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Abstract

Acknowledging the fact that the growth experience of countries is seldom well described
by the average growth rate, this paper aims at identifying countries that are similar in
terms of their growth process, thus emphasizing the dynamics of growth rates. To that
end, the growth experience of countries is interpreted as a Markov switching process with
countries switching between four distinct growth regimes: crisis, stagnation, stable growth,
and miracle growth. In the model, different growth patterns arise because countries switch
between the growth regimes with different frequencies. In order to account for the dis-
tinct dynamics, the traditional Markov switching model is extended by a classification
mechanism that endogenously assigns countries exhibiting similar dynamics into the same,
and countries exhibiting distinct dynamics into different clusters. Three distinct growth
clusters are obtained: the first cluster consists of countries that have achieved relatively
fast and steady growth mainly by spending time in the stable and the miracle growth
regime. Countries in the second cluster have achieved only moderate growth and often
found themselves in stagnation for longer periods. The third cluster might be referred as a
growth failure cluster because the countries associated with this cluster have suffered from
small growth rates and frequent crises. It appears that developing countries can avoid
falling into the growth failure cluster by securing a minimum amount of human capital. In
contrast to that, the most distinguishing feature of the countries in the successful growth
cluster is their reasonable quality of institutions.
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1 Introduction

In recent years the shortcomings of the traditional empirical growth literature, i. e. the cross-
country and panel growth regressions, have gained attention. A major problem of growth theories
is that they are open-ended, which means that the validity of one causal theory of growth does not
invalidate another. Therefore, the specification of growth models and in particular the question
which variables to include in growth regressions is difficult to solve. A second problem arises from
this openness. Because any growth regression will exclude relevant variables, it is almost impossible
to find suitable instruments for endogenous regressors that are both correlated with the regressor
and uncorrelated with the omitted growth factors. Moreover, most growth regressions implicitly
assume a homogeneous effect of growth regressors across countries, which is quite unlikely given
the markedly different country environments.! Finally, it has been questioned whether the expla-
nation of average growth rates is appropriate given that the growth rates of developing countries
are highly instable and that therefore the results of any growth regression depend to a large extent
on the exact time period(s) chosen for the analysis (Pritchett, 2000). The idea of the present study
is related to these shortcomings: Instead of focusing on the average growth rate it focuses on the
growth process itself. It tries to identify groups of countries that follow similar growth processes and
hence allows for heterogeneity among countries. It then asks how these endogenously determined
groups differ from each other. The main analysis is based on time-series methods and therefore

avoids some of the difficult issues resulting from the open-endedness of growth theories.

Specifically, in order to account for the variety of growth patterns across countries, the growth
process is assumed to follow a Markov switching model. In this approach there are different growth
regimes, which correspond to different growth performances such as fast growth or stagnation and
which are equal across countries. The growth process of a country depends on how the country
changes between the growth regimes and how long it stays within a growth state.? The dynamics
of the switching process are captured by the transition matrix, which describes the probability of
moving from one state to another. Since countries differ in their growth patterns, there is no reason
to believe that the transition matrices are equal for all countries. In order to capture the most
important differences in the transition matrices across countries, the Markov switching framework
is enriched by a clustering framework,? which renders it possible to group countries into clusters
with similar growth processes, i. e. with (close to) equal transition matrices. Once these clusters
are known they can be compared along different dimensions such as the availability of human cap-
ital or the quality of institutions. The dimensions along which the comparisons are drawn should

reflect ”growth fundamentals” rather than short-term events such as an unfavorable change in the

! These problems are discussed in several survey articles such as Brock and Durlauf (2001), Durlauf (2001) or
Temple (1999).

2 The terms growth regimes and growth states are used interchangeably in this paper.

3 The terms classification and clustering are used interchangeably in this paper.



terms of trade. The latter event would be reflected by a switch between growth regimes whereas

the former variables have longer lasting impacts on the dynamics of growth.

The Markov switching classification model is estimated for the growth rate of GDP per capita
in purchasing power parity for 84 countries during the period from 1962 to 2002. Four growth
regimes are identified: a stable growth regime, which is characterized by steady growth, a miracle
growth regime characterized by sustained high growth rates, a stagnation regime, which is volatile
and on average features zero to slightly negative growth rates and a crisis regime that captures
extreme growth behavior. The countries are divided into three clusters: the first cluster comprises
successful countries that are characterized by long periods of stable and miracle growth, the sec-
ond cluster comprises moderately successful countries that switch between stagnating and growing
steadily and the third cluster comprises countries commonly referred to growth failures. Accord-
ingly, these countries spend most of their time either in stagnation or in crisis. A descriptive and
quantitative analysis attempts to reveal the growth fundamentals responsible for these different
growth dynamics. Successful countries have generally succeeded in building up trustworthy insti-
tutions. Moreover, they possessed reasonable amounts of human capital at the beginning of the
sample period and they have been open for most of the time. The quality of institutions, however,
is not useful to distinguish between moderately successful countries and growth failures. The main
distinguishing feature in this case seem to be the availability of human capital and of advantageous
geographic conditions. The importance of openness cannot be verified quantitatively. However, the

descriptive analysis certainly points into that direction.

