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1 — Introduction

Estimation of the effects of a treatment in panel settings often relies on a two-way

fixed effect (TWFE) structure. The untreated potential outcomes for a unit i at time

t are determined by a unit ‘fixed effect’ that captures the individual’s heterogeneous

characteristics, a set of time ‘fixed effects’ that capture macroeconomic trends, and a

mean-zero error term ui t . This model is written as

yi t(∞) = µi +λt + ui t . (1)

Individual treatment effects are defined as the contrast between the observed post-

treatment outcomes, yi t , and untreated potential outcomes, yi t(∞). We are interested

in averages of heterogeneous individual treatment effects that can vary arbitrarily over

time. To estimate average treatment effects, researchers often invoke a ‘parallel-trends’

type restriction that the unobservable confounder, ui t , is unrelated to selection into

treatment. When this assumption fails, the treated units no longer follow the same

outcome trajectory as untreated units, resulting in treatment effects being confounded

by contemporaneous shocks. For example, we consider the effects of Walmart opening

a store on local employment in our empirical application. If Walmart chooses which

counties to open stores in based on local economic trends, as found in Neumark et al.

(2008), this error term assumption is implausible.

We consider a more general ‘parallel trends’ type assumption that allows units to

enter treatment based on an interactive fixed effects structure:

yi t(∞) = µi +λt + f ′
t
γi + ϵi t , (2)

where ft is a p× 1 vector of unobservable factors , γi is a p× 1 vector of unobservable

factor loadings, and E [ϵi t] = 0 for all (i, t).1 One possible motivation for this model

1. Note that this model for outcomes coincides with the standard TWFE model when p = 0 and with a
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is that the factors ft are macroeconomic shocks with factor loadings γi denoting a

unit’s exposure to the shocks. Another possibility lets the γi represent time-invariant

characteristics with a marginal effect on the outcome ft that changes over time.2

Current estimators that allow for this form of selection either require (i) the number

of time periods available is large, e.g. synthetic control (Abadie 2021), factor-model

imputation (Xu 2017, Gobillon and Magnac 2016), and the matrix completion method

(Athey et al. 2021); or (ii) that an individual’s error term ui t is uncorrelated over time

(Imbens et al. 2021).3 Both of these restrictions are non-realistic in many applied

microeconomic data sets where the number of time periods is much smaller than the

number of units and serial correlation of shocks is expected. Further, large-T estimators

often place restrictions on the dynamic heterogeneity of treatment. Our method requires

neither large-T nor error term restrictions, but can still accommodate large-T and

unit-heterogeneous estimation strategies.

Recent work has proposed ‘imputation’ based estimators for treatment effects that

use non-treated and pre-treatment observations to ‘impute’ the untreated potential

outcomes for the post-treatment observations (e.g. Borusyak et al. 2022, Gardner 2021,

Wooldridge 2021). However, these approaches only allow for level fixed effects and

preclude interactions like in equation (2). We generalize these techniques by proposing

an estimator that imputes the untreated potential outcomes under the more general (2).

To do so, we first remove the additive fixed effects with a double-demeaning trans-

formation so that we explicitly nest the two-way error model. Our main treatment

effect identification result then only requires consistent estimates of ft .
4 Using the fac-

TWFE model with unit-specific linear time trends coincides when p = 1 and ft = t.

2. Ahn et al. (2013) suggest a wage equation where γi are unobserved worker characteristics of an

individual and ft are their time-varying prices or returns to those characteristics. See Bai (2009) for a

collection of economic examples that justify the inclusion of a factor structure.

3. Imbens et al. (2021) allow correlation within the post- and pre-treatment sets of the idiosyncratic

errors, but assume independence between the two sets. This assumption is still strong in a static modeling

context.

4. It is generally only possible to estimate a normalized version of ft . This is fine as our imputation

procedure works with any normalization of the factors.

3



tors, we compute a matrix that projects the pre-treatment outcomes onto the estimated

post-treatment factors, imputing the untreated potential outcome. Averaging over the

difference between the post-treatment observed outcome and the imputed untreated

potential outcomes gives a consistent estimator of average treatment effects.

There are major two benefits of our general identification argument. First, consistent

estimation of ft is possible through a variety of approaches, such as quasi-differencing

(Ahn et al. 2013, Callaway and Karami 2022), common correlated effects (Pesaran 2006,

Westerlund et al. 2019), or principal components (Bai 2009, Fan et al. 2016, Chan

and Kwok 2022). These techniques allow the user to tailor their factor estimator to

the specific data and problem under consideration, including how many pre-treatment

time periods are available. Our identification result provides a recipe for using any

consistent estimator of the factors to estimate treatment effects, opening up the large

factor-model literature for causal inference methods. Second, our imputation method

allows researchers to graph the estimated untreated potential outcomes and the observed

outcomes for treated units, similar to a synthetic control plot. These plots provide a

visual check for the parallel-trends type assumption that our estimator requires, making

empirical analysis more transparent.

We derive asymptotic properties of an imputation estimator using the quasi-long-

differencing (QLD) method of Ahn et al. (2013). The resulting estimator takes the form

of a generalized method of moments (GMM) estimator, which allows estimation and

inference to be handled easily with common statistical software. It is also consistent when

the number of pre-treatment time periods is small.5 One advantage of this estimator

is that we can form statistical tests for the consistency of the TWFE estimator. These

tests are practically useful since difference-in-differences is simple to implement and

interpret.

Our work contributes to an emerging literature on adjusting for parallel-trends vi-

olations in short panels. Freyaldenhoven et al. (2019) propose a similar instrumental

5. Deriving the asymptotic distribution of treatment effects using other factor estimators is left for future

work.
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variable type estimator in the presence of time-varying confounds. Their results rely

importantly on homogeneous treatment effects. Their simulations show that hetero-

geneous treatment effects bias their estimates severely while our estimator allows for

arbitrary time heterogeneity. Callaway and Karami (2022) also allow for heterogeneous

effects in short panels. They prove identification using a similar strategy to QLD and

instrumental variables. They require time-invariant instruments whose effects on the

outcome are constant over time. Their instruments would be valid in our QLD estimator,

but we also allow for time-varying covariates as instruments. They also do not provide

a general identification scheme like ours and so their results do not readily extend to

other estimators.

The rest of the paper is divided into the following sections: Section 2 describes

the theory behind our methods and presents identification results of the group-specific

dynamic treatment effect parameters when the outcomes are generated by a linear factor

structure. Section 3 provides the main asymptotic theory for a particular QLD estimator.

We also discuss practical concerns for practitioners. Section 4 gives several specification

tests for the underlying model. We include a small Monte Carlo experiment in Section 5

to examine the finite-sample performance of our estimator. Finally, Section 6 contains

our application and Section 7 leaves with some concluding remarks.

2 — Model and Identification

We assume a panel dataset with units i = 1, . . . , N and periods t = 1, . . . , T . Treatment

turns on in different periods for different units; we denote these groups by the period

they start treatment. For each unit, we define Gi to be unit i’s group with possible values

{g1, . . . , gG} ≡ G ⊆ {2, . . . , T}. We follow Callaway and Sant’Anna (2021) and denote

Gi =∞ for units that never receive treatment in the sample. Treated potential outcomes

are a function of group-timing which we denote yi t(g). For treatment indicators, we

define the vector of treatment statuses di = (di1, ..., diT ) where di t = 1(t ≥ Gi) and the

indicator Di g = 1(Gi = g) if unit i is a member of group g. Let T0 =min j{g j} − 1 be the
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last period before the earliest treatment adoption.

We also introduce some matrix notation. For a vector x of length T , we use the

subscript x t<g to denote the first g − 1 elements and x t≥g to refer to the last T − g + 1

elements. This holds similarly for the rows of a matrix X . We now state our main

identifying assumptions.

Assumption 1 (Sampling). The data {(di,γi,µi, ui)} is randomly sampled from an

infinite population and has finite moments up to the fourth order. ■

Assumption 2 (Untreated potential outcomes). The untreated potential outcomes

take the form

yi t(∞) = µi +λt + f ′
t
γi + ui t

for t = 1, .., T . We allow for heterogeneous and dynamic treatment effects of any form,

i.e. yi t(g) = τi g t + yi t(∞). ■

Assumption 3 (No anticipation). For all units i and groups g ∈ G , yi t = yi t(∞) for

t < g. ■

Assumption 4 (Selection into treatment). E [ui t | γi,µi, Gi] = 0 for t = 1, ..., T . ■

Assumption 4 is more general than the standard difference-in-differences parallel

trend assumption since we include the factor structure in our potential outcome model.

