto domi-
nated by a pure play path. If b  1 � |A|�1, non-trivial randomization may be efficient.
But then, since EZ preferences are sensitive to the timing of resolution of uncertainty, one
must know whether early or late resolution is preferred.27 If early resolution is preferred,
all randomization will take place in period 0; if late resolution is preferred, the exact tim-
ing will depend on the specific paths one is randomizing among. Unfortunately, for the
general class of EZ preferences we have defined, we do not know if r being a concave
transformation of s pins down the players’ attitudes toward the timing of resolution of
uncertainty. Thus, a full analysis of the case b  1 � |A|�1 awaits further development.

On the other hand, consider the popular case of homothetic EZ preferences: r(c) = c
g

and s(c) = c
r for some g, r 2 (0, 1). Then, as shown in ? ], r is a strictly concave transfor-

mation of s (g < r) if and only if there is a preference for early resolution of uncertainty.
Thus, if non-trivial randomization is to be efficient, it must take place in period 0.

We conclude this section with one additional insight based on the homothetic case.
Invoking ? ] again, we first note that V

pure is independent of the discount factor b. In fact,

V
pure =

n⇣
rs

�1(v1), ..., rs
�1(vn)

⌘
: (v1, ..., vn) 2 V

s

o
, where

V
s := conv

n⇣
s(g1(a)), ..., s(gn(a))

⌘
: a 2 A

o
.

On the other hand, V
iid depends on the level of patience b. This arises because EZ prefer-

ences, unlike UzE preferences, are sensitive to the late resolution of uncertainty implied
by iid flips and because this sensitivity depends on b. Precise characterizations of the
latter dependence have proved difficult to obtain as there is no closed-form expression
for the utility of iid flips. However, the analysis in ? ], ? ], ? , p.1448] clearly show that
such a dependence exists. In addition, ? ] have successfully computed limb%1 vi(aiid)

for the case of homothetic EZ utility. It follows immediately from their formula that the
Pareto frontier of V

iid converges to the Pareto frontier of the feasible set. The intuition,
also revealed by the formula, is that as b % 1, iid flips are no longer penalized for the risk
they carry (intertemporal hedging works perfectly in the limit) or for the late resolution
of uncertainty. Whether these conclusions extend to all correlation-averse EZ preferences

26Because of this, it is also straightforward to characterize which pure paths are efficient. We omit the details.
27See ? ] for a formal definition of preference for early (late) resolution.
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is an interesting open problem.

7.4 Correlation Affinity

In direct juxtaposition to Theorem ??, our next result characterizes efficient outcomes
when the players care more about intertemporal smoothing than risk.

Theorem 7.2. If s is a strictly concave transformation of r, then the Pareto frontier of the feasible

set of a repeated game (A, (gi)i, b, r, s) is equal to the Pareto frontier of V
one

.

As was the case with Theorem ??, if we exclude some non-generic cases, an efficient
payoff can be attained only by a one-time flip. To see what needs to be excluded, suppose
g(a) = g(a

0) and r(g(a)) is on the Pareto frontier of V
one. Then, a path that alternates

between a and a
0 will deliver the payoff r(g(a)) and be efficient as well. Likewise, such

paths can be in the support of one-time flips. We omit the formal details for the sake
brevity and since they are not a factor in our last result, which concerns the prisoners’
dilemma.28 The result gives us another formalization of the implications of correlation
affinity first expressed in Section ??.

Corollary 7.1. In the prisoners’ dilemma with EZ preferences, if s is a strictly concave transfor-

mation of r, then (CC, CC, ...) is the only efficient outcome that can be sustained in a SPE.

Appendix

In the appendix, we write vi(a) instead of vi(aiid).

A Proof of Lemma ??

Since (gi, bi) and (g
0
i
, b0

i
) agree on Diid, it follows Lemma ?? that there are q, r, s, t, qt > sr,

such that g
0
i
= qgi + r(1 � bi) and 1 � b0

i
= sgi + t(1 � bi). Since (gi, bi) and (g

0
i
, b0

i
) agree

on Done, there are constants q > 0 and g such that vi(a) = qv
0
i
(a) + g for every a 2 A.

Plugging the former restrictions into the latter gives svi(a)2 + (t � qq � gs)vi(a)� (qr +

gt) = 0 for all a 2 A. Since a quadratic equation has at most two solutions and vi(a) >

vi(a
0) > vi(a

00) for some a, a
0, a

00 2 A, it must be that s = 0. (Also, t = qq and qr = �gt.)
Thus, 1 � b0

i
= t(1 � bi) and t > 0. Letting li = 1 � t gives b0

i
= li + (1 � li)bi. Next,

note that t > 0 and qt > sr = 0 imply q > 0. By Lemma ??, for every q̂ > 0 and ĝ, (g
0
i
, b0

i
)

28Presently, by a prisoners’ dilemma, we mean that r � g is given by the payoff matrix in Figure ?? and that
d > c > 0 > b and c > 0.5b + 0.5d. Interpreted as restrictions on the rankings of constant pure paths, the
latter inequalities are the exact analogues of (??) and (??).
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and (q̂g
0
i
+ ĝ(1 � b0

i
), b0

i
) induce the same preference relation on S. Letting q̂ = q

�1 and
ĝ = �q̂rt

�1 implies that q̂g
0
i
+ ĝ(1 � b0

i
) = gi. The opposite direction is trivial.

B Proof of Theorem ??

B.1 Payoff Asymmetry

Each pair (gi, bi) induces a preference relation ⌫i on the simplex D(A) represented by the
utility function vi(a). If bi : A ! (0, 1) is constant, ⌫i is a standard expected utility pref-
erence. If bi is not constant, then ⌫i belongs to the more general class of weighted-utility
preferences studied in ? ]. We begin with some preliminary observations regarding such
preferences.

Lemma B1. If vi(a) > vi(a0), then vi(a) > vi($a + (1 � $)a0) > vi(a0) for all $ 2 (0, 1). If

vi(a) = vi(a0), then vi(a) = vi($a + (1 � $)a0) for all $ 2 (0, 1) (i.e., the indifference sets of

⌫i are hyperplanes).

Proof. The first part follows from the fact that for all r 2 (0, 1), k, l 2 R, and s, t 2 R++,
if ks

�1 > lt
�1, then ks

�1 > (rk + (1 � r)l)(rs + (1 � r)t)�1 > lt
�1. The second part is

proved analogously.

Lemma B2. Let ⌫ be a weighted-utility preference on D(A) and E1 and E2 two distinct indiffer-

ence curves of ⌫, both intersecting the interior of D(A). Then, ⌫ is fully determined by E1 and

E2 and the ranking between them.

Proof. The result is clear if ⌫ is an expected utility preference. When ⌫ is not expected
utility, the proof follows from Figure 1 in ? ]. Embedding the simplex D(A) into R|A|�1,
we see that the indifferences curves E1 and E2 are hyperplanes whose intersection is an
(|A|� 3)-dimensional linear subspace L. Rotating the hyperplane E1 around L generates
all indifference curves of ⌫, with the ranking between E1 and E2 determining the direction
of increasing preference.

Next is a generalization of the “payoff-asymmetry lemma” of ? ].

Lemma B3. Under NEU, there exist a1, ..., an 2 D(A) such that vi(aj) > vi(ai) for every i 6= j.

