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Dynamic, incentive-compatible contracting for health

services

Rosella Levaggi*, Michele Moretto�, Paolo Pertile�

Abstract

This paper aims to characterise a dynamic, incentive-compatible contract for the

provision of health services, allowing for both moral hazard and adverse selection.

Patients’ severity changes over time following a stochastic process and is private in-

formation of the provider. We characterise the optimal dynamic contract and show

that it is made up of two components: a time-invariant payment, which depends on

the structural characteristics of the provider, and a time-varying component, which is

affected by both patient and hospital characteristics. To illustrate the characteristics

of the dynamic contract and compare it with a more standard static contract, we pro-

vide a numerical exercise calibrated with data from hip replacement hospitalisations

in Italy.

Keywords: hospital payments; dynamic mechanism design; DRG; two-part tariffs; adverse

selection; moral hazard

JEL: H42, I18, D82

1 Introduction

In the healthcare sector, more often than probably anywhere else, services are not paid out of

pocket by consumers (patients), who are largely insured, either publicly or privately, against

the related risks. Payments are often based on contracts that regulate the relationship

between a provider (e.g., a hospital) and a purchaser (typically a public or private insurer).

A well-known characteristic of this relationship is the presence of asymmetric information

on relevant dimensions such as provider effort, case-mix complexity, and costs of provision.

*Department of Economics and Management, University of Brescia, Italy.
�Department of Economics and Management, University of Padua, Italy.
�Department of Economics, University of Verona, Italy.
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Another feature is that provider–purchaser relationships tend to be long-lasting (Chalkley

and Malcomson, 1996). The first characteristic has been explored in depth in the literature

studying (second-best) optimal contracts for the provision of healthcare services. However,

authors have almost invariably done so by relying on static models, which prevents them

from accounting for the second characteristic, i.e., the dynamic dimension of the provider–

purchaser relationship.

This paper aims to characterise a second-best optimal dynamic contract between a pur-

chaser and a provider, allowing for both moral hazard and adverse selection. In our model,

the patients’ severity is private information of the provider and changes over time following

a Brownian process. This process depends on parameters that are (partly) unknown to

the purchaser. At each point in time, the provider selects the combination of effort (unob-

servable) and services (observable) based on patient severity. We characterise the optimal

dynamic contract and show that it is made up of two components: a time-invariant pay-

ment, which depends on the structural characteristics of the provider, and a time-varying

component, which is affected by both patient and hospital characteristics.

Starting approximately from the 1990s, a clear tendency emerged to replace retrospec-

tive with prospective systems for the reimbursement of healthcare services. In most cases,

prospective payments are based on diagnosis-related groups (DRGs). In their purest form,

DRG systems imply that the reimbursement made for one patient depends only on her di-

agnosis. Given the information advantage enjoyed by providers in their relationship with

purchasers, prospective payment systems (PPSs) offer a clear advantage in terms of cost-

efficiency. However, the literature has also highlighted a number of potential distortions. A

first class of distortions arises because, under PPSs, the same payment is made for patients

who are heterogeneous in terms of severity, which is observed by the provider but not by

the purchaser. Since indexes measuring the complexity of the case mix are often unavailable

or imprecise (Pettengill and Vertrees, 1982; Jencks, 1987), it is difficult for the purchaser to

infer patients severity. This may lead to overprovision of treatments for low-severity (i.e.,

low-cost) cases and underprovision, or no provision, for high-severity cases (Ellis, 1998). PPS

may also lead to underprovision of quality if higher quality requires higher costs (Dranove,

1987; Allen and Gertler, 1991; Ellis and McGuire, 1986; Brekke et al., 2015). Distortions

may also arise in the allocation of treatments with different intensities to patients according

to their severity (Siciliani, 2006) and in decisions concerning investment in quality (Levaggi

et al., 2012, 2014; Ghandour et al., 2022). The empirical evidence on the efficiency of PPSs

in terms of costs and quality is also mixed (Scanlon, 2006; Tan and Melendez-Torres, 2017).

The literature has widely explored the mechanisms and conditions allowing these limi-

tations to be overcome while the efficiency advantages of PPSs are retained. A first result is
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that efficiency can be improved through the adoption of some form of cost-sharing, whereby

only part of any excess costs incurred by the provider are reimbursed (Ellis and McGuire,

1986). It is worth mentioning that several real-world DRG tariff schedules allow extra pay-

ments within a DRG under specific circumstances, e.g., a hospitalisation length exceeding

a certain threshold. The implications of other adjustments to a pure fixed-payment setup

based on other characteristics of the patient or the treatment provided have also been stud-

ied (see, for example, Hafsteinsdottir and Siciliani, 2010). The topic of competition as an

incentive mechanism to keep quality sufficiently high even in a PPS context has probably

received the greatest attention (Ma, 1994). However, with the combination of PPS and

competition, an optimal allocation can be achieved only under very restrictive assumptions

(Chalkley and Malcomson, 1998). Moreover, there exist clinical areas, such as emergency

care, where competition simply cannot be conceived. The empirical findings on the impact

of competition are also mixed with respect to both efficiency (Oliver and Mossialos, 2005;

Gaynor and Town, 2011; Gravelle et al., 2014; Kessler and McClellan, 2000; Propper et al.,

2008; Hunter, 2009) and equity (Dardanoni et al., 2018).

More recently, pay-for-performance has received significant attention as an approach

to reducing the scope of information asymmetry (Kristensen et al., 2016). However, it is

difficult to find performance measures that are both feasible and comprehensive. Circum-

stances have also been identified under which pay-for-performance leads to distortions in

the provision of quality (Mak, 2018; Lisi et al., 2020; Arifoğlu et al., 2021).

This paper focuses on an alternative tool provided by the contract theory to address inef-

ficiencies arising from asymmetric information: second-best, incentive-compatible contracts.

In this context, De Fraja (2000) studies the optimal contract in a setting where providers

differ in terms of cost efficiency, a parameter that the purchaser cannot observe. In Siciliani

(2006), patients’ severity is private information of the hospital, which decides whether to

provide low- or high-intensity treatment. The optimal contract involves different payments

for the same treatment for hospitals with different characteristics. Recent contributions to

this literature include Wu et al. (2018) and Maréchal and Thomas (2021), both of which

allow for moral hazard and adverse selection. However, as with all the other contributions

in this strand of literature, they rely on a single-period model. This characteristic prevents

the works in this strand from accounting for the implications of the long-lasting character

of the relationship between the purchaser and the provider and the related dynamics.

With only a few exceptions, analyses of optimal payments for health services have been

undertaken in static models. Among the exceptions, Brekke et al. (2012a) and Bisceglia

et al. (2020) study dynamic price regulation in competitive settings where patients’ decisions

on where to be treated are driven by noncontractible quality. In discussing their results,
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Bisceglia and collaborators note that ‘a menu of incentive-compatible contracts . . . could

further improve welfare’ (Bisceglia et al., 2020, p. 13).

To the best of our knowledge, ours is the first contribution to characterise an optimal,

incentive-compatible contract for health services in a setting where competition does not

work as an incentive mechanism. In our model, the severity of patients treated by one hos-

pital follows a Brownian process, the realisations of which are unknown to the purchaser. In

addition, we interpret the initial value of severity as a hospital-specific structural character-

istic, which affects the expected severity of future patients and is also private information

of the provider.1

Our continuous time approach provides benefits in terms of tractability. We fully charac-

terise the optimal dynamic second-best contract, which entails a two-tier payment, including

a negative fixed component (patient independent, provider dependent) and a positive vari-

able component (patient dependent, provider dependent). Methodologically, we exploit the

mechanism design developed by Bergemann and Strack (2015). However, an important dif-

ference between our and their setup is that whereas in Bergmann and Strack the principal is

a revenue maximiser, in our paper it is a health authority that maximises consumer surplus

and faces a problem of dynamic optimal regulation with both adverse selection and moral

hazard.2

There are two main qualitative differences between this payment scheme and the way

that DRG systems are applied in most countries: i) the fixed component of payment differs

for different providers, depending on their structural characteristics;3 ii) within a DRG,

the adjustment of payments (cost-sharing in the terminology of Ellis and McGuire, 1986)

depends not only on patients’ but also on providers’ characteristics. We use data on hip

replacement hospitalisations in Italy to illustrate the characteristics of the optimal dynamic

contract and its efficiency properties.

The remainder of the paper is organised as follows. We introduce our model in Section

2 and characterise the first- and second-best solutions in Sections 3 and 4, respectively.

The characteristics of the second-best contract are discussed in Section 5. The numerical

example, involving a calibration based on hip replacement data, is presented in Section 6.

1Heterogeneity in the patient case mix across hospitals and its implications for hospital financing has
been widely discussed in the literature. See, for example, Watts (1980), Sloan et al. (1983), and Söderlund
et al. (1996).