In particular, it assumes that the error term is uncorrelated with treatment status after

controlling for the factor loadings. Treatment can still be correlated with contempora-

neous shocks so long as the shocks are ‘common’ across the sample. For example, our

identification strategy is valid if workers select into a job training program based on

their exposure to productivity shocks. We also allow arbitrary serial correlation among

the idiosyncratic errors.6 We also assume the time effects λt and ft are constant. The

alternative is to assume they are random and independent of the variables in Assumption

1, then derive the limiting theory as in Westerlund et al. (2019).

6. This condition may need to be strengthened if we have many time periods.
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The two-way error model cannot accommodate differential exposure. Consider the

standard TWFE parallel trends assumption that E [ui t − ui t−1 | Gi] = 0.7 In the more

general factor model, this assumption would imply our ‘error term’ for group g in period

t would have expectation:

E [yi t − yi t−1 | Gi = g] = λt + ( ft − ft−1)
′
E [γi | Gi = g] +E [ui t − ui t−1 | Gi = g]

= λt + ( ft − ft−1)
′
E [γi | Gi = g]

Unless either (i) the factor loadings have the same mean across treatment groups,

E [γi | Gi = g] = E [γi], or (ii) the factors are time-invariant, then the standard parallel

trends assumption would not hold. If these two cases hold for all g and t, the TWFE

model is correctly specified; we prove this result in the next section. In contrast, our

Assumption 4 allows for the factor loadings to be correlated with treatment timing and

opens up treatment effect estimation for a much broader set of empirical questions.

Following Callaway and Sant’Anna (2021), we aim to estimate group-time average

treatment effects on the treated:

ATT(g, t) = τg t ≡ E [yi t(g)− yi t(∞) | Gi = g] (3)

These quantities represent the average effect of treatment for units that start treatment

in period g when they are in period t. It is trivial to estimate other averages as well in

our framework, including averaging over all post-treatment observations to estimate an

overall ATT, and averaging over (i, t) where t − Gi = ℓ to estimate event-study ATTℓ’s.

We discuss these and other extensions from Callaway and Sant’Anna (2021) in Section

3.

The key econometric challenge lies in that we do not observe yi t(∞) whenever

di t = 1. Our goal is to consistently estimate E [yi t(∞) | Gi = g] under equation (2) to

7. The following derivation is also shown in Callaway and Karami (2022), but we are repeating it here

for expositional purposes.
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consistently estimate group-time average treatment effects. Gardner (2021), Wooldridge

(2021), and Borusyak et al. (2022) implicitly rely on this insight in studying the two-way

error model.

Prior attempts at estimating average treatment effects focus on finding conditions

that allow for estimation of γi and ft jointly, such as in Gobillon and Magnac (2016)

and Xu (2017). These techniques require the number of pre-treatment periods to grow

to infinity and often place restrictions on both the dynamics of the treatment effects’

distribution and the serial dependence among the idiosyncratic errors. Instead, we

pursue identification noting that

E [yi t(∞) | Gi = g] = E [µi | Gi = g] +λt + f ′
t
E [γi | Gi = g] (4)

Therefore, we only need to estimate the average of the unit effects and factor loadings

among a treatment group. Our methodology will always allow for fixed post-treatment

time periods but can accommodate either a large or small number of pre-treatment

periods and allow for estimation using a broad range of known strategies.

2.1. ATT(g, t) Identification

Identification of ATTs will proceed in three steps. The first step is to remove the additive

fixed effects with a double-demeaning transformation. The second step is to impute

ỹi t(∞) in the post-treatment periods for each group, where ỹi t denotes the outcome

after the fixed effects are removed. The final step is averaging the contrast between ỹi t

and ˆ̃yi t(∞).
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We first define the following averages:

y∞,t =
1

N∞

N∑

i=1

Di∞ yi t (5)

y i,t≤T0
=

1

T0

T0∑

t=1

yi t (6)

y∞,t<T0
=

1

N∞T0

N∑

i=1

T0∑

t=1

Di∞ yi t (7)

where y∞,t is the cross-sectional averages of the never-treated units for period t, y i,t≤T0

is the time-averages of unit i before any group is treated, and y∞,t<T0
is the total average

of the never-treated units before any group is treated. These quantities leverage a

subsample of observations with di t = 0 and are not contaminated by the treatment.

We then perform all estimation on the residuals ỹi t ≡ yi t − y∞,t − y i,t<T0
+ y∞,t<T0

.

These residuals are reminiscent of the usual TWFE residuals, except we carefully select

this transformation to accomplish two things. First, this transformation leaves the

treatment dummy variables unaffected to prevent problems with negative weighting

when aggregating heterogeneous treatment effects (Goodman-Bacon 2021, Borusyak

et al. 2022). Second, it preserves a common factor structure for all units and time

periods. The TWFE imputation estimator of Gardner (2021), Wooldridge (2021), and

Borusyak et al. (2022) would not share this property because they estimate µi and λt

based on the full sample di t = 0.

This result is summarized in the following lemma:

Lemma 2.1. E [ ỹi t | Gi = g] = E
�
di tτi t + ( ft − f t<T0

)′(γi − γ∞) | Gi = g
�

for t = 1, ..., T

and g ∈ G ∪ {∞} where f t<T0
is the average of ft in the pre-treatment periods and γ∞

is the average of γi among the control units. ■

All proofs are contained in the Appendix. Lemma 2.1 demonstrates how to explicitly

nest the TWFE model while allowing for a general common factor structure. Any

imputation method that wants to include factor models while explicitly nesting the two-
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way error structure should provide a similar result to Lemma 2.1. Otherwise, they may

not be able to use pre-treatment observations to impute outcomes in the post-treatment

periods. Since we are not interested in inference on the factors themselves, this form

will suffice for the imputation process. The transformed outcomes take the form

ỹi t = di tτi t + ( ft − f t<T0
)′(γi − γ∞) + ũi t . (8)

For ease of exposition, we rewrite the above equation as:

ỹi t = di tτi t + f̃ ′
t
γ̃i + ũi t . (9)

Lemma 2.1 has the added benefit of showing us when the ATTs are identified by our

TWFE transformation alone.

Corollary 2.1. Under Assumptions 1-4, ATT(g, t) is identified by the fixed effects

imputation transformation if E [γi | Gi = g] = E [γi] for all g ∈ G ∪ {∞}. ■

This result is an immediate consequence of Assumptions 1 – 4 as E
�
γ j | Gi = g

�
−

E [γi] for j ̸= i under random sampling. Corollary 2.1 tells us that TWFE imputation

is sufficient to estimate the ATTs, even when the factor structure exists, so long as the

average factor loadings do not differ systemically with treatment status. Asymptotic

normality of our imputation procedure under a two-way error model is studied in the

Online Appendix. We also provide simple tests for mean independence of the factor

loadings in Section 4, i.e. we can test when the TWFE model suffices.

We now define a useful matrix function for our purposes. Given matrices X1 and X0

that are respectively n× k and m× k, suppose Rank(X0) = k. We define the imputation

matrix

P(X1, X0)≡ X1(X
′
0
X0)
−1X ′

0
(10)

This matrix takes a similar form to a projection matrix but “imputes" the fitted values

from regressing on X0 onto a different matrix X1. Gardner (2021) implicitly uses the

10



imputation matrix where X1 is the matrix of unit and time fixed effects and X0 is X1 with

rows of zero whenever di t = 1.

Now that the transformed untreated outcomes display a pure-factor structure, we

impute untreated potential outcomes for group g using P(F̃t≥g , F̃t<g) where F̃t<g is the

first g − 1 rows of F̃ = ( f̃1, ..., f̃T )
′ and F̃t≥g is the last T − g + 1. When applying this

matrix to outcomes, the post-treatment factors are multiplied by the factor loadings from

the pre-treatment observations. In particular, we impute ỹi t(∞) by P( f̃ ′
t
, F̃t<g) ỹi,t<g

for Gi = g, similar to the bridge function identification scheme in Imbens et al. (2021).

However, we allow arbitrary correlation between the idiosyncratic errors.

