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Abstract

We provide new and computationally attractive methods, based on jackknifing by
cluster, to obtain cluster-robust variance matrix estimators (CRVEs) for linear regres-
sion models estimated by least squares. These estimators have previously been com-
putationally infeasible except for small samples. We also propose several new variants
of the wild cluster bootstrap, which involve the new CRVEs, jackknife-based bootstrap
data-generating processes, or both. Extensive simulation experiments suggest that the
new methods can provide much more reliable inferences than existing ones in cases
where the latter are not trustworthy, such as when the number of clusters is small
and/or cluster sizes vary substantially.
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1 Introduction

In applications of linear regression models to many fields of economics and other disciplines,
it is common to divide the sample into disjoint clusters and employ a cluster-robust variance
matrix estimator (or CRVE) for inference. These estimators are based on the assumption
that the disturbances of the regression model are uncorrelated across clusters, but they
allow for arbitrary patterns of dependence and heteroskedasticity within each cluster. The
literature on cluster-robust inference has grown rapidly in recent years. Cameron and Miller
(2015) is a classic survey article. Conley, Gongalves and Hansen (2018) surveys a broader
class of methods for dependent data. MacKinnon, Nielsen and Webb (2022a) provides a
guide that explores the implications of key theoretical results for empirical practice, with an
emphasis on bootstrap methods.

There are several CRVEs for ordinary least squares (OLS) estimates of linear regression
models; see Section 2. However, mainly for computational reasons, almost all empirical work
to date has made use of the simplest one, which is usually known as CV; and is the default
in Stata. Cluster-robust tests and confidence intervals based on CV; may or may not yield
reliable inferences. Whether they do so depends primarily on the number of clusters G and
how homogeneous these are. When all clusters are roughly equal in size and approximately
balanced, asymptotic inference based on CV; seems to be fairly reliable whenever G is at
least moderately large (say 50 or more). However, there are at least two situations in which
cluster-robust t-tests and Wald tests are at risk of severe over-rejection, and cluster-robust
confidence intervals are at risk of severe under-coverage, even when G is very large. The first
is when one or a few clusters are much larger than the rest, and the second is when the only
“treated” observations belong to just a few clusters; Djogbenou, MacKinnon and Nielsen
(2019) discusses the first case, and MacKinnon and Webb (2017, 2018) discuss the second.

Alternatives to CV; have been known since Bell and McCaffrey (2002), but computational
difficulties have kept them from widespread use. As we discuss in Section 3, however, recent
developments have made it much faster to compute CRVEs based on the cluster jackknife,
notably the one known as CVj, even for large samples. This makes it interesting to compare
the finite-sample performance of ¢-tests based on CV; with those of similar procedures based
on CV3. We do this in Sections 6 and 7.

Bootstrap tests are often more reliable in finite samples than asymptotic tests. The best
existing procedure seems to be the wild cluster restricted (or WCR) bootstrap proposed
in Cameron, Gelbach and Miller (2008). There is also a closely related procedure called
the wild cluster unrestricted (or WCU) bootstrap, which generally does not work quite as

well. The asymptotic validity of these procedures is proved in Djogbenou et al. (2019),



which also considers their higher-order asymptotic properties. Until a few years ago, the
WCR and WCU bootstraps were computationally expensive for large samples, but that is
no longer the case. Roodman, MacKinnon, Nielsen and Webb (2019) describes a remarkably
efficient implementation in the Stata package boottest, and MacKinnon (2022) discusses
other methods for fast computation. The boottest routines are now available as a Julia
package which can be also be called from R, Python, and Stata.

The next section establishes notation and briefly reviews the literature on asymptotic
cluster-robust inference for the linear regression model, including two well-known alternatives
to CVy, which are often called CVy and CV3. Then Section 3 provides a new computational
method for CVj3, which is conceptually simple and, in many cases, extremely fast, as we
demonstrate in Section 4.

Section 5 discusses several ways of modifying the wild cluster bootstrap. One modification
simply replaces CV; by CV3. The other involves modifying the bootstrap data-generating
process, or DGP. Modern treatments of the wild cluster bootstrap, such as MacKinnon et al.
(2022a) and MacKinnon (2022), express the bootstrap DGP as a function of the empirical
scores. We show how to make the bootstrap DGP more closely resemble the (unknown) true
one by transforming the residuals before forming the scores. The transformation we propose
is based on the jackknife. Accordingly, it does not actually require any calculations that
explicitly involve residuals. This makes it very fast when the number of clusters is small
relative to the sample size, even when the latter is extremely large.

Simulation results in Sections 6 and 7 suggest that our new versions of the WCR and WCU
bootstraps perform better, and sometimes much better, than the original ones. This is par-
ticularly true when cluster sizes vary greatly. Section 8 presents an empirical illustration in

which our methods are likely to be more reliable than existing ones, and Section 9 concludes.

2 The Linear Regression Model with Clustering

Consider the linear regression model y; = x]8 + ;. If we divide the data into G disjoint
clusters, where the allocation of observations to clusters is assumed to be known, this can
be written as

Yy =X,8+u, g=1,...,G. (1)

The g™ cluster has N, observations, and the total sample size is N = Zngl Ny In (1),
X, is an N, x k matrix of regressors, B is a k-vector of coefficients, y, is an Ng-vector
of observations on the regressand, and wu, is an N,-vector of disturbances (or error terms).
Stacking the y, yields the N-vector y, stacking the X, yields the N x k matrix X, and
stacking the u, yields the N-vector w, so that (1) can be rewritten as y = X3 + u.

3



The OLS estimator of B is
B=(X"X)"X"Ty=p8+(X'X)"'XTu, (2)

where the second equality depends on the assumption that the data are actually generated

by (1) with true value By. Thus, if s, = XgTug is the score vector for the ¢g** cluster,

A a G -1 G
B—Bo=(X'X)"> X u, = (Z XgTXg> > s, (3)
g=1 g=1 g=1
Obtaining valid inferences evidently requires assumptions about the score vectors. For a
correctly specified model, E(s,) = 0 for all g. We further assume that

E(SQS;) = EQ and E(SQS;’) - 07 gag/ = 1) R Ga gl 7é g, (4)

where ¥, is the symmetric, positive semidefinite variance matrix of the scores for the g™
cluster. The second assumption in (4) is crucial. It states that the scores for every cluster
are uncorrelated with the scores for every other cluster.

From the rightmost expression in (3), we see that the distribution of B depends on the
disturbance subvectors u, only through the distribution of the score vectors s,. It follows

A

immediately that an estimator of Var(3) should be based on the usual sandwich formula,
G
XX) (X 3,) (X X) o)
g=1

Every cluster-robust variance estimator replaces the 3, in (5) by functions of the X, and
the residual subvectors ,. There is more than one way to do this, and alternative CRVEs

employ different approaches.

T
g

where 8§, = X gT 1, is the empirical score vector for the g cluster. If in addition we multiply

Since X, is the expectation of sgs;, the simplest approach is just to replace it by 8,8

by a correction for degrees of freedom, we obtain

. G
CVi:  Vi(B) = (Gf(g( le P (XTX)—1<g§j:1 §g§;>(XTX)‘1. (6)

This is by far the most widely used CRVE in practice, and it is the default in Stata. The

leading scalar is chosen so that, when G = N, ‘71(3) reduces to the familiar HC; estimator

(MacKinnon and White 1985) that is robust only to heteroskedasticity of unknown form.
Inference about B is typically based on cluster-robust t¢-statistics and Wald statistics.

If B; denotes the j™ element of B and fy; is its value under the null hypothesis, then the



appropriate t-statistic is

B 603
Sel(ﬁj)

where 6}- is the OLS estimate, and sel(ﬁj) is the square root of the j diagonal element of

(7)

Vl(ﬁA) Under extremely strong assumptions (Bester, Conley and Hansen 2011), it can be
shown that ¢; asymptotically follows the ¢(G — 1) distribution. Conventional “asymptotic”
inference is based on this distribution.

