
Brown, Nicholas; Butts, Kyle; Westerlund, Joakim

Working Paper

Difference-in-differences via common correlated
effects

Queen’s Economics Department Working Paper, No. 1496

Provided in Cooperation with:
Queen’s University, Department of Economics (QED)

Suggested Citation: Brown, Nicholas; Butts, Kyle; Westerlund, Joakim (2023) : Difference-in-
differences via common correlated effects, Queen’s Economics Department Working Paper, No.
1496, Queen's University, Department of Economics, Kingston (Ontario)

This Version is available at:
https://hdl.handle.net/10419/281100

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/281100
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Queen's Economics Department Working Paper No. 1496

Difference-in-Differences via Common Correlated Effects

Nicholas Brown
Queen's University

Kyle Butts
University of Colorado Boulder, Economics Department

Joakim Westerlund
Lund University and Deakin University

Department of Economics
Queen's University

94 University Avenue
Kingston, Ontario, Canada

K7L 3N6

1-2023



DIFFERENCE-IN-DIFFERENCES VIA COMMON

CORRELATED EFFECTS*

Nicholas Brown
Queen’s University

Kyle Butts
University of Colorado Boulder

Joakim Westerlund†

Lund University

and

Deakin University

January 21, 2023

Abstract

We study the effect of treatment on an outcome when parallel trends hold conditional
on an interactive fixed effects structure. In contrast to the majority of the literature, we
propose identification using time-varying covariates. We assume the untreated outcomes
and covariates follow a common correlated effects (CCE) model, where the covariates are
linear in the same common time effects. We then demonstrate consistent estimation of the
treatment effect coefficients by imputing the untreated potential outcomes in post-treatment
time periods. Our method accounts for treatment affecting the distribution of the control
variables and is valid when the number of pre-treatment time periods is small. We also
decompose the overall treatment effect into estimable direct and mediated components.

JEL Classification: C31, C33, C38.

Keywords: Difference-in-differences, interactive fixed effects, fixed-T, imputation.

*Westerlund would like to thank the Knut and Alice Wallenberg Foundation for financial support through a
Wallenberg Academy Fellowship.

†Corresponding author: Department of Economics, Lund University, Box 7082, 220 07 Lund, Sweden. Tele-
phone: +46 46 222 8997. Fax: +46 46 222 4613. E-mail address: joakim.westerlund@nek.lu.se.

1



1 Introduction

Econometric analysis of treatment effects often relies on the so-called “parallel trends” assump-

tion. This assumption generally states that the change in the counterfactual untreated outcomes

is equal to a time-varying effect across units, regardless of treatment status. Recent work in the

evaluation of treatment effects has sought to relax this condition by allowing units in the pop-

ulation to select into treatment based on an interactive fixed effects model. Letting yi,t(∞) be

the untreated potential outcome for unit i at time t, the new parallel trends assumptions take

the form

yi,t(∞) =
r

∑
j=1

ft,jγj,i + ϵi,t, (1)

where ϵi,t has mean zero and ∑
r
j=1 ft,jγj,i is unobserved.

The interactive effects structure in equation (1) is often called a ”factor model”, where the

common time-effects ft,r are called factors and the heterogeneous unit-effects γr,i are factor

loadings. This model relaxes “parallel trends” by allowing the impact of time-effects to vary

across individuals in a way that can be correlated with treatment. The usual two-way fixed

effects (TWFE) estimator, which estimates fixed effects at the unit and time levels, is generally

insufficient for estimating treatment effects when the untreated potential outcomes take the

form of a factor model. As such, a new literature has focused on specifically controlling for

such error structures while estimating treatment effect functions.

Chan and Kwok (2022) propose a class of principal components difference-in-differences

(PCDID) estimators. They estimate the factors using least squares on the never-treated sam-

ple as in Bai (2009) then use these estimates as proxies in the treated sample. However, their

asymptotic theory requires the number of time periods to grow to infinity. Such asymptotic

sequences are problematic. First, they put restrictions on the time dynamics of the treatment

effects. Second, such a setting is unrealistic in many applications where the number of pre- and

post-treatment time periods is small. Callaway and Karami (2020) and Brown and Butts (2022)

provide consistent estimators of treatment effect functions when the number of time periods is

small. The former requires a specific set of time-invariant instruments. The latter relaxes this
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requirement, but suggests an overidentified GMM problem which is computationally burden-

some.

We provide an imputation-based estimator that is both consistent for fixed time periods

and simple to implement. We utilize the popular common correlated effects (CCE) scheme

first studied in Pesaran (2006). He proposed a regression-based estimator for eliminating un-

observed factors in linear panel data models. Assuming a rich set of covariates that are linear

in the same factors, he takes the cross-sectional averages of the covariates and the outcome,

then treats them as fixed effects in a pooled regression. This pooled CCE (CCEP) estimator has

been shown to be asymptotically normal when the number of time periods is fixed (Westerlund

et al., 2019; Brown et al., 2022). The CCE model also allows a flexible method for parallel trends

conditional on both interactive effects and covariates.

We propose the CCE difference-in-differences (CCEDID) estimator. First, we construct prox-

ies of the common factors using cross-sectional averages of the outcome and independent vari-

ables from the never-treated sample. Second, we estimate the partial effects of the covariates

along with the heterogeneous factor loadings. While inconsistent for the loadings because the

number of time periods is fixed, our estimator proxies for the average value of the loadings

conditional on treatment status, which Brown and Butts (2022) show is sufficient. Finally, we

use the estimates of the covariate coefficients, factors, and factor loadings to estimate the coun-

terfactual untreated potential outcomes in the post-treatment periods, then average over their

difference from the observed treated outcomes. We prove that this estimator of the ATTs is

consistent and asymptotically normal.

Our estimator allows the covariates to change with treatment status using the reduced form

CCE model for their untreated status. We also study how treatment status impacts the final

treatment effect estimators through the status of the covariates. By assuming a common factor

model for the untreated covariates, we are able to leave the post-treatment observables com-

pletely arbitrary. We can also decompose the effect of the treatment on the outcome in terms

of its direct level effect and its mediated effect through the covariates. While Chan and Kwok

(2022) leave the relationship between the covariates and factors unrestricted, they assume treat-

ment does not affect the distribution of the covariates. We provide a detailed explanation for
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why this assumption can cause misleading estimates. We also provide a robust CCE-based

estimator of the same effect that Chan and Kwok (2022) estimate under weaker assumptions.

The rest of the paper is divided into the following sections: Section 2 presents the model and

estimable quantities of interest. Section 3 defines the CCEDID estimator and gives conditions

for asymptotic normality in short panels. Section 4 demonstrates how to separately and con-

sistently estimate the direct and mediated treatment effects. Section 5 provides a brief Monte

Carlo experiment. Section 6 presents an empirical application of our estimator. Section 7 gives

some concluding remarks.

2 Treatment model

We are interested in estimating the effect of a particular treatment on some outcome variable

yi,t, observable for i = 1, ..., N cross-sectional units and t = 1, ..., T time periods. We allow for

the possibility that the N units can be divided into groups within which treatment timing is

the same. We follow Callaway and Sant’Anna (2020) in defining a treatment group by the time

period in which they enter treatment. There are G groups defined by {g1, ..., gG} ⊂ {2, ..., T}

where we assume without loss of generality that g1 < g2 < ... < gG. A unit that is never treated

is a member of group ∞.

Let Gi be a random variable with support {g1, ..., gG, ∞} denoting group membership and

define Di,g as the dummy variable that is 1 if i is in group g. Then we define Ng = ∑
N
i=1 Di,g as

the number of units in group g. The dummy variable di,t is one if t ≥ Gi and zero otherwise. It

is convenient to also define T0 = g1 − 1 as the last period before the first treatment takes place.

Following the previous literature, we denote by yi,t(g) as the “potential” outcome of unit

i ∈ Ig in period t subject to treatment at period g. The term yi,t(∞) is the potential outcome

when the unit is never subject to treatment. In our paper, yi,t(∞) is given by

yi,t(∞) = β′
ixi,t(∞) + α′

ift + εi,t, (2)

where xi,t(∞) is a m × 1 vector of observable regressors associated with the untreated potential

outcomes, βi is a m × 1 vector of slope coefficients, ft is a r × 1 vector of unobservable common

factors, αi is a r × 1 vector of factor loadings, and εi,t is an idiosyncratic error term.
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The interactive effects are given here by α′
ift. The purpose of these is to capture unobserved

differences between treated and untreated units in absence of treatment, often referred to as

“non-parallel trending”. In this terminology, the factors represent common trends and the

loadings measure the extent to which the effect of these trends are equal (or “parallel”) across

units. We are not interested in inference on these effects.1 Accurate estimation of αi is therefore

not needed.