Theorem 2.1. Suppose F̃ is known and Rank(F̃t≤T0
) = p. Under Assumptions 1-4 for

g ∈ G ,

ATT(g, t) = E
�

ỹi t − P( f̃ ′
t
, F̃t<g) ỹi,t<g | Gi = g

�
(11)

for t ≥ g. ■

Theorem 2.1 shows that we can identify τg t if we know the factor matrix. However,

all of the estimators discussed earlier only estimate the factors up to an unknown rotation

because both ft and γi are unobserved. Fortunately for us, our results are invariant to

this rotation:

Theorem 2.2. Let A be a nonsingular p× p matrix. Then for any g > T0,

P( f̃ ′
t
A, F̃t<gA) = P( f̃ ′

t
, F̃t<g) (12)

■

Theorems 2.1 and 2.2 are in fact very general results. We can apply these conclusions

to any interactive fixed effects estimator that achieves consistency by estimating a rotation

of the factor space. Examples include the common correlated effects estimator of Pesaran

(2006), the principal components estimator of Bai (2009), or the QLD transformation

of Ahn et al. (2001, 2013). As long as the factors are consistently estimated using
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the control sample, dynamic ATTs are identified as in Theorem 2.1, regardless of the

normalization used for estimation. We explore the QLD method in the following section

because it provides overidentifying conditions that we use for practical tests of the

model’s assumptions.

Chan and Kwok (2022) propose a principal components difference-in-differences

estimator for unit-specific treatment effects, ruling out dynamic effects because of

the large time series assumed in the asymptotic arguments. Our results show that

estimation of the factors can be carried out using untreated observations and then

applied to any post-treatment period for a time-specific ATT. This result relaxes their

time-homogeneity assumption while also allowing for empirical examples where there

are many pre-treatment observations.

2.2. Quasi-Long-Differencing Identification

This section considers identification of the factors in a fixed-T environment using the

approach of Ahn et al. (2013). We reiterate that it is not the only method to identify the

factors and any estimator that is consistent for the factors would work in Theorem 2.1.

Each estimator has different identifying assumptions which may be more or less plausible

in different contexts. For example, if one wanted to utilize a common correlated effects

approach, they would require identifying assumptions like those in Westerlund et al.

(2019).

The advantage of our proposed estimator is two-fold. First, the estimator takes the

form of a generalized method of moments estimator which makes asymptotic inference a

result of simple theory. Second, this estimator will allow us to form an easy-to-implement

statistical test for the sufficiency of the two-way fixed effect model in Section 4.

We proved in Theorem 2.2 that the given normalization of the factors does not affect

our resulting imputation, so we follow Ahn et al. (2013) and impose the following p2

12



normalizations:

F̃(θ ) =




Θ

−Ip



 (13)

where Θ is a (T − p)× p matrix of unrestricted parameters and θ = vec(Θ). Given this

normalization, the quasi-long-differencing (QLD) matrix is

H(θ ) =




I(T−p)

Θ
′



 (14)

For any given θ , H(θ )′ F̃(θ ) = 0.

Like Callaway and Karami (2022), we require instruments wi to identify the factor

model. Section 3 describes how to include covariates in the selection assumption.

Naturally, these covariates would also serve as instruments to identify θ . We introduce

three additional identifying assumptions:

Assumption 5 (Factor identification). Let wi be a L × 1 vector of instruments that is

randomly sampled along with the other data and has finite fourth moments. Then

(i) Rank(Var(γ̃i | Gi =∞)) = Rank(F̃t<T0
) = p < T0.

(ii) The matrix E
�
I(T−p) ⊗ wiγ̃

′
i
| Gi =∞

�
has full column rank.8

(iii) E [ui | wi, Gi =∞] = 0.

■

Assumption 5 is our adaptation of BA.3 from Ahn et al. (2013) and gives identification

of the normalized factors. Assumption 5(ii) and (iii) inform what instruments are

allowed. Part (iii) implies they are exogenous with respect to the idiosyncratic error. We

can weaken the strict exogeneity assumption to allow for instruments that are only valid

8. ‘⊗′ denotes a Kronecker product, where each element of I(T−p) is multiplied by wi γ̃i .

13



in certain time periods so that (iii) is not as restrictive as it seems. Second, we require

the instruments to correlate with the demeaned factor loadings. We can allow covariates

that vary over time and individual, or just across individuals, giving us a broad selection

of potential instruments that nests those in Callaway and Karami (2022).

Given Assumption 5, we now show that the never-treated individuals can be used to

identify the parameters in θ .

Lemma 2.2. Under Assumptions 1-5 and given p is known and p+1< T , θ is identified

by

E

�
H(θ )′ ỹi ⊗ wi | Gi =∞

�
= 0 (15)

■

The proof is an immediate consequence of Lemma 2.1 and Section 2 of Ahn et al.

(2013). A key identifying assumption is that p is known to the researcher. Ahn et al.

(2013) provide consistent tests of p under Assumptions 1-5. Further, simulation evidence

suggests that overestimating the number of factors does not lead to bias in the parameters

of interest9. We treat p as known for the remainder of the theory. Our empirical

application includes transparent evidence for our selection of p.

Lemma 2.2 tells us that θ can be identified, but says nothing about the actual F̃ .

However, as θ is generated by a rotation of F̃ , we can use θ to identify the column space

of F̃ .

Lemma 2.3. Under Assumption 5,

P(F̃(θ )t≥g , F̃(θ )t<g) = P(F̃t≥g , F̃t<g) (16)

for g ∈ G . ■

Lemma 2.3 is a direct consequence of Theorem 2.2. Combined with Theorem 2.1,

Lemma 2.3 implies that the τg,t ’s are identified under Assumptions 1-5. The original

9. See Ahn et al. (2013), Breitung and Hansen (2021), and Brown (2022)
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QLD estimator of Ahn et al. (2013) and the pooled QLD estimator of Brown (2022)

may not have the same asymptotic variances for different normalizations of the factors.

However, our estimator of treatment effects does according to this lemma.

3 — Estimation and Inference

This section considers estimation of the group-time average treatment effects. A major

benefit of our approach is the simplicity of inference. Our moment conditions lead to a

simple GMM estimator for which inference is standard and can be computed via routine

packages in standard statistical software. Further, we can use the moment conditions to

test the fundamental features of the model.

3.1. Asymptotic Normality

Equations (11) and (15) provide us the necessary moment conditions to estimate the

ATTs. We collect them here in their unconditional form:

E [gi∞(θ )] = E

�
Di∞

P(Di∞ = 1)
H(θ )′ ỹi ⊗ wi

�
= 0

E

�
gi gG
(θ ,τgG

)
�
= E

�
Di gG

P(Di gG
= 1)

�
ỹi,t≥gG

− P(F̃t≥gG
(θ ), F̃t<gG

(θ )) ỹi,t<gG
−τgG

��
= 0

...

E

�
gi1(θ ,τg1

)
�
= E

�
Di g1

P(Di g1
= 1)

�
ỹi,t≥g1

− P(F̃t≥g1
(θ ), F̃t<g1

(θ )) ỹi,t<g1
−τg1

��
= 0

where τg = (τg g , ...,τgT )
′ is the vector of post-treatment treatment effects. We stack

these over g as τ = (τ′
g1

, ...,τ′
gG
)′. The first set of moment conditions identify θ and

the remaining moments identify the τg t via our imputation method.10 Implementation

requires replacing P(Di g = 1) with its sample counterpart Ng/N . We need one final

assumption to implement the asymptotically efficient GMM estimator:

10. We implicitly assume P(Di gh
= 1) is strictly between 0 and 1 for every gh ∈ G ∪ {∞}.
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Assumption 6. E
�
gi g(θ ,τg)gi g(θ ,τg) | Gi = g

�
is positive definite for each g ∈ G . ■

Assumption 6 makes sure the variance of the moments is not rank deficient after

removing the factors. We collect the moment functions into the vector gi(θ ,τ) =

(gi∞(θ )
′, gi gG

(θ ,τgG
)′, ..., gi g1

(θ ,τg1
)′)′. We define ∆ = E [gi(θ ,τ)gi(θ ,τ)′] which is

positive definite by Assumptions 5 and 6. Then our GMM estimators of (bθ ′, bτ′)′ solve

min
θ ,τ

�
N∑

i=1

gi(θ ,τ)

�′
Ò∆−1

�
N∑

i=1

gi(θ ,τ)

�
(17)

where Ò∆ p→∆ uses an initial consistent estimator of (θ ′,τ′)′. We now present the main

theoretical result.

