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ORIGINAL RESEARCH ARTICLE

Improving risk reduction potential of weather index 
insurance by spatially downscaling gridded climate data - a 
machine learning approach
Sarvarbek Eltazarov , Ihtiyor Bobojonov , Lena Kuhn and Thomas Glauben

Department of Agricultural Markets, Marketing and World Agricultural Trade, Leibniz Institute of 
Agricultural Development in Transition Economies (IAMO), Halle, Germany

ABSTRACT
Open-access gridded climate products have been suggested as a 
potential source of data for index insurance design and operation 
in data-limited regions. However, index insurance requires climate 
data with long historical records, global geographical coverage and 
fine spatial resolution at the same time, which is nearly impossible to 
satisfy, especially with open-access data. In this paper, we spatially 
downscaled gridded climate data (precipitation, temperature, and 
soil moisture) in coarse spatial resolution with globally available long- 
term historical records to finer spatial resolution, using satellite-based 
data and machine learning algorithms. We then investigated the 
effect of index insurance contracts based on downscaled climate 
data for hedging spring wheat yield. This study employed county- 
level spring wheat yield data between 1982 and 2018 from 56 
counties overall in Kazakhstan and Mongolia. The results showed 
that in the majority of cases (70%), hedging effectiveness of index 
insurances increases when climate data is spatially downscaled with a 
machine learning approach. These improvements are statistically 
significant p � 0:05ð Þ. Among other climate data, more improve-
ments in hedging effectiveness were observed when the insurance 
design was based on downscaled temperature and precipitation 
data. Overall, this study highlights the reasonability and benefits of 
downscaling climate data for insurance design and operation.
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1. Introduction

Extreme weather events are major drivers of volatility of agricultural production (Powell & 
Reinhard, 2016). Drought in particular causes low crop yields that can lead to substantial 
financial instability (Webber et al., 2018). Climate change is expected to increase the 
frequency and magnitude of extreme weather events, resulting also in increased agricul-
tural production risks (FAO, 2015; IPCC, 2022). Therefore, coping with droughts is essential 

CONTACT Sarvarbek Eltazarov eltazarov@iamo.de Department of Agricultural Markets, Marketing and World 
Agricultural Trade, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), Theodor Lieser Street 2, 
Halle Postal code: 06120, Germany

Supplemental data for this article can be accessed online at https://doi.org/10.1080/20964471.2023.2196830.

BIG EARTH DATA                                            
2023, VOL. 7, NO. 4, 937–960 
https://doi.org/10.1080/20964471.2023.2196830

© 2023 The Author(s). Published by Taylor & Francis Group and Science Press on behalf of the International Society for Digital Earth, 
supported by the International Research Center of Big Data for Sustainable Development Goals, and CASEarth Strategic Priority Research 
Programme.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ 
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 
cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or 
with their consent.

http://orcid.org/0000-0001-5578-9772
http://orcid.org/0000-0003-2166-6234
http://orcid.org/0000-0002-1453-0040
http://orcid.org/0000-0003-0640-9387
https://doi.org/10.1080/20964471.2023.2196830
http://www.digitalearth-isde.org/
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/20964471.2023.2196830&domain=pdf&date_stamp=2024-01-11


for safeguarding against volatility in agricultural production and guaranteeing farmers’ 
income stability. Activities such as using drought-tolerant crops, crop diversification and 
rotation, improving irrigation systems, and minimum tillage may mitigate some drought 
risks. However, they may still fail during wide-spread extreme drought events (Olesen et 
al., 2011). Complementary to these adaptation measures, crop insurances offer the 
opportunity of risk-sharing and hedging against the risk of yield defaults caused by 
drought, hail, flood, etc. However, traditional crop insurances are challenged by a high 
administrative cost of crop loss assessment, adverse selection and moral hazard issues. As 
an alternative, weather index-based insurance (from here onwards used as “index insur-
ance”), formally known as weather derivatives or parametric insurance (Collier et al., 2009; 
Vedenov & Barnett, 2004; Xu et al., 2008), has been recognized as a promising financial risk 
management tool (Collier et al., 2009; Giné et al., 2010; World Bank, 2011). In index 
insurance, the payout is based on a pre-determined index, and when the value falls 
below or exceeds a certain threshold value, insurers make a payment without any physical 
check-up. This approach is intended to reduce administrative costs, reduce the problem 
of information asymmetry, and promises rapid and efficient determination of payouts 
(Fisher et al., 2019; Greatrex et al., 2015; World Bank, 2015).

Commonly, index insurances for crops draw on climate data from weather stations for 
the calculation of precipitation and temperature aggregates. However, the performance 
of index insurance based on weather stations significantly decreases when the distance 
between farm and weather station is higher than 20–25 kilometers (Gommes & Göbel,  
2013; Osgood et al., 2007). Thus, index insurances based on data from weather stations 
are, particularly in developing countries, inhibited by the low density of weather stations. 
Installment of new weather stations might be a solution, but installing and maintaining a 
new weather station every 10–20 kilometers would significantly affect the price of the 
insurance premium and also still not provide the historical data required for index design.