Most applications of DID estimators use time-constant covariates to motivate a more plau-

sible conditional-parallel trends assumption. When covariates change over time, the validity

of DID depends on whether or not treatment status effects the distribution of the covariates

(Caetano et al., 2022). For example, if we are estimating the effect of a place-based policy on

employment, parallel trends might only be plausible when conditioning on poverty rates since

treatment is targeted for areas with increasing poverty rates. However, the goal of place-based

policies is to indirectly improve poverty rates so that xi,t(g) ̸= xi,t(∞). Then controlling lin-

early in the post-periods for the observed poverty rate xi,t ‘absorbs’ some of the treatment ef-

fect.2 This indirect mechanism of treatment creates a dilemma where controlling for xi,t induces

‘post-treatment bias’ and not controlling for xi,t introduces ‘omitted variables bias’ (Aklin and

Bayer, 2017). We discuss this problem in more details in subsection 4.2. Following Caetano

et al. (2022), we propose to solve this dilemma by imputing and controlling for untreated po-

tential value for the covariates, xi,t(∞). Our paper is the first to consider this solution in a factor

model setting.

Because CCE estimation generally requires covariates that change over i and t, we need

to impose structure on their distribution with respect to treatment. We assume there are m

time- and individual-varying covariates that admit a pure factor structure when not subject to

treatment. These covariates are modeled

xi,t(∞) = λ′
ift + vi,t, (3)

where λi is a r × m matrix of factor loadings and vi,t is a m × 1 vector of idiosyncratic errors.

The condition that xi,t should load on the same factors as yi,t is actually quite natural given that

1One reason for this is that αi and ft are not separately identifiable.
2This is what Angrist and Pischke (2009) call a ‘bad control’.
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the main reason for considering interactive effects is their likely correlation with the regressors,

and the detrimental effect of this on estimation and inference. Hence, if xi,t does not load on ft

the parameters β can be estimated via OLS as in Wooldridge (2005).

We assume the untreated potential covariates are generated according to equation (3). Un-

der this setting, we allow treatment to affect the covariate value by proposing the treated po-

tential covariates to be

xi,t(g) = τi,g,tdi,t + xi,t(∞) = τi,g,tdi,t + λ′
ift + vi,t, (4)

where τi,g,tdi,t can correlate arbitrarily with the outcome treatment effects. Our imputation

procedure for observations with di,t = 1 needs to account for the fact that observed xi,t does

not necessarily equal xi,t(∞). In contrast to equation (3), the treated covariates actually place

no restrictions on the distribution of xi,t because we do not restrict the distribution of τi,g,t.

CCE estimation takes cross-sectional averages of the outcome and covariates to proxy for

the space spanned by the factors. We tailor this intuition to the treatment effect case where

treatment status can affect the distribution of both the outcomes and covariates in unspecified

ways. Thus, to prevent ‘post-treatment bias‘, we use only the never-treated outcomes to proxy

for the factors. Then for the treated group, we impute the never-treated potential covariates

which in turn are used to impute the never-treated potential outcomes. This method is detailed

in the following section.

Unlike αi, βi is often of some interest. However, since in the present paper T is fixed, we

cannot estimate each individual slope accurately. The best that we can hope for is accurate

estimation of β = E(βi). In fact, in many applications in economics (and elsewhere) we are

not particularly interested in the marginal effect for a particular unit anyway and so we focus

instead on the average marginal effect. Partial effects are random over individuals but assumed

unaffected by treatment status. We could impose parsimony on the model by assuming group-

specific slopes βg for each treated group g. These effects could be estimated for each treatment

group then aggregated to get an overall partial effect estimate.

Remark 1. The presence of β′
ixi,t in (2) is an allowance and not a requirement. If there are no

regressors, we define β′
ixi,t = 0. It is important to note, though, that if there are no regressors,
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the number of factors can be at most one unless there are outside factor proxies (r ≤ 1), as will

be made clear in Section 3. ■

We now introduce this paper’s object of interest. The treatment effect for unit i at time t

treated in time g is given simply by

∆i,g,t = yi,t(g)− yi,t(∞). (5)

Because we do not observe yi,t(g) and yi,t(∞) simultaneously, ∆i,g,t must be treated as unknown

and estimated from the data. This brings us back to the discussion in the previous paragraph

about βi; because T is fixed, the best that we can do is hope for is accurate estimation of the

ATT. The particular ATT that we are interested in is the average ∆i,g,t for group g;

E(∆i,g,t|Gi = g) = ∆g,t (6)

for t ≥ g and g ∈ {g1, ..., gG}. Note that while there cannot be any systematic variation across

units within groups, we do allow ∆g,t to vary freely over time and across groups, which means

that the effect of the treatment need not take place abruptly at time g but can be gradual in

nature. The effect cannot take place prior to treatment, though, which is the so-called “no

anticipation” condition. Formally, we require that yi,t = yi,t(0) for all non-treated (g = ∞) and

not-yet-treated (Gi = g and t < g) observations3.

It is reasonable to allow for the covariates to also enter the treated outcomes:

yi,t(g) = ηi,g,tdi,t + xi,t(g)′βi + f′tγi + ϵi,t, (7)

where γi is unaffected by treatment because it is time-invariant and ηi,g,t is a unit-time specific

intercept that appears with treatment status and defines the error to be ϵi,t. Under equations

(2), (4), (5), and (7), we can decompose the overall treatment effect ∆i,g,t as

∆i,g,t = yi,t(g)− yi,t(∞)

= ηi,g,t + (xi,t(g)− xi,t(∞))′βi + ϵi,t

= ηi,g,t + τ′
i,g,tβi + ϵi,t

3This condition can be relaxed by redefining the treatment time to p < g, so long as there are enough pre-
treatment time periods to run the CCE regression.
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where we define

τg,t = E(τi,g,t|Gi = g) (8)

ηg,t = E(ηi,g,t|Gi = g) (9)

as the group-specific dynamic ATTs for the covariates and direct effect, respectively. These

quantities are useful to define because we later demonstrate how to estimate them individually.

Our proposed average of the difference between the treated and untreated potential outcome

(∆i,t) estimates the joint effect while allowing covariates to change with treatment, which we

accomplish by imputing the untreated potential covariates in post-treatment periods.

We follow the mediation analysis literature by labeling the treatment-specific intercept ηi,g,t

as the direct effect of treatment and τ′
i,g,tβi as the mediated effect of treatment through the

covariates (sometimes called the indirect effect).4 These two effects warrant some discussion.

The definition of τi,g,t in equation (4) allows each individual covariate to have its own effect on

the outcome through βi,k. Thus, mediated effects allow researchers to tie the effect of treatment

back to changes in specific covariates. This decomposition is particularly useful for explaining

the mechanism through which treatment affects the outcome (a significant estimated mediation

effect for the k-th covariate).

Applied researchers will typically apply DID to time-varying covariates that they suspect

to be the underlying mechanism of treatment. Significant estimates of treatment effects on xk,i,t

(τ in our notation) are used as evidence that treatment effects partially operate through the

specified channels. However, even a change in the covariates that is systemically related to

treatment might not translate to the outcome if the partial effect is zero. We allow a more pre-

cise decomposition of overall effects into component parts, providing the means for rigorous

testing of different channels. The decomposition also allows for various ‘countervailing’ effects

to be considered. On the other hand, the direct effect, ηg,t, captures group-specific changes to

the average level of the outcomes post-treatment. We think of this as either the treatment di-

rectly effecting outcomes or there being unobserved pathways that are uncorrelated with the

(observed) intermediate causal mechanisms and unrelated to the heterogeneous factor load-

4See, for example, MacKinnon et al. (2007) and Huber (2014).
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ings.

The hypothetical outcomes, yi,t(∞) and yi,t(g), should not be confused with the actual out-

come, yi,t, the model of which can be inferred from (2) and (5). Note that for units eventually

treated at time g,

yi,t = yi,t(∞)(1 − di,t) + yi,t(g)di,t = ∆i,g,tdi,t + β′
ixi,t(∞) + α′

ift + εi,t. (10)

This model holds in general for all i ≤ N and t ≤ T. Another point of interest concerns

the covariates. Only the untreated potential covariates show up in the equation for a general

outcome. This fact demonstrates that we need to be sure our model for xi,t(∞) is sufficient in

the following imputation method.

3 The CCEDID estimator and its asymptotic properties

3.1 The estimator

The estimation of the ATT is carried out using a version of what Borusyak et al. (2021) refer to

as the “imputation” approach, or what Xu (2017) refer to as the “generalized synthetic control”

method, which is based on replacing all unknowns in the definition of ∆g,t in (6) by estimates.

Note first that since yi,t(g) is observed for treated units in post-treatment periods (Gi = g and

t ≥ g), we have yi,t = yi,t(g). Let us therefore turn to the yi,t(∞). We need to estimate this

counterfactual for all treated units in post-treatment periods. This is done in four steps:

Four-step estimation of counterfactual:

1.Compute

f̂t =
1

N∞

N

∑
i=1

zi,tDi,∞ (11)

for all t ≤ T, where zi,t = [yi,t, x′i,t]
′ is a (m + 1)× 1 vector containing all the observables.

