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Abstract 

Electricity price forecasting has become an area of increasing relevance in recent years. 

Despite the growing interest in predictive algorithms, the challenges are difficult to overcome 

given the restricted access to relevant data series and the lack of accurate metrics. Multiple 

models have been developed and proven to work in the area of EPF. This paper proposes a 

new univariate hybrid model, trained, and tested on German electricity market data, based on 

the Seasonal Auto-Regressive Integrated Moving Average (SARIMA) and the NeuroFuzzy-

Local Linear Wavelet Neural Network (LLWNN). Although a series of complex challenges 

create difficulties in refining the model, the proposed algorithm significantly narrows the gap 

between predictions and actual prices. The ability to predict the dynamics of the price of 

electricity on the spot market is an important asset for both suppliers and consumers, with a 

view on prophylactic calibration of supply-demand ratios. The model can be extended and 

applied to any energy market with a stable structure. 

 

Keywords: electricity price forecasting; Seasonal Auto-Regressive Integrated Moving 

Average (SARIMA); NeuroFuzzy-Local Linear Wavelet Neural Network (LLWNN); 

univariate hybrid model; German electricity market. 
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Introduction 

In a period dominated by crises, it becomes cardinal for states to anticipate consumption 

fluctuations and cost variations, considering the impact this resource has on both households 

and the business environment. The ability to forecast the price of electricity has been a 

constant concern in research, and efforts to create a model capable of accurately reproducing 

market fluctuations are of the utmost importance. The present article adheres to research 

efforts aimed at determining a correlation algorithm dedicated to forecasting the evolution of 

prices in the electricity market (Zema and Sulich, 2022).  

Considering the easy access to current information, the degree of development, the relevance 

to the market of the entire Union, as well as the stability of the system, we used Germany’s 

spot electricity market for the validation of the proposed model. The spot market, also known 

as the day-ahead market, is the place where firm hourly electricity transactions are carried out 

with delivery on the day following the trading day. In other words, the seller and buyer agree 

today at a price negotiated on the spot, and the quantity negotiated is delivered tomorrow at a 

certain time. Germany had the highest net electricity production in recent years. This was 

20.5% of the total production of the European Union, closely followed by France with 19.1%. 

Italy (10.2%) was another EU member state with a double-digit share (Eurostat, 2022). 

More than half of all the EU’s net electricity production was generated from non-combustible 

primaries. A mere 41.3% of net electricity was generated from combustible sources, including 

natural gas, oil, and coal. Twenty-four percent of net electricity generation came from nuclear 

power plants, while hydropower plants (13.8%), and solar energy (5.3%) close the echelon. 

The clear trend towards a changing energy mix, along with complex geopolitical 

developments, will have a relevant impact on energy market price developments in the near 

future (European Commission’s Directorate for Energy, 2022). 

The present paper is proposing a new, univariate hybrid model to be used for electricity price 

forecasting, based on work already developed in the literature and proven to work in this area, 

based on the SARIMA (Seasonal Autoregressive Integrated Moving Average) model and the 

NeuroFuzzy-LLWNN (Local Linear Wavelet Neural Network) model. 

The article begins with a chapter of theoretical considerations intended to place the topic in 

the context of specialised literature, while also bringing considerations regarding its relevance 

and topicality. Subsequently, a foray into the methodological plan is made, the two models, 

SARIMA and NeuroFuzzy-LLWNN, being explained, based on which the hybrid electricity 

price forecasting model will be developed. In the analysis chapter, the algorithm obtained is 

applied to the electricity spot market in Germany. In the last part of the paper, the forecast 

results are evaluated, demonstrating the accuracy of the developed hybrid model by referring 

to the independent operation of its basic components. 

 

1. Theoretical considerations 

Electricity Price Forecasting (EPF) is becoming a more and more pressing issue year by year, 

as shown in the bibliometric study done by Zema and Sulich (2022). As mentioned in their 

paper, some of the arguments for the importance of EPF range from the influence it brings on 

a company’s stock (Tanasie et al., 2022) to influencing the operational decisions made by 

certain companies (Weron, 2014a). 
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A growing number of parametric and non-parametric models have been applied to the area of 

electricity price forecasting (EPF) in the research literature over the years (Weron; 2014b). 

Models such as SARIMA have already demonstrated to be very effective for the task of 

predicting electricity prices (Karabiber and Xydis, 2019), but of course, the fact that 

SARIMA models have a difficulty in predicting non-linear behaviour has to be taken into 

consideration. 