2Bergemann and Strack (2015) study the optimal dynamic contract between a revenue-maximising mo-
nopolist selling a non-durable good and a privately informed buyer. This is a major contribution to the
strand of literature addressing the problem of optimal dynamic contracts in dynamic settings initiated by
Baron and Besanko (1984) and Laffont and Tirole (1993) in two-period settings and later extended to mul-
tiple periods (Pavan et al., 2014). See also Bergemann and Välimäki (2019) for a review of the literature
and Arve and Zwart (2023) for the case of durable goods in an environment which is not time-separable.

3Note that in some systems, there may be different DRG tariffs for different types of provider. However,
unlike in our case, such “types” are observable (e.g., being a teaching hospital).
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Section 7 concludes.

2 Setup

We study an optimal contract between a purchaser (regulator: she) and a provider (hospital:

he) in a continuous-time dynamic setting where patient severity, which affects the marginal

productivity of effort, is stochastic. Both severity and effort are private information of the

provider.

2.1 Patients

There is a constant flow of patients requiring a specific treatment over the time horizon

defined by t ∈ [0,∞). Specifically, let βt be the severity of a patient admitted at time t.4

βt changes over time according to a Brownian process with no drift and an upwards shift

k ≥ 0:

dβt = (βt − k)σdBt, with βt=0 = β0, (1)

where σ > 0 is the constant instantaneous volatility and Bt ∼ N(0, t) is a standard Wiener

process. Eq. 1 means that at any t, βt lies in the interval [k,∞), where the parameter k can

be interpreted as the minimum level of severity such that treatment is clinically appropriate.5

By solving the above differential equation, patients’ severity at each time t can be rep-

resented as (see Appendix A):

βt ≡ ϕ(t, β0, σ, Bt) = k + β0 exp

(
−1

2
σ2t+ σBt

)
. (2)

We assume that while σ is public knowledge, the provider is better informed than the

purchaser about βt, (t ≥ 0). In particular, we assume that the initial value β0 is distributed

over the interval [βl ≥ k, βh], according to the density function g(β0) and the cumulative

distribution function G(β0), with both g(βl) and g(βh) > 0. The characteristics of g(β0)

and G(β0) are common knowledge. The function G(β0) is such that 1−G(β0)
g(β0)β0

is monotone

decreasing, with g(βl) ≥ 1/βl.6

4Without loss of generality, βt can also be interpreted as an index of the average severity of patients
arriving at time t.

5The assumption of a trendless process allows us to focus on the pure effect of the uncertainty. However,
notice that, by the Markov property of Eq. 1, our general results would not be altered by using a nonzero
trend for βt.

6As in Arve and Zwart (2023); Skrzypacz and Toikka (2015); Buso et al. (2021), this is equivalent to
assuming that the contractor’s private information is represented by two stochastic processes where the one
representing the initial value is constant after time zero but influences the transitions of the second process.
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In what follows, β0 can be interpreted as a structural characteristic of the provider with

respect to severity, which affects the expected severity over time via the diffusion process

of Eq. 2. This allows us to account for the fact that providers treating more (less) severe

patients today are also more likely to do so in the future due to their specialisation.

Two properties of Eq. 2 are particularly important for our analysis.7

1. ∂ϕ(t,β0,σ,Bt)
∂β0

= βt−k
β0

> 0, meaning that, other things being equal, a higher value of β0

implies higher expected severity in t > 0.8

2. The relative impact of the initial severity versus contemporaneous shock Bt,, i.e.,
∂ϕ(t,β0,σ,Bt)

∂β0
/∂ϕ(t,β0,σ,Bt)

∂Bt
= 1

σβ0
, is decreasing in β0. This means that a comparatively

high value of β0 is less informative about βt because future severities are more subject

to contemporary shocks Bt. This effect is similar to that of an increase in σ.

These properties allow us to describe the persistence over time of some nonverifiable

provider characteristics, which, in our setup, are captured by the parameter β0.
9 One

may expect that, despite the variability from one period to the next in the composition of

the population of patients treated, highly specialised hospitals tend to attract, on average,

patients with comparatively severe conditions.

2.2 Providers

In line with the literature (see, e.g., Chalkley and Malcomson, 1998; Gaynor et al., 2015),

we assume that a profit-maximising, risk-neutral provider receives a payment pt from a

purchaser for each patient treated. The health gain for a patient who receives treatment is

indicated with xt and depends on the combination of two variables, qt and et , under the

control of the provider. The first, qt, can be interpreted as the intensity of care, and it is

assumed to be observable and verifiable. In what follows, we call this component services.

It can be interpreted as the quantity of different types of services that the patient receives.

For hospital care, this measure may include the number of days of hospitalisation and/or

7See Bergemann and Strack (2015) for a discussion of these properties.
8Baron and Besanko (1984) use the term “informativeness”. For Pavan et al. (2014) and Bergemann and

Strack (2015) ∂ϕ(t,β0,σ,Bt)
∂β0

is the “impulse response”of β0 to βt.
9For a trendless process of the type described in Eq. 1, the autocorrelation between two values of β is

given by:

ρs,t =
cov(βs, βt)√
V (βs)

√
V (βt)

=

(
eσ

2s − 1

eσ2t − 1

)1/2

< 1

where s < t. Note that ρt,s → 0 both when t → ∞ or when σ → ∞. In all other cases, we obtain a partial
autocorrelation, the magnitude of which is greater the smaller the difference between s and t.
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the number of diagnostic and therapeutic interventions. The other decision variable for the

provider is effort, et, which, as usual, is assumed to be private information. This component

includes, among others, all those clinical activities not suitable for separate reimbursement

but also other dimensions, such as relational quality.

We assume that ∂x
∂q
> 0, ∂x

∂e
> 0. Depending on the type of medical intervention, the

marginal productivity of both qt and et, or just one of them, may be affected by patient

severity. The sign of the marginal impact of severity on the marginal productivity may also

be context specific. For technologies combining high effectiveness with high risks, greater

intensity of care along the observable dimension may pay more in terms of health gains for

high severity patients, i.e., ∂2x
∂q∂β

> 0 (the balance between the health gain and risk would

be favourable only for high severity patients). On the other hand, more standard and less

invasive treatments may be effective only up to a certain level of severity; in this case, we

would have ∂2x
∂q∂β

< 0. Similarly, for the nonverifiable input (et), one may think of situations

where greater severity reduces the impact of effort on health, and others where seriously ill

patients can draw greater benefit from an increase in effort. Watchful waiting, as applied,

for example, in prostate cancer, may be an example of the first, as it provides benefits

mainly for patients with early-stage disease ( ∂
2x

∂e∂β
< 0), whereas surgery is required for more

advanced stages. However, for diabetic patients, the benefits of increased monitoring are

likely to be greater for patients whose disease is more severe because they are more likely

to suffer from complications ( ∂
2x

∂e∂β
> 0).

For the sake of clarity, in the solution process, we focus on one specific case and introduce

an explicit form of the production function of the health gain:10

xt = qt +
1

βt
et. (3)

where the marginal productivity of effort declines with patient severity.

This form has two major advantages: it keeps the optimal inputs within a bounded

interval , and it allows us to interpret the severity parameter βt as a measure of the rate

at which the two inputs should be substituted to maintain the same level of health gain.11

Although the link between et, βt and the contractual variable qt available to the regulator is

completely deterministic, the patient’s health gain xt is unobservable to the purchaser. This

10This functional form implies substitutability between services and effort but no complementarity. How-

ever, under some circumstances, the two inputs may also be complements, i.e., ∂2x
∂q∂e > 0. For example,

Thurston and Libby (2002) find empirical evidence that capital (which is to some extent related to the pro-
vision of services in our setting) and physician labour are substitutes but that capital and labour supplied
by some types of ancillary workers are complements.

11As in Maréchal and Thomas (2021), severity may be interpreted as the result of complications or
comorbidities. However, in our case, severity affects the productivity of effort, whereas in Maréchal and
Thomas (2021), it has an impact on costs.
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can be seen as a generalisation of the problems addressed in Wu et al. (2018) and Maréchal

and Thomas (2021), where a signal of patient outcomes can be observed, thus allowing for

some form of pay-for-performance.

The provider receives a payment pt for each patient and bears a monetary cost related

to the provision of services, c(qt), and a nonmonetary cost of effort, ψ(et). The provider’s

instant utility function can be written as:

ut = pt − c(qt)− ψ(et), (4)

where c(qt) is assumed to be increasing and (weakly) convex (i.e., ∂c
∂qt

> 0, ∂
2c
∂q2t

≥ 0) and

the disutility of effort, ψ(et), is an increasing and strictly convex function of e (i.e., ∂ψ
∂et

>

0, ∂
2ψ
∂e2t

> 0).