The above is the regular CCE estimator of (the space spanned by) ft computed using the

never-treated units only. This is crucial since in the present paper both yi,t and xi,t may

depend on the treatment, and this in turn may well render CCE inconsistent. Equally

important is the fact that f̂t is computed for all time periods. The pre-treatment estimates
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are used to estimate β and {αi}N
i=1, while the post-treatment estimates are used to impute

xi,t(∞) and yi,t(∞) respectively for the treatment period.

2.Estimate

yi,t = β′xi,t + a′i f̂t + ui,t (12)

by OLS for all i ≤ N and t ≤ T0. Here, ai is a (m + 1) × 1 vector of factor loadings

and ui,t = α′
ift − a′i f̂t + (βi − β)′xi,t + εi,t is a composite error term. The above OLS

regression with f̂t in place of ft is regular CCE based on the full pretreatment sample

but where f̂t comes from the subsample of untreated units.5 Define the T0 × 1 vector

yi = [yi,1, ..., yi,T0
]′, and the T0 × m matrices xi = [xi,1, ..., xi,T0

]′ and f̂ = [̂f1, ..., f̂T0
]′. Let

MA = IT0
−A(A′A)−1A′ for any T0-rowed matrix A. In this notation, the CCE estimators

of β and ai in (12) are given by

β̂ =

(
N

∑
i=1

x′iMf̂
xi

)−1
N

∑
i=1

x′iMf̂
yi, (13)

âi = (f̂′ f̂)−1f̂′(yi − xi β̂), (14)

where the latter estimator is computed for all i ≤ N. This gives β̂ and {âi}N
i=1. The fact

that âi is computed for treated units is again important, because in step 3, yi,t(∞) will be

estimated for all treated units.

3.Estimate xi,t(∞) as

x̂i,t(∞) = λ̂
′
i f̂t (15)

for all i in group g and t ≥ g. Here {f̂t}t≥Tg is from step 1. For λ̂i, in the notation used in

step 2 above,

λ̂i = (f̂′ f̂)−1f̂′xi (16)

is the OLS estimator of λi in the following model for all i ≤ N and t ≤ T0:

xi,t = λ′
i f̂t + wi,t. (17)

5Note that unlike when using the principal components method, in CCE there is no need to recompute f̂t if the

time period changes, and hence {f̂t}t≥Tg can be taken directly from step 1.
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4.The sought counterfactual estimator is given by

ŷi,t(∞) = β̂
′
x̂i,t(∞) + â′i f̂t (18)

which is again available for all i ∈ I c
G and t ≥ Tg with g < G. Here β̂ and {âi}i∈I c

G
are

from step 2, {f̂t}t≥Tg is from step 1, and {x̂i,t}t≥Tg comes from step 3. ■

Remark 2. Because we implement the estimators f̂ and β̂ using only the pre-treatment obser-

vations, and the cross-sectional averages of xi are used as factor proxies, our estimator of the

average of βi is invariant to the inclusion of common variables (e.g. covariates that only change

over i). This fact of CCE estimation was first pointed out in Brown et al. (2022). Secular time

effects can thus be captured in our definition of ηg,t for their overall effect on the outcome. ■

Remark 3. One can allow β to vary systematically across groups without affecting the asymp-

totic results reported in Section 3.2. The only change needed is that the step-2 estimation of this

coefficient has to be carried out group-wise, as opposed to just once for all N units. This gives

{β̂g}G
g=1, which should then be inserted instead of β̂ in step 3. Because these parameters are all

consistently estimated for fixed-T, this setting effectively allows more slope heterogeneity than

the pooled CCE estimator. ■

Remark 4. While β̂ is consistent, âi is not and in fact remains random even asymptotically

because T is fixed. Moreover, the asymptotic distribution is not centered at αi but at a certain

rotation of ai. Interestingly, as we show in Section 3.2, these problems do not interfere with the

consistency and asymptotic normality of the estimated ATT. This general identification scheme

is formally presented in Brown and Butts (2022). ■

With yi,t(g) known and yi,t(∞) imputed, the estimated treatment effect is given by

∆̂i,g,t = yi,t − ŷi,t(∞). (19)

The estimated ATT for group g at time t is obtained by averaging over the relevant treated

group;

∆̂g,t =
1

Ng

N

∑
i=1

Di,g∆̂i,g,t, (20)
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which is again available for all t ≥ Tg and g < G. Equation (20) is the CCEDID estimator of

∆g,t.

Asymptotic standard errors of estimates of the ATT are generally difficult to implement.

Many studies therefore resort to bootstrap inference (see, for example, Callaway and Karami

(2020) and Xu (2017)), which can be computationally unattractive. We instead employ a version

of the non-parametric standard error estimator considered by Chudik et al. (2011) and Pesaran

(2006). The appropriate estimator to use in our case is

ω̂2
g,t =

1

Ng − 1

N

∑
i=1

Di,g

(
∆̂i,g,t −

1

Ng

N

∑
j=1

Dj,g∆̂j,t

)2

. (21)

In addition to being simple to compute, non-parametric standard errors tend to perform well

in small samples (see, for example, Chudik et al. (2011), Pesaran (2006), and Westerlund and

Kaddoura (2022)). It also means that the asymptotic variance can be consistently estimated

whether or not the number of factor proxies outnumbers the true number of factors (m + 1 = r

or m + 1 > r).

Remark 5. It is important to note that the proposed CCEDID estimator does not involve any

estimation of the number of factors, r. This is in stark contrast to existing principal components-

based approaches such as Chan and Kwok (2022) and Xu (2017), as well as quasi-differencing

approaches of Callaway and Karami (2020) and Brown and Butts (2022), where the existing

asymptotic theory is based on treating r as known. This means that in empirical work, r has

to be replaced by an estimator, and accurate estimation of this object is known to be a difficult;

see, for example, Moon and Weidner (2015) and Breitung and Hansen (2021). The fact that the

proposed estimator does not require estimation of r is therefore a great advantage in practice.

■

3.2 Asymptotic results

In this section, we study the asymptotic properties of ∆̂g,t and ω̂2
g,t. The conditions that we will

be working under are given in Assumptions 1–9. Here and throughout, tr A, rank A and ∥A∥ =
√

tr (A′A) denote the trace, the rank, and the Frobenius (Euclidean) norm of the generic matrix
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A, respectively. The symbols →d and →p signify convergence in distribution and probability,

respectively.

Assumption 1. T0 > m + 1. ■

Assumption 2. Ng/N →p P(Di,g = 1) ∈ (0, 1) for g = g1, ..., gG, ∞. ■

Assumptions 1 and 2 are sample size conditions. They ensure that T0 is large enough to

ensure that the step-2 regression model in (12) is feasible and also that each group is non-

negligible as N increases, which is necessary for accurate estimation of the group-specific ATTs.

We write Assumption 2 in terms of convergence in probability because Ng = ∑
N
i=1 Di,g is a

random quantity.

Assumption 3. βi = β + νi, ∆i,g,t = ∆g,t + υi,t, and τi,g,t = τg,t + ζi,t where νi, υi,t, and ζi,t are

independently distributed across i and t with zero mean, and finite fourth-order cumulants. ■

Assumption 3 is a random coefficient condition that is largely the same as in Chan and

Kwok (2022) and Gobillon and Magnac (2016). The slopes are not required to be heterogeneous,

though, as the covariance matrices of νi and υi,t need not be positive definite.

Before we continue onto Assumption 4, is it useful to first lay out some additional notation.

Step 1 uses the cross-sectional averages of the observables in zi,t for the untreated units to

estimate the factors. This means that both yi,t and xi,t have to be informative of those factors.

By combining (10) and (3) we arrive at the following static factor model for zi,t:

zi,t = µi,tdi,t + Λ
′
ift + ei,t, (22)

where µi,t = [∆i,g,t + β′
iτi,g,t, τ′

i,g,t]
′ is (m + 1)× 1, Λi = [αi + λiβi, λi] is r × (m + 1) and ei,t =

[εi,t + β′
ivi,t, v′

i,t]
′ is (m + 1)× 1. Since di,t = 0 for untreated units, we have

f̂t =
1

N∞

N

∑
i=1

Di,∞zi,t =

(
1

N∞

N

∑
i=1

Di,∞Λi

)′
ft +

1

N∞

N

∑
i=1

Di,∞ei,t. (23)

Assumptions 4–6 below ensure that the average ei,t tends to zero as N increases and that the

average of Λi has full row rank, which in turn ensure that f̂t is consistent for the space spanned

by ft.
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Assumption 4. εi,t and vi,t are independently distributed across i with zero mean, and finite

fourth-order cumulants. ■

Assumption 5. ft, Gi, εi,t, vi,t, νi, ζi,t, and υi,t are mutually independent. ■

Assumption 6. rank(N−1
∞ ∑

N
i=1 Di,∞Λi) = r ≤ m + 1. ■

Assumption 7. The r × r matrix ∑
T
t=1 ftf

′
t is positive definite for all T. ■

Assumption 8. N−1 ∑
N
i=1 x′iMf̂

xi →p Σ as N → ∞, where the m × m matrix Σ is positive

definite. ■

Note that Assumption 5 places no restrictions on the correlation between the treatment

effects and the model’s errors. This fact leaves the treated potential outcomes and covariates

unrestricted with respect to their deviation from their untreated states. We also do not restrict

the pattern of factor loadings among different treatment statuses. Brown and Butts (2022) show

that TWFE is consistent for the ATTs when heterogeneity is mean independent of treatment

assignment.

