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Combining multiple UAV-Based indicators for wheat yield estimation, a case 
study from Germany
Shovkat Khodjaev , Lena Kuhn , Ihtiyor Bobojonov and Thomas Glauben

Leibniz Institute of Agricultural Development in Transition Economies (IAMO), Department of Agricultural Markets, Marketing and World 
Agricultural Trade, Halle (Saale), Germany

ABSTRACT
Unmanned aircraft vehicles (UAV) are widely used for yield estimations in agricultural produc-
tion. Many significant improvements have been made towards the usage of hyperspectral and 
thermal sensors. The practical application of these new techniques meanwhile has been limited 
by the cost of data collection and the complexities of data processing. The objective of this 
paper is to evaluate the effectiveness of wheat yield estimations based on integrating vegeta-
tion indices (VI), solar radiation and crop height (CH), all of which are characterized by lower 
cost of data collection and processing. The VIs, solar radiation and CH were calculated based on 
UAV-based multispectral images obtained from two separate plots in Southern Germany and 
validated with data from a third plot. We compare the individual and joint predictive perfor-
mance of different VIs, CH, and solar radiation by contrasting the estimated yield with actual 
yield based on multiple linear regression and quantile regression. The best predictive power 
was found for a combined estimation with CH, solar radiation and a Normalized Difference Red- 
edge Index (R2 = 0.75,  RMSE = 0.53). This combined estimation resulted in a 15–20% improve-
ment in the prediction of wheat yield accuracy as compared with utilizing any of the indices 
separately.
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Introduction

Wheat has become one of the most expansively culti-
vated food crops in the world (Tao et al., 2020). Because 
of its high economic and nutritional value, monitoring 
wheat crop growth and yield parameters during the 
season is essential to decision-makers (Marino & 
Alvino, 2020). The prompt and accurate estimation of 
wheat yield is a vital component of precision farming, 
and plays a definitive role in shaping food security and 
price regulation, therefore enhancing the stability of the 
agrarian economy (Tao et al., 2020). However, tradi-
tional crop yield estimations are reliant on ground- 
based data collection, which requires large time and 
financial resources (Reynolds et al., 2000) and therefore 
is unsuitable for upscaling (Huang et al., 2016; Liu et al.,  
2017). In recent years, remote sensing via satellite or 
drone technology has increased the spectrum of options 
(Viljanen et al., 2018). This allows for real-time yield 
estimations and crop health monitoring. Unmanned 
Aircraft Vehicles (UAV, or drones) use photogram-
metric imaging and are configurated from motion tech-
niques and tight image combination, providing 3D 
information at high flexibility and resolution.

The suitability of UAV-based information for high- 
precision yield estimations has been established by 
a growing body of literature: Recently, Tao et al. (2020) 

analyzed crop yield estimation based on wheat plant 
height information and vegetation indices obtained by 
a drone-mounted hyperspectral camera. Their model 
incorporated plant height parameters and vegetation 
indices obtained from UAV-based hyperspectral images. 
Similarly, Possoch et al. (2016) used multi-temporal crop 
surface models extracted from UAV hyperspectral data 
for biomass monitoring of barley. Their results reveal 
that plant height information combined with vegetation 
indices has the highest correlation with dry biomass.

The selection of actual prediction parameters, 
meanwhile, is crucial for the accuracy of yield estima-
tion with remote-sensing techniques. Recent work 
recommends that combining different crop and non- 
crop parameters might significantly improve the accu-
racy of estimates (Choudhury et al., 2021; Jin et al.,  
2018). It is argued that vegetation indices alone may 
not capture all of the factors that affect crop yield, such 
as crop physiological and climate parameters of the 
crop (Cheng et al., 2022; Li et al., 2019). Some previous 
approaches have integrated various parameters for 
crop yield estimation models, such as soil moisture 
(Chakrabarti et al., 2014), evapotranspiration (Huang 
et al., 2015), solar radiation (Yu et al., 2020), or crop 
height (Li et al., 2011). Other studies combined hyper-
spectral, thermal and LIDAR UAV sensors and crop 
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height to estimate corn, wheat and grass yields 
(Furukawa et al., 2020; García-Martínez et al., 2020). 
Few studies combined vegetation indices with various 
crop physiological and climate parameters of crops 
(Yu et al., 2020).

In addition to primary vegetation indices and plant 
height indicators, another higher-order indicator is 
solar radiation, which has a direct impact on crop 
growth, photosynthesis process, temperature regula-
tion and water management (Cheng et al., 2022; 
Zhang et al., 2022). Only few studies (Holzman et al.,  
2018; Ihuoma & Madramootoo, 2020) so far have been 
combining vegetation indices and solar radiation indi-
cators to improve accuracy of yield estimation model 
and reduce modelling errors. Their yield estimation 
models have demonstrated that the solar radiation 
indicator is extremely important to account for the 
energy input available for the crop to carry out photo-
synthesis efficiently. Existing models were, however, 
limited to solar radiation based on empirical formulas 
or satellite data, which needs to be calibrated for each 
study area. Moreover, these studies utilised MODIS 
(250 × 250 m) and GLDAS (>27.5 km) satellite data, 
which are not suitable for farm and field scales due to 
their relatively low resolution. Furthermore, the qual-
ity of pictures depends on suitable weather conditions 
at the requested point of time.

The majority of these studies, however, is based on 
expensive and complex sensors such as hyperspectral 
sensors, thermal sensors and Light Detection And 
Ranging (LIDAR) sensors (Furukawa et al., 2020; Tao 
et al., 2020; Westoby et al., 2012). Also, the few studies 
that integrated vegetation indices with crop height and 
other parameters (Choudhury et al., 2021; Panday et al.,  
2020; Tao et al., 2020) were all relying on named high- 
cost sensors or weather station data. UAVs equipped 
with simple multispectral cameras, also allow to collect 
spectral imagery, crop height, solar radiation and other 
crop physiological parameters of the crop (Choudhury 
et al., 2021), meanwhile at significantly lower cost. Low- 
cost crop yield estimation is particularly pertinent to 
low-income farmers, who are typically located in areas 
heavily affected by climate change anyway (Barnwal 
et al., 2013), but at the same time have low capital 
endowment and/or technical capacities for high- 
technology crop prediction.

This study’s aim is to test the options to increase 
wheat yield estimation efficiency exclusively with 
low-cost multispectral UAV imagery along two spe-
cific objectives: a) combining vegetation index with 
solar radiation and crop height indicators from mul-
tispectral UAV imagery to evaluate the accuracy of 
wheat estimations and b) comparison of wheat grain 
filling and early maturity stages to identify the per-
iod that provides a more accurate yield estimation 

with multispectral UAV imagery. With this 
approach, we contribute to the growing body of 
literature arguing for a multipronged and applicable 
approaches towards yield estimation instead of just 
focusing on expensive and complex equipment 
(Possoch et al., 2016). In practical terms, our find-
ings will benefit farmers, agro-companies, insurance 
companies, as well as other agricultural stakeholders 
in low- and middle-income countries who cannot 
rely on high-cost technology for crop estimation. 
An UAV-based estimation approach might allow 
timely managerial decision to improve wheat yields 
also in low-income countries, where smallholder 
gain access to this technology via affordable drone 
service providers (Cook, 2017; Green et al., 2019). 
Ultimately, such improvements may contribute not 
only to attain stability of rural incomes as well as 
combating rising food prices and food scarcity.

Materials and methods

Study area

On-farm data collection was carried out in the southern 
part of Germany (Figure 1). The geographical location of 
the research areas is at the area of latitude 49°58’ North 
and longitude 11°10’ East at an elevation of about 570 m 
above the mean sea level.1 This region has productive soil 
with a loamy texture, which prompts intensive use for 
agriculture (Flessa et al., 2002). Between 1991 and 2020, 
the annual mean temperature at the location was at 9.4°C 
(national average 9.3°), and the annual cumulative pre-
cipitation at about 740 mm (national average 808 mm) 
(Wetterdienst, 2022).

As shown in Table 1, data were collected for three study 
fields in total, each between 3 and 6 hectares, which were 
very similar in terms of soil type and plot quality. Plots 1 
and 2 were used to evaluate the accuracy of vegetation 
indices, solar radiation and crop height characteristics for 
wheat yield estimations in 2020. Plot 3 was used to deter-
mine the out-of-sample validity of our estimations.