This paper is related to previous applications of clustering techniques and Markov switching
models in the economic growth literature. The idea of modeling the growth process as a Markov-
switching model has been put forward by Pritchett (2003) and taken to the data by Jerzmanowski
(2006). Jerzmanowski (2006) estimates a Markov switching model with four growth regimes. He
allows for different transition matrices between countries, but conditions them on an indicator of
the quality of institutions. The clustering of countries in the empirical growth literature has been
suggested as a means to tackle the issue of parameter heterogeneity. In a seminal contribution
Durlauf and Johnson (1995) drew attention to the fact that the marginal impacts of growth cor-
relates need not be homogeneous across countries and that indeed the hypothesis of homogeneity
is rejected when taken to the data. In order to identify the country clusters, they employed a
regression-tree analysis, which essentially groups countries according to endogenously determined
thresholds with regard to predetermined variables. More recently, threshold regressions have been
applied. The intuition of the clustering is the same, but contrary to the regression tree analysis
the asymptotic distribution of the estimates is known (Hansen, 2000; Papageorgiou, 2002). The
major drawback of both methods is the need to explicitly name and determine the threshold vari-

able beforehand, a decision that to some extent predetermines the clusters. A more data-based



approach is the application of mixture analysis. In this modeling framework cluster membership is
interpreted as a latent variable that is estimated at the same time as the rest of the parameters. No
prior specification with regard to a threshold variable is required. Examples of the latter approach
can be found in Bloom et al. (2003), Paap et al. (2005), Basturk et al. (2008) or Alfo et al. (2008)
taking the ”classical” estimation approach and in Ardic (2006) taking the Bayesian estimation ap-
proach. Other clustering methods such as projection pursuit (Desdoigts, 1999; Kourtellos, 2002)
or the predictive density approach (Canova, 2004) have been proposed, but they have not yet been
widely used.

The contribution of this paper to the literature is threefold: It applies the Markov switching
classification method introduced in the computer science literature to an economic problem. Unlike
other clustering approaches the suggested method is aimed at deriving similarities in the patterns
of growth rates instead of similarities related to marginal effects. Compared to the empirical study
by Jerzmanowski (2006), the a priori determination of factors potentially influencing the transition
probability matrix is avoided. Apart from the added flexibility the estimated Markov model avoids
any issues that might arise in Jerzmanowski’s work due to the fact that the transition probabilities
depend on the potentially endogenous institutional quality variable (Glaeser et al., 2004).* Finally,
previous approaches emphasizing the instability of growth rates have concentrated on determining
the factors that start episodes of high or low growth (Hausmann et al., 2005, 2006; Aizenman and
Spiegel, 2007; Jong-A-Pin and de Haan, 2007; Jones and Olken, 2008). Yet, for instance Hausmann
et al. (2005) remark that initiating a growth episode might well require different measures than
sustaining it. The present study separates shocks that initiate growth episodes from structural vari-
ables that determine the general conduciveness to and sustainability of growth and by construction
handles both problems simultaneously. The results offer important hints at control variables that

should be included when studying growth accelerations.?

The remainder of the paper is organized as follows. In Section 2 the theoretical Markov switch-
ing growth model is introduced and its empirical implementation is discussed. In section 3 the
Markov switching classification method used for the estimation is discussed before the results are
presented in section 4. Section 5 addresses the question what underlying features can explain the

derived country clusters before section 6 concludes.

4 Endogenous regressors in a Markov switching model generally render the estimates inconsistent if the endo-
geneity is not properly accounted for (Kim, 2004a,b; Kim et al., 2008).
5 A further study concerned with the sustainability of growth accelerations is Berg et al. (2008).



2 Framework of Analysis

2.1 An encompassing growth model

The idea to model growth as a Markov switching process was put forward by Pritchett (2003)
following an enumeration of empirical facts that an encompassing growth model should be capable
to explain, but previous growth models cannot. In Pritchett’s view an encompassing growth model
has to include mechanisms that can generate the divergence observed in absolute and relative in-
come levels since 1870. Moreover, it has to be capable of explaining the sustained steady growth
rates observed in industrial countries, the extremely rapid growth rates of newly industrializing
countries, but also the zero growth experiences of many poor countries. In addition to that, it
has to account for the instability of growth rates especially in developing countries as well as the
empirically observed parameter instability. Pritchett argues that there is no unified growth theory
that can address all of these issues simultaneously. Hence, one way to deal with this difficulty is to
define different growth regimes and assume that within each regime a well defined growth model
governs the growth process. In order to account for the development process of economies and
the observed instability of growth rates, a country has to be able to switch between the growth
regimes. It follows that the growth theories prevailing in each regime have to be supplemented by
explanations as to why and when a country will switch between them. This aspect of the model is

captured in the accompanying transition probability matrix of the Markov switching model.