Assumptions 7 and 8 are standard non-collinearity conditions. Assumption 7 generalizes

the usual “within assumption” in the individual fixed effects only model, which rules out time-

invariant regressors. Assumption 7 rules out more general “low-rank” regressors, as it is almost

always done in models with interactive effects (see Moon and Weidner (2015) for a discussion).

The exclusion restriction is not very restrictive, though, as it does not rule out low rank regres-

sors in the model for yi,t in (10). If there are such regressors present in (10), then these should be

treated as observed factors, which can be appended to f̂t in step 1.This is an advantage in the

sense that while βi and ∆i,g,t are subject to the random coefficient condition in Assumption 3,

αi is not. Hence, unlike the coefficients of the observed regressors, the coefficients of low rank

regressors are not restricted in any way. The disadvantage of this observed factor treatment of

low rank regressors is that we cannot estimate their coefficients.

An important point about Assumptions 1–8 is that the time series properties of ft, εi,t, vi,t

and ∆i,g,t are essentially unrestricted. Chan and Kwok (2022) allow for non-stationary factors

and regressors (in a large-T setting) but the regression errors have to be stationary, which is
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tantamount to requiring that the observables are cointegrated with the factors. Assumptions

1–8 are more general in this regard.

One implication of this generality is that as long as m + 1 ≥ r there is no need to model the

deterministic component of the data, as deterministic regressors can be treated as additional

(unknown) factors to be estimated from the data. However, it is common in practice to include

typical known factors like an intercept or a time trend. This can easily be accomplished by

inserting them into f̂ along with the cross-sectional averages of the data. As with the dynamics,

the type of heteroskedasticity that can be permitted is not restricted in any way.

We are now ready to state Theorem 1, which contains our two main results.

Theorem 1. Under Assumptions 1–8, as N → ∞,

(a)

√
Ng(∆̂g,t − ∆g,t)

ωg,t
→d N(0, 1),

(b) ω̂2
g,t →p ω2

g,t,

where the definition of ω2
g,t is provided in the appendix.

The proof of Theorem 1 is contained in the appendix, where we show that
√

Ng(∆̂g,t − ∆g,t)

is asymptotically mixed normal, and that this implies that
√

Ng(∆̂g,t − ∆g,t)/ωg,t is asymptot-

ically standard normal. This result is unintuitive given the inconsistency of âi in step 2 of the

counterfactual estimation procedure, as mentioned earlier in Remark 3. However, Brown and

Butts (2022) show that the asymptotic distribution of âi is centered at a rotated version of ai, and

that the effect of this rotation is absorbed in the estimation of f. The asymptotic distribution of

∆̂i,g,t − ∆i,g,t is correctly centered at zero despite the inconsistency, and it is independent across

i. Asymptotic normality is therefore possible after averaging over the relevant subsample.

Another point about Theorem 1 is that it holds even if r is unknown, provided only that

m + 1 ≥ r, so that the number of factors is not under-specified. As we show in the proof, while

ω2
g,t depends on whether m + 1 = r or m + 1 > r, this dependence is successfully mimicked in

large samples by ω̂2
g,t. We can therefore show that

√
Ng(∆̂g,t − ∆g,t)

ω̂g,t
=

√
Ng(∆̂g,t − ∆g,t)

ωg,t
+ op(1) →d N(0, 1) (24)

15



as N → ∞. Asymptotically valid inference is therefore possible for any r satisfying m + 1 ≥ r.

This robustness is particularly important given the well-known bias problem of post-selection

estimators (Leeb and Pötscher, 2005).

4 Estimating direct and mediated effects

We now discuss estimation and inference of the decomposition of the treatment effects studied

in Section 3. We also demonstrate how using observed covariates, while potentially ruling out

estimation of the overall treatment effect, can produce a more robust estimator of the direct

treatment effect.

4.1 Decomposing treatment effects

This section considers estimation and inference for the constituent parts of the overall treatment

effect. We demonstrate in Section 2 how the overall treatment effect ∆i,g,t can be decomposed

into the direct effect ηi,g,t and the mediated effect τ′
i,g,tβi. We now demonstrate how to consis-

tently estimate these constituent parts of the treatment effect.

We can estimate τg,t for post-treatment time periods by averaging the difference between

the observed covariates and their imputed untreated counterfactual. We define this estimator

as

τ̂g,t =
1

Ng

N

∑
i=1

Di,g(xi,t − x̂i,t(∞)), (25)

which is simply the overall treatment effect estimator applied to the covariates. The estimated

effect on x is what researchers typically use as evidence of a causal mechanism (albeit typically

under a more restrictive TWFE model). This analysis is incomplete, as the effect of changing

the covariate on the outcome is determined by the partial effect of the covariates on the outcome

variable, which in our model is given by βi. Our estimate of the mediated effect is the product

of τ̂g,t β̂ with each component of the vector being the estimated mediated effect of the k-th

covariate. It is important to see that a consistent estimator requires a pure factor structure in the

untreated potential covariates. This fact precludes the use of nonlinear functions of covariates,

like squares and interactions, as well as covariates that are likely nonlinear in the common
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factors, like discrete or bounded variables. We discuss how to weaken this requirement in

Section 4.3.

The direct effect of treatment is easy to obtain once we have a consistent estimator of the

mediated effect. To get a consistent estimator of the direct effect, we define

η̂g,t = ∆̂g,t − τ̂′
g,t β̂ =

1

Ng

N

∑
i=1

Di,g(yi,t − x′i,t β̂ − f̂′tâi). (26)

That is, our estimated direct effect is our estimated overall effect minus the mediated effects

that operate through the included covariates.

We can use non-parametric standard errors for inference on the decomposed treatment ef-

fects just like in the case of the overall treatment effect. Let τ̂i,g,t = xi,t − x̂i,t(∞) so that τ̂g,t is

the group average of the τ̂i,g,t terms. We define the m×m covariance estimator of the treatment

effect on xi,t in equation (25) as

Ω̂g,t =
1

Ng − 1

N

∑
i=1

Di,g

(
τ̂i,g,t − τ̂g,t

) (
τ̂i,g,t − τ̂g,t

)′
(27)

By setting η̂i,g,t = yi,t − xi,t β̂− f̂′tγ̂i, we similarly define the estimator of the asymptotic variance

for the direct effect as

ω̂2
ηg,t

=
1

Ng − 1

N

∑
i=1

Di,g

(
η̂i,g,t − η̂g,t

)2
(28)

which is identical to the non-parametric variance estimator in equation (21) but replacing the

imputed covariates with their observed counterparts.

Using the definitions above, we can now present asymptotic convergence results for the

direct and indirect treatment effects.

Theorem 2. Under Assumptions 1–8 , as N → ∞,

(a)Ω̂
−1/2
g,t

√
Ng

(
τ̂g,t − τg,t

)
→d N(0, IK),

(b)

√
Ng

(
η̂g,t − ηg,t

)

ω̂ηg,t

→d N(0, 1).

The proof of Theorem 2 follows directly from the work in the proof of Theorem 1. To es-

timate the mediated effect on treatment, we only have to pre-multiply the indirect treatment
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effect estimator by β̂
′
and adjust the standard errors accordingly. Because β̂ is time constant, the

estimator is equivalent to averaging over
(

x′i,t − x̂i,t(∞)′
)

β̂. The relevant asymptotic variance

estimator is

√
β̂
′
Ω̂g,t β̂.

4.2 Consequences of using observed covariates

This section discusses the problems with identification when a researcher uses the observed

covariates xi,t in the imputation stage for ŷi,t instead of the correctly imputed untreated poten-

tial covariates. We define this alternative estimator of group g’s ATT at time t as ∆̃g,t for t ≥ g.

We showed in Section 4.1 that using observed covariates only allows us to estimate the direct

effect.

To see this, note that

∆̃g,t =
1

Ng

N

∑
i=1

Di,g

(
yi,t − x′i,t β̂ − f̂′tγ̂i

)
=

1

Ng

N

∑
i=1

Di,g

(
∆i,g,t + x′i,t(β − β̂) +

(
f′tγi − f̂′tγ̂i

))
(29)

We demonstrate in the proof of Theorem 1 that β̂ − β = op(1) and 1
Ng

∑
N
i=1 Di,g

(
f̂′tγ̂i − f′tγi

)
=

op(1). Because 1
Ng

∑
N
i=1 Di,gxi,t = Op(1), ∆̃g,t is only consistent for the direct effect of treatment

on the outcomes. This fact demonstrates that the interpretation of the imputation estimator

that uses observed covariates is as an estimator of the direct effect; such is the case of the PC-

DID estimator of Chan and Kwok (2022). Researchers who implement interactive fixed effects

imputation estimators with time-varying covariates must therefore be careful in interpreting

their results.