The provider’s intertemporal utility is then:

U = E0

[∫ ∞

0

e−rt(pt − c(qt)− ψ(et))dt

]
. (5)

2.3 The purchaser

As is common in the literature on the regulation of heath care markets (see, e.g., Brekke

et al., 2012b; Levaggi et al., 2014), the purchaser is assumed to maximise consumer surplus,

which is given by the difference between the (money-equivalent) health gain S(xt) and the

price pt. The consumer surplus at time t is:

wt = S(xt)− pt, (6)

with ∂S(xt)
∂xt

> 0 and ∂2S(xt)

∂x2t
< 0, whereas the purchaser’s intertemporal utility is:

W = E0

[∫ ∞

0

e−rt(S(xt)− pt)dt

]
. (7)

3 First best

In this case, the purchaser has perfect information about the severity βt and the level of

effort et, ∀t ≥ 0. The purchaser has no incentive to raise the instant utility of the provider

above his reservation value. In this context, she is able to set a payment pt for each t ≥ 0

such that the provider obtains no rent, i.e., ut = 0, ∀t ≥ 0. We can characterise the first
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best by solving:

maxwt = max
qt≥0,et≥0,pt≥0

[(S(xt)− pt] (8)

s.t. ut ≥ 0

which yields the first-best combination, corresponding to q∗t and e∗t .

To highlight the characteristics of the optimal contract and without loss of generality,

whenever necessary, we adopt a linear cost function for the quantity of services,12 with

marginal cost equal to one, i.e., c(qt) = qt, a quadratic function for the disutility of effort,

i.e., ψ(et) =
e2t
2
, and define S(xt) =

x1−γ
t

1−γ , with 0 < γ < 1. Finally, to avoid corner solutions,

we also assume that the minimum level of severity is k ≥ 1 (see Appendix B).

The following proposition characterises the first best under the assumptions introduced

in Section 2 and for the specific functional forms considered.

Proposition 1 The first-best contract is such that ∀t:

p∗(βt) = q∗(βt) +
e∗(βt)

2

2
= 1− 1

2

1

β2
t

, (9)

with

e∗(βt) =
1

βt
, (10)

q∗(βt) = 1− 1

β2
t

(11)

Proof: See Appendix B.

The optimal level of effort is inversely proportional to patient severity (i.e.,
∂e∗t
∂βt

< 0),

while the quantity of services is increasing in severity (i.e.,
∂q∗t
∂βt

> 0). This is consistent with

the production function of Eq. 3, where the marginal productivity of effort decreases as

severity increases. For the most severely ill patient (β → ∞), the contract is q∗(∞) = 1,

e∗(∞) = 0 and p∗(∞) = 1. However, for the least severely ill patient (β → k), the contract

is q∗(k) = 1− 1
k2
, e∗(k) = 1

k
and p∗(k) = 1− 1

2k2
. Finally, the payment is monotone increasing

in severity (i.e.,
∂p∗t
∂βt

> 0).13 The results above have an intuitive explanation: for the highest

severity level, it is optimal to use only services (q∗(∞) = 1, e∗(∞) = 0). For this patient, the

12For the general conditions that characterise the solution, see Appendix B.
13The assumption that k ≥ 1 ensures that q∗t ≥ 0, ∀t. However, even with 0 < k < 1, the optimal contract

can be characterised by q∗t = 0, e∗t = β
γ−1
γ+1

t <∞ (see Appendix B).
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(marginal) cost is equal to 1, which is also the first-best optimal price. For the other patients,

it is optimal to exert some effort (e∗ > 0). The optimal payment in this case is determined

by subtracting from the cost of the most severe type (β → ∞) the savings in terms of service

provision that are enabled because effort also contributes to health achievement.

In addition, q∗t and e∗t contribute to the achievement of a constant health gain xt across

patients and through time, i.e., x∗t = 1, ∀t ≥ 0 (see Appendix B). Therefore, the FB scheme

does not create any trade off between health gains and costs.

4 Second best

Eq. 2 implies that, even if the purchaser knows β0, this information would not be sufficient to

infer the ex post values of βt. To solve the intertemporal asymmetric information problem,

the purchaser needs to define a mechanism to induce the provider to truthfully report βt

(∀t ≥ 0). The timing of the direct mechanism is the following. The purchaser defines a

payment flow for each t ≥ 0, as a function of βt, to which he can commit. In every period,

the provider observes βt and reveals the severity level to the purchaser. Based on the value

of βt revealed, the purchaser makes a payment consistent with the contract initially offered

to the provider, who decides on the level of services and effort.

This complex intertemporal adverse selection problem can be solved by exploiting the

procedure proposed by Bergemann and Strack (2015). 14 By the properties of the stochastic

process Eq. 2, the purchaser’s problem can be divided into two subproblems:

1. For any given initial value of β0, it is optimal for the purchaser to commit in each t > 0

to the repetition of static contracts. Thus, by the revelation principle, the analysis

can be restricted to a direct truthful revelation mechanism where the provider reports

βt.

2. Since each realisation βt depends on the initial value β0 and contemporaneous shock

Bt, i.e., βt ≡ ϕ(β0, Bt), at t = 0, the purchaser’s problem reduces to induce the

provider to report the initial value β0 truthfully.15

By the separability of the problem, two instruments are sufficient to obtain a truthful

revelation of the two unknowns, βt (t > 0) and β0. In the next sections, we show that the

optimal contract that makes the provider reveal the severity takes the form of a “two-part

tariff” scheme, made up of an annuitized fixed part F (β0) and a time-varying part V (β0, βt).

Therefore, we can redefine the payment as p(β0, βt) = F (β0) + V (β0, βt).

14The authors derive an allocative mechanism with respect to a class of deviations defined as ”consistent
deviations”. See Bergemann and Strack (2015)[p. 826].

15Hereafter, we drop the dependence on time in ϕ(β0, Bt) when this does not cause confusion.
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4.1 Incentive-compatibility conditions

As usual, it is convenient to work backwards, starting from t > 0. Let us assume that the

purchaser has obtained a truthful report of β0 by appropriately defining the payment F (β0).

The provider’s intertemporal utility becomes the sum over time of single standard problems.

In particular, since, by Eq. 3, we can write e(β0, βt, β̂t) = βt(x(β0, β̂t)− q(β0, β̂t)), where β̂t

is the value reported by the provider at time t, by substituting into Eqs. 4 and 5, we obtain:

U(β0, β̂t, βt) = E0

 ∫∞
0
e−rt

[
V (β0, β̂t)− c(q(β0, β̂t))

−ψ(βt(x(β0, β̂t)− q(β0, β̂t))) + F (β0)
]
dt

 . (12)

The flow of transfers V (β0, β̂t) can be used to make truthful reporting of β̂t = βt, ∀t > 0.

Let us define

ũ(β0, βt) = V (β0, β̂t)− c(q(β0, β̂t))− ψ(βt(x(β0, β̂t)− q(β0, β̂t))). (13)

The necessary and sufficient conditions for incentive compatibility that entice the provider

to truthfully reveal βt, ∀t > 0, are (see Appendix C):

dũ(β0, βt)

dβt
= −ψ′(e(β0, βt))(x(β0, βt)− q(β0, βt)) (14)

and
d(x(β0, βt)− q(β0, βt))

dβt
< 0, (15)

with e(β0, βt) ≥ 0, and q(β0, βt) ≥ 0, ∀t > 0.

Once V (β0, βt) has been determined, we have to characterise the fixed part F (β0). It

is straightforward to show that the purchaser’s problem boils down to a standard adverse

selection problem. The provider’s intertemporal utility becomes:

U(β0, β̂0) = E0

 ∫∞
0
e−rt

[
V (β̂0, βt)− c(q(β̂0, βt))−

ψ(ϕ(β0, Bt)[x(β̂0, βt)− q(β̂0, βt)]) + F (β̂0)
]
dt

 (16)

where F (β̂0) is such that it is optimal for the provider to truthfully report the initial level,

i.e., β̂0 = β0. The following condition is necessary and sufficient for incentive compatibility

(see Appendix C):

dU(β0)

dβ0
= −E0

[∫ ∞

0

e−rt(ψ′(ϕ(β0, Bt)(x(β0, βt)− q(β0, βt)))
∂ϕ(β0, Bt)

∂β0
(x(β0, βt)− q(β0, βt)))dt

]
,

(17)

11



whereas the second-order sufficient condition is:

d(x(β0, βt)− q(β0, βt))

dβ0
≤ 0. (18)

4.2 Time-varying payment

Let us start from the problem at t > 0. Given β0, the purchaser maximises the following

objective function:

max
qt≥0,et≥0,pt≥0

∫ βh

βl

{
E0

[∫ ∞

0

e−rt(S(xt)− F (β0)− V (β0, βt))dt

]}
g(β0)dβ0. (19)

subject to Eqs. 3, 14, and 15 and the intertemporal participation constraint:

U(β0) ≥ 0. (20)

Since F (β0) does not depend on βt (t > 0), we have a standard adverse selection problem

under asymmetric information (Baron and Myerson, 1982; Laffont and Tirole, 1993), the

general solution to which is presented in Appendix D. The following proposition charac-

terises the second-best contract for t > 0 under the assumptions introduced in Section 2

and for the specific functional forms considered.