Besides data from weather stations, gridded climate data can also be used for index 
insurance. Its suitability for index design was confirmed for precipitation data (Black et al.,  
2016; Brahm et al., 2019; Osgood et al., 2018; Tarnavsky et al., 2018), temperature data 
(Bokusheva et al., 2016; Hellmuth et al., 2009; Kölle et al., 2020; Möllmann et al., 2019), soil 
moisture data (Enenkel et al., 2017, 2018; Vroege et al., 2021) and evapotranspiration 
indices (Coleman et al., 2018; Enenkel et al., 2018; Ndegwa et al., 2022). In contrast to 
weather station data, gridded climate data are mostly open source and near-real time. 
However, the vast majority of gridded climate data with fine resolution is only available 
for limited land areas or time periods (Eltazarov et al., 2021), which significantly limits their 
applicability for index design. For instance, Climate Hazards Group InfraRed Precipitation 
with Station Data (CHIRPS) provides a gridded precipitation data since 1982, but it only 
snaps latitudes between 50° S–50° N (Funk et al., 2015). Global Satellite Mapping of 
Precipitation (GSMaP) and Integrated Multi-satellite Retrievals for GPM (IMERG) cover 
the whole earth, but have only provided data since 2000 (Mega et al., 2019). Tropical 
Application of Meteorology Using Satellite Data (TAMSAT) and NOAA-based African 
Rainfall Climatology Version 2 (ARC2) do provide gridded climate data since 1983, but 
only for the African continent (Maidment et al., 2014; Novella & Thiaw, 2012). Moreover, 
Global Land Data Assimilation System (GLDAS) provides gridded temperature data across 
the globe, but only since 2000 (Rodell et al., 2004). Modern-Era Retrospective analysis for 
Research and Applications version 2 (MERRA-2) provides long-term temperature data 
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since 1980, but the spatial resolution is around 60 km. Furthermore, NASA-USDA 
Enhanced SMAP Global soil moisture data provides soil moisture information for the 
whole world at 10-km spatial resolution, but only since 2015.

All in all, there is a need for long historical climate records with fine spatial resolution 
covering the whole earth in index insurance industry, in order to assess the risk and design 
well-functioning crop insurances. There is some potential re-analysis based climate data 
for index insurance design such as ERA5-based climate data from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) (Hersbach et al., 2020). Similarly, satellite 
base climate data from the European Space Agency (ESA) fed into the Climate Change 
Initiative (CCI)-based soil moisture data (Dorigo et al., 2017) that covers the whole earth 
and has available data from the 1980s onwards. Nevertheless, the spatial resolution of 
these datasets is very low, approximately 25–30 kilometers, which significantly decreases 
the potential of these data sources in their application for index design and implementa-
tion. Especially designing index insurance based on such coarse-resolution climate data 
may lead to an increase of basis risk.

One potential and so far under-researched method to deal with the issue of spatial 
resolution could be to spatially downscale gridded climate data using statistic methods. A 
number of studies have investigated and demonstrated the ability and accuracy of 
downscaling the spatial resolution of gridded climate data sources using regression and 
machine learning methods (Bai et al., 2019; Hu et al., 2020; Im et al., 2016; Liu et al., 2020; 
Zhang et al., 2021; Zhu et al., 2017). For instance, Shen and Yong (2021) and Yan et al. 
(2021) systematically compared the accuracy of various machine learning methods to 
downscale gridded precipitation data from 10 km to 1 km and were able obtain a 
significant agreement between downscaled and gauge observations. Meanwhile, 
Alexakis and Tsanis (2016) and Sharifi et al. (2019) compared multiple linear regression, 
machine learning models and interpolation techniques to downscale gridded precipita-
tion data, and have concluded that machine learning methods slightly outperform other 
methods in downscaling precipitation data. Moreover, Bai et al. (2019) and Liu et al. (2020) 
compared various downscaling methods and various combination of features to find 
optimal setups to downscale low-resolution (10 km and 35 km) soil moisture data to fine 
resolution (1 km). dos Santos (2020) and Zhang et al. (2021) compared machine learning 
and regression models to downscale temperature data and were able to create 1-km 
long-term daily temperature data.