Proof. Call the sought after (ai)i a separation for (⌫i)i. Let Ei(a) := {a0 2 D(A) : a0 ⇠i a}
be player i’s indifference curve through a 2 D(A) and let Ui(a), Li(a) be the upper and
lower contour sets. If n = 2, we claim that one can pick a generic a 2 D(A) and a1, a2

arbitrarily close to a such that a2 �1 a �1 a1 and a1 �2 a �2 a2. If ⌫1 and ⌫2 share the
same indifference curves, then , by NEU, ⌫1 must be the negation of ⌫2 and the claim
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follows. If ⌫1 and ⌫2 do not share the same indifference curves, then, by Lemma ??,
they have in common at most one indifference curve E

⇤ intersecting the interior of D(A).
Pick any a /2 E

⇤ in the interior of D(A). The hyperplanes E1(a) and E2(a) partition D(A)

into four cones with peak a : U1(a) \ U2(a), U1(a) \ L2(a), L1(a) \ U2(a), L1(a) \ L2(a).
Picking any a2 in the interior of U1(a) \ L2(a) and a1 in the interior of L1(a) \ U2(a)

proves the claim.
Proceeding inductively, suppose (a1, ..., am) is a separation for (⌫1, ...,⌫m) and let

⌫m+1 be a distinct weighted-utility preference. Reindexing if necessary, we can assume
that ai ⌫m+1 a1 for all i < m + 1. Since a2 �1 a1 and a2 ⌫m+1 a1, ⌫1 cannot be the
negation of ⌫m+1. By perturbing a1 appropriately, we can assume that ai �m+1 a1 for all
i < m + 1. Since, by Lemma ??, ⌫1 and ⌫m+1 have at most one indifference curve in com-
mon, we can also assume that E1(a1) 6= Em+1(a1). By the argument for n = 2, we can find
a0, a00 such that a00 �1 a1 �1 a0 and a0 �m+1� a1 �m+1 a00. Choosing a0, a00 sufficiently
close to a1 ensures that (a0, a2, ..., am, a00) is a separation for (⌫1,⌫2, ...,⌫m+1).

B.2 Decision-theoretic preliminaries

We continue by stating two known and useful intertemporal properties of UzE prefer-
ences.29 The proofs are obvious and omitted. Fix some i 2 I and let a0, a1, ..., aK 2 D(A)

be mixed actions such that vi(ak)  vi(ak+1) for every k = 0, ..., K � 1. Lemma ?? shows
that player i prefers more beneficial actions to be played first.

Lemma B4. For every a 2 (D(A))•
and every permutation p : {0, 1, ..., K} ! {0, 1, ..., K}, we

have vi(a0, a1, ..., aK, a)  vi(ap(0), ap(1), ..., ap(K), a).

The next lemma says that if the continuation path a is better than each of the actions
ak, it is beneficial to remove some of these actions so as to advance the play of a.

Lemma B5. For every a 2 (D(A))•
such that vi(aK) < vi(a) and every subset {â0, ..., âK̂} ⇢

{a0, a1, ..., aK}, we have vi(a0, a1, ..., aK, a)  vi(â0, ..., âK̂, a).

Finally, we note that for every path (a0, a1, ...) 2 (D(A))•,

vi(a
0, a1, ...) =

�
1 � bi(a

0)
�
vi(a

0) + bi(a
0)vi(a

1, a2, ...). (9)

Thus, vi(a0, a1, ...) is a convex combination of vi(a0) and vi(a1, a2, ...).30

29For another application of these properties, see ? ].
30On the other hand, since the “weights” depend on i, v(a0, a1, ...) need not be a convex combination of
v(a0) and v(a1, a2, ...).
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B.3 Constructing dynamic player-specific punishments

The definition below is adapted from ? ].

Definition B1. Given l 2 [0, 1), a play path a 2 (D(A))•
allows dynamic player-specific

punishments (DPSP) with wedge g > 0 if there exists paths r1, ..., rn 2 (D(A))•
such that

for every i, j 6= i, and every t, we have (i) vil(ri) < vil(ta)� g, (ii) g < vil(ri)  vil(tri), and

(iii) vil(ri) < vil(trj)� g.

The paths (ri)i, which we are about to construct, will be used to punish deviations
from the target path a. Roughly, condition (i) deters player i from deviating from a; con-
dition (ii) ensures that the punishment phase is SIR and that no player wants to restart the
punishment; and condition (iii) provides incentives for player i to carry out a punishment
against player j.

Lemma B6. Assume NEU. For every # > 0, there are g > 0 and l 2 [0, 1) such that for every

l > l, every a 2 SIR
#(l) allows DPSP {ri

l}i with wedge g.

We begin by defining paths {ri

l}i2I indexed by two parameters T1, T2 2 N++ (to be
determined later). Fix # > 0 and l such that SIR

#(l) 6= ∆. Fix i 2 I. Since the set SIR
#(l)

is compact, we can find a path wi

l 2 argminâ2SIR#(l) vil(â). By Lemma ??, there exist
k1, ..., kn 2 D(A) such that vi(ki) < vi(k j) for all j 6= i. Enumerate the k’s according to i’s
preferences:

vi(k
i0)  vi(k

i1)  ...  vi(k
in�1).

By construction, ki0 = ki. For any a 2 D(A) and T 2 N++, let (a)T 2 (D(A))T be the
finite sequence such that a is played T times. For every T2 2 N++, let

ai

l := ((ki0)T2 , (ki1)T2 , ..., (kin�1)T2 , wi

l).

Collecting all k’s into a single block K
i

l 2 (D(A))NT2 , we can also write ai

l as (Ki

l, wi

l).
Let l

i, h
i 2 A be such that vi(li)  vil(s)  vil(hi) for all s 2 S. Let Li

l be the set of all
l
j 2 A, j 2 I, s.t. vi(l j) < vil(ai

l), and let N
i := |Li

l|. The set is nonempty since l
i 2 Li

l.
Enumerate all action profiles in Li

l according to i’s preferences:

vi(l
i0)  vi(l

i1)  ...  vi(l
i
Ni�1). (10)

Note that l
i0 = l

i. For every T1 2 N++, define the play path

ri

l := ((li0)T1 , (li1)T1 , ..., (li
Ni�1)T1 , ai

l).

Collecting all l’s into a block L
i

l, we may also write ri

l as (L
i

l, ai

l). Notice that we con-
structed the paths {ri

l}i without referencing the target path a 2 SIR
#(l). Since vil(wi

l) 
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vil(ta) for every t and a 2 SIR
#(l), condition (i) in Definition ??, which is where the

target path a appears, will be automatically satisfied if we can show that vil(ri

l) <

vil(wi

l) � g for every i. The rest of the proof calibrates the paths {ri

l}i by choosing T1

and T2 appropriately so that all conditions of Definition ?? are met. To begin, recall the
following property of the exponential.

Lemma B7. For every b 2 [0, 1) and q 2 R, liml!1(l + (1 � l)b)
q

1�l = e
�(1�b)q

.

Let b
i

:= maxa bi(a) and b
i

:= mina bi(a). For every l, let b
il := l + (1 � l)b

i
and

b
il

:= l + (1 � l)b
i
.

Lemma B8. Take T1 = d q(1�h)
1�l e and T2 = d qh

1�le, where q > 0, 0 < h < 1. There exist q⇤ > 0,

g0 > 0, and l0 2 [0, 1) such that if q = q⇤, then for every i 2 I, l 2 (l0, 1), and h 2 (0, 1),

(1 � [b
il
]n(T1+T2))vi(l

i) + [b
il
]n(T1+T2)# > g0.

Proof. By Lemma ??,

lim
l!1

(1 � [b
il
]n(T1+T2))vi(l

i) + [b
il
]n(T1+T2)# = (1 � 1

e
(1�b

i
)nq

)vi(l
i) +

1

e
(1�b

i
)nq

#.

Let fi(q) denote the above limit and notice that fi(0) = # > 0 for every i 2 I. Since
vi(li)  0 < #, fi is decreasing and continuous in q. Thus, there exists qi > 0, small
enough, such that fi(q) > 0 for all q 2 (0, qi]. Take q⇤ := mini qi and choose g0 > 0 such
that fi(q⇤) > g0 for all i 2 I. Finally, pick l0

i
> 0 such that

(1 � [b
il
]n(T1+T2))vi(l

i) + [b
il
]n(T1+T2)# > g0 8l 2 (l0

i
, 1),

and let l0 := maxi l0
i

to complete the proof.

Lemma B9. Let q⇤ be defined as in Lemma ??. Take T1 = d q⇤(1�h)
1�l e and T2 = d q⇤h

1�le where

0 < h < 1. There exist 0 < h⇤ < 1, g00 > 0, and l00 2 [0, 1) such that if h = h⇤
, then for every

i 2 I and l 2 (l00, 1)

(1 � [b
il]

T1 [b
il
]nT2)# � (1 � [b

il]
T1)vi(l

i)� [b
il]

T1(1 � [b
il
]nT2)vi(h

i) > g00.