Proposition 2 Under the above assumptions, the purchaser offers, ∀t > 0, a severity-

contingent payment:

V ∗∗(β0, βt) = q∗∗(β0, βt) +
[e∗∗(β0, βt)]

2

2
+

∫ ∞

βt

[e∗∗(β0, z)]
2

z
dz, (21)

with

e∗∗t =

[
βt + 2

G(β0)

g(β0)β0
(βt − k)

]−1

< e∗t (22)

q∗∗t = 1− 1

βt

[
βt + 2

G(β0)

g(β0)β0
(βt − k)

]−1

> q∗t . (23)

Proof: See Appendix D.

For any given β0, the optimal effort is decreasing in βt (i.e.,
∂e∗∗t
∂βt

< 0), while optimal

services are increasing in βt (i.e.,
∂q∗∗t
∂βt

> 0). Additionally, in the second best, qt and et are

combined to ensure a constant health gain, i.e., x∗∗t = 1.
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Finally, substituting (21) into (5) gives:

U(β0) = E0

[∫ ∞

0

e−rt

[∫ ∞

βt

[e∗∗(β0, z)]
2

z
dz + F (β0)

]
dt

]
. (24)

4.3 Two-part tariff

Since, by construction, V ∗∗(β0, βt), is such that the provider reports his true type βt based

on his initial report β0, this transforms the reporting problem at t = 0 into the static design

problem for the truthful revelation of β0 (Eqs. 16–18). By applying the Envelope theorem

to Eq. 17, we obtain:

U(β0) =

∫ βh

β0

E0

[∫ ∞

0

e−rt

[
e∗∗(y, βt)

2

βt

∂ϕ(y,Bt)

∂y

]
dt

]
dy. (25)

Thus, by using Eqs. 24 and 25, we can solve for F (β0).

Under the assumptions introduced in Section 2 and for the specific functional forms

considered, the next proposition characterises the second-best optimal payment.

Proposition 3 The second-best optimal payment by the regulator is made up of a fixed and

a time-varying component. The fixed component is given by:

F ∗∗(β0) = rE0

[∫ ∞

0

e−rt

[∫ βh

β0

[e∗∗(y, ϕ(y,Bt))]
2

ϕ(y,Bt)

ϕ(y,Bt)− k

y
dy −

∫ ∞

βt

[e∗∗(β0, z)]
2

z
dz

]
dt

]
.

(26)

whereas the severity-contingent payment is described by Eq. 21.

Proof: See Appendix D.

5 Characteristics of the two-part tariff

5.1 Provider behaviour

The second-best optimal levels of effort and services are characterised by Eqs. 22 and 23,

respectively. It is immediately clear that e∗∗t and q∗∗t are such that x∗∗t = 1, ∀βt. At each

point in time, it is optimal to equalise health outcomes across patients with different levels

of severity. Moreover, patient outcomes are as in the first best. From a policy point of view,

this is an interesting result because it preserves equity across patients16

16Notice that, in some of the related literature, the independence of the final health outcome from severity
is an assumption rather than a result (see, e.g., Siciliani, 2006).
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Additionally, consistent with the first-best solution is the fact that effort is decreasing in

βt whereas services are increasing (i.e.,
∂e∗∗t
∂βt

< 0,
∂q∗∗t
∂βt

> 0; see Appendix D). However, due

to information asymmetry, the combination of inputs is distorted in favour of the observable

component: e∗∗t ≤ e∗t and q∗∗t ≥ q∗t . Equality holds only for the lowest level of severity: if

βt = k, e∗∗(β0, k) = e∗(k) and q∗∗(β0, k) = q∗(k). As usual, it is optimal to pay rents

that induce the first-best combination of effort and services as βt approaches k, as this

corresponds to the case where effort is most productive.

As βt increases, the substitution of effort with services grows more rapidly in the sec-

ond than in the first best as a result of information asymmetry. However, for βt → ∞,

e∗∗(β0,∞) = e∗(∞) = 0 and q∗∗(β0,∞) = q∗(∞) = 1, meaning that distortions tend to

shrink above a certain level of severity. This is because with βt → ∞, the marginal produc-

tivity of effort goes to zero, meaning that it is efficient to use only the verifiable input. As

a result, distortions are largest for intermediate values of severity.

It is also interesting to study the impact of β0 on effort and services. By totally differ-

entiating Eqs. 22 and 23, we obtain:

de∗∗t
dβ0

=
∂e∗∗t
∂β0

+
∂e∗∗t
∂βt

βt − k

β0
< 0, (27)

dq∗∗t
dβ0

=
∂q∗∗t
∂β0

+
∂q∗∗t
∂βt

βt − k

β0
> 0. (28)

Thus, β0 affects e∗∗t and q∗∗t directly through information rents and indirectly by affecting

the expected value of βt. The latter is given by the measure of informativeness ∂ϕ(β0,Bt)
∂β0

=
βt−k
β0

> 0, which captures the impact on βt of a marginal change in β0. Overall, ceteris

paribus, a higher level of severity in t = 0 leads to a substitution of services for effort.

5.2 Payment

To highlight the characteristics of the second-best optimal contract, it is convenient to write

the full payment scheme, including both the variable and the fixed components:

p∗∗(β0, βt) = F ∗∗(β0) + V ∗∗(β0, βt)

= rE0

[∫ ∞

0

e−rt

[∫ βh

β0

[e∗∗(y, ϕ(y,Bt))]
2

ϕ(y,Bt)

ϕ(y,Bt)− k

y
dy −

∫ ∞

βt

[e∗∗(β0, z)]
2

z
dz

]
dt

]
(29)

+ q∗∗(β0, βt) +
[e∗∗(β0, βt)]

2

2
+

∫ ∞

βt

[e∗∗(β0, z))]
2

z
dz

The second and third lines on the RHS of Eq. 29 correspond, respectively, to the fixed
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and variable components of the second-best price. The variable component is composed of

the costs incurred to provide the second-best level of services and effort,
(
q∗∗(β0, βt) +

[e∗∗(β0,βt)]2

2

)
,

and the information rent associated with truthful revelation of βt at t > 0,
(∫∞

βt

[e∗∗(β0,z))]2

z
dz
)
.

Notice, however, that the same term related to the information rent also appears, with neg-

ative sign, in the fixed component (second term in the second line). That is, since β0 is

informative, to some extent, about future levels of severity
(
ϕ(β0,Bt)−k

β0
= ∂ϕ(β0,Bt)

∂β0

)
knowing

it allows the purchaser to reduce the payment to the hospital of an amount that, in expected

terms, equals the rent that will be paid in the future to induce truthful revelation of βt.

Thus, in defining the annuitized amount of the fixed component, the purchaser subtracts

from the amount related to the informative content of β0 (first term in the second line),

the amount corresponding to the expected value at t = 0 of information rents to be paid in

subsequent periods. This leads to a negative value of the fixed component (see Appendix

F).

In Appendix F we also show that the fixed component is increasing (decreasing in abso-

lute value) in β0. This is again the result of the combination of two effects going in opposite

directions. A first effect arises because a comparatively high value of β0 leads to higher

values of βt. Therefore, the higher the revealed value of β0 is, the lower are the information

rents that the regulator expects to pay in the future, and, therefore, the higher is the fixed

part. However, Eq. 29 shows that there is a second effect with the opposite sign: the

value of the first term of the second line of Eq. 29 decreases when β0 is comparatively high

because a higher value of β0 is less informative in terms of the ability to predict βt. Overall,

we show that the former effect prevails.

5.3 Distortions over time

Finally, we study how distortions implied by the second-best contract change over time.

To do so, we consider the ratio
e∗t
e∗∗t

= 1 + 2 G(β0)
g(β0)β0

βt−k
βt

as a proxy for the (relative) size of

the distortion at time t. Taking the expectation at time t = 0, it can be shown that (see

Appendix E):

E0

(
e∗t
e∗∗t

)
= 1 + 2

G(β0)

g(β0)β0

1−

[(
k

β0

)−3

e−3σ2kt + 2k
(
1− e−3σ2kt

)]−1/3
 , (30)

where

[(
k
β0

)−3

e−3σ2kt + 2k
(
1− e−3σ2kt

)]−1/3

is the expected impact of the initial shock β0

on the distortion at time t. Taking the limit of Eq. 30, we obtain:
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lim
t→∞

E0

[(
e∗t
e∗∗t

)]
= 1 + 2

G(β0)

g(β0)β0

[
1− (2k)−1/3

]
, (31)

which defines the convergence value for the relative distortion. As k ≥ 1 implies [1 −
(2k)−1/3] < 1, this reflects the fact that although, as time goes on, the effect of the initial

severity β0 on βt reduces, it never disappears.

