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Disentangling Covid-19, Economic Mobility,

and Containment Policy Shocks∗

Annika Camehl† Malte Rieth‡

November 18, 2022

Abstract

We study the dynamic interaction between Covid-19, economic mobility, and con-

tainment policy. We use Bayesian panel structural vector autoregressions with daily

data for 44 countries, identified through traditional and narrative sign restrictions.

We find that incidence shocks and containment shocks have large and persistent ef-

fects on mobility, morbidity, and mortality that last for 1-2 months. These shocks

are the main drivers of the pandemic, explaining between 20-60% of the average and

historical variability in mobility, cases, and deaths worldwide. The policy tradeoff

associated to non-pharmaceutical interventions is 1pp less economic mobility per day

for 8% fewer deaths after three months.

Keywords: Epidemics, non-pharmaceutical interventions, structural vector autore-

gressions, coronavirus, Bayesian analysis, panel data.

JEL-Codes: C32, E32, I18.

Covid-19 is the largest risk to human health, lives, and the world economy in modern

peacetime history. Researchers and policy makers around the globe are trying to understand
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the evolution of the pandemic, appropriate policy responses, and the associated tradeoffs.

There is a rapidly growing literature on the causes and consequences of the pandemic

as well as the effects of containment policies. Many empirical studies focus on selected

drivers, consequences, or policies in partial equilibrium and over short time horizons.1 The

macroeconomic literature, on the other hand, models the dynamics of epidemics, economic

decisions, and health policy jointly and over longer horizons, but it is largely theoretical.2

In this paper, we analyze the dynamic interactions between the Covid-19 pandemic,

economic mobility, and containment policy empirically, in general equilibrium, and over

longer horizons. We use Bayesian panel structural vector autoregressions. Our model

comprises three epidemiological variables (cases, deaths, and a containment policy index)

and two economic variables (an economic mobility index and local stock prices).

We face two main challenges. First, we need sufficiently many observations to identify

exogenous variation in each of the variables and to estimate their structural relations reli-

ably at macroeconomically relevant horizons. Therefore, we use daily data collected across

44 countries. The large number of observations (about 10,000) allows for identifying the

economic-epidemiological dynamics over several months and the cross-sectional variation

provides counterfactual trends. The countries in the sample account for 81% of worldwide

infections and deaths due to Covid-19 and for 72% of global GDP.

The second key challenge is identification of the structural shocks as epidemics, economic

mobility, and containment policy are determined simultaneously. We identify three types

of shocks: incidence shocks, economic mobility shocks, and containment policy shocks.

To disentangle them, we use traditional static and dynamic sign restrictions on the im-

pulse responses, following Arias, Rubio-Ramı́rez and Waggoner (2018), and narrative sign

restrictions on the structural shocks, following Antoĺın-Dı́az and Rubio-Ramı́rez (2018).

Our identification scheme avoids potentially debatable exclusion restrictions. Incidence

shocks account for unexpected changes in the transmissibility of the coronavirus due to,

for example, super spreader events, non-mandatory mask wearing, or hygiene and ven-

tilation. Economic mobility shocks capture exogenous variation in economic activity or

1See, among others, Baker, Bloom, Davis, Kost, Sammon and Viratyosin (2020), Harris (2020), Kraemer
et al. (2020), Coven, Gupta and Yao (2020), Gupta, Simon and Wing (2020) or Baek, McCrory, Messer
and Mui (2020).

2See, among others, Atkeson (2020), Eichenbaum, Rebelo and Trabandt (2020), Glover, Heathcote,
Krueger and Ŕıos-Rull (2020), and Acemoglu, Chernozhukov, Werning and Whinston (2020).
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transportation conditions. Containment policy shocks reflect the varying intensity of non-

pharmaceutical interventions—closing of schools, workplaces, and public transportation as

well as restrictions on public and private gatherings or outright stay at home orders—for

erratic goals or beliefs of policy makers.

We quantify the causal dynamic effects of all three types of structural shocks. Moreover,

we compute variance and historical decompositions to understand the main drivers of the

pandemic. Finally, the empirical model provides a consistent estimate of an important

policy tradeoff during the pandemic: the conflict between flattening the pandemic curve

(reducing morbidity and mortality) and maintaining economic mobility.

We find that incidence shocks and containment shocks have significant and long-lasting

effects on economic mobility, cases, and deaths. The impact of mobility shocks is also

statistically significant, but small. A one standard deviation positive incidence shock raises

new cases and fatalities for two month and by up to 40%. A restrictive containment shock

of one standard deviation, corresponding to moving from no stay at home order to requiring

people not to leave their house with few exceptions, lowers infections and mortality by 20%

after two months. In response to both shocks, economic mobility falls by about 10pp.

Based on the responses of mobility and deaths to a policy shock, we define a dynamic

survival ratio. It is the percentage reduction in deaths relative to the loss in economic

mobility over the same time. The estimate suggests that each percentage point mandated

reduction in daily economic mobility lowers mortality by 8% after three months.

Forecast error variance decompositions suggest that incidence shocks and containment

shocks are most important for explaining economic mobility, cases, and deaths. Incidence

shocks account for on average 40-60% of the variability, policy shocks for between 20-30%.

In sharp contrast, exogenous variation in economic mobility is largely irrelevant in the

sample. These shocks account for typically less than 3% of the unexpected variation in

the endogenous variables. Furthermore, historical decompositions suggest that incidence

shocks and policy shocks are also key to understanding the shape of the pandemic curve

and the deepness of the global mobility recession in 2020, whereas exogenous variation in

mobility can be neglected.

Our paper relates to two strands in the economic literature on Covid-19. The first set

of papers studies the interactions between the pandemic, economic activity, and mitigation
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policy jointly by using theoretical (quantitative) macroeconomic models. Atkeson (2020) is

among the first to relate the standard epidemiological susceptible-infected-recovered (SIR)

model and the macro-economy, thus stressing the tradeoff that policy makers face between

public health and economic objectives. Eichenbaum, Rebelo and Trabandt (2020), ex-

tending the SIR model by incorporating dynamic feedback between health and economic

decisions, formalize this tradeoff.

The second set of papers is empirical and focuses on selected aspects of the relations

between Covid-19, economic activity, and health policy. Of great interest is the impact

of containment and closure policies (Gupta et al., 2020; Baek et al., 2020; Coibion et al.,

2020). Closely related to our study is the one by Arias et al. (2021). In a first step, the

authors estimate a nonlinear SIR model with time-varying parameters on detailed Belgian

data from which they obtain a measure of the unobserved number of cases. Then, they

use this measure in time-series models to estimate the causal effect of non-pharmaceutical

interventions and the tradeoff between aggregate health and economic activity. This two-

step procedure directly addresses the potentially time-varying mismeasurement of new cases

due to changing testing procedures, whereas our main results are based on the reported

number of cases. We show in an extensive sensitivity analysis that our findings are robust

to various simpler forms of dealing with the measurement error. Thereby, we complement

the analysis of Arias et al. (2021) by providing evidence for a large number of countries.

We contribute to the literature by estimating the dynamic causal effects between Covid-

19, economic mobility, and containment policy in general equilibrium. We document

stylized facts about the importance of incidence shocks and the effectiveness of non-

pharmaceutical interventions, and we quantify the tradeoff between flattening the pandemic

curve and maintaining economic mobility. Specifically, we report that incidence shocks are

the most important factor for understanding the pandemic, but containment policy has

also a strong lever. The policy tradeoff suggests that to save 8% more lives from Covid-19

we need to sacrifice one percentage point of economic mobility per day for three months.

Moreover, the results provide a structural interpretation of the time-variation in the rate

at which infected individuals transmit the virus in standard SIR models (Atkeson, 2020;

Atkeson et al., 2020a). They indicate that incidence and containment shocks rather than

economic mobility shocks cause changes in the transmission rate.
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1 Empirical model and identification

1.1 The PVAR model and data

We use a panel vector autoregression (PVAR) model that includes the time series of epi-

demic and economic variables by country. Formally, N denotes the number of countries, K

the number of country-specific variables, M the number of exogenous variables, and T the

sample length. The reduced form representation of a PVAR model for country i = 1, . . . , N ,

and day t = 1, . . . , T is

yit = Ci +

p∑
l=1

Alyit−l +Dxt + uit (1)

where yit contains country-specific endogenous variables, yit = (y1,it, . . . , yK,it)
′, Ci is a

K × 1-dimensional matrix of country-specific fixed effects capturing country heterogeneity,

Al is a K × K-dimensional matrix of autoregressive parameters for lag l = 1, . . . , p, D

is a K × M -dimensional matrix of parameters, and xt is a M × 1-dimensional matrix of

exogenous variables. The K × 1-dimensional vector uit = (u1,it, . . . , uK,it)
′ denotes the

country-specific reduced form error terms.

The short duration of the pandemic, from an econometric perspective, raises two main

challenges for estimating model (1). First, it essentially precludes using monthly or quar-

terly data as the number of time-series observations would be too low. Second, sole time-

variation in pandemic and economic data might not be sufficient to estimate pandemic

trends as the evolution of Covid-19 without intervention in countries that did intervene is

unknown. To address these challenges, we use daily data for a large number of countries.

This frequency provides sufficient observations to estimate the dynamic relationships in (1)

over long horizons. The panel dimension adds cross-sectional information to determine av-

erage trends. Moreover, except for the country-specific constants, we assume homogeneous

coefficients. Section 3.1 shows that the results hold in various subgroups of countries.

For each country, we use the following variables in yit: cumulated Covid-19 deaths,

cumulated Covid-19 cases, an economic mobility index, a containment policy index, and

a stock price index for listed small companies. All variables enter the model in log levels,

except for the mobility index, which is already expressed in percentage points and enters

in level. The sample period is 2019-12-31 to 2020-8-17. The starting point corresponds to

the first official Covid-19 case in China. The sample includes all calendar days to maximize
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the number of observations as all variables, bar stock prices, are available at this frequency.

We linearly interpolate the latter. To control for uneven reporting and changing mobility

patterns over the week, we add weekday dummies as exogenous variables to the model.

Section 3.3 shows that the results hold when we add global factors or linear/quadratic

trends to the set of exogenous variables.

The panel comprises 44 countries, including the US, the largest European economies,

Japan, as well as India and Brazil. The set is determined by the joint availability of data

for the endogenous variables. The countries account for 81% of global Covid-19 cases and

deaths as well as 72% of world GDP. Online Appendix ?? contains a full list of the countries

and further details on the variables and sources.

Given that we have 220 observations per country and 9680 observations overall, we set

the lag length to p = 14 (two weeks) for two reasons, although conventional information

criteria suggest fewer lags. First, we are interested in deriving predictions for macroeco-

nomically relevant horizons, such as 2-3 months. This implies computing impulse response

functions over 60-90 periods, which are typically more reliable with a larger number of lags.

Second, we want to capture the medium-run fluctuations (relative to the sample size) in the

data, that is, longer lasting deviations from trends. Section 3.3 shows that the results are

robust to changing the lag length. In all cases, the VAR process is stable. The eigenvalues

of the companion matrix lie inside the unit circle.

The choice of the endogenous variables is guided by several considerations. The first

four variables are the focus of the paper as they are of primary policy concern. The two

clinical measures reflect mortality and morbidity, thus reflecting the timing and severity

of the pandemic. Moreover, these are the only daily health data for Covid-19 that are

consistently available across countries. The number of Covid-19 cases is potentially affected

by measurement error that lead to under-reporting. Section 3.2 shows that the findings are

robust to accounting for potential misreporting.

Given the daily frequency, the mobility index is an approximation of economic activity.

However, analyzing mobility is also inherently interesting as, for example, Kraemer et al.

(2020) or Harris (2020) suggest that mobility is an important transmission channel of the

virus. We use data provided by Google that count the number of visits at different places

and compare that to a baseline (median weekday for the period 03-01-2020 to 06-02-2020).
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The indices are anonymized and aggregated location histories of cellphones with Android

system whose users opted-in via their Google accounts. To obtain an economic mobility

index, we compute an unweighted average of the mobility indices for transit stations (sub-

way, bus, and train), retail & recreation (restaurants, shopping centers, movies, among

others), and workplaces, as these are most closely related to economic activity. We smooth

the index with a 7-day trailing moving average to further account for weekend patterns.

Fernández-Villaverde and Jones (2020) show that there is a close relationship between

mobility and GDP or unemployment. This also holds in our sample. In Online Appendix

??, we document a highly statistically and economically significant relation of the mobility

indices with real GDP, unemployment rates, and alternative measures of economic activity.

Furthermore, we document that this relation is stable in the sample, despite a growing

importance of work from home and e-commerce during the pandemic.

The policy index measures the stringency of non-pharmaceutical interventions. We use

indices from the Oxford Covid-19 Government Response Tracker of containment and closure

policies. Specifically, we compute an unweighted average of the indices for school closing,

workplace closing, canceling of public events, restrictions on private gatherings, closing of

public transport, stay at home requirements, and restrictions on internal movement. The

indices have an ordinal scale between 0 (no measure) and 2, 3, or 4 (stricter measures). We

standardize the ordinal indices before averaging. We exclude the index for international

travel controls because it includes screening in airports, which introduces endogeneity as

more testing mechanically raises the number of cases. Some of the containment policies

vary considerably in magnitude and timing at the regional level within a given country. But

on average in our sample, 68.6% of the policies are applied at a national level. Section 3.3

shows that the results are robust to alternative index constructions that explicitly account

for geographic applicability of particular policies within a given country.