General workflow

In this research, we examined the effectiveness of combi-
nation crop height, vegetation indices and solar radiation 
to estimate wheat yield based on multiple linear regression 
and quantile regression for 20 May (grain filling) and 
16 June (early maturity) in 2020. We validated these results 
with data from a third plot in close vicinity. Analysis and 
processing of the collected data for the purposes of creating 
an ortho-mosaics, digital elevation models (Lobell et al.,  
2010) and digital surface models (DSM) were carried out 
with the software Agisoft PhotoScan Pro. The ready-to-use 
DEM and DSM data are calculated using Equation 1 to 

1For data security reasons (private farms) we only gave the approximate location of the study area.
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determine the wheat height parameter. The solar radiation 
parameter for 20 May (grain filling) and 16 June (early 
maturity) was calculated within the software ArcGIS 10.8 
based on the DSM. The six VIs were selected based on their 
potential for wheat yield estimation determined in the 
previous research. In general, we examined the suitability 
of the Normalized Difference Vegetation Index (NDVI), 
Normalized Difference Red Edge index (NDRE), 
Chlorophyll red-edge Index (CIred-edge), Simplified 
Canopy Chlorophyll Content Index (SCCCI), Green 
Chlorophyll Vegetation Index GCVI and Enhanced 
Vegetation Index (EVI2) in combination with crop height 
(CH) and solar radiation parameters. To examine the 
influence of integrating VIs, CHs and solar radiation for 
crop yield estimation, we applied a multiple linear regres-
sion (MLR) and quantile regression. In the final step, we 
predicted wheat yields based on the best predictor variables 
and compared them with actual wheat yields.

The aforementioned steps are illustrated by Figure 2 
and described more precisely in the subsections.

Remote sensing data collection

A multi-rotor unmanned aerial vehicle (UAV) was 
used to acquire ultrahigh-resolution multispectral 
images at an altitude of 50 m above the crop canopy 
with an image resolution of 4.5 cm, and a flight speed 
of 4 m/s (Figure 3). The maximum UAV flight opera-
tion time is 55 min. To configure and control the UAV 
flight trajectory, we used the software Mission Planner.

The UAV is equipped with a five-band multi-spectral 
camera, namely RedEdge-MX by the company 
MicaSense (Figure 4). The RedEdge-MX camera outper-
forms conventional RBG cameras by including five mul-
tispectral bands (Table 2). The RedEdge-MX camera is 
set on a gimbal in order to mitigate the wind effect and 
thereby capture high-quality 3D images in TIFF format.

Wheat phenology consists of eight main growth 
phases: (1) germination and emergence; (2) early vege-
tative; (3) tilling; (4) flag leaf initiation; (5) booting; (6) 
anthesis; (7) grain filling and (8) maturity (Kaur et al.,  

Figure 1. Three-dimensional view of one of the study fields.

Table 1. Plot characteristics.
Plot Total acreage Crop Soil type Plot quality indexa

Plot 1 3.20 ha Wheat Silty clay 34–45
Plot 2 6.15 ha Wheat Silty clay 44–48
Plot 3 5.2 ha Wheat Silty clay 36–44

aPlot quality according to German soil quality indexing system, which is based on factors like climatic 
conditions, slope, shadow from forest etc. and ranges from 0–100, 100 being the highest quality soil in 
Germany.
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2015; Siebert & Ewert, 2012). The optimum time per-
iod for using vegetation indices to estimate wheat, 
maize and soybean yields is when the crops are at the 

peak of their greenness level, in anthesis and grain 
filling phases (Guan et al., 2019; Kanning et al., 2018; 
Marino & Alvino, 2020). Furthermore, some studies 
indicated that the optimum time period for yield esti-
mation based on crop height is the peak of the green-
ness level (anthesis and grain filling) as well as the 
maturity phase (Kanning et al., 2018; Song et al.,  
2020). Based on these literature findings, the local 
crop calendar, and farmers’ assessment of local growth 
stages, we selected 20 May (grain filling) and 16 June 
(early maturity) for UAV data collection in 2020. The 
collected imagery data comprises between 435 and 
1000 filed pictures per plot.

Ground-level yield data

In order to validate our modelled data, we required 
reliable ground yield data. As shown by previous 

Figure 2. Methodological steps for wheat yield estimation based on UAV.

Figure 3. Multi rotor UAV.

Figure 4. RedEdge-MX camera.
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studies, self-reported crop yield estimates can be of 
low accuracy, leading to potentially biased results 
for training remote sensing algorithms (Paliwal & 
Jain, 2020). Instead, we relied on ground-level sen-
sor data collected with a combine harvester, which 
is equipped with a grain yield monitor and real- 
time kinematic (RTK) global navigation satellite 
systems (GNSS) to record the dry crop weight 
and measure the harvested mass flow, moisture 
content, and geographic location (Song et al.,  
2020). The ground yield data from the harvester 
(example in Figure 5) were processed by the soft-
ware ArcGIS (version 10.8). The harvester collected 
wheat yields from three wheat fields (Table 1), one 
of which was only used for out-of-sample 
validation.

In the final step, we generated a grid with pixel size 
6.5 × 6.5 m a grid using ArcGIS (create fishnet tool); 
the total number of pixel observation was n = 1722.

Extraction of crop surface model for calculation 
plant height

UAV-obtained crop height data have the advantages 
of cost-effectiveness and flexibility, as compared to 
data obtained by hand measurement or a harvester 
during crop-cutting. The only scientific concern 
might be the accuracy of obtained crop height para-
meters: Two previous studies (Yu et al., 2020) mea-
sured the accuracy of a crop surface model (CSM) 
obtained with UAV imagery as compared to actual 
ground crop height, finding a very low estimation 
error in terms of mean crop height (<10%) as well as 
very high correlation between the two indicators (R2 > 
0.95). To determine the wheat height parameter, we 
obtained a digital elevation model and a digital surface 
model (DSM) with our UAV. For this research, the 
digital elevation model represents the elevation of soil 
at the pre-plant stage, e.g. soil under the crops. DEM 
data were collected twice, once at the pre-planting 

Table 2. Spectral wavelength information of the RedEdge-MX camera.
Band Band Name Wavelength (nm) Bandwidth (nm)

1 Blue 475 nm 32 nm
2 Green 560 nm 27 nm
3 Red 668 nm 14 nm
4 Red-Edge 717 nm 12 nm
5 NIR 842 nm 57 nm

Figure 5. Wheat yield map compiled from combine harvester machine.
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stage and once at the post-harvest stage to control for 
biases created by soil preparation. Meanwhile, we 
could observe no changes in elevation between both 
observation times. In the next step, we obtained 
a digital surface model (DSM), which is defined as 
the difference between the DEM and crop elevation, 
which was also collected with our UAV in May and 
June (Song et al., 2020). The DEM and DSM from the 
surveyed plots were extracted using Agisoft Metashape 
software. Agisoft Metashape is commonly used to 
generate DEM and DSM models, including mesh 
models, from a set of overlapping photographs 
(Khalaf & Hameed, 2020; Lastilla et al., 2021). When 
constructing a mesh using a dense point cloud, inter-
polation plays a part to create a continuous and 
smooth mesh surface. By utilizing triangular interpo-
lation methods, the software can create high-quality 
meshes even in areas with missing data or occlusions, 
ensuring a more comprehensive and realistic repre-
sentation of the captured area (Khalaf & Hameed,  
2020; Lastilla et al., 2021). Finally, to extract real 
wheat plant height, we calculated a crop surface 
model (CSM) following Formula 1: 

DEM � DSM ¼ CSM (1) 

This data was then used to compute crop height from 
DEM and DSM. Within our sample plots, crop height 
was found to be between 0.35–1 m on 20 May, and 0.5– 
1.15 m on 16 June, averaging 0.93 in May and 0.87 in 
June, as also illustrated by the box plot in Figure 6.