Moreover, taking the derivative of Eq. 30 with respect to β0, it is easy to show that
∂E0

(
e∗t
e∗∗t

)
∂β0

> 0. In words, as a high value of β0 is not very informative about future values of βt,

the higher the revealed value of β0, the greater are the information rents that the purchaser

expects to pay in the future, and therefore, the higher are the expected distortions in the

use of inputs. This suggests that hospitals with high initial values of patient complexity

may experience comparatively large distortions.

6 A case study

In this section, we provide a numerical illustration of the characteristics of the second-best

optimal contract by calibrating the model using data on hip replacement from a sample of

Italian hospitals. In particular, we rely on hospital discharge records for the years between

2010 and 2016 of 225 hospitals from five of the largest Italian regions (Emilia-Romagna,

Lombardy, Piedmont, Veneto, Tuscany). The dataset includes 678,094 observations, which

are used to define the parameters of the stochastic process described in Eq. 1.

Since none of the variables included in the dataset can be directly interpreted as a

measure of patient severity, the first step is to construct one. To this end, we follow an

approach frequently adopted in the literature, whereby information on secondary diagnoses

is used to obtain the Charlson comorbidity index (Charlson et al., 1987).17 Considerable

evidence shows that this index is strongly correlated with patient outcomes and healthcare

costs (see, e.g., Johnson et al., 2015; Ofori-Asenso et al., 2018; Whitmore et al., 2014), which

makes it a suitable proxy for severity in our setting.

The value of the index in our sample ranges between 0 and 12. To make it consistent

with the fact that in our baseline model k ≥ 1, we rescale the values of the Charlson index

by adding one unit to the originally calculated values and use the rescaled values to proxy

the value of βt.

Another required adjustment is discretization of the stochastic process. The discrete-

17For each episode, a value of the Charlson index was computed with the Stata routine developed by
Stagg (2017).
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Figure 1: Characteristics of the second-best optimal contract and the role of β0.

time approximation of Eq. 1 can be written as:

βt+1 − βt
βt − k

= σ(Bt+1 −Bt), (32)

where we can estimate σ by computing the standard deviation of the sampling distribution

of the left-hand side of Eq. 32. In particular, for each hospital, we compute the percentage

change in the complexity index from one patient to the next. We take the mean across

institutions of the standard deviations of the percentage changes over time as our proxy of

σ. This leads us to a calibrated value of σ = 20%.

The distribution of the initial value of severity is assumed to be uniform between 1 and

1.7, where the upper extreme corresponds to the highest among the mean values of the

adjusted severity index computed for each hospital over the first month of the first year of

observation.18 The fixed component of payment (Eq. 26) involves an expected value that

cannot be computed analytically. We compute it using a Monte Carlo simulation with 1000

replications over 500 periods, using a discount rate of 5% (per year).

A distinguishing characteristic of our model is that, for a given value of βt, the variable

component of payment also depends on β0. Figure 1(a) shows the values of the two payment

components for different values of βt (horizontal axis) and for different values of initial

severity: β0 close to the lower and upper extremes of the range assumed for this parameter.

A high value of β0 is associated with a lower variable payment for a given βt and a higher

(smaller in absolute value) fixed payment. Figure 1(b) shows the resulting levels of effort

18We consider the first month and not the first patient for each institution to avoid the impact of outliers.
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Figure 2: Characteristics of the second-best optimal contract over time for a specific path
of βt.

and services and provides a comparison with the first best. The lower value of rents paid

when β0 is high, resulting from the lower variable payment shown in Figure 1(a), widens the

distance between the first and the second best (see Figure 1(b)). This implies a stronger

tendency to favour the observable (services) against the unobservable (effort) dimension.

For illustrative purposes, Figure 2 shows what happens over time for one specific path of

βt among those generated according to the stochastic process of Eq. 1 with the parameter

values described above. We also set β0 = 1.13, which is the average value of the severity

index for the whole sample in the first period. Figure 2(a) shows how the total payment

changes over time as patients’ severity, indicated by dots in the upper part of the figure,

changes and compares it with the total cost of treatment provision. When the value of βt is

high, total costs are high. However, only a fraction of the increase in costs is covered by an

increase in payment. In our simulation, the average (over all replications and all periods)

elasticity of payment with respect to total cost is 0.2.

This second-best optimal contract departs from a fixed payment per case as under a

pure form of DRG since it also includes a cost-sharing component (Ellis and McGuire,

1986). Another key difference is that the amount of cost-sharing and the fixed component

of payment depend on the structural characteristic, β0 (see Figure 1(a)). As a result of these

characteristics, the total payment is lower (higher) than total costs when βt is comparatively

high (low).

Figure 2(b) shows how second-best effort and services vary over time as βt changes and

compares them with the first-best levels. Consistent with our theoretical findings, when βt

grows, providers substitute effort with services. This also leads to larger inefficiencies, as
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shown by the widening gap between the first- and second-best levels. When βt is low, the

gap is reduced due to the higher value of information rents paid.

Finally, we use the present case study to illustrate the efficiency gains that an optimal

dynamic contract allows by comparing it against a static benchmark. We take as a bench-

mark an incentive-compatible contract that is designed in a static framework and repeated

in each period and thus fails to account for the stochastic process that defines the evolution

of βt over time. We assume that the purchaser knows the density g(βt) and the cumulative

distribution function G(βt), as well as β
l and βh > 0, with βt ∈ [βl ≥ k, βh].

We show in Appendix G that, under these assumptions, the optimal static contract can

be characterised as follows:

p∗∗∗(βt) = q∗∗∗(βt) +
(e∗∗∗(βt))

2

2
+

∫ βh

βt

(e∗∗∗(βt))
2

z
dz, (33)

with

e∗∗∗t =

[
βt + 2

G(βt)

g(βt)

]−1

(34)

q∗∗∗t = 1− 1

βt

[
βt + 2

G(βt)

g(βt)

]−1

. (35)

As for the other contracts we previously considered, the combination of services and effort

is such to ensure x∗∗∗t = 1, ∀βt. To ease the comparison of the two types of contracts, in the

numerical exercise, we assume that βt (t ≥ 0) is uniformly distributed between 1 and 2.9,

where the upper extreme corresponds to the 99th percentile of the distribution of the values

of βt previously simulated for the solution of the optimal dynamic contract.

Figure 3 provides a comparison of this optimal static contract and the optimal dynamic

contract discussed in the previous sections. Figure 3(a) shows that the total payment under

the optimal dynamic contract is lower than that under the static benchmark for the whole

range of values of βt considered. Moreover, as shown in Figure 3(b), effort is higher and the

level of services lower for the optimal dynamic contract than for the static benchmark over

the whole range of values of βt considered. If we recall that in both cases xt = 1 ∀βt, the
optimal dynamic contract dominates the static benchmark.

7 Conclusion

From the end of the 1980s, a clear tendency emerged in the organisation of healthcare

systems to separate the role of providers of services from that of purchasers. A major
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Figure 3: Comparison of the optimal dynamic and optimal static contracts.

challenge in the design of efficient contracts between the two parties is the existence of

an information advantage for the provider on several dimensions. This paper characterises

an optimal dynamic contract allowing for both moral hazard and adverse selection in a

setting where patient disease severity evolves stochastically over time. This provides a tool

to incentivise the provision of effort and healthcare quality in settings where competition

does not work as an incentive mechanism. Moreover, it allows us to account for the long-

lasting nature of the relationship between the purchaser and the provider in a setting where

patients’ severity changes over time and providers are heterogeneous with respect to the

expected complexity of their case mix.

The optimal dynamic contract entails a two-part tariff made up of an annuitized fixed

payment and a time-varying component. At the initial time, the provider chooses from a

menu of contracts that entail different combinations of fixed and variable payments. The

fixed payment is designed to induce truthful revelation of the provider’s structural charac-

teristic, which affects the expectations of future patients’ severity. Over time, the variable

payments are affected by both current patients’ severity and the provider’s structural charac-

teristic. A provider whose structural characteristic is such that future patients are expected

to be comparatively severely ill will receive a higher fixed component but, for a given level

of patient complexity, a lower variable payment. An interesting result concerning the equity

dimension is that in our model, patients’ severity affects the combination of unobservable

effort and observable services that they receive but not the health gain, which is the same

irrespective of initial severity.