We use aggregated mobility and policy indices as we are interested in the big picture at a

national level without distinguishing between alternative types of mobility or containment

policy. Such an analysis would also raise difficult estimation and identification challenges,

which are beyond the scope of the paper. Finally, we include the MSCI small cap index

to measure expectations about local health and economic conditions. The stock prices are

mainly included to help identification, which we describe next.
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1.2 Identification of the structural PVAR model

For N countries, the model in equation (1) can be written in compact form as

Yt = AXt +Ut, (2)

where Yt is a K × N -matrix of endogenous variables, with Yt = (y1t, . . . ,yNt), A a

K × (Kp + N + M)-matrix of parameters, A = (A1, . . . ,Ap,C1, . . . ,CN ,D), and Xt a

(Kp+N +M)×N -matrix of lagged endogenous and exogenous variables,

Xt =



y1t−1 · · · yNt−1

...
. . .

...

y1t−p · · · yNt−p

ι · · · ι

xt · · · xt


,

where ι is a N × 1-dimensional vector of ones.

The reduced form error terms, Ut = (u1t, . . . ,uNt), follow a multivariate normal distri-

bution with zero mean. We assume that the K ×K covariance matrices satisfy

E(uitu
′
it) = Σ (3)

E(uitu
′
jt) = 0, i ̸= j. (4)

(3) implies the same reduced form covariance structure across countries. The assumption

is consistent with the stylized facts in Atkeson et al. (2020b, 2021), which show that the

transmission of the virus behaves similarly in a large cross-section of US states and coun-

tries. Moreover, Section 3.1 documents that the cross-country heterogeneity in the sample

is limited. The effects of the structural shocks are similar across different groupings of coun-

tries. (4) implies that there are no spillovers across countries. This is in line with Atkeson

et al. (2020b) who document a staggered global transmission of the virus in the early stages

of the pandemic, widespread across many weeks if not months, suggesting that the daily

spillovers are small. Section 3.3 shows that the results are robust to adding common factors

or foreign variables that summarize global shocks or country-specific inflows.
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We can write the structural form of the model described in equation (2) as

B0Yt = BXt + E t (5)

whereB0 is aK×K-matrix of structural contemporaneous relations, B aK×(Kp+N+M)-

matrix of structural parameters, and E t = (ϵ1t, ..., ϵNt) are structural shocks with ϵit ∼

N (0K×1, IK×K). It holds that Ut = B−1
0 E t, Σ = (B0B

′
0)

−1, and A = B−1
0 B.

To solve the identification problem that the structural parameters cannot be recov-

ered from the reduced form without further assumptions, we impose static traditional sign

restrictions on the impact matrix, B−1
0 , and dynamic sign restrictions on the structural im-

pulse responses. We also set narrative sign restrictions on the structural shocks themselves.

The narrative sign restrictions ensure that the sign of the structural shock matches the nar-

rative of specific exogenous historical events. The focus of the paper is the identification of

containment policy shocks. Furthermore, we aim to disentangle two additional structural

shocks: incidence and economic mobility shocks. Not only are these at the center of the

academic and public debate, these are also likely the main drivers of the pandemic and

economic mobility worldwide.

First, incidence shocks capture changes in the transmissibility of the virus unrelated to

mobility and containment policy. We think of them as reflecting time-variation in voluntary

human behavior and in the biological characteristics of the virus. The former could be

super spreader events, non-mandatory mask wearing, hygiene (hand washing and surface

disinfection), personal distance keeping, or ventilation. The latter could be a mutation of

the virus and changes in its infectivity.

Second, economic mobility shocks record voluntary shifts in human behavior unrelated

to mitigation policy or the pandemic. Generally, they reflect changes in net aggregate de-

mand. Specifically, they can mirror both fiscal and monetary stimulus as well as variations

in transportation costs, income, employment, and working from home.

Third, containment policy shocks reflect exogenous variation in non-pharmaceutical

interventions. Technically, they are deviations from the average mitigation policy rule.

They can be interpreted as erratic beliefs of policy makers about the pandemic or the

economy, variation in the goals of policy makers, or changes in the institutional procedures

for dealing with the pandemic; for example, varying degrees of coordination between local

9



and federal authorities or between policy makers and administrative bodies.

Table 1 shows the traditional sign restrictions, which are given by a plus or minus.

An asterisk represents an unrestricted element. We impose dynamic sign restrictions at

horizon h = 7 on the structural impulse responses. These are summarized in the right

panel of Table 1. We discuss the choice of the horizon in detail below. In general, the week

accounts for a potentially sluggish response of the endogenous variables. We show that the

results are insensitive to using h = 14 (Figure ??).

Horizon Horizon 0 Horizon 7
Shock ϵI ϵM ϵP ϵI ϵM ϵP

Endogenous variable

Covid-19 deaths ∗ ∗ ∗ ∗ ∗ ∗
Covid-19 cases + ∗ ∗ + + –
Economic mobility ∗ + ∗ – + –
Containment policy ∗ ∗ + + + +
Stock prices – ∗ ∗ – ∗ ∗

Table 1: Identifying traditional sign restrictions. Notes: The table shows traditional sign restrictions
imposed on the structural impulse responses at horizon 0 (left panel) and horizon 7 (right panel) used to
identify Covid-19 incidence shocks (ϵI), economic mobility shocks (ϵM ), and containment policy shocks
(ϵP ). The shocks are in columns, the response of the endogenous variables is in rows. Sign restrictions are
given by a plus or minus, and an asterisk represents an unrestricted element.

First, we assume that incidence shocks (ϵI) increase the number of cases, reduce eco-

nomic mobility, and induce tighter policy. The negative response of mobility reflects both

voluntary and mandatory social distancing as cases rise and policy is tightened. The pos-

itive response of the containment index captures the aim of policy makers and health

administration authorities to mitigate the pandemic. Implicitly, we assume that policy

makers give more weight to mitigating the pandemic than to maintaining economic mo-

bility, consistent with the existence of externalities that imply suboptimally low voluntary

social distancing and require public health interventions (Eichenbaum et al., 2020). More-

over, we assume that equity prices drop, as investors price the adverse consequences of an

escalating pandemic and tighter policy on economic mobility and corporate profits.

Second, we assume that positive mobility shocks (ϵM) increase economic mobility, the

number of cases (due to more interpersonal contacts), and the containment index. The

signs are consistent with health policy that aims at mitigating the pandemic by responding

positively to increases in economic mobility and more infections. Third, we impose that

restrictive containment policy shocks (ϵP ) lower mobility and infections since commuting
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and traveling as well as the number of interpersonal contacts falls when schools and work

places are closed, events are restricted, and shelter at home orders are issued.3

Unlike the dynamic effects, the immediate impacts of the shocks are less clear. Regard-

ing ϵI-shocks, it is unclear whether policy and/ or mobility should be assumed to respond

immediately. There are countries and times when policy indeed seemed to have responded

to new cases on a daily basis. For example, during the initial phase of the pandemic in

the US, there were daily press briefings and policy decisions in the afternoon that reflected

the contemporaneous state of the pandemic and the economy. In other countries, like

Germany, policy coordination between local and federal officials implied that containment

decisions were taken rather on a weekly basis instead of a daily basis. Similarly, mobility

might contemporaneously react to new cases, but this would probably imply a high degree

of public awareness and quick private decisions. Moreover, if mobility is affected mainly

through policy responses to new cases, this would only show up in the following days. To

reflect this uncertainty around the impact effects of incidence shocks, we impose only two

signs at horizon 0. First, we maintain the normalization to look at positive shocks. Second,

we assume that stock prices respond immediately.4

Regarding mobility shocks, the number of cases could rise contemporaneously if mobility

also means more testing and, in extreme cases, additional immediate infections. However,

due to incubation and reporting lags, it could also take several days before more contacts

show up in new cases. Containment policy is unlikely to respond to mobility directly on

a day-by-day basis and rather responds to the effect of mobility on cases. But a direct

response to mobility cannot safely be ruled out as mobility is known to be a main trans-

mission channel of the virus and, thus, closely watched by policy makers and health officials.

Therefore, at horizon 0 we only normalize the shock to be positive.

For containment policy shocks, we follow the same route. We only impose a plus sign

contemporaneously and leave the responses of cases and mobility unrestricted. On the

one hand, it can be argued that policy affects reported cases only with a delay of several

3For mobility shocks, we do not specify a restriction on stock prices, which could increase if investors
price the pick-up of economic mobility or decrease if they fear the associated policy tightening. Similarly,
we do not assume a stock price response to policy shocks as it is unclear whether investors appreciate the
associated decline in cases or dislike the negative impact of tighter policy on economic mobility.

4By imposing the + upon impact, we essentially identify incidence shocks measured through testing
and reflected in cases, but not incidence shocks in the clinical sense as the actual transmission of the virus
from one person to another. However, the restriction implied by the inequality is not particularly strong
in practice as very small (positive) coefficients are allowed.
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days because of incubation and testing lags. It takes time to contract the virus, develop

symptoms, go to the doctor, and obtain the test result. On the other hand, some countries

back-date cases to the infection day.

Moreover, anticipation could play a role. Typically, containment measures are discussed

publicly before they are implemented. Hence, people could voluntarily change their behav-

ior in anticipation of future policy changes such that reported cases and mobility move

contemporaneously with the policy index. The literature on fiscal foresight shows that

policy expectations can create non-fundamentalness (Leeper et al., 2013). However, this

literature also shows that including forward looking variables into the model solves this po-

tential problem (Forni and Gambetti, 2010). Therefore, we incorporate local stock prices

that capture such expectations. Furthermore, we show that the results hold when using

stock prices of large firms as alternative forward looking information (Figure ??).

In addition to the traditional sign restrictions, we impose a minimal set of narrative

sign restrictions. A small number of key exogenous events helps us to pin down the set

of impulse responses that lead to coherent conclusions (Antoĺın-Dı́az and Rubio-Ramı́rez,

2018) and that ensure that the identified shocks are consistent with important events

during the pandemic, increasing their interpretability and plausibility. We use three type

of events: super spreader events, national public holidays, and irregular television speeches

of government officials addressing the nation. We use these types because they can be

considered to be exogenous at the daily frequency. Super spreader events are bad luck.

At least it is not fully understood why some events produce a large number of infections

and others do not, given similar circumstances. National public holidays are scheduled

long in advance, often for decades (Adda, 2016). Similarly, the speeches that we select are

important addresses to the nation that are preceded by lengthy internal discussions and

preparation, or triggered by exogenous events.

Figure 1 plots the time series of Covid-19 cases (first row) in South Korea and Italy,

economic mobility (second row) in the United States and France, as well as containment

policy (third row) in the Netherlands, Germany, and the United Kingdom. The vertical

dashed lines give the seven historical events based on which we impose the narrative sign

restrictions. On 2020-02-12 an infected person participated in a gathering in Daegu at the

Shincheonji Church in South Korea. On 2020-02-19 around 40,000 people went to a soccer
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game in Milan, Italy. Both events are seen as super spreader events leading to a strong

increase in cases afterwards.5 For the first two narrative sign restrictions, we assume that

the sum of incidence shocks on days 7-11 after the event is positive. The time shift accounts

for an incubation and reporting period. Table 2 summarizes the narrative sign restrictions.
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0
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Figure 1: Historical events Notes: The figure shows the time series of Covid-19 cases (first row) in South
Korea and Italy, economic mobility (second row) in the United States and France, as well as containment
policy (third row) in the Netherlands, Germany, and the United Kingdom. The vertical dashed lines
indicate historical events.

We use Labor Day on 2020-05-01 in France and Memorial Day on 2020-05-25 in the

United States as days when mobility decreases exogenously due to the national public

holiday. Narrative sign restrictions 3 and 4 assume negative economic mobility shocks on

these days. Regarding policy speeches, on 2020-03-16 the British prime minster announced

a change in the mitigation policy of the government, advising now social distancing and self-

isolation of whole households and expressing that further measures will be implemented in

the future. This speech was given in response to the publication of a study by the Imperial

College London, which came out this day. The study contained forecast scenarios for the

U.K., indicating overwhelmed health systems if the current policy was to be maintained.

In Germany, the chancellor addressed the public in a televised speech on 2020-03-22. She

5For the classification as super spreader event see e.g. http://superspreadingdatabase.com,
https://www.reuters.com/article/us-china-health-southkorea-cases-idUSKBN20E04F,
https://apnews.com/article/milan-la-liga-ap-top-news-valencia-virus-outbreak-
ae59cfc0641fc63afd09182bb832ebe2
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announced additional measures to stop the transmission of the virus and urged adhering to

distancing rules. The speech came only after consultations with the prime ministers of the

states during the previous days. In the Netherlands, public health officials announced on

2020-07-29 that they maintained not giving advice to wear face masks due to their claim

that no scientific evidence for the efficiency of non-medical face masks would exist. The

three public speeches had in common that they were not triggered by an increase in cases

on that day. In the Netherlands, cases were actually rising. Narrative sign restrictions 5-7

assume positive policy shocks in the U.K. and Germany and a negative policy shock in the

Netherlands on these days.

