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Abstract 

The adoption of wind energy has grown significantly in recent years. New, cost-effective 

technologies have been developed, led by customer awareness of green technologies and a 

legal framework proposed at the European Union level. The stochastic nature of wind speed 

is transferred to wind turbine output, making wind energy difficult to predict. The main scope 

of predicting wind energy production is to be proactive in balancing and reserving energy to 

meet demand. When the prediction identifies a potential gap between supply and demand, 

additional energy from other sources must be generated and supplied. Creating a synergy of 

physical devices through advanced sensing capabilities, software, storage and analytics 

capabilities, the Industrial Internet of Things is enabling the effective transition to wind 

energy through automation by removing many of the disadvantages in a way that has recently 

become accessible. This research focuses on the data analytics, proposing a fast univariate 

network-based approach for wind energy prediction, using Feed Forward Neural Networks, 

Recurrent Neural Networks, Long-Short Term Memory, Gated Recurrent Unit, and 

Convolutional Neural Networks. Moreover, by introducing the theoretical fundamentals, the 

implementation method and the hyperparameters of the final models, this article becomes 

unique in the context of wind energy. At the time of this study, no prior research studies have 

presented a direct comparison between feedforward, recurrent, and convolutional neural 

networks ‒ these being the most important in the field of supervised learning. 

Keywords: machine learning, artificial neural networks, wind energy, internet of things, 

industrial internet of things 
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Introduction 

The renewable energy sector has experienced considerable global growth in the last few years. 

This growth comes with huge challenges, in terms of asset management. Wind turbine site 

selection can lead to geographically dispersed layouts, which makes the management of these 

installations a challenging task. By adopting an Internet of Things (IoT) approach, 

geographical dispersion-related problems can be overcome by enabling remote descriptive, 

diagnostic, and predictive analytics to minimize operational costs by maximizing production 

and preventing unplanned, costly downtimes. Predictions of wind energy is one of the core 

data needed in real-time control of power systems: to be close to the real-time ideal means 

delivering fast predictions, in sync with entire system dynamics. The higher the prediction 

accuracy, the higher the efficiency of the system, resulting is savings for all investors. IoT 

can enable companies across the entire energy supply chain to achieve their targets. The 

continuously increasing adoption of these renewable technologies has led to a situation that 

was not previously possible: small installations built by businesses or homeowners. These 

installations were initially built to cover daily basic energy consumption, but they can also 

send energy into the power grid. This reinforces the dispersed character of current power 

systems and creates a new challenge, in terms of optimal grid management. However, data 

from smart energy meters has the advantage of driving improvements for consumers, for 

example, by identifying waste, such as power-hungry devices or automated heating, 

ventilation, and air conditioning systems. The growth of wind power systems is driven by 

European Commission and Government legislations. For the next 10 years, through the 

European Green Deal, there are precise targets for the minimum percentage of renewable 

energy to be used and the reduction of greenhouse gas emissions (European Commission, 

2020). Even though most renewable energy resources were identified decades ago, they have 

not been able to replace fossil fuel-based sources because of their intermittent and variable 

availability. The solution for this has been to gradually add them to existing power grids, 

which has been possible due to the development of smart grids that include features, such as 

power consumption and output power prediction. In this way, a feedback loop between 

customer and supplier is created. Then, the gap between demand and supply can be covered 

using fossil fuel-based sources, overcoming the negative impact of availability. The 

successful integration of wind-based technologies in the existing electricity grid depends on 

the accuracy of wind prediction. Short-term forecasting plays an important role, for both 

operational and energy trading activities. The IoT, by definition, covers every piece of 

technology with the capability to communicate with other devices, systems and networks 

(Ashton, 2009). Industrial professional and academics split the IoT in two branches: 

Industrial Internet of Things (IIoT) and Customer Internet of Things (CIoT) (Al-Ali, 2016). 

IIoT is represented by smart grids, factories, cars, and machines, while CIoT is oriented to 

the customer and their devices, such as smart home devices, connected cars and wearables. 

