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Abstract 

 

 This paper uses distribution-free formulas for the asymptotic variances of sample 

quantile income shares – as typically published by statistical agencies as measures of the 

distribution of income inequality – to calculate how large a survey sample must be in order 

to estimate a more refined quantile breakdown for a given level of confidence.  The 

approach is applied to decile and quintile earnings data to calculate required increases in 

sample size to obtain tail 5 percent quantal share estimates and to test changes in income 

shares.  Simple rules of thumb are offered for such a required increase. 
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1. Introduction 

 

Since about 1980 to the early twenty-first century, income equality in many 

developed economics rose dramatically to historic levels (Guvenen et al., 2022).  Media attention has focused on issues of “equitable growth” (Drummond, 2021), “fairness in growth” (Lohr, 2022), and “common prosperity” (The Economist, 2021a, b).  In both 
Canada and the United States, federal governments have been focusing policies to better 

target low-income and middle-class families.  Regional and provincial differences have 

required surveys to be large enough to identify significant differences in outcomes such as 

unemployment, education levels, and incomes.  And the rapidly growing social, ethnic, and 

racial diversity in Canada prompts survey agencies to want to capture such outcomes for 

separate population groups as well (Bowlus et al., 2022; McKinney et al., 2022).  One key 

outcome is inequality and the distribution of incomes across regions and population groups 

in the country. 

 One standard way of measuring income inequality is the share of total income (in 

the economy or for some population group) received by various quantile groups.  For 

example, the share of the lowest-income quintile (or 20 percent) of income recipients is 

typically around 5-6 percent, while that of the top-income quintile is around 38-40 percent 

in Canada.  These end-point (lower and upper) quantile income shares are of especial 

interest to inequality analysis and survey agencies.  Typical breakdowns of income shares 

for official government statistical agencies such as Statistics Canada or the U.S. Bureau of 

the Census are by quintiles or deciles (eg., Statistics Canada, 2018).  But for some occasions, 

even more refined breakdowns may be desirable (eg., Bell et al., 2022).  Getting reliable 

estimates of income shares of smaller quantile groups, however, means having larger (and 

hence costlier) survey sizes.  This paper examines how much survey samples must increase 

in order to obtain reliable estimates of lower and upper income shares as quantile 

breakdowns become more refined. 

 More specifically, this paper applies the statistical framework and techniques in 

Beach (2021a, b) to develop explicit formulas for (asymptotic) variances of quantile income 

shares.  It then uses these formulas to solve for the survey sample sizes necessary to obtain 
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a given degree of reliability (or confidence) for a given level of quantile breakdown 

(quintile, decile, vigintile).  As it turns out, these income share (asymptotic) variances are 

distribution-free in the sense that they can be readily and consistently estimated from 

conventionally available statistics without having to know the specific underlying income 

distribution function itself.  As a result, one can derive an explicit relationship between the 

required sample size and the degree of quantile refinement, and this relationship holds for 

all typical empirical distributions of income.  In the process of this derivation, the paper 

corrects or adjusts for previous faulty specifications in the published statistics literature. 

 The paper thus makes three main contributions.  First, it provides distribution-free 

formulas for the (asymptotic) variances of empirical income shares that can be used to 

evaluate the reliability or confidence of sample-based income share estimates.  Second, the 

paper presents an approach to deriving the sample size required to estimate income shares 

to a given level of confidence.  Third, it provides Rule of Thumb results to calculate how 

much larger a sample needs to be to estimate a smaller quantile end share and changes 

over time in income shares to obtain a given level of confidence. 

 The paper is organized as follows.  The next section sets out the Quantile Function 

Approach used in this study as a basis for calculating (asymptotic) variances of income 

shares.  Section 3 presents the basic analytical results for income shares.  Section 4 shows 

how required sample sizes (for given quantile breakdown and confidence level) are 

derived from the analytical formulas of the previous section.  Section 5 then presents 

empirical estimates and useful Rules of Thumb for calculating the required sample sizes.  

Some implications of these results for overall survey sample sizes are discussed in Section 

6.  Section 7 concludes. 

 

 

 

2. Quantile Function Approach 

 

To explain the Quantile Function approach (QFA) taken in this paper, consider first 

some formal concepts and notation.  Suppose the distribution of income Y is divided into K 
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ordered income groups, so that K=10 in the case of deciles and k=5 for quintiles.  Let the 

dividing proportions of recipients be p1 <pz< … <pK-1 (with po = 0 and pK = 1.0)1.  Then in 

terms of the underlying (population) density of income recipients, the mean income of the i’th quantile is given by  

   µ𝑖 =  ∫ 𝑦 𝑓(𝑦)𝑑𝑦  ⁄𝜉𝑖𝜉𝑖−1  ∫ 𝑓(𝑦)𝑑𝑦𝜉𝑖𝜉𝑖−1    for i = 1, …, K   (1) 

where 𝑓(∙) is the underlying (population) density function and the ξi’s are the cut off income 

levels corresponding to the proportions p1, p2, …, pK-1 (with ξo = 0 where incomes are 

assumed positive).2  Similarly, the income share of the i’th income group can be expressed 
as 𝐼𝑆𝑖 = ∫ (1µ)𝜉𝑖𝜉𝑖−1 𝑦𝑓(𝑦)𝑑𝑦    for i = 1, …, K    (2) 

and µ is the mean of the overall population distribution of income. 

 The integral expressions — what we’ll refer to as quantile functions — link the 

quantile means µi and quantile income shares ISi — to the quantile income cut-offs ξi, ξi-1, 

and the overall mean µ.  A very broad theorem by C.R. Rao (1965) says that, if one knows the asymptotic distribution of the sample estimates of ξi, ξi-1, and µ as joint normal and if, in the population, functions of ξi, ξi-1, and µ are continuous and differentiable in these 

parameters, then sample estimates of these functions will also be asymptotically normally 

distributed with asymptotic means and variances (and covariances) that can be calculated 

in a straightforward fashion.  We refer to this as Rao’s linkage theorem.  From both (1) and 

(2), it can be seen that one can use this theorem to thus establish the asymptotic 

distributions of sample estimates of both µi and ISi. 

 In the case of quantile means, as a simple illustration of the usefulness of the 

quantile function approach, it has long been established that the sample cut-offs 𝜉i’s are 
indeed asymptotically normally distributed.  More specifically, let 𝜉 = (𝜉1, 𝜉2, …, 𝜉K-1)1 be a 

 
1 We assume in what follows that the data samples used are random samples.  If the survey records are indeed 

weighted (as in the case of stratified samples, for example), the formulas can be readily adjusted by replacing sums 

of observations by sums of the sample weighted observations. 
2 If some incomes do take negative values (such as with capital gains losses in a year or net self-employment 

income that is negative in a year where illness has prevented the recipient working for a time), then simply define 

po to be the lowest income value in the sample. 
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vector of K-1 sample quantile cut-offs3 from a random sample of size N drawn from a 

continuous population density 𝑓(∙) such that the 𝜉i’s are uniquely defined and fi = f(ξi) > 0 

for all i = 1, …, K-1.  Then it can be shown (see, for example, Wilks, 1962, p. 273, or Kendall 

and Stuart, 1969, pp. 237-9) that the vector √𝑁 (𝜉 – ξ) converges in distribution to a (K-1) – 

variate normal distribution with mean zero and variance – covariance matrix Λ where 

 

  𝛬 =  [  
 𝑝1(1−𝑝1)𝑓12 ⋯ 𝑝1(1−𝑝𝐾−1)𝑓1𝑓𝐾−1⋮  ⋮𝑝1 (1−𝑝𝐾−1)𝑓1𝑓𝐾−1  𝑝𝐾−1(1−𝑝𝐾−1)𝑓𝐾−12 ]  

 
 . 

 

Note how the (asymptotic) variances and covariances of the 𝜉i’s depend on the specific 
functional form of 𝑓(∙) in the denominators. 

 Then applying a multivariate version of Rao’s linkage theorem (Rao, 1965, p. 388), 
consider the full set of K sample quantile means �̂� = �̂�1, �̂�2, …, �̂�K)1 corresponding to the 

vector of population quantile means 𝑚 = (µ1, µ2, …, µK) where �̂�i is defined in eq. (1).  Then according to Rao’s theorem for continuous differentiable functions, the vector �̂� is 

asymptotically joint normally distributed in that √𝑁 (�̂� - 𝑚) converges in distribution to a 

joint normal with K x K (asymptotic) variances – covariance matrix V where 

 

Asy. var (�̂�) = V = GΛG1        (3) 

 

and the K x (K – 1) matrix G is 

 

𝐺 =  [𝑔11 ⋯ 𝑔1,𝐾−1⋮  ⋮𝑔𝐾,1 ⋯ 𝑔𝐾,𝐾−1]  

 

 
3 To estimate the sample quantile cut-offs, order the sample of N observations by income level.  Then, in the case 

of deciles, say, �̂�i is the income level such that piN observations lie below it and the rest at or above.  If 

there is no single observation meeting this condition, simply take the average of the two adjacent 

observations (below and above) that are closest. 
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    = [𝜕µ𝑖𝜕𝜉𝑗]  with i = 1, …, K rows and j = 1, …, K-1 columns. 