Solar radiation

Solar radiation, defined as the amount of radiant 
energy for a given location, is another indicator used 
for crop estimation due to its importance for photo-
synthesis, hence plant growth and biomass accumula-
tion and therefore directly affecting crop yields (Zhang 
et al., 2022). However, so far it has mostly been 
employed using solar radiation data from weather 
stations (Fuentes et al., 2020; Zhang et al., 2022). The 
solar radiation parameter from the surveyed plots was 
obtained from a digital surface model and calculated 
for 20 May and 16 June 2020 using the Solar Radiation 
tool of ArcGIS’s Spatial Analyst Toolbox. This tool 
calculates the solar radiation with elevation, slope, 
orientation and atmospheric transmission as most 
relevant inputs. The initial digital surface model was 
obtained from our 3D UAV model for the study area.

Vegetation indices

Finally, six different VIs were entering the model. 
Namely, we tested NDVI, NDRE, CIred-edge, 
SCCCI, GCVI and EVI2 (Table 3). All these para-
meters can be calculated with a comparatively afford-
able 5-band camera like the RedEdge-MX. The 
concentration of chlorophyll in the crops directly 
reflects crop health, showing a high correlation with 
the yield in the early ripening stage (Mamrutha et al.,  
2017; Tucker, 1979).

Figure 6. Crop height for the wheat growing season.
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Regression model

We applied several linear regression models to exam-
ine the influence of integrating VIs, solar radiation 
and CHs for crop yield estimation as implemented in 
previous studies (Bendig et al., 2015; Thenkabail et al.,  
2000). For multi-indicator estimations, our multi- 
linear-regression (MLS) model can be written as: 

y ¼ β0 þ β1xCH þ β2xVI þ β3xSR þ ε (2) 

where y is the ground actual wheat yield, and xVI, xSR, 
and xCH are the explanatory variables with their model 
coefficients β. In our case, xVI, xSR, and xCH are the 
vegetation indices (VIs), solar radiation (SR) and crop 
height (CH), respectively, and ε is defined as the error 
term.

Furthermore, we also examined the suitability of 
the VIs, solar radiation and CHs variables separately 
based on a simple linear regression model, written as: 

y ¼ β0 þ β1xþ ε (3) 

where y is the ground actual wheat yield, x represents 
the selected VI, CH or radiation indicator and ε is 
defined as the error term.

All regression analyses were conducted with Stata 
16.0 software. The model performance was evaluated 
along the Root Mean Square Error (RMSE), the 
R squared (R2) and the adjusted R2 (Table 4).

Quantile regression was utilized to analyze different 
ranges of crop yield at different minimum, median 
and maximum quantiles. Usually, studies on crop 
yield estimation mainly focused on the mean and 
variance parameters of crop yields. The disadvantage 
of this approach, however, is that estimations are 
extremely sensitive to outliers and the requirement 
of independence of the residuals is not satisfied 
(Mishra & Moss, 2013; Radhakrishna & Toutenburg,  
1995). Also, crop yield estimation based on ordinary 

least squares (traditional regression methods) may not 
give adequate results due to extreme values or non- 
normal distribution in climate data (Murungweni 
et al., 2020; Tareghian & Rasmussen, 2013). 
Furthermore, the distribution of errors in the lower 
or upper tails of crop yield distribution is significant 
for precise crop estimation, especially when applied 
for drought early warning systems or agricultural 
insurance.

Quantile regression helps to overcome the possible 
asymmetry in impacts across each quantile of condi-
tional crop yields over certain pivotal variables 
(Barnwal et al., 2013). Another huge benefit of quan-
tile regression is its robustness to outliers (Koenker & 
Bassett, 1978; Mishra & Moss, 2013), which is an 
important factor in estimating crop yields. Moreover, 
quantile regression can enable the detection of all 
nuanced views of the stochastic relationship among 
parameters, and therefore a more detailed empirical 
analysis.

Our quantile regression equation is given below: 

Qτ yð Þ ¼ β0 τð Þ þ β1 τð ÞxCH þ β2 τð ÞxVI þ β3 τð ÞxSR þ ε τð Þ (4) 

Here, y is the conditional value of the actual wheat 
yield, whereas β1 and β2 are the estimation parameters, 
and τ indicates the quantile (i.e. τ = 0.25, 0.5, 0.75 for 
the minimum, median, maximum yield). xCH, xSR and 
xVI are the value of the independent variables VIs, SR 
and CH, and ε are the error terms (Murungweni et al.,  
2020; Vilar et al., 2015).

We apply quantile regression to determine the pre-
diction power of vegetation indices, solar radiation 
and crop height for wheat yields at different quantiles 
(0.25, 0.50, 0.75), e.g. lower, median and higher yield. 
In line with Koenker & Machado (1999), the good-
ness-of-fit of the regression model for each quantile 
(0.25, 0.50 and 0.75) is demonstrated by the value of 

Table 3. Selection vegetation indices equation and their application using UAV bands.
Vegetation Index Equation Reference

Normalized difference vegetation index (NDVI) NDVI ¼ PNIR � PRED
PNIRþPRED

C. J. J. R. s. o. E. Tucker (1979)

Normalized difference red edge index (NDRE) NDRE ¼ PNIR � PRED� Edge

PNIRþPRED� Edge

Gitelson and Merzlyak (1994)

Chlorophyll red-edge index (CIred-edge) CIred� edge ¼
PNIR

PRED� Edge
� 1 Gitelson et al. (2003)

Simplified canopy chlorophyllcontent index (SCCCI)
SCCCI ¼

PNIR � PRED� Edge
PNIRþPRED� Edge

PNIR � PRED
PNIRþPRED

Barnes et al. (2000)

Green chlorophyll vegetation index (GCVI) GCVI ¼ PNIR � PGreen
PNIRþPGreen

Gitelson et al. (2003)

Enhanced vegetation index 2 (EVI2) EVI2 ¼ 2:4 PNIR � PRED
PNIRþPREDþ1

Jiang et al. (2008)

Table 4. Definitions and equations of precision evaluation 
metrics used in this study.

Name Equation

R squared (R2)
R2 ¼ 1 �

Pn

i¼1
yi � ŷið Þ

2

Pn

i¼1
yi � yið Þ

2 0

Root Mean Squared Error (RMSE)
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

i¼1
yi � ŷið Þ

2

s
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Pseudo R2. Moreover, we generated model residual 
plots to evaluate how effectively the model predicts 
crop yield (Elavarasan et al., 2020).

Results

Wheat yield estimation based on linear regression 
models

Table 5 displays a number of simple linear regression 
models measuring the correlation between a range of 
separate vegetation indices and ground-level yield data. 
We observe a moderate but significant correlation between 
actual yields and VI on 20 May, in particular for the NDRE 
index (R2 = 0.60, adj R2 = 0.60, RMSE = 0.68). On 16 June, 
we only measured a moderate correlation between GCVI 
and actual yield (Figure 7, R2 = 0.50 and RMSE = 0.77). 
Individual crop height or solar radiation variables mean-
while had lower accuracy (see Supplementary Table S1, R2 

< 0.36, adj R2 < 0.35, RMSE > 0.88) than VIs for estimating 
wheat yields. Furthermore, our analysis reveals a higher 
accuracy of indices using the near-infrared and the red 
edge bands (NDRE, CIred-edge, SCCCI) as compared to 
indices using a combination of the near-infrared band, the 
red band and the green band (NDVI, EVI2, GCVI) (see 
Supplementary Table S1). The results of the simple linear 
regression therefore suggest a high sensitivity of a red edge 
band (NDRE) to wheat health changes during the matura-
tion period. Furthermore, NDRE revealed a strong corre-
lation at the peak of greenness level (before early maturity) 
compared to the remaining vegetation indices (Figure 7).

In the second step, we measured the relationship 
between actual wheat yield data and the combina-
tion of VIs, solar radiation and CHs along 
a multiple linear regression model displayed in 
equation (2). The results of which are displayed 
in Figure 7 for 20 May and 16 June. All combina-
tions were statistically significantly correlated. The 
highest correlation level was found for 
a combination of CH, solar radiation and the 
NDRE index (R2 = 0.75 and RMSE = 0.53) for CH 
and solar radiation on 16 June and the NDRE 
index on 20 May. A similar precision was found 
for a combination of CH, solar radiation and the 
CIred-edge index (R2 = 0.72 and RMSE = 0.56) 

where CH and solar radiation were measured on 
16 June and the NDRE index was measured on 
20 May. All other combinations of VI, solar radia-
tion and CH parameters for both time observations 
revealed a medium correlation (Figure 7, GCVI 
and SCCCI) to low correlation (Figure 7, NDVI 
and EVI2). The comparative analysis of the VI 
regressions with actual wheat yield undertaken on 
different days reveals a higher correlation on 
20 May, when the wheat canopy reflectance has 
the highest greenness (Figure 7). A lower explana-
tory power of VIs for wheat yield was observed on 
16 June, when wheat is at an early maturity stage, 
in other words starting to turn yellow (Figure 7). 
In return, wheat CH and solar radiation parameters 
were more strongly correlated with wheat yields on 
16 June than in 20 May, a time when length 
growth peaks (Figure 7).

