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Biljana Stojcevska 
 
 
Abstract: 
The accuracy of computer systems represents the property that they are working as the users expect. Very often, 
these computer systems give inaccurate or wrong results. However, designing correct computer systems is a 
complex and expensive task. There are several ways to deal with this problem. In practice, the most common 
approach is to design and perform tests. However, these tests can only detect a specific set of problems. Another 
(more expensive) approach is to do a formal proof of correctness for a given code. This proof of correctness is, 
in fact, mathematical proof that the software works according to given specifications. Mathematical evidence 
covers all possible cases, and it is this evidence that confirms that code does exactly what it is intended to do. 
There are several platforms and mathematical models for software verification. Formal verification is based on 
mathematical proofs, and these platforms are divided into manual and automatic. Among the manual proof 
verification software, some of the most known ones are the programming languages Coq (based on type theory), 
Idris, etc. These are manual theorem provers, as the proof must be handwritten. Another family of theorem 
provers is the so-called automatic provers, which use algorithms to automatically deduce a given theorem. The 
programming language Dafny is one of their best representatives. This paper aims to show the state-of-the-art 
tools used today. 
 
Keywords: software verification, software verification models, software verification platforms. 
 

JEL classification: M42, M49 
 
 
INTRODUCTION 
 
Software is getting more complex and it's become a crucial part of everyday life. Users 
expect the systems to function at all times, according to their needs. However, in some 
cases the software may not function properly - this is called a software bug. Therefore, 
software bugs represent a fault in a computer system. As software grows every day in 
complexity, the probability that it will have bugs increases. Software bugs, depending on 
the problem that the software addresses, can cost millions. Therefore, it remains a crucial 
part to find and address most bugs before the software is pushed into production. 
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Manual testing of software to find bugs is one major area for testing. Another major 
area of software testing is formal verification – testing for correctness. Formal 
verification itself can be partially automated, but the bulk of the work remains manual. 

In terms of formal verification, there is already a lot of research done by various 
institutions such as Microsoft Research and the French Institute for Research in 
Computer Science and Automation (INRIA). More specifically, the programming 
language Dafny is developed by Microsoft Research, and the programming language 
Coq is developed by INRIA. These two programming languages have one goal – to make 
it easier to detect bugs in software by using formal verification methods.  

Several formal systems are usable for formal verification. One of them is known as 
Hoare logic, which the programming language is Dafny is based upon. Another 
commonly used formal system is type theory, which the programming language Coq is 
based upon. 

 
1. THEORETICAL BACKGROUND 

 
Formal verification's roots come from mathematics, and they date back to the beginning 
of the 20th century. 

Russell's paradox represents the contradiction of the hypothesis 𝑅 ∈ 𝑅 such that 𝑅 ∈
{𝑆: 𝑆 ∉ 𝑆}. In both cases 𝑅 ∈ 𝑅 and 𝑅 ∉ 𝑅 – thus there is a contradiction. 

As a response to Russell's paradox, Bertrand Russell himself proposed type theory as 
a solution (Russell, B., 1903). Type theory assigns a type to every term, ensuring that the 
problem of self-referencing sets is resolved with the usage of type hierarchies. This can 
be seen as the birth of type theory. 

While working on discovering new foundations for mathematics, Alonzo Church 
introduced the lambda calculus in the 1930s (Church, A., 1936). Independently, a system 
with a similar power of expressiveness, the Turing machine, was introduced by Alan 
Turing in 1936 (Turing, A.M., 1936). 

 

 
Figure 1: Syntax and evaluation rules of the lambda calculus (Pierce, B.C., 2002) 

 
It was later shown that both lambda calculus and the Turing machine are Turing 

complete – they have the same computational power. Around the same period, it was 
also shown by Stephen Kleene and Kurt Gödel that general recursive functions have the 
same power of expressiveness (Kleene, S.C., 1936) 

In later years, more advanced type theories were developed. More specifically, in 
1940, Alonzo Church formulated the simply-typed lambda calculus (Church, A., 1940). 
This is a more restricted version of the original lambda calculus, and as such is not Turing 
complete. 



 
Boro Sitnikovski, Lidija Goracinova-Ilieva, and Biljana Stojcevska. 2021. Models for Software 

Verification: Proving program correctness. UTMS Journal of Economics 12(1): 32–39. 