We should expect inferences based on CV; to be reliable if the sum of the s,, suitably
normalized, is well approximated by a multivariate normal distribution with mean zero, and
if the s, are well approximated by the 8,. But asymptotic inference can be misleading
when either or both of these approximations is poor; see Djogbenou et al. (2019) and Mac-
Kinnon et al. (2022a). Whether or not the first approximation is a good one depends on
the model and the data, and there is not much the investigator can do about it. But
the second approximation can, in principle, be improved by using modified empirical score
vectors instead of the §,.

Two CRVEs based on this idea, which today are usually known as CVy and CV3, were
proposed (under different names) in Bell and McCaffrey (2002). These are the cluster analogs
of the heteroskedasticity-consistent variance matrix estimators HCy and HC3. MacKinnon
and White (1985) proposed HC3 based on the jackknife, after discussing (and naming) HC
and HC,. All of these estimators are designed to compensate, in different ways, for the
shrinkage and intra-cluster correlation of the residuals induced by least squares.

The CV;, variance matrix is
CVy:  Wa(B)=(XTX)" ( Z 843, ) (XTX)!, (8)
where the modified score vectors s, are defined as
=X, M, '*a,. (9)

Here My, = Iy, — X4 (X X)X J is the diagonal block corresponding to the ¢g** cluster
of the projection matrix My, which satisfies & = Mxu, and Mg*;/ 2 is the symmetric
square root of its inverse. The CV; estimator has been recommended in Imbens and Kolesar
(2016) and Pustejovsky and Tipton (2018). Both of these papers also provide methods for
computing critical values based on ¢t and F distributions with computed degrees of freedom;
MacKinnon and Webb (2018) provides some evidence on how well these work.

The CVj3 variance matrix is very similar to CVs, but, as we explain in Section 3, it is



based on the jackknife. The usual definition is

-1

A,

CVy:  Vi(B) = (XTX)~ <Zs $ > (XTX)!, (10)

G

where now the modified score vectors §, are defined as
Tag—1 s
=X, M, 1, (11)

The rescaling factor (G —1)/G in (10) is the analog of the factor (N — 1)/N that occurs in
jackknife variance matrix estimators at the individual level. It compensates for the tendency
of the jackknife estimates to be too spread out. This factor implicitly assumes that all
clusters are the same size and perfectly balanced, with disturbances that are independent
and homoskedastic; an alternative rescaling factor based on weaker assumptions is proposed
in Niccodemi and Wansbeek (2022).

Although (8) and (10) look simple enough, computing either CVy or CV3 has until recently
been extremely expensive, or even computationally infeasible, when any of the IV, are large.
The problem is that, before computing (11), we apparently need to rescale the residual vector
u, for each cluster. This involves storing and inverting the N, x N, matrix M,,. Before
computing (9), we also need to compute the symmetric square roots of the My,, and this
requires calculating their eigenvalues and eigenvectors. Of course, when all clusters are very
small, this is not difficult. When G = N, CV; reduces to HC,, and CV3 reduces to HCj,
both of which can be computed very quickly.

Niccodemi et al. (2020) has recently proposed a method that is much faster for large
clusters. Versions of this method apply to both CV, and CV;. Instead of rescaling the
residual vectors, it calculates the score vectors s, or 8, directly using equations that do not
involve any N, x N, matrices. A modified version of this method, which appears to be new,

works as follows. First, form the k X k& matrices
A= (XTX)'PX]X(XTX)V? g=1,...,G. (12)
Then, for (8), calculate the rescaled score vectors
5, = (XTX)V2(1, — A)"VAXTX) V28, g=1,...,G, (13)
and, for (10), calculate the rescaled score vectors

S, = (XTX)V2(1, - A) YXTX) 2%, g=1,...,G. (14)



These rescaled score vectors are used in (8) and (10) as before. Unless all the clusters are
very small, computing CV, and CV3 using (13) and (14) is much faster than computing them
using (9) and (11); see Section 4.

In the case of CV3, however, an even faster and more intuitive method is available. This
jackknife-based method, which we introduce in the next section, can be extremely fast when

N islarge and G is much smaller than /V, so that at least some clusters are large; see Section 4.

3 Jackknife Variance Matrix Estimators

The jackknife is a simple method for reducing bias and estimating standard errors by omitting
observations sequentially. Tukey (1958) suggested using the jackknife to estimate standard
errors, and Miller (1974) is a classic reference. In this section, we propose efficient methods,
based on the cluster jackknife, for computing two closely related CRVEs. Unless all clusters
are extremely small, these methods are faster than the ones discussed in the preceding
section. The key idea of the cluster jackknife is to compute G sets of parameter estimates,
each of which omits one cluster at a time.

The OLS estimates of 8 when each cluster is omitted in turn are
BY = (X'X - X)X, " (XTy-X]y,), g=1,...,G. (15)

In MacKinnon, Nielsen and Webb (2022b), it is recommended that investigators should
routinely calculate the ,@ (9) and examine them, perhaps using graphical methods. When B (h)
differs greatly from B for one or more coefficients of interest, it is evident that cluster & is
highly influential. On the other hand, when the B(g) do not vary much across the omitted
clusters, no individual cluster is influential.

It is easy to obtain the B (9) in a computationally efficient manner. We start by calculating
the cluster-level matrices and vectors

XX, and XgTyg, g=1,...,G. (16)

g

Unless G is very large, this involves very little cost beyond that of computing ,3 , because we
can use the quantities in (16) to construct X "X and X "y and then use (2) to compute B.
For typical values of k, it should then be reasonably inexpensive to compute B(g) for every
cluster using (15). The main cost, beyond that of computing ,@' , is that we need to calculate
the inverse (or possibly the generalized inverse) of a k x k matrix for each of the B (9),

A

The cluster jackknife estimator of Var(8) is the cluster analog of the usual jackknife



variance matrix estimator given in Efron (1981), among others. It is defined as

. G-1E& _ _
CVsy:  Viy(B —Z (B9 —B)T, (17)

where 8 = G™! Zngl B(g) is the sample average of the B 9). A special case of this estimator
with G = N was applied to linear regression models with independent, heteroskedastic
disturbances in MacKinnon and White (1985) and called HC3. Notice that (17) calculates the
variance matrix around B. Centering around 8 is common in jackknife variance estimation,
but it is also common to center around B, as in Bell and McCaffrey (2002).

There is a very close relationship between Viy(8) and Vi(8). In fact,

A A

Vi(B X_: —B)(BY —B)T, (18)

which is just (17) with B replaced by 8. This follows from (10) and (11) because

A A

(X'X) '8, =(X"X)'X, M, 0, =p—BY. (19)

Note that the summation in (18) is unchanged if B (9) — B is replaced by B — B(g)
Although the second equality in (19) is not new, it will turn out to be very useful in

Section 5, and so we now prove it. The middle expression in (19) can be written as
(X' X)X, My, — (X' X)X, M,'X, (X' X)"'XTy. (20)
Using the updating formula
(X'X-X,X,)'=(X"X)"+(X'X)'X,M_'X,(X"X), (21)

B can be written as the sum of four terms, the first of which is just 8. Thus the right-

hand side of (19) can be written as

(X' X)X, M ' X (XTX)"' Xy, + (X' X)Xy,

(22)
—(XTX)' X, M, ' X,( X X)X Ty.

The last term in (22) is identical to the last term in (20). The first two terms in (22) can be
rewritten as

(XTX) X] M, Py, + (X7 X)Xy,
where Py, = X (X' X)7' X is the g** diagonal block of the matrix Px = I — Mx; that



is, Py = I — M,,. Inserting this straightforwardly yields the result that

(XTX)_IX;—MQ_QIPQQZ/Q + (XTX)_IXJyg

) - B - - (23)
= (XTX) ng;nggl(I — Myg)yy + (XTX) IXJyg - (XTX) ngTMgglyg'

The right-hand side of (23) is the first term in (20), which proves the second equality in (19).