 

As a result, 

  𝐴𝑠𝑦. 𝑣𝑎𝑟 (µ̂𝑖) =  ( 1𝐷𝑖−1)2 𝑝𝑖−1 (1 − 𝑝𝑖−1)𝜉  𝑖−12 + ( 1𝐷𝑖)2  𝑝𝑖(1 − 𝑝𝑖)2𝜉𝑖2   (4a) 

  −2( 1𝐷𝑖−1) ( 1𝐷𝑖) 𝑝𝑖−1 (1 − 𝑝𝑖) 𝜉𝑖−1 𝜉𝑖 
for i = 2, …, K-1, and 

  𝐴𝑠𝑦. 𝑣𝑎𝑟 (µ̂1) =  ( 1𝐷1)2 𝑝1(1 − 𝑝1)𝜉12
       (4b) 

  𝐴𝑠𝑦. 𝑣𝑎𝑟 (µ̂𝐾) =  ( 1𝐷𝐾)2 𝑝𝐾−1(1 − 𝑝𝐾−1)𝜉𝐾−12
 ,      (4c) 

where Di  = pi – pi-1. 

 

Since the asymptotic variance (and covariance) formulas involve unknown population 

parameters, one obtains estimated (asymptotic) variances by replacing all the unknown 

parameters by their consistent estimates.  So, for example,  

 𝐴𝑠𝑦. �̂�𝑎𝑟(µ̂1) =  ( 1𝐷1)2 𝑝1(1 − 𝑝1)𝜉12 = (1−𝑝1𝑝1 ) 𝜉12
     (5) where ξ1 is replaced by its standard sample estimate and D1 = p1 .  Rao (1965, p. 355) has 

also shown that, if 𝑓(∙) is strictly positive, then the 𝜉i’s are indeed (strongly) consistent.  

Standard errors are simply obtained from estimated (asymptotic) variances rescaled by the 

size of the estimation sample: 

 𝑆. 𝐸. (µ̂𝑖) =  [𝐴𝑠𝑦.�̂�𝑎𝑟(µ̂𝑖)𝑁 ]1/2
        (6a) 

where N is the sample size of the estimation sample.  Testing for the statistical significance 

of �̂�i can then be undertaken by calculating the conventional “t-ratio” 

 t = �̂�i / S.E. (�̂�i)         (6b) 

and comparing it to appropriate critical values on the standard normal table (as an 

asymptotic test at a given level of significance or confidence).  

 In general, one would expect the (asymptotic) variances to depend on the specific 

functional form of the underlying income distribution density 𝑓(∙).  Certainly the 
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(asymptotic) variance – covariance structure of the 𝜉i’s does.  But — as seen in equations 

(4) — perhaps surprisingly, the resulting (asymptotic) variances and standard errors of the 

quantile means are a special case that do not depend on the specific functional form of 𝑓(∙).  

In this sense, they are said to be distribution-free, and are very straightforward to calculate.  

Taking a quantile function approach thus allows one to avoid having to estimate assumed 

underlying population density functional forms (such as the lognormal in Beach, 2021a) or 

to undertake burdensome bootstrapping estimation techniques for density ordinate 

evaluation (as in Davidson, 2018). 

 

 

 

3. Basic Results for Income Shares 

 

In the case of income shares, similar reasoning goes through, though the formulas are a 

bit more complicated.  Since in this paper, we are specifically interested in the lower and 

upper tail income shares, for convenience divide the distribution into only three regions – 

the lower p proportion of recipients, the upper (1 – q) proportion of recipients, and the rest 

(or middle q – p proportion of recipients).  Let the lower cut-off quantile (corresponding to p) be ξL, and let the upper cut-off (corresponding to q) be ξU. 

Now the income shares in eq.(2) are functions of three parameters: the income cut-offs ξL and ξU, as well as the mean, µ, of the income distribution.  To take account of this, Lin, Wu, 

and Ahmad (1979, 1980) — hereafter LWA — established that, under general regularity 

conditions, 𝜉L, 𝜉U and �̂� are asymptotically joint normally distributed with (asymptotic) 

variance-covariance matrix 

 Σ = [σij] 

where  σ11 =  
𝑝(1−𝑝)[𝑓(𝜉𝐿)]2  ,   σ22    =    

𝑞(1−𝑞)[𝑓(𝜉𝑈)]2 ,    σ33  =  σ2     (7) 

 σ12  =  
𝜌(1−𝑞)𝑓(𝜉𝐿)𝑓(𝜉𝑈)     =  σ21 
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 σ13  =  
𝑥𝑝−𝜇(1−𝑃)𝑓(𝜉𝐿)   

and σ23  =  [𝑥𝑞−𝜇(1−𝑞)𝑓(𝜉𝑈) ] 
 where σ2 is the variance of the overall (population) distribution of income, and 

 

 𝑥𝑃 = ∫ 𝑦𝑓(𝑦)𝑑𝑦∞𝜉𝐿    𝑥𝑞 = ∫ 𝑦𝑓(𝑦)𝑑𝑦∞𝜉𝑈 . 

 

(Note that the published journal version of LWA has some serious typos in the statement of 

their theorem 2.1, but the earlier discussion paper version presents the theorem correctly.  

To keep the correct version clear, I have adopted slightly different notation from LWA.)  

The last two terms, however, can be stated more conveniently.  Note that 

 

µ =  ∫ 𝑦𝑓(𝑦)𝑑𝑦∞𝑜  

 =  ∫ 𝑦𝑓(𝑦)𝑑𝑦𝜉𝐿0   +  𝑥p 

 = p   µL  +  𝑥p 

or 𝑥p = µ - pµL         (8a) 

where µL is the lower quantile group mean income.  Hence σ13  =  p (µ - µL) / f(ξL)  

which, interestingly, is strictly positive.  Similarly, 𝑥q  =  (1 – q)    µU 

where 𝜇𝑈 is the upper quantile group’s mean.  Therefore, 
 σ23  =  (1 – q) (µU - µ) / f(ξU)       (8b) 

 

which, again, is also strictly positive. 

 One can now combine these results with Rao’s linkage theorem.  So, if 𝜉L, 𝜉U and �̂� 

are asymptotically joint normal with (asymptotic) variance – covariance matrix Σ above — 

as given in (7) and (8) — then the (asymptotic) variance of 𝐼�̂�𝑖 (for i = L, M, U) is given by 
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 Asy. var (𝐼�̂�𝑖) = G1 Σ G        (9) 

where 

 G = [𝜕𝐼𝑆𝑖𝜕𝜉𝐿  , 𝜕𝐼𝑆𝑖𝜕𝜉𝑈  , 𝜕𝐼𝑆𝑖𝜕µ ]1  = [𝑔1, 𝑔2, 𝑔3]1. 

 

So, in the case of the lower income share, (i = L): 

 g1 = (1𝜇) ξL f (ξL) 

 g2 = 0 

 g3 = 
−𝐼𝑆𝐿𝜇        

and 

Asy. var (𝐼�̂�𝐿) = g1
2 σ11 + g3

2σ33 + 2g1g3σ13 

 = p (1-p) (𝜉𝐿𝜇 )2
 + (𝐼𝑆L)2 (𝜎𝜇)2

       (10) 

   -2(𝜉𝐿𝜇 ) 
(𝐼𝑆L)[p – 𝐼𝑆L] 

 

where use has been made that 𝐼𝑆L = p (µ𝐿 / µ) from (1) and (2). 

  In the case of the upper income share (i=U): 

 

 g1 = 0 

 g2 = −(1µ) ξu f (ξu) 

 g3 = − 𝐼𝑆𝑈𝜇   

and 

Asy. var (𝐼�̂�𝑈) = q (1-q) (𝜉𝑈𝜇 )2
 + (𝐼𝑆U)2 (𝜎𝜇)2

      (11) 

   +2(𝜉𝑈𝜇 ) 
(𝐼𝑆U)[ 𝐼𝑆U – (1 – q)] 

 

where use has been made that 𝐼𝑆𝑈 = (1 − 𝑞)(µ𝑈 µ⁄ ). 
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 For completeness, one can also derive the asymptotic variance for the middle income 

share (i = M). In this case,  

 

g1 = -(1µ) ξLf(ξL) 

g2 = (1µ) ξUf(ξU) 

g3 =- 
𝐼𝑆𝑀𝜇  . 