IIoT and CIoT are connected, enabling information transfer between them. This research 

aims to provide an overview on the use of predictive analytics based on neural networks and 

IIoT in the wind energy industry. The focus is on analytics, by identifying the theoretical and 

practical aspects of using network-based algorithms for rapid, short-term univariate 

predictions of wind energy production, using Romanian-based wind turbines data for the case 

study. Finally, the results of the best performing models belonging to each of the five selected 

typologies are compared, both in terms of generalization capacity and training time. 
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1. Literature review 

Methods for wind energy prediction can be grouped depending on the timescale (short-term, 

medium-term, long-term), model type (physical, statistical, machine learning, hybrid) and 

the variety of parameters (univariate, multivariate). Physical models are built on the 

exogenous variables that influence energy production. However, being deterministic, they 

are dependent on the location and physical properties of the environment in which the wind 

turbines are located, making them less versatile than other models. In these models, another 

important aspect is that for all methods of prediction, either the output energy is predicted 

directly, either firstly wind speed is predicted and then based on power curves, the energy is 

determined analytically. Most literature uses the indirect method, as described below. An 

error correction model, based on a bidirectional gated recurrent unit neural network, is 

proposed to correct the error of the numerical weather prediction of wind speed (Ding, et al., 

2019). The results outperformed the selected benchmark models for short-term power 

prediction and the same approach could also be used for medium and long-term predictions. 

Using the same univariate machine learning model, Long-Short Term Memory (LSTM) and 

One-dimensional Convolutional Neural Networks (1D-CNN) can be implemented (Fukuoka, 

et al., 2018). In this study both LSTM and 1D-CNN provide better performances than the 

Feed Forward Neural Networks (FFNN). Another way to extract meaningful information 

from a time series is represented by Empirical Wavelet Transform (Wang and Hu, 2015), 

then the GPR (Gaussian Process Regression) model combines, in a nonlinear way, the 

predictions generated by other models like ARIMA (Autoregressive Integrated Moving 

Average), ELM (Extreme Learning Machine) and SVM (Support Vector Machine). This 

method is more accurate than the standalone models for predicting short-term wind speed at 

two sites. An example of ARIMA implementation on real operational data illustrates the 

improvement in reducing energy buffers, resulting in a cost reduction by accurately 

predicting wind speed (Eldali, et al., 2016). A similar outcome can be achieved by direct 

predicting of the wind power (Pant and Garg, 2016). The model performance can also be 

improved by dividing the year into months and building separate models for each of them 

(Chen and Lai, 2011). The comparison of ARIMA and FFNN reveals that for each month, 

and for one hour, two hours, three hours, and four hours ahead, FFNN outperforms ARIMA. 

Under the direct wind energy prediction, a hybrid approach has been tried that consists of 

using a non-linear model for the non-linear component of the time series, and a statistical 

model for the linear factor. An example of this is using ARIMA for the linear and RBFNN 

(Radial Basis Function Neural Network) for the non-linear component. For large data 

similarity and a high-density time series, a preprocessing step for extracting the change trend 

information can be used (Liu, Ding and Jia, 2020). A K-means clustering method is proposed 

for obtaining a new time series that compresses the data, facilitates storage and utilization, 

and eliminates noise. The resulting time series is then used as input for ARIMA, SVM, GPR, 

ESN (Echo State Network), GRU (Gated Recurrent Unit), A-RNN (Attention Recurrent 

Neural Network), Input-Attn-RNN (Input Attention Recurrent Neural Network) and DA-

RNN (Dual-stage Attention based Recurrent Neural Network). Except SVM, the results from 

all of the selected models were similar, proving the versatility of the network-based models. 

Machine learning-based approaches enable researchers to study wind energy production 

without having much industry experience. These flexible and highly scalable models 

outperform existing models in fast univariate prediction tasks. Currently, there is a gap in 

direct univariate wind energy prediction. Furthermore, a comprehensive analysis of the most 

important network-based models is necessary, specifically to align with the challenges faced 
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by the wind energy industry. The enabler for implementing these machine learning-based 

solutions is facilitated by IIoT technologies firstly by the fact that operational data is readily 

available for consumption, and secondly by the fact that the results of predictive analyzes can 

be propagated backwards for real-time optimization of energy production. 