In general, the existing literature mainly focuses on the accuracy of various down-
scaling methods and combination of features. Only a few studies have worked on real- 
world applications of downscaled climate data. For example, López López et al. (2018) 
used the downscaled gridded precipitation data for river discharge modelling and found 
a better agreement with ground observations when the model was run using the down-
scaled precipitation data. Seyyedi et al. (2014) demonstrated improvements in runoff 
simulations and flood modelling when downscaled precipitation data compared to the 
coarse precipitation product. Bastola and Misra (2014) studied the applicability of dyna-
mically downscaled precipitation data for hydrological simulations and found that down-
scaled data was superior to other meteorological datasets. Ha et al. (2013) did an 
extensive review of downscaling methods of coarse gridded evapotranspiration (ET) 
data for irrigation scheduling purposes and found that downscaled ET improves the 
estimation of crop water requirements. Srivastava et al. (2013) found that downscaled 
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soil moisture data improves the estimates of hydrological modelling for a local and 
regional scale compared to the original coarse resolution. Hrisko et al. (2021) estimated 
heat storage in urban areas using multispectral satellite data and found that heat storage 
can be stably downscaled from lower to higher spatial resolution and monitored over 
time. Meanwhile, the potential of downscaled climate data for index insurance design, as 
well as the ability to detect shortfalls and their downside risk reduction capacity, has not 
yet been studied. Even so, downscaling is an effective approach to convert coarse climate 
data to a finer spatial resolution (Abbaszadeh et al., 2019), and downscaled climate data 
have a better accuracy than the original coarser resolution (Chu et al., 2011; Chen et al.,  
2019; Fang et al., 2022), which is essential to improve the quality of index insurance and 
decrease basis risk. Moreover, based on our literature review, there are only a few number 
of studies (Enenkel et al., 2018; Petropoulos & Islam, 2017; Vroege et al., 2021) that explore 
the potential of satellite-retrieved soil moisture data for index insurance design and 
operation.

We provide two key contributions to the literature. Firstly, we systematically evaluate 
and compare index insurance products with a design based on original coarse resolution 
and spatially downscaled climate data to reduce farmers’ financial downside risk expo-
sure. We spatially downscale long-term and spatially coarse resolution soil moisture, 
precipitation and temperature data using machine learning algorithms. Second, for 
each county we identify the best source of climate data for index insurance products to 
maximize the climate risk reduction capacity. We test the robustness of our findings in the 
case of wheat produces in Kazakhstan and Mongolia. Since systematic drought is becom-
ing more frequent and putting agricultural production at risk (de Beurs et al., 2018; Haag 
et al., 2019), there is an increased demand for financial instruments and social security 
mechanisms in these regions (Bobojonov et al., 2019).

This paper is structured as follows: In the second chapter, we report on the study area, 
machine learning methods and features for downscaling the gridded climate data. 
Moreover, we provide details on index insurance design and measuring the risk reduction 
capacity of index insurance based on original coarse resolution and downscaled climate 
data. The third chapter provides the results from our analyses and a comprehensive 
discussion. Lastly, we wrap up our article with conclusions retrieved from the study.

2. Methods and materials

2.1. Study area and yield data

Wheat is one of the most strategic crops for Kazakhstan and Mongolia, and it is grown 
mostly on rainfed lands (Fehér et al., 2017; Tuvdendorj et al., 2019). Figure 1 illustrates our 
case study consisting of rainfed spring wheat producing counties in Kazakhstan (34 
counties) and Mongolia (22 counties). Figure 2 shows the cropping calendar of spring 
wheat in the study areas. The reasons for using these regions for our analysis are: (1) In 
these regions, spring wheat is steadily being cultivated, and they are the main wheat 
producing regions (FAO, 2020; Fehér et al., 2017); (2) Frequent drought events in the 
regions have happened in the beginning of the century and in recent years; (3) There is a 
homogenous climate, crop management and cropping calendar (FAO, 2020; Shamanin et 
al., 2016); (4) There is a low density of weather stations (NCEI, 2021); (5) In the region, 
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climate-oriented financial instruments and social mechanisms are in high demand 
(Bobojonov et al., 2019); (6) There is a lack of traditional insurance markets due to a 
large land area and low population density. The study counties are located in a semi-arid 
climatic region (Trabucco et al., 2019).

It is important to note that in our study we used county-scale spring wheat yield and 
index data, and we considered counties as farm co-operatives who purchase an insurance 
contract as a group of farmers. It’s true that the calibration of the index by county-scale 
yield data might omit farm-level management differences (Finger, 2013). However, typi-
cally commercial index insurances do not take these management differences into 
account anyway, in order to avoid moral hazard. Moreover, a recent study by Paliwal 
and Jain (2020) reported that self-reported farm scale crop yield data is actually inaccurate 
for calibrating satellite-based remote sensing data. As a consequence, regional aggrega-
tion is practiced in particular in areas with relative spatial homogeneity (Kath et al., 2019).

Figure 1. Location of study regions and counties in Kazakhstan and Mongolia. Each number on the 
map refers to unique counties. County names are provided in Table A1.