 

Consequently, 

 Asy. var (𝐼�̂�𝑀) = g1
2σ11 + g2

2 σ22 + g3
2 σ33 

    +2g1g2 σ12 

    +2g1g3 σ13  +2g2g3 σ23 

= p(1-p)(𝜉𝐿𝜇 )2
 + q(1-q) (𝜉𝑈µ )2  + (𝐼𝑆M)2 (𝜎µ)2 

  -2(𝜉𝐿µ ) (𝜉𝑈µ ) p(1-q)        (12) 

  +2(𝜉𝐿µ ) (𝐼𝑆M) [p – 𝐼𝑆L] 

  -2(𝜉𝑈µ ) (𝐼𝑆M) [ 𝐼𝑆U – (1-q)].  

 

  The standard error of the i’th quantile income share is thus given by 

 

 S.E. (𝐼�̂�𝑖) = [𝐴𝑠𝑦.�̂�𝑎𝑟(𝐼�̂�𝑖)𝑁 ]1/2
. 

 

 Once again, the asymptotic variances and standard error formulas for income shares 

are also distribution-free, so all components in these expressions are known or can be 

estimated consistently, and hence conventional statistical inference can be undertaken in 

straightforward fashion. 
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4. Sample Sizes for Tail Income Shares: Analytical Results 

 

As indicated in (6b), such a conventional test can be done by comparing a calculated “t-ratio” 

 t = 𝐼�̂�𝑖   𝑆. 𝐸 (𝐼�̂�𝑖)⁄  

to a specified critical value on the standard normal distribution.  This would be a test of 

whether the estimated income share is indeed significantly different from zero; ie., whether 

the income share is estimated reliably at a high degree of confidence.  (For convenience of 

discussion, we’ll work with a two-tailed test.)  For a 95 percent level of confidence, the critical 

value is t.95 =I.960, and for 99 percent level of confidence, the critical value is t.99 = 2.576.  

This is equivalent to comparing 

 

t2 = 
(𝐼�̂�𝑖)2𝐴𝑠𝑦.𝑣𝑎�̂�(𝐼�̂�𝑖) 𝑁⁄          (13) 

 

to critical values (1.960)2 = 3.842 and (2.576)2 = 6.636, respectively. 

 But one can turn the question around and instead ask what sample size would be required to attain a specified level of confidence for such a standard normal “t-ratio” test on 
an income share with given sample estimates of 𝐼�̂�𝑖 and 𝐴𝑠𝑦 �̂�𝑎𝑟(𝐼�̂�𝑖).  This can be answered 

by inverting the equation 

 (𝑡𝑐𝑟𝑖𝑡)2 = 
(𝐼�̂�𝑖)2𝐴𝑠𝑦.�̂�𝑎𝑟(𝐼�̂�𝑖) 𝑁⁄  

to get 

 �̂� =  (𝑡𝑐𝑟𝑖𝑡)2 ∙  [𝐴𝑠𝑦 �̂�𝑎𝑟(𝐼�̂�𝑖)(𝐼�̂�𝑖)2 ]       (14) 

 

where tcrit is the critical value on the standard normal distribution, and �̂� is the required 

sample size to estimate ISi to at least that level confidence given by tcrit. 

 One can indeed push this question further.  �̂� is a function of how wide an income 

share is.  Applied to the lower and upper end quantiles, a wide share such as the bottom or 
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top quintile income share is likely to be estimated more reliably for a given sample size than 

a top or bottom decile share or vigintile share.  Thus one can use the relationship in (14) to 

ask how much longer �̂� would have to be to estimate ISL or ISU when p is .10, say, or .05 

(correspondingly, q is .90 or .95).  That is the question this paper addresses. 

 Given we know the exact formulas linking ISL and 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼�̂�𝐿) to p, the width of the 

lower income quantile, a natural approach to addressing the above question is to calculate 

the derivative 𝜕 �̂�𝐿 𝜕𝑝⁄  in the case of the lower share.  (For notational convenience, we work 

out the derivatives deleting the cap on the income share and Asy.var terms in (14). 

 𝜕�̂�𝐿𝜕𝑝 =  (𝑡𝑐𝑟𝑖𝑡)2 { (𝐼𝑆𝐿)−2 − 𝜕[𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆𝐿)]𝜕𝑝                              
      +𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼�̂�𝐿) ∙  𝜕 (𝐼𝑆𝐿−2)𝜕𝑝  } 

= (𝑡𝑐𝑟𝑖𝑡)2  { ( 1𝐼𝑆𝐿)2 ∙  𝜕[𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼�̂�𝐿)]   𝜕𝑝                                
           −( 2𝐼𝑆𝐿) ( �̂�𝐿(𝑡𝑐𝑟𝑖𝑡)2) ∙  𝜕𝐼𝑆𝐿𝜕𝑝 } 

where it can be shown that 

 

 
𝜕𝐼𝑆𝐿𝜕𝑝 = 𝜉𝐿µ  .  Therefore,        (15) 

 
𝜕�̂�𝐿𝜕𝑝 = (𝑡𝑐𝑟𝑖𝑡𝐼𝑆𝐿 )2  ∙  𝜕[𝐴𝑠𝑦.𝑣𝑎𝑟 (𝐼�̂�𝐿)]𝜕𝑝                                      (16) 

  −(2𝑁𝐿𝐼𝑆𝐿 ) (𝜉𝐿µ ). 

 

Now from eq (10) above, 

 

  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼�̂�𝐿) = 𝑝(1 − 𝑝) (𝜉𝐿µ )2 + (𝐼𝑆𝐿)2 (𝜎𝜇)2
 

    −2(𝜉𝐿µ ) (𝐼𝑆𝐿)[𝑝 − 𝐼𝑆𝐿] 
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and it can be shown that 

 

  
𝑑𝜉𝐿𝑑𝑝 = 1𝑓(𝜉𝐿) .          (17) 

 

 Asy. var (𝐼�̂�𝐿) above has three terms; for convenience, call them Term 1, Term 2, and 

Term 3.  Then 

 

  
𝜕[𝐴𝑠𝑦.𝑣𝑎𝑟 (𝐼�̂�𝐿)]𝜕𝑝                               = 𝜕[𝑇𝑒𝑟𝑚 1]𝜕𝑝                  + 𝜕[𝑇𝑒𝑟𝑚 2]𝜕𝑝                  + 𝜕[𝑇𝑒𝑟𝑚 3]𝜕𝑝                   

  
 𝜕[𝑇𝑒𝑟𝑚 1]𝜕𝑝                  = (1µ)2  ∙  𝜕[𝑝 (1−𝑝)𝜉𝐿2]𝜕𝑝                          

      = (𝜉𝐿µ )2 [ 2𝑝(1 − 𝑝) ( 1𝜉𝐿𝑓(𝜉𝐿)) + (1 − 2𝑝)] 
 

which is positive if p < .5 — which is indeed the situation for the lower income share. 

 

  
 𝜕[𝑇𝑒𝑟𝑚 2]𝜕𝑝                  = (𝜎µ)2  ∙  𝜕(𝐼𝑆𝐿2)𝜕𝑝  

     = 2 (𝜎µ)2  (𝐼𝑆𝐿) (𝜉𝐿µ ) 

 

which is clearly positive.  Finally, 

 

  
𝜕[𝑇𝑒𝑟𝑚 3]𝜕𝑝                  = (2µ)  ∙  𝜕[𝜉𝐿(𝐼𝑆𝐿)(𝑝 − 𝐼𝑆𝐿)] 𝜕𝑝                                     

 = (2µ) {𝜉𝐿(𝐼𝑆𝐿) [1 − 𝜉𝐿µ ] + (𝑝 − 𝐼𝑆𝐿) [𝜉𝐿  (𝜉𝐿µ )  + 𝐼𝑆𝐿𝑓(𝜉𝐿)]} 

 

which is again positive.  So it turns out 

 

  
𝜕[𝐴𝑠𝑦.𝑣𝑎𝑟 (𝐼�̂�𝐿)]𝜕𝑝 > 0. 
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  This going back to eq (16), 

 