The dependency of the variable component on severity is a departure from the pure
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model of prospective payment, but it is in line with previous results from the literature

(Ellis and McGuire, 1986; Chalkley and Malcomson, 2002) and with refinements of the DRG

system that have been widely adopted in several countries (Busse et al., 2013). However,

our results show that, for the optimal dynamic contract, adjustments to payments based

on patient severity (cost-sharing) should not be uniform for all providers, as they typically

are, but should also depend on hospitals’ structural characteristics. We used a case study

based on data of hip replacement hospitalisations in Italy to illustrate the properties of the

optimal dynamic contract and the efficiency gains achieved with respect to an optimal static

contract.

The mechanism that we study is direct. This naturally raises questions on the imple-

mentability of the contract. The most straightforward way to operationalise it would be to

make payment contingent on the level of services provided, i.e., the observable dimension.

This indirect mechanism would be feasible, provided that the function that maps sever-

ity to the second-best optimal provision of services is invertible. At the initial time, the

provider could be given the opportunity to choose from a menu of contracts, each of which

defines the amount of a fixed payment and a relationship between the amount of (observ-

able) services provided in each period and the variable component of payment. Higher fixed

payments would be associated with lower levels of reimbursement for a given amount of

services provided.

There are several directions in which our model could be extended. For example, we

assume that effort and services are substitutes in the health production function, and it

would be interesting to investigate the impact of assuming some degree of complementarity.

Concerning the constraints under which our second-best optimal contract is defined, we

consider an intertemporal participation constraint for the provider, but the constraint could

also be assumed to be binding in every period.

We hope that our findings will help increase interest in the development of further

investigations of dynamic contracts for the provision of healthcare services, which seem to

be understudied in light of the long-lasting character of purchaser–provider relationships.
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A Properties of the diffusion process

Defining yt = ln(βt−k) by Ito’s lemma, we obtain d ln(βt−k) = −1
2σ

2dt+σdBt. Integrating both
sides between 0 and t, we obtain:

βt − k = exp(y0) exp

(
−1

2
σ2t+ σBt

)
, with B0 = 0

. Finally, defining exp(y0) = β0 , Eq. 2 is obtained. If Bt → ∞, then βt − k → ∞. In contrast, if
Bt → −∞, we obtain βt − k → 0. Thus, β0 must also lie in the interval [k,∞).

B First-best solutions

From the participation constraint, pt = c(qt) + ψ(et). Substituting into Eq. 8, we obtain:

S(xt)− pt = S

(
qt +

1

βt
et

)
− c(qt)− ψ(et). (36)

As c′(qt) ≥ 0, the purchaser should maximise Eq. 36 under the constraint that qt ≥ 0. We form
the Lagrangian:

L(qt, et, λ) = S(qt +
1

βt
et)− c(qt)− ψ(et)− λ(−qt)

and the first-order conditions for the optimal solutions are:

S′(qt +
1

βt
et)− c′(qt) + λ = 0 (37)

S′(qt +
1

βt
et)

1

βt
− ψ′(et) = 0 (38)

and
qt ≥ 0; λqt = 0; λ ≥ 0.

In the case of the specific functional forms introduced in Section 3 and k = 1 (i.e., βt ≥ 1), we
have that λ = 0, and the solution is characterised as in Proposition 1. If we let βt be smaller than
one (i.e., k < 1), the solution is:

e∗t = (βt)
γ−1
γ+1 (39)

q∗t = 0 (40)

λ = 1− (βt)
2γ
γ+1 < 1 (41)

x∗t = (βt)
− 2

γ+1 (42)

p∗t = (βt)
2 γ−1
γ+1 . (43)
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C Incentive-compatibility conditions

Starting from the definition of Eq. 13,19 the FOC for the optimal report β̂ is:

∂ũ(β, β̂)

∂β̂
=
dV (β̂)

dβ̂
− c′(q(β̂))

dq(β̂)

dβ̂
− ψ′(e(β, β̂))β

(
dx(β̂)

dβ̂
− dq(β̂)

dβ̂

)
= 0. (44)

For the truthful revelation to be an optimal response, it must be the case that:

∂ũ(β, β̂)

∂β̂

∣∣∣∣∣
β̂=β

= 0. (45)

Further, the local second-order condition (SOC) is:

∂2ũ(β, β̂)

∂β̂2
=
d2V (β̂)

dβ̂2
− c′′(q(β̂))

dq(β̂)

dβ̂
− c′(q(β̂))

d2q(β̂)

dβ̂2
(46)

− ψ′′(e(β, β̂))β(
dx(β̂)

dβ̂
− dq(β̂)

dβ̂
− ψ′(e(β, β̂))β(

d2x(β̂)

dβ̂2
− d2q(β̂)

dβ̂2
)

∣∣∣∣∣
β̂=β

≤ 0.

Noting that for β̂ = β Eq. 44 is an identity, we can totally differentiate to obtain:

d2V (β̂)

dβ̂2
− c′′

dq(β̂)

dβ̂
− c′

d2q(β̂)

dβ̂2
− ψ′′(·)β

(
dx(β̂)

dβ̂
− dq(β̂)

dβ̂

)
− ψ′(·)β

(
d2x(β̂)

dβ̂2
− d2q(β̂)

dβ̂2

)
+

− ψ′(·)

(
dx(β̂)

dβ̂
− dq(β̂)

dβ̂

) ∣∣∣∣∣
β̂=β

= 0. (47)

By replacing Eq. 47 into 46, we find:

∂2ũ(β, β̂)

∂β̂2

∣∣∣∣∣
β̂=β

= ψ′
(
dx(β)

dβ
− dq(β)

dβ

)
≤ 0, (48)

which holds if the inequality in Eq. 15 of the main text is satisfied. Let us now consider the
problem at t = 0. The provider’s intertemporal utility can be written as in Eq. 16, where β̂0 is
the provider’s report at t = 0 and, from Eq. 45, ϕ(β̂0, Bt) is the report at t > 0. Since Eq. 45 is
satisfied, the FOC for the optimal report at t = 0 reduces to:

∂U(β0, β̂0)

∂β̂0
= E0


∫∞
0 e−rt

[
∂V (β̂0,βt)

∂β̂0
− c′(q(β̂0, βt))

∂q(β̂0,βt)

∂β̂0

−ψ′(ϕ(β0, Bt)(x(β̂0, βt)− q(β̂0, βt)))ϕ(β0, Bt)(
∂x(β̂0,βt)

∂β̂0
− ∂q(β̂0,βt)

∂β̂0
) + ∂F (β̂0)

∂β̂0

]
dt.

 = 0

(49)

= E0


∫∞
0 e−rt

[
∂V (β̂0,βt)

∂β̂0
− ∂q(β̂0,βt)

∂β̂0

−e(β̂0, ϕ(β0, Bt))ϕ(β0, Bt)(∂x(β̂0,βt)∂β̂0
− ∂q(β̂0,βt)

∂β̂0
) + ∂F (β̂0)

∂β̂0

]
dt

 = 0

19To simplify the notation, we omit β0 and the time dependence of βt.
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For the truthful revelation to be an optimal response, it must be the case that β̂0 = β0, i.e.,

∂U(β0, β̂0)

∂β̂0

∣∣∣∣∣
β̂0=β0

= 0.

Again, the local SOC is:

∂2U(β0, β̂0)

∂β̂20
= E0


∫∞
0 e−rt

[
∂2V (β̂0,βt)

∂β̂2
0

− ∂2q(β̂0,βt)

∂β̂2
0

− ∂e(β̂0,ϕ(β0,Bt))

∂β̂0
ϕ(β0, Bt)

(
∂x(β̂0,βt)

∂β̂0
− ∂q(β̂0,βt)

∂β̂0

)
−e(β̂0, ϕ(β0, Bt))ϕ(β0, Bt)

(
∂2x(β̂0,βt)

∂β̂2
0

− ∂2q(β̂0,βt)

∂β̂2
0

)
+ ∂2F (β̂0)

∂β̂2
0

]
dt


∣∣∣∣∣
β̂0=β0

≤ 0.

(50)
By totally differentiating Eq. 49, we obtain:

E0


∫∞
0 e−rt

[
∂2V (β̂0,βt)

∂2β̂0
− ∂2q(β̂0,βt)

∂β̂2
0

− ∂e(β̂0,ϕ(β0,Bt))

∂β̂0
ϕ(β0, Bt)

(
∂x(β̂0,βt)

∂β̂0
− ∂q(β̂0,βt)

∂β̂0

)
−e(β̂0, ϕ(β0, Bt))

(
∂ϕ(β0,Bt)

∂β0

(
∂x(β̂0,βt)

∂β̂0
− ∂q(β̂0,βt)

∂β̂0

)
+ ϕ(β0, Bt)

(
∂2x(β̂0,βt)

∂β̂2
0

− ∂2q(β̂0,βt)

∂β̂2
0

))
+ ∂2F (β̂0)

∂β̂2
0

]
dt.


