
Sitnikovski, Boro; Goracinova-Ilieva, Lidija; Stojcevska, Biljana

Article

Models for software verification: Proving program
correctness

UTMS Journal of Economics

Provided in Cooperation with:
University of Tourism and Management, Skopje

Suggested Citation: Sitnikovski, Boro; Goracinova-Ilieva, Lidija; Stojcevska, Biljana (2021) : Models for
software verification: Proving program correctness, UTMS Journal of Economics, ISSN 1857-6982,
University of Tourism and Management, Skopje, Vol. 12, Iss. 1, pp. 32-39

This Version is available at:
https://hdl.handle.net/10419/281889

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/281889
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Boro Sitnikovski, Lidija Goracinova-Ilieva, and Biljana Stojcevska. 2021. Models for Software

Verification: Proving program correctness. UTMS Journal of Economics 12(1): 32–39.

32

Original scientific paper
(accepted March 05, 2021)

MODELS FOR SOFTWARE VERIFICATION: PROVING PROGRAM
CORRECTNESS

Boro Sitnikovski1
Lidija Goracinova-Ilieva

Biljana Stojcevska

Abstract:
The accuracy of computer systems represents the property that they are working as the users expect. Very often,
these computer systems give inaccurate or wrong results. However, designing correct computer systems is a
complex and expensive task. There are several ways to deal with this problem. In practice, the most common
approach is to design and perform tests. However, these tests can only detect a specific set of problems. Another
(more expensive) approach is to do a formal proof of correctness for a given code. This proof of correctness is,
in fact, mathematical proof that the software works according to given specifications. Mathematical evidence
covers all possible cases, and it is this evidence that confirms that code does exactly what it is intended to do.
There are several platforms and mathematical models for software verification. Formal verification is based on
mathematical proofs, and these platforms are divided into manual and automatic. Among the manual proof
verification software, some of the most known ones are the programming languages Coq (based on type theory),
Idris, etc. These are manual theorem provers, as the proof must be handwritten. Another family of theorem
provers is the so-called automatic provers, which use algorithms to automatically deduce a given theorem. The
programming language Dafny is one of their best representatives. This paper aims to show the state-of-the-art
tools used today.

Keywords: software verification, software verification models, software verification platforms.

JEL classification: M42, M49

INTRODUCTION

Software is getting more complex and it's become a crucial part of everyday life. Users
expect the systems to function at all times, according to their needs. However, in some
cases the software may not function properly - this is called a software bug. Therefore,
software bugs represent a fault in a computer system. As software grows every day in
complexity, the probability that it will have bugs increases. Software bugs, depending on
the problem that the software addresses, can cost millions. Therefore, it remains a crucial
part to find and address most bugs before the software is pushed into production.

1Boro Sitnikovski, MSc.; Lidija Goracinova-Ilieva, Ph.D., Full Professor; Biljana Stojcevska, Ph.D.,
Associate Professor, Faculty of Informatics, University of Tourism and Management in Skopje, North
Macedonia.

Boro Sitnikovski, Lidija Goracinova-Ilieva, and Biljana Stojcevska. 2021. Models for Software

Verification: Proving program correctness. UTMS Journal of Economics 12(1): 32–39.

33

Manual testing of software to find bugs is one major area for testing. Another major
area of software testing is formal verification – testing for correctness. Formal
verification itself can be partially automated, but the bulk of the work remains manual.

In terms of formal verification, there is already a lot of research done by various
institutions such as Microsoft Research and the French Institute for Research in
Computer Science and Automation (INRIA). More specifically, the programming
language Dafny is developed by Microsoft Research, and the programming language
Coq is developed by INRIA. These two programming languages have one goal – to make
it easier to detect bugs in software by using formal verification methods.

Several formal systems are usable for formal verification. One of them is known as
Hoare logic, which the programming language is Dafny is based upon. Another
commonly used formal system is type theory, which the programming language Coq is
based upon.

1. THEORETICAL BACKGROUND

Formal verification's roots come from mathematics, and they date back to the beginning
of the 20th century.

Russell's paradox represents the contradiction of the hypothesis 𝑅 ∈ 𝑅 such that 𝑅 ∈
{𝑆: 𝑆 ∉ 𝑆}. In both cases 𝑅 ∈ 𝑅 and 𝑅 ∉ 𝑅 – thus there is a contradiction.