  
𝜕�̂�𝑖𝜕𝑝 = (𝑡𝑐𝑟𝑖𝑡𝐼𝑆𝐿 )2  ∙  𝜕[𝐴𝑠𝑦.𝑣𝑎𝑟 (𝐼�̂�𝐿)]𝜕𝑝                                −   (2𝑁𝐿𝐼𝑆𝐿 ) (𝜉𝐿µ ) ,     (18) 

 

has a positive first term minus another positive term.  Now intuitively, one would perhaps 

expect that estimating a wider income share — for a given level of confidence — could be 

done with a smaller overall sample size; ie., the above derivative would be negative.  So long 

as the second term dominates the first, this will indeed be so.  This will occur when 

 

  
𝜕[𝐴𝑠𝑦.𝑣𝑎𝑟 (𝐼�̂�𝐿)]𝜕𝑝 < 2�̂�𝐿(𝐼𝑆𝐿)(𝑡𝑐𝑟𝑖𝑡)2  (𝜉𝐿µ ).        (19) 

 

Since 𝐴𝑠𝑦. 𝑣𝑎𝑟 (𝐼�̂�𝐿) is essentially independent of sample size, the right-hand term in (19) is 

almost certainly likely to dominate for typically large cross-sectional sample surveys and 

national censuses.  Nonetheless, the actual size of 𝜕�̂�𝐿 𝜕𝑝⁄  depends upon the actual shape of 

the income distributions over its lower range — since 𝜕[𝐴𝑠𝑦. 𝑣𝑎𝑟 (𝐼�̂�𝐿)] 𝜕𝑝⁄  involves 𝑓(𝜉𝐿) — and the distribution’s actual values of all the components in eq.(18).  So to proceed further 
on how much sample sizes need to increase in order to estimate narrower income shares 

(ie., for smaller values of p) to a given level of confidence or reliability, one must turn to 

empirical estimation and evaluation of the parameters and expressions involved. 

 For the upper income share, the derivation is similar, but the conclusion is somewhat 

different.  From eq. (11) above,  

 

  𝐴𝑠𝑦. 𝑣𝑎𝑟 (𝐼�̂�𝑈) = 𝑞(1 − 𝑞) (𝜉𝑈µ )2 + (𝐼𝑆𝑈)2  (𝜎µ)2
 

   +2 (𝜉𝑈µ ) (𝐼𝑆𝑈) [𝐼𝑆𝑈 − (1 − 𝑞)]. 
Note also that 

 

  
𝑑𝜉𝑈𝑑𝑞 = 1𝑓(𝜉𝑈)          (20) 
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and  
𝜕𝐼𝑆𝑈𝜕𝑞 = −𝜉𝑈µ .          (21) 

 

Again, one can divide the right-hand side of eq.(11) into three terms. 

  
𝜕[𝑇𝑒𝑟𝑚 1]𝜕𝑞                 = (1µ)2  ∙  𝜕[𝑞 (1−𝑞)𝜉𝑈2]𝜕𝑞                          

     = (𝜉𝑈µ )2 [2𝑞(1 − 𝑞) ( 1𝜉𝑈𝑓(𝜉𝑈)) + (1 − 2𝑞)] 
  
𝜕[𝑇𝑒𝑟𝑚 2]𝜕𝑞                = (𝜎µ)2  ∙  𝜕(𝐼𝑆𝑈2)𝜕𝑞  

      = −2 (𝜎µ)2 (𝐼𝑆𝑈) (𝜉𝑈µ ) 

  
𝜕[𝑇𝑒𝑟𝑚 3]𝜕𝑞 = 2µ  ∙  𝜕[𝜉𝑈(𝐼𝑆𝑈)(𝐼𝑆𝑈−(1−𝑞))]𝜕𝑞                                              

  = (2µ) { 𝜉𝑈(𝐼𝑆𝑈) [1 − 𝜉𝑈µ ] + [𝐼𝑆𝑈 − (1 − 𝑞)] [ 𝐼𝑆𝑈𝑓(𝜉𝑈) − 𝜉𝑈 (𝜉𝑈µ )]}. 

 

The derivative of the second term is clearly negative.  But, since q > 0.5 in our analysis, the 

derivatives of the first and third terms can’t be signed a priori, so neither can the derivative 

of 𝐴𝑠𝑦. 𝑣𝑎𝑟 (𝐼�̂�𝑈) as a whole.  As q gets larger, the (upper) income share gets smaller.  But 

smaller scale random variables are typically associated with smaller variances (a scale 

effect).  But also as q gets larger, the upper (1-q) income share becomes less reliably 

estimated for a given sample size as fewer data points fall into its range (a reliability effect).  

In the case of increasing q, these two effects lead to an inconclusive sign on the derivative of 𝐴𝑠𝑦. 𝑣𝑎𝑟 (𝐼�̂�𝑈). 

 The effect of an increase in q on the required sample size then is: 

 

  
𝜕�̂�𝑈𝜕𝑞 = (𝑡𝑐𝑟𝑖𝑡)2  {(𝐼𝑆𝑈)−2  ∙  𝜕[𝐴𝑠𝑦.𝑣𝑎𝑟(𝐼�̂�𝑈)]𝜕𝑞                              

        + 𝐴𝑠𝑦. 𝑣𝑎𝑟 (𝐼�̂�𝑈)  ∙  𝜕(𝐼𝑆𝑈−2)𝜕𝑞              } 

  = (𝑡𝑐𝑟𝑖𝑡)2  {( 1𝐼𝑆𝑈)2  ∙  𝜕[𝐴𝑠𝑦.𝑣𝑎𝑟 (𝐼�̂�𝑈)]𝜕𝑞                                       (22) 
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        + ( 2𝐼𝑆𝑈) ( �̂�𝑈(𝑡𝑐𝑟𝑖𝑡)2) (𝜉𝑈µ )}. 

 

Since the second term in (22) is clearly positive, this works to attenuate the inconclusive sign 

effect of the first term.  So again, the actual outcome for evaluating (22) requires that we turn 

to empirics to evaluate the size of the effect of larger q (ie., smaller 1-q) on required sample 

size. 

 

 

 

5. Sample Sizes for Tail Income Shares: Empirical Estimates 

 

Empirical estimates are based on parameter estimates in appendix Table A taken from 

Beach (2021b) calculated from the May 2015 Canadian Labour Force Survey (LFS).  The 

income measure used is usual weekly earnings, and results are broken down separately for 

men and women in the Canadian labour market.  So, for example, the earnings share of the 

lowest ten percent for men is 1.97 percent and for women 1.82 percent.  The shares of the 

top ten percent are 22.7 and 23.5 percent, respectively. 

Using the formulas in equations (10), (11), and (14) above, one can directly estimate the 

required sample sizes for lower and upper earnings shares for different values of p and q 

and for 95 and 99 percent levels of confidence.  These results are presented in the first and 

third columns of Tables 1 (for the lower shares) and 2 (for upper shares).  So, for example, 

to estimate the lowest decile earnings share for women with at least a 99 percent level of 

confidence requires at least 130 sample observations to be used in the calculation.  Rows in 

both tables are organized from wider share intervals to narrower more refined intervals (ie., 

p goes from 0.40 to 0.20 to 0.10 in the case of lower shares, and (1-q) goes from 0.40 to 0.20 

to 0.10 for upper shares). 

In both Tables 1 and 2, required sample sizes are seen to substantially rise as one moves 

from wider to more refined or detailed earnings intervals, and to be larger for higher levels 

of confidence — exactly as one would expect.  But interestingly, the required sample sizes 

(which depend on underlying parameter estimates) are not always quite the same between 
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male and female earners, so a gender breakdown in empirical analysis makes sense.  And 

required sample sizes for upper earnings shares (in Table 2) are not as large as for lower 

earnings shares (in Table 1) — not surprising since the tests refer to differences from zero.  

So, if one is especially interested in analyzing inequality at the lower end of the distribution, 

considerably larger sample sizes are required for a given level of confidence or reliability of 

inference. 