Number Event type Country Date d Restriction

1 spreader event South Korea 2020-02-12
∑11

j=7 ϵ
I
KR,d+j > 0

2 spreader event Italy 2020-02-19
∑11

j=7 ϵ
I
IT,d+j > 0

3 national holiday France 2020-05-01 ϵMFR,d < 0

4 national holiday U.S. 2020-05-25 ϵMUS,d < 0

5 policy speech U.K. 2020-03-16 ϵPUK,d > 0

6 policy speech Germany 2020-03-22 ϵPDE,d > 0

7 policy speech Netherlands 2020-07-29 ϵPNL,d < 0

Table 2: Identifying narrative sign restrictions. Notes: The table shows narrative sign restrictions
imposed on the structural shocks used to identify Covid-19 incidence shocks (ϵI), economic mobility shocks
(ϵM ), and containment policy shocks (ϵP ).

1.3 Bayesian estimation and inference

To implement the traditional sign restrictions, let L = (L0, L7)
′ denote the matrix collecting

the restricted impulse responses.6 The matrix Sj collects all sign restrictions for the jth

structural shock. The number of rows in Sj equals the number of restrictions while the

number of columns equals the number of rows in L. The matrices select an element that

is restricted by having one non-zero element in each row (either one for imposing positive

signs, or minus one for imposing negative signs). The restrictions are satisfied for j =

1, . . . , K if the following holds:

SjLej > 0, (6)

where ej denotes a column vector of zeros and one in row j.

6The impulse response functions are calculated as Lh = (JA+
h J

′)B−1
0 , for h = 0, . . . ,H. A+ denotes

the companion matrix of the reduced from model and J = (IK×K ,0K×K(p−1)). For a detailed description
of the calculation see Kilian and Lütkepohl (2017).
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Following Antoĺın-Dı́az and Rubio-Ramı́rez (2018), we impose a positive or negative

narrative sign restriction directly on the structural shock:

e′jϵlt > 0 or e′jϵlt < 0 for l ∈ Cr
j , t ∈ T r

j (7)

where Cr
j and T r

j is the set of restricted countries and observations for shock j, respectively.

To simplify sampling, we follow Arias et al. (2018) and work on the orthogonal re-

duced form representation of the model. The lack of identification without sign restrictions

implies that two sets of structural parameters, (B0,B) and (B∗
0,B

∗), can have the same

reduced form representation. The two sets of parameters are observationally equivalent,

thus implying the same reduced form parameters, if and only if B0 = B∗
0Q and B = B∗Q

where Q is an orthogonal matrix with QQ′ = I. Hence, we can write the model as

Yt = AXt + chol(Σ)QE t. (8)

Then, we obtain the parameters of the structural form as a combination of the reduced

form parameters and the orthogonal matrix Q as B0 = chol(Σ)−1Q−1 and B = B0A.

We use a standard inverse Wishart prior for Σ and a normal prior for A. We assume

that Q|A,Σ follows a Haar prior distribution as in Rubio-Ramı́rez, Waggoner and Zha

(2010). These prior distributions imply that draws from the orthogonal reduced form

representation come from an agnostic prior and that the structural parameters follow a

normal-generalized-normal distribution conditional on the traditional and narrative sign

restrictions. We use the algorithm of Antoĺın-Dı́az and Rubio-Ramı́rez (2018) to obtain

independent draws from the uniform-normal-inverse-Wishart posterior conditional on the

specified traditional sign and narrative sign restrictions.7 We target 1000 accepted draws

for inference. The results are similar for 10000 draws.

Sampling Q introduces a second source of randomness due to the random number

generator as opposed to sampling uncertainty driven by the finite number of observations.

The prior on Q is not agnostic in all dimensions as shown by Baumeister and Hamilton

(2015, 2018). Giacomini and Kitagawa (2021) suggest to specify for set identified models

multiple prior distributions on the structural parameters given one prior on the reduced

7The steps of the algorithm and details on the prior and posterior distributions are in Appendix ??.
For further detials, we refer to Arias et al. (2018) and Antoĺın-Dı́az and Rubio-Ramı́rez (2018).
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form. Online Appendix ?? shows that the findings are robust to using the multiple prior

approach of Giacomini and Kitagawa (2021) and Giacomini, Kitagawa and Read (2021).

2 Disentangling pandemic, mobility, and policy shocks

This section contains the core results, which are organized as follows. First, we present the

estimated impulse responses to determine the significance and persistence of the effects.

Then, we quantify the dynamic policy tradeoff between flattening the epidemic and atten-

uating the mobility recession. Finally, we compute the average and historical importance

of the shocks using forecast error variance and historical decompositions.

2.1 Dynamic effects and policy tradeoff

Figure 2 summarizes the responses to the three structural shocks. It shows positive shocks

of size one standard deviation. The solid lines are the median estimates. The dark and light

shaded areas denote 68% and 90% credible sets, respectively. The first column contains

the effects of an incidence shock. The number of infected persons increases significantly

by 8% upon impact. It rises to 40% in a hump-shaped manner for about three weeks.

Then, it gradually converges back to trend, which it has not yet reached after two months.

The effect is significant for three weeks according to the 90% credible sets and for one

month when judged by the 68% interval. Mortality increases persistently as well, although

the impact is less significant. The peak effect is 30% and occurs 2-3 weeks after that of

cases. This lag measures the average duration of fatal disease processes in the sample. The

responses of cases and deaths are in line with the findings of Atkeson et al. (2020b) who

document that the transmission of the disease slows considerably after 20-30 days.

Policy becomes substantially more restrictive. The index increases first sluggishly, but

then by up to 14%. It remains elevated for the full 60 days, in lockstep with cases. The

policy response suggests that public authorities react to new infections and mirror them

closely before deciding to ease. Economic mobility falls immediately and significantly after

a few days. It troughs at –12 percentage points (pp) after a week, where it stays for another

two weeks, before slowly converging back to the level where it would have been without

the shock. It remains significantly depressed for two full months. The mobility decline
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Responses to incidence shock
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Figure 2: The dynamic effects of incidence, economic mobility and containment policy shocks.
Notes: The figure shows the median response (solid lines) of the endogenous variables to an incidence shock
(first column), a mobility shock (middle column), and a containment policy shock (right column) over 60
days, along with 68% and 90% credible sets (dark and light shaded areas, respectively). The shocks are
normalized to be positive and have size of one standard deviation.

reflects both voluntary and, given the strong endogenous policy response, mandatory social

distancing. Equity prices drop by 7%, staying below trend for two month. The drop is

significant for two weeks.

The middle column reports the responses to a positive mobility shock. Economic mo-

bility increases upon impact by 0.5pp, rises further up to nearly 1.5pp, but then quickly

returns to its initial level, which it slightly undershoots after three weeks. The number

at peak implies that 1.5pp more cellphones are recorded at workplaces, transit stations,

and shops than at trend. Despite the short increase in mobility, cases rise persistently and
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significantly for more than 60 days. As before, the number of deaths mirrors the dynamics

of cases with some delay. Like the policy response to the incidence shock, the containment

indicator rises slowly, but then significantly and persistently in parallel with the higher

number of infections. Probably due to increasing cases, equity prices drop.

The right column presents the responses to a containment policy shock. The policy

index increases by 5% upon impact. This corresponds to moving, for example, from no

stay at home order to requiring people not to leave their house with exceptions for daily

exercise, grocery shopping, and essential trips; or alternatively to going from no workplace

closing to shutting down (or work from home) some sectors or categories of workers. The

containment index falls back to zero after 12 days. Exogenous variation in mitigation

policy is less persistent than the endogenous response to cases. Nevertheless, economic

mobility falls drastically and for a full month, with a trough of –9pp. Consistently, the

effects of the policy shock on morbidity and mortality are strong and long-lived. Cases fall

by up to 20% after one month and fatalities by the same amount another three weeks later.

Both variables remain significantly below trend for the entire horizon of two months. This

persistent drop might explain the decline of the policy index slightly below trend after two

weeks. Stock prices are largely unresponsive.

Taken together, we find large and persistent effects of incidence and policy shocks.

Short-lasting exogenous increases in mobility increase Covid-19 morbidity and mortality

statistically significantly as well, but the effects are small compared to the other two types

of shocks. This suggests a minor role for mobility as an exogenous driver of the pandemic

and a prominent role for incidence and policy shocks.

The dynamics of economic mobility, cases, and deaths following the containment pol-

icy shock allows for deriving consistent measures of the implied policy tradeoffs between

aggregate health and economic mobility. We define a dynamic health ratio and a dynamic

survival ratio. These are the percentage decline in cases and deaths, respectively, measured

by the response of cases or deaths at horizon h, relative to the economic mobility loss dur-

ing the same time, measured as the average response of economic mobility over horizon

1, ..., h. We use the average mobility loss to account for the phase shift between mobility,

on the one hand, and morbidity and mortality, on the other hand.

Figure 3 shows the evolution of the ratios over 90 days. The top panel shows the health
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ratio. It suggests that the rapid fall in economic mobility following the containment shock

pays off significantly already within a week. After one month, the ratio implies that there

are 5% fewer cases for, on average, each percentage point foregone daily mobility over this

time horizon. The tradeoff is most favorable after 70 days, with the ratio peaking at 8%.

Thereafter, it falls back to zero gradually.

The bottom panel shows the dynamic survival ratio. Here, it takes one month before

lower economic mobility is rewarded significantly with fewer deaths. After two months, the

survival ratio is 7%. On day 85, it peaks at 8%. The latter number implies that the non-

pharmaceutical interventions lower mortality by 8% for each percentage point reduction in

daily mobility over three months. For the interpretation of these numbers, it is important

to bear in mind that the mobility loss occurs every day (on average). Thus, the cumulative

loss is 90% after 90 days (for the 8% reduction in mortality).

Dynamic health ratio

0 10 20 30 40 50 60 70 80 90

0

5

10

15

20

R
a

ti
o

Dynamic survival ratio

0 10 20 30 40 50 60 70 80 90

Days

0

5

10

15

20

R
a

ti
o

Figure 3: Dynamic health and survival ratio. Notes: The figure shows the median estimate of the
health ratio in the upper panel and of the survival ratio in lower panel (solid lines) following a restrictive
containment policy shocks over 90 days, along with the 68% credible sets (shaded areas). The ratios
measure the reduction in Covid-19 cases or mortality per foregone economic mobility. These are defined as
the percentage decline in cases and deaths, respectively, measured by the impulse response of that variable
at horizon h, relative to the mobility loss during the same time, measured as the average response of
economic mobility over horizon 1, ..., h.
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2.2 Average drivers of the pandemic

We now inspect the relevance of the structural shocks for explaining the unexpected vari-

ation in epidemic-economic dynamics. To quantify their average importance, we compute

forecast error variance decompositions. They measure the percentage contribution of each

shock to the forecast error variance of the endogenous variables. Figure 4 shows the mean

decomposition for horizons h = 1, . . . , 90, where the last value approximates the long-run.
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Figure 4: Forecast error variance decomposition. Notes: The figure shows the forecast error variance
decomposition of the endogenous variables for the three structural shocks over 90 days: incidence shocks
(light grey bars), economic mobility shocks (black bars), containment policy shocks (dark grey bars).

The impact decomposition shows how important it is to avoid a recursive structure

between cases and policy. These variables show strong contemporaneous links. 22% of the

unexpected variation in cases is driven by policy shocks. The variability in containment

policy is driven equally by incidence and own shocks. Another insight from the contem-

poraneous decomposition is that infections and mitigation policy can largely be treated as
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exogenous with respect to economic mobility shocks, which explain essentially nothing of

the unexpected variability in these two variables.

Reversely, unexpected variation in economic mobility is primarily determined by inci-

dence shocks (40%) and policy interventions (30%) upon impact. These numbers suggests

that incidence and containment shocks have both a strong effect on the variability in eco-

nomic mobility. In contrast, mobility shocks account only for 2% upon impact.

At medium and longer horizons, the low explanatory power of mobility shocks for the

error variances of the other variables remains. Incidence shocks lose some importance

for explaining the variation in cases and death, but remain the dominant driver of the

pandemic. Incidence shocks also explain most of the unexpected variation in stock prices,

consistent with the pandemic being an important factor for equity pricing (Baker et al.,

2020). Containment shocks become more relevant for the variance of cases and deaths as

the horizon increases. At h = 90, they explain 17% of the variability in these two variables.

To summarize, the results show two main drivers of the pandemic: incidence shocks

and containment policy shocks. The former driver dominates. It explains about one half

of the forecast errors of economic mobility, morbidity, and mortality. The latter factor

accounts for 17-30% of the unexplained variation in these variables. These numbers indicate

that the autonomous evolution of the biological process plays the most important role in

the pandemic. But they also suggest that non-pharmaceutical interventions have relevant

effects: containment policy is effective.