Theorem 3.1. Under Assumptions 1-6,
p

N
�
(bθ ′, bτ′)′−(θ ′,τ′)′

�
is jointly asymptotically

normal and

p
N(bθ − θ ) d→ N

�
0,
�
D′∞∆

−1
∞D∞

�−1
�

p
N(bτgG

−τgG
)

d→ N
�
0,∆gG

+ DgG

�
D′∞∆

−1
∞D∞

�−1
D′

gG

�

...

p
N(bτg1

−τg1
)

d→ N
�
0,∆g1

+ Dg1

�
D′∞∆

−1
∞D∞

�−1
D′

g1

�

where Dg is the gradient of group g ’s moment function with respect to θ and ∆g is the

variance of group g ’s moment function. Further, the asymptotic covariance between
p

N(bτgh
−τgk

) and
p

N(bτk −τk) is given by Dgh
(D′∞∆

−1
∞D∞)

−1D′
gk

. ■

The asymptotic distribution of
p

N(bτg −τg) generally depends on the estimation of

θ in the first stage by the term Dg(D
′
∞∆

−1
∞D∞)

−1D′
g
. We can see directly from Theorem

3.1 that a smaller Avar(
p

N(bθ −θ )) leads to a smaller Avar(
p

N(bτg−τg)) (in the matrix

sense), strictly so when Dg has full rank. This result also suggests that more efficient

estimation of the factors is an important avenue of future work and demonstrates why

our general identification result is so powerful: we can use different estimators of the
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factors if we believe we can achieve substantial efficiency gains. Further, estimation

of τg is not dependent on the first stage estimation of θ when Dg = 0. A sufficient

condition for this equality occurs when the transformed factor loadings for group g

center about zero.

We also note that the estimator of τ in Theorem 3.1 is asymptotically equivalent to

the two-step estimator that estimates θ on its own then treats bθ as given. This result

follows from Theorem 2.2 of Prokhorov and Schmidt (2009) because the moments

estimating θ and the moments estimating treatment effects are estimated using mutually

exclusive subsamples. Direct computation of bθ frees the researcher to investigate

different aggregates of the treatment parameters without jointly estimating θ , saving

greatly on computational time because the ATT estimators have a closed-form solution.

Further, if we choose the instruments so that the number of moments is equal to p,

the two-step and joint estimators of (θ ,τ) are numerically equivalent (Prokhorov and

Schmidt 2009). However, inference on τ requires accounting for the affect of estimating

θ in the first stage per Theorem 3.1. Inference can be accomplished via standard GMM

statistical packages or the bootstrap. One can use the usual non-parametric bootstrap,

re-estimating θ in each sample, or the multiplier bootstrap using the influence function

that we derive in the Online Appendix.

When the gradient Dg = 0 for a given g, the asymptotic variance of
p

N(bτg −τg) is

just ∆g . This quantity is simple to estimate via a nonparametric variance estimator. Let

Ò∆g =
1

Ng − 1

N∑

i=1

Di g

�Ò∆i g − bτgG

� �Ò∆i g − bτgG

�′
(18)

where Ò∆i g = ỹi,t≥g − P(F̃t≥g(
bθ ), F̃t<g(

bθ )) ỹi,t<g . This estimator is sufficient to generate

valid standard errors whenever Dg = 0.

Theorem 3.2. Under Assumptions 1-6, Ò∆−1

g

p→∆−1
g

.

It is important to note that while the estimator in equation (18) is always consistent

for ∆−1
g

, this quantity is not generally equal to the asymptotic variance. One must take
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care to include the contribution of estimating θ into the standard errors.

Remark 3.1 (Limited Anticipation). Assumption 3 implies treated individuals do not

anticipate treatment and adjust their behavior prior to the intervention. Suppose treated

individuals from group g anticipate the intervention in period qg < g. We could simply

redefine the last pre-treatment period as qg − 1 and incorporate the additional g − qg

periods into the moment conditions, so long as there are still enough pre-treatment

periods to construct the imputation matrix. Then τg is a T − qg + 1 vector that makes

treatment anticipation a testable hypothesis:

H0 : τg,qg
= ...= τg,g−1 = 0 (19)

This test can be easily carried out using standard statistical packages once estimation is

finished.

In fact, the above test is just one of many that can be carried out on the ATTs. As

ATT(g, t) is
p

N -consistently estimated by bτg t , and all standard errors come from known

theory on GMM estimation, we can test any well-defined nonlinear function of the

parameters using canned statistical packages. ■

Remark 3.2 (Other Aggregate Treatment Effects). Our estimation method can handle

other aggregations of ỹi t − ˆ̃yi t(∞). For example, one could aggregate over all post-

treatment (i, t) to estimate an overall ATT or over event time indicators to estimate

event-study aggregates. Researchers can perform heterogeneity analyses by aggregating

for units with different values of X i like gender, race, or age to estimate a conditional ATT.

Since our estimator is a GMM estimator, all one needs to do to estimate such aggregate

effects is to correctly specify the weights that define the unconditional moments. For

example, a researcher may be interested in the effect of treatment among all units one

period after entering treatment. This event study coefficient is defined

ATTℓ ≡ E [yi t(Gi)− yi t(∞) | t − Gi = ℓ] (20)
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Simply define the group membership Di,t−Gi=ℓ
as one if the unit satisfies the condition

t − Gi = ℓ for some t. Then to estimate the effect, we use the unconditional moments

E

�
Di,t−Gi=ℓ

P(Di,t−Gi=ℓ
= 1)

�
ỹi t − P( f̃t , F̃t<Gi

) ỹi,t<Gi

��
= 0 (21)

where the probability is replaced with the observed proportion of the sample satisfying

the condition. Stacking these treatment effect moments allows for estimating the vector

of event-study coefficients. The only difference from before is that the variance matrix

of the moment functions is not diagonal because of overlapping post-treatment samples.

Inference via bootstrap of via the influence function follows through as well.

Additionally, we allow for aggregation of ATT(g, t) estimates as in Callaway and

Sant’Anna (2021) by deriving the influence function in the Online Appendix. ■

Remark 3.3 (Pre-Treatment ‘Placebo’ Effects). We can also derive pre-treatment

“placebo" effects by estimating a coefficient on the pre-treatment time periods. The

imputation matrix that carries out this estimation is P(F̃t≤g , F̃t≤g) which is just the pro-

jection matrix from regressing on the pre-treatment factors. Under the no anticipation

assumption,

E

��
Ig − P(F̃t≤g , F̃t≤g)

�
ỹi,t≤g | Gi = g

�
= 0 (22)

so that the properly standardized vector of pre-treatment residuals is asymptotically

multivariate normal. As with ATT estimation, one must take care to control for estimation

of the factors in constructing valid standard errors. ■

3.2. Plotting Estimates

The proposed estimator can be used to produce estimates for yi t(∞) in all periods for

the treated observations:

ŷi t(∞) = P( f̃t , F̃t<g) ỹi,t<g + y∞,t + y i,t<T0
− y∞,t<T0

(23)
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where the first term on the right-hand side imputes ˆ̃yi t(∞) and the last three terms in

the sum ‘undo’ the within-transformation. In the pre-treatment periods, our estimates

ŷi t(∞) should be approximately equal to the observed yi t under our assumptions.

Similar to synthetic control estimators, comparing the imputed values to the true value

can validate the ‘fit’ of our model. However, since we have many treated units, doing so

unit by unit is not practical. There are two complementary ways to aggregate treated

units that will prove useful.

First, one can aggregate over a group and plot the average of yi t and the average

of ŷi t(∞) separately for each group g ∈ G . This will create a set of ‘synthetic-control’

like plots. To produce an ‘overall’ plot, the observed outcome yi t and the estimated

untreated potential outcome ŷi t(∞) should be ‘recentered’ to event-time, i.e. reindex

time to e = t − Gi, so that treatment is centered at event-time 0. Then yie and ŷie(∞)
can be aggregated for each value of e. We recommend researchers plot these estimates

as it makes what is driving the results more transparent to the reader. We produce such

a plot in our empirical example.

3.3. Including Covariates

We now discuss the inclusion of covariates in the untreated potential outcome mean

model. Allowing for covariates further weakens our parallel trends assumption by allow-

ing selection to hold on unobserved heterogeneity as well as observed characteristics.

Identifying the effects of covariates requires some kind of time and unit variation because

we manually remove the level fixed effects.

A common inclusion in the treatment effects literature is time-constant variables

with time-varying slopes. Suppose x i is 1× K vector of time-constant covariates. We

could write the mean model of the untreated outcomes as

E [yi t(∞) | x i,µi,γi, Di] = x iβt +µi +λt + f ′
t
γi (24)

which allows observable covariates to have trending partial effects; covariates with
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constant slopes are captured by the unit effect. After removing the additive fixed effects,

x iβt will take the same form as the residuals of factor structure. Estimating θ can be

done jointly with the time-varying coefficients by applying the QLD transformation to

the vector of ỹi t − x̃ iβ̃t . We cannot identify the underlying partial effects because of the

time-demeaning, but we can include them for the sake of strengthening the parallel

trends assumption.

Time-constant covariates (or time-varying covariates fixed at their pre-treatment

value) are often employed because there is little worry that they are affected by treatment.