For completeness, similar sets of calculations and results are provided for the middle-

income group (M) in Appendix B.  One could also examine empirically how the 𝐴𝑠𝑦. 𝑣𝑎𝑟 (𝐼�̂�𝑖)’s vary with sizes of p and q.  This is provided in appendix Table A2 in the first 

and third columns.  For both lower and upper earnings shares, the asymptotic variances 

(AVs) indeed decrease as the shares become narrower.  However, if one calculates 

(asymptotic) coefficients of variation (ACV) of the earnings shares (ie., (𝐴𝑠𝑦.  �̂�𝑎𝑟)1/2   ⁄ 𝐼�̂�𝑖), 

these can be seen in columns two and four to increase as shares become more refined.  The ACV’s, interestingly, turn out to be virtually the same for male and female earners. 
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Table 1 

Estimates of �̂�𝐿 for Lower Income Shares 

Canada, 2015 

 

 

 Males  Females 

 �̂�𝐿 %∆  �̂�𝐿 %∆ 

a) 95% Level of Confidence 

p = .40 9.26   9.83  

  2.429   2.708 

p = .20 31.75   36.46  

  1.980   1.065 

p = .10 94.61   75.30  

      

b) 99% Level of Confidence 

p = .40 16.00   16.99  

  2.427   2.708 

p = .20 54.83   62.98  

  1.980   1.065 

p = .10 163.41   130.07  

 

 Source: Author’s calculations based on parameter estimates in Table A1 in the Data 

Appendix. 
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Table 2 

Estimates of �̂�𝑈 for Upper Income Shares 

Canada, 2015 

 

 

 Males  Females 

 �̂�𝑈 %∆  �̂�𝑈 %∆ 

a) 95% Level of Confidence 

(1-q) = .40 6.89   6.91  

  1.226   1.206 

(1-q) = .20 15.34   15.25  

  0.985   1.121 

(1-q) = .10 30.45   32.34  

      

b) 99% Level of Confidence 

(1-q) = .40 11.90   11.94  

  1.226   1.206 

(1-q) = .20 26.49   26.34  

  0.985   1.121 

(1-q) = .10 52.60   55.87  

 

 Source: Author’s calculations based on parameter estimates in Table A1 in the Data 

Appendix. 

 

 

 

 

 



 

21 

 

The strength or degree to which required sample sizes need to increase for more 

detailed end-point shares can also be examined.  This could be represented by the 

proportional change in required sample size as one moves from wider share intervals to 

narrower more refined intervals.  This is listed in columns two and four of Tables 1 and 2.  

As can be seen, these are indeed very large — over 100 percent — in almost all cases.  

Interestingly, they are generally much lower for upper earnings shares than for lower such 

shares.  But their actual size depends on how large the change is in p or (1-q). 

A natural way to adjust for different sizes of Δp or Δ(1-q) is simply to divide the 

percentage change in required sample size by the given percentage change in p (or 1-q) — 

what economists call the elasticity of �̂� with respect to p (or 1-q).  The results are shown in 

Table 3.4  As can be seen, the elasticities all decline from wider to narrower tail intervals.  

The elasticities are also generally much higher for lower than for upper tail earnings shares.  

So one needs to consider each of the four cases (lower and upper shares, male and female 

earners) separately. 

The above elasticities provide direct evidence on how required sample sizes need to 

increase as one moves, say, from quintile to decile earnings shares (for a given level of 

confidence).  But what if one wants to estimate how much sample sizes must increase if one 

wished to estimate vigintile earnings shares (i.e., p = .05, 1-q = .05) to the same degree of 

confidence?  Prediction outside of an estimation range is always “iffy”.  But if one looks at the 
results in Table 3, it seems not unreasonable to come up with Rules of Thumb elasticity 

values that could be used.  For upper earnings shares, the estimated elasticity values are 

sufficiently close for men as women that a single Rule of Thumb value of, say, 2.0 could be 

used for both.  For lower earnings shares, however, different elasticity values for men and 

women would seem to be more appropriate – say, a value of 2.0 for women and 4.0 for men.  

These Rule of Thumb elasticity values are likely a bit on the conservative side for good 

measure. 

 

 

 
4 Since the (𝑡𝑐𝑟𝑖𝑡)2 term in eq. (14) falls out in the elasticity calculations — note the identical values between 

upper and lower panels in columns two and four of Tables 1 and 2 – the elasticity figures hold for all confidence 

levels. 
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Table 3 

Elasticities of �̂�𝐿 and �̂�𝑈 wrt Income Share Width 

Canada, 2015 

 

 

 Males  Females 

a) For ∆𝑝 𝑎𝑛𝑑 �̂�𝐿 

    

.40 → .20 4.857  5.414 

    .20 → .10 3.961  2.150 

    

b) For ∆(1 − 𝑞) 𝑎𝑛𝑑 �̂�𝑈 

    .40 → .20 2.455  2.411 

    .20 → .10 1.971  2.241 

    

 

 Source: Author’s calculations from results in Tables 1 and 2. 

 

 

 

 

 

 

 



 

23 

 

To see how these Rule of Thumb elasticity values (e) can be used to predict required 

sample sizes if one wishes to estimate tail vigintile income shares to a given degree of 

reliability, consider the following calculation.  In the case of lower income shares (where we omit superscript “hats” on N for notational convenience): 
 𝛥𝑁𝐿𝑁𝐿 = 𝑒𝐿  ∙  (𝛥𝑝𝑝 ) 

 

If one goes from decile to vigintile lower income shares, 

 (𝑁.05  − 𝑁.10𝑁.10 ) =  𝑒𝐿  ∙  (. 10 − .05. 10 ) 

or           𝑁.05              =  [1 + 𝑒𝐿(12)]  ∙  𝑁.10    (23) 

 

So, if 𝑒𝐿 = 4.0 for men, 𝑁.05 = 3𝑁.10 

and if 𝑒𝐿 = 2.0 for women, 𝑁.05 = 2𝑁.10, 

where 𝑁.10 is the required sample size for decile estimation (for a given level of confidence).  

Similarly for upper income shares: 

 𝛥𝑁𝑈𝑁𝑈 = 𝑒𝑈  ∙  (𝛥(1 − 𝑞)(1 − 𝑞) ) 

ie: 
𝑁.95− 𝑁.90𝑁.90 = 𝑒𝑈  ∙  (.95− .90(1−.90)) 

or 𝑁.95 = [1 + 𝑒𝑈(12)]  ∙  𝑁.90.        (24) 

 

So, if 𝑒𝑈 = 2.0 for both men and women in the labour market, 𝑁.95 = 2𝑁.90, where 𝑁.90 is the 

required sample size for estimating the top decile income share at a given level of confidence. 

 As a useful Rule of Thumb, then, if one wishes to estimate vigintile income shares with 

the same degree of reliability as for decile shares, one needs a sample about three times as 

large in the case of the lowest five percent share for men, and about twice as large in the rest 

of the cases (lowest five percent for women and top five percent share for both men and 

women). 
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6. Sample Sizes for Changes in Tail Income Shares 

 

A more demanding challenge for distributional inference is whether it can identify 

statistically significant differences or changes in income shares, say over time.  Suppose, for 

example, one has income share estimates for two years, year 0 and year 1.  Then let 

 

   ∆ ̂ ≡  𝐼�̂�𝑖 (1) − 𝐼�̂�𝑖(0) 

 

for income group i=L, M, U.  One can test (asymptotically) for the statistical significances of ∆ ̂, again using a standard normal test “t-ratio” statistic. 
 

  𝑡 − 𝑟𝑎𝑡𝑖𝑜 =  ∆̂ 𝑆𝐸⁄ (∆̂) 

 

where 

 

  𝑆𝐸(∆̂) =  [(𝑆𝐸 (𝐼�̂�𝑖(0)))2 + (𝑆𝐸 (𝐼�̂�𝑖(1)))2]1/2
 

                = [𝐴𝑠𝑦. ̂𝑣𝑎𝑟(𝐼�̂�𝑖(0))𝑁(0) + 𝐴𝑠𝑦.𝑣𝑎𝑟(𝐼�̂�𝑖(1))𝑁(1) ]1/2
 

 

where N(0) and N(1) are the sample sizes used to estimate the shares for the two years. 

To illustrate the test procedure, consider years 2015 (year 1) and 2000 (year 0).  

Background parameter estimates for 2000 are provided in appendix Tables A3 and A4, and 

complementary �̂� estimates for the 2000 income shares appear in Appendix C.  They show 

generally similar results to those for 2015. 

Test results for comparing lower and upper income shares between 2000 and 2015 are 

presented in Table 4.  As can be seen, lower earnings shares have declined and upper shares 

have risen for both females and males over this period.  But in the case of lower shares, three 

of the four estimated declines were not statistically significant (at conventional significance 

levels) — only that for the bottom 20 percent of male workers was.  In the case of upper 
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earnings shares, however, at least three of the four shares shows a highly significant 

increase.  That is, increases in earnings shares in the upper portion of the Canadian earnings 

distribution were highly statistically significant, while the losses in lower income shares 

were largely not significant (with current LFS sample sizes).  Appendix Table B3 also shows 

that the middle earnings shares experienced notable earnings losses that were also highly 

statistically significant.  Evidently, the big shift in the earnings distribution that occurred 

over the 2000-2015 period was middle earners losing out to upper earners who were the 

big winners. 