When N, = 1forall g, Vs 5( B ) is numerically equal to the original HC3 estimator proposed
in MacKinnon and White (1985), which is actually computed in a way similar to (10) and
(11), because this is the fastest method when each cluster contains just one observation.
The modern version of HC3, which uses ,é instead of B, seems to be due to Davidson and
MacKinnon (1993, Chapter 16). For this version, each residual is simply divided by the
corresponding diagonal element of Mx prior to computing the filling in the sandwich, and
the factor of (N — 1)/N is usually (but incorrectly) omitted.

Both cluster jackknife estimators may be used to compute cluster-robust ¢-statistics. In
view of the fact that there are G terms in the summation, it seems natural to compare these
with quantiles of the ¢(G — 1) distribution, as usual. These procedures should almost always
be more conservative than ¢-tests based on the widely-used CV; estimator. We expect CV3
and CV3; to be very similar in most cases, and there seems to be no good reason to expect
either of them to perform better in general. These issues will be investigated in Section 6,
where we conclude that it is reasonable to focus on CV;. MacKinnon et al. (2022b) describes
the Stata package summclust, which calculates CV3 and CV3j for a coefficient of interest.
It also calculates a number of summary statistics that may be used to assess the reliability

of cluster-robust inference.

4 Speed of Computation

Because the CV3 estimator has been challenging to compute until recently, it has rarely been
used in empirical work. Following Bell and McCaffrey (2002), computation has employed
what we call the “residual method” based on (11). To compute the modified score vector §,
for the g cluster, it uses the N,-vector of residuals @, and the N, x N, matrix M g_gl. Unless
every IV, is small, storing and inverting the M,, matrices is computationally expensive.
Indeed, for even moderately large values of the Ny, this can be effectively impossible, as we
demonstrate below.

A much faster method, recently proposed in Niccodemi et al. (2020) and improved slightly
in Section 2, uses (14) to obtain the modified score vectors §,. Since it operates directly on
the score vectors 84, we call it the “score method.” An even easier approach, proposed in

Section 3, computes the 8 using (15) and then calculates their variance matrix as (18).
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Figure 1: Timings for three ways to compute CVj

Time in Seconds

8092
2048 — Residual method
- k=20----------
512 k= 40 ----------
128 Score method
- fo = () seeeeeeeeresee
32 L = 4() seveoorsoseesses
8 Jackknife method
] k=20
24 k =40
1/2+
1/8 1 T T
1/32 1 T Ttereeeesssssssssssssia rYvyy

T r M

| | | | | |
16384 65536

| | | |
8§ 16 32 64 128 256 512 1024 4096

Notes: The sample size is N = 229 = 1,048,576. The number of clusters varies from 16 to 131,072. All
clusters have M = N/G observations, so that cluster sizes vary from 8 to 65,536. The number of regressors
k is either 20 or 40. Times required to compute B are included; see text. All computations were performed

in Fortran using one core of an Intel i9-10850K processor running at 3.6 GHz.

For obvious reasons, we refer to this as the “jackknife method.”

In order to compare timings for the residual, score, and jackknife methods, we generate
two datasets with N = 229 = 1,048,576 observations and G equal-sized clusters, where G
varies from 16 to 131,072. Thus the cluster size M = N/G varies from 8 to 65,536. In one
case, there are 20 regressors, and in the other case there are 40.

Figure 1 shows the time in seconds, on a logy scale, for each of the three methods and
the two datasets. These times include the time required to compute the OLS estimates. The
residual method requires that ﬁ be computed first, but, for both the score and jackknife
methods, intermediate calculations can be used in the computation of ,é . For large clusters,
the cost of computing both the OLS estimates and CV3 using one or both of these methods
was sometimes less than the cost of computing the OLS estimates alone, even though we used
a reasonably efficient routine for the latter. This is probably because of cache congestion,
which seems to be alleviated by forming X 'X on a cluster-by-cluster basis. For large
clusters, the speed of all methods could almost certainly be increased by using a fast BLAS
implementation. However, in the interest of programming ease, we have not done this. The

better methods are already very fast.

10



In Figure 1, the horizontal axis shows cluster sizes M = N/G, which vary from 8 to
65,536. The residual method works well for very small values of M. It is actually faster
than the score method for M = 8 and M = 16. However, its cost rises very rapidly as M
increases. The largest value of M for which we were able to compute it was 2048. When
M = 4096, the program eventually ran out of memory on a machine with 32 GB of RAM.
This should have been expected, since storing 256 M,, matrices that are each 4096 x 4096
requires precisely 32 GB of memory (where each real number uses 8 bytes of storage and
a GB is 2% bytes). Of course, the memory limit could have been relaxed substantially by
storing only one of the M, matrices at a time, but it is clear from the figure that using the
residual method for M > 4096 would have been extremely expensive.

In contrast, both the score and jackknife methods become faster as M increases and G
consequently decreases. The jackknife method is always quicker than the score method. For
small values of M, it seems to be faster by a factor of about 12 when k£ = 20 and by a
factor of about 26 when k = 40. However, the advantage of the jackknife method gradually
diminishes as M increases. When M = 65,536, so that there are only 16 clusters, both
methods take almost the same amount of time.

Based on these results, the jackknife method for computing CVj is the procedure of
choice unless all clusters are tiny (say, N, < 4 for all g). For datasets with large clusters, an
efficient implementation of this method can compute both the OLS estimates and the CVj3
variance matrix in roughly the same amount of time as a reasonably fast program for the

OLS estimates alone.

5 New Versions of the Wild Cluster Bootstrap

The existing version of the WCR bootstrap often, but not always, works well. In this
section, we therefore propose three new versions of the WCR bootstrap, along with three
corresponding versions of the WCU bootstrap. These are based on two distinct modifications.
One involves replacing CV; by CVs. The other involves modifying the bootstrap DGP in
a fashion inspired by the modified scores used in the two variance matrices, in the hope
that these modified DGPs will provide better approximations to the unknown process that
actually generates the data.

We first discuss the bootstrap DGPs for existing versions of the wild cluster bootstrap,
expressing them in terms of scores instead of observations. This approach is intuitive and
computationally attractive (MacKinnon 2022). The DGP for the wild cluster bootstrap

is normally written as a process that generates N observations on a bootstrap dependent

11



variable y*. However, in terms of the GG score vectors, a generic wild cluster bootstrap DGP is

st=uvs, g=1,....,G, b=1,...,B, (24)

b is a random variate with mean 0 and variance 1, and

where b indexes bootstrap samples, v}
the 8, are empirical score vectors to be discussed below. In most cases, it seems to be best
to generate the v;b using the Rademacher distribution, which takes the values 1 and —1 with
equal probabilities (Davidson and Flachaire 2008; Djogbenou et al. 2019). However, since
the number of possible Rademacher bootstrap samples is only 2¢ — 1, it is better to use
a distribution with more mass points, such as the six-point distribution proposed in Webb
(2014), when G is less than about 12.

The vector §, in (24) is an empirical score vector for the g™ cluster. For the classic WCU
bootstrap, it is simply the unrestricted empirical score vector 8§, = X gT u,. For the classic

WCR bootstrap, it is the restricted empirical score vector 8, defined as
< _ w7 Ty A _
S,=X,y,— X, X8, g=1,...,G, (25)

where 8 is the vector of OLS estimates under the null hypothesis. Like B, 84 is a k-vector,
even though some elements of 8 may equal zero or satisfy other linear restrictions. The
bootstrap DGP (24) looks very much like the one for the wild score cluster bootstrap for
nonlinear models proposed in Kline and Santos (2012). In the context of (1), however, it is
just a different way of writing the bootstrap DGP for the wild cluster bootstrap.