Figure 2. The cropping calendar of spring wheat in Kazakhstan and Mongolia. Source: Authors’ 
presentation based on data adapted from the FAO (2021, 2020) and Shamanin et al. (2016).
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In order to check the robustness of the proposed method to design index 
insurance, this paper uses spring wheat yield data from two countries and in total 
56 counties, involving a total of 1337 yield observations (Table A1). Taking into 
account the technological progress in the wheat production industry between 
1982 and 2018, and removing the deterministic trends in historical spring wheat 
yields, yield observations were de-trended. Failing to do so would have led to an 
overestimation of yield variability and biased the strike level and risk-reduction 
potentials for insurance applications. To capture technological trends, country-level 
yield data between 1991 and 2019 was employed (FAO, 2022). Following Finger 
(2013) and Bucheli et al. (2021), this approach applied an M-estimator to identify 
linear trends, which was found to equal β ¼ 0:123 in Kazakhstan and β ¼ 0:26 in 
Mongolia. In the next step, county-individual de-trended yields were identified using 
the following equation by using slope coefficient for each country and tend ¼ 2015 
for counties in Kazakhstan and tend ¼ 2018 for counties in Mongolia. Moreover, i 
refers to county and t indicates time. 

2.2. Gridded climate data

After a systematic review of available gridded climate products based on geographical 
coverage and availability of long-term historical weather records, we selected two 
gridded climate products and three climate parameters to check the robustness of 
proposed method: ERA5 as a source of precipitation and temperature data, and ESA-CCI 
as a source of soil moisture data. ERA5 is the fifth generation ECMWF atmospheric 
reanalysis of the global climate (Hersbach et al., 2020). Reanalysis combines model data 
with in-situ and satellite observations from across the world into a globally complete and 
consistent dataset. ERA5 provides large numbers of atmospheric, ocean-wave and land- 
surface quantities on an hourly, daily and monthly scale with ≈30 km spatial resolution. 
We only used monthly temperature and precipitation data in this study. ESA-CCI was 
initiated by ESA to monitor the earth surface variables corresponding to climate change 
(Enenkel et al., 2018). Among others, the program aims at long-time monitoring soil 
moisture with ≈30 km spatial resolution by integrating and synthesizing both active 
and passive microwave remote sensing sensors. For our analyses, we used monthly 
aggregations and volumetric unit (m3=m� 3) of the version 03.3 of ESA-CCI SM.

As discussed earlier, only very few satellite products spatially cover the whole earth 
with long historical records at near-real time velocity. For downscaling ERA5 and ESA-CCI 
data, which is of coarser resolution, this study employs optical bands and indices from the 
NOAA Climate Data Record (CDR) of the Advanced Very High Resolution Radiometer 
(AVHRR), and the digital elevation model from The Shuttle Radar Topography Mission 
(SRTM). NOAA CDR of AVHRR is a dataset that contains gridded surface reflectance, 
brightness temperatures (BT) and NDVI derived from the AVHRR sensors onboard eight 
NOAA polar orbiting satellites. The dataset spans from 1981 to the present on a daily 
temporal scale with ≈5 km spatial resolution.
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2.3. Spatial downscaling

In general, there are two types of spatial downscaling techniques, namely dynamic and 
statistic. Dynamic downscaling employs a regional climate model or a numerical climate 
model to produce climate parameters in finer spatial resolution by simulating the physical 
processes of the linked land-atmosphere system (Sharifi et al., 2019). The statistic techni-
que, on the other hand, is modelling the statistical relationship between high and low 
scale covariates. This technique adopts climate parameters based on auxiliary data such as 
vegetation index, land surface temperature, elevation, soil type, etc. (Sharifi et al., 2019).

2.3.1. Random forest method
During the last decade, various statistical downscaling methods have been developed. 
According to the literature, random forest (RF) is a very suitable machine learning algo-
rithm in terms of accuracy and simplicity for downscaling climate parameters is (Chen et 
al., 2021; Hu et al., 2020; Im et al., 2016; Liu et al., 2018, 2020; Yan et al., 2021). For instance, 
Shen and Yong (2021), Yan et al. (2021) and Chen et al. (2021) investigated the accuracy of 
RF to downscale coarse precipitation data and came into conclusion that RF-based 
downscaled precipitation have high spatial correspondence with original coarse data. 
Yang et al. (2017), Bartkowiak et al. (2019) and Tang et al. (2021) studied the applicability 
of RF to downscale coarse temperature and confirmed the strong potential of RF for 
producing improved and high spatial resolution temperature data. Hu et al. (2020), Zhang 
et al. (2022) and Chen et al. (2020) examined the suitability of RF to downscale soil 
moisture and found that RF-based downscaling is able to capture the variation of soil 
moisture, even downscale soil moisture have higher correlation with in situ observations 
than the original coarse data.

RF is a tree-based ensemble method, meaning that data patterns are predicted 
according to an aggregation of the predictions of several decision trees, with each tree 
depending on a collection of random variables for classification and regression. 
Furthermore, the prediction performance is improved by bootstrap aggregation, which 
reduces the variance of predictions by drawing (with replacement) a fixed number of 
samples from the training set (Breiman, 2001). For the constructing of each tree, features 
are selected randomly at each decision node. For obtaining the final output, i.e. the 
classification or prediction output, RF uses a majority vote to aggregate the predictions 
of each individual tree.