We can now study the conditions under which ∆̃g,t is consistent for the overall effect. Intu-

itively, the only time ∆̃g,t is consistent for the overall ATT (and not just the direct effect) is when

the treatment does not affect the outcome via the covariates. To demonstrate this fact, we write

∆̃g,t in terms of our overall estimator from Theorem 1:

∆̃g,t = ∆̂g,t −
1

Ng

N

∑
i=1

Di,g(x̂i,t(∞)− xi,t)
′ β̂ (30)

Note that ∆̃g,t is numerically identical to our direct effect estimate, η̂g,t, in the previous section.

Thus ∆̃g,t is consistent for the overall ATT ∆g,t when 1
Ng

∑
N
i=1 Di,g(x̂(∞) − xi,t)

′ β̂ = op(1).
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We demonstrate in equation (A.58) of the Appendix that

1

Ng

N

∑
i=1

Di,g(xi,t − x̂i,t(∞)) =
1

Ng

N

∑
i=1

Di,gτi,g,t + op(1) (31)

Equation (30) then becomes

∆̃g,t = ∆̂g,t −
(

1

Ng

N

∑
i=1

Di,gτi,g,t

)′
β̂ + op(1) (32)

Because we know the limits of both terms in the above equation, we can demonstrate when

replacing the imputed potential covariates with observed covariates leads to a consistent esti-

mator of ∆g,t.

Theorem 3. Under Assumptions 1–8, ∆̃g,t →p ∆g,t as N → ∞ if and only if τg,t = 0 or β = 0.

The conditions for consistency of ∆̃g,t are unsurprising. They essentially require the me-

diated effect on treatment to be zero. The former case, where covariates are unaffected by

treatment (τg,t = 0), is similar to what Chan and Kwok (2022) assume for the PCDID estima-

tors. The alternative case occurs when the covariates are uninformative for yi,t. This setting

implies the xi,t are irrelevant to the mean of yi,t. However, the covariates can still be used as

factor proxies in this setting.

4.3 Robust direct effect estimation

The results in this paper have so far depended on covariates admitting a common factor struc-

ture. This assumption may be too strong for some microeconometric applications. We now

discuss consistency under a more general model due to Brown et al. (2022). We show that the

direct effect is still estimable under the more general model, but that we can no longer identify

the mediated effect without further restrictions.

Brown et al. (2022) consider the model in equation (22) but without treatment effects. When

Λ is full rank (like in Assumption 6), they show that

F = ZΛ
′ (

ΛΛ
′)−1

+ op(1) (33)

where Z = 1
N ∑

N
i=1 Zi and Zi is the T × (m + 1) matrix of stacked zi,t. They assume random

sampling in the cross section so that all population equations are written in moment conditions.
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They then consider the general model

F = ΨB (34)

where F is the full T × r matrix of stacked factors, Ψ is a T × q matrix of observed or estimable

factor proxies and B is an arbitrary q × r matrix. In the case of the classic CCE model, Ψ =

E(Zi) and B = Λ. However, they place no restrictions on the rank of B and so the model in

equation (34) is strictly more general than CCE. This model allows the DGP of the covariates

to be essentially unrestricted, allowing for polynomial functions and interactions, as well as

count and limited variables.

Stacking the outcomes over time, and assuming Ψ = E(Zi), equation (34) implies

yi,t = x′i,tβi + E(zi,t)ρi + ϵi,t (35)

where ρi = Bγi. We can adopt this model to our current setting by assuming it holds only for

the untreated potential outcomes. We write this model as

yi,t(∞) = xi,t(∞)′βi + E(zi,t|Gi = ∞)ρi + ϵi,t (36)

which assumes nothing about the distribution of the treated potential outcomes and covariates.

The treated potential outcome for a member of group g at time t ≥ g is

yi,t(g) = ηi,g,t + yi,t(∞)

= ηi,g,t + xi,t(g)′βi + E(zi,t|Gi = ∞)ρi + ϵi,t

We can no longer identify aggregates of the overall treatment effect ηi,g,t + τ′
i,g,tβi because

we no longer have a model for the untreated potential covariates, thus leaving the potential

channel for the mediated effect unspecified. However, we can still estimate the direct effect of

treatment because η̂t,g corresponds to the treatment effect estimator using observed covariates

as in Section 4.1. Brown et al. (2022) show that the model in equation (34) implies consistency

of the pooled CCE estimator under a similar random slope assumption as our current Assump-

tions 3 and 5. Instead of being consistent for the factors, 1
N∞

∑
N
i=1 Di,∞zi,t is not consistent for

ft, but for E(zi,t|Gi = ∞), which is all that we require according to equation (35). Further, âi is
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consistent for a rotation of the transformed loadings ρi and not γi, which again is all we require

by equation (35).

The only departure from our original procedure under this model comes when we are in-

terested in inference on β. Brown et al. (2022) show that without the CCE assumption guaran-

teeing independence between (IT0
− ft(f′tft)−1f′t)Xi and γi, the cluster-robust standard errors

from Westerlund et al. (2019) are inconsistent. They derive analytic standard errors that correct

for this first-stage estimation uncertainty. We could also use a nonparametric bootstrap while

re-estimating f̂ with every bootstrap sample.

5 Monte Carlo simulations

We now present our main simulation results. Our simulations set N = 200 and T = 8, a

relatively small number of cross-sectional units. Treatment turns on at time period 6 for treated

individuals and hence T0 = 5. The data is generated as follows. First, there are two factors,

m = 2, with f1 = [1, . . . , 1]′ being a vector of ones allowing for unit fixed effects and f2 =

[1, . . . , T]′ allowing for unit-specific linear time-trend.

There are two covariates, K = 2, both generated according to (4) with factor loadings λi

being a 2 × 2 matrix with

λi ∼
[

N(1, 1) N(0, 1)
N(0, 1) N(1, 1)

]

The outcome’s factor-loadings are generated ai ∼ N(diag(λi), I2). Outcomes are generated as

follows:

yi,t = ∆ ∗ di,t + β′
0

(
xi,t(∞) + τdi,t) + a′ift + εi,t

with β0 = [1, 1]. The error term is an AR(1) process, i.e. εit = ρεi,t−1 + uit with uit ∼ N(0, 1).

We set ρ = 0.75.

In the first set of simulations, we assign treatment randomly with unconditional probability

of treatment of 50%. This implies parallel trends holds since the average of factor-loadings are

the same in the treated and control group. This simulation aims to show the importance of not

controlling for observed xi,t as described in the previous section.

In the second set of simulations, treatment is assigned with probability increasing in the
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second factor-loading, ai,2, such that parallel trends fail (since treated units are more exposed

to the time-trend in f2). In particular, we form the term

πi = 0.5 +
ai2

maxi ai2 − miniai2

Then, we normalize this by the mean of πi, πi/(
1
N ∑i πi), so that the unconditional probability

of treatment stays at 50%.

We run three data-generating processes. First, we generate the data with a direct effect of

∆ = 0 and an effect on x of τ = [0, 0] such that the true effect of treatment is zero. Second,

we allow for a direct effect of ∆ = 1 but don’t allow treatment to effect the distribution of

covariates (τ = [0, 0]). Last, we set ∆ = 1 and τ = [0, 1] to have a mediated effect of 1 (β′τ) and

a total effect of 2.

We estimate three specifications. First, we estimate a two-way fixed effect event-study

model

yit = µi + ηt +
8

∑
k=6

τkdk
it + errorit. (37)

where dk
it is an indicator equaling one if unit i is treated and t = k. Second, we do what is com-

monly done in empirical applications and run the same event-study model while controlling

for the time-varying covariates

yit = µi + ηt + Xitβt +
8

∑
k=6

τkdk
it + errorit. (38)

Last, we run our proposed CCEDID procedure. For each estimator, we report the average bias

of our estimates E
[
τ̂k − τk

]
as well as the mean-squared error, MSE(τ̂k) ≡ E

[
(τk − τ̂k)

2
]

for

k = 6, 7, 8.

Table 1 contain results for when parallel trends holds. First note that all three estimates pro-

duce unbiased estimates for treatment effects when treatment does not affect the distribution

of x (Panels A and B). However, note that since CCEDID is absorbing the full factor-model,

the mean-square error can be significantly smaller.6 In panel C, we allow treatment to effect

the distribution of x2. As discussed above, controlling for observed xit is problematic since

6After controlling for time-dummies, (ai2 − ā2) ft,2 enters the error term where ā2 is the cross-sectional average
of ai2. The variance of this term grows with t and hence the mean-square error is largest in period 8.
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Table 1: Monte Carlo: Parallel Trends Hold

Panel A: No Effect. η = [0, 0, 0] and τ = [0, 0, 0].

E
(
∆̂6 − ∆6

)
MSE

(
∆̂6

)
E
(
∆̂7 − ∆7

)
MSE

(
∆̂7

)
E
(
∆̂8 − ∆8

)
MSE

(
∆̂8

)

TWFE 0.04 0.90 0.08 3.55 0.11 7.88

TWFE with Covariates -4.05 16.92 -4.14 18.69 -4.19 20.66

CCEDID 0.04 0.52 0.09 1.08 0.06 1.60

Panel B: Direct Effect. η = [1/3, 2/3, 1] and τ = [0, 0, 0].