But what can be said about sample sizes that would be needed to generally establish 

statistical significance of income share changes?  We will use the (asymptotic) variance 

estimates already obtained for years 2000 (designated year 0) and 2015 (year 1) to illustrate 

the reasoning.  Let the sample size in year 0 be N and that in year 1 to be kN for some given 

k since the actual sample sizes in the two years may not be the same.  From the results in 

appendix Tables A1 and A3, one can see that for these two years, k = 2.026 for male earners 

and k = 2.160 for female earners. So, more formally, we want “N” such that the income share change between the two 

years is statistically significant at some designated level of confidence — whose critical value on the standard normal table is indicated by the “t-ratio” of 𝑡𝑐𝑟𝑖𝑡.  At a 95 percent level of 

confidence, 𝑡𝑐𝑟𝑖𝑡 = 1.960.  So we want a sample size N such that 

 

  
∆̂𝑆𝐸(∆̂) = 𝑡𝑐𝑟𝑖𝑡 

 

or [𝑆𝐸(∆)̂]2 = ( (∆̂)𝑡𝑐𝑟𝑖𝑡)2
 

 

ie: 
𝐴𝑠𝑦.�̂�𝑎𝑟(𝐼�̂�𝑖(0))𝑁 + 𝐴𝑠𝑦.�̂�𝑎𝑟(𝐼�̂�𝑖(1))𝑘𝑁 = ( ∆̂𝑡𝑐𝑟𝑖𝑡)2

 

 

or �̂� = (𝑡𝑐𝑟𝑖𝑡∆ )2 ∙  [𝐴𝑠𝑦. �̂�𝑎𝑟 (𝐼�̂�𝑖(0)) + 𝐴𝑠𝑦.𝑣𝑎𝑟(𝐼�̂�𝑖(1))𝑘 ]. 
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Table 4 

Tests of Changes in Lower and Upper Income Shares 

Canada, 2000-2015 

 Males  Females 

a) Lower Shares      

 p = .20 p = .10  p = .20 p = .10 

      𝐼�̂�2000 .075696 .020215  .058430 .019016 𝐼�̂�2015 .064466 .019675  .056208 .018214 ∆̂ -.011230 -.000540  -.002222 -.000802 

      𝑆𝐸(𝐼�̂�2000) .0012507 .0006548  .0011274 .0005428 𝑆𝐸(𝐼�̂�2015) .00081519 .0004295  .00076187 .0003556 𝑆𝐸(∆̂) .0014929 .0007831  .0013607 .0006489 

      𝑡 − 𝑟𝑎𝑡𝑖𝑜(∆̂) -7.522 -0.690  -1.633 -1.236 

      

b) Upper Shares      

 q = .80 q = .90  q = .80 q = .90 

      𝐼�̂�2000 .364474 .215057  .380780 .225539 𝐼�̂�2015 .383075 .226621  .401294 .234761 ∆̂ +.018601 +.011564  +.020514 +.009222 

      𝑆𝐸(𝐼�̂�2000) .0044683 .0036961  .0050274 .0041802 𝑆𝐸(𝐼�̂�2015) .0033669 .0028066  .0035178 .0029969 𝑆𝐸(∆̂) .0055948 .0046409  .0061359 .0051435 

      𝑡 − 𝑟𝑎𝑡𝑖𝑜(∆̂) +3.325 +2.492  +3.343 +1.793 

 Source: Author’s calculations based on results in Tables A1-A4. 
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So it is immediately clear that, to attain a greater level of confidence (ie., higher 𝑡𝑐𝑟𝑖𝑡 value), 

one needs a larger sample size; and similarly a smaller ∆̂ value also implies a larger required �̂�. 

Making use of the above equation, one can calculate �̂� for various lower and upper 

income shares for a given level of confidence and specified ∆̂ value (expressed as a 

proportion of 𝐼�̂�𝑖(0)).  For illustrative purposes, use a 95 percent level of confidence and 

three possible ∆̂ sizes: 20% difference, 10% difference and 5% difference.  Results are 

tabulated in Table 5 for lower and upper income shares (results for middle income shares 

appear in appendix Table B4). 

Two main findings are evident.  First, for a given share width (quintile or decile shares), 

the required sample sizes are about twice as large for lower income shares than for upper 

income shares — similar to what was previously found in Tables 1 and 2.  Also, required 

sample sizes for differences in middle income shares are very similar to those differences in 

upper income shares.  Second and most notably, the required sample sizes for differences in 

income shares are dramatically larger than for the income share themselves — by about two 

orders of magnitude.  For example, �̂�𝐿 for the lower quintile (p = .20) share for males is 32 

(Table 1) vs. the �̂�𝐿 required for a 10 percent difference to be significant of 3812 (Table 5), 

and the �̂�𝑈 for the upper decile (q = .90) share for females which is also 32 (Table 2) vs. the �̂�𝑈 required for a 10 percent difference to be significant of 4779 (Table 5).  Clearly, 

establishing the statistical significance of changes in income shares requires dramatically 

larger sample sizes than found in the previous section. 
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Table 5 

Required Sample Sizes to Achieve Statistically Significant 

Differences in Lower and Upper Income Shares 

(at a 95% Level of Confidence) 

Canada, 2000-2015 

 

 Males  Females 

a) Lower Shares      

 p = .20 p = .10  p = .20 p = .10 

      

20% Difference 953 3,677  1,246 2,675 

      

10% Difference 3,812 14,707  4,983 10,700 

      

5% Difference 15,248 58,827  19,931 42,800 

      

b) Upper Shares      

 q = .80 q = .90  q = .80 q = .90 

      

20% Difference 577 1,141  596 1,195 

      

10% Difference 2,309 4,564  2,386 4,779 

      

5% Difference 9,236 18,255  9,543 19,115 

 Source: Author’s calculations based on results in Tables A1–A4. 
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7. Implications for Overall Survey Size 

 

Heretofore in this paper, attention has focused on the size of the actual Estimation 

Sample used to calculate income shares (and their changes) for some group of income 

recipients.  But the size number usually referred to in general descriptions of surveys is the 

overall survey size or Survey Sample.  The former is a proper subset of the latter.  So there 

are several further considerations to make judgements about how the overall survey may 

have to change in order to estimate more refined income tail shares to a given level of 

confidence.  We briefly consider these here.  (For more general and detailed sources, see such 

textbooks as Groves et al., 2009, and Chaudhuri and Stenger, 2020.  For technical details on 

the Canadian Labour Force Survey, — which is the data source used in this paper — see 

Statistics Canada, 2016, 2017, and 2020.)  In recent years, the LFS sample size has been about 

56,000 households, resulting in labour market information for approximately 100,000 

individuals. 

 Suppose one works from a nation-wide survey.  Then the size of the Estimation 

Sample can be seen to arise from several factors.  First is the overall size of the Survey Sample (𝑁𝑆).  Second is the fraction of our group of interest in the population from which the Survey 

Sample is drawn (eg., male earners with positive earnings in one group, female earners with 

positive earnings in another group).  Let the fraction in the overall population that the group “g” constitutes be represented by 𝐹𝑔 (where obviously 0 <  𝐹𝑔 < 1).  The group factor 𝐹𝑔 

obviously depends on both demographics as well as economic behaviour (eg., whether one 

works in the labour market or not).  It also depends upon the Estimation Sample restrictions 

used (eg., a focus on full-time workers or on some regional or provincial focus).  Third is the 

survey response rate of members of group g.  Not everyone selected to be in a survey may 

choose to respond (meaningfully).  Youth or elderly, for example, may be relatively hard to 

contact, perhaps because of their activities, travels or health status.  Let the response rate of 

members of group g be represented by fraction 𝑅𝑔 (where again 0 ≤ 𝑅𝑔 ≤ 1).  Statistics 

Canada addresses non-responses — which average about 10 percent of selected households 

— by weighting adjustments and incomplete data generally by imputation procedures.  In 

general, response rates are considerably higher for surveys done by official government 
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agencies such as Statistics Canada or the U.S. Bureau of the Census than done by private 

sector survey organizations.  Response rates also differ quite markedly across countries and 

social/ethnic groups.  The Estimation Sample for group g, then, is 

 𝑁𝑔 = 𝑁𝑠 ∙ 𝐹𝑔 ∙ 𝑅𝑔 .         (25) 

 

What does this imply for the size of 𝑁𝑠  required to obtain a tail income share estimate 

for a given group g to a specified degree of confidence?  Now, 

 𝑁𝑠 = (𝐹𝑔)−1  ∙  (𝑅𝑔)−1  ∙  𝑁𝑔.        (26) 

 

So, for example, if for some g, 𝐹𝑔 = 0.50 and 𝑅𝑔 = 0.70, then 𝑁𝑠  would have to be 2.86𝑁𝑔 in 

size for a given size of 𝑁𝑔.  Thus, for a given required �̂�𝑔, the corresponding required �̂�𝑠 =2.86�̂�𝑔. 