Combining vegetation indices with crop height 
and solar radiation significantly improves the 
accuracy of the estimation model (Figure 7) as 
compared to utilizing them individually (Figure 7 
and Supplementary Table S1), which is in line 
other findings (Cheng et al., 2022; Choudhury 
et al., 2021). Among the combinations between 
vegetation indices with other parameters, the 
highest performance was found for NDRE 
(Figure 7, R2 = 0.75 and RMSE = 0.53) and CIred- 
edge (Figure 7, R2 = 0.72 and RMSE = 0.56).

In summary, the highest performance was found 
for the estimation combining the NDRE index from 
20 May with crop height and solar radiation charac-
teristics from 16 June. In Table 5, we provide compre-
hensive regression results for this specific model. For 
the other models, detailed regression outputs have 
been shifted to the Supplementary Table S2.

Wheat yield estimation based on quantile 
regression models

Generally, we find a statistically significant rela-
tionship between wheat yield and crop height/ 
solar radiation/vegetation indices for all quantiles. 
Meanwhile, the Pseudo R-squared (pR2) in all 
quantiles presented a non-high pR2 coefficient, 

Table 5. Validation results MLR between actual wheat yield data and combined NDREMay20, SRJune16 with CHJune16.
yield_1 Coef. St.Err. t-value p-value [95% Conf Interval] Sig

ndre_20 17.914 0.538 33.32 0 16.858 18.969 ***
csm_16 1.242 0.068 18.39 0 1.109 1.374 ***
sr_16 −1.994 0.618 −3.22 0.001 −3.208 −0.78 ***
Constant 6.389 3.269 1.95 0.051 −0.028 12.806 *
Mean dependent var 5.736 SD dependent var 1.069
R-squared 0.75 Number of obs 1722.000
Adj R-squared 0.74 Root MSE 0.53
F-test 715.492 Prob > F 0.000
Akaike crit. Aich et al. (2017) 1152.935 Bayesian crit. (BIC) 1171.264

*** p < 0.01, ** p < 0.05, * p < 0.1.
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except for the NDRE index combination with crop 
height characteristics and solar radiation for 
20 May and 16 June (see Supplementary Table 
S3). We also observe the strongest relationship 
between actual wheat yield and the combination 
of NDRE index with crop height and solar radia-
tion for the lower yield quantile (Figure 8 and 
Table 6). The median and high yield quantile 
demonstrated a lower relationship with VIs than 
the low yield quantile (Figure 8). Overall, the high-
est correlation level was found for the combination 
of NDRE index from 20 May and CH and solar 
radiation from 16 June for wheat yields in the 
lower quantile (R2 = 0.57). In summary, quantile 
regression results confirmed that the combined 
VIs, solar radiation and wheat CH parameters can 
predict wheat yields more accurately than predic-
tions with one indicator separately.

To provide a more precise picture, we additionally 
provide quantile plots. The magnitude of the quantile 
line demonstrates non-linear oscillations at lower quan-
tiles from 0.1 to 0.2 (Figure 9). For other indicator 
combinations, we refer to Supplementary Figure S1. All 
quantile regression plots demonstrated that quantile 
regression is more appropriate compared to multiple 
linear models, especially in the lower quantiles of the 
yield (see Supplementary Figure S1). Meanwhile, linear 
regression models provide adequate estimates mainly 
beyond the second decile.

Out-of-sample validation

We also conducted an estimation of wheat yields for 
nearly plot for 2021 to test the validity of our estima-
tion outside this specific sample and compared the 
estimated with true ground yield data. The results of 

Figure 7. Results of the multiple and linear regression models a) R2 and b) RMSE.
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this comparison are provided in Figure 10. 
Figure 10(a) demonstrates that the predicted yields 
for each pixel closely reflects the actual wheat yields. 
Figure 10(b) is a scatter plot of actual wheat yields and 
predicted yields based on the combination of NDRE 
index, solar radiation and CH parameters.

Figure 10(a) demonstrates that the wheat yield pre-
diction line does not present a serious inflated or 
undervalued estimation situation and the wheat pre-
diction line has approximately 10–15% deviation from 
the actual yield line. In Figure 10(b), the R2 coefficient 
is indicated on the left, which represents the propor-
tion of the deviation of the predicted wheat yield from 
the actual yield. Here, the R-square ranges at 0.80, 
which means that the predicted and actual wheat 
yield values match by at least 0.80% (Figure 10(b)).

Figure 11 shows a scatter plot of the model residuals 
based on a combination of NDRE index and CH para-
meters with actual wheat yields. Ignoring a few outliers at 
the lower left corner of the plot, we can see that all model 
residuals are randomly distributed along a horizontal 

line, demonstrating adequate model performance 
(Sullivan, 2018). We might also have seen increasing or 
decreasing variation in the residuals’ heteroscedasticity.

Discussion

In our results, we firstly presented the isolated perfor-
mances of separate indices in wheat yield predictions. 
Among the tested indices, the NDRE performed best in 
predicting wheat yields. The high precision of the NDRE 
index can be related to its reliance on the reflectance of 
red-edge wave lengths, which proves to be more respon-
sive to variations in leaf chlorophyll content than the red 
reflectance utilized by NDVI and EVI2. This heightened 
sensitivity of the NDRE index makes it better at detecting 
changes in crop health, a property that is directly linked 
to wheat yields, as highlighted in studies by Boiarskii and 
Hasegawa (2019) or Zeng et al. (2022). On the other 
hand, traditional indices like NDVI and EVI2 may 
respond less to rapid increases in above-ground biomass 
of wheat at the grain-filling stage of wheat growth. 

Figure 8. Results of the quantile regression model.

Table 6. Quantile regression result between actual wheat yield data and combined NDREMay20, SRJune16 with CHJune16.
yield Coef. St.Err. t-value p-value [95% Conf Interval] Sig

ndre_20 18.754 0.782 23.99 0 17.22 20.289 ***
csm_16 1.131 0.086 13.21 0 0.963 1.3 ***
sr_16 −1.009 0.602 −1.68 0.094 −2.19 0.173 *
Constant −2.023 3.079 −0.66 0.511 −8.068 4.022
ndre_20 17.515 0.4 43.82 0 16.73 18.3 ***
csm_16 1.075 0.099 10.89 0 0.881 1.269 ***
sr_16 −2.822 0.784 −3.60 0 −4.361 −1.283 ***
Constant 8.93 4.346 2.05 0.04 0.398 17.463 **
ndre_20 16.393 0.512 32.02 0 15.388 17.398 ***
csm_16 1.056 0.065 16.18 0 0.928 1.184 ***
sr_16 −2.638 0.636 −4.14 0 −3.887 −1.388 ***
Constant 8.804 3.461 2.54 0.011 2.009 15.599 **
Mean dependent var 5.736 SD dependent var 1.069
Pseudo r-squared 0.25 0.578 Number of obs 1722.000
Pseudo r-squared 0.50 0.544 Number of obs 1722.000
Pseudo r-squared 0.75 0.556 Number of obs 1722.000

*** p < 0.01, ** p < 0.05, * p < 0.1.
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Several recent studies (Guan et al., 2019; Kanning et al.,  
2018; Song et al., 2020) demonstrated that the SCCCI 
and CIred-edge indices provide more accurate estimates 
of yield than other vegetation indices. In our study, 
however, these indices do not outperform the NDRE 
index in terms of accuracy, which may be related to the 
fact that these previous studies utilized hyperspectral and 
LIDAR sensors. This observation is an important hint 
that the vegetation index performance is not only depen-
dent on location and data resolution but also on the type 
of sensors used for data collection.