In order to calculate a bootstrap P value or a bootstrap confidence interval, we need
to compute B bootstrap test statistics indexed by b. These depend only on the bootstrap
scores in (24) and the matrix (X " X)~". For each bootstrap sample, we use s’ to obtain a
bootstrap estimate, not of B itself, but of the vector § = 8 — 8, where 8 = 8 for the WCR
bootstrap and 8 = B for the WCU bootstrap. This estimate is simply

G
6 = (XTX)" Z = (XTX)'s?, (26)

where s*° Zg 1 ;b. When v*b = 1 for all g, the bootstrap sample is the same as the
original sample. In this very special case, 6*" = 0 for the WCU bootstrap, and 6% = ﬁ B
for the WCR bootstrap.

A good deal of computer time can be saved by evaluating only one element of 8% If we
are testing the hypothesis that 3; = 0, where 3; is an element of 3, then we just need to

multiply the 5% row of (X" X)~! by s* in order to obtain S;b, the 7' element of §*. The
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bootstrap t-statistic is then equal to

i de— (27)

J * )

se(03?)
where se(-) denotes the standard error formula used to obtain ¢;, the original ¢-statistic.
Notice that we automatically get the correct numerator. In this case, it is ij for the WCR
bootstrap, since 8 = 3, and B;b — Bj for the WCU bootstrap, since 8 = B As usual, a

symmetric bootstrap P value is then given by

Ps(t) = & 1171 > 1), (28)

where I(-) denotes the indicator function. The bootstrap P value in (28) is simply the
fraction of the bootstrap samples for which |t;fb| is more extreme than |¢;|. The value of B
should be chosen so that «(B + 1) is an integer, where « is the level of the test (Racine and
MacKinnon 2007). It is common to use B = 999 or B = 9999.

In the classic version of the wild cluster bootstrap, the standard error formula is se;(-),
which is based on CV;. But the results in Section 3 make it equally feasible to use standard
errors based on CV3, even in large samples. This gives us a new version of the WCR bootstrap
and a new version of the WCU bootstrap. The bootstrap standard errors can be calculated
without computing an entire variance matrix for each bootstrap sample. For example, the

CVj3 standard error of 5]*1’ is just

o1 1/2
N - Sxb 2xb) 2
se3(957) = (G CHAREY ) ) (29)
g=1
where 5;&) is the j' element of the vector
O = (XX — X/ X,)' (s — s7). (30)

Only S;“b and the S;E)g) need to be computed for each bootstrap sample.

We now have two versions of the WCR bootstrap, which we may refer to as WCR4; and
WCR;3. Here the first subscript identifies the bootstrap DGP as (24) with 8, = §,. The
second subscript shows the standard error used to calculate both the actual and bootstrap
test statistics to be sej(-) or ses(:), respectively. Similarly, the two versions of the WCU
bootstrap are WCU;; and WCUy3. The first subscript identifies the bootstrap DGP as (24)
with 8§, = 8,, and the second subscript once again indicates the standard error formula.

The WCR;, and WCU,, bootstraps use the restricted or unrestricted empirical scores

in their raw form. But empirical scores differ from true scores, because residuals differ from
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disturbances. It therefore seems attractive to replace the empirical score vectors for the
WCR and WCU bootstraps by modified score vectors that implicitly rescale the residuals on
a cluster-by-cluster basis. This is analogous to methods discussed in Davidson and Flachaire
(2008) and MacKinnon (2013) for the ordinary wild bootstrap.

We first consider the WCU bootstrap, since this case is slightly easier to deal with.
In principle, we could simply replace the vectors 3, in (24) with the modified empirical
score vectors §, defined in (11). However, using (11) is expensive, or even computationally

infeasible, for large clusters. But the result (19) lets us compute 8, very rapidly as
5, =X"X(B-B9), g=1,...,G. (31)

For large clusters, using (14) to compute the $, is much faster than using (11), but using (31)
is faster still; see Section 4. This yields two new bootstrap methods, WCU3; and WCUgg,
where the initial “3” subscript indicates that we are using §, instead of 8,. The bootstrap
DGP and the standard error formula match for the latter, but not for the former.

It is conceptually straightforward to specify a restricted wild bootstrap DGP based on
modified score vectors. Suppose the restrictions have the usual linear form, R3 = r, for
a given matrix R and a given vector r. We can write this equivalently in terms of free
parameters, ¢, as 8 = H¢ + h for a given matrix H and a given vector h. Then the
modified score vectors are

8y = X, M, (y, — X,B), (32)
which are the analogs of the §, from (11). Here Mgg is the ¢** diagonal block of the
projection matrix M =I— X (X" X) ' X", where X = X H. However, evaluating (32) is
computationally infeasible when the clusters are not all small. We need to replace (32) by
something that is feasible for any sample size.

The first step is to compute the restricted estimates 8 = H ¢-+h with ¢ = (XTX)_lXTQ
and y = y — Xh. The corresponding estimates when each cluster is omitted in turn are
BY) = Hp¥ + h, where

P9V =(X"X-X'X,)'X'g-XTg,), 9=1,...,G. (33)
Then it can be shown that

$=X,9,— X, X0, g=1,...,G. (34)
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To see that (32) and (34) are equal, note that the right-hand side of (34) is
X, (9, - X, (XTX - X/ X,) (X g X, )
= X, (5, ~ X, (X7X)" + (XTX) ' X] M, X,(X X)) (X g~ X, 9,)),

where the equality uses the updating formula (21) applied to X, Xg, and M g*gl. Then we

use the fact that ¢ = (X7 X) ' X Tg together with the relation XQ(XTX)*lXJ =P

99 —
I- Mgg to rewrite the last expression as

X (80 = Xy (1= Mog) My, Xy (1= My)gy + (1= MM\ (1= Myg)gy) o
=X, M, (g, — X,).

Replacing g, by y, — X,h and X, by X,H, and using the fact that H¢ = B — h, the

right-hand side of (35) equals (32).

An important special case is the exclusion restriction that 5, = 0. This is obtained by
setting R = (0,...,0,1) and » = 0, or, equivalently, H = (I;_1,0)" and h = 0. In this
case we find that X = X, which contains the first £k — 1 columns of X and ¢ = B, =
(X{ X,)"' X/ y. The corresponding estimates when each cluster is omitted in turn are

BY = (XX, — X, X)Xy - XLy, g=1,....G,

where X, contains the first £ — 1 columns of X,. Then (34) reduces to
s,= Xy, — X X,,8”, g=1,...,G.

Exactly the same arguments that led to (34) can also be applied to the modified unre-

stricted empirical scores, giving us
$=X,y,— X X,B9, g=1,...G. (36)

Either (31) or (36) can be used to compute the §,, and both are computationally attractive.
However, in situations where both §, and §, need to be computed, (36) may offer some
programming advantages relative to (31) due to its similarity to (34).

It may seem puzzling that the scalar factors in (6) and (10) do not appear in the bootstrap
DGPs that correspond to them. The reason is that rescaling all the bootstrap scores by the
same factor has no impact on the resulting bootstrap t-statistics. From (26) and (30), it
is easy to see that multiplying all the s;b by a scalar C' simply makes 6*" and all the SZ‘QI’)
larger by a factor of C'. But this also makes the empirical scores for every bootstrap sample

larger by the same factor. Therefore, from (6), (8), and (10), the variance matrices become
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larger by a factor of C? and the standard errors by a factor of C'. The factors of C in the
numerator and denominator of t;fb cancel out, leaving the bootstrap t-statistics unchanged.