As a response to Russell's paradox, Bertrand Russell himself proposed type theory as
a solution (Russell, B., 1903). Type theory assigns a type to every term, ensuring that the
problem of self-referencing sets is resolved with the usage of type hierarchies. This can
be seen as the birth of type theory.

While working on discovering new foundations for mathematics, Alonzo Church
introduced the lambda calculus in the 1930s (Church, A., 1936). Independently, a system
with a similar power of expressiveness, the Turing machine, was introduced by Alan
Turing in 1936 (Turing, A.M., 1936).

Figure 1: Syntax and evaluation rules of the lambda calculus (Pierce, B.C., 2002)

It was later shown that both lambda calculus and the Turing machine are Turing

complete – they have the same computational power. Around the same period, it was
also shown by Stephen Kleene and Kurt Gödel that general recursive functions have the
same power of expressiveness (Kleene, S.C., 1936)

In later years, more advanced type theories were developed. More specifically, in
1940, Alonzo Church formulated the simply-typed lambda calculus (Church, A., 1940).
This is a more restricted version of the original lambda calculus, and as such is not Turing
complete.

Boro Sitnikovski, Lidija Goracinova-Ilieva, and Biljana Stojcevska. 2021. Models for Software

Verification: Proving program correctness. UTMS Journal of Economics 12(1): 32–39.

34

Table 1: Type rules for the simply-typed lambda calculus
Rule Name Formula
Var

Γ, 𝑥: 𝜏 ⊢ 𝑥: 𝜏

Lam Γ, 𝑥: 𝜏 ⊢ 𝑡: 𝜏

Γ ⊢ ൫𝜆𝑥 ∶ 𝜏 . 𝑡൯: 𝜏 → 𝜏

App Γ ⊢ 𝑡: 𝜏 → 𝜏 Γ ⊢ 𝑡: 𝜏

Γ ⊢ 𝑡𝑡: 𝜏

Between 1930 and 1970, one of the main developments concerning formal

verification was the Curry-Howard correspondence. This correspondence represents the
interpretation of proofs-as-programs and formulae-as-types (Wadler, P., 2015). That is,
proofs are represented by computer programs, and the formula they prove is represented
by their corresponding type. This correspondence shows the connection between
computer programs and formal proofs, and as such it represents the building blocks of
programming languages such as Coq.

Table 2: The Curry-Howard correspondence
Mathematics Programming
Theorem Type
Proof Program
Correctness verification Type checking
Cut elimination Computation

In the meanwhile, in the late 1960s, Hoare logic was developed as a means to reason

rigorously about the correctness of computer programs (Hoare, C.A.R. 1969). Hoare
logic is independent of type theory and relies purely on mathematical representation –
the Hoare triple – which is a triple that describes how a piece of code alters a state before
and after its execution.

2. DAFNY/HOARE LOGIC

Dafny is a programming language that allows the expression of formal proofs with the
usage of preconditions, postconditions, and invariants (Leino, K.R.M., 2010). As such,
it is based on Hoare logic. It was developed by Microsoft in 2009 and is used in the
academy and the industry.

As mentioned, the main component of Hoare logic is the Hoare triple {𝐴} 𝐵 {𝐶}, in
which it describes that before a command 𝐵 executes, it has the state 𝐴 – the precondition
and that before a command 𝐵 executes, it has the state 𝐶 – the postcondition.

Boro Sitnikovski, Lidija Goracinova-Ilieva, and Biljana Stojcevska. 2021. Models for Software

Verification: Proving program correctness. UTMS Journal of Economics 12(1): 32–39.

