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Online Appendix to: ‘A Unified Framework
for Dynamic Treatment Effect Estimation
in Interactive Fixed Effect Models’

Nicholas Brown*and Kyle Butts†

November 30, 2022

A — Inference of Aggregate Treatment Effects

As in Callaway and Sant’Anna (2021), we can form aggregates of our group-time average

treatment effects. For example, event-study type coefficients would average over the

τg t where t − g = e for some relative event-time e with weights proportional to group

membership. Consider a general aggregate estimand δ which we define as a weighted

average of AT T (g, t):

δ =
∑

g∈G

∑

t>T0

w(g, t)τg t (OA.A.1)

where the weights w(g, t) are non-negative and sum to one. Table 1 of Callaway and

Sant’Anna (2021) and the surrounding discussion describes various treatment effect

aggregates and discuss explicit forms for the weights.

Our plug-in estimate for δ is given by δ̂ =
∑

g∈G

∑

t>T0
ŵ(g, t)τ̂g t . Inference on this

term follows directly from Corollary 2 in Callaway and Sant’Anna (2021) if we have
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the influence function for our τg t estimates. Rewriting our moment equations in an

asymptotically linear form, we have:

p
N
�

(bθ ′, bτ′)′ − (θ ′,τ′)′
�

= −

�

1
p

N

N
∑

i=1

(D′∆−1D)−1D′∆−1gi(θ ,τ)

�

+ op(1). (OA.A.2)

This form comes from the fact that the weight matrix is positive definite with probability

approaching one1. The first term on the right-hand side is the influence function and

hence inference on aggregate quantities follows directly. This result allows for use of the

multiplier bootstrap to estimate standard errors in a computationally efficient manner.

B — Inference in Two-Way Fixed Effect Model

We derive the asymptotic distribution of our imputation estimator based off of the two-

way error model in equation (1). First, we note that this estimator can be written in

terms of the imputation matrix from Section ??. In particular, let 1t be a T × 1 vector

of ones up the t ’th spot, with all zeros after. Define y∞ = (y∞,1, ..., y∞,T )
′ be the full

vector of never-treated cross-sectional averages. Then our imputation transformation

can be written as

ỹi =
�

IT − P(1T ,1T0
)
�

(yi − y∞) (OA.B.3)

where the t th component of the above T -vector is

di tτi t + ũi t , (OA.B.4)

with ũi t is defined as the same transformation as ỹi t .

The imputation step of our estimator is a just-identified system of equations. As such,

we do not need to worry about weighting in implementation and inference comes from

standard theory of M-estimators. In fact, we have the following closed-form solution for

1. This is a well-known expansion for analyzing the asymptotic properties of GMM estimators. See
Chapter 14 of Wooldridge (2010) for example.
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the estimator of a group-time average treatment effect:

bτg t =
1
Ng

∑

i

Di g ỹi t , (OA.B.5)

where Ng t =
∑

i Di g is the number of units in group g.

The following theorem characterizes estimation under the two-way error model:

Theorem OA.1. Assume untreated potential outcomes take the form of the two-way

error model given in equation (1). Suppose Assumptions 1 and 3 hold, as well as

Assumption 2 with γi = 0. Then for all (g, t) with g > t, bτg t is conditionally unbiased

for E
�

τi t | Di g = 1
�

, has the linear form

Æ

Ng

�

bτg t −τg t

�

=
1
p

Ng

N
∑

i=1

Di g(τi t −τg t + ui t − ui,t<T0
− u∞,t + u∞,t<T0

) (OA.B.6)

and
p

N1(bτg t −τg t)
d
→ N(0, V1 + V0) (OA.B.7)

as N →∞, where V1 and V0 are given below and τg t = E
�

yi t(g)− yi t(∞) | Di g = 1
�

is the group-time average treatment effect (on the treated). ■

Theorem (OA.1) demonstrates the simplicity of our imputation procedure under the

two-way error model. While the general factor structure requires more care, estimation

and inference will yield a similar result.

Proof of Theorem OA.1

The transformed post-treatment observations are

ỹi t = τi t + ui t − u∞,t − ui,t<T0
+ u∞,t<T0

(OA.B.8)
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To show unbiasedness, take expectation conditional on Di g = 1. This expected value is

E
�

τi t + ui t − ui,t<T0
− u∞,t + u∞,t<T0

| Di g = 1
�

= E
�

τi t | Di g = 1
�

(OA.B.9)

by Assumption 2 and 3.

For consistency, note that averaging over the sample with Di g = 1, subtracting τg t ,

and multiplying
p

Ng gives

Æ

Ng

�

bτg t −τg t

�

=
1
p

Ng

N
∑

i=1

Di g(τi t −τg t + ui t − ui,t<T0
) +

1
p

Ng

N
∑

i=1

Di g(−u∞,t + u∞,t<T0
)

(OA.B.10)

which is two normalized sums of uncorrelated iid sequences that have mean zero (by

iterated expectations) and finite fourth moments.