However, we could also include time- and individual-varying covariates of the form x i t

that are allowed to have identifiable constant slopes if we assume their distribution is

unaffected by treatment status. Let x i t be a 1× K vector of covariates that vary over i

and t. We can jointly estimate a K × 1 vector of parameters β along with θ using the

moments

E

�
H(θ )′( ỹi − X̃iβ)⊗ wi | Gi =∞

�
= 0 (25)

where X̃i is the T×K matrix of stacked covariates after our double-demeaning procedure.

We could also allow slopes to vary across groups and estimate them via the group-

specific pooled regression Di g yi t on Di g x i t with unit-specific slopes on Di g f̃ (bθ )t for

t = 1, ..., g − 1. Then we include the covariates and their respective slopes into the

moment conditions

E

�
( ỹi,t≥g − X̃i,t≥gβg)− P(F̃t≥g , F̃t<g)( ỹi,t<g − X̃i,t<gβg)−τg | Gi = g

�
= 0 (26)

We note that the above expression requires treatment to not affect the evolution of the

covariates, a strong assumption in practice. Chan and Kwok (2022) make a similar

assumption for their principal components difference-in-differences estimator. We leave

evaluation of this assumption in factor-augmented linear models to future research.
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4 — TWFE Specification Testing

A novel insight of our paper concerns the ability to test for a factor structure.11 We

consider the following hypotheses:

H0 : yi t(∞) = µi +λt + ui t

HA : yi t(∞) = µi +λt + f ′
t
γi + ui t

If the null hypothesis is true, the more computationally burdensome QLD procedure

is unnecessary for estimating the ATTs.12 Therefore, we think this test is of practical

importance for researchers. We discuss in the previous section how Ahn et al. (2013)

provide consistent estimation of p. Those tests have a new interpretation under this null

hypothesis when testing for p on the residuals ỹi t .

Theorem 4.1. Under the null hypothesis H0 : yi t(∞) = µi +µt + ui t and Assumptions

1 and 3, p = 0. ■

Failure to reject the null hypothesis implies that the two-way error model is sufficient

for capturing all heterogeneity in the potential outcomes. Under the untreated model,

one could use our imputation approach from Section 2, or an approach that uses all

untreated outcomes to estimate µi and λt . One can even carry out this test without

implementing a QLD procedure. The imputed residuals are mean zero under the null

hypothesis so the usual overidentifying test is implemented by setting H(θ )′ = IT .

Even if the two-way error model is unrepresentative of the factor structure, Corollary

2.1 shows that mean independence of the factor loadings with respect to treatment

timing is sufficient for consistency of TWFE. Specifically, we need E [γi] = E [γi | Gi = g]

for all g ∈ G . Our imputation approach allows us to identify these terms up to a rotation.

11. It is theoretically possible to compare the difference between our imputation estimator from Theorem

3.1 to the TWFE imputation estimator via a generalized Hausman test. We refer the reader to Wooldridge

(2010) for example.

12. Even if TWFE is consistent, it is not necessarily more efficient than our procedure. See Section 5 for

example.
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To see how, let A∗ be the rotation that imposes the Ahn et al. (2013) normalization.

Then

P(Ip, F(θ )t<g)E
�
yi,t<g | Gi = g

�
=
�
F(θ )′

t<g
F(θ )t<g

�−1

F(θ )′
t<g

Ft<gE [γi | Gi = g]

=
�
F(θ )′

t<g
F(θ )t<g

�−1

F(θ )′
t<g

F(θ )t<g(A
∗)−1
E [γi | Gi = g]

= (A∗)−1
E [γi | Gi = g]

where F(θ ) = FA∗.

It is irrelevant that the mean of the factor loadings are only known up to a nonsingular

transformation, because A∗ is the same for each g ∈ G by virtue of the common factors.

We note that

E [γi | Gi = g]−E [γi] = 0 ⇐⇒ (A∗)−1(E [γi | Gi = g]−E [γi]) = 0 (27)

The results above show how we can identify (A∗)−1
E [γi | Gi = g] by imputing the pre-

treatment observations onto an identify matrix.

Collect the moments

E

�
Di∞

P(Di∞ = 1)
H(θ ) ỹi ⊗ wi

�
= 0

E

�
P(Ip, F(θ ))yi − γ∗

�
= 0

E

�
Di gG

P(Di gG
= 1)

�
P(Ip, F(θ )t<gG

)yi,t<gG
− γ∗

gG

��
= 0

...

E

�
Di g1

P(Di g1
= 1)

�
P(Ip, F(θ )t<g1

)yi,t<g1
− γ∗

gG

��
= 0

The parameters (γ∗,γ∗
gG

, ...,γ∗
g1
) represent the rotated means of the factor loadings. γ is

the unconditional mean (A∗)−1
E [γi] and γg is the conditional mean (A∗)−1

E [γi | Gi = g]

for g ∈ G . We include estimation of the factors for convenience, so that one does not
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need to directly calculate the effect of first-stage estimation on the asymptotic variances

of conditional means.

Joint GMM estimation of the above parameters, including θ , then allows one to test

combinations of the rotated means. Specifically, we have the following result:

Theorem 4.2. If E [γi | Gi = g] = E [γi] for all g ∈ G , then

γ∗ = γ∗
gG
= ...= γ∗

g1
(28)

■

We also provide a test for the common factor assumption in the Online Appendix.

Under the null, the factors that enter both the treated and never-treated group outcomes

span the same column space. Our test takes the form of a structural breaks test and is

valid when T is fixed.

5 — Simulations

We present a brief simulation study to compare our estimator to different TWFE specifi-

cations. We consider the setting where T = 8 and treatment turns on starting in period 6

implying T0 = 5. We draw N = 200 observations, which is a relatively small number for

a nonlinear estimation problem. We generate untreated potential outcomes following

equation (2). We consider the setting with one factor that we generate as a time-trend

ft = t.13 We generate the time fixed effects as θt = 0.75 ∗ θt−1 + νt where νt ∼ N(0, 1).

We generate the unit fixed effects as iid with µi ∼ N(0,4) and the factor loadings to

be correlated with the unit fixed-effects by drawing from γi ∼ N(µi, 1). The error term

is generated as an AR(1) process with correlation coefficient 0.75 and is uncorrelated

with treatment status. We generate individual-level treatment effect heterogeneity by

13. In this particular case, if the researcher knew that ft took this form, then including unit-specific time-

trends would fix this problem. However, we emphasize that ft is generally not observable. We include this

simple form of ft so that the expected bias of TWFE is easy to compute: t∗(E [γi | Di = 1]−E [γi | Di = 0]).
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defining individual treatment effects τiℓ to be τℓ times the unit fixed effect but then

re-scale the individual effects to have mean equal to τ6 = 1, τ7 = 2, and τ8 = 3 and for

the variance of τiℓ to be one.

We generate a covariate wi = γi + ξi where ξi is white-noise measurement error.

wi will be used as a covariate in some TWFE specifications and as our instrument for

our factor-model estimation. In the baseline simulation, we consider the case where

ξi ∼ N(0, 1) which creates a signal-to-noise ratio of 1/2. In a set of simulations, we vary

the level of noise to see how the instrument strength affects estimates. These results will

allow us to compare our methods to those that use noisy measurements of unobserved

heterogeneity.

We consider three data-generating processes. First, we consider the true TWFE

model where there is no factor model. In this case, the two-way fixed effects model

should be unbiased. Second, we generate outcomes with the factor model described

above. Treatment is then assigned completely randomly with probability of treatment at

50% for all units. This implies that the factor loadings are uncorrelated with treatment

status, which corollary 2.1 shows is sufficient for the TWFE imputation procedure to be

consistent. Third, we generate treatment with probability increasing in the factor loading

such that parallel trends fail (since treated units are more exposed to the time-trend in

ft). In particular, we form the term

πi = 0.5+
γi

maxi γi −mini γi

(29)

We normalize this term by the mean of πi so that the unconditional probability of

treatment stays at 50%.

We estimate event-study treatment effects using four estimators. First, we estimate

the classical TWFE model using ordinary least squares (OLS). Second, we estimate the

TWFE model using the imputation estimator proposed by Borusyak et al. (2022). Third,

we augment the TWFE model by including a noisy measure of the factor loadings. This

is sometimes done by applied researchers in an attempt to control for confounders. That
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is, they model outcomes as

yi t = µi +λt + wiβt + ui t (30)

where wi is a time-invariant covariate and βt allows for trends to vary based on wi. In

the case where wi = γi, i.e. the factors are observable, this model is correctly specified.