Pritchett (2003) suggests a growth model comprising six growth regimes: The first one explains
steady state growth of high income industrial countries. An appropriate model for this growth state
could be the Solow model or endogenous growth theories. The second regime deals with countries
that find themselves in an underdevelopment trap,® i. e. that experience zero growth at very low
income levels. The third regime captures countries that grow continuously with a similar growth
rate as industrial countries but at lower levels of income and are therefore neither converging nor
diverging in relative terms. A fourth regime has to explain the rapid growth experiences such as
those observed in newly industrial countries and a fifth state has to explain episodes of growth
implosions such as the large collapses of output in ”transition” countries at the beginning of the
1990s. Finally, the sixth regime has to explain zero growth at medium income levels. With regard
to the transition probabilities Pritchett suggests that they depend on initial conditions, history,
policies and institutions as well as previous states. Since the states are defined in terms of both
growth rates and income levels, the transition probabilities have to be asymmetric. For example,
it is logically impossible to change from being a country in state two (subsistence level) to being a

country in state one (leading economy).

5 The wording underdevelopment trap is preferred as opposed to poverty trap, as the latter could apply both
to macroeconomic and a microeconomic aspects. This paper, however, focuses on the macroeconomic aspects
only. Cf. Berthelemy (2006).



2.2 Empirical implementation

Empirically, it is too demanding to apply Pritchett’s (2003) suggestions directly to the data. In
order to estimate a variant of the model, Jerzmanowski (2006) simplifies the model as follows.
The states are defined solely in terms of growth rates and the growth process in each state is
represented by a simple AR(1) process, thereby avoiding the need to explicitly connect states with
growth theories. The transition between states is governed by a Markov chain of order one, thus
accounting for the dependence of transition on the previous state. The transition probabilities of the
Markov chain are defined as country-specific and are estimated conditional upon the institutional
quality as measured by the index of government anti-diversion policies averaged over the years

1986-1995.7 Formally, the growth rate in each state is given by
Ytk = O, + B, Ye—1k + €51, with e} ~iid. N(O,o’f,t), (1)

where yy, is the growth rate of country k in period ¢ and where s; indicates the growth state that
the country finds itself in. The growth rate in each period is influenced by a regime-specific random
shock £.8 The evolution of the state variable is governed by the following first-order Markov chain,

where
pij = P(st = jlsi—1 = 4,812 =142,...) = P(st=j|si—1=1)

denotes the probability of changing from state i in the previous period to state j in the current
period.? The first-order Markov chain assumption ensures that only last period’s state, but not the
entire history of states influences the transition probabilities. Finally, the transition probabilities
are made country-specific by making the transition probabilities depend on a vector of exogenous

country-specific time-independent variables zg, i. e.

pij(2r) = Pre(st = jlsi—1 = 1). (2)

7 A more comprehensive definiton is given in section 5.

8 The chosen formulation abstracts from common shocks which influence several countries at the same time.
Some information about the appropriateness of this assumption can be obtained from studies dealing with
international business cycle dynamics. Kose et al. (2003) show that common factors are important for de-
veloped countries, whereas they are not for developing countries. In a follow-up study Kose (2005) show
that regional factors are becoming more important for emerging market economies, but this is only a recent
development. Stock and Watson (2005) note that common factors for business cycles dynamics in industri-
alized countries have become less important over time. It therefore appears to be a defendable simplification
to abstract from common shocks, which at best are important for a minor number of countries in the chosen

framework. We will retain this simplification throughout the paper.
9 >y; Pij = 1 holds. Cf. section 3.



zj, includes a constant and the institutional quality measure. p;;(2x) is specified in logit form.

Jerzmanowski (2006) estimates the Markov switching model over the years 1962-1994 for 89
countries and obtains four growth states (see table 2.2): state one reflects stable growth with steady
state growth rates around 2 %, state two is a stagnation state with zero steady state growth, state
three is a crises state with negative growth rates and state four is a miracle growth state with a
steady state growth rate of 6 %. Compared to Pritchett’s (2003) original suggestion the former
states one and three are summarized in the new state one and the former states two and six are
summarized in state two. Both changes can be attributed to the fact that income levels are no
longer a defining element of the states. Focusing on the influence of institutional quality on the
transition probabilities, Jerzmanowski finds that countries with a high quality of institutions will
find themselves in the stable growth state with a high probability, whereas countries with a low
quality of institutions are more likely to find themselves in the stagnation state. The miracle growth

state is most often visited by countries with medium quality institutions.