2.3.2. Downscaling process
Initially, all satellite-based datasets used in this study were aggregated to a monthly scale1 

for comparability. In order to develop an RF-based downscaling model, NOAA and SRTM 
products with fine spatial resolution were reaggregated to a resolution of ≈30 km. Then, 
following Chen et al. (2021) and Yan et al. (2021), we used NDVI and BT obtained from 
NOAA AVHRR as well as elevation, slope and aspect data generated from SRTM to train RF 
model to estimate ERA5-based precipitation data. 

Following Zhang et al. (2021), we utilized the same features to train the RF model to 
estimate the ERA5-based temperature data. 
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In addition, NDVI, BT, Red, Near-Infrared (NIR) from NOAA AVHRR as well as elevation and 
slope from SRTM were employed to train a RF model to estimate the ESA-CCI-based soil 
moisture data, as also suggested by Hu et al. (2020) and Liu et al. (2018). 

In the following, the RF models trained to estimate climate parameters at coarse spatial 
resolution were applied to feature at 5 km resolution to obtain climate data at fine 
resolution. The same procedure was repeated for each of June and July months from 
1982 to 2015 for study sites in Kazakhstan and from 2000 to 2018 for study sites in 
Mongolia (reasons for the selection of these months are given in the results section). The 
training, estimating and downscaling processes were done for each selected month, 
study site and climate parameter separately, as combining them would assume the 
same marginal response of features to climate parameters in all months and study sites. 
A total of 2,264 and 780 samples (all pixels from study sites) were extracted from selected 
features for each of selected months and climate parameters for sites in Kazakhstan and 
Mongolia, respectively, and used to develop the RF models. In each RF model, we set the 
number of trees parameter to 50, as further increase in number of trees did not demon-
strate significant improvement in the cross validation accuracy.

2.3.3. Cross validation
In order to assess the performance of the RF models, a cross-validation was conducted at 
the coarse spatial resolution. The trained RF models obtained from the coarse spatial 
resolution were used to estimate climate parameters at coarse spatial resolution. To 
measure the performance of the RF models in estimating the climate parameters for 
our sample, we used three accuracy measures, namely root mean square error (RMSE), 
percent bias (PBIAS) and correlation coefficient (CC) (Chen et al., 2021). 

General stages of process flow are illustrated in Figure 3. All of the gridded climate and 
satellite-based data processing and machine learning analysis within this study were 
carried out using the Google Earth Engine platform. For statistical analyses and graph 
visualization we used R Project (R Development Core Team, 2018).
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2.4. Design of index insurance products

Intra-seasonal climate data typically outperform season-long data in detecting crop yield 
variation (Ortiz-Bobea et al., 2019; Schierhorn et al., 2021). The most critical vegetation 
period is in this case identified along the Spearman correlation coefficient2 between the 
respective climate parameter and spring wheat yield for each county (Möllmann et al.,  
2019). Climate parameters are then averaged over this most critical vegetation period.

For building the index, we combined indicators of original coarse resolution and 
downscaled precipitation, temperature and soil moisture data. Higher precipitation and 
soil moisture decrease the likeliness of drought events, while high temperature increases 
drought occurrence.

In the index insurance contract, the payout POt;i is determined based on whether the 
index falls below a certain threshold in county i, which is called strike level Si as shown in 
Equation 8. In our study, the strike level is determined by the 30% quantile of the index 
value (Bokusheva et al., 2016; Kölle et al., 2020). 

where It;i corresponds to the index of climate parameter calculated for time period t for 
county i. The relevant time periods were identified using time-series correlation analysis 
for each index and county. Vi represents the tick size, which determines the indemnity 
payout per unit of the difference between the strike level Si. The tick size Vi corresponds to 
the slope coefficient βi from the following regression model (8). 

where yi is the wheat yield of the county i, It;i stands for the index value in period t, βi is the 
slope coefficient of the regression equation, ci is a constant, and error term εi is the variation of 

Figure 3. Procedure of relevant data processing and climate data downscaling.
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wheat yield that cannot be explained by the index value. Following Bucheli et al. (2021) and 
Conradt et al. (2015), in order to estimate the βi and ci we applied quantile regression (QR). QR 
is typically reducing the basis risk of index insurance as compared to Ordinal Least Squares 
(OLS), due to its property of estimating coefficients separately for each quantile of the 
outcome variable rather than at the population mean. Thus, QR minimizes the sum of 
absolute residuals and is more robust to outliers (Koenker & Bassett, 1978). As we are focused 
on the lower tail of the yield distribution, we chose the 30% quantile, following literature 
(Bokusheva et al., 2016; Bucheli et al., 2021; Kölle et al., 2020, 2021; Möllmann et al., 2019). 
Furthermore, for this study we assume the case of an actuarily fair insurance, where premiums 
are calculated based on an average of payouts for each county over the time period, excluding 
surcharges resulting from administrative costs and business margins. Using this simplistic 
pricing method allows us to identify the risk-reduction potential of insurance products with-
out being inhibited by any mis-specified insurance premiums (Bucheli et al., 2021).