However, when Var(ξi) > 0, i.e. the covariates are noisy measures for the underlying

factor loadings, model (30) will only partially absorb the factor model.14 Last, we use

our proposed factor-model imputation estimator.

Results are presented in Table 1. Each panel presents results from each of the three

data-generating processes described above. For each estimate, we present the average

bias for the estimate as well as the mean-squared error. For Panel A where the outcomes

are generated under the two-way fixed effect model (i.e. without a factor structure), all

estimators are unbiased for the treatment effects, but the more robust factor imputation

pays an efficiency cost with larger mean-squared error. However, this flips in Panel B

where outcomes are generated under a factor model but with parallel trends holding for

the TWFE model. In this case, all estimators are still unbiased but the factor imputation

estimator is the most efficient because it absorbs the factor-structure that is present in

the error term for the TWFE model.

Turning to where parallel trends does not hold in Panel C, we see that only our

factor-imputation estimator is unbiased. This result emphasizes that our estimator is

robust for parallel trend violations coming from differential exposure to macroeconomic

factor shocks. The magnitude of bias present in the TWFE models is growing from τ6 to

τ8 due to the factor being a linear time-trend, implying parallel trend deviations grow

worse over time.

It is worth noting that while including wiβt in the model does remove some bias,

the estimates still perform worse than our imputation procedure due to wi being a

14. Kejriwal et al. (2021) make a similar point about controlling for imperfect measures of latent ability

when estimating the returns to schooling.
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Table 1 — Monte Carlo Simulation

Panel A: TWFE Model.

Bias
�
τ̂6

�
MSE

�
τ̂6

�
Bias

�
τ̂7

�
MSE

�
τ̂7

�
Bias

�
τ̂8

�
MSE

�
τ̂8

�

TWFE 0.00 0.01 -0.00 0.02 0.00 0.02

TWFE Imputation 0.01 0.01 0.00 0.02 0.01 0.02

TWFE Imputation

with Covariates

0.01 0.01 0.00 0.02 0.01 0.02

Factor Imputation -0.00 0.04 -0.01 0.11 -0.01 0.24

Panel B: Factor Model. Parallel Trends Hold

Bias
�
τ̂6

�
MSE

�
τ̂6

�
Bias

�
τ̂7

�
MSE

�
τ̂7

�
Bias

�
τ̂8

�
MSE

�
τ̂8

�

TWFE 0.00 0.11 0.00 0.43 0.01 0.95

TWFE Imputation 0.00 0.94 0.00 1.67 0.01 2.60

TWFE Imputation

with Covariates

0.00 0.17 0.00 0.29 0.01 0.44

Factor Imputation -0.00 0.02 -0.00 0.03 0.00 0.05

Panel C: Factor Model. Parallel Trends Do Not Hold

Bias
�
τ̂6

�
MSE

�
τ̂6

�
Bias

�
τ̂7

�
MSE

�
τ̂7

�
Bias

�
τ̂8

�
MSE

�
τ̂8

�

TWFE -1.63 2.77 -3.27 11.05 -4.90 24.84

TWFE Imputation -4.90 24.81 -6.53 44.12 -8.16 68.93

TWFE Imputation

with Covariates

-0.92 1.06 -1.22 1.88 -1.53 2.93

Factor Imputation 0.01 0.03 0.01 0.05 0.02 0.09

Notes. This table presents a set of simulations with 10000 simulations. Each panel contains one of three

data-generating processes described in the text. Each row in a panel consists of one of the four treatment effect

estimators as described in the text. The columns report average bias and mean-squared error for the three

post-treatment treatment effects.
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Figure 1 — Bias of TWFE Imputation with Covariates
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Notes. This figure plots the average and empirical 95% confidence intervals for treatment effect estimates in

the final period, τ̂8. We estimate the TWFE imputation estimator that includes wiβt linearly in the model

and our the factor imputation we propose using wi instead as an instrument. We vary the signal to noise

ratios of wi to make it a better or worse measure for the factor loading. For each signal to noise ratio, we run

5000 simulations.

noisy measure. To highlight the problems with noisy proxies for factor loadings, Figure

1 presents a set of simulation results where the covariate wi has different amount of

noise added in. In particular, we choose different values of Var(ξi) to have different

signal-to-noise measures. The signal-to-noise definition is

signal to noise ratio=
Var(γi)

Var(γi) + Var(ξi)
=

1

1+ Var(ξi)/Var(γi)
(31)

For each signal to noise ratio, we estimate the TWFE imputation estimator with covariates

and the factor model imputation estimator. Figure 1 presents the results of estimates

for τ8. At one extreme, where the signal to noise ratio is approximately 0, i.e. wi is

white noise, the estimated bias for the TWFE imputation estimator is the same as the

TWFE imputation estimator that does not include covariates. At the other extreme,

where the signal to noise ratio is approximately 1, i.e. wi = γi, the bias is completely

removed. Regardless, the factor model imputation estimator is unbiased in all cases.

This echos the results of Kejriwal et al. (2021). However, we note that our results are

still generous to estimators that use such noisy measure because we generate wi as an
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unbiased estimator of γi. The instrument requirement in Assumption 5 does not require

this mean restriction for identification of θ .

6 — Application

We now present an empirical application that revisits the literature on estimating county-

level labor markets effects of Walmart store openings. The primary identification concern

is that Walmart targets where to open stores based on local economic trajectories

(Neumark et al. 2008). For instance, if Walmart targeted areas with positive underlying

economic fundamentals in anticipation of macroeconomic trends, then the non-treated

counties would fail to be a valid counterfactual group in the TWFE model. Indeed, we

observe significant differences in both retail and wholesale retail employment trends for

treated counties in our data.15

Volpe and Boland (2022) point to conflicting results on retail employment with

two leading papers finding effects of opposite signs. Employing different instrumental

variable strategies, Basker (2005) finds positive effects on retail employment while

Neumark et al. (2008) finds negative effects. For this reason, we revisit this question

with an alternative strategy to reconcile results.

We construct a dataset following the description in Basker (2005). In particular,

we use the County Business Patterns dataset from 1964 and 1977-1999, subsetting

to counties that (i) had more than 1500 employees overall in 1964 and (ii) had non-

negative aggregate employment growth between 1964 and 1977.16 We use a geocoded

dataset of Walmart openings from Arcidiacono et al. (2020) to construct our treatment

variable. Our treatment dummy is equal to one if the county has any Walmart in that

year and our group variable denotes the year of entrance for the first Walmart in the

county. 17 We drop any county that was treated with g ≤ T0 = 1985 so that we we have

15. Wholesale retail employment corresponds to NAICS 2-digit code 42 and retail employment corre-

sponds with NAICS 2-digit codes 44 and 45.

16. We use the 1977-1999 dataset with imputed values from Eckert et al. (2021).

17. For our sample 82.4% of our counties receive ≤ 1 Walmart and another 10.4% receive two Walmarts
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9 pre-periods to use when estimating the factor model. Our remaining sample consists

of 1274 counties (about 500 fewer than the sample used in Basker (2005) since we drop

units treated between 1977 and 1985).

First, we estimate the two-way fixed effect imputation estimator proposed by Borusyak

et al. (2022) and estimate event-study effects on (log) retail and wholesale retail em-

ployment. In particular, we use the following model

log(yi t) = µi +λt +

13∑

ℓ=−22

τℓdℓ
i t
+ ui t (32)

where i denotes county, t denotes year, yi t is either retail or wholesale retail employment,

and dℓ
i t
= 1(t − gi) = ℓ are indicator variables denoting event-time. Results of the event-

study estimates are presented in panel (a) of Figure 2 and Figure 3.

For both retail and wholesale retail employment, counties receiving Walmarts had

faster employment trends relative to the control counties, emphasizing our concern over

endogenous opening decisions. In the spirit of Freyaldenhoven et al. (Forthcoming)

and Rambachan and Roth (2022), we draw the line of best fit for the 15 most-recent

pre-treatment estimates (τℓ for −15 ≤ ℓ < 0) and extend it into the post-treatment

estimates. For both retail and wholesale retail employment, the pre-trend lines would

suggest that a large portion of the estimated effect is a continuation of already existing

trends. However, there still appears to be positive effects on retail employment (if the

pre-trend violations were indeed linear in the post-treatment period). The goal of our

generalized imputation estimator is to remove the pre-existing economic trends in order

to isolate the true treatment effects.