The results of the estimation are very appealing. Apart from the good interpretablity of the
states, Jerzmanowski (2006) shows that the estimated regime changes often coincide with actual im-
portant political or economical events and that countries spend reasonable amounts of time in each
of the regimes. One shortcoming of the estimation procedure, however, concerns the conditioning
of the transition probability on the quality of institutions. Pritchett (2003) suggests a whole set of
variables that are likely to influence the transition probabilities. It therefore seems problematic to
pick just one variable and omit all the others. An additional problem may arise from the fact that
the quality of institutions is measured at the end of the sample period. Since the causality between
growth and the quality of institutions is not yet settled (Glaeser et al., 2004), it is conceivable that
economic performance influences the quality of institutions. If this were the case, the estimates
would be inconsistent (Kim et al., 2008).1° The usual approaches to include additional control
variables in the transition probability matrix or to mitigate the potential simultaneity problem by
instrumental variables are infeasible for the problem at hand because both procedures would lead
to even higher levels of non-linearity. Therefore, we suggest using a clustering approach in order to
shed more light on the factors determining the transition probabilities. Since different transition
probabilities are derived from the data itself without conditioning them on additional variables,

the danger of an endogeneity problem is avoided.

The model design in this paper essentially equals that of Jerzmanowski (2006). The growth

10 Kim et al. (2008) suggests a method to test for the endogeneity of the conditioning variable, but this would
require a more general solution of the highly nonlinear problem, which at the moment appears infeasible.



Table 1: Estimation results from Jerzmanowski (2006)

Constant AR Coefficient Standard Steady State

Deviation Growth Rate

State 1 1.32% 0.3761* 2.11 2.12
State 2 0.10 0.1799* 4.56 0.12
State 3 —1.01* —0.0045 13.16 1.00
State 4 5.36* 0.1417* 2.71 6.25

Except for the AR coefficients all numbers are percentages. The stars denote the significance of the
estimate at the 5 % level.

rates in each growth regime are modelled as AR(1) processes, i. e.
Yer = v, + Bs,Ye—1k + €41, With €5f ~ iid. N(0,02). (3)

Each growth regime continues to be characterized by regime specific coefficients and a regime specific
variance. The crucial difference concerns the transition probabilities. While the evolution of the
state variable continues to be governed by a first-order Markov chain, the transition probabilities are
no longer made country-specific. Instead, it is assumed that the data is generated by m different
transition probability matrices. Countries the data of which has been generated by the same
transition probability matrix are grouped together in a cluster. Hence, the transition probabilities
are given conditional on belonging to a certain cluster. Let C, denote membership in cluster m.

The transition probabilities in the clusters are defined as
Pij(Cm) = Po,, (s¢ = jlsi—1 = 1). (4)

Cluster membership is endogenously determined in the estimation process. Compared to Jerz-
manowski (2006) this model specification is less restrictive in that countries with the same quality
of institutions may feature different transition probabilities. The specification is more restrictive
in that not every country is allowed to have a unique transition probability matrix. Nevertheless,
an analysis of the resulting clusters seems to be a promising way to learn more about the forces

driving the transition dynamics in such a growth model.



3 Methodology

The proposed model interprets the Markov switching model with constant transition probabilities in
a panel context and extends it by a clustering mechanism. In order to facilitate the presentation of
the estimation procedure, we will first briefly summarize the estimation strategy for simple Markov
switching models before introducing the idea of the clustering mechanism. After that, the details of

the parameter estimation are presented before some issues regarding the methodology are discussed.

3.1 The Basic Markov Switching Model

Consider the following @Q-state Markov switching model:
vy = 1,8, +&;t, t=1,..T. (5)

The evolution of the dependent variable y depends on the observed exogenous variables z,'' which
may include autoregressive terms, and the contemporaneous state of the model s; € {1,...,Q} be-
cause the marginal effects of the exogenous variables equalling 3, depend on the state. Moreover,
the residuals are state-dependent. Within each regime they follow a normal distribution N (0, th)

with a regime-specific variance.

The transition probabilities are summarized in matrix P

P11 P21 0 PQ1
p_ | Pz P2 - Pa2 , (6)
Pio P20 - PQQ

where p;; = P(s; = jls;—1 = i) and Ejpij = 1,Vj hold. P is assumed to be ergodic, i. e.
the eigenvalues of P lie inside the unit circle with the exception of one eigenvalue equal to one

(Hamilton, 1994, chap. 22).