E
(
∆̂6 − ∆6

)
MSE

(
∆̂6

)
E
(
∆̂7 − ∆7

)
MSE

(
∆̂7

)
E
(
∆̂8 − ∆8

)
MSE

(
∆̂8

)

TWFE 0.04 0.95 0.08 3.70 0.12 8.29

TWFE with Covariates 0.05 0.49 0.08 1.57 0.11 3.35

CCEDID -0.03 0.49 -0.05 0.93 -0.05 1.54

Panel C: Direct and Mediated Effect. η = [1/3, 2/3, 1] and τ = [1/3, 2/3, 1].

E
(
∆̂6 − ∆6

)
MSE

(
∆̂6

)
E
(
∆̂7 − ∆7

)
MSE

(
∆̂7

)
E
(
∆̂8 − ∆8

)
MSE

(
∆̂8

)

TWFE 0.04 0.90 0.08 3.55 0.11 7.88

TWFE with Covariates -4.05 16.92 -4.14 18.69 -4.19 20.66

CCEDID 0.04 0.52 0.09 1.08 0.06 1.60
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Table 2: Monte Carlo: Parallel Trends Do Not Hold

Panel A: No Effect. η = [0, 0, 0] and τ = [0, 0, 0].

E
(
∆̂6 − ∆6

)
MSE

(
∆̂6

)
E
(
∆̂7 − ∆7

)
MSE

(
∆̂7

)
E
(
∆̂8 − ∆8

)
MSE

(
∆̂8

)

TWFE -0.66 1.23 -1.32 4.89 -1.99 10.99

TWFE with Covariates -0.32 0.48 -0.62 1.74 -0.88 3.72

CCEDID -0.00 0.44 -0.05 0.87 -0.06 1.47

Panel B: Direct Effect. η = [1/3, 2/3, 1] and τ = [0, 0, 0].

E
(
∆̂6 − ∆6

)
MSE

(
∆̂6

)
E
(
∆̂7 − ∆7

)
MSE

(
∆̂7

)
E
(
∆̂8 − ∆8

)
MSE

(
∆̂8

)

TWFE -0.65 1.31 -1.31 5.25 -1.95 11.70

TWFE with Covariates -0.24 0.47 -0.50 1.66 -0.79 3.54

CCEDID -0.05 0.47 -0.08 1.00 -0.08 1.54

Panel C: Direct and Mediated Effect. η = [1/3, 2/3, 1] and τ = [1/3, 2/3, 1].

E
(
∆̂6 − ∆6

)
MSE

(
∆̂6

)
E
(
∆̂7 − ∆7

)
MSE

(
∆̂7

)
E
(
∆̂8 − ∆8

)
MSE

(
∆̂8

)

TWFE -0.61 1.26 -1.22 4.89 -1.83 11.08

TWFE with Covariates -4.42 20.05 -4.87 25.26 -5.25 30.77

CCEDID 0.01 0.47 0.02 0.82 0.01 1.45

it absorbs the mediated effect of that covariate. Hence, TWFE with covariates produces very

biased estimates for the treatment effect, even in this extreme case where parallel trends hold

unconditionally.

Table 2 contains the results of simulations where prallel trends do not hold. In this case,

both TWFE estimators are biased across panels. Our proposed CCEDID procedure performs

well in all these cases with near-zero bias and consistently the lowest mean-squared error.

6 Empirical illustration

TO BE ADDED.
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7 Conclusion

We derive a consistent estimator of ATTs when untreated potential outcomes are generated by

an interactive fixed effects error. Our identification strategy, based on the popular common cor-

related effects model, relies on time- and individual-varying covariates that admit a pure factor

structure. We use the cross-sectional averages of the data to impute the untreated potential out-

comes in post-treatment time periods. Our main consistency result allows for a fixed number

of time periods, but can easily extend to when there are many pre-treatment observations.

While most treatment effect analyses omit time-varying covariates due to their possible

correlation with treatment status, we explicitly allow treatment to affect the covariates’ dis-

tribution in an arbitrary way. This model allows us to decompose the effect of treatment via

a direct effect on the level of the outcomes and a mediated effect through the covariates and

their slopes. Such a decomposition allows researchers to perform inference on the possible

mechanisms of an intervention through different relevant channels. We also demonstrate how

estimators based on time-varying controls that do not allow indirect effects, such as the princi-

pal components estimator of Chan and Kwok (2022), are only consistent for the direct effect of

treatment unless either the covariates are independent of treatment status or have zero effect

on the outcome. This effect is consistently estimated by our CCE estimator under a weaker

model proposed by Brown et al. (2022).
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Appendix

Proof of Theorem 1.

We start with part (a). We begin by considering the step-1 estimator of ft. In so doing, it is

useful to denote by at = N−1
∞ ∑

N
i=1 Di,∞ai,t the cross-sectional average of any vector ai,t for the

group of untreated units. In this notation, f̂t = zt. By inserting (3) into (11), and noting that

Bt = 0 in the pretreatment sample when t ≤ T0, we obtain

f̂t = zt = Λ
′
ft + et, (A.39)

If m + 1 = r, Λ is full rank and invertible, which means that (A.39) can be rewritten as

Λ
−1′

f̂t = ft + Λ
−1′

et. (A.40)

Because ∥et∥ = Op(N−1/2) under Assumption 4, we have

Λ
−1′

f̂t = ft + Op(N−1/2) (A.41)

and hence Λ
−1′

f̂t is consistent for ft. In practice, we never observe Λ. However, since α′
ift =

α′
iΛ

−1′
f̂t + Op(N−1/2), it is enough if we know f̂t, because Λ

−1
is subsumed in the estimation

of the coefficient of f̂t, which is ai in our notation.

The above analysis is not possible when m + 1 > r since Λ is no longer invertible. How-

ever, we still need something similar to (A.41), because it determines the object that is being

estimated. The way we approach this issue is the same as in Juodis et al. (2021), and others. In

particular, we begin by partitioning Λi as Λ = [Λr, Λ−r], where Λ−r is r × (m + 1 − r) and Λr

is r × r and full rank. Note that this partition is without loss of generality under Assumption 6.

We then introduce the following (m + 1)× (m + 1) rotation matrix, which is chosen such that

ΛH = [Ir, 0r×(m+1−r)] and that is going to play the same role as Λ
−1

under m + 1 = r:

H =

[
Λ

−1
r −Λ

−1
r Λ−r

0(m+1−r)×r Im+1−r

]
= [Hr, H−r], (A.42)

where Hr = [Λ
−1′
r , 0r×(m+1−r)]

′ is (m + 1)× r, while H−r = [−Λ
′
−rΛ

−1′
r , Im+1−r]

′ is (m + 1)×

(m + 1 − r). If m + 1 = r, we define H = Hr = Λ
−1
r = Λ

−1
. We further introduce the
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(m + 1) × (m + 1) matrix DN = diag(Ir,
√

NIm+1−r) with DN = Im+1 if m + 1 = r. By pre-

multiplying f̂t by DNH
′
, we obtain

DNH
′
f̂t = f̂0

t = DNH
′
Λ

′
ft + DNH

′
et = f0

t + e0
t , (A.43)

where f0
t = [f′t, 0′(m+1−r)×1

]′ and e0
t = [e′tHr,

√
Ne′tH−r]′ = [e0′

r,t, e0′
−r,t]

′ are both (m + 1)× 1 with

e0
r,t and e0

−r,t being r × 1 and (m + 1 − r) × 1, respectively. Hence, since ∥e0
r,t∥ = Op(N−1/2)

and ∥e0
−r,t∥ = Op(1), when m + 1 > r we are no longer estimating ft but rather f+t = [f′t, e0′

−r,t]
′;

f̂0
t = f0

t + e0
t =

[
ft

0(m+1−r)×1

]
+

[
e0

r,t

e0
−r,t

]
= f+t + Op(N−1/2), (A.44)

The fact that ft is included in f+t suggests that asymptotically CCEDID should be able to ac-

count for the unknown factors even if m + 1 > r. By ensuring the existence of H, Assumption 6

makes this possible. However, we also note that because of the presence of e0
−r,t, the asymptotic

distribution theory will in general depend on whether m + 1 = r or m + 1 > r.

It is useful to be able to use the above notation not only when m + 1 > r but also when

m + 1 = r. We therefore define f̂0
t = Λ

−1′
f̂t, f0

t = ft and e0
t = Λ

−1′
et if m + 1 = r, so that we are

back in (A.41).