2.5. Estimation of the hedging effectiveness

Due to this study’s focus on climate-related production risk, the indemnities and fair 
premiums are measured in quantity units of wheat yield. To assess the risk reduction 
potential of each insurance product based on original coarse resolution and downscaled 
climate parameters, the hedging effectiveness of insurance contracts (the degree to 
which yield losses are offset by the hedging instrument’s payouts) was estimated by 
comparing net incomes from uninsured vs. insured yields. According to Bokusheva (2018), 
we calculated the insured wheat yield yinsured

t;i as follows: 

where yt;i refers to the wheat yield for producer i at time t, POt;i is the indemnity payout, 
and FPi indicates the fair premium.

Following Vedenov and Barnett (2004), we estimate the hedging effectiveness of 
insurance contracts by comparing downside risk measure semi-variance (SV) of uninsured 
yields with the SV of insured yields. The downside risk measure SV is calculated as follows: 

where yt;i indicates the insured or uninsured wheat yield, yi stands for uninsured average 
wheat of the respective study area, and N denotes the number of yield observations. 
Consequently, we identify the hedging effectiveness3 (HE) of the index insurance product 
by comparing the SV of wheat yield without insurance contract with the SV of wheat 
yields with insurance contract, as shown in Equation 12. 

To test for significant differences between the hedging effectiveness of the designed 
index insurance based on original and downscaled climate data, we applied non-para-
metric Wilcoxon rank sum tests for improved cases. The Wilcoxon rank sum test examines 
the null hypothesis that ranks of paired two groups are not significantly different. In 
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contrast to the t test, Wilcoxon rank sum test does not require the data to be normally 
distributed (Möllmann et al., 2019).

All statistical calculations have been developed using the R project (R Development 
Core Team, 2018). In order to support practical applications of this work, the authors 
developed an R package that includes calculation of hedging effectiveness and other 
statistical indicators to analyze the performance of index insurance. Details about the R 
package “climate-insurance” can be found under the following link https://github.com/ 
klimalez/climate-insurance. Additionally, the authors developed an open-source web 
application based on this R package, the “Climate Risk Insurance Design and 
Performance Analysis” that helps to test the performance of selected index for insurance 
design: https://klimalez.org/climate-insurance.

3. Results and discussion

3.1. Climate data validation

We find that RF estimated climate data at coarse spatial resolution has a good correlation 
with the climate data in original spatial resolution. The cross validation between original 
climate data and data estimated by the RF models at original spatial resolution demon-
strates a good performance, with a 0.99 correlation coefficient for all climate parameters, 
which is in line with the performance achieved for instance by Shen and Yong (2021) and 
Yan et al. (2021). For study sites in Kazakhstan, we find average RSME of 0.59 mm, 0.058°C, 
0.0006 m3/m3 and PBIAS 1.19%, 0.25%, 0.27% for precipitation, temperature and soil 
moisture, respectively, which are in line with the existing literature (Hu et al., 2020; Liu et 
al., 2020; Yan et al., 2021). Furthermore, we find similar results for study sites in Mongolia 
with average RMSE 0.72 mm, 0.059°C, 0.0006 m3/m3 and PBIAS 0.71%, 0.31% and 0.27% 

Figure 4. Original coarse resolution, random forest based estimated and downscaled climate para-
meters, Northern Mongolia in June 2015.
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precipitation, temperature and soil moisture, respectively (see Table A2 and A3 for 
detailed information).

Figure 4 graphically illustrates differences between original coarse data (column 1 
“Original”) and estimated climate data by RF model at original spatial resolution (RF 
Estimated) along one example region and year, as well as downscaled climate data at 
~5 km spatial resolution (RF Downscaled). The column RF estimated shows the initial 
cross-validation of the performance of the RF models, where climate parameters are 
estimated at the same spatial resolution as the original coarse climate data sources.

3.2. Assessment of risk reduction potential of index insurance products

Moreover, primary tests of our study showed a slightly better performance of index 
insurance when they were designed based on monthly scale climate parameters rather 
than on 10-day scale (average for temperature and soil moisture, cumulative for precipi-
tation). Figure 5 graphs the mean CC between wheat yield and climate parameters for 
each month by country. For both countries, spring wheat yields showed the highest 
correlation with all climate parameters in the months of June and July, which was also 
found by other recent studies (Möllmann et al., 2019; Schierhorn et al., 2021).