 

2. Theoretical fundamentals  

2.1. Feed Forward Neural Networks 

The artificial neural network (ANN) concept was first introduced by McCulloch and Pitts 

(1943). Inspired by the human brain, ANN aims to replicate the way information flows 

between neurons. However, only after backpropagation was introduced (Rumelhart, Hinton 

and Williams, 1986) did ANN start to demonstrate its capabilities. By implementing 

backpropagation, the synaptic weights between neurons are updated according to the expected 

result. The value of the synaptic weight provides information about how important the inputs 

are to achieve the maximum possible accuracy. FFNN represents an instance of the ANN in 

which the information is processed while passing forward through the network, traveling from 

the input layer through hidden layers and, finally, the output layer (figure no. 1). Each layer 

consists of neurons, representing the computational units of the network. 

 

Figure no. 1. Feed Forward Neural Network high level architecture 

The neurons only communicate with the outside world if they are in the input or output layer. 

The neurons of the hidden layers are receiving inputs from the neurons upstream and are 

sending the information downstream, either to another hidden layer or to the output layer. All 

neuron inputs have a synaptic weight (wi), based on the inputs (xi) and the impact of the 

output (yi) . The output of a neuron can be calculated as a weighted sum of the inputs 

(equation 2) on which the activation function f is applied (equation 1). 

y=f(z) (1) 

z= ∑ xiwi+b

n

i=1

 
  

(2) 

Where 𝑏 represents the bias. 
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Using the activation function introduces non-linearity into the neuron’s output. The neuron 

will be fired if the output value is greater than a given threshold, or it can be inhibited if the 

output is smaller than the threshold (equation 3). For the RELU (rectified linear unit) 

activation function: 

y=f(z)=max(0,z)  (3) 

Backpropagation means the information travels back from the output layer to the input layer. 

The model’s error is used to update the network parameters, with respect to the objective 

function (i.e., error minimization). The way network parameters are updated is governed by 

the optimization algorithm (Kingma and Ba, 2015). 

2.2. Recurrent Neural Networks 

A Recurrent Neural Network (RNN) can be obtained when feedback connections are added, 

and are performant while using sequential data. The applications in the time series field are 

important since the prediction of a time step may depend on multiple steps backwards. The 

RNN can be defined using the following equations (Pascanu, et al., 2014): 

ht=fh(xt,ht-1)=ϕh(WTht-1+UTxt) (4) 

yt=fo(ht,xt)=ϕo(VTht) (5) 

Where xt= input vector; ht= hidden state;  ht-1= previous step hidden state; yt= output vector; 

W, U, V= parameter matrices and fh, fo=activation functions. The input xt and the previous 

hidden state ht-1 are concatenated. The newly created vector contains information of both the 

current input and the previous state. This vector is passed through a tanh activation function, 

resulting in output of the current state. The tanh layer regulates the output by fitting the values 

between -1 and 1 (figure no. 2). 

 

Figure no. 2. Recurrent Neural Network high level architecture 

While FFNN is using backpropagation for training, RNN is using backpropagation through 

time (BPTT) (Rumelhart, Hilton and Williams, 1986). BPTT is suitable for network 
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applications where model parameters are updated in discrete time steps. The design of the 

RNN is vulnerable to exploding or vanishing gradient issues (Bengio, Simard and Frasconi, 

1994). 

2.3. Long-Short Term Memory 

Long-Short Term Memory design (LSTM) (Hochreiter and Schmidhuber, 1997) retains the 

capabilities of the RNN to work with time series data, but it reduces information morphing 

and the issues related to vanishing and exploding gradients. The novelty of LSTM (figure no. 

3) lies in a gating system that can manage the way information flows: the internal gating 

system ensures that input information can be kept or forgotten, according to its significance 

to the problem at hand.  

 

Figure no. 3. Long-short term memory high level architecture 

According to the theoretical fundamentals in the cell state relevant information of the earlier 

steps is stored, reducing the negative impact of information morphing. A network’s gating 

system consists of three gates: the input gate, the forget gate and the output gate. These three 

gates are essentially neural networks. As the tanh activation function squashes the results 

between -1 and 1, the sigmoid activation function performs the same task, but within 0 and 

1. The forget gate then decides which information of the previous cell state is to be kept or 

discarded (equation 6).  

ft=σ(xtU
f+ht-1Wf+bf) (6) 

Where Uf and Wf are the weights of the current state input and previous cell output, with 

respect to the forget gate. The input gate consists of two mathematical layers. The first layer 

decides the new information that will be stored in the cell state (equation 7). This layer acts 

in a similar way to the forget gate: current state input and previous state cell output are passed 

through a sigmoid function. The differentiation is made by considering its own bias and 

weights for the current input and previous state cell output, bi, Ui and Wi, respectively. 