Proof. For every i 2 I, define

fi(h) :=
(1 � e

�(1�b
i
)q⇤(1�h))vi(li) + e

�(1�b
i
)q⇤(1�h)(1 � e

�(1�b
i
)nq⇤h)vi(hi)

1 � e
�(1�b

i
)q⇤(1�h)�(1�b

i
)nq⇤h

.

The function fi is continuous, strictly increasing, and such that fi(0) = vi(li)  0 < #.
Thus, there exists hi > 0, small enough, such that fi(h) < # for all h 2 (0, hi]. Taking
h⇤ := mini hi, we have fi(h⇤) < # for every i 2 I. Thus, there exists g00 > 0 such that

(1 � 1

e
(1�b

i
)q⇤(1�h⇤)+(1�b

i
)nq⇤h⇤ )# � (1 � 1

e(1�b
i
)q⇤(1�h⇤)

)vi(l
i)
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� 1
e(1�b

i
)q⇤(1�h⇤)

(1 � 1

e
(1�b

i
)nq⇤h⇤ )vi(h

i) > g00 8i 2 I.

Lemma ?? implies that

lim
l!1

(1 � [b
il]

T1 [b
il
]nT2)# � (1 � [b

il]
T1)vi(l

i)� [b
il]

T1(1 � [b
il
]nT2)vi(h

i)

= (1 � 1

e
(1�b

i
)q⇤(1�h⇤)+(1�b

i
)nq⇤h⇤ )# � (1 � 1

e(1�b
i
)q⇤(1�h⇤)

)vi(l
i)

� 1
e(1�b

i
)q⇤(1�h⇤)

(1 � 1

e
(1�b

i
)nq⇤h⇤ )vi(h

i).

Thus, for every i 2 I, we can find l00
i
2 [0, 1) such that for every l 2 (l00

i
, 1),

(1 � [b
il]

T1 [b
il
]nT2)# � (1 � [b

il]
T1)vi(l

i)� [b
il]

T1(1 � [b
il
]nT2)vi(h

i) > g00.

Taking l00 := maxi l00
i

completes the proof.

Let T1 = d q⇤(1�h⇤)
1�l e and T2 = d q⇤h⇤

1�l e, where q⇤ is defined as in Lemma ?? and h⇤ is
defined as in Lemma ??.

Lemma B10. There exist g0 > 0 and l0
such that vil(ri

l) > g0
for all l > l0

and i.

Proof. By Lemma ??, there exist g0 > 0 and l0 2 [0, 1) such that

(1 � [b
il
]n(T1+T2))vi(l

i) + [b
il
]n(T1+T2)# > g0 8i 2 I, 8l 2 (l0, 1). (11)

Take l 2 (l0, 1) and i 2 I. Since vi(li)  vi(lim) for all m = 0, ..., N
i � 1 and vi(li)  vi(kim)

for all m = 0, ..., n � 1, we have

vil(ri

l) � (1 � [b
il
]n(T1+T2))vi(l

i) + [b
il
]n(T1+T2)vil(wi

l).

Since vil(wi

l) � #, we obtain

vil(ri

l) � (1 � [b
il
]n(T1+T2))vi(l

i) + [b
il
]n(T1+T2)# > g0.

The last inequality follows from (??) and l 2 (l0, 1).

Lemma B11. There exist g00 > 0 and l00
such that vil(ri

l) < vil(wi

l)� g00
for all l > l00, i.

Proof. Fix i 2 I. Since vi(hi) � vi(kim) for all m = 0, ..., n � 1, we obtain

vil(a
i

l)  (1 � [b
il
]nT2)vi(h

i) + [b
il
]nT2vil(wi

l).

By Lemma ??, vil(ri

l) reaches its maximum when Ll
i
= {l

i}. Since vi(li) < vil(wi

l) 
vi(hi), we have vil(ri

l)  x

x = (1 � [b
il]

T1)vi(l
i) + [b

il]
T1(1 � [b

il
]nT2)vi(h

i) + [b
il]

T1 [b
il
]nT2vil(wi

l).
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Since vil(wi

l) � #, Lemma ?? implies that there are g00 > 0 and l00 2 [0, 1) such that for
all i 2 I and l 2 (l00, 1),

(1 � [b
il]

T1 [b
il
]nT2)vil(wi

l)� (1 � [b
il]

T1)vi(l
i)� [b

il]
T1(1 � [b

il
]nT2)vi(h

i) > g00.

This is equivalent to x < vil(wi

l)� g00. Thus, vil(ri

l)  x < vil(wi

l)� g00.

Lemma B12. For all i and all l > l00
, vil(ri

l)  vil(tri

l) for all t.

Proof. Take l 2 (l00, 1) and i 2 I. Since vi(lim) < vil(ai

l) for all m = 0, ..., N
i � 1, it follows

from (??) and (??) that

vil(ri

l)  vil(1ri

l)  ...  vil(NiT1�1ri

l)  vil(NiT1
ri

l) = vil(a
i

l). (12)

Thus, vil(ri

l)  vil(tri

l) for all t  N
i
T1. To prove the same for t > N

i
T1, suppose first

that

vi(k
im) < vil((m+1)T2

ai

l) 8m = 0, ..., n � 1. (13)

The construction of ai

l implies that for every m = 0, ..., n � 1,

vil(mT2ai

l) = vi(k
im)(1 � [bil(k

im)]T2) + [bil(k
im)]T2vil((m+1)T2

ai

l). (14)

It follows from (??) and (??) that vil(mT2ai

l) < vil((m+1)T2
ai

l) for all m = 0, ..., n � 1.
Hence, vil(ai

l) < vil(tai

l) for all t > 0. Together with (??), this implies vil(ri

l)  vil(tri

l)

for all t > N
i
T1.

Alternatively, suppose that there is an index k such that vi(kik) � vil((k+1)T2
ai

l) and
vi(kim) < vil((m+1)T2

ai

l) for all m < k. It follows from (??) and (??) that

vil(ri

l)  vil(a
i

l) < vil(ta
i

l) 8t = 1, ..., kT2.

Since vi(kik) � vil((k+1)T2
ai

l), (??) and (??) yield

vil(kT2ai

l) � vil(ta
i

l) t = kT2 + 1, ..., (k + 1)T2.

By construction,

vil((k+1)T2
ai

l) = vi(k
ik+1)(1 � [bil(k

ik+1)]T2) + [bil(k
ik+1)]T2vil((k+2)T2

ai

l).

Since vi(kik+1) � vi(kik) � vil((k+1)T2
ai

l), we have vi(kik+1) � vil((k+2)T2
ai

l). The latter
implies that

vil((k+1)T2
ai

l) � vil(ta
i

l) 8t = (k + 1)T2 + 1, ..., (k + 2)T2.

Repeating the arguments above, we can show that for every t = kT2 + 1, ..., nT2 � 1,

vil(kT2ai

l) � vil(ta
i

l) � vil(nT2ai

l) = vil(wi

l). (15)

For all t > nT2, we have tai

l = twi

l 2 SIR
#(l), where t = t � nT2. Hence, vil(wi

l) 
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vil(tai

l). Combined with (??), this yields

vil(wi

l) = vil(nT2ai

l)  vil(ta
i

l) 8t � kT2 + 1.

Since l 2 (l00, 1), Lemma ?? shows that vil(ri

l) < vil(wi

l)  vil(tai

l) for all t � kT2 + 1,
completing the proof.

Lemma B13. There exist g000 > 0 and l000
such that for every i, j 2 I, i 6= j, and l > l000

, we

have [b
il
]nT1(vi(k j)� vi(ki))(1 � [b

il]
T2)2 > g000

.

Proof. By Lemma ??,

lim
l!1

[b
il
]nT1(vi(k

j)� vi(k
i))(1 � [b

il]
T2)2 =

1

e
(1�b

i
)nq(1�h)

(vi(k
j)� vi(k

i))(1 � 1
e(1�b

i
)qh

)2,

which is strictly greater than 0 since vi(k j)� vi(ki) > 0 for all j 6= i.