For tackling this issue, the literature suggests the usage of Artificial Neural Networks (ANNs) 

with different kinds of variation in their architecture (Wang and Ramsay, 1998; Pao, 2007; 

Wang, et al., 2016). Models like these come with a series of initial advantages, such as 

handling the aforementioned non-linearity issue, improving the overall robustness of the 

analysis. However, ANNs can present some limitations when taking into account the choice 

of activation function (sigmoid), which can make the model converge to a point of local 

minima. Moreover, the random sampling of the initial weights can increase the training times 

significantly, which makes it even harder to iterate on the model architecture (Ben-Amor, 

Boubaker and Belkacem, 2018). 

In order to solve the classical ANNs shortcomings, the literature suggests using LLWNNs 

instead, to try to forecast electricity prices (Pany and Ghoshal, 2015). LLWNN stands for 

Local Linear Wavelet Neural Network and represents a special solution to the 

multidimensionality problem of the WNN networks (Chen et al.; 2004) as originally 

developed by (Pati and Krishnaprasad, 1993). However, creating a hybrid model between 

LLWNN and the NeuroFuzzy Model, was proven to improve it when applied to price 

forecasting in FOREX (Forex, also known as FX or foreign exchange, is the exchange of one 

currency for another at an agreed price) markets by Mohapatra, Munnangi and Patra (2013), 

but was also successfully applied to electricity price forecasting by (Pany and Ghoshal, 2013). 

Chen (2004), Dong, et al. (2011), Maciejowska and Nowotarski (2016) and Zhang, Tan and 

Wey (2020) have also addressed the issue of hybrid models in an attempt to solve the 

complex difficulties of forecasting electricity prices. In light of the proven effectiveness of 

hybrid models, we propose such a model using SARIMA for the regular components and a 

NeuroFuzzy-LLWNN for the irregular ones. Using a NeuroFuzzy-LLWNN instead of a more 

classical ANN approach, we solve the issues mentioned in the above paragraphs, thus 

improving the overall effectiveness of the model. 

An approach to break down a signal into a number of intrinsic mode functions (IMF) and a 

residue that represents the trend is known as Empirical Mode Decomposition (EMD). EMD is 

a technique for obtaining instantaneous frequency data, performing well for data sets that are 

characterised by non-linearity and non-stationarity (Qiu, Suganthan and Amaratunga, 2017). 

Ensemble empirical mode decomposition builds upon the classical EMD technique by 

combining the original timeseries with an ensemble of white noise data. Because the white 

noise has the effect of creating a consistent reference frame in the time-frequency domain, it 

captures the component of the signal with a similar scale into one IMF (Rilling and Flandrin; 

2009). EMD has been successfully applied, using different model architectures, in the area of 

EPF by multiple authors (Qiu, Suganthan and Amaratunga, 2017; Buyukshain and Ertekin, 

2019). 

The aim of our paper is to create a hybrid model architecture based on previously proven 

statistical techniques that aims to solve the weaknesses present in the models when taken 
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separately. This can be achieved by decomposing the time series and trying to predict its 

regular and irregular components separately. 

 

2. Methodology 

2.1. SARIMA Model 

Because of the dependence on climate conditions that can affect changes in demand, 

electricity prices show seasonal features (Huurman, Ravazzolo and Zhou, 2012). The seasonal 

Autorregressive Integrated Moving Average Model (SARIMA) has been proven to work for 

predicting regular components of nonstationary time series, having been successfully applied 

in the area of electricity price forecasting (Buyukshain and Ertekin, 2019; Zhang, Tan and 

Wey (2020). George, Jenkins and Reinsel (1970) and Zhang, Tan and Wey (2020) describe 

the SARIMA model (p,d,q)(P,D,Q)S using the following: 

 

                           (1) 

 

With 

    
 

Where:  

D and d are the order of the seasonal and regular differences, respectively; 

P and p represent the order of the periods taken into account in the autoregressive 

component (seasonal and regular); 

Q and q represent the order of the periods considered in the moving average 

component, S is the number of periods in a year for which the seasonality of the time 

series repeats; 

B being the lag operator;  

and xt and et represent the regular component and the white noise; 

( (B) and ( (B) represent the regular, respectively seasonal autoregressive 

components, and -  (B) and  (B) represent the regular, respectively seasonal moving 

average components. 
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2.2. NeuroFuzzy model 

Ever since the creation of the LLWNN model by Whitcher (2004), it has shown more 

accuracy than the traditional WNN for time series forecasting. The main idea of LLWNN is 

to replace the connections between the hidden layer and the output with a local linear model. 