 If 𝐹𝑔 and 𝑅𝑔 are uniform across members of group g in the analysis of the previous 

section, then the elasticity calculations using �̂�𝑠 yield exactly the same estimated elasticity 

values as when using �̂�𝑔 since the constant 𝐹𝑔 and 𝑅𝑔 factors cancel out in the numerator of 

the elasticities.  Thus the same Rule of Thumb values hold for �̂�𝑠  as for �̂�𝑔.  That is, in order 

to estimate a tail vigintile income share for group g with a given level of confidence, �̂�𝑠 would 

have to increase by a factor of 2 or 3 relative to its size used to estimate a decile tail income 

share with the same level of confidence. 

 If response rates do differ across members of the group, the reasoning is similar, but 

slightly different.  (By construction 𝐹𝑔 is uniform across members of g.)  Indeed, it is very 

likely that 𝑅𝑔 does vary across income groups.  For example, many low-income individuals 

may include some who are ill or elderly immigrants who have difficulty responding in speech 

or writing, and many high-income individuals may simply choose not to respond because of 

the high opportunity cost of their time or their aversion to providing requested information 

such as income.  One way to represent this may be to characterize response rates as 𝑅𝑔𝑖 = 𝑅𝑔  ∙  𝑅𝑖           (27) 
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where 𝑅𝑔 is the group’s average response rate and 𝑅𝑖 captures how the response rate varies 

in general across income classes in the population.  (𝑅𝑔 and 𝑅𝑖 can both be calculated from 

Census data for use in developing the survey methodology.)  Since, in this paper, we are 

interested in the tail income/earnings shares, and particularly the bottom and top 5 percent 

shares, we can make use of the lower (𝑅𝐿) and upper (𝑅𝑈) response rate ratios in (27).  So, 

one can estimate required 𝑁𝑠𝑆 as 

 

            �̂�𝑠 = (𝐹𝑔)−1  ∙  (𝑅𝑔𝐿)−1  ∙  �̂�𝑔        (28a) 

and �̂�𝑠 = (𝐹𝑔)−1  ∙  (𝑅𝑔𝑈)−1  ∙  �̂�𝑔       (28b) 

 

That is, if, say, 𝐹𝑔 = 0.50, 𝑅𝑔 = (0.70), 𝑎𝑛𝑑 𝑅𝑖 = (0.70), then  

 �̂�𝑠 = 4.1 ∙ �̂�𝑔. 

 

So, the figures in (23) and (24) would be about four times larger than calculated in the last 

section.  But again, if 𝐹𝑔 and 𝑅𝑔𝑖 are given constants exogenous to the sampling process for 

group g, the elasticity values calculated in the last section are unaffected, and the same Rule 

of Thumb values hold for �̂�𝑠 as for �̂�𝑔.  Thus once again, in order to estimate a tail 5 percent 

income share for a given level of confidence, �̂�𝑠  would have to increase by 2 or 3 times in 

size relative to that used to estimate a tail 10 percent share with the same level of confidence. 

 

 

 

8. Findings and Conclusion 

 

This paper addresses the question of how much survey sample size has to increase in 

order to estimate tail income shares (and their changes) to a given level of confidence.  The 

focus is on estimating vigintile shares (bottom 5 percent and top 5 percent) given one 

already has estimates of quintile and decile income shares — as typically published by 
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national statistical agencies such as Statistics Canada and the Bureau of the Census, and 

changes in quintile and decile shares over time.  The paper develops formulas for the 

specification and estimation of (asymptotic) variances of sample income shares in a 

distribution-free fashion so that estimates are very straightforward to calculate without 

having to know the functional form of the underlying distribution of income.  These formulas 

then serve the basis for determining the sample sizes required to estimate an income share 

to a given degree of reliability or level of confidence. 

The paper has four main findings or conclusions.  First, it provides distribution-free 

formulas for the (asymptotic) variances of empirical income shares that can be used to 

evaluate the reliability or confidence of sample-based income share estimates.  Second, the 

paper presents an approach to deriving the sample sizes required to estimate income shares 

(and their changes) to a given level of confidence.  Third, it provides Rule of Thumb results 

to calculate how much larger a sample needs to be to estimate a smaller quantile end share 

to obtain a given level of confidence.  Specifically, to estimate vigintile tail income shares, one 

needs to have a sample 2-3 times larger (depending on whether recipients are men or 

women and on which tail income share — lower or upper — is being estimated) than that 

required to estimate corresponding decile shares to the same level of confidence.  Fourth, 

the analysis shows that, in order to significantly estimate changes in income shares over 

time, the required sample sizes need to be vastly larger than those for simply estimating the 

income shares themselves — by about two orders of magnitude. 
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Data Appendix 

Table A1 

Sample Estimates Canada 2015 

 

 Males Females 𝜉10 284.08 179.67 𝜉20 425.53 302.13 𝜉40 630.42 472.81 

   𝜉60 873.13 651.54 𝜉80 1197.79 921.36 𝜉90 1485.11 1197.73 

   𝐼𝑆10 .019675 .018214 𝐼𝑆20 .064466 .056208 𝐼𝑆40 .193906 .185871 

   𝐼𝑆𝑡𝑜𝑝40 .629281 .644194 𝐼𝑆𝑡𝑜𝑝20 .383075 .401294 𝐼𝑆𝑡𝑜𝑝10 .226621 .234761 

   σ 501.77 404.54 

µ 832.91 633.38 

   

NOBS 51,680 51,658 

 

Source: LFS data on usual weekly earnings from May Labour Force Surveys (figures in 2015 

dollars).  Results from Beach (2021b), appendix tables. 
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Table A2 

Estimates of 𝐴𝑠𝑦. 𝑣𝑎𝑟 (𝐼�̂�𝑖) for Lower and Upper Income Shares 

Canada, 2015 

 

 Males Females 

 AV ACV AV ACV 

a) Lower Income Shares 

p=.40 .09064 1.5526 .08843 1.6000 

     

p=.20 .03434 2.8746 .02998 3.0805 

     

p=.10 .00953 4.9617 .00653 4.4366 

     

b) Upper Income Shares 

(1-q) = .40 .70995 1.3390 .74689 1.3416 

     

(1-q) = .20 .58586 1.9981 .63928 1.9924 

     

(1-q) = .10 .40710 2.8155 .46397 2.9015 

 

Source:  Author’s calculations based on parameter estimates in Table A1. 

 

Note:  AV refers to the estimated asymptotic variance, ACV refers to the (𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐^𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)1/2 / estimated income share;  ie., the estimated asymptotic 

coefficient of variation. 
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Table A3 

Sample Estimates – Canada 2000. 

 

 Males Females 𝜉10 279.45 158.06 𝜉20 421.50 258.17 𝜉40 628.03 405.48 

   𝜉60 810.62 569.02 𝜉80 1053.74 790.31 𝜉90 1279.77 972.81 

   𝐼𝑆10 .020215 .019016 𝐼𝑆20 .075696 .058430 𝐼𝑆40 .202345 .182351 

   𝐼𝑆𝑡𝑜𝑝40 .609463 .635287 𝐼𝑆𝑡𝑜𝑝20 .364474 .380780 𝐼𝑆𝑡𝑜𝑝10 .215057 .225539 

   σ 427.01 327.11 

µ 765.69 536.18 

   

NOBS 25,511 23,917 

 

Source:  See Table A1. 
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Table A4 

Estimates of 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼�̂�𝑖) for Lower and Upper Income Shares 

Canada, 2000 

 

 Males Females 

 AV ACV AV ACV 

a) Lower Income Shares 

     

p=.20 .03991 2.6391 .03040 2.9840 

     

p=.10 .01094 5.1736 .00705 4.4147 

     

b) Upper Income Shares 

     

(1-q) = .20 .50934 1.9581 .60450 2.0419 

     

(1-q) = .10 .34852 2.7451 .41794 2.8664 

 Source:  Author’s calculations based on parameter estimates in Table A3. 
 