∣∣∣∣∣ β̂0 = β0 = 0

(51)
Finally, by substituting Eq. 51 into 50, we obtain:

∂2U(β0, β̂0)

∂β̂20

∣∣∣∣∣
β̂0=β0

= E0

[∫ ∞

0
e−rt

[
e(β0, ϕ(β0, Bt))

∂ϕ(β0, Bt)

∂β0

(
∂x(β0, βt)

∂β0
− ∂q(β0, βt)

∂β0

)]
dt

]
≤ 0.

(52)
A sufficient condition for the condition of Eq. 52 to hold is provided by Eq. 18 in the main text.

D Optimal dynamic contract

The standard approach to solving Eq. 19 is to ignore, for the moment, the second-order conditions
of Eqs. 15 and 18 and to solve the relaxed problem. By the Envelope theorem (Milgrom and Segal,
2002, Theorems 1 and 2), Eq. 17 implies that:

U(β0) =

∫ βh

β0

E0

[∫ ∞

0
e−rt

[
ψ′(ϕ(y,Bt)(x(y, βt)− q(y, βt)))

∂ϕ(y,Bt)

∂y
(x(y, βt)− q(y, βt))

]
dt

]
dy

=

∫ βh

β0

E0

[∫ ∞

0
e−rt

[
ψ′(e(y, βt))

1

βt
e(y, βt)

∂ϕ(y,Bt)

∂y

]
dt

]
dy, (53)

where the highest β0 obtains zero utility, i.e., U(βh) = 0. By using integration by part, we find:∫ βh

βl

U(β0)g(β0)dβ0 =

∫ βh

βl

{∫ βh

β0

E0

[∫ ∞

0
e−rt

[
ψ′(e(y, βt))

1

βt
e(y, βt)

∂ϕ(y,Bt)

∂y

]
dt

]
dy

}
g(β0)dβ0

=

∫ βh

βl

E0

[∫ ∞

0
e−rt

[
ψ′(e(y, βt))

1

βt
e(y, βt)

∂ϕ(y,Bt)

∂y

]
dt

]
G(β0)

g(β0)
g(β0)dβ0.

(54)
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By using Eq. 4, we obtain:∫ βh

βl

{
E0

[∫ ∞

0
e−rtpt dt

]}
g(β0)dβ0

=

∫ βh

βl

U(β0)g(β0)dβ0 +

∫ βh

βl

{
E0

[∫ ∞

0
e−rt [c(q(β0, βt)) + ψ(e(β0, βt))] dt

]}
g(β0)dβ0

=

∫ βh

βl

E0

[∫ ∞

0
e−rt

[
ψ′(βt(x(β0, βt)− q(β0, βt)))

1

βt
e(β0, βt)

∂ϕ(β0, Bt)

∂β0

]
dt

]
G(β0)

g(β0)
g(β0)dβ0

+

∫ βh

βl

{
E0

[∫ ∞

0
e−rt [c(q(β0, βt)) + ψ(e(β0, βt))] dt

]}
g(β0)dβ0

=

∫ βh

βl

{
E0

[∫ ∞

0
e−rt

[
c(q(β0, βt)) + ψ(e(β0, βt)) + ψ′(e(β0, βt))

1

βt
e(β0, βt)

∂ϕ(β0, Bt)

∂β0

]
dt

]}
g(β0)dβ0

(55)

Replacing Eq. 55 into the objective function (Eq. 19), allows us to write:

max
q(β0,βt),e(β0,βt)

∫ βh

βl

E0


∫∞
0 e−rt[S(x(β0, βt))− ψ′(e(β0, βt))e(β0, βt)

G(β0)

g(β0)β0

(βt − k)

βt︸ ︷︷ ︸
Virtual Surplus at time t > 0

− c(q(β0, βt))− ψ(e(β0, βt))]dt


 g(β0)dβ0,

(56)

where ∂ϕ(β0,Bt)
∂β0

= βt−k
β0

. Differentiating Eq.56 with respect to qt and et gives the first-order
conditions:

S′(q(β0, βt) +
1

βt
e(β0, βt))− c′(q(β0, βt)) = 0 (57)

and

S′(q(β0, βt) +
1

βt
e(β0, βt))

1

βt
− ψ′(e(β0, βt))−

−
(
ψ′′(e(β0, βt))e(β0, βt) + ψ′(e(β0, βt))

) G(β0)

g(β0)β0

(βt − k)

βt
= 0. (58)

Using our specific functional forms leads to the contract described by Proposition 2. Finally, as

x∗∗t − q∗∗t = 1
βt

[
βt + 2 G(β0)

g(β0)β0
(βt − k)

]−1
, it is easy to prove that the second-order conditions (Eqs.

15 and 18) are always satisfied. In addition, for any given β0, the optimal effort is monotone
decreasing in βt, while the treatments are monotone increasing in βt:

∂e∗∗t
∂βt

= −
[
βt + 2

G(β0)

g(β0)β0
(βt − k)

]−2 [
1 + 2

G(β0)

g(β0)β0

]
< 0 (59)

∂q∗∗t
∂βt

=
1

β2t

[
βt + 2

G(β0)

g(β0)β0
(βt − k)

]−1

+
1

βt

[
βt + 2

G(β0)

g(β0)β0
(βt − k)

]−2 [
1 + 2

G(β0)

g(β0)β0

]
> 0.

(60)
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Let us now determine the variable component of payment. For each time t > 0, by integrating Eq.
14, we can write:

ũ(β0,∞)− u(β0, βt) = −
∫ ∞

βt

ψ′(e∗∗(β0, z))(x
∗∗(β0, z)− q∗∗(β0, z))dz, (61)

where ũ(β0,∞) = 0. By substituting Eq. 61 into Eq. 4, we obtain:

V ∗∗(β0, βt) = c(q∗∗(β0, βt)) + ψ(e∗∗(β0, βt))+

+

∫ ∞

βt

ψ′(e∗∗(β0, z))(x
∗∗(β0, z)− q∗∗(β0, z))dz for βt ∈ [k,∞) (62)

By using our specific functional forms, the variable component of payment is defined as in Eq. 21
of the main text. Concerning the comparative statics:

∂V ∗∗(β0, βt)

∂βt
=

1

βt

[
βt + 2

G(β0)

g(β0)β0
(βt − k)

]−1
[
1

βt
−
[
βt + 2

G(β0)

g(β0)β0
(βt − k)

]−1
]

+
1

βt

[
βt + 2

G(β0)

g(β0)β0
(βt − k)

]−2 [
1 + 2

G(β0)

g(β0)β0

][
1

βt
−
[
βt + 2

G(β0)

g(β0)β0
(βt − k)

]−1
]
,

(63)

which is positive for all values of β0 in the admissible range. The above results allow us to write
the firm’s intertemporal utility as:

U(β0;βt) = E0

[∫ ∞

0
e−rt

[ ∫ ∞

βt

ψ′(e∗∗(β0, z))(x
∗∗(β0, z)− q∗∗(β0, z))dz)

]
dt+ e−rtF (β0)

]
(64)

We next turn to the second problem (Eqs. 16–18). Since, by V ∗∗(β0, βt), the provider will report
his type βt truthfully, ∀t > 0, independent of his initial report β0, the value (Eq. 16) can be
rewritten as:

U(β0, β̂0) (65)

= E0

[∫ ∞

0
e−rt

[
V (β̂0, βt)− c(q(β̂0, βt))− ψ(ϕ(β0, Bt)(x(β̂0, βt)− q(β̂0, βt))) + F (β̂0)

]
dt

]
where β0 is the true initial shock and β̂0 is the one reported. In addition, as it is optimal to report
βt truthfully, we have:

∂[V ∗∗(β̂0, βt)− c(q∗∗(β̂0, βt))− ψ(βt(x
∗∗(β̂0, βt)− q∗∗(β̂0, βt)))]

∂βt
(66)

= −ψ′(ϕ(β0, Bt)(x
∗∗(β̂0, βt)− q∗∗(β̂0, βt)))(x(β̂0, βt)− q(β̂0, βt)).