Let us now consider ∆̂i,g,t, which, unlike f̂t, is computed based on treated units in post-

treatment periods (i ∈ Ig, g < G and t ≥ Tg). From Assumption 3, and the definitions of yi,t

and ŷi,t(0),

∆̂i,g,t = yi,t − ŷi,t(∞)

= ηi,g,t + β′
ixi,t + α′

ift + εi,t − [β̂
′
x̂i,t(∞) + â′i f̂t]

= ηi,g,t + β′
ixi,t + α′

ift + εi,t − (β̂
′
xi,t + â′i f̂t) + β̂

′
[xi,t − x̂i,t(∞)]

= ηi,g,t − (β̂ − βi)
′xi,t − (â′i f̂t − α′

ift) + β̂
′
[xi,t − x̂i,t(∞)] + εi,t

= ηi,g,t − (β̂ − βi)
′xi,t − (â′i f̂t − α′

ift) + β̂
′
[xi,t − x̂i,t(∞)] + εi,t, (A.45)

where the last equality makes use of the fact that DiBt = 1 for all i ∈ Ig, g < G and t ≥

Tg. Consider â′i f̂t − α′
ift. While the (m + 1) × r matrix DNH

′
Λ

′
is not necessarily square

under Assumption 6, it has full column rank. This means that we can compute its Moore–

Penrose inverse, which is given by (DNH
′
Λ

′
)+ = (DNH

′
Λ

′
)′ = [Ir, 0r×(m+1−r)], such that
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(DNH
′
Λ

′
)+DNH

′
Λ

′
= Ir. Hence, DNH

′
Λ

′
ft = [f′t, 0′(m+1−r)×1

]′ = f0
t and we also have DNH

′
f̂t =

f̂0
t . Making use of this, and letting â0

i = (DNH
′
)−1′âi = (HDN)

−1âi and α0
i = (DNH

′
Λ

′
)+′αi =

DNH
′
Λ

′
αi = [α′

i, 01×(m+1−r)]
′,

â′i f̂t − α′
ift = â′i(DNH

′
)−1DNH

′
f̂t − α′

i(DNH
′
Λ

′
)+DNH

′
Λ

′
ft

= â0′
i f̂0

t − α0′
i f0

t

= α0′
i (f̂

0
t − f0

t ) + (â0
i − α0

i )
′ f̂0

t , (A.46)

from which it follows that

∆̂i,g,t = ηi,g,t − (β̂ − βi)
′xi,t − α0′

i (f̂
0
t − f0

t )− (â0
i − α0

i )
′ f̂0

t + β̂
′
[xi,t − x̂i,t(0)] + εi,t (A.47)

Amongst the terms appearing on the right-hand side of the above equation, the one involv-

ing â0
i − α0

i requires most work. We therefore start with this. Note first that since âi is estimated

based on the pretreatment period only, Di = 0. By using this and ΛHr = Ir, we get

yi = xiβi + f̂Hrαi − (f̂ − fΛ)Hrαi + εi = xiβi + f̂Hrαi − e0
r αi + εi, (A.48)

where the T0-rowed matrices f and εi are defined analogously to yi, xi and f̂. Note also that in

the notation of the step-2 regression in (12), we have ai = Hrαi. By inserting this and (A.48)

into the expression given for âi in step 2,

âi = (f̂′ f̂)−1f̂′(yi − xi β̂)

= (f̂′ f̂)−1f̂′(xiβi + f̂ai − e0
r αi + εi − xi β̂)

= ai + (f̂′ f̂)−1f̂′[−xi(β̂ − βi)− e0
r αi + εi], (A.49)

implying

â0
i = (HDN)

−1âi

= (HDN)
−1ai + (HDN)

−1(f̂′ f̂)−1f̂′[−xi(β̂ − βi)− e0
r αi + εi]

= (HDN)
−1ai + (DNH

′
f̂′ f̂HDN)

−1DNH
′
f̂′[−xi(β̂ − βi)− e0

r αi + εi]

= (HDN)
−1ai + (f̂0′ f̂0)−1f̂0′[−xi(β̂ − βi)− e0

r αi + εi] (A.50)
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where f̂0 = [̂f0
1, ..., f̂0

T0
]′ = f̂HDN is T0 × (m + 1). Consider the first term on the right-hand side.

A direct calculation using the rules for the inverse of a partitioned matrix (see, for example,

Abadir and Magnus (2005), Exercise 5.16) reveals that

(DNH)−1 =

[
Λr Λ−r

0(m+1−r)×r N−1/2Im+1−r

]
, (A.51)

so that

(HDN)
−1Hr =

[
Λr Λ−r

0(m+1−r)×r N−1/2Im+1−r

] [
Λ

−1
r

0(m+1−r)×r

]
=

[
Ir

0(m+1−r)×r

]
. (A.52)

This implies

(HDN)
−1ai =

[
αi

0(m+1−r)×1

]
= α0

i , (A.53)

leading to the following expression for â0
i − α0

i :

â0
i − α0

i = (f̂0′ f̂0)−1f̂0′[−xi(β̂ − βi)− e0
r αi + εi]. (A.54)

We similarly have

x̂i,t(∞) = λ̂
′
i f̂t = x′i f̂(f̂

′ f̂)−1f̂t = x′i f̂
0(f̂0′ f̂0)−1f̂0

t , (A.55)

from which it follows that

β̂
′
[xi,t − x̂i,t(∞)] = β̂

′
[xi,t − x′i f̂

0(f̂0′ f̂0)−1f̂0
t ]. (A.56)

By inserting the above expressions into the one given earlier for ∆̂i,g,t, we get

∆̂i,g,t = ηi,g,t − (β̂ − βi)
′xi,t − α0′

i (f̂
0
t − f0

t )− (â0
i − α0

i )
′ f̂0

t + β̂
′
[xi,t − x̂i,t(∞)] + εi,t

= ηi,g,t − (β̂ − βi)
′xi,t − α′

ie
0
r,t

− [−xi(β̂ − βi)− e0
r αi + εi]

′ f̂0(f̂0′ f̂0)−1f̂0
t + β̂

′
[xi,t − x′i f̂

0(f̂0′ f̂0)−1f̂0
t ] + εi,t

= ηi,g,t + β′
ixi,t − α′

ie
0
r,t + εi,t − (xiβi − e0

r αi + εi)
′ f̂0(f̂0′ f̂0)−1f̂0

t . (A.57)

Further use of f̂ = f̂0D−1
N H

−1
gives

xi = fλi + vi = f̂Hrλi − (f̂ − fΛ)Hrλi + vi = f̂0D−1
N H

−1
Hrλi − e0

r λi + vi, (A.58)
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for t ≤ T0. If, on the other hand, t > T0, then

xi,t = τi,g,t + λ′
ift + vi,t = τi,g,t + λ′

iH
′
rH

−1′
D−1

N f̂0
t − λ′

ie
0
r,t + vi,t. (A.59)

These two last results imply

xi,t − x′i f̂
0(f̂0′ f̂0)−1f̂0

t

= τi,g,t + λ′
iH

′
rH

−1′
D−1

N f̂0
t − λ′

ie
0
r,t + vi,t − (f̂0D−1

N H
−1

Hrλi − e0
r λi + vi)

′ f̂0(f̂0′ f̂0)−1f̂0
t

= τi,g,t − λ′
ie

0
r,t + vi,t − (−e0

r λi + vi)
′ f̂0(f̂0′ f̂0)−1f̂0

t , (A.60)

and so we arrive at the following expression for ∆̂i,g,t:

∆̂i,g,t = ηi,g,t + β′
i(τi,g,t − λ′

ie
0
r,t + vi,t)− α′

ie
0
r,t + εi,t

− [(−e0
r λi + vi)βi − e0

r αi + εi]
′ f̂0(f̂0′ f̂0)−1f̂0

t

= ∆i,g,t − (λiβi + αi)
′e0

r,t + β′
ivi,t + εi,t

− [−e0
r (λiβi + αi) + viβi + εi]

′ f̂0(f̂0′ f̂0)−1f̂0
t . (A.61)

where ∆i,g,t = ηi,g,t + β′
iτi,g,t as defined at the end of Section 2.