Integrating NDRE index values, solar radiation and 
the wheat height parameter results in an improvement of 
up to 15–20% in predicting wheat accuracy compared to 
utilizing either of the VIs individually. Each of these 
indicators provides unique insights into various informa-
tion related to crop health, energy availability, and phy-
sical development. While NDRE measures plant health, 
solar radiation considers energy accessibility and wheat 
height reflects the physical development of the plant. All 
of these measures provide a holistic view of crop health 
and growth when used conjointly, which explains the 
higher performance of the combined estimation.

A comparison of wheat growing stages revealed 
that solar radiation and crop height characteristics 
provided a more accurate estimate of crop yield at 
the early maturity stage (16 June), while vegetation 
indices provided a more accurate estimate at the 
grain filling stage (20 May). The wheat crop is nearing 
harvest in the early maturity stage (Hassan et al., 2019; 
Holman et al., 2016; Yuan et al., 2018), hence, its 
growth does not much change until being harvested. 

Furthermore, during this stage efficient photosynth-
esis can be observed. The high accuracy of vegetation 
indices at the grain filling stage is related to the fact 
that wheat has the highest green leaf reflectance at this 
stage. Moreover, at these stages, any stressors or pro-
blems affecting crop health can be easily detected.

One of our main motivations of this study was to 
test if shortcomings of low-cost UAV sensors can be 
evened out by a multi-indicator estimation. In facts, 
we obtained equal or higher precision of estimates 
(R2 = 0.75, Adj. R2 = 0.74 and RMSE = 0.53) than 
previous studies (R2 > 0.70, Adj R2 = 0.68 and 
RMSE = 0.60) that used high-cost hyperspectral or 
sensor data (Choudhury et al., 2021; Tao et al.,  
2020). Hence, we can confirm that combining the 
NDRE index value, solar radiation and CH para-
meters is an effective remote-sensing method to 
increase the accuracy of wheat yield estimates on 
a field scale even under low technology input. 
Thus, our approach allows the implementation of 
UAV-based crop estimation also for smaller family 
farms in low-income countries via service providers. 
It should also be pointed out that we achieved these 
results despite not working on controlled- 
environment university or laboratory fields but on 
real farm plots (Belton et al., 2019; Tao et al., 2020).

A number of limitations of the proposed 
approach must be recognized. Firstly, the research 
was conducted for one year and two vegetation 
times. While we tested the robustness within a -
second year, we would require multiple years and 
plots for further robustness tests. Secondly, the 

Figure 9. Estimated coefficients with 95% confidence intervals for NDREMay20 , SRJune16 and CHJune16.
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inclusion of additional indicators affecting yields, 
such as soil quality, temperature, precipitation, or 
fertilizer would allow incorporating differences in 
management practices, which should be considered 
when conducting analysis in large areas with het-
erogeneous management, however would once 
again render the estimation more complex. 
Another main prospect for future research is to 
combine long-term data with panel data regression, 
as well as incorporating a crop-cutting approaches 
to further confirm the validity of obtain crop 
height parameters.

Conclusion

In this study, we tested the suitability of integrated 
various physical and spectral information of wheat 
based on low cost multispectral images obtained 

from the UAV data images for wheat yield estima-
tion. Combining the NDRE index with a wheat 
height parameter and solar radiation can signifi-
cantly improve model accuracy, minimize the 
weaknesses of individual indicators, and decrease 
RMSE (Figure 7 NDRE, SR and CH RMSE < 0.53 
and NDRE RMSE > 0.68) by 10–15%. Our three 
main findings are as follows: Firstly, multiple- 
indicator yield estimates in our case were more 
accurate than a single indicator, while the combi-
nation of the NDRE index with the wheat height 
parameter and solar radiation performed the best. 
Secondly, the growth time of wheat at grain filling 
is more appropriate for estimating yields based on 
vegetative indices, but the growth time of early 
maturing wheat is better using crop height and 
solar radiation indicators. Finally, utilizing low- 
cost sensors to estimate wheat yield demonstrated 

Figure 10. a) comparison of model-predicted wheat yield with actual yield; b) scatter plot of predicted wheat yield with actual 
yield.
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strong potential in terms of accuracy of yield pre-
dictions, also compared to high-cost benchmark 
estimation.

Our approach could contribute to improved 
decision-making in agricultural production and 
management, as well as climate change mitigation 
and adaptation. The UAV-based approach can 
empower farmers with valuable information on 
monitoring crop growth for optimizing yield 
potential and enhancing agricultural as well as 
land management practices. Moreover, estimations 
would help farmers to identify specific sites that 
require attention and implement targeted manage-
ment practices as well as minimize potential 
damage to the yield.

Acknowledgments

The authors express their gratitude to the team members 
of the project “Increasing Climate Resilience via 
Agricultural Insurance – Innovation Transfer for 
Sustainable Rural Development in Central Asia 
(KlimALEZ)”, implemented by the Leibniz-Institute for 
Agricultural Development in Transformation Economies 
(IAMO).

Disclosure statement

No potential conflict of interest was reported by the 
author(s).

Funding

This research was supported by the German Federal 
Ministry of Education and Research (BMBF) [01LZ1705A] 
and WGL Forschungsverbünde [D0093/3].

ORCID

Shovkat Khodjaev http://orcid.org/0000-0002-8643-9502
Lena Kuhn http://orcid.org/0000-0002-1453-0040
Ihtiyor Bobojonov http://orcid.org/0000-0003-2166- 
6234
Thomas Glauben http://orcid.org/0000-0003-0640-9387

References

Aich, V., Akhundzadah, N. A., Knuerr, A., Khoshbeen, A. J., 
Hattermann, F., Paeth, H., Scanlon, A., & Paton, E. N. 
(2017). Climate change in Afghanistan deduced from 
reanalysis and coordinated regional climate downscaling 
experiment (cordex)—South Asia simulations. Climate, 5 
(2), 38. https://doi.org/10.3390/cli5020038

Barnes, E., Clarke, T., Richards, S., Colaizzi, P., 
Haberland, J., Kostrzewski, M., Waller, P., Choi, C., 
Riley, E., & Thompson, T. (2000). Coincident detection 
of crop water stress, nitrogen status and canopy density 
using ground based multispectral data. Proceedings of the 
Fifth International Conference on Precision Agriculture, 
Bloomington, MN, USA.

Barnwal, P., Kotani, K., & Barnwal, & Kotani. (2013). 
Climatic impacts across agricultural crop yield distribu-
tions: An application of quantile regression on rice crops 
in Andhra Pradesh, India. Ecological Economics, 87, 
95–109. https://doi.org/10.1016/j.ecolecon.2012.11.024

Belton, D., Helmholz, P., Long, J., & Zerihun, A. (2019). 
Crop height monitoring using a consumer-grade camera 
and UAV technology. PFG–Journal of Photogrammetry, 
Remote Sensing and Geoinformation Science, 87(5), 
249–262. https://doi.org/10.1007/s41064-019-00087-8

Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., 
Broscheit, J., Gnyp, M. L., & Bareth, G. (2015). 
Combining UAV-based plant height from crop surface 
models, visible, and near infrared vegetation indices for 
biomass monitoring in barley. International Journal of 
Applied Earth Observation and Geoinformation, 39, 
79–87. https://doi.org/10.1016/j.jag.2015.02.012

Boiarskii, B., & Hasegawa, H. J. J. M. C. M. S. (2019). 
Comparison of NDVI and NDRE indices to detect 

Figure 11. MLR model residuals plot.