Table 1 summarizes the hedging effectiveness on a national level. For Kazakhstan, the 
hedging efficiency was 18% for soil moisture, 14% for precipitation, and 24% temperature, 
based on the original spatial resolution. For the same country, downscaled data increased 
the hedging efficiency to 18% for precipitation, and 25% for temperature-based index 
insurance, however, it had no notable effect on the hedging effectiveness of soil moisture. 
For Mongolia, indices based on original spatial resolution data delivered an average 
hedging effectiveness of 18% for soil moisture, 12% for precipitation, and 12% for 
temperature; downscaling increased these values to 22% for soil moisture, 21% for 
precipitation, and 14% for temperature-based index insurance. In summary, downscaled 
climate data improved the risk reduction capacity of index insurance for most index 

Figure 5. Dynamics of the spearman correlation coefficient between spring wheat yield and monthly 
scale ERA5-based precipitation and temperature, and ESA-based soil moisture. Counties in (a) 
Kazakhstan and (b) Mongolia.
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products. While hedging efficiency was higher on average in Kazakhstan, the improve-
ments of downscaling were higher in Mongolia. In particular, we observed a noticeable 
improvement of downscaling for precipitation data. Overall, the hedging efficiency of 
index insurances based on both original coarse resolution and downscaled data was 
higher than the results obtained by Möllmann et al. (2019).

However, it should be pointed out that the hedging effectiveness fluctuates consider-
ably among indices and regions. In particular the regional variation in the hedging 
effectiveness of wheat index insurance was already noted in previous studies 
(Bokusheva et al., 2016; Kölle et al., 2021). Figure A1 reports on the hedging effectiveness 
of index insurance based on the original coarse resolution and downscaled soil moisture, 
precipitation and temperature data across counties.

Our previous analysis demonstrated that designing index insurance based on down-
scaled climate data lowers the basis risk in the majority of our cases. Figure 6 presents the 
exact number of counties where hedging effectiveness of index insurances were 
improved and not improved due to use of downscaled climate data. In the case of 
Kazakhstan, designing an index insurance based on downscaled soil moisture increased 
hedging effectiveness in 21 counties out of 34, downscaled precipitation improved 
hedging effectiveness in 24 counties out of 34, and downscaled temperature enhanced 
hedging effectiveness in 24 counties out of 34. Meanwhile, in Mongolia, index insurance 
based on downscaled soil moisture improved hedging effectiveness in 18 counties out of 

Table 1. Mean hedging effectiveness of index insurance products based on original 
coarse resolution and downscaled climate data.

Hedging effectiveness

Kazakhstan Mongolia

Original Downscaled Original Downscaled

Soil moisture 18% 18% 18% 22%
Precipitation 14% 18% 12% 21%
Temperature 24% 25% 12% 14%

Figure 6. Change of hedging effectiveness of index insurances after using downscaled climate data, 
counties in (a) Kazakhstan and (b) Mongolia. Numbers represent the number of counties.

BIG EARTH DATA 949



22, downscaled precipitation increased hedging effectiveness in 21 counties out of 22, 
and downscaled temperature increased hedging effectiveness in 8 counties out of 22.

Consequently, Wilcoxon test’s results and boxplot of hedging effectiveness per country and 
index (Figure 7) also demonstrate that improvements in hedging effectiveness are significant 
in both countries after using downscaled climate data for index insurance design.

Since a higher hedging effectiveness corresponds to a lower basis risk and a higher 
potential for risk reduction, it can be concluded that index insurance products based on 
downscaled climate data have a lower basis risk and a higher potential for risk reduction 
than the original coarse spatial scale climate data. With reference to these results, the first 
objective of our study is addressed. With an increasing spatial resolution of gridded 
climate data using machine learning, the hedging effectiveness of index insurance 
increases. Earlier similar outcomes were assumed by Möllmann et al. (2019), and similar 
results were obtained in the study conducted by Kölle et al. (2021), in which hedging 
effectiveness of index insurance based on medium and high resolution NDVI data were 
compared. Due to the increased number of pixels per area, a more accurate representa-
tion of climate conditions is possible, which is important for lowering the basis risk.

As noted above, the hedging effectiveness of our three indices fluctuated considerably 
on a county level despite similar environmental conditions, a phenomenon that was also 
observed by Bucheli et al. (2021). These difference between the areas in term of most 
suitable index insurance can be due to variety of reasons, such as the type of farming 

Figure 7. Boxplot and Wilcoxon test results for the hedging effectiveness of index insurance design 
based on original coarse resolution and downscaled climate data, counties in (a) Kazakhstan and (b) 
Mongolia. Note: Statistical significance is indicated by the following p-values: *p � 0:05, **p � 0:01, 
***p � 0:001.
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systems, the intensity of crop management, management strategy and soil/seed quality 
(Kölle et al., 2021). Figure 8 demonstrates which source of climate data is the best for 
index insurance design to mitigate climate risk. According to our results, in Kazakhstan, 
the majority of counties have a higher hedging effectiveness when the index insurance 
design is based on downscaled temperature. Moreover, downscaled precipitation and 
original coarse resolution temperature have the highest hedging effectiveness in some 
cases, but the rest only in a few cases. In the case of Mongolia, index insurance design 
based on downscaled precipitation and soil moisture data have the highest risk reduction 
potential in the majority of counties. The remaining data sources have demonstrated their 
potential only in rare cases.