Given a list B = (x
0, ..., x

T�1) in a product space X
T and k < T � 1, we write kB

for the list (x
k, x

k+1, ..., x
T�1) 2 X

T�k. Given lists B = (x
0, ..., x

T�1) 2 X
T and B

0 =

(y0, ..., y
K�1) 2 X

K, we write B ⇢ B
0 if {x

0, ..., x
T�1} ⇢ {y

0, ..., y
K�1}. Given a list B =

(a0, ..., aT�1) of action profiles, we let p"
i
(B) := (x

p(0), ..., x
p(T�1)) be the permutation of

B such that vi(ap(t))  vi(ap(t+1)) for all t = 0, ..., T � 2.

Lemma B14. For all i, j 2 I, i 6= j, l > l000
, and t  N

j
T1, vil

�
t
rj

l

�
� vil

�
t
L

j

l, ai

l

�
> g000

.

Proof. For all t  N
j
T1, we have tr

j

l = ( tL
j

l, a
j

l) and, hence,

vil
�

t
rj

l

�
� vil

�
t
L

j

l, ai

l

�
� vil

�
L

j

l, a
j

l

�
� vil

�
L

j

l, ai

l

�
=

=
N

j�1

’
m=0

[bil(l
jm)]T1

�
vil

�
a

j

l

�
� vil

�
ai

l

��
� [b

il
]nT1(vil

�
a

j

l

�
� vil

�
ai

l

�
).

(16)

Thus, we seek a lower bound for vil
�
a

j

l

�
� vil

�
ai

l

�
. By the construction of ai

l, there is an
index k 6= 0 such that kik = k j. Let

K
i\j := ((ki0)T2 , ..., (kik�1)T2 , (kik+1)T2 , ..., (kin�1)T2) and K

j\j := ((k j1)T2 , (k j2)T2 , ..., (k jn�1)T2).

Thus, K
i\j and K

j\j are obtained from K
i and K

j respectively by removing the k j’s. The list
K

i\j, like K
i, orders its elements in a way that is unfavorable to player i. Thus, by Lemma

??, vil
�
K

j\j, wi

l

�
� vil(Ki\j, wi

l) and, by stationarity,

vil(K
j, wi

l) = vil
�
(k j)T2 , K

j\j, wi

l

�
� vil((k

j)T2 , K
i\j, wi

l).

Since vil(w
j

l) � vil(wi

l),

vil(a
j

l) = vil(K
j, wj

l) � vil(K
j, wi

l) � vil((k
j)T2 , K

i\j, wi

l).
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Next, let K̃ be the list obtained from K
i by moving the block (k j)T2 immediately after

the initial block (ki)T2 . By Lemma ??, we have vil(K̃, wi

l) � vil(Ki, wi

l) = vil
�
ai

l). We
conclude that

[b
il
]nT1(vil

�
a

j

l

�
� vil

�
ai

l

�
) � [b

il
]nT1(vil((k

j)T2 , K
i\j, wi

l)� vil(K̃, wi

l))

=[b
il
]nT1(vi(k

j)� vi(k
i))(1 � [bil(k

j)]T2)(1 � [bil(k
i)]T2)

�[b
il
]nT1(vi(k

j)� vi(k
i))(1 � [b

il]
T2)2 > g000,

where the equality follows by a direct calculation and the last inequality by Lemma ??.
Together with (??), the last chain of inequalities completes the proof.

Lemma B15. For all i, j 2 I, i 6= j, and l > l000
, vil(tr

j

l)� vil(ri

l) > g000
for all t  N

j
T1.

Proof. Write tr
j

l as (tL
j

l, a
j

l). By Lemma ??, vil(tL
j

l, ai

l) � vil(p
"
i
(tL

j

l), ai

l). Hence,
by Lemma ??, vil

�
t
rj

l

�
� vil(p

"
i
(tL

j

l), ai

l) > g000. It is therefore enough to show that
vil(p

"
i
(tL

j

l), ai

l) � vil(ri

l). Recall that ri

l = (L
i

l, ai

l). Since tL
j

l ⇢ L
j

l, we can write
p"

i
(tL

j

l) as (L
0, L

00) where L
0 ⇢ L

i

l and L
00 ⇢ L

j

l \ L
i

l. We claim that

vil(L
0, L

00, ai

l) � vil(L
0, ai

l) � vil(L
i

l, ai

l) =: vil(ri

l) (17)

By the stationarity of UzE preferences, or if L
0 = ∆, the first inequality is equivalent to

vil(L
00, ai

l) � vil(ai

l), which follows since vi(l00) � vil(ai

l) for all l
00 2 L

00. The second
inequality in (??) follows from Lemma ??.

Lemma B16. For all i, j 2 I, i 6= j, l > l00
, vil(tr

j

l)� vil(ri

l) > g00
for all t > N

j
T1.

Proof. The desired inequality is equivalent to vil(ta
j

l) � vil(ri

l) for all t > 0. If t � nT2,
then ta

j

l = twj

l 2 SIR
#(l) where t = t � nT2. Hence, vil(ta

j

l) � vil(wi

l). By Lemma
??, vil(wi

l)� g00 > vil(ri

l) and we are done. Suppose now that t < nT2 and write ta
j

l as
(tK

j, wj

l). Lemmas ?? and ?? imply that

vil(ri

l)  vil((l
i)T1 , K

i, wi

l)  vil((l
i)T1 ,t K

j, K
i \ tK

j, wi

l).

These inequalities, together with the construction of wi

l, yield

vil( tK
j, wj

l)� vil(ri

l) � vil( tK
j, wi

l)� vil((l
i)T1 , tK

j, K
i \ tK

j, wi

l) =: x.

Lengthy but straightforward calculations show that

x � (1 � [b
il]

T1 [b
il
]nT2)# � (1 � [b

il]
T1)vi(l

i)� [b
il]

T1(1 � [b
il
]nT2)vi(h

i).

By Lemma ??, x > g00 whenever l 2 (l00, 1).

Take g := min{g0, g00, g000} and l := max{l0, l00, l000}, where g0, g00, g000 and l0, l00, l000

are defined as in Lemmas ??, ??, and ??. Then, Lemmas ??, ??, ??, and ?? show that for all
l > l and a 2 SIR

#(l), the paths {ri

l}i meet the conditions in Definition ??.
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B.4 Equilibrium Strategies

Let m
i := (mi

1, ..., m
i
n) 2 S be a strategy profile in which player i best-responds to a min-

max strategy by the opponents. By Lemma ??, we can choose m
i to be a profile of constant

strategies and, hence, identify m
i with an element of D(A). Utilities are normalized so that

gi(mi) = 0 for every i 2 I. Take # > 0. By Lemma ??, there exist g > 0 and l0 � 0 such
that for every l > l0, every a 2 SIR

#(l) allows DPSP with wedge g. Let g
i

:= maxa gi(a)

and choose an integer µi such that µi >
g

i

g
�

1�bi(mi)
� . Since

lim
l!1

1 � [bil(mi)]µi

1 � bil(mi)
= µi,

we can find l00
i
2 [0, 1) such that

g
i

g
�
1 � bi(mi)

� <
1 � [bil(mi)]µi

1 � bil(mi)
8l > l00

i
. (18)

Fix j 6= i and an integer µ between 1 and µj. Let m := maxi,a vi(a) and consider the
inequality

(1 � l)g
i
+

�
m � [bil(m

j)]µ(m + g)
�
� vi(m

j)(1 � [bil(m
j)]µ) < 0. (19)

Since g
i
and vi(mj) are constants that do not depend on l, the first and last term converge

to 0 as l ! 1. The second term converges to a negative number. Thus, there exists l000
i

such that the inequality in (??) is satisfied for all l > l000
i

. Since there are finitely many
players and finitely many integers between between 1 and µj, the threshold l000

i
can be

chosen independently of j 6= i and µ.
Let li := max{l00

i
, l000

i
}, l00 := maxi li, and l := max{l0, l00}. Take any l > l and

a 2 SIR
#(l). Let {ri

l}i2I be the DPSP with wedge g. By definition, we have vil(ta) � #,
for all i 2 I and t. Consider the following strategy si 2 Si for player i: (A) play ai as long
as a was played last period. If player j deviates from (A), then (B) play m

j

i
for µj periods,

and then (C) play rj

l thereafter. If player k deviates in phase (B) or (C), begin phase (B)
again with j = k. It remains to show that, given the choice of l, no player has an incentive
to deviate. The calculations are straightforward and omitted.