2.3 Decomposing the pandemic curve and mobility recession

Now, we analyze which shocks flattened or steepened the pandemic curve and the economic

mobility recession by means of historical decompositions. Specifically, we approximate

country-specific variables yit through the truncated moving average representation

yit ≈
t−1∑
s=0

Θsϵit−s := ŷit, (9)

where Θs are the K×K structural impulse responses at horizon s. Using (9), we compute

the median contribution of the three structural shocks to the daily historically observed

fluctuations of mortality and economic mobility for each country i. Then, we average these
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estimates over countries to obtain ¯̂yt, an approximation of the global dynamics of the

variables. We focus on Covid-19 deaths to capture the pandemic curve and on economic

mobility to approximate the recession.
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Figure 5: Historical decomposition of global Covid-19 deaths. Notes: The figure shows the change
in approximated global Covid-19 deaths (thick solid line) and the cumulative effects on these of incidence
shocks (dashed line), economic mobility shocks (dotted line), and containment policy shocks (thin line).

In Figure 5, the thick line shows approximated global deaths, ¯̂y
(1)
t , in log points from

mid-March 2020 onward. We discard the initial observations to reduce the approximation

error associated with the truncation of the moving average representation (see 9). There

is a sharp increase of 260 points by the end of April 2020. Thereafter, mortality declines

steadily. All three shocks explain the curve. With a lead of about two weeks, incidence

shocks (dashed line) drive up fatalities by about 80 log points until mid April. Subse-

quently, a series of negative shocks flattens the curve. Similarly, positive mobility shocks

(dotted line) drive up deaths unit May/June. Initially, the same holds for containment

policy shocks (thin solid line). A lack of policy action in face of increasing infections, that

is, a sequence of negative policy shocks, raises mortality by 45 log points. Thereafter, con-

tinuously restrictive containment policy shocks flatten the curve by 25 log points. Toward

the end of the sample, reopening policies raise mortality again.
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Figure 6 shows the fitted value of global economic mobility (¯̂y
(3)
t , thick line) and its

decomposition into the cumulative effects of the structural shocks. Mobility falls by 50

log points from mid-March to mid-April. Thereafter, it slowly recovers by June, slightly

overshoots, subsequently falling again as the second and third waves hit evermore countries.

There are two main drivers of the economic mobility recession. The most important are

the incidence shocks (dashed line). They lower economic mobility by about 35 log points

at the beginning of the pandemic and raise it by 20 log points until June.
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Figure 6: Historical decomposition of global economic mobility. Notes: The figure shows the
change in approximated global economic mobility (thick line) and the cumulative effects on it of incidence
shocks (dashed line), economic mobility shocks (dotted line), and containment policy shocks (thin line).

The other main driver are containment policy shocks (thin solid line). A sequence of

negative policy shocks during the early stage of the pandemic holds up mobility, although

cases are steeply rising. On March 11, 2020, there is a sharp turning point, after which

decisive non-pharmaceutical interventions in many countries succeed in lowering mobility.

By April, economic mobility has decreased by 30 log points on average. In contrast to

incidence shocks, policy shocks do not contribute much to the mobility recovery over the

subsequent months. Finally, positive mobility shocks rais economic mobility during March.

Then, after a short sequence of negative shocks, they cease to contribute to mobility.
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To summarize, the historical decompositions paint a similar picture as the variance

decompositions. The most important determinant of fluctuations in Covid-19 mortality and

economic mobility are incidence shocks. They strongly raised deaths and lowered mobility

during March-May 2020. The second most important factor are containment policy shocks.

While a lack of mitigation early during the pandemic sustained economic mobility and did

not contain infections, a subsequent sharp policy tightening in many countries induced a

steep global mobility recession and flattened the pandemic curve.

The relevance of incidence shocks for mobility indicate an important role for voluntary

social distancing, as Gupta et al. (2020) document for the US. In addition, the results

suggest that a substantial share of the decline in mobility during the pandemic was a

response to exogenous containment measures. Moreover, our analysis complements these

as well as related studies with additional insights. It provides a structural interpretation

of the driving forces of the time-varying reduced form transmission rate, often called βt, in

standard SIR models (Atkeson, 2020; Atkeson et al., 2020a). This parameter is the rate

at which infected transmit the virus to others in period t. Atkeson et al. (2021) develop

a behavioral SIR model that endogenizes this parameter by including feedback from the

severity of the pandemic on human activity. The authors show that the model still requires

large ‘wedges’, that is, shocks, to match the data on deaths in many countries and U.S.

states. In particular, it requires wedges to generate multiple waves and to account for the

quick decay of deaths after peak. Our results suggest that changes in the transmission rate,

which generate such patterns, are likely due to incidence shocks and containment policy

shocks rather than to economic mobility shocks.

3 Subgroups, measurement error, and sensitivity

This section expands the main analysis. Section 3.1 estimates the effects of the structural

shocks in subgroups of countries. Section 3.2 addresses a potential under-reporting of cases.

Section 3.3 documents the robustness of the results.
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3.1 Subgroup analysis

In this section, we study potential cross-country heterogeneity. We group the countries

along various criteria, such as geographical region, pandemic timing and severity, and level

of development.8 We drop the narrative sign restrictions as they are not equally distributed

across groups, which would hamper comparisons.9 We always identify all three types of

shocks. However, the following figures show the responses to containment shocks as we are

particularly interested in the impact of non-pharmaceutical interventions and to keep the

exposition focused. The responses to incidence shocks and economic mobility shocks are

in Figures ??-??. All in all, the estimates show little variation in the impulse responses

across subgroups. The group-specific median estimates lie rarely outside the credible sets

of the corresponding pooled model, which we always plot as a reference. The assumption

of homogeneous coefficients across panels in the baseline model seems plausible.

The three columns in Figure 7 show the median responses to a containment policy

shock for three distinct groupings. The variables are in rows. In the left column, we split

the panel into developed countries (dashed lines) and developing countries (dotted lines).

The classification is based on the IMF fiscal monitor database. Both median estimates are

within the 68% credible sets of the pooled model. The policy effects tend to be stronger in

developing countries. This might reflect a higher need of the population in these countries

to maintain their level of economic mobility, which would imply lower voluntary distancing

and, hence, a higher effectiveness of mandatory measures.

Furthermore, we classify the countries by pandemic timing. The middle column presents

the results for countries in which the maximum daily change in cases is above 200% (dotted

lines) and for those where it is below 200% (dashed lines). We use this threshold to

separate countries with a rapidly escalating pandemic, implying little time for policy makers

to respond, from those where cases were rising more gradually. Indeed, the effects are

somewhat stronger for the latter group, in line with the idea that a more slowly increasing

number of cases allows policy makers to act more timely and potentially more targeted.

8We also group the countries based on three different volatility criteria. Figures ??-?? show that the
main results hold.

9Figure ?? compares the baseline results based on traditional and narrative sign restrictions to estimates
based on traditional sign restrictions only. Overall, the results are similar. The model without the narrative
restrictions tends to produce marginally wider credible sets. In other words, the narrative sign restrictions
sharpen inference, next to increasing the interpretability of the results.
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Figure 7: The effects of containment policy shocks in countries grouped by level of develop-
ment or pandemic timing. Notes: The figure shows the median responses of the endogenous variables
(in rows) to a containment policy shock over 60 days for developed and developing countries (left column),
for countries in which the maximum daily increase in cases is ≤ 200% and for those where it is > 200%
(middle column), and for countries where the first case occurs within the first 40 days of the sample and
where it occurs after the first 50 days (right column), along with 68% and 90% credible sets of the pooled
model (dark and light shaded areas, respectively). The shocks are normalized to the standard deviation of
containment policy shocks in the baseline specification.

The right column also separates countries by pandemic timing. However, instead of

measuring the speed of the pandemic for a given country, we group countries according to

their relative position in the world. Specifically, we compute the responses for countries

where the first case occurs within the first 40 days of the sample (dashed lines) and for

those where it occurs after the first 50 days (dotted lines). We find that the policy effects

are slightly stronger in the latter group, suggesting that they might have learned from the

experience of countries that were hit earlier. Overall, however, the timing of intervention
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does not seem to significantly change their efficacy, consistent with Atkeson et al. (2020a),

who find no clear pattern that earlier mitigation reduces the death toll.

Figure 8 presents the results of three more groupings. In the left column, we split the

countries along geographic regions: America, Western Europe, Eastern Europe (including

Russia), and Asia plus Oceania. We find relatively homogeneous effects except for the

American countries. Here, policy interventions are significantly more effective. Cases and

deaths drop more quickly and more strongly. The reason might be the same as for de-

veloping countries, that is, initially less voluntary social distancing given higher needs to

maintain income. Although the region includes Canada and the U.S., the sample is domi-

nated by emerging market economies (Argentina, Brazil, Chile, Columbia, and Mexico).

In the middle column, we select the groups based on k-means clustering. First, we clus-

ter along the percentage share of cases and death in the population at the end of the sample

to capture the severity of the pandemic. The clustering suggests two groups. Cluster 1 con-

tains the countries with lower percentages, while cluster 2 those with higher percentages.

Consistently, the effects of policy are slightly stronger for cluster 1 (dotted lines). Second,

the clusters are built based on the level of economic mobility and the policy index at the

end of the sample to capture the intensity of interventions. The clustering suggests three

groups: cluster 1 with high intervention/ low mobility, cluster 2 with low intervention/ low

mobility, and cluster 3 with low intervention/ high mobility. The responses for cluster 1

and 3 are similar. For cluster 2 the effect on cases and deaths is muted, probably reflecting

a high level of voluntary distancing, as the cluster contains libertarian countries like the

Netherlands and Sweden, which makes additional mandatory distancing less powerful.

3.2 Measurement error

The number of Covid-19 cases is potentially misreported. The true number of infections

is probably higher than the number of reported cases due to limited testing capacity or

because only symptomatic people are tested. In many countries, the test infrastructure

and systematic testing of the asymptomatic has only been built up over time. These

considerations suggest the possibility of a stochastic measurement error in cases. Covid-

19 deaths could also be mismeasured, but the problem is likely to be less severe. The

measurement error in cases could affect both the structural shocks and the reduced form as
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Figure 8: The effects of containment policy shocks for countries grouped by region or severity
of pandemic. Notes: The figure shows the median responses of the endogenous variables to a containment
policy shock over 60 days for geographic regions (left column), for countries clustered by the percentage
of Covid-19 cases and deaths in the population (middle column), and for countries clustered by the level
of the mobility and stringency index at the end of the sample (right column), along with 68% and 90%
credible sets of the pooled model (dark and light shaded areas, respectively). The shocks are normalized
to the standard deviation of containment policy shocks in the baseline specification.

the endogenous variable (log) cumulative cases enters all equations of the model. Regarding

the structural shocks, the measurement error affects the incidence shock arguably most,

as this shock is most closely related to new cases. But the other shocks could also be

impacted, given the symmetry of the model equations. Regarding the reduced form, the

estimated parameters could be biased which would translate into biased impulse responses.

We address these concerns in three ways. First, we identify the incidence shock based

on an instrumental variable approach that is robust to various forms of measurement error
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(Mertens and Ravn, 2013) to see whether the incidence shock is affected. Second, we use an

alternative variable for cases to determine whether the mobility and containment shock are

distorted. Third, we add simulated measurement error to the data on cases and re-estimate

the model to check whether the reduced form model is biased.10

For the instrumental variable approach, we construct a binary proxy zit for each country

based on 500 super spreader events.11 The proxy equals 1 on days 7-11 after a super spreader

event, and 0 otherwise. The time shift accounts for the average incubation and testing

period. The structural errors in the SVAR model with additive measurement error in cases

are a linear function of the true structural shocks and the current and past measurement

errors (Lippi, 2021). Let eit denote the measurement error in cases and ϵ¬Iit all structural

shocks except the incidence shock in t. We can use the proxy to identify the incidence

shock, ϵIit, under the following assumptions

E[ϵIit, zit] ̸= 0, E[ϵ¬Iit , zit] = 0, E[zit, eiτ ] = 0, E[ϵ¬Iit , eiτ ] = 0, for τ = t, t− 1, . . .

The first two conditions state that the proxy is correlated with the incidence shock and

orthogonal to all remaining structural shocks. The second two imply that the proxy is

uncorrelated with current and past values of the measurement error. The proxy can be

mismeasured itself, for example, an event could falsely be labeled as a spreader event, as

long as the zero-correlation conditions hold (Ramey and Zubairy, 2018). These conditions

are likely to hold since the binary indicator neglects the number of infected people.

For implementation, we append the vector of endogenous variables with the proxy or-

dered last. We remove all narrative restrictions, as in Section 3.1, and identify the economic

mobility and policy shock using traditional sign restrictions only. For the incidence shock,

we drop all traditional sign restrictions used in the baseline (Table 1). Instead, we identify

this shock by imposing one alternative sign restriction. We require the proxy to respond

positively to an incidence shock on impact. Furthermore, we set all elements but the bot-

10Arias et al. (2021) use an alternative to address the measurement error in cases. The authors treat new
cases as an unobservable in an estimated nonlinear SIR model based on detailed Belgian health data to
obtain the smoothed value of this variable. Then, they use this measure in time-series models to gauge the
dynamic effects of non-pharmaceutical interventions on the smoothed value of cases and economic activity.
They obtain similar results as we do.