We now implement the generalized imputation estimator proposed in Section 3. For

our instruments wi, we use the following variables at their 1980 baseline values: share

of population employed in manufacturing, shares of population below and above the

poverty line; shares of population employed in the private-sector and by the government,

in the sample, alleviating some concerns of making treatment binary.
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Figure 2 — Effect of Walmart on County log Retail Employment

(a) TWFE Imputation Estimator

−20 −10 0 10

−0.1

0.0

0.1

0.2

Event Time

C
o
e
ffi

ci
e
n

t

(b) Generalized Imputation Estimator
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Notes. This figure plots point estimates and bootstrapped 95% confidence intervals for event-study

treatment effects on log retail employment. Panel (a) estimates effects using the TWFE imputation

estimator proposed in Gardner (2021). Panel (b) estimates effects using the generalized imputation

estimator we propose in Section 3 with p = 2 and using the following instruments: 1980 share of

population employed in manufacturing, 1980 shares of population below and above poverty line; 1980

shares of population employed in private-sector and by the government, 1980 shares of population with

high-school degree and college degree. The red lines correspond to a linear estimate of pre-treatment

point estimates for event time -15 to -1 and is extended into the post-treatment periods.

and shares of population with high-school and college degrees. All of these values

are obtained from 1980 Census Tables accessed from Manson (2020). Intuitively, we

think these instruments capture the general macroeconomic trends that are driving

differential economic growth in the 1980s and 1990s. We use baseline shares to prevent

our instruments from picking up on contemporaneous economic shocks that could be

correlated with Walmart opening. Note that instead of estimating ATT(g, t), we estimate

ATTℓ pooling across (i, t) with ℓ= t − gi as described after Theorem 3.1.

The results of our estimator are presented in panel (b) of Figure 2 and Figure 3.18

For retail employment, there is basically no pre-trend violations with the pre-treatment

point estimates centered on zero. After removing the pre-existing economic trends, the

18. We carry out the test to determine the correct number of factors p following the discussion in Ahn

et al. (2013). For retail, the p-value of the over-identification test were as follows: p = 0 with a p-value of

1.56e-5; p = 1 with a p-value of 0.001; p = 2 with a p-value of 0.133. Since p = 2 is the first value where

we fail to reject the null at a 10% level, we set p = 2. Similarly, we selected p = 1 for wholesale retail

since the p-values were: p = 0 with a p-value of 0.049; and p = 1 with a p-value of 0.40.
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Figure 3 — Effect of Walmart on County log Wholesale Retail Employment

(a) TWFE Imputation Estimator
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(b) Generalized Imputation Estimator
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Notes. This figure plots point estimates and bootstrapped 95% confidence intervals for event-study

treatment effects on log wholesale retail employment. Panel (a) estimates effects using the TWFE

imputation estimator proposed in Gardner (2021). Panel (b) estimates effects using the generalized

imputation estimator we propose in Section 3 with p = 1 and using the following instruments: 1980 share

of population employed in manufacturing, 1980 shares of population below and above poverty line; 1980

shares of population employed in private-sector and by the government, 1980 shares of population with

high-school degree and college degree. The red lines correspond to a linear estimate of pre-treatment

point estimates for event time -15 to -1 and is extended into the post-treatment periods.

point estimates are smaller than estimated by the TWFE model with an estimated effect

on employment of around 6% on average in the post-treatment periods. Evaluated

at the median baseline retail employment of 1417 employees, this would imply an

increase in about 85 jobs which is in line with the estimates of Basker (2005) and Stapp

(2014) who use alternative instrumental variables strategies. It is important to note that

post-treatment estimates are noisier than the TWFE estimates largely due to estimating

θ . This problem is at the worst for the furthest event-times largely due to very few

counties being averaged over in the last few bins. We view this as a worthy trade-off

since the point estimates are much less likely to be biased.

Turning to wholesale retail employment, we see a similar story with our estimator

removing most of the pre-trend violations. In this case, however, the estimated effects

flip signs with an estimated effect of around -6% although they are not statistically

significant. Evaluated at the 1977 median wholesale retail employment of 410, this

32



Figure 4 — Synthetic Control Style Plot of the Effect of Walmart on County Employ-

ment

(a) log Retail Employment
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Average of ˆ̃yi t (0)

(b) log Wholesale Retail Employment
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Notes. This figure plots the observed ỹi t and the imputed ˆ̃yi t(0) for treated units averaged over event time

ℓ = t − gi . We impute within-transformed potential outcome using the generalized imputation estimator we

propose in Section 3 using the following instruments: 1980 share of population employed in manufacturing,

1980 shares of population below and above poverty line; 1980 shares of population employed in private-sector

and by the government, 1980 shares of population with high-school degree and college degree.

suggests a decrease of about 25 jobs which is very similar to what Basker (2005) finds.

Overall, we find effects very much in line with those reported in Basker (2005).

As we discuss in Section 3.2, one reason the synthetic control literature is increasingly

popular is that it allows researchers to transparently plot the counterfactual estimates of

y(0) for the treated unit. For this reason, we plot the observed ỹi t and the imputed ˆ̃yi t(0)

for (log) retail and wholesale retail employment in Figure 4. In pre-treatment (ℓ < 0),

the imputed estimate, our ‘synthetic control’ follows closely with the observed ỹi t giving

us confidence in our ability to approximate the factor structure. In the post-periods, we

see the observed counties and the imputed untreated version of the counties pulling

apart. The gap between the two are our estimated treatment effects.

To highlight the importance of the uncertainty from estimation of Θ, in Figure 5

we recreate point estimates from our generalized imputation estimator using the non-

parametric standard errors that are derived in Theorem 3.2. The standard errors on

point estimates are far smaller with estimates becoming strongly significant in Whole-

sale Retail Employment. This result shows an important step for future research in

finding more efficient estimates of the factors. For instance, we consider the common

correlated effects estimator in a follow-up paper. The CCE model generally implies that
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Figure 5 — Generalized Imputation Estimator for Effect of Walmart on County

Employment with Naive Standard Errors

(a) log Retail Employment
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(b) log Wholesale Retail Employment
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Notes. This figure recreates estimates from panel (b) of Figure 2 and Figure 3 with confidence intervals

formed ignoring the uncertainty deriving from first-stage estimates of θ .

the nonparametric standard errors are valid when there is a common factor model for

time-varying covariates.

7 — Conclusions

We consider identification and inference of functions of heterogeneous treatment effects

in a linear panel data model. We show how to relax the usual parallel trends assumption

by introducing a linear factor model in the error. Our main identification result shows

that a consistent estimator of the unobserved factors is all that one needs to estimate the

dynamic treatment effect coefficients. This result is general and can be implemented by

a number of modern interactive fixed effects estimators, such as quasi-long-differencing,

common correlated effects, or principal components, allowing for both large and small

numbers of pre-treatment time periods. Further work can demonstrate both theoretical

and finite-sample properties of these various estimators of the factors and how they

affect to ATT estimation.

While a factor model nests the usual two-way fixed effects error structure, we

explicitly model the level fixed effects in addition to the factors. This setting allows us
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to provide useful tests for the sufficiency of the TWFE estimator. We also show that

one must remove the unit and time fixed effects in a particular way so as to preserve

the common factor structure in all time periods for all individuals. We provide such a

transformation and prove a unifying identification result for imputation estimators of

ATTs.

We demonstrate how to implement the quasi-long-differencing transformation to

estimate ATTs. This method provides a number of benefits in applications with a small

number of time periods. Namely, it allows us to easily test fundamental features of the

model, like no treatment anticipation and systemic differences in heterogeneity among

treated groups. Inference is straightforward and can be applied to interesting aggregates

as discussed in Callaway and Sant’Anna (2021).
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A — Proofs

Proof of Lemma 2.1

We first derive the averages defined in Section 2.1 in terms of the potential outcome

framework:

y∞,t =
1

N∞

N∑

i=1

Di∞ yi t = µ∞ +λt + ftγ∞ + ut,∞

y i,t≤T0
=

1

T0

T0∑

t=1

yi t = µi +λt<T0
+ f t<T0

γi + ui,t<T0

y∞,t<T0
=

1

N∞T0

N∑

i=1

T0∑

t=1

Di∞ yi t = µ∞ +λt<T0
+ f t<T0

γ∞ + u∞,t<T0

where µ∞ and γ∞ are the averages of the never-treated individuals’ heterogeneity and

f t<T0
and λt<T0

are the averages of the time effects before anyone is treated. The error

averages have the same interpretation as the outcome averages.