𝑖t=σ(xtU
i+ht-1Wi+bi) (7) 
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The second layer of the input gate takes the same current input and previous cell state and passes 

them through a tanh activation function (equation 8). This time, the bias and the weight matrices 

are specific to this second layer. The new candidate for the cell state is calculated as: 

Ct̂=tanh(xtU
g+ht-1Wg+bc) (8) 

The new cell state: 

Ct=σ(ft∙Ct-1+it∙Ct̂) (9) 

At this point, it decides what information is to be kept from the previous cell state, through 

the pointwise multiplication of the forget gate vector with the previous state cell vector. The 

newly computed cell state (equation 9), current input 𝑥𝑡 and previous hidden state ht-1 are 

then used to compute a new hidden state. The output is calculated using the current state input 

and the previous hidden state, both with weights appropriate for this gate: 

ot=σ(xtU
o+ht-1Wo+bo) (10) 

Through a tanh activation function, the newly calculated cell state Ct is regulated and further 

multiplied with the output gate result: 

ht=tanh(Ct)∙ot (11) 

Now the current cell state Ct, known as long-term memory and the hidden state ht, known as 

short-term memory are computed. The logic described above is repeated for all the new time 

steps considered. The output of each time step is obtained using the short-term memory. 

2.4. Gated Recurrent Unit 

GRU it is a relatively new design (Cho, et al., 2014), which has been gaining popularity since 

its inception. As with the LSTM, this design aims to reduce the issues related to long-term 

dependencies and vanishing or exploding gradients. GRU logic is similar to that implemented 

in the LSTM, in that the information flow is regulated by a gating system (figure no. 4).  

 

Figure no. 4. Gated recurrent unit high level architecture 
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However, the gating system of GRU consists of only two gates: an update gate and a reset 

gate. Another difference is represented by the cell state, which is not part of GRU. Both the 

reset and update gate functionality are governed by the sigmoid activation functions. In this 

way, only relevant data is kept. The reset gate has a similar functionality as LSTM’s forget 

gate, deciding what information from the previous hidden state is to be discarded. 

rt=σ(xtU
r+ht-1Wr+br) (12) 

The update gate works in the same way as LSTM’s input gate, filtering the information 

coming from the previous state and the information of the current input, selecting the new 

information to be added. 

zt=σ(xtU
z+ht-1Wz+bz) (13) 

Where r (equation 12) and z (equation 13) indicate that the weights are proper for the reset 

gate and the update gate. If the values of the update gate are close to one, then the information 

of the old state is kept, while the current state input is ignored. The reset gate ensures the 

short-term dependencies are captured, while the update gate does the same but for long-term 

dependencies. The new hidden state candidate is governed by the following equation: 

ht̂=tanh(xtU
ĥ+(ht-1∙rt)Wĥ+bht̂) (14) 

After assimilating the effect of the reset gate into the new hidden state candidate, then the 

impact of the update gate output is incorporated into the current hidden state: 

ht=(1-zt)∙ ht-1+zt∙ht̂ (15) 

In this way, GRU manages to deal with short and long-term dependencies and gradient-

related issues with less calculations, being less computationally expensive than the LSTM.  

 

2.5. Convolutional Neural Networks 

Convolutional Neural Networks (CNN) represent a branch of neural-based models invented 

for computer vision tasks, initially for handwritten digit recognition (Le Cun, et al., 1990). 

Modern CNNs started to be used on one-dimensional (1D CNN) sequential data of 

applications, like time series, text, or audio analysis (Zhang, et al., 2020). CNNs might result 

in more computationally efficient architectures due to the ease of computation parallelization 

across graphical power unit cores and fewer parameters, compared to fully-connected 

architectures. 