11We use the events labeled as super spreader events on http://superspreadingdatabase.com. We exclude
all the events that are marked as uncertain in the database with respect to the timing or the number of
infected people.
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tom one in the last column of B−1
0 to zero. Thereby, we rule out that the measurement

error in the proxy, whose standard deviation we normalize to 1, affects the other variables.

Responses to incidence shock
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Figure 9: The dynamic effects of incidence, economic mobility and containment policy shocks
using an instrument for incidence shocks. Notes: The figure shows the median responses of the
endogenous variables to an incidence shock (left column), a mobility shock (middle column), and a con-
tainment policy shock (right column) over 60 days for a model that identifies the incidence shock with an
instrument based on spreader events, along with 68% and 90% credible sets of the baseline model (shaded
areas). The shocks are standardized to the impact effect on containment policy in the baseline model.

The solid lines in Figure 9 show the median responses to an incidence shock (left col-

umn), to a mobility shock (middle column), and to a policy shock (right column). The

dashed lines refer to a model with an additional magnitude restriction on the impact re-

sponse of the proxy to the incidence shock (of > 0.3) that induces the relevance of the proxy.

The dotted lines are based on an additional sign restriction, a negative reaction of mobility

to the incidence shock, to pin-down the response of this variable more precisely. Finally,
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the dashed-dotted lines combine all these restrictions. Overall, the effects are similar across

the alternative models and comparable to the baseline estimates (Figure 2).12

The identification of the mobility shock and policy shock in this model is based on the

assumption that those structural shocks are uncorrelated with the measurement error in

new cases. To see whether this assumption is reasonable, we estimate a model in which we

replace the (log) of cumulative cases by the cumulated binary proxy series as an alterna-

tive measure of infections. In this model, the mobility and containment policy shock are

not exposed to the measurement error in reported new cases. Figure ?? shows that the

responses to both shocks are similar to those of the baseline model, indicating that the

shocks are orthogonal to the misreporting in cases.

While we can identify the structural shocks corrected for mismeasurement with the

instrument, the measurement error can still affect the reduced form and thereby the impulse

responses. The direction of such bias is unclear for an autoregressive model with more than

one lag and can be either attenuating or accentuating (Staudenmayer and Buonaccorsi,

2005). To see the potential effect of the bias on our estimates, we conduct an extensive

simulation, following Ramey (2011). We generate 50 new time series for cumulative cases,

∆cases∗it, based on the original data on daily new cases, ∆casesit to which we add several

forms of measurement error as follows:

∆cases∗it = (1− µ)∆casesit + µ∆casesit−1 + ρt∆casesit

ρt = (1− δ)ρt−1 + vt

µ ∼ U(0, 0.2), δ ∼ Beta(1, 20), vt ∼ N (0, 0.1), ρinitial ∼ U(1, 10).

The time-varying parameter ρt is crucial for the properties of the misreporting. Specifically,

ρt needs to be positive and decreasing in t. Then, ∆casesit are under-reported and the

under-reporting diminishes over time. To achieve that, we model ρt as an AR(1) with

persistence (1 − δ) < 1. We aim for high persistence slowly decreasing over time. At the

same time, we want to avoid large values for δ which could lead to negative ρt and in

12The average correlation of the proxy with the identified incidence shocks for those countries for which
super spreader events are recorded is between 0.06-0.07 for the four different proxy-SVAR models. More-
over, after estimation, we check the contemporaneous validity of the proxy through its impact response to
incidence shocks (relevance) and to economic mobility and policy shocks (contemporaneous exogeneity).
The proxy responds significantly positively to incidence shocks (Figure ??). In contrast, it does not respond
significantly to economic mobility or policy shocks, suggesting that it is exogenous.

31



turn to downwards shifts in ∆cases∗it. To ensure a small values, we draw δ from a Beta

distribution with parameters 1 and 20, whic has most of the mass close to zero.

We add daily noise to reported cases through vt. This variation could be driven, for ex-

ample, by changes in the testing capacity or changes in requirements to show testing results.

We assume that vt follows a normal distribution with mean zero and variance 0.1 such that

misreporting varies only slightly from day to day. Since we do not enforce that ρt is positive,

the small variance helps keeping negative ρt to a minimum. If ρt turns negative, we set it to

zero. The distribution of ρinitial implies that simulated new cases are 2-11 times higher than

reported new cases (see Arias et al. (2021) and https://ourworldindata.org/covid-models).

We allow for up to 20% misreporting by one day. We let µ be uniformly distributed be-

tween 0 and 0.2 (as in Ramey, 2011). The choice of 20% is arbitrary but is less important—

compared to ρt—for the characteristics of the misreporting. We set all simulated data

before the first actually reported case to zero. Finally, we cumulate ∆cases∗it. Overall, the

parameter settings ensure that the measurement error has characteristics as postulated in

Arias et al. (2021). We are bounded in the parameter choices by assuring a positive ρt and

positive cases (specific values of ρt combined with small ρinitial can lead to negative cases).

The simulated series differ substantially in terms of the level and slope of the pandemic

curve from the actual data (Figure ??). Nevertheless, the 50 solid lines in Figure 10

show that the responses based on the simulated data are similar to the baseline estimates.

Online Appendix ?? shows that the response are also similar for four alternative parameter

settings in the simulation. One potential reason for this similarity is that under-reporting

mainly affects the trend of new cases, which is absorbed by the autoregressive part of the

VAR model. Overall, we conclude that the structural shocks and the reduced form are not

materially affected by measurement error in cases.

3.3 Sensitivity analysis

In this section, we show that the main findings are robust to changes in the model specifica-

tion and identification. We discuss the robustness by means of estimated impulse responses.

Here, we focus on three sensitivity tests. First, we assess how the results are affected by

the geographic applicability of the containment policy. Second, we include variables that

capture spillovers across countries. Third, we measure the epidemiological developments
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Figure 10: The dynamic effects of incidence, economic mobility and containment policy
shocks using simulated cases data. Notes: The figure shows the median responses of the endogenous
variables to an incidence shock (left column), a mobility shock (middle column), and a containment policy
shock (right column) over 60 days for 50 simulated cases data, along with 68% and 90% credible sets of the
baseline model (shaded areas). The shocks are standardized to the impact effect on containment policy in
the baseline model.

with log changes in daily cases and deaths. Online Appendix ?? contains many further

robustness tests that we summarize at the end of the section.

Figure 11 shows the median impulse responses to a containment policy shock for the

alternative specifications. The shaded areas in the left and middle column show the credible

sets of the baseline model. In the left column, we use three alternative containment policy

indices. First, we include an index that directly captures the geographical coverage of the

containment policies, the ‘Oxford Covid-19 Stringency Index’ (dashed lines). It includes

the seven indicators that we use to construct our containment policy index plus two indices:
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Figure 11: The effects of containment policy shocks using alternative policy indices, spillover
variables, and log changes in cases and deaths Notes: The figure shows the median responses of
the endogenous variables to a containment policy shock over 60 days for alternative policy indices (left
column), for models including spillover variables (middle column), and using daily log changes in cases and
deaths (right column), along with 68% and 90% credible sets of the pooled model (dark and light shaded
areas, respectively). The shocks are normalized to the standard deviation of containment policy shocks in
the baseline specification.

one index for international travel controls and one for public information campaigns. At the

subindex level, restrictions at the national level obtain a higher value than those applicable

at the regional level. Thereby, the Stringency Index accounts for the generality of the

restrictions. Second, we create one index averaging the three subindices for policies with the

highest national applicability (school closures, restrictions on public events, transportation

closures), dotted lines, and one averaging the three subindices for policies with the lowest

applicability (stay home orders, restrictions on internal movement, restrictions on private
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gatherings), dashed-dotted lines. Overall, the results are only mildly affected.

In the middle column, we include common factors or endogenous variables that explicitly

account for country-specific inflows into the model. Specifically, we compute global cases,

deaths, and stock prices as the cross-sectional sum in our sample to capture common

shocks (dashed lines). We add these as exogenous contemporaneous variables to the model

such that the remaining unexplained variability in the endogenous variables should reflect

country-specific incidence and news shocks. In other words, the assumption of no spillovers

across countries is more likely to hold. Second, we use the log of aggregate cases in the

rest of the countries in the sample, excluding country i, as sixth endogenous variable

(dotted lines). Third, we include the index for international travel controls from the Oxford

Covid-19 Government Response Tracker database (dashed-dotted lines). This variable

documents restrictions on international travel. Hence, it should be directly, inversely related

to incidence shocks from all other countries to country i. In all three cases, the main results

hold, supporting the assumption E(uitu
′
it) = 0 for i ̸= j.

In the right column, we estimate a model where cumulated cases and deaths enter in

log-differences. The responses of cases and death are cumulative. Qualitatively, the results

are similar to those for the model using log-levels. This is consistent with pre-tests on the

order of integration of log cases and deaths. Based on the panel unit root test of Levin

et al. (2002) we can reject the null hypothesis of a unit root for each individual time series

against the alternative of trend stationary of all individual series at the 1% level for log

cases (test statistic -14.77, p-value 0.00) and log deaths (test statistic -13.22, p-value 0.00).

Online Appendix ?? documents that the findings are robust to further changes in the

reduced form model. We include linear/quadratic trends, use 7 or 21 lags, exclude weekday

dummies, employ an alternative mobility index, use as alternative equity price a stock

price index for large companies, add total testing as additional variable, and allow for

heterogeneity in the autoregressive coefficients through partial pooling. Moreover, the

results are robust to changes in the identification strategy. We set restrictions upon impact

and at h = 14, remove the sign restriction on stock prices or the sign restriction on the

response of containment policy to incidence shocks, mobility shocks, or all three shocks.
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4 Conclusions

We use a Bayesian panel structural vector autoregression and daily data for 44 countries to

study the interaction between Covid-19, economic mobility, and containment policy. We

identify three structural shocks—incidence shocks, economic mobility shocks, and contain-

ment policy shocks—through traditional and narrative sign restrictions. We document that

incidence and containment policy shocks have significant and persistent effects on economic

mobility, cases, and deaths that last for about 1-2 months. In contrast, mobility shocks

have smaller and shorter, although statistically significant, effects.

Furthermore, we report that incidence and containment shocks are the most important

drivers of economic mobility, cases, and deaths. Incidence shocks explain roughly 40%

of the unexpected variation in these variables on average and policy shocks about 20%.

Historically, we find that incidence shocks are also most important for understanding the

pandemic curve and the deep global mobility recession in 2020, followed by policy shocks.

Mobility shocks are negligible. Finally, the estimated policy tradeoff between reducing

Covid-19 mortality and maintaining economic mobility is 8% fewer deaths for each policy-

induced percentage point reduction in economic mobility over three months

All in all, the results indicate that two factors, the autonomous biological process and

non-pharmaceutical interventions, are relevant for understanding infections and economic

mobility patterns during a pandemic. The importance of the first factor is consistent with

the findings of Atkeson et al. (2020b) who document similar progressions of the pandemic

in many countries despite widely differing initial conditions. The relevance of the second

factor indicates that good policy is decisive for good health outcomes (Fernández-Villaverde

and Jones, 2020), and that a relevant part of the observed changes in mobility can be

attributed to mandatory social distancing (Gupta et al., 2020). Furthermore, both factors

seem essential for understanding the fluctuations in the transmission rate βt in estimated

epidemiological SIR models that Atkeson et al. (2021) document.
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A Data

This section describes the data. All data refer to the calendar daily frequency and are

downloaded through Macrobond. The countries in the analysis are Argentina, Australia,

Austria, Belgium, Brazil, Canada, Chile, Colombia, Czech Republic, Denmark, Estonia,

Finland, France, Germany, Greece, Hong Kong, Hungary, India, Indonesia, Ireland, Israel,

Italy, Japan, Lithuania, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland,

Portugal, Russia, Saudi Arabia, Slovenia, South Korea, Spain, Sweden, Switzerland, Tai-

wan, Thailand, Turkey, United Arab Emirates, United Kingdom and United States.

Variable Definition, transformation, original source, mnemonic

Containment policy in-

dex

Unweighted average of containment and closure policy indices of the Oxford COVID-19

Government Response Tracker, which systematically collects information on several different

common policy responses that governments have taken to respond to the pandemic, source

University of Oxford, logarithm.

Record closings of schools and universities, Ordinal scale, 0 - No Measures 1 - Recommend

Not Leaving House 2 - Require Not Leaving House with Exceptions for Daily Exercise,

Grocery Shopping & Essential Trips 3 - Require Not Leaving House with Minimal Exceptions

(E.G. Allowed to Leave Only Once Every Few Days, or Only One Person Can Leave at a

Time) No Data - Blank, standardized, oxf deu c1, all mnemonics for University of Oxford

data are listed for Germany, for other countries just replace deu for Macrobond-Oxford

country code or click on ‘Series list’ and than right mouse-click on series and select ‘Change

region and duplicate...’