The advantages of this approach, as presented by (Mohapatra, Munnangi and Patra, 2013), 

include the good performance proven by the adoption of local linear models in several 

neurofuzzy systems, performing better than the standard LLWNN in terms of accuracy, error 

convergence speed, and its capability of handling uncertainties. 

The general architecture for this neural network can be seen in (Figure no. 1). The model 

consists of 5 layers, starting with layer 1 which takes the form u(1)
i = xi, and just represents 

the plain input layer. 

For the LLWNN side, the second layer represents the wavelet function for each node: 

                                          (2) 

ai and bi are the scale and translation parameters, and i = 1,...,2n. The third layer on the 

LLWNN side is represented by the two outputs of each part of the neural network. 

Recall that the output of an LLWNN network is given by: 

                                         (3) 

For the NeuroFuzzy component, the second layer is represented by the following equation 

that calculates the membership for a given input, using a Gaussian membership function: 

                                                                                           (4)     

From the nodes of a set in layer 2, the nodes in layer 3 obtain one-dimensional membership 

degrees of the related rule. Here, the precondition function of the fuzzy rules is carried out 

using the product operator that is defined as: 

                                                                                                                       (5)   
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Figure no. 1. LLWNN-Neurofuzzy model architecture 

Layer 4 is a layer that consists of consequent nodes, and they contain the NeuroFuzzy ouput 

from Layer 3, and the LLWNN output from layer 3, using the following equation:

                                                                                                         (6)     
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where ψk is the functional expansion of the input and wkj represents the weights of the 

LLWNN. The last layer of the neural network acts as a defuzzification one and takes as input 

the Layer 3 outputs of the LLWNN and NeuroFuzzy parts of the model, being represented by 

the following equation:  

 y = (y11.Fz11 + y22.Fz22)/(Fz11 + Fz22)                                                                              (7)   

where y11 and y22 represent the output values of the LLWNN component and Fz11 and 

Fz22, respectively, represent the output values of the NeuroFuzzy component. More details 

regarding (1), (2), (3), (4), (5), (6), (7), internal architecture and backpropagation are 

presented by the authors in Mohapatra et al. (2013).                                     

Taking this into consideration, we propose the usage of this model for the prediction of the 

irregular components in our final hybrid model.  

2.3. Ensemble Empirical Mode Decomposition (EEMD) 

As mentioned in Section 2, EEMD is an extension of EMD designed to solve the mode 

mixing problem. The data x(t) often consists of both the signal s(t) and the noise n(t):               

 x(t) = s(t) + n(t)                                                                                                                        (8) 

As mentioned in Khan et al. (2021), EEMD is a technique designed to remove the white noise 

from the data, since it is usually what obstructs it. To get rid of the noise in the data, EMD 

decomposes it by extracting a set of IMFs and a residual. Intrinsic Mode Functions are 

oscillatory, with variation in amplitude and frequency. By locating all local maxima and 

minima and linking them with cubic splines to construct the upper and lower envelope, a time 

series must first be divided into a number of IMFs. The envelopes’ means are then calculated. 

The first IMF is then produced by subtracting the mean from the original data. The process 

repeats until a monotonic function is obtained. Given equation nr. 8, and according to Khan, 

et al. (2021), this process can be represented mathematically by: 

                                                                                                               (9) 

where r is the residue and n is the number of IMF extracted. 

 

2.4 . Stages of the hybrid univariate model 

As previously shown, the main contribution of our paper is creating a hybrid model that 

combines SARIMA and NeuroFuzzy-LLWNN in order to forecast day-ahead electricity 

prices. Our proposed hybrid model consists of two steps, as described below (see also figure 

No. 2): 

 The first step is Data decomposition. Different components with different characteristics 

should be extracted to better capture the complex features of electricity prices. Thus, 

Ensemble Empirical Mode Decomposition EEMD is used to convert the original electricity 

price into some regular and irregular component. 

 The second step consists of selecting a suitable model for each component according to its 

own characteristics. Some components will exhibit regular characteristics. Thus, SARIMA is 



 AE Hybridising NeuroFuzzy System and Seasonal Autoregressive Models for 
Electricity Price Forecasting on Germany’s Spot Market  

 

470 Amfiteatru Economic 

used for these regular components. Then the hybrid NeuroFuzzy model is selected for 

irregular components forecasting, which can capture the irregular changing trend. 

 

Figure no. 2. LLWNN-NeuroFuzzy model architecture 

 

3. Analysis 

3.1. Data 

Our dataset consists of day-ahead electricity price data downloaded from the ENTSO-E 

transparency platform (see transparency.entsoe.eu). The dataset begins on 01.01.2015 and 

ends on 31.12.2021. In figure no. 3, we can see an overview of the full dataset. We can 

immediately deduct some special characteristics of the German electricity market, that being 

the occurrence of price spikes in both the positive and negative directions. 