35

Table 3: Rules in the Hoare logic
Rule Formula
Empty statement

{𝑃}𝒔𝒌𝒊𝒑{𝑃}

Assignment
{𝑃[𝐸/𝑥]}𝑥 ∶= 𝐸{𝑃}

Composition {𝑃}𝑆{𝑄} {𝑄}𝑇{𝑅}

{𝑃} 𝑆; 𝑇 {𝑅}

Conditional {𝐵 ∧ 𝑃}𝑆{𝑄} {¬𝐵 ∧ 𝑃}𝑇{𝑄}

{𝑃} 𝒊𝒇 𝐵 𝒕𝒉𝒆𝒏 𝑆 𝒆𝒍𝒔𝒆 𝑇 𝒆𝒏𝒅𝒊𝒇 {𝑄}

Consequence 𝑃ଵ → 𝑃ଶ {𝑃ଶ}𝑆{𝑄ଶ} 𝑄ଶ → 𝑄ଵ

{𝑃ଵ}𝑆{𝑄ଵ}

While {𝑃 ∧ 𝐵}𝑆{𝑃}

{𝑃} 𝒘𝒉𝒊𝒍𝒆 𝐵 𝒅𝒐 𝑆 𝒅𝒐𝒏𝒆 {¬𝐵 ∧ 𝑃}

The Hoare rules are based on the Hoare triple. For example, the consequence rule

specifies that given two programs, {𝑝} 𝑆ଵ {𝑟} and {𝑟} 𝑆ଶ {𝑞}, we can compose them and
conclude {𝑝} 𝑆ଵ; 𝑆ଶ {𝑞}. As an example, we can consider the following two programs:

{𝑥 + 1 = 43} 𝑦 ∶= 𝑥 + 1 {𝑦 = 43} Eq. 1

{𝑦 = 43} 𝑧 ∶= 𝑦 {𝑧 = 43} Eq. 2

Using the Composition rule on Eq. 1 and Eq. 2, we can conclude the program in Eq.

3:

{𝑥 + 1 = 43} 𝑦 ∶= 𝑥 + 1; 𝑧 ∶= 𝑦 {𝑧 = 43} Eq. 3

As we have shown, this pattern of reasoning is crucial to building correct programs.
Given that Dafny is based on the same theory, we can construct the example program in
Dafny.

Dafny will automatically verify the proof (See Figure 2: Composition in Dafny). It is
sufficient that we only present the preconditions and the postconditions.

Boro Sitnikovski, Lidija Goracinova-Ilieva, and Biljana Stojcevska. 2021. Models for Software

Verification: Proving program correctness. UTMS Journal of Economics 12(1): 32–39.

36

Figure 2: Composition in Dafny

For automatic verification of proofs, Dafny relies on the Z3 theorem prover (De

Moura, L., and Bjørner, N., 2008). Z3 is an efficient theorem prover – an SMT solver,
developed by Microsoft in 2012. It has a wide range of applications both in the academy
and in the industry.

𝑎 ∧ 𝑏 = ¬(¬𝑎 ∨ ¬𝑏) Eq. 4

Z3 uses a similar syntax to Lisp, and we will show a brief example of how Z3 can
automatically prove the DeMorgan rule from Eq. 4:

(declare-const a Bool)
(declare-const b Bool)
(define-fun demorgan () Bool
 (= (and a b) (not (or (not a) (not b)))))
(assert demorgan)
(check-sat)

3. COQ/TYPE THEORY

Coq is a programming language that allows the expression of formal proofs with the
usage of types (Barras, B. et al., 1997). As such, it is based on type theory. It was
developed by INRIA in 1989 and it is heavily used both in the academy and in the
industry.

Boro Sitnikovski, Lidija Goracinova-Ilieva, and Biljana Stojcevska. 2021. Models for Software

Verification: Proving program correctness. UTMS Journal of Economics 12(1): 32–39.

37

As mentioned, the main component of type theory is that to each term, a type is
assigned. For example, 3 belongs to the type of natural numbers 𝑁𝑎𝑡, and is represented
as 3 ∶ 𝑁𝑎𝑡.

Table 4: The Brouwer–Heyting–Kolmogorov interpretation of
mapping proofs to programs
Logic Programming
Conjunction ∧ Product type
Disjunction ∨ Sum type
Implication → Function type
Universal quantification ∀ Generalized product type Π
Existential quantification ∃ Generalized sum type Σ
True formula Unit type
False formula Bottom type

To understand how type theory may help with the automation of mathematical proofs,

we will show an example.

Consider the product type 𝐴 × 𝐵 (the notation × represents the product type). Next,

we will look at what kind of functions we can extract from this type.

One sensible function would be 𝑓𝑠𝑡 (short for “first”), with a corresponding type

𝐴 × 𝐵 → 𝐴.