EUROPEAN JOURNAL OF REMOTE SENSING 13

https://doi.org/10.3390/cli5020038
https://doi.org/10.1016/j.ecolecon.2012.11.024
https://doi.org/10.1007/s41064-019-00087-8
https://doi.org/10.1016/j.jag.2015.02.012


differences in vegetation and chlorophyll content. 
JOURNAL of MECHANICS of CONTINUA and 
MATHEMATICAL SCIENCES, 4(4), 20–29. https://doi. 
org/10.26782/jmcms.spl.4/2019.11.00003

Chakrabarti, S., Bongiovanni, T., Judge, J., Zotarelli, L., & 
Bayer, C. (2014). Assimilation of SMOS soil moisture for 
quantifying drought impacts on crop yield in Agricultural 
regions. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 7(9), 3867–3879.  
https://doi.org/10.1109/JSTARS.2014.2315999

Cheng, M., Penuelas, J., McCabe, M. F., Atzberger, C., 
Jiao, X., Wu, W., & Jin, X. (2022). Combining 
multi-indicators with machine-learning algorithms for 
maize yield early prediction at the county-level in 
China. Agricultural and Forest Meteorology, 323, 109057.  
https://doi.org/10.1016/j.agrformet.2022.109057

Choudhury, R. M., Das, S., Christopher, J., Apan, A., 
Chapman, S., Menzies, N. W., & Dang, Y. P. (2021). 
Improving biomass and grain yield prediction of wheat 
genotypes on sodic soil using integrated high-resolution 
multispectral, hyperspectral, 3D point cloud, and 
machine learning techniques. Remote Sensing, 13(17), 
3482. https://doi.org/10.3390/rs13173482

Cook, K. L. (2017). An evaluation of the effectiveness of 
low-cost UAVs and structure from motion for geo-
morphic change detection. Geomorphology, 278, 
195–208. https://doi.org/10.1016/j.geomorph.2016.11. 
009

Elavarasan, D., Vincent, P. M. D. R., Srinivasan, K., & 
Chang, C.-Y. (2020). A hybrid CFS filter and RF-RFE 
wrapper-based feature extraction for enhanced agricul-
tural crop yield prediction modeling. Agriculture, 10(9), 
400. https://doi.org/10.3390/agriculture10090400

Flessa, H., Ruser, R., Dörsch, P., Kamp, T., Jimenez, M., 
Munch, J., Beese, F. J. A., & Ecosystems, & Environment. 
(2002). Integrated evaluation of greenhouse gas emissions 
(CO2, CH4, N2O) from two farming systems in southern 
Germany. Agriculture, Ecosystems and Environment, 91 
(1–3), 175–189. https://doi.org/10.1016/S0167-8809(01) 
00234-1

Fuentes, J. E., Moya, F. D., & Montoya, O. D. (2020). 
Method for estimating solar energy potential based on 
photogrammetry from unmanned aerial vehicles. 
Electronics, 9(12), 2144. https://doi.org/10.3390/ 
electronics9122144

Furukawa, F., Maruyama, K., Saito, Y. K., & Kaneko, M. 
(2020). Corn height estimation using UAV for yield pre-
diction and crop monitoring. Unmanned Aerial Vehicle: 
Applications in Agriculture and Environment, 51–69.  
https://doi.org/10.1007/978-3-030-27157-2_5

García-Martínez, H., Flores-Magdaleno, H., Ascencio- 
Hernández, R., Khalil-Gardezi, A., Tijerina-Chávez, L., 
Mancilla-Villa, O. R., & Vázquez-Peña, M. A. (2020). 
Corn grain yield estimation from vegetation indices, 
canopy cover, plant density, and a neural network using 
multispectral and RGB images acquired with unmanned 
aerial vehicles. Agriculture, 10(7), 277. https://doi.org/10. 
3390/agriculture10070277

Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. J. J. O. P. P. 
(2003). Relationships between leaf chlorophyll content 
and spectral reflectance and algorithms for 
non-destructive chlorophyll assessment in higher plant 
leaves. Journal of Plant Physiology, 160(3), 271–282.  
https://doi.org/10.1078/0176-1617-00887

Gitelson, A., & Merzlyak, M. N. (1994). Quantitative estima-
tion of chlorophyll-a using reflectance spectra: Experiments 
with autumn chestnut and maple leaves. Journal of 

Photochemistry and Photobiology B: Biology, 22(3), 
247–252. https://doi.org/10.1016/1011-1344(93)06963-4

Gitelson, A. A., Viña, A., Arkebauer, T. J., Rundquist, D. C., 
Keydan, G., & Leavitt, B. J. G. R. L. (2003). Remote 
estimation of leaf area index and green leaf biomass in 
maize canopies. Geophysical Research Letters, 30(5).  
https://doi.org/10.1029/2002GL016450

Green, D. R., Hagon, J. J., Gómez, C., & Gregory, B. J. 
(2019). Using low-cost UAVs for environmental monitor-
ing, mapping, and modelling: Examples from the coastal 
zone (coastal management). Elsevier.

Guan, S., Fukami, K., Matsunaka, H., Okami, M., 
Tanaka, R., Nakano, H., Sakai, T., Nakano, K., 
Ohdan, H., & Takahashi, K. (2019). Assessing correlation 
of high-resolution NDVI with fertilizer application level 
and yield of rice and wheat crops using small UAVs. 
Remote Sensing, 11(2), 112. https://doi.org/10.3390/ 
rs11020112

Guan, S., Fukami, K., Matsunaka, H., Okami, M., 
Tanaka, R., Nakano, H., Sakai, T., Nakano, K., 
Ohdan, H., & Takahashi, K. J. R. S. (2019). Assessing 
correlation of high-resolution NDVI with fertilizer appli-
cation level and yield of rice and wheat crops using small 
UAVs. Remote Sensing, 11(2), 112. https://doi.org/10. 
3390/rs11020112

Hassan, M. A., Yang, M., Fu, L., Rasheed, A., Zheng, B., 
Xia, X., Xiao, Y., & He, Z. J. P. M. (2019). Accuracy 
assessment of plant height using an unmanned aerial 
vehicle for quantitative genomic analysis in bread 
wheat. Plant Methods, 15(1), 1–12. https://doi.org/10. 
1186/s13007-019-0419-7

Holman, F. H., Riche, A. B., Michalski, A., Castle, M., 
Wooster, M. J., & Hawkesford, M. J. J. R. S. (2016). 
High throughput field phenotyping of wheat plant height 
and growth rate in field plot trials using UAV based 
remote sensing. Remote Sensing, 8(12), 1031. https://doi. 
org/10.3390/rs8121031

Holzman, M. E., Carmona, F., Rivas, R., Niclòs, R., & 
J. I. j. o. p., & sensing, r. (2018). Early assessment of 
crop yield from remotely sensed water stress and solar 
radiation data. Isprs Journal of Photogrammetry & Remote 
Sensing, 145, 297–308. https://doi.org/10.1016/j.isprsjprs. 
2018.03.014

Huang, J., Sedano, F., Huang, Y., Ma, H., Li, X., Liang, S., 
Tian, L., Zhang, X., Fan, J., & Wu, W. J. A. (2016). 
Assimilating a synthetic Kalman filter leaf area index 
series into the WOFOST model to improve regional 
winter wheat yield estimation. Agricultural and Forest 
Meteorology, 216, 188–202. https://doi.org/10.1016/j.agr 
formet.2015.10.013

Huang, J., Tian, L., Liang, S., Ma, H., Becker-Reshef, I., 
Huang, Y., Su, W., Zhang, X., Zhu, D., & Wu, W. 
(2015). Improving winter wheat yield estimation by 
assimilation of the leaf area index from Landsat TM and 
MODIS data into the WOFOST model. Agricultural and 
Forest Meteorology, 204, 106–121. https://doi.org/10. 
1016/j.agrformet.2015.02.001

Ihuoma, S. O., & Madramootoo, C. A. J. B. E. (2020). 
Narrow-band reflectance indices for mapping the com-
bined effects of water and nitrogen stress in field grown 
tomato crops. Biosystems Engineering, 192, 133–143.  
https://doi.org/10.1016/j.biosystemseng.2020.01.017

Jiang, Z., Huete, A. R., Didan, K., & Miura, T. J. R. S. O. E. 
(2008). Development of a two-band enhanced vegetation 
index without a blue band. Remote Sensing of 
Environment, 112(10), 3833–3845. https://doi.org/10. 
1016/j.rse.2008.06.006