If the states of the process were known with certainty, the parameters of the Markov switching
model could easily be estimated. One could simply run an OLS regression in the form of equation
(5) for each state separately. The transition probabilities in (6) could be derived by counting the
number of times state 7 is followed by state j divided by the number of observations. Alternatively,

the complete-data log-likelihood function of the Markov switching model could be formulated and

11 2 may be a (v x 1) vector of exogenous variables, v > 1. Accordingly, s, may be a parameter or a vector

of parameters.



maximized, whereby complete refers to the fact that the latent state variables are known. Let
I(s; = j) denote an indicator function that takes on the value one if state j prevails in period ¢

and zero otherwise. Then the complete-data log-likelihood function can be shown to be given by!2

Mo

(Y7, Sr|Xr,0) = I(s1 = j) (log f(y1]|s1 = j, %o, 21,0) + log p;) +

1

<.
Il

T Q
> I(si = j) (log f(yel st = jbr—1, 24, 0)) +

t=2 | j=1

Q Q

ZZI st = jls¢ = 1)logpij ¢ . (7)
i=1 j=1

f(-) denotes the conditional density of y;. p; is a shortcut for P(s; = j|1o,0). 1 denotes the
information up to period ¢, which consists of all observed dependent and independent variables up
to period t denoted by )Yy and X;. The history of states up to ¢ is denoted S;. The parameters
of the model are summarized in 6. Hence, 6 consists of (31,...,80), (o3,... 7a?;,) and the tran-
sition probabilities. The ergodic distribution of P is used to predict the initial probabilities p;,
Vi =1,...,Q. Maximization of (7) is straightforward because the first derivatives with respect to
the parameters characterizing the AR-process and the variances are independent of any expressions

involving p;; (Vi,j) and vice versa.

Unfortunately, in reality the prevailing states are not directly observable and have to be inferred
from the observed values of the exogenous and endogenous variables, which makes the use of more
sophisticated estimation procedures necessary. One popular estimation procedure in this context is
the expectation-maximization algorithm, in short the EM algorithm, suggested by Dempster et al.
(1977).13 The basic idea of the EM algorithm is to first replace the state indicator functions with
the best guess for s;, the so called expectation step, and to estimate the parameters 6 conditional
on this best guess, the so called maximization step. Any best guess of s; necessarily depends on 6.
Therefore, the estimation and maximization steps are iterated until convergence of 6 is attained.
The limit of the iterations corresponds to the maximum likelihood estimator, but is much easier to
obtain because the dominant source of nonlinearity involved in the joint estimation of s; and 6 is

reduced by means of the expectation step.

Hamilton (1990) shows that the best guess for s; in the expectation step is obtained if the indi-

cator functions in the complete-data log-likelihood function are replaced by the so called smoothed

12 A more detailed derivation of the complete-data log likelihood function can be found in appendix A.

13 Other popular estimation procedures are the numerical maximization of the incomplete-data log-likelihood
function by summing over all possible state histories (Hamilton, 1989) or Bayesian estimation procedures
(Fruehwirth-Schnatter, 2006).

10



state probabilities. The new log-likelihood function is the expected complete-data log-likelihood
function, which will also be referred to as the incomplete-data log-likelihood function in the fol-
lowing. The smoothed state probabilities can be calculated using special filtering and smoothing
algorithms, which Krolzig (1997) labels the Baum-Lindgren-Hamilton-Kim (BLHK) filter. The
filter first determines the probability that the t** observation has been generated by regime i con-
ditional on a parameter value # and conditional on the information up to period t, i. e. the filtered
probability P(s; = i|i—1, yt, zt, 0). Based on the filtered probability it is possible to form a forecast
of how likely the process is to be in regime j in period t+1 given the observations up to period ¢, for-
mally P(s¢41 = j|t)t—1,Ys, 2t,0). Suppose that the @ conditional densities f(y:|s: = 4,1, x+,0)
are collected in the (Q x 1) matrix n; and that the @ filtered and predicted state probabilities
P(sy = i|te—1,ys,2¢,0) and P(sty1 = j|ti—1, s, ¢, 0) are collected in the (Q x 1) matrices &, and
&t+1)t> respectively. Then the filtered and predicted state probabilities can be obtained by iterating

forwards on the following two equations:'*

2 ét|t71 © N
== -~ 8
el V(&pe—1 ©ne) ®)
€t+1\t = Fft\t~ (9)

In order to start the filter, él\o is assumed to equal the ergodic distribution implied by the transition

probabilities.!®

The filtered and predicted probabilities are the best state inferences and forecasts available
if in each period the information up to that period is used. Based on them the smoothed state
probabilities can be obtained. Unlike the filtered state probabilities the smoothed state probabilities
always use all the available information in the sample, i. e. the entire time series, to infer the most
likely state in period ¢. The smoothed state probabilities P(s; = i|¢r,0) are derived by iterating
backwards on equation (10), where the @ smoothed probabilities of period ¢ are collected in the
(Q x 1) matrix & 7.