A typical 1D CNN configuration for a time series prediction problem consists of: input data, 

a convolutional layer, a pooling layer, a concatenation layer, a dense layer and an output layer 

(figure no. 5). Convolutional layer processes the input data and learn to extract the features 

appropriate for the regression made by the dense layer (Abdeljaber, et al., 2017). 
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Figure no. 5. One-dimensional convolutional neural network (1D CNN)  

high level architecture 

 

The forward propagation in a 1D CNN layer uses the following equation (Kiranyaz, et al., 

2020): 

xk
l =bk

l + ∑ conv1D(wik
l-1,si

l-1)

Nl-1

i=1

 (16) 

Where bk
l  = bias of the kth neuron at layer l;wik

l-1 = kernel from the ith neuron at layer l-1 to 

the kth neuron at layer l; si
l-1 = output of the ith neuron at layer l-1; xk

l  = input. By passing 

through the activation function, the input xk
l , the intermediate output yk

l  can be obtained.  

yk
l =f(xk

l ) (17) 

As a step-by-step approach, first a kernel must be selected, which is then translated along the 

time series, one step at a time. For each step, the dot product of the kernel is calculated and 

fitted to the time series. The convolution is represented by the resulting sequence of dot 

products between the kernel and time series (End to End Machine Learning School, 2020). 

The pooling layer functions to reduce the number of trainable parameters and to retain the 

information. Flattening the pooling layer output results in a one-dimensional array, which 

has the right shape for using in the fully connected layer, which is essentially a feed forward 

neural network. 

 

3. Methodology 

Between 2005 and 2017 the amount of wind energy produced by the European Union 

increased by 414%. Romania is one country which has reached the European Commission 

target for renewable energy for 2020 (European Court of Auditors, 2019), having a total wind 

power capacity of 3040 MW (Sava, 2020). In 2018, 42% of Romania’s energy consumption 

was represented by renewable energy, while the average in the European Union is 32%. Of 

this, 15% of Romania’s renewable energy is created by wind energy (Botea, 2020). This 
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impressive increase has resulted in growing complexity of the tasks needed to ensure optimal 

and safe operation of wind energy, adding uncertainty to the power systems. The uncertainty 

and volatility have a significant impact, since the contribution of wind power to the total 

power is increasing. Wind turbine operators need to deal with these previously mentioned 

challenges, without impacting the grid or creating disruptions to the customers. IoT 

technologies can create mechanisms for automatic monitoring and controlling systems, 

enabling the operator to implement strategies with respect to these challenges. Ultimately, 

the wind energy prediction results are used to support production, in order to deliver energy 

without suffering gaps in supply.  

A high-level view of a typical IIoT architecture consists of three major layers: the connect 

layer, the acquisition layer and the analytics layer (figure no. 6). 

 

Figure no. 6. High-level overview of the proposed IIoT architecture  

The connections of these layers are bidirectional (Krishna, et al., 2018) and compliant with 

cyber security protocols. The connect layer consists of physical devices, such as sensors for 

monitoring and actuators for control. Besides sensors to record data, these devices must be 

able to connect to the IT infrastructure for sending and receiving data. Additionally, data 

standardization and transformation can be made. The connection to the internet is done using 

an IoT gateway. This device has bigger computational capabilities compared to the existing 

devices on the connect layer and is capable of aggregating data from multiple sensors and 

sending it in the cloud. As part of the acquisition layer, cloud hosted servers host the data 

received from IoT gateways. Cloud storage has advantages, such as scalability, usability, 

accessibility, security, cost-efficiency, and automation (Singh, 2020). In the analytics layer, 

the real-world operational data is transformed into actionable insights for managing and 

improving business operations. The analytics layer can contain various types of data analytics 

(Hanski, et al., 2018): this study focuses on the descriptive and predictive analytics. On top 

of the analytics layer, the Cross-Industry Standard for Data Mining (CRISP-DM) is 

implemented (IBM, 2019). This robust methodology gives a structured approach for data 

mining projects. The step-by-step guidance describes the main tasks to be completed during 

each phase and the interactions between these phases. CRISP-DM is essential in real-world 

business cases and consists of the following six phases: business understanding, data 

understanding, data preparation, modeling, evaluation, and deployment. The first phase, 

business understanding, has been covered extensively in the previous sections. The second 

phase of CRISP-DM is represented by data understanding. The data was made available by 