𝑓𝑠𝑡 ∶ 𝐴 × 𝐵 → 𝐴, 𝑓𝑠𝑡(𝑎, 𝑏) = 𝑎 Eq. 5

Similarly, we can construct a function called 𝑠𝑛𝑑 (short for “second”), with a
corresponding type 𝐴 × 𝐵 → 𝐵.

𝑠𝑛𝑑 ∶ 𝐴 × 𝐵 → 𝐵, 𝑠𝑛𝑑(𝑎, 𝑏) = 𝑏 Eq. 6

Using (composing) Eq. 5 and Eq. 6, we can construct a third function called 𝑠𝑤𝑎𝑝
which is of type 𝐴 × 𝐵 → 𝐵 × 𝐴. In other words, the function accepts a pair of the form
(𝑎, 𝑏) where 𝑎 ∶ 𝐴 and 𝑏 ∶ 𝐵 and returns a pair of the form (𝑏, 𝑎) where 𝑎 ∶ 𝐴 and 𝑏 ∶
 𝐵.

𝑠𝑤𝑎𝑝 ∶ 𝐴 × 𝐵 → 𝐵 × 𝐴, 𝑠𝑤𝑎𝑝(𝑒) = (𝑠𝑛𝑑(𝑒), 𝑓𝑠𝑡(𝑒)) Eq. 7

Thus, according to the Curry-Howard isomorphism, the function in Eq. 7 has a
corresponding mathematical proof. Indeed, the type of 𝑠𝑤𝑎𝑝 corresponds to the proof of
the commutativity of ∧ (Eq. 8).

𝑎 ∧ 𝑏 = 𝑏 ∧ 𝑎 Eq. 8

The implementation of this proof in Coq is shown in Figure 3: Proof of the
commutativity of logical "and".

Boro Sitnikovski, Lidija Goracinova-Ilieva, and Biljana Stojcevska. 2021. Models for Software

Verification: Proving program correctness. UTMS Journal of Economics 12(1): 32–39.

38

Figure 3: Proof of the commutativity of logical "and"

The commands such as intros, destruct, simpl, reflexivity belong to the tactical

language of Coq – this is a high-level language that gets translated to lambda calculus
terms when the program is executed. The reason for the existence of the tactics language
is that lambda terms can sometimes be unreadable. The tactics language can also provide
proof automation.

CONCLUSION

This study summarized the state-of-the-art tools for software verification that are used
today. We have shown that there are several theories for formal verification and that they
differ in implementation and approach.

In this paper, presented were the programming languages Dafny and Coq, and there
are many more that focus on formal verification and program correctness, to name a few:
Agda, Idris, Lean.

Current research focuses on discovering new theories, as well as automating the
construction of formal proofs and verification.

REFERENCES

Russell, B., 1903. The Principles of Mathematics: Vol. 1. Cambridge at the University

Press, Cambridge, UK.
Church, A., 1936. An unsolvable problem of elementary number theory. American

journal of mathematics, 58(2), pp.345-363.

Boro Sitnikovski, Lidija Goracinova-Ilieva, and Biljana Stojcevska. 2021. Models for Software

Verification: Proving program correctness. UTMS Journal of Economics 12(1): 32–39.

39

Turing, A.M., 1936. On computable numbers, with an application to the
Entscheidungsproblem. J. of Math, 58(345-363), p.5.

Pierce, B.C., 2002. Types and programming languages. MIT press.
Kleene, S.C., 1936. General recursive functions of natural numbers. Mathematische

annalen, 112(1), pp.727-742.
Church, A., 1940. A formulation of the simple theory of types. The journal of symbolic

logic, 5(2), pp.56-68.
Wadler, P., 2015. Propositions as types. Communications of the ACM, 58(12), pp.75-84.
Hoare, C.A.R. 1969. An axiomatic basis for computer programming. Communications

of the ACM. 12 (10): 576–580.
Leino, K.R.M., 2010, April. Dafny: An automatic program verifier for functional

correctness. In International Conference on Logic for Programming Artificial
Intelligence and Reasoning (pp. 348-370). Springer, Berlin, Heidelberg.

De Moura, L. and Bjørner, N., 2008, March. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems (pp. 337-340). Springer, Berlin, Heidelberg.

Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre, J.C., Gimenez, E., Herbelin, H.,
Huet, G., Munoz, C., Murthy, C. and Parent, C., 1997. The Coq proof assistant
reference manual: Version 6.1.