gtlT = étlt o{P"- [€t+1\T © ét-i—llt}} (10)

The backwards recursion is started by using ET‘T obtained from the filtered state probabilities.®

3.2 Clustering using Classification Maximum Likelihood

The basic Markov switching model has only been formulated for a single time series. However,

it is straightforward to extend the model to panel data if the countries are assumed to share the

14 The circle symbols such as ® indicate element-by-element operations. 1 represents a (@ x 1) vector of ones.

15 Cf. Hamilton (1994, p. 693) for further implementation possibilities.

16 This section draws heavily on Hamilton (1994, chap. 22), Krolzig (1997, chap. 5 and 6), and Kim and Nelson
(1999, chap. 4). The presentation of the complete-data log-likelihood function follows Diebold et al. (1994).

11



same parameters and if growth in each country is independent of the events in other countries. In
this case the EM algorithm remains unchanged apart from the fact that the BLHK-filter has to be

started separately for each country.'”

In order to account for possibly differing transition probabilities across countries, the panel
Markov switching model is further extended by allowing countries to belong to different clusters.
While all clusters share the same equation (5), they feature unique transition probabilities. Hence,
each cluster implies a distinctive data-generating process. As in the previous section we will first
establish the complete-data log-likelihood function for this revised problem before proceeding to
the approach used in the presence of the latent variables. In order to facilitate the exposition, the

complete time-series for country k will be denoted as OF.

Suppose that m = 1,..., M different clusters are allowed for. These clusters share the same
coefficients and the same variances, but differ with respect to P. Collect the parameters of each
cluster in 6, and summarize all 6,,, in the parameter vector 6. If the states at each point in time are
known and if it is also known that O is generated by cluster m, the complete-data log-likelihood
function for OF equals equation (7) with 6 being replaced by the appropriate 6,,. In the following
Le(Vrr, Ser|Xer, Om) is abbreviated by £.x(O%|6,,). As in the previous section a further indicator
function C,,(O¥) is introduced in order to set up the complete-data log-likelihood function for the
panel as a whole. C,,(OF) takes on the value one if OF is generated by cluster m and zero otherwise.
The complete-data log-likelihood function extended for a panel and including cluster membership

information is given by!®

K M
LV, Sr,ClXr,0) => > Con(OF) ek (OF[0,,). (11)

k=1m=1
Since neither the states nor the cluster memberships are known in reality, they have to be
inferred from the observed data. The true states are approximated by the smoothed state proba-
bilities. Each time series is assumed to have been generated by the cluster for which the expected
complete-data log-likelihood function conditional on the states is maximized. All the time-series
that have been generated by cluster m share the same transition probabilities. The EM algorithm
from the previous section is augmented by a classification step. Given a current value for 8 the

smoothed state probabilities for each observation in each cluster are calculated (expectation step).

17

18

Panel Markov switching models are not very common in the economics literature. Some examples are Asea
and Blomberg (1998) and Chen (007a,b). These authors estimate panel Markov switching models with fixed
effects and they also retain the assumption of no correlation across time series. This assumption is certainly
worth relaxing in the future, but the currently limited data on growth does not allow for such an approach

here. See also footnote 8.
Owing to the panel context it now holds that Yr = {Vir,...,Vxr}, with K being the total number

of countries in the analysis. The same applies to St and Xr. C summarizes the cluster membership of
countries.
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Next, the expected complete-data log-likelihood values for each time series in each cluster are de-
rived. Each time series is allocated towards the cluster which exhibits the highest log-likelihood
value (classification step). This method of classification ensures that L.(Yr,Srt,C|Xr,0) never
falls.'® Finally, the parameters are reestimated conditional on the smoothed state probabilities
and the cluster classification. These steps are iterated until convergence is achieved. In this case,
convergence means that both the cluster memberships do not change any longer and that a con-
vergence criterion for 6 is met. Usually, cluster memberships only change in the first iterations and

remain constant afterwards.20

3.3 Parameter Estimation

In this section the formulas needed for the estimation of the model are derived. The estimation
is carried out by implementing the algorithm in Matlab. For convenience we briefly repeat the
model from section 2. The growth model consists of m = 1,..., M Markov switching clusters with
Q states each. Within one regime the growth rate evolves according to an AR(1) process with
state-specific coefficients, which are required to be equal across all M clusters, and regime-specific

error terms. Formally:
Yk = Qs+ Bs, Y1k + €5, with ey ~1id. N(0,02)) (12)

The M Markov switching clusters differ with respect to their transition probabilities. Each cluster

features its own transition probability matrix P™, whereby

P Pai o Pov
pm pm PR pm

pr=| 2 (13)
Pl Pao - Pho

The interpretation of pj; is equal to that of p;;, but refers to cluster m.