Rewriting the second term in terms of the original averages 1
N∞

∑N
i=1−ui,t + ui,t<T0

gives:

Æ

Ng

�

bτg t −τg t

�

=
1
p

Ng

N
∑

i=1

Di g(τi t −τg t + ui t − ui,t<T0
) +

√

√

√
Ng

N∞

�

1
p

N∞

N
∑

i=1

Di∞(−ui,t + ui,t<T0
)
�

(OA.B.11)

Since these terms are mean zero and uncorrelated, we find the variance of each term

separately.

The first term has asymptotic variance

V1 = E
h
�

τi t −τg t + ui t − ui,t<T0

��

τi t −τg t + ui t − ui,t<T0

�′
| Di g = 1
i

(OA.B.12)

and the second term has asymptotic variance

V0 =
P(Di g = 1)

P(Di∞ = 1)
E
h
�

ui,t<T0
− ui,t

��

ui,t<T0
− ui,t

�′
| Di∞ = 1
i

(OA.B.13)
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The result follows from the independence of the two sums.

C — Testing Equality of Factors

An important assumption underlying our approach is that the factors, which affect both

the pre- and post-treatment outcomes, are equal between the treated and untreated

groups. This assumption may not hold if, for example, the control and treatment groups

are geographically or sociologically separated. We, therefore, derive tests for equivalence

of the factors.

We can only compare the pre-treatment factors because those are the ones the

treated groups can identify. Testing each group sequentially may give misleading results,

especially when there are few units per group. Therefore, we combine all treated groups

and only compare the first T0 factor observations before any group is treated. We define

Di =
∑

g∈G Di g which is one if the unit is ever treated.

We consider two estimators of the pre-sample factors, one using the untreated

observations and one using the pre-treated observations. The rank condition on F

in Assumption 5(i) means we can hope to identify the pre-treatment factors with the

pre-treatment treated observations. We apply the Ahn et al. (2013) normalization to the

pre-treatment factors, and define H∗(θ )′ =
�

I(T0−p)Θ
∗
�

where Θ∗ is (T0 − p)× p matrix

of free parameters.

Given the appropriate identifying assumptions on the treated units, the two sets of

moments are then

E
�

g 0
i (θ0)
�

= E
�

(1− Di)
P(Di = 0)

H∗(θ0)
′yi,t<T0

⊗ wi

�

= 0T0×1

E
�

g 1
i (θ1)
�

= E
�

Di

P(Di = 1)
H∗(θ1)

′yi,t<T0
⊗ wi

�

= 0T0×1

which are the unconditional versions of the moments based on both respective subsam-

ples, and θ0 and θ1 are the vectorizations of the (T0 − p)× p unrestricted parameters
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associated with the ALS normalization applied to Fpre. We write the empirical analogs

as g 1(θ j) =
1

N1

∑N
i=1 D1g 1

i (θ1) and g 0(θ0) =
1

N0

∑N
i=1(1− Di)g 0

i (θ0) where N0 and N1 are

the number of never-treated and treated individuals, respectively.

First, we must test whether the number of factors affecting both groups is the same.

This can be achieved simply by estimating p separately using both subsamples. ALS

provide tests for estimating p using their GMM estimator. Given that p is the same

for both sets of moment conditions, we are interested in testing the null hypothesis

H0 : θ0−θ1 = 0. This condition suffices for testing the equality of the pretreatment factors

for the untreated and pre-treated groups, which we denote F0,pre and F1,pre respectively.

This fact holds because

θ0 = θ1 ⇐⇒ F(θ0) = F(θ1) ⇐⇒ F(θ0)A= F(θ1)A ⇐⇒ F0 = F1 (OA.C.14)

where the second equivalence holds because the rotation matrix A is nonsingular, just as

in Section 4.

We define the variance matrices as

S0(θ0) = Var(g 0
i )

S1(θ1) = Var(g 1
i )

with consistent estimators bS0 and bS1. Let

J(θ0,θ1) =
N0

N
g0(θ0)

′
bS−1

0 g0(θ0) +
N1

N
g1(θ1)

′
bS−1

1 g 1(θ1) (OA.C.15)

Finally, define bθ as the estimator of θ which uses both sets of moment conditions, and

let Òθ0, bθ1 be the estimators using the respective subsamples and their respective moment

conditions.
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Theorem OA.1. Under Assumptions 1-5 and the null hypothesis,

N ∗
�

J(bθ , bθ )− J(bθ0, bθ1)
� d
→ χ2

((T0−p)p) (OA.C.16)

as N →∞. ■

This result is a direct application of Theorem 5.8 from Hall (2004). He requires

the partial sums
p

Ng 0(θ0) and
p

Ng 1(θ1) be uncorrelated, which holds under random

sampling. Further, we can replace N0/N and N1/N in equation (OA.C.15) with their

asymptotic counterparts P(Di = 0) and P(Di = 1) because they are multiplied by Op(N−1)

terms. P(Di = 0) takes the place of π in Hall (2004).
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