C More Preliminaries

Fix an n-player game (A, (gi, bi)i). Let V(l) be the set of all feasible payoffs in Gl.

Lemma C17. The set V(l) is convex.

Proof. By the definition of UzE preferences, V(l) ⇢ conv(Vpure). The converse inclusion
will follow if one can show that any distribution on A

• with finite support can be induced
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by some behavioral strategy s. This is trivial given that the public signal is continuously
distributed.31

The proof of the next lemma is straightforward and omitted.

Lemma C18. Assume the game is symmetric and take a 2 A and i, j 2 I.

1. Under IMI, vi(a) � vj(a) if and only if bi(a)  b j(a).

2. Under DMI, vi(a) � vj(a) if and only if bi(a) � b j(a).

D Proof of Theorem ??

Necessity of CI is obvious. Turn to sufficiency. For every h 2 Rn
+, define the h-face of

V
one to be the set

F(h) = {v 2 V
one : h · v � h · v

0 8v
0 2 V

one}.

Lemma D19. For some h 2 Rn
++, the set F(h) is not a singleton.

Proof. By way of contradiction, suppose F(h) is a singleton for each h 2 Rn
++. Since V

one

is a polytope, E := {F(h) : h 2 Rn
++} is a finite set of extreme points. By CI, the set E is

not a singleton. For every v 2 E, let N(v) = {h 2 Rn
++ : F(h) = {v}}. By construction,

each set N(v) is closed in Rn
++ and N(v) \ N(v0) = ∆ for all distinct v, v

0 2 E. But then
{N(v) : v 2 E} is a finite partition of Rn

++ into disjoint relatively closed subsets, which is
impossible since Rn

++ is connected.

Pick h 2 Rn
++ as in Lemma ??. For any v in the relative interior of F(h), there is

a 2 D(A) such that v(aone) = v. By Lemma ??, v(a) � v(aone). In addition, by the choice
of h, there is i 2 I and actions a, a

0 in the support of a such that vi(a) 6= vi(a
0). By Lemma

?? again, vi(a) > vi(aone). It follows that v(a) >⇤
V

one.
Next, suppose there is # > 0 and v 2 V

one such that v � #. Let V
one
# be the set of

all v
0 2 V

one such that v
0 � #. We claim that there is no v 2 V

one
# such that v � v

0

for all v
0 2 V

one
# . If such a v existed, then, by CI, there would be i 2 I and v

i 2 V
one

such that v
i

i
> vi. But then for all $ 2 (0, 1) sufficiently high, $vi + (1 � $)vi

i
> vi and

$v + (1 � $)vi 2 V
one
# , contradicting the definition of v. Using the same arguments as

above, we can then show that V
one
# has a face F(h), h � 0, that is not a singleton and,

in addition, that for any v
0 in the relative interior of F(h), there is a 2 D(A) such that

v(a) � v
0 and v(a) 6= v

0. By construction, v(a) � # and v(a) /2 V
one. By our folk theorem,

v(a) is an SPE payoff for all l sufficiently high.
31More generally, the result is true as long as the public signal is rich enough to implement any a 2 D(A).

36



E Proof of Theorem ??

Lemma E20. If a 2 D(A) is such that vi(a) > vk(a) and bi(a) < bk(a) for some i, k 2 I, then

for every h 2 Rn
+ such that hk > 0 and every l, there is a 2 (D(A))•

such that h · vl(a) >

h · v(a). In addition, vil(a) < vi(a), vkl(a) > vk(a), and vjl(a) = vj(a) for all j 6= i, k.

Proof. Fix l and h such that hk > 0. By symmetry, there is ak 2 D(A) such that vi(ak) =

vk(a), vi(a) = vk(ak), bil(ak) = bkl(a), bil(a) = bkl(ak), and for all j 6= i, k, vj(a) =

vj(ak) and b jl(a) = b jl(ak). Since bil(a) < bkl(a), there is T large enough such that

vk(ak)� vk(a) >
hi

hk

[
bil(a)
bkl(a)

]T
�
vi(a)� vi(ak)

�
. (20)

Let a = (a0, a1, ...) be such that at = a for all t  T and at = ak for all t > T. From (??),
deduce that h · vl(a) > h · v(a). The other (in)equalities follow by construction.

Let Si be the set of a 2 D(A) such that vi(a) > vk(a) and bi(a) < bk(a) for some
k 6= i. Let conv(Viid)+ be the Pareto frontier of conv(Viid) and e

i 2 Rn
+ be the vector

whose i
th-coordinate is 1 and all other coordinates are 0. Note that v(a

max,i) 2 F(ei).

Lemma E21. If a 2 D(A) is such that v(a) 2 F(ei), then a 2 Si.

Proof. If a 2 A is such that v(a) 2 F(ei), then a 2 Si by Lemma ??. By Lemma ??, if
v(a) 2 F(ei), then every a 2 supp a is such that v(a) 2 F(ei). By Lemma ??, bi(a) =

min{bi(a
0) : a

0 2 A} for all a 2 supp a. By the symmetry of the game, vi(a) � vk(a)

and bi(a)  bk(a) for all k. Finally, by CI, for every a 2 supp a, there is k 2 I such
that vi(a) > vk(a) and, by Lemma ??, bi(a) < bk(a). It follows that vi(a) > vk(a) and
bi(a) < bk(a) for some k.

Let X be the set of extreme points v of conv(Viid) such that v 2 conv(Viid)+. Let
Y := X \ F(ei) and let Z be the set of v 2 X\ F(ei) such that every open neighborhood O of
v intersects conv(Viid)+ \ F(ei). Suppose Z \ cl Y 6= ∆. One can think of this as a situation
in which the face F(ei) connects smoothly with the rest of the frontier of conv(Viid). Let
v̂ 2 Z and y

m 2 Y be such that y
m !m v̂. Let am be such that v(am) = y

m for each m.
Passing onto a subsequence if necessary, assume that am !m a⇤, where v(a⇤) = v̂ 2 Z.
By Lemma ??, a⇤ 2 Si and, hence, am 2 Si for some m large enough. By construction,
v(am) belongs to a face F(h) of the frontier conv(Viid)+, with h such that h 2 Rn

+ \ {0, e
i}.

But, by Lemma ??, v(am) is not on the corresponding h-face of V(l) and the theorem is
proved. Alternatively, suppose F(ei) connects “nonsmoothly” to the rest of the frontier
conv(Viid)+, by which we mean that there is v

⇤ 2 X belonging to both F(ei) and a face
F(h) of conv(Viid)+ such that h 2 Rn

+ \ {0, e
i}. Letting a 2 D(A) be such that v(a) = v

⇤,
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similar use of Lemma ?? completes the proof. Finally, the next lemma, an adaptation of
Lemma 2.2 in ? ], confirms that the two scenarios we considered are exhaustive.

Lemma E22. If Z \ cl Y 6= ∆, then there is v
⇤ 2 X \ F(ei) such that N(v⇤) is not a singleton.

F Two-Player Games: Preliminary Lemmas

This section introduces some notation and results about two-player games which will be
useful later on. Fix l and h 2 R2

+. Given a 2 A
•, let sl(a, h) := h · vl(a) and let P(l, h)

be the set of pure play paths a 2 A
• that maximize sl(·, h). Also, say that h0 determine

the same direction as h if there is x > 0 such that h0 = xh. If true, this implies that
P(l, h) = P(l, h0). Finally, given a 2 A

• and t � 1, let

ht

l(a) :=
�
h1

t�1

’
t=0

b1l(a
t), h2

t�1

’
t=0

b2l(a
t)
�
2 R2

+.

When the path a is clear from the context, we may also write ht

l in place of ht

l(a). Finally,
when indices i, j 2 I appear in the same context, it will be understood that i 6= j. The next
two results are standard so we omit the proofs.

Lemma F23. If a = (a
0, a

1, ...) 2 P(l, h), then ta 2 P(l, ht

l(a)) for all t > 0. Also, if

â 2 P(l, ht

l(a)) for some t > 0, then (a
0, ..., a

t�1, â) 2 P(l, h).