 

34 
 

 
 

Table 1: Type rules for the simply-typed lambda calculus 
Rule Name Formula 
Var 

Γ, 𝑥: 𝜏 ⊢ 𝑥: 𝜏
 

Lam Γ, 𝑥: 𝜏 ⊢ 𝑡: 𝜏

Γ ⊢ ൫𝜆𝑥 ∶ 𝜏 . 𝑡൯: 𝜏 → 𝜏

 

App Γ ⊢ 𝑡: 𝜏 → 𝜏     Γ ⊢ 𝑡: 𝜏 

Γ ⊢ 𝑡𝑡: 𝜏

 

 
Between 1930 and 1970, one of the main developments concerning formal 

verification was the Curry-Howard correspondence. This correspondence represents the 
interpretation of proofs-as-programs and formulae-as-types (Wadler, P., 2015). That is, 
proofs are represented by computer programs, and the formula they prove is represented 
by their corresponding type. This correspondence shows the connection between 
computer programs and formal proofs, and as such it represents the building blocks of 
programming languages such as Coq. 

 
Table 2: The Curry-Howard correspondence 
Mathematics Programming 
Theorem Type 
Proof Program 
Correctness verification Type checking 
Cut elimination Computation 

 
In the meanwhile, in the late 1960s, Hoare logic was developed as a means to reason 

rigorously about the correctness of computer programs (Hoare, C.A.R. 1969). Hoare 
logic is independent of type theory and relies purely on mathematical representation – 
the Hoare triple – which is a triple that describes how a piece of code alters a state before 
and after its execution. 

 
2. DAFNY/HOARE LOGIC 

 
Dafny is a programming language that allows the expression of formal proofs with the 
usage of preconditions, postconditions, and invariants (Leino, K.R.M., 2010). As such, 
it is based on Hoare logic. It was developed by Microsoft in 2009 and is used in the 
academy and the industry. 

As mentioned, the main component of Hoare logic is the Hoare triple {𝐴} 𝐵 {𝐶}, in 
which it describes that before a command 𝐵 executes, it has the state 𝐴 – the precondition 
and that before a command 𝐵 executes, it has the state 𝐶 – the postcondition. 
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Table 3: Rules in the Hoare logic 
Rule Formula 
Empty statement 

{𝑃}𝒔𝒌𝒊𝒑{𝑃}
 

Assignment 
{𝑃[𝐸/𝑥]}𝑥 ∶= 𝐸{𝑃}

 

Composition {𝑃}𝑆{𝑄}      {𝑄}𝑇{𝑅}

{𝑃} 𝑆; 𝑇 {𝑅}
 

Conditional {𝐵 ∧ 𝑃}𝑆{𝑄}      {¬𝐵 ∧ 𝑃}𝑇{𝑄}

{𝑃} 𝒊𝒇 𝐵 𝒕𝒉𝒆𝒏 𝑆 𝒆𝒍𝒔𝒆 𝑇 𝒆𝒏𝒅𝒊𝒇 {𝑄}
 

Consequence 𝑃ଵ → 𝑃ଶ   {𝑃ଶ}𝑆{𝑄ଶ}    𝑄ଶ → 𝑄ଵ

{𝑃ଵ}𝑆{𝑄ଵ}
 

While {𝑃 ∧ 𝐵}𝑆{𝑃}

{𝑃} 𝒘𝒉𝒊𝒍𝒆 𝐵 𝒅𝒐 𝑆 𝒅𝒐𝒏𝒆 {¬𝐵 ∧ 𝑃}
 

 
The Hoare rules are based on the Hoare triple. For example, the consequence rule 

specifies that given two programs, {𝑝} 𝑆ଵ {𝑟} and {𝑟} 𝑆ଶ {𝑞}, we can compose them and 
conclude {𝑝} 𝑆ଵ;  𝑆ଶ {𝑞}. As an example, we can consider the following two programs: 

 
 

{𝑥 + 1 = 43} 𝑦 ∶=  𝑥 +  1 {𝑦 = 43} Eq. 1 

{𝑦 = 43} 𝑧 ∶=  𝑦 {𝑧 = 43} Eq. 2 

 
Using the Composition rule on Eq. 1 and Eq. 2, we can conclude the program in Eq. 

3: 
 

{𝑥 + 1 = 43} 𝑦 ∶=  𝑥 +  1;  𝑧 ∶=  𝑦 {𝑧 = 43} Eq. 3 

As we have shown, this pattern of reasoning is crucial to building correct programs. 
Given that Dafny is based on the same theory, we can construct the example program in 
Dafny. 

Dafny will automatically verify the proof (See Figure 2: Composition in Dafny). It is 
sufficient that we only present the preconditions and the postconditions. 
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Figure 2: Composition in Dafny 

 
For automatic verification of proofs, Dafny relies on the Z3 theorem prover (De 

Moura, L., and Bjørner, N., 2008). Z3 is an efficient theorem prover – an SMT solver, 
developed by Microsoft in 2012. It has a wide range of applications both in the academy 
and in the industry. 
 