Record closings of workplaces, Ordinal scale, 0 - no measures 1 - recommend closing (or

recommend work from home) 2 - require closing (or work from home) for some sectors or

categories of workers 3 - require closing (or work from home) for all-but-essential workplaces

(eg grocery stores, doctors) Blank - no data, standardized, oxf deu c2

Record cancelling public events, Ordinal scale, 0 - no measures 1 - recommend cancelling 2 -

require cancelling Blank - no data, standardized, oxf deu c3

Record limits on private gatherings, Ordinal scale, 0 - no restrictions 1 - restrictions on very

large gatherings (the limit is above 1000 people) 2 - restrictions on gatherings between 101-

1000 people 3 - restrictions on gatherings between 11-100 people 4 - restrictions on gatherings

of 10 people or less Blank - no data, standardized, oxf deu c4

Record closing of public transport, Ordinal scale, 0 - no measures 1 - recommend closing

(or significantly reduce volume/route/means of transport available) 2 - require closing (or

prohibit most citizens from using it) Blank - no data, standardized, oxf deu c5

Record orders to shelter-in-place and otherwise confine to the home, Ordinal scale, 0 - no

measures 1 - recommend not leaving house 2 - require not leaving house with exceptions

for daily exercise, grocery shopping, and ’essential’ trips 3 - require not leaving house with

minimal exceptions (eg allowed to leave once a week, or only one person can leave at a time,

etc) Blank - no data, standardized, oxf deu c6

Record restrictions on internal movement between cities/regions, Ordinal scale, 0 - no mea-

sures 1 - recommend not to travel between regions/cities 2 - internal movement restrictions

in place Blank - no data, standardized, oxf deu c7

Covid-19 cumulative

deaths

Coronavirus Disease (COVID-19) Pandemic, Total Deaths, Aggregate, Stock, World Health

Organization, logarithm, whocovid19 deaths de, , all mnemonics for WHO data are listed for

Germany, for other countries just replace de with Macrobond-WHO country code

Covid-19 cumulative

cases

Coronavirus Disease (COVID-19) Pandemic, Confirmed Cases, Aggregate, Stock, Confirmed

cases include both laboratory confirmed and clinically diagnosed cases, World Health Orga-

nization, logarithm, whocovid19 de

Total tests Novel Coronavirus (COVID-19), Total Tests Performed, source: Our World in Data, loga-

rithm, owidtestcovid de, for other countries replace de for Macrobond-Our World in Data

country code
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Economic mobility in-

dex

Unweighted average of economic activity related mobility indices. These show how visits

and length of stay at different places change compared to a baseline. These changes are

calculated using the same kind of aggregated and anonymized data used to show popular

times for places in Google Maps. Changes for each day are compared to a baseline value for

that day of the week. The baseline is the median value, for the corresponding day of the

week, during the 5-week period Jan 3–Feb 6, 2020. The data start on February 15, 2020. We

set earlier observations to zero in line with the baseline for computing the changes afterwards,

source Google

Mobility, Workplaces, Length of Stay, The Whole Country, Compared to Baseline. Mobility

trends for places of work. 7-day trailing moving average, googledemo1571, all mnemonics for

Google Mobility data are listed for Germany, for other countries just replace the numeric

country code (first 2 of the 4 digits) toward the end of the Macrobond mnemonic

Mobility, Transit Stations, Length of Stay, The Whole Country, Compared to Baseline.

Mobility trends for places like public transport hubs such as subway, bus, and train stations.

7-day trailing moving average, googledemo1570

Mobility, Retail & Recreation, Length of Stay, The Whole Country, Compared to Baseline.

Mobility trends for places like restaurants, cafes, shopping centers, theme parks, museums,

libraries, and movie theaters. 7-day trailing moving average, googledemo1567

Real GDP World Bank, Global Economic Monitor, Gross Domestic Product, SA, constant USD,

denygdpmktpsakdgemquar, the mnemonics for World Bank data are for Germany, for other

countries just replace de at the start of the mnemonic for the respective Macrobond-World

Bank country code

Unemployment rate World Bank, Global Economic Monitor, Unemployment, Rate in %, deunempsagemmonth

Stock prices small

firms

Equity Indices, MSCI, Small Cap, Index, Total Return, Local Currency, source MSCI,

logarithm, msci 106214g , for other countries replace the last 2 of the 6 digits with the

Macrobond-MSCI country code

Stock prices large firms Equity Indices, MSCI, Large Cap, Index, Total Return, Local Currency, source MSCI, loga-

rithm, msci 650019g, for other countries replace the last 2 of the 6 digits with the Macrobond-

MSCI country code

Weekly Economic In-

dex

Leading Indicators, Federal Reserve Bank of New York, Weekly Economic Index (WEI),

Index, Lewis et al. (2020), ussurv01117

B Supplementary material for main model

B.1 Economic mobility and economic activity

This subsection documents a significant and stable relation between economic mobility

and economic activity. First, we collect data on real, seasonally adjusted GDP for the 44

countries in the sample. We compute the percentage GDP loss for each quarter 2020Q1-Q3

relative to real GDP in 2019Q4. Furthermore, we average the three mobility indices that

enter the economic mobility index (retail, transit stations, and workplaces) within quarter

to have the same frequency as the GDP data. Table B.2 shows strong positive correlations

of the GDP loss with the mobility indices of 0.67-0.77.

Retail Transit stations Workplace Economic mobility
GDP loss 0.67 0.72 0.68 0.77

Table B.2: Correlation between real GDP loss and economic mobility indices.

Table B.3 shows that these positive relations are also highly significant. The R2s are

between 0.45 for the retail mobility index and 0.60 for the aggregate economic mobility
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index. All the coefficients on the mobility indices are statistically significant at the 1%

level. The index for workplace mobility has the highest association, with point estimate

of 0.36. The point estimate for the aggregate economic mobility index of 0.34 implies that

one percentage point less economic mobility is associated with a real GDP loss of 0.34%.

Dependent variable: GDP loss

Retail mobility 0.23
(0.02)

Transit stations mobility 0.26
(0.02)

Workplace mobility 0.36
(0.03)

Economic mobility 0.34
(0.02)

Constant 0.03 1.75 2.65 3.08
(0.69) (0.75) (0.88) (0.73)

Observations 131 131 131 131
R2 0.45 0.51 0.47 0.60

Table B.3: Regression of real GDP loss on mobility indices. Note: Standard errors in parentheses.

Table B.4 shows that these relationships are relatively stable over time. We augment the

previous regressions with two interaction variables that multiply the mobility indices, one

at a time, with dummy variables for 2020Q2 and 2020Q3. While the baseline coefficient on

the level of each index remains significant at the 5% level in all cases, none of the interaction

variables are significant at that level. This suggests that the relationship between the GDP

loss and the mobility indices is stable in the sample, despite a likely shift to work from

home and e-commerce during the pandemic.

Dependent variable: GDP loss
Explanatory: Retail Transit Workplace Econ. mobility

Level 0.14 0.16 0.12 0.18
(0.07) (0.07) (0.08) (0.08)

Level*2020Q2 0.09 0.05 0.18 0.15
(0.08) (0.08) (0.09) (0.09)

Level*2020Q3 -0.07 -0.03 0.02 -0.02
(0.08) (0.08) (0.11) (0.09)

Observations 131 131 131 131
R2 0.64 0.65 0.61 0.69

Table B.4: Regression of real GDP loss on mobility indices and interactions with quarter
dummies. Note: Standard errors in parentheses.

As an alternative measure of economic activity that is available at the monthly fre-

quency, we collect data on unemployment rates for all countries in the sample. Table B.5
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shows that the mobility indices are strongly negatively correlated with the unemployment

rate. All point estimates are statistically significant at the 1% level. The point estimate on

the aggregate mobility index of –0.05 suggests that, on average, one percentage point less

economic mobility is associated with +0.05 percentage points in the unemployment rate.

Dependent variable: Unemployment rate (in %)
(1) (2) (3) (4)

Retail mobility -0.04
(0.01)

Transit stations mobility -0.04
(0.01)

Workplace mobility -0.05
(0.01)

Economic mobility -0.05
(0.01)

Constant 6.27 6.21 6.07 6.04
(0.27) (0.30) (0.33) (0.31)

Observations 369 369 369 369
R2 0.06 0.05 0.05 0.06

Table B.5: Regression of unemployment rate on mobility indices. Note: Standard errors in
parentheses.

To assess the stability of the relationship between the unemployment rate and economic

mobility over time, we estimate rolling regressions. We use a moving window of three

months, which we shift forward by one month. The sample is 2020M1-2020M9. Thus,

we use the first quarter 2020 as a reference period. Figure B.1 plots the estimated point

estimates (dots) and their 90% confidence intervals (vertical lines). The figure suggests that

the elasticity between the unemployment rate and the economic mobility index is relatively

stable over time. The confidence intervals all overlap.

As final analyses, we use two activity measures that are available at the weekly and

daily frequency, respectively, but only for the U.S. First, we employ the Weekly Economic

Index of Lewis et al. (2020) and conduct rolling regressions of this index on the economic

mobility index. We use a moving window of 13 weeks, which we shift forward by one week.

Figure B.2 shows a positive and mostly statistically significant relationship between the

two activity measures throughout the sample. There is a small dip in the point estimate in

June 2020, but generally the upper and lower bounds overlap, suggesting that the relation

is stable.

Second, we use the Mobility and Engagement Index of Atkinson et al. (2020), which

is available at the daily frequency. Figure B.3 shows a strong and highly statistically

significant relation between this activity measure and the economic mobility index. The

elasticity increases through the sample from 1.9 to 2.4.
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Figure B.1: Rolling regression estimates of unemployment rate on economic mobility. Notes:
The figure shows the point estimate and the 90% confidence interval for rolling regressions of the unem-
ployment rate on the economic mobility index for the months 2020M1-2020M9 with window of 3 months
and step size of 1 month.
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index. Notes: The figure shows the point estimate and the 90% confidence interval from rolling regressions
of the Weekly Economic Index on the economic mobility index for the weeks 2020W1-2020W28 with moving
window of 13 weeks and step size of 1 week.
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B.2 Algorithm

Stacking the model in equation (2) over T time periods gives

Y = AX+U (1)

with Y = (Y1, . . . ,YT ), X = (X1, . . . ,XT ) and U = (U1, . . . ,UT ). The posterior distri-

bution of Σ is given by

Σ|Y ∼ IW(S̄, s̄) (2)

S̄ = S0 + (Y −AX) (Y −AX)′

s̄ = NT + s0

where the prior distributions is Σ ∼ IW(S0, s0). The posterior of A is normal:

vec(A)|Σ,Y ∼ N (µ̄, V̄ ) (3)

µ̄ = V̄ −1
[
(X⊗ Σ−1)vec(Y)

]
V̄ =

[
V −1
0 + (XX′ ⊗ Σ−1)

]−1

with prior distribution vec(A) ∼ N (0K(Kp+N+M), V0). We chose the following prior param-

eters: S0 = I, s0 = K, and V0 = 10I.

To obtain draws of Σ, A and Q from the uniform-normal-inverse-Wishart posterior

conditional on the traditional sign and narrative sign restrictions, we use the algorithm of

Antoĺın-Dı́az and Rubio-Ramı́rez (2018). The algorithm has the following steps:

Step 1 Draw Σ and A from the posterior distributions given in equations (2) and (3).

Step 2 Draw an orthogonal matrix Q that satisfies the exclusion restrictions with the

following steps for each j = 1, . . . , K:

Step 2.1 Draw xj from a standard normal distribution and set x̃j = xj/∥xj∥

Step 2.2 Set qj = Kjx̃j where Kj is a matrix whose columns form an orthonor-

mal basis of the null space of the matrix Mj = (q1, . . . , qj−1,L)
′. Set Q =

(q1, . . . , qK).

Step 3 Calculate the structural parameters (B0,B) by B0 = (chol(Σ)Q)−1 and B = B0A.

Re-calculate L with L0Q.

Step 4 If (B0,B) satisfy the sign restrictions SjLej > 0 for j = 1, . . . , K and the narrative

sign restrictions e′jϵlt > 0 or e′jϵlt < 0 for l ∈ Cr
j , t ∈ T r

j , compute an importance

weight, w, by
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Step 4a Simulate ndraws=5000 independent draws of ϵit and check whether the

narrative sign restrictions are satisfied.

Step 4b Calculate the weight w as 1/proportion of ndraws that satisfy the restriction.

Otherwise, discard the draw.

Step 5 Repeat Step 1 to 4 until the required number of draws is obtained.

Step 6 Re-sample with replacement the required number of draws using the importance

weights and calculate the impulse response functions for each draw based on B,Q

and Σ.

B.3 Robust prior

Sampling Q introduces a second source of randomness purely due to the random number

generator as opposed to sampling uncertainty driven by the finite number of observations.

The prior on Q is not agnostic in all dimensions as shown by Baumeister and Hamilton

(2015, 2018, 2020). The prior distribution on the rotation matrix Q can be informative

for the posterior inference. This prior on the structural parameters given the reduced form

parameters is not updated by the data. Giacomini and Kitagawa (2021) suggest to specify

for set identified models multiple prior distributions on the structural parameters given

one prior on the reduced form parameters. This robust prior approach of Giacomini and

Kitagawa (2021) thus avoids specifying a specific pior on the rotation matrix. To capture

the induced information of this class of priors, they suggest to report additionally to the

standard posterior inference the lower and upper bounds of posterior means of the object

of interest (in our cases the impulse response functions) using multiple priors on Q. To

obtain these bounds we extend our algorithm by an additional step following the suggested

Algorithm 2 in Giacomini and Kitagawa (2021) and Algorithm 1 in Giacomini, Kitagawa

and Read (2021):

Step 4.1 Repeat Step 2 to Step 4 until M draws of Q are obtained.