Thus, recalling that βt = ϕ(β0, Bt), the derivative of Eq. 65 with respect to the initial shock β0
gives:

dU(β0)

dβ0
= −E0

[∫ ∞

0
e−rt

[
ψ′(e∗∗(β0, βt))

e∗∗(β0, βt)

βt

∂ϕ(β0, Bt)

∂β0

]
dt

]
. (67)

31



However, the integral of Eq. 67 is simply Eq. 86, i.e.,

U(β0) =

∫ βh

β0

E0

[∫ ∞

0
e−rt(ψ′(e(y, βt))

1

βt
e(y, βt)

∂ϕ(y,Bt)

∂y
)dt

]
dy

Finally, by Eqs. 86 and 64, we are able to determine the fixed transfer F (β0), i.e.,

U(β0) =

∫ βh

β0

E0

[∫ ∞

0
e−rt(ψ′(e∗∗(y, βt))

e∗∗(y, βt)

βt

∂ϕ(y,Bt)

∂β0
)dt

]
dy (68)

= E0

[∫ ∞

0
e−rt[

∫ ∞

βt

ψ′(e∗∗(β0, z))
e∗∗(β0, z)

z
dz)]dt+ e−rtF (β0)

]
= U(β0;βt)

Solving for F (β0), the annuitized fixed payment is:

F ∗∗(β0) = r


∫ βh

β0
E0

[∫∞
0 e−rt(ψ′(e∗∗(y, βt))

e∗∗(y,βt)
βt

βt−k
y )dt

]
dy

−E0

[∫∞
0 e−rt[

∫∞
βt
ψ′(e∗∗(β0, z))

e∗∗(β0,z)
z dz]dt

]  (69)

In the case of the functional forms proposed, Eq. 69 reduces to:

F ∗∗(β0) = rE0

[∫ ∞

0
e−rt

[∫ βh

β0

[e∗∗(y, βt)]
2

βt

βt − k

y
dy −

∫ ∞

βt

[e∗∗(β0, z)]
2

z
dz

]
dt

]
. (70)

E Analysis of distortions

The ratio
e∗t
e∗∗t

can be written as

e∗t
e∗∗t

= 1 + 2
G(β0)

g(β0)β0

βt − k

βt
. (71)

Taking the expectation at t = 0:

E0

[
e∗t
e∗∗t

]
= 1 + 2

G(β0)

g(β0)β0

[
1− E0

[
k

βt

]]
(72)

To evaluate E0

[
k
βt

]
, we define yt =

k
βt
. Using Ito’s lemma (and dropping time subscripts):

dy = k[−β−2dβ + β−3σ2(β − k)2dt] (73)

As E0(dβ) = 0, taking the expected value and defining y′ = E0(dy)
dt , we are able to reduce the

deterministic part of Eq. 73 to the nonlinear differential equation

y′ = σ2ky + σ2k3y3 − 2σ2k2y2,

which depends on k. For k = 0, the solution is straightforward and equal to 1 + 2 G(β0)
g(β0)β0

; when

k > 0, we need to transform y′ into a nonhomogeneous nonlinear equation. Dividing first by y3

and then by substituting the variable z = y−1/2, where z′ = −1
2y

−3/2y′, we obtain:

z′ + az + bz−
1
2 = c, (74)
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where a = 2kσ2, b = −4σ2k2, c = −2σ2k3. We first solve the homogeneous setting z = uv:

v(u′ + au) + uv′ + b(uv)−
1
2 = 0,

where the first part is equal to u = u(0)e−at and the second one is v =
[
v(0)

3
2 − b

au(0)
− 3

2

[
e

3
2
at − 1

]]2/3
.

By combining the different components, we find the solution of the homogeneous:

y =
[
y(0)−3e−3σ2kt + 2k

[
1− e−3σ2kt

]]−1/3
. (75)

The easiest particular solution of the full equation is y = m. Then, we obtain:

m =
1±

√
2

k
and m = 0.

Selecting m = 0, the general solution becomes:

E0

[
k

βt

]
=

[
(
k

β0
)−3e−3σ2kt + 2k

[
1− e−3σ2kt

]]−1/3

, (76)

which can be plugged into Eq. 72 to obtain Eq. 30 of the main text. Taking the derivative with
respect to t, we find:

∂E0

[
k
βt

]
∂t

=
σ2k2(3k4 − β30)[

( kβ0 )
−3e−3σ2kt + 2k

[
1− e−3σ2kt

]]4/3 e−3σ2kt. (77)

Finally, taking the limit for t→ ∞, the relative distortion converges to:

lim
t→∞

E0

[(
e∗t
e∗∗t

)]
= 1 + 2

G(β0)

g(β0)β0
[1− (2k)−1/3]. (78)

F Characteristics of the fixed component of payment

Let us consider the fixed component of payment

rE0

[∫ ∞

0
e−rt[

∫ βh

β0

[e∗∗(y, ϕ(y,Bt))]
2

ϕ(y,Bt)

ϕ(y,Bt)− k

y
dy −

∫ ∞

βt

[e∗∗(β0, z)]
2

z
dz]dt

]
. (79)

It is worth noting that for any given value of e∗∗(y, ϕ(y,Bt)) and e
∗∗(β0, z), Eq. (79) is, in absolute

value, larger with k > 0 than with k = 0. Now, setting k = 0, the second term inside the square
brackets of Eq. 79 becomes:∫ ∞

βt

[e∗∗(β0, z))]
2

z
dz =

∫ ∞

βt

1

z3
1[

1 + 2 G(β0)
g(β0)β0

]2dz
=

1[
1 + 2 G(β0)

g(β0)β0

]2 ∫ ∞

βt

z−3dz =
1

2

1

β2t

[
1 + 2 G(β0)

g(β0)β0

]2 .

33



and the expected value is:

E0

[∫ ∞

βt

[e∗∗(β0, z)]
2

z
dz

]
=

1

2

1[
1 + 2 G(β0)

g(β0)β0

]2E0[β
−2
t ] (80)

=
1

2

1[
1 + 2 G(β0)

g(β0)β0

]2β−2
0 e3σ

2t,

where E0[β
−2
t ] = 3σ2β−2dt. Similarly, the expected value of the first term of Eq. 79 becomes:

E0

[∫ βh

β0

[e∗∗(y, ϕ(y,Bt))]
2

y

]
dy =

∫ βh

β0

E0(
1

ϕ(y,Bt)2
)
1

y

1[
1 + 2 G(y)

g(y)y

]2 ]dy
=

∫ βh

β0

e3σ
2t 1

y3
1[

1 + 2 G(y)
g(y)y

]2 ]dy. (81)

Substituting Eqs. 80 and 81 into Eq. 79 and rearranging, we obtain:

r

r − 3σ2

∫ βh

β0

1

y3
1[

1 + 2 G(y)
g(y)y

]2dy − 1

2β20

1[
1 + 2 G(β0)

g(β0)β0

]2
 (82)

=
r

r − 3σ2

∫ βh

β0

1

y3

 1[
1 + 2 G(y)

g(y)y

]2 − 1[
1 + 2 G(β0)

g(β0)β0

]2
 dy − 1

2(βh)2
1[

1 + 2 G(β0)
g(β0)β0

]2
 ,

where the last equality follows from

1

2β20

1[
1 + 2 G(β0)

g(β0)β0

]2 =
1[

1 + 2 G(β0)
g(β0)β0

]2 ∫ βh

β0

1

y3
dy +

1

2(βh)2
1[

1 + 2 G(β0)
g(β0)β0

]2 .

Since G(y)
g(y)y is increasing in y, the term

(
1[

1+2
G(y)
g(y)y

]2 − 1[
1+2

G(β0)
g(β0)β0

]2
)

is negative ∀ y ∈ [β0, β
h],

which implies that Eq. 79 is also negative. Finally, taking the derivative with respect to β0, we
obtain:

2

(βh)2

d
G(β0)

g(β0)β0
dβ0[

1 + 2 G(β0)
g(β0)β0

]3 > 0.

G Characteristics of the optimal static contract

The hospital utility function at time t is:

u(p(β̂t), q(β̂t), e(βt, β̂t)) = p(β̂t)− c(q(β̂t))− ψ(βt(x(β̂t)− q(β̂t)), (83)
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which requires a transfer p(β̂t) to make truthful reporting of β̂t = βt optimal. The necessary and
sufficient conditions for incentive compatibility that induce the provider to truthfully reveal βt are:

du(βt)

dβt
= −ψ′(e(βt))(x(βt)− q(βt)), (84)

and
d(x(βt)− q(βt))

dβt
< 0, (85)

with e(βt) ≥ 0, q(βt) ≥ 0 and p(βt) ≥ 0. By the Envelope theorem (Milgrom and Segal, 2002,
Theorems 1 and 2), we obtain:

u(βt) =

∫ βh

βt

ψ′(e(y))
1

y
e(y)dy, (86)

Where, as usual, u(βh) = 0. The optimal static contract needs to satisfy the following conditions:

S′
(
q(βt) +

1

βt
e(βt)

)
− c′(q(βt)) = 0, (87)

S′
(
q(βt) +

1

βt
e(βt)

)
1

βt
− ψ′(e(βt))−

(
ψ′′(e(βt))e(βt) + ψ′(e(βt))

) G(βt)

g(βt)βt
= 0. (88)

By substituting the specific functional forms used for the optimal dynamic contract into the FOCs,

we obtain the static benchmark that was characterised in Section 6. It is easy to prove that the

second-order conditions are also satisfied.
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