However, if we chose not to studentize the test statistic, it would make sense to multiply
the right-hand side of (24) by the square root of G(N — 1)/((G — 1)(N — k)) in the case of
WCUj,, and by the square root of (G —1)/G in the case of WCUs,, for = 1, 3. Doing this
should improve the correspondence between the bootstrap DGP and the unknown process
that actually generated the data. An unstudentized test statistic for 8; = 0 is just Bj, and
its bootstrap analog would be Sjb = Bj*b for the WCR bootstrap and 3;”’ = BAJ*I’ — j3; for the
WCU bootstrap. The usual theory of higher-order refinements for the bootstrap suggests
that it is generally better to studentize (Hall 1992). However, there may be cases in which
unstudentized test statistics are of interest (Canay, Santos and Shaikh 2020). Nevertheless,
since we will soon have eight bootstrap methods based on t-statistics to study, we do not
consider unstudentized statistics further.

It seems highly likely that all the methods discussed in this section are asymptotically
valid. That is, under suitable regularity conditions, the rejection frequencies for any test
converge to the nominal level of the test as G — oco. Formal proofs could be obtained by
modifying the arguments in Djogbenou et al. (2019). For the WCU bootstrap methods,
the key fact is that the modified unrestricted empirical score vectors §, defined in (11) and
computed using (31) are asymptotically equal to the ordinary unrestricted empirical score
vectors 8,. For the WCR bootstrap methods, the key fact is that the modified restricted
empirical score vectors $, defined in (34) are asymptotically equal to the ordinary restricted

empirical score vectors §, in (25).

6 Simulations: Test Reliability

Previous simulation results in MacKinnon and Webb (2017, 2018), Brewer et al. (2018),
Djogbenou et al. (2019), MacKinnon (2022), and several other papers have shown that the
reliability of both bootstrap and asymptotic methods for cluster-robust inference depends
heavily on the number of clusters, the extent to which cluster sizes vary, and (in the case
of treatment effects) both the number of treated clusters and their sizes. Many of our
experiments therefore focus on these features.

The model we consider is
k
ng:B1+ZBJngZ+ug27 g:]-v"wGa Z.:]-v"'aNgﬁ (37)
=2

where the uy are generated by a normal random-effects model with intra-cluster correla-
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tion p. The way in which the £ — 1 non-constant regressors are generated varies across the
experiments. The hypothesis to be tested is that g, = 0.
In most of our experiments, there are N = 400G observations, which are divided among

the G clusters using the formula

exp(vg9/G)

N, = . ;
! 5 exp(vj/G)

g=1,...,G—1, (38)

where [z] means the integer part of z. The value of Ng is then set to N — Zf:_ll Ngy. The
key parameter here is v, which determines how uneven the cluster sizes are. When v = 0
and N/G is an integer, (38) implies that N, = N/G for all g. For v > 0, cluster sizes vary
more and more as 7y increases. The largest value of v that we use is 4. In that case, when
G =24 and N = 9600, the largest cluster (1513 observations) is about 47 times as large as
the smallest cluster (32 observations). When v = 2, the variation in cluster sizes is much
more moderate. The largest cluster (899 observations) is just under seven times as large as
the smallest (130 observations).

The sample sizes that we employ are unusually large for experiments of this type. Since
cluster-robust inference is often used with samples that have hundreds of thousands or even
millions of observations, we want our results to apply to such cases. In preliminary experi-
ments, we found that the results tended to change slightly, but systematically, as small values
of N/G were increased. The results for N/G > 400 are very similar to ones for N/G = 400, so
we use 400 in all the experiments based on (38). Because the bootstrap samples are generated
using scores, the cost of the experiments increases much less than proportionally with N/G.

All experiments use 400,000 replications. This number is so large that experimental
randomness is usually negligible. The most important determinant of computational cost
is k, the number of regressors. As can be seen from (24) and (34) or (36), generating
each bootstrap sample involves O(k?G) operations. So does calculating the test statistics
using either CV; or CVj3. Thus the experiments can be somewhat costly when £ is large.
Nevertheless, many of our experiments involve k£ > 10. We do this because results in Mac-
Kinnon (2022) suggest that the performance of many methods of inference deteriorates as
k increases. Previous Monte Carlo experiments, which often use k < 3, may therefore have
tended to give too optimistic a picture.

In the case of WCR;; and WCU11, substantial savings could be achieved by partialing out
all regressors except the one(s) of interest prior to performing the bootstrap. Unfortunately,
this trick is never mentioned in Roodman et al. (2019) and MacKinnon (2022), which focus on
efficient computation. However, the trick does not work for any method that uses a standard

error based on CVj3, or for any bootstrap DGP that uses the modified score vectors given in
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either (31) or (34). The problem is that, if we partialed out some of the regressors prior to
computing the delete-one-cluster estimates in (15), these estimates would no longer actually
omit any clusters. The values of the X,, the partialed-out regressors for the cluster to be
omitted, would inevitably affect the delete-one-cluster estimates. There is one important
exception, however. When some of the regressors are cluster-level fixed effects, we can partial
them out prior to doing any other computations, because in this case the partialing out is
done cluster by cluster.

Figure 2 focuses on variation in cluster sizes. In these experiments, there are always 9600
observations, 24 clusters, and 10 regressors. Cluster sizes vary according to (38). Regressors
2 through k£ — 1 in (37) are normally distributed according to a random-effects model that
yields intra-cluster correlations of 0.50. The test regressor either follows the same normal
distribution as the others (in the three panels on the left), or a x?(1) distribution (in the three
panels on the right). In the latter case, it is obtained by squaring a normally distributed
random variable that is generated by the same random-effects model as the other regressors.
The disturbances are also generated by such a model, but with p = 0.10. We focus on
rejection frequencies for a test that 8, = 0 at the 5% level.

The results for asymptotic tests, based on the #(23) distribution and shown in Panels (a)
and (b), are striking. Note that a square-root transformation has been applied to the vertical
axis to prevent these panels from being too tall. Tests based on CV; over-reject substantially.
The extent of the over-rejection increases with v, and, except for v = 4, it is more severe in
Panel (b) than in Panel (a). A regressor that follows the x?(1) distribution necessarily has
some extreme values, and these become points of high leverage. Not surprisingly, this makes
inference more difficult.

Although tests based on CVy always reject considerably less often than ones based on
CVy, they also over-reject significantly and to an extent that increases with . In contrast,
tests based on CVj and CVsj either under-reject slightly all the time, in Panel (a), or under-
reject very slightly for larger values of 7, in Panel (b). The results for CV3 and CVs;, which
both perform perform remarkably well, are extremely similar. The latter always rejects more
often than the former, because the difference between (17) and (18) is the positive semi-
definite matrix ((G — 1)/G)(B — B)(B — B)T. Since CVj tends to under-reject slightly in
Figure 2, it might seem that CVs;y is to be preferred. However, as we shall see, there are
also many cases in which CVj3 over-rejects, and CVj; therefore over-rejects slightly more.
Thus, in practice, it would be perfectly reasonable to report either CV3 or CVs;. We never
encountered a case in which it made any real difference.

The results for the WCR bootstrap tests, shown in Panels (c¢) and (d), are surprising. In
the past, what we are now calling WCR;; has been the only variant of the WCR bootstrap,
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Figure 2: Rejection frequencies as a function of ~
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Notes: The vertical axes show rejection frequencies for tests of S = 0 in (37) at the .05 level. Results are
based on 400,000 replications, with B = 399 bootstrap samples. There are 24 clusters, 9600 observations,
and 10 regressors, with p = 0.10. The extent to which cluster sizes vary increases with ~; see (38).

and numerous Monte Carlo experiments have suggested that it is the procedure of choice.
But WCRg33 performs notably better than WCR;; for every value of v, and both WCR43 and
WCRg3; perform better still. Remarkably, these two procedures perform almost the same
in every case. Oddly, all the WCR procedures perform better in Panel (d), where the test
regressor is highly skewed, than they do in Panel (c), where it is Gaussian. At least in part,

the rather mediocre performance of WCR; is due to the fact that £ = 10, which is a larger
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Figure 3: Rejection frequencies as a function of k
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Notes: The vertical axes show rejection frequencies for tests of 8 = 0 in (37) at the .05 level. Results are
based on 400, 000 replications, with v = 2, p = 0.10, and B = 399 bootstrap samples. There are 24 clusters,

9600 observations, and k regressors, where k varies from 2 to 20 by 2.

number than has been used in most previous experiments; see Figure 3 below.