14 SH. KHODJAEV ET AL.

https://doi.org/10.26782/jmcms.spl.4/2019.11.00003
https://doi.org/10.26782/jmcms.spl.4/2019.11.00003
https://doi.org/10.1109/JSTARS.2014.2315999
https://doi.org/10.1109/JSTARS.2014.2315999
https://doi.org/10.1016/j.agrformet.2022.109057
https://doi.org/10.1016/j.agrformet.2022.109057
https://doi.org/10.3390/rs13173482
https://doi.org/10.1016/j.geomorph.2016.11.009
https://doi.org/10.1016/j.geomorph.2016.11.009
https://doi.org/10.3390/agriculture10090400
https://doi.org/10.1016/S0167-8809(01)00234-1
https://doi.org/10.1016/S0167-8809(01)00234-1
https://doi.org/10.3390/electronics9122144
https://doi.org/10.3390/electronics9122144
https://doi.org/10.1007/978-3-030-27157-2_5
https://doi.org/10.1007/978-3-030-27157-2_5
https://doi.org/10.3390/agriculture10070277
https://doi.org/10.3390/agriculture10070277
https://doi.org/10.1078/0176-1617-00887
https://doi.org/10.1078/0176-1617-00887
https://doi.org/10.1016/1011-1344(93)06963-4
https://doi.org/10.1029/2002GL016450
https://doi.org/10.1029/2002GL016450
https://doi.org/10.3390/rs11020112
https://doi.org/10.3390/rs11020112
https://doi.org/10.3390/rs11020112
https://doi.org/10.3390/rs11020112
https://doi.org/10.1186/s13007-019-0419-7
https://doi.org/10.1186/s13007-019-0419-7
https://doi.org/10.3390/rs8121031
https://doi.org/10.3390/rs8121031
https://doi.org/10.1016/j.isprsjprs.2018.03.014
https://doi.org/10.1016/j.isprsjprs.2018.03.014
https://doi.org/10.1016/j.agrformet.2015.10.013
https://doi.org/10.1016/j.agrformet.2015.10.013
https://doi.org/10.1016/j.agrformet.2015.02.001
https://doi.org/10.1016/j.agrformet.2015.02.001
https://doi.org/10.1016/j.biosystemseng.2020.01.017
https://doi.org/10.1016/j.biosystemseng.2020.01.017
https://doi.org/10.1016/j.rse.2008.06.006
https://doi.org/10.1016/j.rse.2008.06.006


Jin, X., Kumar, L., Li, Z., Feng, H., Xu, X., Yang, G., & 
Wang, J. (2018). A review of data assimilation of remote 
sensing and crop models. The European Journal of 
Agronomy, 92, 141–152. https://doi.org/10.1016/j.eja. 
2017.11.002

Kanning, M., Kühling, I., Trautz, D., & Jarmer, T. (2018). 
High-resolution UAV-based hyperspectral imagery for 
LAI and chlorophyll estimations from wheat for yield 
prediction. Remote Sensing, 10(12), 2000. https://doi. 
org/10.3390/rs10122000

Kanning, M., Kühling, I., Trautz, D., & Jarmer, T. J. R. S. 
(2018). High-resolution UAV-based hyperspectral ima-
gery for LAI and chlorophyll estimations from wheat for 
yield prediction. Remote Sensing, 10(12), 2000. https:// 
doi.org/10.3390/rs10122000

Kaur, P., Singh, H., Rao, V., Hundal, S., Sandhu, S., 
Nayyar, S., Bodapati, B., & Kaur, A. (2015). 
Agrometeorology of wheat in Punjab state of India 
Technical Report. Technical Report. https://doi.org/10. 
13140/RG.2.1.5105.6721 

Khalaf, A. Z., & Hameed, A. J. I. J. I. S. R. T. (2020). 
Orthomosaic from generating 3D models with 
Photogrammetry. International Journal of Innovative 
Science and Research Technology, 5(3), 48–60.

Koenker, R., & Bassett, G. (1978). Regression quantiles. 
Econometrica: Journal of the Econometric Society, 46(1), 
33–50. https://doi.org/10.2307/1913643

Koenker, R., & Machado, J. A. (1999). Goodness of fit and 
related inference processes for quantile regression. 
Journal of the American Statistical Association, 94(448), 
1296–1310. https://doi.org/10.1080/01621459.1999. 
10473882

Lastilla, L., Belloni, V., Ravanelli, R., & Crespi, M. J. R. S. 
(2021). DSM generation from single and cross-sensor 
multi-view satellite images using the new agisoft meta-
shape: The case studies of Trento and Matera (Italy). 
Remote Sensing, 13(4), 593. https://doi.org/10.3390/ 
rs13040593

Li, Y. F., Ata-UI-Karim, S. T., Zheng, H., Cheng, T., Liu, X., 
Tian, Y., Zhu, Y., Cao, W., & Cao, Q. (2019). Combining 
color indices and textures of UAV-based digital imagery 
for rice LAI estimation. Remote Sensing, 11(15), 1763.  
https://doi.org/10.3390/rs11151763

Li, R., LI, C.-J., DONG, Y.-Y., LIU, F., WANG, J.-H., 
YANG, X.-D., & PAN, Y.-C. (2011). Assimilation of 
Remote Sensing and crop model for LAI estimation 
based on ensemble Kaiman filter. Agricultural Sciences 
in China, 10(10), 1595–1602. https://doi.org/10.1016/ 
S1671-2927(11)60156-9

Liu, B., Asseng, S., Wang, A., Wang, S., Tang, L., Cao, W., 
Zhu, Y., & Liu, L. J. A. (2017). Modelling the effects of 
post-heading heat stress on biomass growth of winter 
wheat. Agricultural and Forest Meteorology, 247, 
476–490. https://doi.org/10.1016/j.agrformet.2017.08.018

Lobell, D. B., Burke, M. B. J. A., & meteorology, f. (2010). On 
the use of statistical models to predict crop yield 
responses to climate change. Agricultural and Forest 
Meteorology, 150(11), 1443–1452. https://doi.org/10. 
1016/j.agrformet.2010.07.008

Mamrutha, H., Sharma, D., Sumanth Kumar, K., 
Venkatesh, K., Tiwari, V., & Sharma, I. (2017). Influence 
of diurnal irradiance variation on chlorophyll values in 
wheat: A comparative study using different chlorophyll 
meters. National Academy Science Letters, 40(3), 
221–224. https://doi.org/10.1007/s40009-017-0544-7

Marino, S., & Alvino, A. (2020). Agronomic traits analysis of 
ten winter wheat cultivars clustered by UAV-derived 

vegetation indices. Remote Sensing, 12(2), 249. https:// 
doi.org/10.3390/rs12020249

Mishra, A., & Moss, C. (2013). Modeling the effect of 
off-farm income on farmland values: A quantile regres-
sion approach. Economic Modelling, 32, 361–368. https:// 
doi.org/10.1016/j.econmod.2013.02.022

Murungweni, F. M., Mutanga, O., & Odiyo, J. O. (2020). 
Rainfall trend and its relationship with normalized dif-
ference vegetation index in a restored semi-arid wetland 
of South Africa. Sustainability, 12(21), 8919. https://doi. 
org/10.3390/su12218919

Paliwal, A., & Jain, M. (2020). The accuracy of self-reported 
crop yield estimates and their ability to train remote 
sensing algorithms. Frontiers in Sustainable Food 
Systems, 4, 25. https://doi.org/10.3389/fsufs.2020.00025

Panday, U. S., Shrestha, N., Maharjan, S., Pratihast, A. K., 
Shrestha, K. L., & Aryal, J. (2020). Correlating the plant 
height of wheat with above-ground biomass and crop 
yield using drone imagery and crop surface model, 
a case study from Nepal. Drones, 4(3), 28. https://doi. 
org/10.3390/drones4030028

Possoch, M., Bieker, S., Hoffmeister, D., Bolten, A., 
Schellberg, J., & Bareth, G. J. T. I. A. O. T. P. (2016). 
Multi-temporal crop surface models combined with the 
RGB vegetation index from UAV-based images for forage 
monitoring in grassland. The International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information 
Sciences, 41, 991–998. https://doi.org/10.5194/isprs- 
archives-XLI-B1-991-2016

Radhakrishna, R., & Toutenburg, H. (1995). Linear models. 
Linear Models: Least Squares and Alternatives, 5–21.  
https://doi.org/10.1007/978-1-4899-0024-1

Reynolds, M. P., Gutiérrez-Rodrı ́guez, M., Larqué- 
Saavedra, A. J. F. C. R., & Larqué-Saavedra, A. (2000). 
Photosynthesis of wheat in a warm, irrigated environ-
ment: I: Genetic diversity and crop productivity. Field 
Crops Research, 66(1), 37–50. https://doi.org/10.1016/ 
S0378-4290(99)00077-5

Siebert, S., & Ewert, F. (2012). Spatio-temporal patterns of 
phenological development in Germany in relation to 
temperature and day length. Agricultural and Forest 
Meteorology, 152, 44–57. https://doi.org/10.1016/j.agrfor 
met.2011.08.007

Song, Y., Wang, J., Shang, J., & Liao, C. J. R. S. (2020). Using 
UAV-Based SOPC derived LAI and SAFY model for 
biomass and yield estimation of Winter wheat. Remote 
Sensing, 12(15), 2378. https://doi.org/10.3390/rs12152378

Sullivan, M. (2018). Statistics: Informed decisions using data. 
Prentice Hall/Pearson.