Open Power System Data (Neon Neue Energieökonomik, 2020). The wind energy production 

time series is aggregated by hour and consists of 15336 data records between 01/01/2019 and 

30/09/2020 (table no. 1). Open Power System Data is a platform for data gathered from the 

European power system, with freely available data for researchers. 
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Table no. 1. Wind energy production time series description 

  count mean std min 25% 50% 75% max 

Wind energy 

production 
15336 774.03 665.99 0 237 573 1165.5 2809 

Note: Count = total number of data points; std = standard deviation; min = minimum value; 25% = 

first quartile; 50% = median value; 75% = third quartile; max = maximum value. 

Figure no. 7 shows the average wind energy production, plotted by day. This data confirms 

the intermittent nature of wind energy. 

 

Figure no. 7. Wind energy production daily average 

For this time series there are no quality issues, such as missing data, outliers or differences 

in data format. In the modeling phase, five techniques were considered: FFNN, RNN, LSTM, 

GRU and CNN, described in detail in Section 2. Selected metrics for the evaluation phase 

enable an objective comparison. The three metrics selected are: coefficient of determination, 

mean absolute error (MAE) and training time. The coefficient of determination (R2) measures 

how much of the variability in the outcome can be explained by the model (equation 18). 

This coefficient is bound between 0 and 1. The closer to 1, the better the model is in 

explaining the variability in the outcome. The MAE averages the absolute values of the 

prediction errors (equation 19). This mean does not take into account if the error value is 

negative or positive. 

R2=1-
∑ (yi-ŷi)

n
i=1

∑ (yi-ŷi)
n
i=1

2
 (18) 

MAE=
1

n
∑|yi-ŷi|

n

i=1

 (19) 
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Where yi is the actual value and ŷi is the predicted value. Training time assesses the resources 

spent on training and if the model training can happen within consecutive timestamps. The 

sixth phase of CRISP-DM, deployment, has not been covered in this research. The entire 

experiment happened offline. 

All the proposed algorithms were implemented in Python, using Keras (Chollet, 2017) with 

TensorFlow on the backend. The hardware setup consisted of a Dell Precision 7350 equipped 

with a Nvidia Quadro P2000 GPU, 32 GB RAM, Intel Core i5-8400H @ 2.5 GHz CPU, 

Windows 10, and Python 3.6.10. The learning process used a supervised paradigm. Pairs of 

input-output training data subset records were fed into the models during the training process. 

The models then learned to generalize based on this training data. Testing happened using 

unseen data  ‒ i.e., a test data subset that was not part of the training. During the testing phase, 

the performance of the models was assessed (Fawcett and Provost, 2013).  

 

4. Results and discussion 

For the selected models, the final performance and training times represented the average of 

three trials, with different ratios between training and testing data subsets (table no. 2 and 

figures no. 8-10). This ensured meaningful results, unrelated to the data split. 

Table no. 2. Parameter selection 

Model Parameters 

Results 

𝑅2 MAE 
Training 

Time[s] 

FFNN batch=8, e=197, nn=47, hl=2, opt=Adam, 

lr=0.001, wi=Xavier Uniform, activation=RELU 

0.963 82.3 350.7 

RNN batch=128, e=20, nn=128, hl=2, opt=Adam, 

lr=0.001, wi=Xavier uniform, activation=RELU 

0.971 70 93.3 

LSTM batch=128, e=29, nn=128, hl=2, opt=Adam, 

lr=0.001, wi=Xavier uniform, activation=RELU 

0.972 69.9 701.8 

GRU batch=128, e=25, nn=128, hl=2, opt= Adam, 

lr=0.001, wi=Xavier uniform, activation=RELU 

0.971 70 427.5 

 

1D 

CNN 

batch=32, e=12, nndl=64, hldl=1, filters=64, 

kernel=3, pool=2, opt=Adam, lr=0.001, 

wi=Xavier uniform, activation=RELU 

0.961 82.5 17.6 

Note: FFNN =  feedforward neural network, RNN = recurrent neural network, LSTM = long short-

term memory, GRU = gated recurrent unit, 1D CNN = one dimensional convolutional neural network, 

batch = batch size, e = number of epochs, nn = number of neurons on hidden layer, hl = number of 

hidden layers, opt = optimization algorithm, lr = learning rate, wi = weights initialization, activation 

= activation function, nndl = number of neurons dense layer, hldl = number of hidden dense layers, 

filters = number of filters, kernel = kernel size, pool = max pooling size. 
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Figure no. 8. Comparison of coefficient of determination and training time  

 Note:  FFNN = feedforward neural network, RNN = recurrent neural network, LSTM = long short-

term memory, GRU = gated recurrent unit, 1D CNN = one dimensional convolutional neural network, 

R2 = coefficient of determination.  