We see a potential to further refine the procedure of downscaling climate data for 
increasing hedging efficiency illustrated in this paper. For instance, including land cover/ 
use information into index insurance design can obtain a significantly higher risk reduction 
capacity. However, the non-existence of long-term and open source land cover/use infor-
mation limits any potential benefits that might be obtained. Actually, there is a MODIS- 
based global scale land cover/use product. However, it has provided information since 2002 
and has an accuracy of approximately 75–80% (Friedl & Sulla-Menashe, 2019). Moreover, our 
investigations showed that in the MODIS land cover/use product, the croplands identifica-
tion has yet to be calibrated for Mongolia. Possible solution could be classifying land cover/ 
use based on satellite images or requesting data from state cadaster organizations.

Furthermore, estimating agronomically suitable meteorological drought indices based on 
downscaled climate data and using them for index insurance design should also be considered 
for future studies, as they also can substantially improve the risk reduction potential of index 
insurance. The effectiveness of using meteorological drought indices for index insurance 
design have already been confirmed by using weather station data by Bobojonov et al. 
(2014) and Finger (2013). Additionally, for future studies, it would also be interesting to 

Figure 8. The best index insurance for each county according to hedging effectiveness, counties in (a) 
Kazakhstan and (b) Mongolia.
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compare the accuracy of index insurance product designs based on downscaled climate data 
with other climate data in fine spatial resolution with short historical records. Moreover, it 
would also be interesting to find at which points increases in hedging effectiveness are only 
marginal and not proportional in terms of findings training datasets.

It should be also noted that for our analysis we used county scale yield data. It would be 
also very interesting to shift the level of analysis to village or even farm level, as variation and 
heterogeneity of village-scale climate data increased after spatially downscaling them to finer 
resolution, according to our results from Local Moran’s I4 (see Tables A4 and A5). Specifically, 
village and farm scale yield data could be based on ground level sensors from harvester 
combines. That would allow us to more deeply study the benefits of machine learning-based 
downscaling models for index insurance. Furthermore, having information about crop-culti-
vated areas, crop diversity, crop quality, fertilizers and re-seeding data would be also inter-
esting, in order to inspect these factors on the hedging effectiveness of index insurance.

Moreover, descriptive statistics of variation of validation metrics and Wilcoxon test of 
county-wise validation metrics between improved and not improved insurance cases did 
not show significant differences (Figures A2–7 and Tables A6–9). These results indicate that 
in our case the spatial accuracy of RF models do not influence the variation of improvements 
of hedging effectiveness. However, we believe having more detailed information about the 
study area, for instance on variation of topography, crop diversity, land use/cover and 
portion of croplands in the region would help to understand in more detail why effect of 
designing index insurance product based on downscaled climate parameters vary.

4. Conclusion

In this paper, we examined and compared the climate risk-reduction potential of index 
insurance design using machine learning-based spatially downscaled precipitation, tem-
perature and soil moisture data with the original spatial resolution of gridded climate 
sources. We found that in the vast majority of cases, using downscaled climate data for 
index insurance design has increased their hedging effectiveness. These improvements 
are statistically significant for a case study of spring wheat in Kazakhstan and Mongolia. In 
general, index insurance design based on downscaled temperature in Kazakhstan and 
downscaled precipitation in Mongolia has the greatest risk-reduction potential. 
Additionally, our study demonstrates that each area has an individual most suitable 
underlying source of index to minimize basis risk. There is no single universal source of 
index that may assist well everywhere. Our results underline that an insurer should test 
multiple sources of indices during index insurance design and operation.

Moreover, within the framework of our study we have developed two R-packages, 
namely “climate-insurance” and web platform “Climate Insurance Design and 
Performance Analysis”, which help to rapidly design index insurance and to analyze the 
performance of index insurance using multiple statistical indicators. Since a web platform 
does not require any knowledge of statistics and only requires users to enter the data, we 
hope that it will ease further dissemination and implementation of index insurance for 
non-scientists who are interested in the field of index insurance.
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Notes

1. Earliest tests of our study showed slightly better performance of index insurance when they 
were designed based on monthly scale weather parameters than 10day scale. Moreover, the 
gridded weather parameters have a better agreement between in-situ observations when a 
higher temporal aggregation (monthly, seasonal, etc.) is used (Coleman et al., 2018; Eltazarov 
et al., 2021; Usman & Nichol, 2020).

2. We employed Spearman’s correlation coefficient as the relationship between weather and 
crop yield is non-linear (Konduri et al., 2020; Semenov & Porter, 1995).

3. Higher hedging effectiveness corresponds to a lower basis risk and a higher potential for risk 
reduction.

4. Moran’s I measures the spatial autocorrelation of a dataset that helps to identify how an 
object is similar to others surrounding it.
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