Some of the results for the WCU bootstrap tests, shown in Panels (e) and (f), are also
surprising. It is not a surprise that WCU;; rejects more often than WCR;; or that its
performance is much worse in Panel (f) than in Panel (e). However, the fact that the other

three WCU procedures over-reject much less often than WCU;; may well be surprising. In
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both panels, WCUjss is clearly the procedure of choice. WCU;3 and WCUj; perform much
better than WCU;;, but worse than WCUsz3. The differences between WCU;3 and WCU3;
are small, but larger than the differences between WCR;3 and WCRj3; in Panels (¢) and (d).

Figure 3 is similar to Figure 2, but the number of regressors k is now on the horizontal
axis, and v = 2. In Panels (a) and (b), CV; over-rejects to an increasing extent as k increases.
So does CVs,, although it always over-rejects considerably less than CV;. In contrast, CV;
and CV3j over-reject modestly for small values of k£ and under-reject modestly for large ones.

Panels (c¢) and (d) look a lot like the same panels in Figure 2, even though what is on
the horizontal axis is different. WCR;; performs quite well for very small values of k, but
it over-rejects more and more severely as k increases. WCRg33 performs much better than
WCR1;, but WCR;3 and WCR3; perform even better. In Panel (d), where the test regressor
is highly skewed, they both perform extremely well for all values of k.

Panels (e) and (f) also look a lot like the same panels in Figure 2. WCUy; performs
quite poorly, over-rejecting more and more severely as k increases. In contrast, WCUg;
performs quite well in Panel (e) and fairly well in Panel (f), and there is no tendency for
its performance to deteriorate as k increases. As before, the two other bootstrap methods
generally perform much better than WCU;; but slightly worse than WCUjs.

In the next set of experiments, we focus on what happens as G increases. Figure 4
shows rejection frequencies as functions of G, which varies from 12 to 84 by 6, and implicitly
also N, since N = 400G. In these experiments, v = 2 and k£ = 10. In Figures 2 and 3,
we reported rejection frequencies for twelve different methods. In Figure 4, however, we
reduce this number to five. We omit CV; and CVs,, because they never perform very well.
Additionally, we omit CVs; because it is almost identical to CV3;. Among the restricted
bootstrap methods, we report WCR4;, because it was until now the procedure of choice.
We also report WCR33 and WCRg3;, but we do not report WCR;3 as it yields results nearly
identical to those of WCR3;. Among the unrestricted bootstrap methods, we report only
WCUss, because it always seems to outperform the other WCU methods.

In Panel (a), using CV; with the ¢(G — 1) distribution under-rejects quite noticeably for
very small values of G, but it performs extremely well for G > 30. The bootstrap methods
always over-reject, with WCR;; always the worst of them. For G > 42, however, all the
bootstrap methods perform very well, with WCR3; the winner by a tiny margin.

Panel (b) is more interesting than Panel (a). The extreme skewness of the x?(1) regressor
apparently affects the results quite a bit, even when G = 84. Although it under-rejects for
small values of G, using CV3 with the (G — 1) distribution over-rejects for larger values,
where it is the worst method. We note that G = 24 in Figures 2 and 3 is near where the

curve for CVj3 crosses the .05 line in Figure 4. The best method is WCR3; in every case. It
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Figure 4: Rejection frequencies as a function of G
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Notes: The vertical axes show rejection frequencies for tests of S = 0 in (37) at the .05 level. Results are
based on 400,000 replications, with v = 2, k = 10, p = 0.10, and B = 399 bootstrap samples. There are

between 12 and 84 clusters, all multiples of 6, with 400 observations per cluster on average.

performs remarkably well for G > 30. However, all three WCR methods perform well for
the larger values of GG. The only bootstrap method that does not perform particularly well
for these values is WCU33. By most standards, of course, every method shown in Panel (b)
of Figure 4 works very well, unless G is less than about 30. For G = 84, CVj3 is the worst
method, but even it rejects only 5.49% of the time. For comparison, CV; rejects 9.04% of
the time, and CVj rejects 7.15%. The best method, WCR31, rejects 4.97% of the time, which
is not significantly different from 5%.

Many applications of cluster-robust inference involve treatment at the cluster level, and
existing methods generally perform very poorly when either the number of treated clusters or
the number of control clusters is small. Using CV; with the ¢(G — 1) distribution or WCUy;
leads to severe over-rejection, and using WCRy; leads to severe under-rejection (MacKinnon

and Webb 2017, 2018). Our next set of experiments therefore focuses on the model

Ygi = 1+ ZygiBo + Brrg + g, (39)

where z, is a treatment dummy, Z,; is a row vector of other regressors, and ugy; is generated
by a random-effects model with intra-cluster correlation p. The treatment dummy equals 1
for GGy of the G clusters and 0 for the remaining Gy = G — G;. The clusters that are treated
are chosen at random. The Z, consist of eight more dummy variables. For each of these
variables and each cluster, a probability 7, between 0.25 and 0.75 is chosen at random for each
replication. Then each observation for that variable in that cluster equals 1 with probability

my and O otherwise. This design is intended to mimic the situation often encountered in
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Figure 5: Rejection frequencies based on t(G — 1) distribution for treatment case
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Notes: The vertical axes, which have been subjected to a square-root transformation, show rejection fre-

quencies for tests of S = 0 in (39) at the .05 level. The horizontal axes show Gy, the number of treated

clusters. Results are based on 400,000 replications, with k& = 10 regressors and p = 0.10. There are either

12 or 24 clusters, with 400 observations per cluster on average. Treated clusters are chosen at random.

treatment regressions, where all of the regressors are dummies. It allows these variables to

vary moderately across clusters.

Figure 5 shows rejection frequencies based on the ¢(G — 1) distribution for six cases. In

the left-hand column, there are 12 clusters and 4800 observations. In the right-hand column,
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there are 24 clusters and 9600 observations. The value of 7y is 0 in the top row, 2 in the middle
row, and 4 in the bottom row. The number of treated observations (G; varies between 2 and
G — 2 on the horizontal axes. It would have been impossible to set Gy =1 or G; = G — 1,
because CV,y, CV3, and CV3; cannot be computed in those cases. For the jackknife-based
estimators, this is obvious from (15). When there is just one treated cluster, or just one
control cluster, and it happens to be the one that is omitted, then the coefficient of interest
in 8@ is not identified.

As previous work has shown, tests that use CV; tend to over-reject severely when Gy or
G — Gy are small. This is evident in Figure 5. The over-rejection is worst in Panel (f), where
both v and G are largest. CV; over-rejects less than CVy, but it still does not work very well,
except perhaps for values of G near G/2 when v = 0; see Panels (a) and (b). In contrast,
CVj3 and CV3j, which perform almost identically, are much less prone to over-reject than the
other two CRVEs. They actually under-reject for values of G fairly near G/2 when v = 0,
and they perform very well for values of Gy near G/2 when v = 2. Oddly, CV; and CV3;
over-reject less seriously for extreme values of Gy when ~ is large than when ~ is small.

Figure 6 shows results for four bootstrap tests for the same set of experiments as in
Figure 5. When ~ = 0, all three variants of the WCR bootstrap perform almost identically.
However, as v increases, their performance starts to differ. WCRg; seems to reject least
frequently, which is a good thing for intermediate values of G; and a bad thing for extreme
values. In contrast, WCRg33 under-rejects least severely for extreme values of GG;. However,
for intermediate values, it over-rejects less than WCR;; but more than WCRg;.