The model is applied to the German spot electricity market. This specific market was chosen 

for the implementation of the presented model, because it is considered to be a well-

developed market, which is why the model could be generalised for other spot-type energy 

markets. 

The proposed data set is divided into two subsets, the first being represented by energy prices 

between 2015 and 2018, used to estimate the parameters of the presented model, and the 

second, between 2019 and 2021, used to test its accuracy, this testing having been carried out 

outside the sample used for estimation . 
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Figure no. 3. German electricity prices time series 

 

3.2. Evaluation metrics and statistical tests 

Every good EPF paper should have clear evaluation metrics. As already mentioned in (Lago 

et al.; 2021), the most commonly used evaluation metrics used to evaluate point forecasting 

models are the mean absolute error (MAE), the root mean square error (RMSE), and the mean 

absolute percentage error (MAPE). 

                , 

                , 

                  ,                                                                          (10) 

with pd,h and pˆd,h the real, respectively, forecasted prices on day d and hour h, and Nd 

representing the number of days in the test dataset. 

However, MAPE is typically dominated by the times of low prices and is likewise not very 

instructive, because MAPE values grow very big with prices near zero (independent of the 

real absolute mistakes). To solve some of the issues that come from these facts, the symmetric 

mean absolute percentage error is defined as: 

RMSE = 

MAPE = 

MAE = 
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                                                                                      (11)              

Further improvements can be made to these metrics by scaling them. If we extrapolate MAE 

by an in-sample error of a naive forecast, we obtain the mean absolute scaled error (MASE). 

                                                                                      (12)  

with the ith price of the training dataset represented by , and the naive forecase of , 

represented by  is the number of training (in-sample) data points and n is the 

number of testing (out-of-sample) data points. 

On top of that, if we normalise MAE with a naive forecast based on the out-of-sample 

dataset, we obtain the relative mean absolute error (rMAE). 

                                                                                (13)  

As already argued by (Lago et al.; 2021), a good EPF paper should always use a combination 

of these metrics in order to provide a more accurate description of the developed model, the 

reason for which, we are considering these five metrics for evaluating our proposed model: 

MAE, RMSE, sMAPE, MASE, and rMAE. 

 

4. Results and interpretation 

4.1. Descriptive statistics 

The density function of the dataset can be seen in figure no. 4, and it resembles a normal 

distribution, a fact which is confirmed by the Jaruqe-Bera test result, which can be seen in 

Table no. 1. The dataset consists of 52.608 observations of price, with a mean of 34.563 

EUR/MWh, and a standard deviation of 16.608. We have also pre-conducted an ADF test 

which confirms that we are dealing with a stationary process of the price of electricity 

between 2015-2021 in Germany. 

In the present case, an estimated measurement of skewness indicates that the distribution is 

not symmetric. Additionally, this time series displays lepto-kurtic behavior based on a high 

level of kurtosis. Also, the high value of the Jarque–Bera (JB) test confirms this significant 

deviation from normality. This means that the German electricity time series does not follow 

a normal distribution. 

 In addition, unit root tests, specifically Augmented Dickey-Fuller (ADF), were performed, 

which test the null hypothesis of non-stationarity (unit root) against the alternative hypothesis 

of stationarity in a time series. ADF testing of the German electricity time series indicates that 

it is significant to reject the null hypothesis, stating that the time series are non-stationary. 

Thus, this series is stationary and suitable for further tests related to this study. 

MAPE = 

MASE = 

rMAE = 
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Table no. 1. Descriptive statistics for the German next-day electricity price 
Electricity price 

Observations 52.608 

Mean 34.563 

Standard 16.608 

Minimum -130.090 

25% 25.920 

50% 34.020 

75% 43.590 

Maximum 200.040 

Kurtosis 7.808 

Skewness -0.216 

Jarque_bera test 
81047.046 

(0.000)*** 

ADF test 
-15.288 

(0.000)*** 

 
Note: Levels of significance of Jarque-Bera and ADF tests are indicated between squared brackets.  

*** Denotes significance at 1% level. 

 

4.2. Forecasting results 

4.2.1 Forecasting using SARIMA model 

In Figure. no. 4 we can observe that SARIMA can handle the forecasting pretty well on its 

own, but since data can have some irregularities, SARIMA forecasts are far from perfect. The 

errors for the SARIMA model can be seen in Table no. 2. 