Let A
E := {a 2 A : v1(a) = v2(a)}. For the sake of simplicity, we assume that if

A
E 6= ∆, then there is a unique a

⇤ 2 A
E such that v1(a

⇤) = max
a2AE v1(a). The next two

lemmas assume either IMI or DMI.

Lemma F24. For every a 2 P(l, h), if a
0 2 A

E
, then 1a 2 P(l, h) and (a

0, a
0, ...) 2 P(l, h).

Proof. Under both IMI and DMI, a
0 2 A

E if and only if g1(a
0) = g2(a

0) and b1l(a
0) =

b2l(a
0). Thus, h and h1

l =
�
h1b1l(a

0), h2b2l(a
0)
�

determine the same direction and, by
Lemma ??, 1a 2 P(l, h). Since a = (a

0, 1a) 2 P(l, h), we get sl(a, h) = sl(1a, h). Since
vil(a) = (1 � l)gi(a

0) + bil(a
0)vil(1a) and b1l(a

0) = b2l(a
0), we get

sl(a, h) = sl(1a, h) = h1v1(a
0) + h2v2(a

0). (21)

Since 1a 2 P(l, h), it follows that (a
0, a

0, ...) 2 P(l, h).

Lemma F25. For every a 2 P(l, h), if a
t 2 A

E
for some t, then a

t = a
⇤
.

Proof. Obvious given Lemma ??.
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G Proof of Theorem ??

To state the next four lemmas, fix l 2 [0, 1), h 2 R2
++, and a 2 P(l, h).

Lemma G26. If b1l(a
0) > b2l(a

0), then v1l(a) > v2l(a).

Proof. Since b1l(a
0) > b2l(a

0), h1
1l

h1
2l

> h1
h2

and, since 1a 2 P(l, h1
l),

v2l(1a)  v2l(a) and v1l(1a) � v1l(a). (22)

From (??), we know that vil(a) is a convex combination of vi(a
0) and vil(1a) for every i 2

I. Thus, the inequalities in (??) are possible only if v2l(a)  v2(a
0) and v1(a

0)  v1l(a).
By Lemma ??, b2l(a

0) < b1l(a
0) implies v2(a

0) < v1(a
0). Hence, v2l(a) < v1l(a).

Lemma G27. If v1l(a) = v2l(a), then a = (a
⇤, a

⇤, ...).

Proof. By Lemma ??, b1l(a
0) = b2l(a

0) and, hence, a
0 2 A

E by Lemma ??. It follows that
v1l(1a) = v2l(1a). Since 1a 2 P(l, h1

l), the exact same argument shows that a
1 2 A

E and,
inductively, that a

t 2 A
E for every t. By Lemma ??, a = (a

⇤, a
⇤, ...).

The proof of the next lemma follows from similar arguments and is omitted.

Lemma G28. If v1l(a) < v2l(a) and a
0 2 A

E
, then v1l(1a) < v1l(a) and v2l(1a) > v2l(a).

Lemma G29. If b1l(a
0) < b2l(a

0), then b1l(a
t) < b2l(a

t) for all t > 0.

Proof. Suppose by way of contradiction that there is t such that b1l(a
t) � b2l(a

t) and let
T be the smallest such t. Since b1l(a

t) < b2l(a
t) for all t < T,

hT

1l(a)
hT

2l(a)
=

h1 ’0t<T b1l(a
t)

h2 ’0t<T b2l(at)
<

h1
h2

.

Thus, any path â 2 P(l, hT

l (a)) should satisfy

v1l(â)  v1l(a) and v2l(a)  v2l(â).

Also, since b1l(a
0) < b2l(a

0), Lemma ?? implies that v1l(a) < v2l(a). Conclude that

v1l(â) < v2l(â) 8â 2 P(l, hT

l (a)). (23)

By Lemma ??, Ta 2 P(l, hT

l (a)) and, hence, v1l(Ta) < v2l(Ta). By Lemma ??, b1l(a
T) 

b2l(a
T). By the choice of T, it must be that b1l(a

T) = b2l(a
T). By Lemma ??, v1(a

T) =

v2(a
T) so that a

T 2 A
E. It follows from Lemmas ?? and ?? that a0 := (a

⇤, a
⇤, ...) 2

P(l, hT

l (a)). But then, v1l(a0) = v2l(a0), contradicting (??).
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We can now complete the proof of Theorem ??. For simplicity, assume that for each
i, the path amax,i 2 A

• that attains i’s maximum payoff is unique. If amax,1 = amax,2,
then P(l) = {amax,1} = {amax,2} for all l. From now on, assume amax,1 6= amax,2. Take
l, h 2 R2

+, and a 2 P(l, h). If hi = 0 and hj > 0 for some i, j 2 I, then a = amax,j.
Thus, assume h 2 R2

++. If v1l(a) = v2l(a), then Lemma ?? shows that a = (a
⇤, a

⇤, ...),
as desired. Assume v1l(a) < v2l(a). By Lemma ??, b1l(a

0)  b2l(a
0). We claim that

there is T such that b1l(a
t) < b2l(a

t) for all t > T. If b1l(a
0) < b2l(a

0), Lemma ??
shows that b1l(a

t) < b2l(a
t) for all t > 0, as desired. Assume b1l(a

0) = b2l(a
0) and

let T � 1 be the first period t such that b1l(a
t) 6= b2l(a

t). By Lemma ??, such T exists
since v1l(a) < v2l(a). By construction, b1l(a

t) = b2l(a
t) for every 0  t < T. Lemma ??

implies that a
t = a

⇤ for every 0  t < T. Since a
0 = a

⇤, Lemma ?? implies that

v1l(1a) < v1l(a) and v2l(a) < v2l(1a).

Since, by assumption, v1l(a) < v2l(a), conclude that v1l(1a) < v2l(1a). Applying
Lemma ?? repeatedly, conclude that v1l(ta) < v2l(ta) for every t  T. By Lemma
??, b1l(a

T)  b2l(a
T) and, by the choice of T, b1l(a

T) < b2l(a
T). By Lemma ??,

b1l(a
t) < b2l(a

t) for all t > T.
Finally, let B := {a 2 A : b1l(a) < b2l(a)} and l := mina2B

b2l(a)
b1l(a) . By construction,

l > 1 and, for every t � T,

ht

2l(a)
ht

1l(a)
=

hT

2l(a)
hT

1l(a)
⇥ ’

Tt<t

b2l(a
t)

b1l(at)
�

hT

2l(a)
hT

1l(a)
⇥ l

t�T.

Since l > 1, l
t�T ! +• as t ! +•. Thus, player 2’s relative weight ht

2l(a)
ht

1l(a)
increases to

infinity. Conclude that there is some T
0 such that T0a = amax,2, completing the proof.

H Proof of Theorem ??

Let a
⇤ be as defined in the text and let F be the face of V

one containing v(a
r) and v(a

⇤).
We claim that F is downward sloping, that is, orthogonal to a vector h � 0. That h1 > 0
follows from v2(a

r) < v
max

2 . On the other hand, if h2 = 0, then v
max

1 = v1(a
r) < v2(a

r) <

v
max

2 , contradicting symmetry.
Next, for any l, i, and T, let $i = [bil(a

r)]T(1 � bil(a
⇤)). Note that (1 � $1)v(a

r) +

$1v(a
⇤) 2 F, while

vl(a
r

�T
, a

⇤
T
) = ((1 � $1)v1(a

r) + $1v1(a
⇤), (1 � $2)v2(a

r) + $2v2(a
⇤)).
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Since F is downward sloping, vl(a
r

�T
, a

⇤
T
) >⇤

V
one if and only if $2 > $1. But

$2 > $1 ,
hb2l(a

r)
b1l(ar)

iT

>
1 � b1l(a

⇤)
1 � b2l(a⇤)

⌘ 1 � b1(a
⇤)

1 � b2(a⇤)
.

By Lemma ??, v2(a
r) > v1(a

r) implies b2l(a
r) > b1l(a

r). Hence, $2 > $1 for all T large
enough. The second assertion of the theorem was proved in the main text.

I Proof of Theorem ??