We then calculate the lower and upper bounds of the identified set for each reduced

form draw as the minimum and maximum impulse responses of all Q draws. The posterior

medians of the bounds are given by the average of the bounds over all draws from the

reduced form. We set M to 100 which leaves us with 225 accepted draws. If we do not

obtain a Q draw after 1,000,000 repetitions that satisfies the identifying restrictions, we

discard the reduced form draw. We stick to the relative small number of M due to the

computational time needed.

Figure B.4 shows the responses to incidence, mobility and containment policy shocks

using multiple prior distributions implemented as outlined for narrative sign restrictions in

9



Giacomini et al. (2021). The solid lines give the median response of the baseline model,

the dashed-dotted lines are the lower and upper bounds of the set of posterior median

responses. The lower and upper bounds are closely in line with the 90% reported credible

set. In general, if the median response based on one uniform prior is significantly positive

(negative) also the lower and upper bounds are positive (negative). Thus, choosing an

uniform prior for Q increases the uncertainty but does not seem to have a great impact on

the main findings. However, since the lower and upper bounds are approximated at each

draw of the reduced form parameters by a Monte Carlo simulation, relying on a relatively

small M leads to an approximation bias (Giacomini and Kitagawa, 2021).

Responses to incidence shock
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Figure B.4: The dynamic effects of incidence, mobility and containment policy shocks based
on robust Bayesian approach. Notes: The figure shows the median response of the baseline specification
(solid lines) of the endogenous variables to an incidence shock (first column), a mobility shock (middle
column), and a containment policy shock (right column) over 60 days, along with 68% and 90% credible
sets (dark and light shaded areas, respectively). The dashed-dotted lines are the lower and upper bound
of the identified set (posterior medians). The shocks are normalized to be positive and have size of one
standard deviation.
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B.4 Comparison identification

Responses to incidence shock

 

Covid-19 deaths

0 30 60

-20
0

20
40
60
80

%

Covid-19 cases

0 30 60

0

50

100

%

Economic mobility

0 30 60

-20

-10

0

p
.p

.

Containment policy

0 30 60

0

10

20

30

%

Stock prices

0 30 60

Days

-15

-10

-5

0

%

Responses to mobility shock

 

Covid-19 deaths

0 30 60

0

2

4

6

8

%

Covid-19 cases

0 30 60

0

2

4

6

8

%

Economic mobility

0 30 60

0

1

2

p
.p

.

Containment policy

0 30 60

0

1

2

%

Stock prices

0 30 60

Days

-1

-0.5

0

%

Responses to policy shock

 

Covid-19 deaths

0 30 60

-30

-20

-10

0

10

%

Covid-19 cases

0 30 60

-40

-20

0

%

Economic mobility

0 30 60

-15

-10

-5

0

p
.p

.

Containment policy

0 30 60

-5

0

5

%

Stock prices

0 30 60

Days

-2

0

2

4

%

Figure B.5: Comparison of impulse responses for different identification strategies. Notes:
The figure shows the responses of the endogenous variables (in rows) to an incidence shock (first column),
to an economic mobility shock (middle column), and to a containment policy shock (right column) over
60 days. The solid line and the shaded areas refer to the median estimate and 68% and 90% credible
sets, respectively, of the baseline model identified with traditional and narrative sign restrictions. The
dashed lines refer to a model identified with traditional sign restrictions only, that is, without narrative
restrictions. The shocks are normalized to the standard deviation of the shocks in the model identified
with both traditional and narrative sign restrictions.
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C Supplementary material for alternative models

C.1 Further subgroup analysis

Developed/developing
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Figure C.6: The effects of incidence shocks in countries grouped by level of development or
pandemic timing. Notes: The figure shows the median responses of the endogenous variables (in rows)
to an incidence shock over 60 days for developed and developing countries (left column), for countries in
which the maximum daily increase in cases is ≤ 200% and for those where it is > 200% (middle column),
and for countries where the first case occurs within the first 40 days of the sample and where it occurs
after the first 50 days (right column), along with 68% and 90% credible sets of the pooled model (dark and
light shaded areas, respectively). The shocks are normalized to the standard deviation of incidence shocks
in the baseline specification.
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Figure C.7: The effects of incidence shocks for countries grouped by region or severity of
pandemic. Notes: The figure shows the median responses of the endogenous variables to an incidence
shock over 60 days for geographic regions (left column), for countries clustered along the percentage of
Covid-19 cases and deaths in the population (middle column), and for countries clustered on the level
of the mobility and stringency index at the end of the sample (right column), along with 68% and 90%
credible sets of the pooled model (dark and light shaded areas, respectively). The shocks are normalized
to the standard deviation of incidence shocks in the baseline specification.
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Figure C.8: The effects of economic mobility shocks in countries grouped by level of develop-
ment or pandemic timing. Notes: The figure shows the median responses of the endogenous variables
(in rows) to an economic mobility shock over 60 days for developed and developing countries (left column),
for countries in which the maximum daily increase in cases is ≤ 200% and for those where it is > 200%
(middle column), and for countries where the first case occurs within the first 40 days of the sample and
where it occurs after the first 50 days (right column), along with 68% and 90% credible sets of the pooled
model (dark and light shaded areas, respectively). The shocks are normalized to the standard deviation of
economic mobility shocks in the baseline specification.

14



Regions

 

Covid-19 deaths

0 30 60

0

2

4

6

%

Covid-19 cases

0 30 60

0

2

4

6

8

%

Economic mobility

0 30 60

-0.5
0

0.5
1

1.5

p
.p

.

Containment policy

0 30 60

0

1

2

%

Stock prices

0 30 60

Days

-1

-0.5

0

%

America

Western Europe

Eastern Europe

Asia

Cluster on cases and death

 

Covid-19 deaths

0 30 60

0

2

4

6

%

Covid-19 cases

0 30 60

0

2

4

6

8

%

Economic mobility

0 30 60

-0.5
0

0.5
1

1.5

p
.p

.

Containment policy

0 30 60

0

1

2

%

Stock prices

0 30 60

Days

-1

-0.5

0

%

cluster 1

cluster 2

Cluster on policy and mobility

 

Covid-19 deaths

0 30 60

0

2

4

6

%

Covid-19 cases

0 30 60

0

2

4

6

8

%

Economic mobility

0 30 60

-0.5
0

0.5
1

1.5
p
.p

.

Containment policy

0 30 60

0

1

2

%

Stock prices

0 30 60

Days

-1

-0.5

0

%

cluster 1

cluster 2

cluster 3

Figure C.9: The effects of economic mobility shocks for countries grouped by region or
severity of pandemic. Notes: The figure shows the median responses of the endogenous variables to an
economic mobility shock over 60 days for geographic regions (left column), for countries clustered along
the percentage of Covid-19 cases and deaths in the population (middle column), and for countries clustered
on the level of the mobility and stringency index at the end of the sample (right column), along with 68%
and 90% credible sets of the pooled model (dark and light shaded areas, respectively). The shocks are
normalized to the standard deviation of economic mobility shocks in the baseline specification.
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In Figures C.10-C.12, we study whether the effects depend on the level of volatility.

We split the data into volatility regimes according to three different criteria. The first

two separate the data along the cross-section, the last along the time dimension. In all

cases, we standardize the data for comparison. We also estimate a pooled model on the

standardized data and show the credible sets as shaded areas in the figures as a reference.

In the first column, we sort countries based on the summed median variances of the reduced

form errors. We form two volatility groups, splitting the countries at the median summed

variance. In the second column, we use k-means clustering based on the variances of all

reduced from residuals. The data suggest three volatility clusters, with Taiwan building

an own cluster. We attribute it to the high volatility cluster. In the third column, we

separate time periods of low and high volatility. We calculate rolling standard deviations

of the mean (across countries) reduced form residuals for each variable using a window of

30 days. For each day, we check whether more than three variables have values above the

mean standard deviation plus one standard deviation (Rigobon and Sack, 2003). In that

case, we classify the day into the high volatility regime, otherwise into the low volatility

regime. For each regime, we recompute the reduced form error covariance matrix but use

the pooled autoregressive component of the model to avoid breaks in the lag structure.

Overall, the effects of the structural shocks are similar across volatility regimes and to the

baseline estimates.
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Figure C.10: The effects of containment policy shocks for countries grouped by volatility.
Notes: The figure shows the median responses of the endogenous variables (in rows) to a containment policy
shock over 60 days for low volatility regimes (dashed lines) and high volatility regimes (dotted lines). The
grouping is based on the summed variance over all variables (left column), on clustering by the variances
of all variables (middle column), on periods split according to the rolling standard deviations of reduced
form residuals (right column), along with 68% and 90% credible sets of the pooled model (dark and light
shaded areas, respectively). The shocks are normalized to the standard deviation of containment policy
shocks in the baseline specification.
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Figure C.11: The effects of incidence shocks for countries grouped by volatility. Notes: The
figure shows the median responses of the endogenous variables (in rows) to an incidence shock over 60 days
for low volatility regimes (dashed lines) and high volatility regimes (dotted lines). The grouping is based
on the summed variance over all variables (left column), on clustering by the variances of all variables
(middle column), on periods split according to the rolling standard deviations of reduced form residuals
(right column), along with 68% and 90% credible sets of the pooled model (dark and light shaded areas,
respectively). The shocks are normalized to the standard deviation of incidence shocks in the baseline
specification.
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Figure C.12: The effects of economic mobility shocks for countries grouped by volatility.
Notes: The figure shows the median responses of the endogenous variables (in rows) to an economic
mobility shock over 60 days for low volatility regimes (dashed lines) and high volatility regimes (dotted
lines). The grouping is based on the summed variance over all variables (left column), on clustering by the
variances of all variables (middle column), on periods split according to the rolling standard deviations of
reduced form residuals (right column), along with 68% and 90% credible sets of the pooled model (dark
and light shaded areas, respectively). The shocks are normalized to the standard deviation of economic
mobility shocks in the baseline specification.
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C.2 Supplementary material measurement error analysis
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Figure C.13: The response of the proxy to the structural shocks. Notes: The figure shows the
median responses of the proxy to an incidence shock (left panel), economic mobility shock (middle panel),
and containment policy shock (right panel) over 60 days for four different proxy-SVAR models, along with
68% and 90% credible sets.
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Responses to incidence shock
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Figure C.14: The dynamic effects of incidence, economic mobility, and containment policy
shocks for a model with an indicator variable for Covid-19 cases. Notes: The figure shows the
median response (solid lines) of the endogenous variables to an incidence shock (first column), a mobility
shock (middle column), and a containment policy shock (right column) over 60 days, along with 68% and
90% credible sets (dark and light shaded areas, respectively). The shocks are normalized to be positive
and have size of one standard deviation.
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Figure C.15: Simulated data on cumulative cases. Notes: The figure shows the 50 simulated time
series for cumulative cases for all countries in the sample.
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Table C.6: Parameter specifications

I II III IV V

µ U(0, 0.2) U(0, 0.05) U(0, 0.2) U(0, 0.2) U(0, a1), a1 ∼ U(0.01, 0.2)
δ Beta(1, 20) Beta(1, 20) 0.05 Beta(2, 5) Beta(a2, a3), a2 = 1 , a3 ∼ U(2, 20)
vt N (0, 0.1) N (0, 0.1) N (0, 0.1) N (0, 0.5) N (0, a4), 1/a4 ∼ G(10, 0.5)
ρinitial U(1, 10) U(1, 5) U(1, 10) U(1, 10) U(1, a5), a5 ∼ U(5, 20)

We verify the robustness of the simulation results by using four alternative parameter

specifications. Table C.6 gives the parameter choices. In the main text, we use specification

I. Specification II allows for less misreporting (5%) and lower initial ρ. The latter implies

that the true cases are 1 to 6 times higher. We fix δ at 0.05 in specification III. Thus,

the persistence decreases over time by the same amount plus the additional randomness

through vt. We allow for a higher variability in the persistence measure in specification

IV. We draw δ from a Beta distribution shifted away from zero with mean 0.29. We

also specify a larger variance for vt (0.5). Specification V introduces hierarchical prior

distributions for the hyperparameters. We allow for misreporting between zero and 1%

to 20%. The persistence parameter δ is drawn from a Beta distribution with parameters

1 and a draw from a uniform distribution ranging from 2 to 20. We allow for additional

randomness by drawing the error term vt from a normal distribution with the precision

following a gamma distribution, where the parameters are set such that the mean of the

distribution is 0.1. The initial parameter ρ ranges between 1 and 5 to 20. For specification

II to V, we occasionally obtain negative values for cases, which we then set to the previous

positive value.