The above expression for ∆̂i,g,t is the cleanest possible without exploiting the fact that N

is large. Hence, in what remains we are going to let N → ∞. We begin by considering

f̂0(f̂0′ f̂0)−1f̂0
t . Define f+ = [f+1 , ...f+T0

]′ = [f, e0
−r], a T0 × (m + 1) matrix. We have already shown

that f̂0 = f+ +Op(N−1/2). By using this and the results provided in the proof of Lemma A.1 in

Westerlund et al. (2019), we have that ∥f̂0′ f̂0 − f+′f+∥ = Op(N−1/2) and, more importantly,

∥(f̂0′ f̂0)−1 − (f+′f+)−1∥ = Op(N−1/2), (A.62)

where

f+′f+ =

[
f′f f′e0

−r

e0′
−rf e0′

−re0
−r

]
, (A.63)

(f+′f+)−1 =

[
(f′f)−1 + (f′f)−1f′e0

−r(e
0′
−rMfe

0
−r)

−1e0′
−rf(f′f)−1

−(e0′
−rMfe

0
−r)

−1e0′
−rf(f′f)−1

−(f′f)−1f′e0
−r(e

0′
−rMfe

0
−r)

−1

(e0′
−rMfe

0
−r)

−1

]
. (A.64)
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The expression for (f+′f+)−1 is again obtained by using the rules for the inverse of a partitioned

matrix. The fact that ∥(f̂0′ f̂0)−1 − (f+′f+)−1∥ = Op(N−1/2) together with f̂0 = f+ +Op(N−1/2)

imply that

f̂0′
t (f̂

0′ f̂0)−1f̂0′ = f̂0′
t [(f̂

0′ f̂0)−1 − (f+′f+)−1 ]̂f0′ + f̂0′
t (f

+′f+)−1f̂0′

= f̂0′
t (f

+′f+)−1f̂0′ + Op(N−1/2)

= f+′
t (f+′f+)−1f+′ + Op(N−1/2). (A.65)

where, defining Mf analogously to M
f̂
,

f+′
t (f+′f+)−1f+′

= [f′t, e0′
−r,t]

[
(f′f)−1 + (f′f)−1f′e0

−r(e
0′
−rMfe

0
−r)

−1e0′
−rf(f′f)−1

−(e0′
−rMfe

0
−r)

−1e0′
−rf(f′f)−1

−(f′f)−1f′e0
−r(e

0′
−rMfe

0
−r)

−1

(e0′
−rMfe

0
−r)

−1

] [
f′

e0′
−r

]

= f′t(f
′f)−1f′[IT0

− e0
−r(e

0′
−rMfe

0
−r)

−1e0′
−rMf] + e0′

−r,t(e
0′
−rMfe

0
−r)

−1e0′
−rMf. (A.66)

The fact that ∥f̂0′
t (f̂

0′ f̂0)−1f̂0′ − f+′
t (f+′f+)−1f+′∥ = Op(N−1/2) implies

∆̂i,g,t = ∆i,g,t − (λiβi + αi)
′e0

r,t + β′
ivi,t + εi,t

− [−e0
r (λiβi + αi) + viβi + εi]

′f+(f+′f+)−1f+t + Op(N−1/2)

= ∆i,g,t − (λiβi + αi)
′e0∗

r,t + β′
iv

∗
i,t + ε∗i,t + Op(N−1/2), (A.67)

where

a∗i,t = ai,t − a′if
+(f+′f+)−1f+t = ai,t −

T0

∑
s=1

ai,sf
+′
s (f+′f+)−1f+t (A.68)

for any vector ai,t with T0-rowed stack ai = [ai,1, ..., ai,T0
]′. In words, a∗i,t is the limiting “defac-

tored” version of ai,t.

We now make use of the above expression for ∆̂i,g,t to evaluate ∆̂g,t. In so doing, it is im-

portant to note that the order of the reminder incurred when replacing f̂0′
t (f̂

0′ f̂0)−1f̂0′ with

f+′
t (f+′f+)−1f+′ is the same even after averaging over group g and multiplying by

√
Ng. In

order to appreciate this, we make use of the fact that ∥√Nge0
r∥ = Op(1), and since vi and βi are

independent with vi mean zero and independent also across i, we also have ∥N−1/2
g ∑

N
i=1 Di,gviβi∥ =
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Op(1). It follows that

∥∥∥∥∥
1√
Ng

N

∑
i=1

Di,g[−e0
r (λiβi + αi) + viβi + εi]

∥∥∥∥∥

≤ ∥
√

Nge0
r∥
∥∥∥∥∥

1

Ng

N

∑
i=1

Di,g(λiβi + αi)

∥∥∥∥∥+
∥∥∥∥∥

1√
Ng

N

∑
i=1

Di,gviβi

∥∥∥∥∥+
∥∥∥∥∥

1√
Ng

N

∑
i=1

Di,gεi

∥∥∥∥∥ = Op(1).

(A.69)

We can therefore show that
∥∥∥∥∥

1√
Ng

N

∑
i=1

Di,g[−e0
r (λiβi + αi) + viβi + εi]

′[f+(f+′f+)−1f+t − f̂0(f̂0′ f̂0)−1f̂0
t ]

∥∥∥∥∥

≤
∥∥∥∥∥

1√
Ng

N

∑
i=1

Di,g[−e0
r (λiβi + αi) + viβi + εi]

∥∥∥∥∥ ∥f+(f+′f+)−1f+t − f̂0(f̂0′ f̂0)−1f̂0
t ∥

= Op(N−1/2), (A.70)

which means that the reminder incurred when replacing f̂0′
t (f̂

0′ f̂0)−1f̂0′ with f+′
t (f+′f+)−1f+′ is

Op(N−1/2) after averaging over group g and multiplying by
√

Ng.

For ∆i,g,t, we make use of the fact that ∆i,g,t = ∆g,t + υi,t and τi,g,t = τg,t + ζi,t for i ∈ Ig by

Assumption 3, giving

∆i,g,t = ηi,g,t + β′
iτi,g,t = ∆g,t + υi,t + (β + νi)

′(τg,t + ζi,t)

= ∆g,t + β′τg,t + υi,t + β′ζi,t + ν′
i(τg,t + ζi,t)

= ∆0
g,t + υ0

i,t, (A.71)

where ∆0
g,t = ∆g,t + β′νi,t and υ0

i,t = υi,t + β′ζi,t + ν′
iτi,g,t.

By putting everything together,

√
Ng(∆̂g,t − ∆0

g,t) =
1√
Ng

N

∑
i=1

Di,g(∆̂i,g,t − ∆0
g,t)

=
1√
Ng

N

∑
i=1

Di,g(∆̂i,g,t − ∆0
i,g,t + υ0

i,t)

=
1√
Ng

N

∑
i=1

Di,g[υ
0
i,t − (λiβi + αi)

′e0∗
r,t + β′

iv
∗
i,t + ε∗i,t] + Op(N−1/2).

(A.72)

Moreover, Assumption 2 gives us Ng/N →p P(Di,g = 1). Hence, if we also define ag =
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limN→∞ N−1
g ∑

N
i=1 Di,g(λiβi + αi), the above expression for

√
Ng(∆̂g,t − ∆0

g,t) becomes

√
Ng(∆̂g,t − ∆g,t)

=
1√
Ng

N

∑
i=1

Di,g(υ
0
i,t + β′

iv
∗
i,t + ε∗i,t)−

√
Ng

N

1

Ng

N

∑
i=1

Di,g(λiβi + αi)
′√Ne0∗

r,t + Op(N−1/2)

=
1√
Ng

N

∑
i=1

Di,g(υ
0
i,t + β′

iv
∗
i,t + ε∗i,t)−

√
P(Di,g = 1)a′g

√
Ne0∗

r,t + op(1). (A.73)

All the terms on the right-hand side of the above equation are mean zero and independent

across i (conditionally on f). They are therefore asymptotically normal by a central limit law for

independent variables. However, they are not uncorrelated with each other, which complicates

the calculation of the asymptotic variance. Let us therefore define ω2
g,t = var(

√
Ng(∆̂g,t −

∆g,t)|C), where C is the sigma-field generated by f. The asymptotic distribution of
√

Ng(∆̂g,t −

∆g,t) as N → ∞ can now be stated in the following way:

√
Ng(∆̂g,t − ∆g,t) →d MN(0, ω2

g,t), (A.74)

where MN(·, ·) signifies a mixed normal distribution that is normal conditionally on C. This

means that the conditional distribution of
√

Ng(∆̂g,t − ∆g,t)/ωg,t is also the unconditional dis-

tribution. Hence,

√
Ng(∆̂g,t − ∆g,t)

ωg,t
→d N(0, 1), (A.75)

as required for part (a).

It remains to prove (b) and the consistency of ω̂2
g,t. From before,

∆̂i,g,t = ∆0
g,t + υ0

i,t − (λiβi + αi)
′e0∗

r,t + β′
iv

∗
i,t + ε∗i,t + Op(N−1/2), (A.76)

1

Ng
∑

i∈Ig

∆̂i,g,t = ∆0
g,t +

1

Ng

N

∑
i=1

Di,g[υ
0
i,t − (λiβi + αi)

′e0∗
r,t + β′

iv
∗
i,t + ε∗i,t] + Op(N−1/2).

(A.77)

It follows that if we let zi,t = υ0
i,t − (λiβi + αi)

′e0∗
r,t + β′

iv
∗
i,t + ε∗i,t, then

∆̂i,g,t −
1

Ng

N

∑
j=1

Dj,g∆̂j,g,t = zi,t −
1

Ng

N

∑
j=1

Dj,gzj,t + Op(N−1/2). (A.78)
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Hence, since di,t is again independent across i, by a law of large numbers for independent

variables,

ω̂2
g,t =

1

Ng − 1

N

∑
i=1

Di,g

(
∆̂i,g,t −

1

Ng

N

∑
j=1

Dj,g∆̂j,g,t

)2

=
1

Ng − 1

N

∑
i=1

Di,g

(
zi,t −

1

Ng

N

∑
j=1

Dj,gzj,t

)2

+ Op(N−1/2) →p ω2
g,t (A.79)

as N → ∞ (see Pesaran, 2006, page 985, for a similar argument). This establishes part (b) and

hence the proof of the theorem is complete. ■
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