By construction, conv(Viid \R2
+) ⇢ V

⇤(l) for each l. We prove the opposite inclusion by
showing that the Pareto frontier of V

⇤(l) coincides with the Pareto frontier of conv(Viid \
R2

+). We start with some notation. Let a0,2 2 D(A) be the mixed action $CC + (1 � $)CD

such that v1(a0,2) = 0. Define a0,1 analogously and let F
0
i

be the line connecting v(a0,i)

with v(CC). These lines are independent of l since the utilities v(a0,i) and v(CC) are
independent of l. By construction, F

0
1 [ F

0
2 is the Pareto frontier of conv(Viid \R2

+). Fixing
l, let P̂(l, h) be the set of strategies s 2 V

⇤(l) that maximize h1v1 + h2v2 and let P̂(l) :=
[h2R2

+
P̂(l, h). If a strategy ŝ does not depend on h

1, we write it as (a, s), where a 2 D(A)

is the mixed action played in period t = 0 and strategy s is played starting from period
t = 1. Note that

vil(a, s) = (1 � bil(a))vi(a) + bil(a)vil(s),

which is an analogue of (??). We also have the following analogue of Lemma ??:

Lemma I30. If (a, s) 2 P̂(l, h), then s 2 P̂(l, h0) where h0
i
= bil(a)hi.

For the prisoners’ dilemma, we also have the following extension of Lemma ??.

Lemma I31. Under DMI, bi(a) � b j(a) if and only if vi(a) � vj(a).

Proof. Recall that d > b and, under DMI, b(d) > b(b). Hence, b1(a) � b2(a) if and only
if a(DC) � a(CD) if and only if g1(a) � g2(a). The desired conclusion follows.

Lemma I32. If (a, s) 2 P̂(l), then aiid 2 V
⇤(l). In addition, if b1(a) = b2(a), then a = CC.

Proof. If bi(a) = b j(a), then vl(a, s) is a convex combination of v(a) and vl(s). More-
over, by Lemma ??, vi(a) = vj(a). Thus, v(CC) � v(a) and, unless a = CC, some convex
combination of v(CC) and vl(s) will strictly Pareto dominate vl(a, s), a contradiction.
Next, suppose that b1(a) < b2(a). If (a, s) 2 P̂(l, h), we know from Lemma ?? that
s 2 P̂(l, h0) where h0

i
= bil(a)hi. Since h0

1
h0

2
< h1

h2
, we must have v1l(s)  v1l(a, s). This

implies that v1(a) � v1l(a, s) � 0. Also, by Lemma ??, v2(a) > v1(a) � 0.
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Lemma I33. max{v2(a) : aiid 2 V
⇤(l)} = v2(a0,2) > v2(CC).

Proof. Let $⇤ 2 (0, 1) be such that v1($⇤CD + (1 � $⇤)DC) = 0. One checks that

v2(a
0,2) = c(d � b)(c(1 � b(d))� b(1 � b(c)))�1

v2($
⇤
CD + (1 � $⇤)DC) = (d2 � b

2)(d(1 � b(d)� b(1 � b(b))�1.

It is immediate that v2(a0,2) > v2(CC). To show the other assertion, it is enough to show
that v2(a0,2) > v2($⇤CD + (1 � $⇤)DC). Using DMI and the above expressions, the latter
inequality can be reduced to (??).

Given strategies s, s0 2 S and $ 2 [0, 1], let $s + (1 � $)s0 be the strategy in which the
period-0 public signal determines whether the players follow s or s0, with the probability
of the former being $. Note that

vil($s + (1 � $)s0) = $vil(s) + (1 � $)vil(s
0).

Also, if s, s0 2 V
⇤(l), then $s + (1 � $)s0 2 V

⇤(l). Finally, any strategy ŝ can be ex-
pressed as a distribution over strategies of the form (a, s). To state the next lemma, let
v
⇤
2l := max{v2l(s) : s 2 V

⇤(l)}.

Lemma I34. If s 2 V
⇤(l) is such that v2l(s) = v

⇤
2l, then v1l(s) = 0.

Proof. If v1l(s) > 0, then there is $ 2 (0, 1) such that $(CD, s) + (1 � $)s 2 V
⇤(l) and

v2l($(CD, s) + (1 � $)s) > v2l(s), contradicting v2l(s) = v
⇤
2l.

Recall that F
0
2 is the linear segment connecting v(a0,2) and v(CC). Let R be the ray orig-

inating at v(CC) and passing through v(a0,2). Let F2(l) := {vl(s) : s 2 P̂(l) and v2l(s) �
v1l(s)}. The next two lemmas collect several facts about the geometry of the feasible set
(under DMI). The simple, but tedious, proofs are omitted.

Lemma I35. vl(CD, a0,2) 2 R. Also, if s 2 S is such that v1l(s) = 0 and vl(s) =

$vl(CD, s)+ (1� $)v(CC) for some $ 2 (0, 1), then v2l(s) = v2(a0,2). Finally, if v1l(s) = 0
and v2l(s) > v2(a0,2), then vl(CD, s) lies strictly below the ray originating from v(CC) and

passing through vl(s).

Lemma I36. If (a, s) is such that vi(a) < vj(a) and vil(s) > vjl(s), then vl(a, s) lies strictly

below the straight line passing through v(a) and vl(s).

Lemma I37. If v
⇤
2l = v2l(a, s) for some strategy (a, s) 2 V

⇤(l), then v
⇤
2l = v2(a0,2). More-

over, if v
⇤
2l = v2(a0,2), then F2(l) = F

0
2 .
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Proof. Lemmas ?? and ?? show that v
⇤
2l = v2(a0,2). Assuming the latter, suppose that for

some s 2 V
⇤(l), vl(s) 2 F2(l) \ F

0
2 . Since vl(CD, a0,2) 2 R, there is $ 2 (0, 1) such

that $(CD, a0,2) + (1 � $)s 2 V
⇤(l) and v2l($(CD, a0,2) + (1 � $)s) > v2(a0,2) = v

⇤
2l, a

contradiction.

If v
⇤
2l cannot be attained by a strategy of the form (a, s), then it must be attainable by

a strategy ŝ of the form $(a0, s0) + (1 � $)(a, s) where v1l(a0, s0) < 0 < v1l(a, s) and
s0, (a, s), s 2 V

⇤(l). Also, there must be some h 2 R2
+ such that ŝ, (a, s) 2 P̂(l, h). Let

L(h) be the linear segment connecting vl(ŝ) and vl(a, s). L(h) is orthogonal to h and
part of the frontier F2(l). By Lemma ??, s 2 P̂(l, h0), where h0

i
= bil(a)hi.

Case 1: Suppose v2(a) > v1(a). By Lemma ??, b2(a) > b1(a) and h0
1

h0
2
< h1

h2
. It follows

that vl(s) = vl(ŝ) and w.l.o.g. that we can express ŝ as $(a0, s0) + (1 � $)(a, ŝ). Note as
well that a(DD) = 0. Otherwise, replacing DD with CC in a would lead to a strict Pareto
improvement and contradict v2l(ŝ) = v

⇤
2l. With this in mind, observe that

vl(a, ŝ) = a(CD)vl(CD, ŝ) + a(CC)vl(CC, ŝ) + a(DC)vl(DC, ŝ). (24)

Let L be the line passing through v(CC) and vl(ŝ). By construction, vl(CC, ŝ) 2 L. By
Lemma ??, vl(DC, ŝ) is below the line connecting v(DC) and vl(ŝ), and hence, below L.
Finally, by Lemma ??, vl(CD, ŝ) is on or below L. Moreover, vl(CD, ŝ) 2 L if and only
if v2l(ŝ) = v2(a0,2). Putting everything together, we see from (??) that vl(a, ŝ) 2 P̂(l) is
possible only if v2l(ŝ) = v2(a0,2) and a(DC) = 0. By Lemma ??, F2(l) = F

0
2 .