The most surprising results in Figure 6 are the ones for the unrestricted wild bootstraps.
We do not report results for WCU;; or WCUjsq, because they would have required a much
longer vertical axis. WCUy; rejects almost 28% of the time in its worst case (G = 24, G; = 2,
v =4), and WCUj,; rejects over 12% of the time in its worst case (G =24, G; =2, v = 0).
In contrast, WCUgs3 is arguably the best method overall when G = 12, and it performs very
well for intermediate values of G; when G = 24. In addition, it never over-rejects as severely
as CVj for extreme values of G;.

Although the cluster sizes in our experiments vary greatly when v = 4, the largest cluster
is not dramatically larger than every other one. Results in Djogbenou et al. (2019) suggest
that many methods work poorly when one cluster is much bigger than the others. More
than half of all the incorporations in the United States occur in Delaware (Hu and Spamann
2020). This implies that studies of the effects of corporate governance based on changes
in state laws, where standard errors are clustered by state of incorporation, are likely to
encounter severe errors of inference. To investigate this phenomenon, we create artificial

samples with 50 clusters based on data for incorporations by year and state from Spamann
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Figure 6: Bootstrap rejection frequencies for treatment case
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Notes: The vertical axes show rejection frequencies for tests of S = 0 in (39) at the .05 level. The

horizontal axes show G1, the number of treated clusters. Results are based on 400,000 replications, with
k =10, p=0.10, and B = 399 bootstrap samples. There are either 12 or 24 clusters, with 400 observations
per cluster on average.

and Wilkinson (2019). There are 205, 566 observations, of which 108, 538, or 52.80%, are for
Delaware. The second-largest cluster is Nevada, with 17,010 or 8.27%, and the smallest is
Montana, with 101 or 0.05%.

We perform a set of experiments similar to the ones in Figures 5 and 6 using these artificial
samples. There are 10 regressors, generated in the same way as before, with one exception.

Because investigators are surely aware of whether or not the largest cluster (Delaware) is
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Figure 7: Rejection frequencies when a treated cluster is very large
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Notes: The vertical axes show rejection frequencies for tests of 8 = 0 in (39) at the .05 level. Results are
based on 400,000 replications, with £k = 10, p = 0.10, and B = 399. There are 205, 566 observations and
50 clusters, with cluster sizes proportional to incorporations in U.S. states. The largest cluster is always
treated, and the other clusters are treated at random. The number of treated clusters varies from 2 to 14
by 1, from 16 to 36 by 2, and then from 38 to 48 by 1.

treated, it is always treated in our experiments. The other clusters to be treated (between
1 and 47 of them) are chosen at random. Because the largest cluster is always treated, the
rejection frequencies are no longer the same for G; and G — G treated clusters. However,
since this is a pure treatment model, the results for GG; treated clusters that include Delaware
must be the same as the results for G — GG treated clusters that exclude Delaware.

The results in Figure 7 are striking. In Panel (a), using either CV; or CV; leads to
over-rejection that varies between severe and extreme. Using CV3 and CVj3jy also leads to
over-rejection, but it is much less severe. For between 20 and 41 treated clusters, rejection
frequencies are less than 0.07. In Panel (b), WCUj;; over-rejects severely, and WCR; can
either over-reject or under-reject, often severely. In contrast, our new bootstrap methods
work remarkably well. The best of them is WCUss, which always rejects less than 9% of the
time and sometimes rejects just about 5% of the time. WCR3; and WCR33 also perform much
better than WCR1, except when (G is very large, in which case they under-reject severely.

Even though it is based on real data, the distribution of cluster sizes in the experiments
reported in Figure 7 is very extreme. Although the performance of CV3 and three of our
new bootstrap methods is far from perfect, it is generally very much better than that of
existing methods. Thus it appears that jackknife-based methods are remarkably robust to

heterogeneity in cluster sizes.
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7 Simulations: Test Power

It is natural to worry that a new test may be less powerful than existing tests, especially when
it performs much better under the null hypothesis. In this section, we therefore investigate
test power. Studying power is tricky, because it is unreasonable to compare tests that have
noticeably different rejection frequencies under the null. If, for example, an asymptotic test
rejects 15% of the time under the null and a bootstrap test based on it rejects 6% of the
time, then we would expect the asymptotic test to have substantially more power than the
bootstrap test. But the additional power may be entirely spurious, simply reflecting the
finite-sample over-rejection by the asymptotic test.

One way to compare tests with different rejection frequencies under the null is to “size-
adjust” them. But this approach has two serious conceptual difficulties. First, size-adjusted
tests are infeasible. What do we learn by comparing tests that cannot actually be performed?
Second, there are often many ways to size-adjust a given test, and they may yield quite
different results. The idea of size-adjustment is to base rejection frequencies for tests under
the alternative on critical values calculated by simulation under the null. But, in general,
there exists an infinite number of DGPs that satisfy the null hypothesis. If they all yield the
same critical values, then there is no problem. But if they yield different critical values, as will
often be the case, then we have to choose which null DGP to use. It seems natural to make
the null DGP used for critical values as close as possible to the alternative DGP. Davidson
and MacKinnon (2006) suggests a particular way of doing this, based on the Kullback-Leibler
information criterion, but this approach means using a different critical value for each set of
values of the parameters under test.

To avoid the difficulties just discussed, we focus on four cases where the tests of interest
all perform quite well under the null. They are treatment experiments similar to the ones
in Figures 5 and 6, with G = 24, N = 9600, and k£ = 5. In Panels (a) and (b), G; = 12, so
that precisely half the clusters are treated. In Panels (c) and (d) G; = 6, so that the effects
of having few treated clusters are apparent but not severe. In order to avoid excessive power
loss, we use B = 999 for the bootstrap tests. We use k£ = 5 instead of £ = 10 partly to
reduce computational cost and partly to improve test performance under the null.

Figure 8 shows rejection frequencies as a function of i, the actual coefficient on the
treatment dummy in (39), when the null hypothesis is that §; = 0. In Panels (a) and (c),
v = 0, so that every cluster has exactly 400 observations. In Panel (a), the perfectly balanced
case, all five power functions are visually indistinguishable. In Panel (c), where only six
clusters are treated, CV3 has noticeably more power than any of the bootstrap methods,

which are all but identical.
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Figure 8: Power functions for several tests
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Notes: The vertical axes show rejection frequencies for tests at the .05 level. Results are based on 400, 000
replications, with G = 24, N = 9600, k =5, p = 0.10, and B = 999. The hypothesis being tested is 8 = 0
n (39). The horizontal axes show the values of 8 in the DGP.

In Panels (b) and (d), cluster sizes vary from 32 to 1513. All tests are substantially less
powerful than in Panels (a) and (c), because, whenever there is intra-cluster correlation, the
information content of a sample declines as the cluster sizes become more variable. The most
striking result in both panels is that WCUj33 has noticeably less power than any of the other
methods. This is especially true in Panel (d), where WCUjzs over-rejects modestly under the
null but becomes by far the least powerful method for larger values of ;. The pattern for

CVj is similar but much less pronounced. Under the null hypothesis, it over-rejects slightly
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under the null in Panel (b) and noticeably in Panel (d), with rejection frequencies of 0.0612
and 0.0775, respectively. But for large enough values of (., it has less power than WCR;
and WCRg;, especially in Panel (d). The latter two methods also have slightly more power
than WCRg33 in Panel (b) and noticeably more in Panel (d) for large values of (.

Based on these admittedly limited results, the procedure of choice appears to be WCR3;.
For larger values of (3, it is always one of the two most powerful tests. WCR;; has similar
power, and it also works well under the null in these experiments, but it is much more prone
to over-reject than WCRg3; in Figures 3, 4, 6 and 7.