The definition of τi t is the difference between treated and untreated potential

outcomes for unit i at time t, so for any (i, t), yi t = di t yi t(1) + (1 − di t)yi t(∞) =
di tτi t + yi t(∞). Then

ỹi t = di tτi t + f ′
t
γi − f

′
t<T0
γi − f ′

t
γ∞ + f t<T0

γ∞ + ui t − ut,∞ − ui,t<T0
+ u∞,t<T0

= di tτi t + ( ft − f t<T0
)′(γi − γ∞) + ui t − ut,∞ − ui,t<T0

+ u∞,t<T0

Taking expectation conditional on Gi = g gives E
�
ui t − ui,t<T0

| Gi = g
�
= 0 by Assump-

tion 4 and E
�
u∞,t<T0

− ut,∞ | Gi = g
�
= E

�
u∞,t<T0

− ut,∞
�
= 0 by random sampling

and iterated expectations.

□

Proof of Theorem 2.1

E

�
ỹi t − P( f̃ ′

t
, F̃t<g) ỹi,t<g | Gi = g

�
= E [ ỹi t(1) | Gi = g]−E

�
P( f̃ ′

t
, F̃t<g) ỹi,t<g | Gi = g

�
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We use the fact that

E

�
P( f̃ ′

t
, F̃t<g) ỹi,t<g | Gi = g

�
= E

�
f̃ ′
t
(F̃ ′

t<g
F̃t<g)

−1 F̃ ′
t<g

ỹi,t<g | Gi = g
�

= E
�

f̃ ′
t
(F̃ ′

t<g
F̃t<g)

−1 F̃ ′
t<g

�
F̃t<g γ̃i + ũi,t<g

�
| Gi = g

�

= E
�

f̃ ′
t
γ̃i + f̃ ′

t
(F̃ ′

t<g
F̃t<g)

−1 F̃ ′
t<g

ũi,t<g | Gi = g
�

= E [ ỹi t(∞) | Gi = g]

The second equality hold by Assumption 2 and the fact that yi,t<g = yi,t<g(0). The final

equality holds by Lemma 2.1 and Assumption 2.

□

Proof of Theorem 2.2

Let A be a p × p rotation matrix and let F ∗ = FA. Note that both inverses in the

permutation matrix definition exist for every g because Rank(F̃ ∗) = Rank(F̃). Since

FA∗ =




F̃t<gA

F̃t≥gA



 =




F̃ ∗

t<g

F̃ ∗
t≥g





the result holds for any post-treatment row of the factors. Then we have

P(F̃t≥g , F̃t<g) = F̃t≥g(F̃
′
t<g

F̃t<g)
−1 F̃ ′

t<g

= F̃t≥gA(A′ F̃ ′
t<g

F̃t<gA)−1A′ F̃ ′
t<g

= F̃ ∗
t≥g
(F̃ ∗

t<g
′ F̃ ∗

t<g
)−1 F̃ ∗

t<g
′

= P(F̃ ∗
t≥g

, F̃ ∗
t<g
)

where the second equality holds because A and (F̃ ′
t<g

F̃t<g) are full rank.

□
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Proof of Theorem 3.1

Asymptotic normality is a consequence of well-known large sample GMM theory. See,

for example, Hansen (1982).

We only need to derive the asymptotic variances. Note that gi∞(θ )⊗ gi g(θ ,τg) = 0

(from the Di g terms) and gih(θ ,τh)⊗ gik(θ ,τk) = 0 almost surely uniformly over the

parameter space for all g ∈ G and h ̸= k. The covariance matrix of these moment

functions, which we denote as ∆, is a block diagonal matrix.

∆ =





E [gi∞(θ )gi∞(θ )
′] 0 0 . . . 0

0 E

�
gi gG
(θ ,τgG

)gi gG
(θ ,τgG

)′
�

0 . . . 0

...
. . .

0 0 0 . . . E
�
gi g1
(θ ,τg1

)gi g1
(θ ,τ)′

�





We write the individual blocks as ∆g for g ∈ G ∪ {∞}. The gradient is also simple to

compute because all of the moments are linear in the treatment effects. We define the

overall gradient D and show it is a lower triangular matrix which we write in terms of

its constituent blocks:

D =





E [∇θ gi∞(θ )] 0 0 . . . 0

E

�
∇θ gi gG

(θ ,τgG
)
�
−IT−gG+1 0 . . . 0

...
. . .

E

�
∇θ gi g1

(θ ,τg1
)
�

0 0 . . . −IT−g1+1





where we write the blocks in the first column as Dg for g ∈ G ∪ {∞}. The diagonal is

made up of negative identity matrices because E
h

Di gh

P(Di gh
=1)

i
= 1.

Given we use the optimal weight matrix, the overall asymptotic variance is given by

(D′∆−1D)−1. ∆ is a block diagonal matrix so its inverse is trivial to compute. First, we
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have

∆
−1D =





∆
−1
∞D∞ 0 . . . 0

∆
−1
gG

DgG
−∆−1

gG
. . . 0

...
. . .

∆
−1
g1

Dg1
0 . . . −∆−1

g1





The transpose of the gradient matrix is

D′ =





D′∞ D′
gG

. . . D′
g1

0 −IT−gG+1 . . . 0

...
. . .

0 0 . . . −IT−g1+1





so that we get

D′∆−1D =





∑
g∈G∪{∞}D

′
g
∆
−1
g

Dg −D′
gG
∆
−1
gG

. . . −D′
g1
∆
−1
gG

−∆−1
gG

DgG
∆
−1
gG

. . . 0

...
. . .

−∆−1
g1

Dg1
0 . . . ∆

−1
g1





We write this matrix as 


A B

C D





where A=
∑

g∈G∪{∞}D
′
g
∆
−1
g

Dg and D = diag{∆−1
g
}g∈G . We then apply Exercise 5.16 of

Abadir and Magnus (2005) to get the final inverse. The top left corner of the inverse is
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F−1 where

(F)−1 = (A− BD−1C)−1

=

 
∑

g∈G∪{∞}
D′

g
∆
−1
g

Dg −
�∑

g∈G
D′

g
∆
−1
g

Dg

�!−1

= (D′∞∆
−1
∞D∞)

−1

= Avar(
p

N(bθ − θ ))

The rest of the first column of matrices takes the form

−D−1C F−1 =





DgG

...

Dg1




(D′∞∆

−1
∞D∞)

−1

=





DgG
(D′∞∆

−1
∞D∞)

−1

...

Dg1
(D′∞∆

−1
∞D∞)

−1





and the rest of the first row is −F−1BD−1 = (−D−1B′F−1)′ = (−D−1C F−1)′.

Finally, the bottom-right block, which also gives the asymptotic covariance matrix of

the ATT estimators, is

D−1 + D−1C F−1BD−1 = D−1 +





DgG
(D′∞∆

−1
∞D∞)

−1D′
gG

. . . DgG
(D′∞∆

−1
∞D∞)

−1D′
g1

. . .

Dg1
(D′∞∆

−1
∞D∞)

−1D′
gG

. . . Dg1
(D′∞∆

−1
∞D∞)

−1D′
g1





The g ’th diagonal elements of the resulting matrix is ∆g + Dg(D
′
∞∆

−1
∞D∞)

−1D′
g
.

□
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Proof of Theorem 3.2

We derive the limiting theory by multiplying Ò∆g by (Ng − 1)/Ng which produces the

same limit as N →∞. We write

Ng − 1

Ng

Ò∆g =
1

Ng

N∑

i=1

Di g
Ò∆i g

Ò∆′
i g
− bτgbτ′g

We already know that bτg

p→ τg by Theorem 3.1. Note that

1

Ng

N∑

i=1

Di g
Ò∆i g

Ò∆′
i g
=

�
1

Ng

N∑

i=1

Di g ỹi,t≥g ỹ ′
i,t≥g

�
−
�

1

Ng

N∑

i=1

Di g ỹi,t≥g ỹ ′
i,t<g

�
P(F̃t≥g(

bθ ), F̃t<g(
bθ ))′

− P(F̃t≥g(
bθ ), F̃t<g(

bθ ))
�

1

Ng

N∑

i=1

Di g ỹi,t<g ỹ ′
i,t≥g

�

− P(F̃t≥g(
bθ ), F̃t<g(

bθ ))
�

1

Ng

N∑

i=1

Di g ỹi,t<g ỹ ′
i,t≥g

�
P(F̃t≥g(

bθ ), F̃t<g(
bθ ))′

Given P(F̃t≥g(
bθ ), F̃t<g(

bθ )) is equal to its infeasible counterpart P(F̃t≥g , F̃t<g) plus a

Op(N
−1/2) term, Assumption 1 and the weak law of large numbers imply

1

Ng

N∑

i=1

Di g
Ò∆i g

Ò∆′
i g
− bτgbτ′g

p→ E
�
gi g(θ ,τg) | Gi = g

�
=∆g

The inverse exists with probability approaching one by Assumption 6.

□
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