Case 2: Suppose v2(a) = v1(a), which implies that a = CC. We claim that the fron-
tier F2(l) is linear. If vl(s) = v(CC), then vl(a, s) = v(CC) and the claim follows. If
v1l(s) < v1(CC), then v1l(s) < v1l(CC, s) = v1l(a, s). Thus, vl(s) belongs to the lin-
ear segment L(h) connecting vl(ŝ) and vl(a, s). But since a = CC, vl(a, s) lies on a
linear segment L

0 connecting v(CC) and vl(s). Putting everything together, we see that
vl(s) 6= vl(CC, s) and vl(s), vl(CC, s) 2 L(h) \ L

0. This implies that L
0 ⇢ L(h) and,

hence, that the frontier F2(l) is a single linear segment connecting vl(ŝ) with v(CC).
It remains to show that vl(ŝ) = v(a0,2). Since F2(l) is linear and since vl(ŝ) is a

convex combination of vl(a0, s0) and vl(a, s) 2 F2(l), vl(a0, s0) must lie on the line L
00

defined by F2(l). As before,

vl(a
0, s0) = a0(CC)vl(CC, s0) + a0(CD)vl(CD, s0) + a0(DC)vl(DC, s0). (25)

We know that s0 2 P̂(l).
Case 2.1: Suppose vl(s0) = $vl(ŝ) + (1 � $)v(CC) for some $ 2 [0, 1]. Then, we have

vl(CC, s0) 2 F2(l). By Lemma ??, vl(DC, s0) is below the line connecting v(DC) and
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vl(s0), and, hence, below L
00. By construction, it is also the case that

vl(CD, s0) = $vl(CD, ŝ) + (1 � $)vl(CD, aC).

By Lemma ??, vl(CD, ŝ) is on or below L
00. Moreover, vl(CD, ŝ) 2 L

00 if and only if
vl(ŝ) = v(a0,2). Direct verification shows that vl(CD, aC) is below the line connecting
v(CC) and v(a0,2). Summarizing, we see from (??) that vl(a0, s0) 2 L

00 if and only if
vl(ŝ) = v(a0,2).

Case 2.2: Letting š be the symmetric analogue of ŝ, so that vil(š) = vjl(ŝ), sup-
pose vl(s0) = $vl(š) + (1 � $)v(CC) for some $ 2 [0, 1). We are going to obtain
a contradiction. Recall that, by definition, v

⇤
2l = v2l(ŝ) and note that vl(CD, ŝ) =

((1 � l)b, (1 � l)d + bl(d)v⇤2l) and vl(CD, š) = ((1 � l)b + bl(b)v⇤2l, (1 � l)d), where
bl(d) := l + (1 � l)b(d) and bl(b) is similarly defined. Since v1l(a0, s0) < 0, deduce
from (??) that v1l(CD, s0) < 0 and, hence, that v1l(CD, š) = (1 � l)b + bl(b)v⇤2l < 0.

Next, let R̂ and Ř be the rays originating at v(CC) and passing through vl(CD, ŝ) and
vl(CD, š) respectively. The slopes of these rays are:

Ŝ :=
(1 � l)d + bl(d)v⇤2l � v2(CC)

(1 � l)b � v1(CC)
and Š :=

(1 � l)d � v2(CC)
(1 � l)b + bl(b)v⇤2l � v1(CC)

.

Since vl(s0) = $vl(š) + (1 � $)v(CC), we get |Š| � |Ŝ| and v2l(CD, š) = (1 � l)d >

v2(CC). Since v
⇤
2l > v2(CC) and (1 � l)b + bl(b)v⇤2l < 0, we get

v
⇤
2l � 1

bl(b)bl(d)
[v2(CC)bl(b) + v2(CC)bl(d)� bl(b)(1 � l)d � bl(d)(1 � l)b]. (26)

Since aC maximizes the sum of the players’ utilities, 2v2(CC) � v
⇤
2l. Combining with (??)

and simplifying gives

x := (v2(CD)� v2(CC))
�
v1(CC)� v1(CD)

��1 � bl(d)(1 � b(b))
�

bl(b)(1 � b(d)
��1.

By DMI, bl(d) > bl(b) and 1 � b(b) > 1 � b(d). Thus, x > 1, which contradicts (??).

J Proof of Lemma ??

Note that r is a strictly concave transformation of s if and only if rs
�1 is strictly concave.

To see that the latter implies correlation aversion, observe that

vi(a
iid) = Â

a

a(a)rs
�1[(1 � b)s(gi(a)) + bsr

�1(vi(a
iid))]

� (1 � b)Â
a

a(a)r(gi(a)) + bvi(a
iid).

(27)

Thus, vi(aiid) � Âa a(a)r(gi(a)) = vi(aone), with a strict inequality if vi(a) 6= vi(a
0) for

some a, a
0 2 A in the support of a.
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To prove the converse, suppose the game is connected. We can then imagine that EZ
preferences are defined on the space of infinite probability trees of consumption outcomes

and that they inherit correlation aversion on that space. Accordingly, for any c, c
0 2 C and

q 2 (0, 1), let qiid

c,c0 be the iid flip such that in each period consumption is c with probability
q and c

0 with probability 1 � q. Let qone

c,c0 be the corresponding one-time flip.

Lemma J38. For all c, c
0 2 C such that c < c

0
and q 2 (0, 1), we have r(c) < vi(qiid

c,c0) < r(c0).

Proof. Suppose vi(qiid

c,c0) � r(c0). Since sr
�1 is strictly increasing and c

0 > c, we have
sr

�1(vi(qiid

c,c0)) � s(c0) > s(c). Letting x := vi(qiid

c,c0), observe that

x = qrs
�1[(1 � b)s(c) + bsr

�1(x))] + (1 � q)rs
�1[(1 � b)s(c0) + bsr

�1(x))]

< qx + (1 � q)x = x,

a contradiction. The case vi(qiid

c,c0)  r(c) can be similarly ruled out.

Since r and s are twice continuously differentiable, so is rs
�1. Next, observe that rs

�1

cannot be convex on any interval. Else, one can use Lemma ?? and an argument analogous
to that behind (??) to obtain a violation of correlation aversion. It follows that (rs

�1)00  0
and the set of points at which rs

00
< 0 is nonempty and open. Being continuously dif-

ferentiable, (rs
�1)0 is absolutely continuous. Using the fundamental theorem of calculus,

we see that (rs
�1)0(x)� (rs

�1)0(y) =
R

x

y
(rs

�1)00 < 0 for all x > y. Thus, rs
�1 is strictly

concave.

K Proof of Theorem ??

We first claim that for any µ 2 D(D), there is a 2 D(A) such that

sr
�1(vi(µ))  Â

a2A

a(a)s(gi(a)) 8i. (28)

At period 0, µ induces a distribution over m � 1 probability trees in the form of (a
l, µl) 2

A ⇥ D(D), where l = 1, ..., m. Let kl > 0 denote the probability of (a
l, µl). Since rs

�1 is
strictly concave, we obtain that

vi(µ) =
m

Â
l=1

kl
rs

�1[(1 � b)s(gi(a
l)) + bsr

�1(vi(µ
l))]

 rs
�1[(1 � b)

m

Â
l=1

kl
s(gi(a

l)) + b
m

Â
l=1

kl
sr

�1(vi(µ
l))] 8i. (29)

Since r and s are strictly increasing functions, we get

sr
�1(vi(µ))  (1 � b)

m

Â
l=1

kl
s(gi(a

l)) + b
m

Â
l=1

kl
sr

�1(vi(µ
l)) 8i. (30)
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If each µl is a constant pure path (â
l, â

l, ...), then sr
�1(vi(µl)) = s(gi(â

l)), and we are done.
For general µ, the claim is proved by iterating the argument and invoking continuity at
infinity. Combining our claim with ? , Lemma 1] shows that any payoff on the Pareto
frontier of V can be attained by a pure play path. Finally, if µ 2 D(D) is not trivially
randomized, then the inequalities (??) and (??) must be strict for at least some player i

and thus v(µ) cannot be on the strong Pareto frontier.

L Proof of Theorem ??

Adopt the same notation as in the proof of Theorem ??. Since rs
�1 is convex,

vi(µ) =
m

Â
l=1

kl
rs

�1[(1 � b)s(gi(a
l)) + bsr

�1(vi(µ
l))] 

m

Â
l=1

kl[(1 � b)r(gi(a
l)) + bvi(µ

l)]

=
m

Â
l=1

kl[(1 � b)vi(a
l, a

l, ...) + bvi(µ
l)] =: v̂i 8i.

If each µl is a constant pure path (â
l, â

l, ...), then v̂i is the utility of a one-time flip. As
before, iterating the argument and using continuity at infinity completes the proof.
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