Tao, H., Feng, H., Xu, L., Miao, M., Yang, G., Yang, X., & 
Fan, L. (2020). Estimation of the yield and plant height of 
winter wheat using UAV-based hyperspectral images. 
Sensors, 20(4), 1231. https://doi.org/10.3390/s20041231

Tareghian, R., & Rasmussen, P. (2013). Analysis of arctic 
and Antarctic sea ice extent using quantile regression. 
International Journal of Climatology, 33(5), 1079–1086.  
https://doi.org/10.1002/joc.3491

Thenkabail, P. S., Smith, R. B., & De Pauw, E. (2000). 
Hyperspectral vegetation indices and their relationships 
with agricultural crop characteristics. Remote Sensing of 
Environment, 71(2), 158–182. https://doi.org/10.1016/ 
S0034-4257(99)00067-X

Tucker, C. J. (1979). Red and photographic infrared linear 
combinations for monitoring vegetation. Remote Sensing 
of Environment, 8(2), 127–150. https://doi.org/10.1016/ 
0034-4257(79)90013-0

EUROPEAN JOURNAL OF REMOTE SENSING 15

https://doi.org/10.1016/j.eja.2017.11.002
https://doi.org/10.1016/j.eja.2017.11.002
https://doi.org/10.3390/rs10122000
https://doi.org/10.3390/rs10122000
https://doi.org/10.3390/rs10122000
https://doi.org/10.3390/rs10122000
https://doi.org/10.13140/RG.2.1.5105.6721
https://doi.org/10.13140/RG.2.1.5105.6721
https://doi.org/10.2307/1913643
https://doi.org/10.1080/01621459.1999.10473882
https://doi.org/10.1080/01621459.1999.10473882
https://doi.org/10.3390/rs13040593
https://doi.org/10.3390/rs13040593
https://doi.org/10.3390/rs11151763
https://doi.org/10.3390/rs11151763
https://doi.org/10.1016/S1671-2927(11)60156-9
https://doi.org/10.1016/S1671-2927(11)60156-9
https://doi.org/10.1016/j.agrformet.2017.08.018
https://doi.org/10.1016/j.agrformet.2010.07.008
https://doi.org/10.1016/j.agrformet.2010.07.008
https://doi.org/10.1007/s40009-017-0544-7
https://doi.org/10.3390/rs12020249
https://doi.org/10.3390/rs12020249
https://doi.org/10.1016/j.econmod.2013.02.022
https://doi.org/10.1016/j.econmod.2013.02.022
https://doi.org/10.3390/su12218919
https://doi.org/10.3390/su12218919
https://doi.org/10.3389/fsufs.2020.00025
https://doi.org/10.3390/drones4030028
https://doi.org/10.3390/drones4030028
https://doi.org/10.5194/isprs-archives-XLI-B1-991-2016
https://doi.org/10.5194/isprs-archives-XLI-B1-991-2016
https://doi.org/10.1007/978-1-4899-0024-1
https://doi.org/10.1007/978-1-4899-0024-1
https://doi.org/10.1016/S0378-4290(99)00077-5
https://doi.org/10.1016/S0378-4290(99)00077-5
https://doi.org/10.1016/j.agrformet.2011.08.007
https://doi.org/10.1016/j.agrformet.2011.08.007
https://doi.org/10.3390/rs12152378
https://doi.org/10.3390/s20041231
https://doi.org/10.1002/joc.3491
https://doi.org/10.1002/joc.3491
https://doi.org/10.1016/S0034-4257(99)00067-X
https://doi.org/10.1016/S0034-4257(99)00067-X
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/0034-4257(79)90013-0


Vilar, L., Camia, A., & San-Miguel-Ayanz, J. (2015). 
A comparison of remote sensing products and forest 
fire statistics for improving fire information in 
Mediterranean Europe. European Journal of Remote 
Sensing, 48(1), 345–364. https://doi.org/10.5721/ 
EuJRS20154820

Viljanen, N., Honkavaara, E., Näsi, R., Hakala, T., 
Niemeläinen, O., & Kaivosoja, J. J. A. (2018). A novel 
machine learning method for estimating biomass of grass 
swards using a photogrammetric canopy height model, 
images and vegetation indices captured by a drone. 
Agriculture, 8(5), 70. https://doi.org/10.3390/ 
agriculture8050070

Westoby, M. J., Brasington, J., Glasser, N. F., 
Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure- 
from-motion’ photogrammetry: A low-cost, effective 
tool for geoscience applications. Geomorphology, 179, 
300–314. https://doi.org/10.1016/j.geomorph.2012.08. 
021

Wetterdienst, D. (2022). Climate Data for Direct Download. 
Retrieved September 23, 2022 from https://www.dwd.de/ 
EN/ourservices/cdc/cdc_ueberblick-klimadaten_en.html 

Yuan, W., Li, J., Bhatta, M., Shi, Y., Baenziger, P. S., & 
Ge, Y. J. S. (2018). Wheat height estimation using 

LiDAR in comparison to ultrasonic sensor and UAS. 
Sensors, 18(11), 3731. https://doi.org/10.3390/s18113731

Yu, D., Zha, Y., Shi, L., Jin, X., Hu, S., Yang, Q., Huang, K., & 
Zeng, W. (2020). Improvement of sugarcane yield esti-
mation by assimilating UAV-derived plant height 
observations. The European Journal of Agronomy, 121, 
126159. https://doi.org/10.1016/j.eja.2020.126159

Zeng, Y., Hao, D., Huete, A., Dechant, B., Berry, J., 
Chen, J. M., Joiner, J., Frankenberg, C., Bond- 
Lamberty, B., Ryu, Y. J. N. R. E., Xiao, J., Asrar, G. R., & 
Chen, M. (2022). Optical vegetation indices for monitor-
ing terrestrial ecosystems globally. Nature Reviews Earth 
and Environment, 3(7), 477–493. https://doi.org/10.1038/ 
s43017-022-00298-5

Zhang, Z., Zhou, N., Xing, Z., Liu, B., Tian, J., Wei, H., 
Gao, H., & Zhang, H. (2022). Effects of temperature and 
radiation on yield of spring wheat at different latitudes. 
Agriculture, 12(5), 627. https://doi.org/10.3390/ 
agriculture12050627

Zhang, Z., Zhou, N., Xing, Z., Liu, B., Tian, J., Wei, H., 
Gao, H., & Zhang, H. J. A. (2022). Effects of temperature 
and radiation on yield of spring wheat at different 
latitudes. Agriculture, 12(5), 627. https://doi.org/10. 
3390/agriculture12050627

16 SH. KHODJAEV ET AL.

https://doi.org/10.5721/EuJRS20154820
https://doi.org/10.5721/EuJRS20154820
https://doi.org/10.3390/agriculture8050070
https://doi.org/10.3390/agriculture8050070
https://doi.org/10.1016/j.geomorph.2012.08.021
https://doi.org/10.1016/j.geomorph.2012.08.021
https://www.dwd.de/EN/ourservices/cdc/cdc_ueberblick-klimadaten_en.html
https://www.dwd.de/EN/ourservices/cdc/cdc_ueberblick-klimadaten_en.html
https://doi.org/10.3390/s18113731
https://doi.org/10.1016/j.eja.2020.126159
https://doi.org/10.1038/s43017-022-00298-5
https://doi.org/10.1038/s43017-022-00298-5
https://doi.org/10.3390/agriculture12050627
https://doi.org/10.3390/agriculture12050627
https://doi.org/10.3390/agriculture12050627
https://doi.org/10.3390/agriculture12050627

	Abstract
	Introduction
	Materials and methods
	Study area
	General workflow
	Remote sensing data collection
	Ground-level yield data
	Extraction of crop surface model for calculation plant height
	Solar radiation
	Vegetation indices
	Regression model

	Results
	Wheat yield estimation based on linear regression models
	Wheat yield estimation based on quantile regression models
	Out-of-sample validation

	Discussion
	Conclusion
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References