Using the same indicator functions as in the previous section and making use of the normal

19 Cf. Appendix B for a more detailed explanation.

20" The clustering method described here has previously been implemented for instance by Alon et al. (2003)
and Knab (2000).
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distribution assumption, the complete-data log-likelihood function can be written as
M Q
L(Vr, St,C| Xy, 0) Z{Z Cn(O") § D (50 =
=1 j=1

o

1 P 2
log(27) — ~0% — (y1x — aj — Bjyor) + logpj>

1
277 2 0']2-

+
Mﬂ M\H

D> 1t (— og(2r) — 505 — 5 ””‘”“)2> (14)

gj

o+

M@ﬂ;

Jj=1

Q
+ let_jvst 1—2)1ng”

1j5=1

7

In the following one round of the iteration process is described. All formulas can be verified by
taking the first derivatives of the expected complete-data log-likelihood function. At the beginning
of each iteration an estimate of # and a classification of the time-series into clusters is available.
We do not introduce separate notation to indicate that the coefficients are estimated nor do we
introduce further superscripts to refer to the round of iteration that the estimates result from.
These issues are clarified by the accompanying notes. However, the labels £ot (OF(6,,) and C,, (O%)
are introduced and denote the incomplete-data log-likelihood function of country k in cluster m

and the derived country classification indicators, respectively.

1. Given the current parameter estimate of § compute P["*(s; = jlvr,0m) Vi, k,m,t, i. e. the
smoothed state probabilities at every point in time for every country k in every conceivable

cluster m using equations (8), (9) and (10).

2. Given the updated smoothed state probabilities and the current estimate of # compute the new
values for the expected complete-data log-likelihood functions £.;(O%|6,,) for every country
k in every conceivable model m. If there is a £..(OF|6,,) greater than (., (O%6,,) of the
cluster that country k is currently assigned to, reassign country k to the cluster maximizing

Lere(OF)0,,) over all m. Else do not change the cluster assignment.

3. Given the updated smoothed state probabilities and the updated country classification derive

the new transition probabilities as

DY) DI ¢ m (OB (5t = Jy s1-1 = ilYr, Om) (15)

P S ST G (OB (511 = 1107 )

The value of p7* corresponds to the probability of state j in the ergodic distribution associated
with P™.
4. Summarize the coefficients a; and §; for each state in x; = (o, 5;)". Collect the explanatory

variables in 2}, = [1 y;—1x]. Given the updated smoothed probabilities the updated parameter
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estimate k; is obtained as

L[

k=1t=1

1rx T
tko)z;k(j)] [ZZztko)mo)l (16)

k=1t=1

where

Cin(OF) P (s¢ = jl¢pr,6™) and (17)

M=

Zik(J) = 26 ©
1

Cn(OF) P (50 = jlér, 6™). (18)

M= s

Uk (J) = Yk -
=1

3

In practise, a separate OLS regression on the observations weighted by the square root of the

smoothed probabilities is carried out for each state.

5. Given the updated smoothed probabilities and the updated parameter estimates, the updated
regime-specific variances are obtained as

o2 = ZkK:1 Z?:l Z%:l C’m(ok)(ytk — Q5 — ﬁjyt—lk)zpizn(st = j|Yr, ™) (19)

! S S S GO0 P (s = jlobr, )

6. Check whether convergence is achieved. Convergence requires a stable country classification.
Moreover, the relative change in the expected log-likelihood function must not exceed 107°.

If no convergence is achieved, restart the algorithm at step 1.

3.4 Some Remarks

In this section we want to address some critical issues concerning the EM algorithm and the classifi-
cation approach that have been discussed in the literature. The focus will be on the choice of initial
values for starting the algorithm, on model selection and on the merits of the proposed method in

the present context.

The sensitivity of the EM algorithm with respect to the starting values of the iterative process
is a well known weakness (Karlis and Xekalaki, 2003; McLachlan and Krishnan, 1997, chap. 4;
Biernacki et al., 2003). The initial values determine both the speed of convergence and the ability
to locate the global maximum of the problem. For instance, depending on the starting values the
algorithm might get trapped in a very flat area of the log-likelihood function and might falsely
assume that it has reached a local maximum. Moreover, in the case of multiple local maxima

the initial values determine which of the maxima is attained. Clearly, the choice of appropriate
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starting values is important. The literature offers three ways to proceed:?! One possibility is to
start the algorithm simply from different, possibly random, initial values. Alternatively, starting
values might be obtained either from prior theoretical and/or empirical knowledge or by using a
different easily implementable estimation method beforehand such as k-means clustering. Finally,
the expectation step in the EM algorithm might be replaced by a stochastic simulation step, which
reduces the tendency of the algorithm to get trapped in a local maximum or to find a spurious
solution.?? Karlis and Xekalaki (2003) and Biernacki et al. (2003) recommend to use an adaptation
of the first method in practise. Instead of iterating the EM algorithm for each starting value until
convergence, they suggest running the EM algorithm from a large number of initial values, but only
for a small number of iterations. The solutions which maximize the expected loglikelihood function
should then be selected for complete runs of the EM algorithm. This approach will be applied in
the following. The EM algorithm will be started using 1000 random parameter values and com-
puted for 25 iterations. Of the 1000 random starting values the EM algorithm will be iterated until
convergence only for those 10% yielding the highest expected log-likelihood value after 25 iterations.