Cluster-robust standard errors and bootstrap methods are often used to form confidence
intervals. Although we do not perform any Monte Carlo experiments explicitly to study
the properties of confidence intervals, these can be inferred from Figure 8 and the results
in Section 6. Most confidence intervals are implicitly or explicitly obtained by inverting a
hypothesis test. When such a test has approximately the correct rejection frequency, the
resulting confidence interval must have approximately correct coverage. Similarly, when such
a test has high power, the resulting confidence interval must be relatively short.

In many of the experiments in Section 6, tests based on CVj and the ¢(G — 1) distribution
are much less prone to over-reject than tests based on CV;. This suggests that the coverage
of confidence intervals based on CVj3 standard errors will often be much better than the
coverage of ones based on CV; standard errors. Even more reliable intervals may often (but
not always) be obtained by using the WCR3; or WCR33 bootstraps, which perform much
better than the well-known WCR;; bootstrap in many cases. The WCUj33 bootstrap also
performs well in many cases under the null, but the results in Panels (b) and (d) of Figure 8
suggest that, when cluster sizes vary a lot, intervals based on it may be longer than ones
based on WCR33, which in turn may be slightly longer than ones based on WCRg;.

Based on its excellent performance in many of the experiments of Section 6 and the fact
that it seems to have slightly better power than WCRj33 in Panels (b) and (d) of Figure 8,
we tentatively recommend that confidence intervals should be obtained by inverting WCR3;
bootstrap tests. However, inverting WCR33 bootstrap tests, or simply using CV3 standard
errors and the ¢(G — 1) distribution, would often lead to very similar intervals. It is probably
a good idea to use more than one method in practice.

Of course, it is easier to obtain a confidence interval by using a standard error and the
t(G — 1) distribution than by inverting a bootstrap test, and it is easier to invert any form
of WCU bootstrap test than any form of WCR bootstrap test. However, the computational
cost of inverting WCR bootstrap tests can be remarkably small, even for very large samples;
see Roodman et al. (2019, Section 3.5) and MacKinnon (2022, Section 3.4).
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8 Empirical Example

In this section, we consider an empirical example based on MacKinnon et al. (2022a, Sec-
tion 8). It exploits differences in the minimum wage across states and years to estimate the
impact of minimum wages on hours worked for teenagers.

Data at the individual level from the American Community Survey (ACS) are obtained
from TPUMS (Ruggles et al. 2020) and cover the years 2005-2019. The minimum wage
data come from Neumark (2019) and are collapsed to state-year averages to match the ACS
frequency. We restrict attention to teenagers aged 16—19, keeping only individuals who
are children of the respondent to the survey and who have never been married. We drop
individuals who had completed one year of college by age 16 and those reporting in excess
of 60 hours usually worked per week. We also restrict attention to individuals who identify
as either black or white. There are 492, 827 observations in 51 clusters, which correspond to
all 50 states plus the District of Columbia.

The model we estimate is
Yist = 0+ BmWy + Z;7y + year, 0y + state, 05 + Ui, (40)

where v, is usual hours worked per week for individual 7. The parameter of interest is [,
which is the coefficient on mwy;, the minimum wage in state s at time t. The row vector Z;
collects a large set of individual-level controls, including race, gender, age, and education.
There are also year and state fixed effects.

As MacKinnon et al. (2022a) discusses, clustering could in principle be done at several
different levels, but the one that is most appealing and seems to be supported by the data is
clustering at the state level. This is therefore the only level that we use. The 51 clusters vary
considerably in size. The smallest has 258 observations, and the largest has 35,995. The ratio
of these numbers is more than twice as large as for 7 = 4 in the experiments of Section 6. The
mean number of observations per cluster is 9,663, and the median is 7,082. This suggests
that inference based on CV; and the ¢(50) distribution may not be reliable. Other measures of
cluster heterogeneity, which are discussed in the original paper, lead to the same conclusion.

Table 1 presents our key results. As expected, the CVj t-statistic is somewhat smaller
than the CV; t-statistic, and the P value based on the ¢(50) distribution is therefore some-
what larger. The four WCR P values are larger than either of them, but still below 0.05, and
they are remarkably similar to each other. The four WCU P values are notably smaller than
the WCR ones, and again they are very similar to each other. However, because we used
a very large number of bootstrap replications, B = 999,999, we are confident that WCRg3;
and WCRg3 actually do yield larger P values than WCR; and WCR;3.
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Table 1: Hours and Minimum Wage Example

Estimate Std. error t-statistic P value

CcvV; —0.15389 0.06231 —2.4697 0.0170

CV; —0.15389 0.06713 —2.2925 0.0261

Wild cluster bootstrap P values

WCRy; 0.0362 WCU; 0.0207
WCR;3 0.0352 WCUj;3 0.0186
WCR3; 0.0374 WCUj5; 0.0227
WCR33 0.0371 WCUszs 0.0203

Notes: There are 492,827 observations and 51 clusters. Bootstrap P values use B = 999,999. All the
numbers in this table were obtained in 2 minutes and 14 seconds using one core of an Intel i9-10850K

processor running at 3.6 GHz.

Based on how similar the four WCR P values are, and on how well many of the WCR
methods perform in the experiments of Section 6, we tentatively conclude that the P value
for the test of 5 = 0 is probably between 0.034 and 0.039. Thus the null hypothesis can
safely be rejected at the .05 level but not at the .01 level.

9 Concluding Remarks

Until recently, the only CRVE for linear regression models that was computationally feasible
for samples with large clusters was the one usually called CV;. Since it often leads to serious
over-rejection and under-coverage, it was widely recommended to use the original version
of the wild cluster restricted bootstrap proposed by Cameron et al. (2008) instead. This is
the version that we now call the WCR4; bootstrap. In Section 3, however, we have shown
how to compute another CRVE, usually known as CVj (Bell and McCaffrey 2002), in a
computationally efficient fashion by using the fact that it is a cluster jackknife estimator. As
shown in Section 6, inference based on CVj, even without bootstrapping, seems to be much
more reliable than inference based on CVy, and sometimes even more reliable than inference
based on the widely-used WCR4; bootstrap.

In Section 5, we prove some simple, but by no means obvious, algebraic results about the
relationship between cluster jackknife estimates and score vectors at the cluster level. These
allow us to obtain several new variants of the wild cluster bootstrap, all of which are easy to
compute. Based on the simulation results in Section 6, three of them seem to be particularly
interesting. These are the methods we call WCR3;, WCRg3, and WCUjss. In all cases, the
first subscript identifies the bootstrap DGP, and the second subscript identifies the variance
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matrix estimator. Thus, for example, WCR3; uses restricted bootstrap scores that have
been modified by using the jackknife transformation given in (34), along with the usual CV;
standard errors. In contrast, WCUs3 uses unrestricted bootstrap scores modified using the
jackknife transformation (31), along with CV3 standard errors. Perhaps surprisingly, WCU3z;3
often performs as well as or better than the two new WCR bootstrap methods under the null,
but it seems to be less powerful than they are when cluster sizes are unbalanced; see Section 7.

Two of the new restricted wild bootstrap methods, WCR3; and WCRgs3, tend to yield
very similar results and often seem to be more reliable than WCR4;. However, when they
do differ noticeably, WCR3; tends to be the winner, both under the null and under the
alternative. We therefore recommend, somewhat tentatively, that WCR3; should always be
employed. Of course, unless it yields definitive results, it would be wise to try a few other
methods as well. The obvious choices are CV3 with ¢(G — 1), WCRy;, WCR33, and WCUss.

In an empirical example with 51 clusters that vary greatly in size, all four WCR bootstraps
yield extremely similar results, which are more conservative than ones based on either CV;
or CV; and the ¢(50) distribution. They are also more conservative than ones based on any
of the WCU bootstraps. Of course, we would expect to see greater variability in the results

of alternative methods when the clusters are fewer in number and/or more heterogeneous.
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