 
Figure no. 4. Original time series and SARIMA model predictions 
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4.2.2. Forecasting using the NeuroFuzzy – LLWNN model 

The Fuzzy LLWNN model in figure no. 5, does not seem to perform much better than the 

SARIMA model, when taken separately. If we look at the errors in Table no. 2, they seem to 

confirm this behaviour, by showing only minor improvements. 

Table no. 2. Error comparison between the component models and the final 

hybrid univariate model 

Figure no. 5. Original time series and Fuzzy-LLWNN model predictions 

 

4.2.3. Forecasting based on univariate hybrid model 

 Ensemble Empirical Mode Decomposition Results (EEMD) 

This model shows the 9 Decomposed components or the intrinsic mode function (IMF). As 

we see here, the first component, i.e., IMF0, is the most complex component. We expected 

that the prediction accuracy of IMF1 will be the worst among all IMFs. And moving from 

IMF0 to IMF8, the prediction accuracy will be improved. 

In the second stage, each IMF is considered an independent time series. By splitting the 

original series data into IMFs, that represent simpler components, the data is simplified, and 

the forecasting becomes more facile. In the third stage, the forecasted values of the IMFs are 

added together, in order to build the forecasted electricity price. 

Model MAE RMSE sMAPE% MASE rMAE 

SARIMA 16,060 20,281 43,825 1,682 2,204 

Fuzzy-LLWNN 14,099 18,798 41,934 1,476 1,935 

Hybrid 6,101 9,366 23,954 0,639 0,837 
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As seen in figure no. 6, regular behaviour is observed in IMF6 to IMF8, which can be 

attributed to the periodic features of electricity prices. Thus, the SARIMA model will be used 

to forecast these regular components. Besides, irregular behaviour is found in IMF1 to IMF5. 

Thus, the Fuzzy-LLWNN will be established to predict these irregular components. 

 

Figure no. 6. The original time series decomposed using the EEMD algorithm for 9 IMFs 

 Hybrid Forecasting 

The forecasting results of the hybrid model, obtained by applying the forecasts to each IMF 

described in the above paragraph, are clearly performing better than each model when taken 

separately, as can be seen in figure no. 7.  

 
Figure no. 7. The original time series and the proposed hybrid model predictions 
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Moreover, this performance seems to be supported by the approximate halving of all of the 

errors.  

Conclusions 

The hybrid model developed in this paper demonstrates a remarkable performance, both by 

referring to the independent operation of its basic components, as well as from the perspective 

of a comparative evaluation made by means of the parameters that are widely used in 

specialised literature. This is simply a first step, as in the future improvements can be made 

by replacing SARIMA with a more complex, multivariate model, which can take into account 

more external variables or could even explain price changes that occur due to certain events 

on the international scene. 

 The proposed methodology brings an element of novelty to the specialised literature by 

choosing the components of the hybrid model itself. The obtained results have also been 

identified outside of the estimation sample, and this gives the methodology a degree of 

robustness for its use in future applications. 

Accurate predictions represent a strong point of the hybrid SARIMA/Fuzzy-LLWNN 

methodology used in this article. The electricity price forecasting algorithm in the spot market 

in Germany can be hawked to applications already operational in the market, some of them 

obvious, such as the use of information for trading, others less obvious, such as the use of 

methodology predictions in order to improve the efficiency of electricity consumption 

according to the time interval, as well as within the "internet of things" type technologies. 

The correlation matrix on the basis of which the evolution of the electricity market price 

developed in this model can be forecast is not infallible, as it works at an optimal level under 

normal market conditions. Beyond “black swan”-type events (very low-probability events, 

unpredictable) and various discontinuities, however, the systemic modeling capability 

provided by the hybrid SARIMA/NeuroFuzzy-LLWNN algorithm generates a high-fidelity 

picture of market evolution. 

 However, the proposed methodology also has more or less obvious limitations. First, it can 

only work on time series that exhibit the characteristics of the spot energy market. Time 

series relating to the prices of financial derivatives, including energy derivatives, cannot be 

subject to this methodology. Obviously, time series outside the field of electricity also have 

fundamentally different characteristics, which exclude them from the future application of the 

presented methodology. 

Special, “black swan”-type events, such as the war in Ukraine, which led to an unprecedented 

increase in the prices of energy and energy products, are also limitations of the proposed 

methodology, which is why the data series used here stop in 2021. However, the presented 

application is considered important and should be used under normal market conditions. 

The proposed model can work very well for spot energy data series and can be extended to 

more global spot electricity markets, depending on data availability, as future research 

directions. 
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