 

 

Figure no. 9. Comparison of coefficient of determination and mean absolute error  

 Note:  FFNN = feedforward neural network, RNN = recurrent neural network, LSTM = long short-

term memory, GRU = gated recurrent unit, 1D CNN = one dimensional convolutional neural network, 

R2 = coefficient of determination, MAE = mean absolute error.  

 

Due to the highly configurable character of network-based models and their outstanding 

capability to learn and generalize, the results can be considered meaningful and reliable. 

There are no significant differences between RNN, LSTM and GRU, in terms of 𝑅2 and 

MAE. However, the LSTM training time is expected to be the longest, due to its complex 
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mechanisms for capturing short ‒ and long-term dependencies. Among the selected models, 

LSTM is the most computationally expensive. FFNN can be considered the least 

sophisticated model, but it provides a reasonable 𝑅2 in half the training time of the LSTM. 

According to the theoretical considerations, 1D CNN was the least expensive, in terms of 

computational power. Even if 𝑅2  results of the considered models appear similar, MAE 

provides another perspective (figure no. 9): for a real-world business case the increase of 

MAE, even the training time takes just few seconds, might not be feasible. 

 

Figure no. 10. Wind energy prediction by hour 

Note: FFNN = feedforward neural network, RNN = recurrent neural network, LSTM = long short-term 

memory, GRU = gated recurrent unit, CNN = convolutional neural network. 

 

Conclusions 

The energy industry must keep pace with the other industries that it is setting in motion. 

Energy demand, and the way customers use it, is becoming more complex. The pattern of 

consumption is highly influenced by the devices used, while the distributed character of the 

power systems is influenced by household or small business renewable energy systems. The 

key to safe and optimal operation of power grids relies on predictability across the entire 

energy supply chain. IoT technologies can act as enablers, gathering together all the “things” 

to create synergy. Geographically dispersed assets can, with the help of IIoT technologies, 

be managed more efficiently, preventing and minimizing the costly downtimes, while 

maximizing the output and reducing the negative impact of production volatility. Through 

IIoT, multiple energy resources, such as solar, geothermal, hydro and biomass, can be 

integrated and managed. As well as the IIoT, the CIoT is crucial for providing an end-to-end 

solution. The predictive analysis results from this case study show that LSTM produced the 

best prediction. Even with the long training time, the impact of such a prediction in a business 

will create the premises for a proper hardware upgrade to reduce the training time. This will 

allow the prediction to be made within consecutive data points for a more discrete time scale. 

MAE gives a measure of the performance in relation to an absolute value, namely the energy 

produced. In the case of RNN, LSTM, and GRU, the MAE values are differentiated at the 

decimal level and even if the unit of measurement is MW, at the time of deployment in 

production other elements must be considered. For a fully informed deployment, it is 
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important that the three models are used in parallel to determine the best solution. The 

complexity of the tasks for identifying the parameters and the stability of the models or the 

frequency with which the training must be repeated are decisive in selecting the best solution. 

The values of R2 are close between the selected models and are also close to the value 1, 

meaning that the models can, to a large extent, explain the variability in the results. 

Comparing the results with those obtained by other researchers was not possible due to the 

way the metrics are typically selected; specifically, the metrics allow a comparison of models 

that are trained using the same data set, but do not allow a comparison of models trained on 

different data sets. In this regard, the use of the coefficient of determination, the complete 

description of the models’ parameters, and the software and hardware configuration will 

allow other researchers to use this article for comparative studies. The performance of the 

models might be increased by adding exogenous variables, such as wind speed, wind shear, 

ambient temperature and pressure, dew point temperature and humidity. 
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