𝑎 ∧ 𝑏 =  ¬(¬𝑎 ∨ ¬𝑏) Eq. 4 

Z3 uses a similar syntax to Lisp, and we will show a brief example of how Z3 can 
automatically prove the DeMorgan rule from Eq. 4: 
 
(declare-const a Bool) 
(declare-const b Bool) 
(define-fun demorgan () Bool 
    (= (and a b) (not (or (not a) (not b))))) 
(assert demorgan) 
(check-sat) 
 
3. COQ/TYPE THEORY 
 
Coq is a programming language that allows the expression of formal proofs with the 
usage of types (Barras, B. et al., 1997). As such, it is based on type theory. It was 
developed by INRIA in 1989 and it is heavily used both in the academy and in the 
industry. 
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As mentioned, the main component of type theory is that to each term, a type is 
assigned. For example, 3 belongs to the type of natural numbers 𝑁𝑎𝑡, and is represented 
as 3 ∶  𝑁𝑎𝑡. 

 
Table 4: The Brouwer–Heyting–Kolmogorov interpretation of 
mapping proofs to programs 
Logic Programming 
Conjunction ∧ Product type 
Disjunction  ∨ Sum type 
Implication → Function type 
Universal quantification ∀ Generalized product type Π 
Existential quantification ∃ Generalized sum type Σ 
True formula Unit type 
False formula Bottom type 

 
To understand how type theory may help with the automation of mathematical proofs, 

we will show an example. 
 
Consider the product type 𝐴 × 𝐵 (the notation × represents the product type). Next, 

we will look at what kind of functions we can extract from this type. 
 
One sensible function would be 𝑓𝑠𝑡 (short for “first”), with a corresponding type 

𝐴 × 𝐵 → 𝐴. 
 

𝑓𝑠𝑡 ∶ 𝐴 × 𝐵 → 𝐴, 𝑓𝑠𝑡(𝑎, 𝑏) = 𝑎 Eq. 5 

Similarly, we can construct a function called 𝑠𝑛𝑑 (short for “second”), with a 
corresponding type 𝐴 × 𝐵 → 𝐵.  

 
𝑠𝑛𝑑 ∶ 𝐴 × 𝐵 → 𝐵, 𝑠𝑛𝑑(𝑎, 𝑏) = 𝑏 Eq. 6 

Using (composing) Eq. 5 and Eq. 6, we can construct a third function called 𝑠𝑤𝑎𝑝 
which is of type 𝐴 × 𝐵 → 𝐵 × 𝐴. In other words, the function accepts a pair of the form 
(𝑎, 𝑏) where 𝑎 ∶  𝐴 and 𝑏 ∶  𝐵 and returns a pair of the form (𝑏, 𝑎) where 𝑎 ∶  𝐴 and 𝑏 ∶
 𝐵. 

 
𝑠𝑤𝑎𝑝 ∶ 𝐴 × 𝐵 → 𝐵 × 𝐴, 𝑠𝑤𝑎𝑝(𝑒) = (𝑠𝑛𝑑(𝑒), 𝑓𝑠𝑡(𝑒)) Eq. 7 

Thus, according to the Curry-Howard isomorphism, the function in Eq. 7 has a 
corresponding mathematical proof. Indeed, the type of 𝑠𝑤𝑎𝑝 corresponds to the proof of 
the commutativity of ∧ (Eq. 8). 

 
𝑎 ∧ 𝑏 = 𝑏 ∧ 𝑎 Eq. 8 

The implementation of this proof in Coq is shown in Figure 3: Proof of the 
commutativity of logical "and". 
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Figure 3: Proof of the commutativity of logical "and" 

 
The commands such as intros, destruct, simpl, reflexivity belong to the tactical 

language of Coq – this is a high-level language that gets translated to lambda calculus 
terms when the program is executed. The reason for the existence of the tactics language 
is that lambda terms can sometimes be unreadable. The tactics language can also provide 
proof automation. 

 
CONCLUSION 
 
This study summarized the state-of-the-art tools for software verification that are used 
today. We have shown that there are several theories for formal verification and that they 
differ in implementation and approach. 

In this paper, presented were the programming languages Dafny and Coq, and there 
are many more that focus on formal verification and program correctness, to name a few: 
Agda, Idris, Lean. 

Current research focuses on discovering new theories, as well as automating the 
construction of formal proofs and verification. 
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