Note:  AV refers to the estimated asymptotic variance, ACV refers to the (𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 �̂�𝑎𝑟𝑖𝑎𝑛𝑐𝑒)1/2 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑖𝑛𝑐𝑜𝑚𝑒 𝑠ℎ𝑎𝑟𝑒⁄ ; ie., the estimated asymptotic 

coefficient of variation. 
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Appendix B 

Estimates of Required Sample Sizes for Middle Income Shares 

 

As indicated in Section 3 of the text, the formula for the asymptotic variance of the 

middle income group M is given by: 

 

  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼�̂�𝑀) =  𝑝(1 − 𝑝) (𝜉𝐿µ )2 + 𝑞(1 − 𝑞) (𝜉𝑈µ )2 + (𝐼𝑆𝑀)2 (𝜎µ)2
 

                     −2(𝜉𝐿µ ) (𝜉𝑈µ ) 𝑝(1 − 𝑞) 

                  +2(𝜉𝐿µ ) (𝐼𝑆𝑀)[𝑝 − 𝐼𝑆𝐿] 
                  −2(𝜉𝑈µ ) (𝐼𝑆𝑀)[𝐼𝑆𝑈 − (1 − 𝑞)] 
 

with the same notation as given in the text.  Parameter estimate information for 2015 is 

provided in Table A1 and for 2000 in Table A3.  In addition, for 2015 and 2000, the middle 

income share estimates are: 

 

 Males  Females 

 2000 2015  2000 2015 

      𝐼�̂�(. 20 → .80) .559830 .552459  .560789 .542498 

      𝐼�̂�(. 40 → .60) .188193 .176812  .182362 .169934 

 

The formula for calculating �̂�𝑀, the required sample size for a given year for testing 

whether 𝐼�̂�𝑀 is statistically significant at a critical value given by 𝑡𝑐𝑟𝑖𝑡 is: 

 

  �̂�𝑀 = (𝑡𝑐𝑟𝑖𝑡)2 ∙ [𝐴𝑠𝑦.�̂�𝑎𝑟(𝐼�̂�𝑀)(𝐼�̂�𝑀)2 ] 
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where 𝑡𝑐𝑟𝑖𝑡 is the critical value from a standard normal distribution corresponding to 

specified level of confidence (95% or 99%). 

Resulting estimates for �̂�𝑀 are presented in Table B1 with corresponding elasticities 

with respect to the interval width (q-p) provided in Table B2. 

The main finding is that the required sample size to estimate a middle income share to 

a given level of confidence is about the same as that for an upper income share for a given 

interval width and about half that required to estimate a lower income share of the same 

interval width at the same level of confidence.  That is, it requires a much larger sample size 

to estimate lower income shares than for other income shares for a given degree of 

confidence. 
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Table B1 

Estimates of �̂�𝑀 for Middle Income Shares 

Canada, 2015 

 

  Males  Females 

  �̂�𝑀 %∆  �̂�𝑀 %∆ 

a) 95% Level of Confidence      (𝑞 − 𝑝) =  .60 2.593   2.719  

   2.452   2.306 (𝑞 − 𝑝) =  .40 8.952   8.991  

   0.710   0.697 (𝑞 − 𝑝) =  .20 15.310   15.262  

       

b) 99% Level of Confidence      (𝑞 − 𝑝) =  .60 4.479   4.697  

   2.452   2.306 (𝑞 − 𝑝) =  .40 15.462   15.530  

   0.710   0.697 (𝑞 − 𝑝) =  .20 26.444   26.362  

 Source: Author’s calculations based on parameter estimates in Table A3 in the Data  

Appendix. 

 

Note:  The interval (𝑞 − 𝑝) =  .60 corresponds to p= .20 and q= .80. 

 The interval (𝑞 − 𝑝) =  .40 corresponds to p= .30 and q= .70. 

 The interval (𝑞 − 𝑝) =  .20 corresponds to p= .40 and q= .60. 

The first and third of these were estimated directly from the formulas in this appendix.  The 

second row figures were estimated by proportional interpolations from the first and third 

row figures. 
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Table B2 

Elasticities of �̂�𝑀 wrt Income Share Width 

Canada, 2015 

 

 Males  Females 

For 𝑞 − 𝑝: .60 → .40 7.356  6.918 

    

For 𝑞 − 𝑝: .40 → .20 1.420  1.394 

 

 

 

 

 

 Source: Author’s calculations from results in Table B1. 
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Table B3 

Tests of Changes in Middle Income Shares 

Canada, 2000-2015 

 

 Males  Females 

Middle Shares      

 For 𝑞 − 𝑝 =  .60 For 𝑞 − 𝑝 =  .20  For 𝑞 − 𝑝 =  .60 For 𝑞 − 𝑝 =  .20 

      𝐼�̂�2000 .55983 .18819  .56079 .18236 𝐼�̂�2015 .55246 .17681  .54250 .16993 ∆ -.00737 -.01138  -.01829 -.01243 

      𝑆𝐸(𝐼�̂�2000) .002880 .002352  .003051 .002350 𝑆𝐸(𝐼�̂�2015) .002017 .001579  .001949 .001541 𝑆𝐸(∆) .003565 .002833  .003620 .002810 

      𝑡 − 𝑟𝑎𝑡𝑖𝑜(∆) -2.067 -4.017  -5.052 -4.423 

 Source: Author’s calculations based on results in Tables A1-A4. 
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Table B4 

Required Sample Sizes to Achieve Statistically Significant 

Differences in Middle Income Shares 

(at a 95% Level of Confidence) 

Canada, 2000-2015 

 

 Males  Females 

Middle Shares      

 𝑞 − 𝑝 = .60 𝑞 − 𝑝 =  .20  𝑞 − 𝑝 = .60 𝑞 − 𝑝 = .20 

      

20% Difference 97 552  96 546 

      

10% Difference 387 2,221  383 2,182 

      

5% Difference 1,546 8,883  1531 8,728 

 Source: Author’s calculations based on results in Tables A1-A4. 
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Appendix C 

Estimates of Required Sample Sizes for Lower and Upper Income Shares 

Canada, 2000 

 

Table C1 

Estimates of �̂�𝐿 for Lower Income Shares 

Canada, 2000 

 

  Males  Females 

  �̂�𝐿 %∆  �̂�𝐿 %∆ 

a) 95% Level of Confidence      𝑝 =  .20 26.76   34.21  

   2.843   1.189 𝑝 =  .10 102.83   74.88  

       

b) 99% Level of Confidence      𝑝 =  .20 46.22   59.09  

   2.843   1.189 𝑝 =  .10 177.62   129.33  

 Source: Author’s calculations based on parameter estimates in Table A3 in the Data 
Appendix. 
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Table C2 

Estimates of �̂�𝑈 for Upper Income Shares 

Canada, 2000 

 

  Males  Females 

  �̂�𝑈 %∆  �̂�𝑈 %∆ 

a) 95% Level of Confidence      (1 − 𝑞) =  .20 14.73   16.02  

   .966   .970 (1 − 𝑞) =  .10 28.95   31.57  

       

b) 99% Level of Confidence      (1 − 𝑞) =  .20 25.44   27.67  

   .966   .970 (1 − 𝑞) =  .10 50.01   54.52  

 Source: Author’s calculations based on parameter estimates in Table A3 in the Data 
Appendix. 
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Table C3 

Estimates of �̂�𝑀 for Middle Income Shares 

Canada, 2000 

 

  Males  Females 

  �̂�𝑀 %∆  �̂�𝑀 %∆ 

a) 95% Level of Confidence      (𝑞 − 𝑝) =  .60 2.59   2.72  

   2.454   2.303 (𝑞 − 𝑝) =  .40 8.95   8.99  

   .711   .698 (𝑞 − 𝑝) =  .20 15.31   15.26  

       

b) 99% Level of Confidence      (𝑞 − 𝑝) =  .60 4.48   4.70  

   2.454   2.303 (𝑞 − 𝑝) =  .40 15.47   15.52  

   .711   .698 (𝑞 − 𝑝) =  .20 26.45   26.35  

 Source: Author’s calculations based on parameter estimates in Table A3 in the Data 

Appendix. 

 

Note: See Note to Table B1. 
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Table C4 

Elasticities of �̂�𝐿 , �̂�𝑈, 𝑎𝑛𝑑 �̂�𝑀 wrt Income Share Width 

Canada, 2000 

 

  Males  Females 

     

a) For ∆𝑝 𝑎𝑛𝑑 �̂�𝐿    

    . 20 →  .10 5.686  2.378 

     

b) For ∆(1 − 𝑞) 𝑎𝑛𝑑 �̂�𝑈    

    . 20 →  .10 1.932  1.940 

     

c) For ∆(𝑞 − 𝑝) 𝑎𝑛𝑑 �̂�𝑀    

    . 60 →  .40 7.362  6.909 

    . 40 →  .20 1.422  1.396 

 Source: Author’s calculations from results in Tables C1-C3. 