Up to now we have always assumed that the number of states () and the number of clusters
M are known. With regard to the number of states, the encompassing growth model and the
empirical implementation by Jerzmanowski (2006) suggest that a total number of four states is
appropriate if the growth regimes are only defined via the growth rate disregarding the prevailing
income level. However, the required number of clusters is unknown so that some model selection
strategy is called for. Formal tests in this environment are difficult to implement because model
selection involves inference for an overfitted model, where the true number of clusters is less than
the number of clusters in the fitted model. In such a situation the traditional LR-test can no longer
be applied because the parameters of the overfitted, i. e. the alternative model, are not identified
under the null hypothesis. Therefore, even if the additional parameters are estimated to be signif-
icant, it is still possible that this significance is simply due to sampling variation (Hansen, 1992;
Garcia, 1998).23 Given the difficulties in implementing formal testing procedures, the most popular
method for inferring the number of clusters is the use of information criteria. For the clustering
of temporal data in a Markov switching model Li and Biswas (2000) suggest using the Bayesian

information criterion (BIC). However, whereas traditionally the number of estimated parameters

21

22
23

Even though the literature with respect to the starting values deals predominantly with finite mixture models,
it is important to consider this problem in the estimation of Markov switching models, too, because they
have been shown to be at least as sensitive to starting values as mixture models (Dunmur and Titterington,
1998).

Several methods are shown in Biernacki et al. (2003), and McLachlan and Krishnan (1997).

The derivation of the required number of clusters resembles that of deriving the correct number of states
in simple Markov models. For this case, modified LR tests have been proposed, but their implementation
is quite complicated (cf. Krolzig (1997, Section 7.5) and the references therein). Therefore, the number
of regimes is usually derived using information criteria. Recently, Smith et al. (2006) have suggested an
information criterion, which has been derived specifically to establish the number of required states in a
Markov switching model with constant transition probabilities.
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are penalized by the logarithm of the total number of observations, in the clustering context only
the total number of cross-sections should be used. Alon et al. (2003) derive a very similar criterion
based on the minimum description length. This criterion, which will be termed the modified BIC
in the following differs from the previous BIC in that the penalty term is applied on the number
of estimated parameters and the number of clusters. Often, the use of the consistent Akaike infor-
mation criterion (CAIC) is suggested in the context of latent class models (Basturk et al., 2008;
Jedidi et al., 1997). In the next section all three information criteria will be used to determine the

required number of clusters.

A final remark is necessary with regard to the type of clustering chosen. In this paper a hard
clustering approach is used, i. e. each time-series belongs to one and only one cluster at a given
time. An alternative would be soft clustering, where cluster membership is represented proba-
bilistically. An example of the latter approach are finite mixture models. In the absence of panel
data it is well established that soft clustering is preferable to hard clustering. By construction, the
probabilistic assignment to clusters allows an assessment of the confidence of the cluster assign-
ments. More importantly, in the absence of panel data hard clustering has been shown to lead to
reasonable clusters, but inconsistent parameter estimates (Celeux and Govaert, 1993; Bryant, 1991;
McLachlan, 1982). Soft clustering in the context of Markov switching models is possible (Butler,
2003; Alon et al., 2003; Wichern, 2001; Cadez and Heckermann, 2003), but computationally very
demanding and rarely used. In the context of the proposed model a further difficulty would arise:
The Markov switching clusters in this paper differ only with respect to the transition probabilities,
but not with respect to the state coefficients. This implies that by construction the differences
in the incomplete/complete-data log-likelihood functions tend to be small so that the traditional
smoothed model probabilities, i. e. the probability that given the parameters the data has been
generated by cluster m, are too close to each other to allow for a soft clustering mechanism to be
well defined. Despite opting for the hard clustering approach, our model does not suffer from the
inconsistency problem pointed out in the hard clustering of mixture models. Since panel data is
available the cluster assignment is consistent for large enough time-series. If the cluster assignment
is consistent, so are the parameter estimates.?* However, since we assign each time-series deter-
ministically to one cluster only, the drawback of not being able to assess the accuracy of the cluster

assignment remains.

The previous paragraph leads to the question to what extent the clusterin