The solid lines in Figures C.16-C.19 plot the median impulse responses for the four

alternative specifications. The each 50 lines show no remarkable differences across the

alternative parameter settings and relative to the baseline estimates.
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Responses to incidence shock
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Figure C.16: The dynamic effects of incidence, economic mobility and containment policy
shocks using simulated cases data - Specification II. Notes: The figure shows the median responses
of the endogenous variables to an incidence shock (left column), a mobility shock (middle column), and
a containment policy shock (right column) over 60 days for 50 simulated cases data, along with 68% and
90% credible sets of the baseline model (shaded areas). The shocks are standardized to the impact effect
on containment policy in the baseline model.
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Figure C.17: The dynamic effects of incidence, economic mobility and containment policy
shocks using simulated cases data - Specification III. Notes: The figure shows the median responses
of the endogenous variables to an incidence shock (left column), a mobility shock (middle column), and
a containment policy shock (right column) over 60 days for 50 simulated cases data, along with 68% and
90% credible sets of the baseline model (shaded areas). The shocks are standardized to the impact effect
on containment policy in the baseline model.
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Figure C.18: The dynamic effects of incidence, economic mobility and containment policy
shocks using simulated cases data - Specification IV. Notes: The figure shows the median responses
of the endogenous variables to an incidence shock (left column), a mobility shock (middle column), and
a containment policy shock (right column) over 60 days for 50 simulated cases data, along with 68% and
90% credible sets of the baseline model (shaded areas). The shocks are standardized to the impact effect
on containment policy in the baseline model.
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Figure C.19: The dynamic effects of incidence, economic mobility and containment policy
shocks using simulated cases data - Specification V. Notes: The figure shows the median responses
of the endogenous variables to an incidence shock (left column), a mobility shock (middle column), and
a containment policy shock (right column) over 60 days for 50 simulated cases data, along with 68% and
90% credible sets of a baseline model (shaded areas). The shocks are standardized to the impact effect on
containment policy in the baseline model.
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D Further sensitivity tests
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Figure D.20: Percent of general containment policies. Notes: The figure shows the mean percent
of containment measures that are nation wide for different subindices (thin colored lines) and the mean
over these (thick black line).
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Figure D.21: The effects of incidence shocks using alternative policy indices, spillover vari-
ables, and log changes in cases and deaths. Notes: The figure shows the median responses of the
endogenous variables to a containment policy shock over 60 days for alternative policy indices (left col-
umn), for models including spillover variables (middle column), and using log changes in cases and deaths
(right column), along with 68% and 90% credible sets of the pooled model (dark and light shaded areas,
respectively). The shocks are normalized to the standard deviation of containment policy shocks in the
baseline specification.
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Figure D.22: The effects of mobility shocks using alternative policy indices, spillover vari-
ables, and log changes in cases and deaths. Notes: The figure shows the median responses of the
endogenous variables to a containment policy shock over 60 days for alternative policy indices (left col-
umn), for models including spillover variables (middle column), and using log changes in cases and deaths
(right column), along with 68% and 90% credible sets of the pooled model (dark and light shaded areas,
respectively). The shocks are normalized to the standard deviation of containment policy shocks in the
baseline specification.
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This section presents further robustness analysis for the baseline model. All graphs

below show the impulse responses to positive incidence, economic mobility and containment

policy shocks of one standard deviation based on the benchmark specification. Solid lines

are the median estimate and shaded areas are the credible sets. In addition, each figure

shows the estimates from an alternative specification using dashed lines. We change either

the reduced form model or the identification strategy. All in all, the figures show that the

main results hold.

First, Figure D.23 shows the impulse response for a model including a linear trend and,

second, Figure D.24 including a quadratic trend. Third, Figure D.25 presents the responses

for a model including 7 lags. Fourth, Figure D.26 shows results for a model with 21 lags.

Fifth, Figure D.27 summarizes the estimates for a model without weekday dummies. Sixth,

Figure D.28 shows the impulse responses when using the mobility index for workplaces.

Seventh, Figure D.29 gives the impulse response functions for a model including as an

alternative measure for stock prices the MSCI large cap indices. This model does not

include AT and NZ due to data availability. Eighth, the responses for a model additionally

including a variable on total tests performed are given in Figure D.30. We include total

tests as last variable.

Figure D.31 shows country-specific responses to incidence, mobility and containment

policy shocks. We implement a partial pooling approach allowing for heterogeneity across

countries in autoregressive parameters and the error covariance matrices. Similar to Canova

and Ciccarelli (2013) and Jarociński (2010), we estimate SVAR models for each country

using the following prior specifications for country i:

ai|Σi, σv ∼ N (ā,Σi ⊗ σvIKp+1+M), Σi ∼ IW (IK , K), σv ∼ IG(2, 0.005)

where ai denotes the (K
2p+K+KM)×1-dimensional vector of country-specific autoregres-

sive coefficients and ā denotes the (K2p+K+KM)×1-dimensional vector of homogeneous

autoregressive coefficients estimated with the fixed effect PVAR model. That way we allow

for heterogeneity across countries centered around the homogeneous coefficients ā where σv

determines the shrinkage towards common coefficients. We use a Gibbs sampler to sample

from the following posterior distributions:

ai|Yi,Σi, σv ∼ N (ã, Ṽa)

ã = Ṽ −1
a [(XiXi ⊗ Σ−1

i )vec(Yi) + (1/σv)ā]

Ṽa = [XiX
′
i ⊗ Σ−1

i + (1/σv)I]
−1

Σi|Yi, ai ∼ IW (IK + (Yi − AiXi)(Yi − AiXi)
′, K + T )

σv|Yi, ai ∼ IG(2 + 0.5(K2p+K +KM), 0.005 + 0.5
∑

((ai − ā)(ai − ā))

Details on the posterior distributions can be found in Canova and Ciccarelli (2013) and
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Jarociński (2010). The majority of country-specific responses lies within the credible sets

of the pooled model. The variation in responses across countries is limited, backing the

homogeneity assumption of the baseline model. The response which is almost always out-

side the credible sets belongs to Columbia. In general, the limited number of observations

for the epidemiological variables per country can lead to rather extreme reactions. The

responses of the pooled estimator and the average over the country-specific responses are

well aligned.

The next specifications alter the identification. Figure D.32 shows the estimates for a

model setting restrictions on horizon 0 and 14. Figure D.33 gives the responses for a model

with no sign restriction on the reaction of stock prices to incidence shocks. The last three

figures presents impulse response functions for a model without restricting the response

of containment policy at horizon 7 to incidence shocks, Figure D.34, to mobility shocks,

Figure D.35, and to incidence, mobility, and containment policy shocks, Figure D.36.
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Responses to incidence shock
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Figure D.23: The effects of incidence, economic mobility and containment policy shocks with
linear trend. Notes: The figure shows the median response (solid lines for the benchmark model and
bold dashed lines for the model with linear trend) of the endogenous variables to an incidence shock (first
column), a mobility shock (middle column) and a containment policy shock (right column) over 60 days,
along with 68% and 90% credible sets (dark and light shaded areas/dashed lines, respectively). The shocks
are normalized to be positive and have size of one standard deviation.
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Figure D.24: The effects of incidence, economic mobility and containment policy shocks with
quadratic trend. Notes: The figure shows the median response (solid lines for the benchmark model
and bold dashed lines for the model with linear trend) of the endogenous variables to an incidence shock
(first column), a mobility shock (middle column) and a containment policy shock (right column) over 60
days, along with 68% and 90% credible sets (dark and light shaded areas/dashed lines, respectively). The
shocks are normalized to be positive and have size of one standard deviation.
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Figure D.25: The dynamic effects of incidence, economic mobility and containment policy
shocks with 7 lags. Notes: The figure shows the median response (solid lines for the benchmark model
and bold dashed lines for a model with 7 lags) of the endogenous variables to an incidence shock (first
column), a mobility shock (middle column) and a containment policy shock (right column) over 60 days,
along with 68% and 90% credible sets (dark and light shaded areas/dashed lines, respectively). The shocks
are normalized to be positive and have size of one standard deviation.
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Figure D.26: The dynamic effects of incidence, economic mobility and containment policy
shocks with 21 lags. Notes: The figure shows the median response (solid lines for the benchmark model
and bold dashed lines for a model with 21 lags) of the endogenous variables to an incidence shock (first
column), a mobility shock (middle column) and a containment policy shock (right column) over 60 days,
along with 68% and 90% credible sets (dark and light shaded areas/dashed lines, respectively). The shocks
are normalized to be positive and have size of one standard deviation.
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Figure D.27: The dynamic effects of incidence, economic mobility and containment policy
shocks excluding weekday dummies. Notes: The figure shows the median response (solid lines for the
benchmark model and bold dashed lines for the model of the sensitivity analysis) of the endogenous variables
to an incidence shock (first column), a mobility shock (middle column) and a containment policy shock
(right column) over 60 days, along with 68% and 90% credible sets (dark and light shaded areas/dashed
lines, respectively). The shocks are normalized to be positive and have size of one standard deviation.
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Figure D.28: The dynamic effects of incidence, economic mobility and containment policy
shocks with alternative mobility index. Notes: The figure shows the median response (solid lines
for the benchmark model and bold dashed lines for the model of the sensitivity analysis) of the endoge-
nous variables to an incidence shock (first column), a mobility shock (middle column) and a containment
policy shock (right column) over 60 days, along with 68% and 90% credible sets (dark and light shaded
areas/dashed lines, respectively). The shocks are normalized to be positive and have size of one standard
deviation.
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Figure D.29: The dynamic effects of incidence, economic mobility and containment policy
shocks including alternative stock prices (large cap). Notes: The figure shows the median response
(solid lines for the benchmark model and bold dashed lines for the model of the sensitivity analysis) of
the endogenous variables to an incidence shock (first column), a mobility shock (middle column) and a
containment policy shock (right column) over 60 days, along with 68% and 90% credible sets (dark and
light shaded areas/dashed lines, respectively). The shocks are normalized to be positive and have size of
one standard deviation.
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Figure D.30: The dynamic effects of incidence, economic mobility and containment policy
shocks including additionally total tests. Notes: The figure shows the median response (solid lines
for the model of the sensitivity analysis) of the endogenous variables to an incidence shock (first column),
a mobility shock (middle column) and a containment policy shock (right column) over 60 days, along with
68% and 90% credible sets (dark and light shaded areas, respectively). The shocks are normalized to be
positive and have size of one standard deviation.
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Figure D.31: The dynamic effects of incidence, economic mobility, and containment policy
shocks with partial pooling. Notes: The figure shows the median response (thick dashed lines) and
68% and 90% credible sets (shaded areas) of the endogenous variables to an incidence shock (first column),
a mobility shock (middle column) and a containment policy shock (right column) over 60 days, for a fully
pooled model. The thin solid lines show the country-specific estimates from partial pooling and the thick
dotted line the median of these. All models are identified with sign restrictions. The shocks are normalized
to be positive and have size of one standard deviation.
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Figure D.32: The dynamic effects of incidence, economic mobility and containment policy
shocks with restrictions on horizon 0 and 14. Notes: The figure shows the median response (solid
lines for the benchmark model and bold dashed lines for the model with alternative identification horizon)
of the endogenous variables to an incidence shock (first column), a mobility shock (middle column) and a
containment policy shock (right column) over 60 days, along with 68% and 90% credible sets (dark and
light shaded areas/dashed lines, respectively). The shocks are normalized to be positive and have size of
one standard deviation.
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Figure D.33: The dynamic effects of incidence, economic mobility and containment policy
shocks with no sign restriction on the reaction of stock prices to incidence shocks. Notes:
The figure shows the median response (solid lines for the benchmark model and bold dashed lines for
the model with alternative identification horizon) of the endogenous variables to an incidence shock (first
column), a mobility shock (middle column) and a containment policy shock (right column) over 60 days,
along with 68% and 90% credible sets (dark and light shaded areas/dashed lines, respectively). The shocks
are normalized to be positive and have size of one standard deviation.
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Figure D.34: The dynamic effects of incidence, economic mobility and containment policy
shocks without restricting the response of containment policy to incidence shocks. Notes:
The figure shows the median response (solid lines for the benchmark model and bold dashed lines for
the model with alternative identification horizon) of the endogenous variables to an incidence shock (first
column), a mobility shock (middle column) and a containment policy shock (right column) over 60 days,
along with 68% and 90% credible sets (dark and light shaded areas/dashed lines, respectively). The shocks
are normalized to be positive and have size of one standard deviation.
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Figure D.35: The dynamic effects of incidence, economic mobility and containment policy
shocks without restricting the response of containment policy to mobility shocks. Notes: The
figure shows the median response (solid lines for the benchmark model and bold dashed lines for the model
with alternative identification horizon) of the endogenous variables to an incidence shock (first column),
a mobility shock (middle column) and a containment policy shock (right column) over 60 days, along
with 68% and 90% credible sets (dark and light shaded areas/dashed lines, respectively). The shocks are
normalized to be positive and have size of one standard deviation.
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Figure D.36: The dynamic effects of incidence, economic mobility and containment policy
shocks without restricting the response of containment policy to incidence, mobility, and
containment policy shocks. Notes: The figure shows the median response (solid lines for the bench-
mark model and bold dashed lines for the model with alternative identification horizon) of the endogenous
variables to an incidence shock (first column), a mobility shock (middle column) and a containment pol-
icy shock (right column) over 60 days, along with 68% and 90% credible sets (dark and light shaded
areas/dashed lines, respectively). The shocks are normalized to be positive and have size of one standard
deviation.
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