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Goldilocks vs. Robin Hood: Using shape-constrained
regression to evaluate u-shaped (or inverse u-shaped)
theories in data.

Scott C. Ganz
Georgetown McDonough School of Business and AEI

scott.ganz@georgetown.edu

Theories that predict u-shaped and inverse u-shaped relationships are ubiquitous throughout the social
sciences. As a result of this widespread interest in identifying non-monotonic relationships in data and the
well-known problems with standard parametric approaches based on quadratic regression models, there has
been considerable recent interest in finding new ways to evaluate such theories using alternative approaches.
In this paper, I propose a new semi-parametric method for evaluating these theories, which I call the
“Goldilocks” algorithm. The algorithm is so named because it involves estimating three models in order to
evaluate a u-shaped or inverse u-shaped hypothesis. One model is too flexible (“too hot”) because it permits
multiple inflection points in the expected relationship between x and y. One is too inflexible (“too cold”)
because it does not permit any inflection points. The final model (“just right”) permits exactly one inflection
point. In a simulation study based on 405 monotonic-increasing or inverse u-shaped functional forms and
over 200 thousand simulated datasets, I show that my proposed algorithm outperforms the current favored
method for testing u-shaped and inverse u-shaped hypotheses, which uses the Robin Hood algorithm in
conjunction with a two-lines test, in terms of controlling the false rejection rate and the power of the test. I
also show that these advantages of the Goldilocks algorithm can be further leveraged when it is used in an

ensemble method that utilizes the output from both algorithms.

Key words: Statistics: nonparametric; Simulation: statistical analysis; Organizational studies: strategy

1. Introduction

Theories that predict u-shaped and inverse u-shaped relationships are ubiquitous throughout the
social sciences (see, e.g. Haans et al. 2016, Lind and Mehlum 2010, Simonsohn 2018). In manage-
ment theory and strategy, for example, non-monotonic hypotheses about the expected relationship
between an independent variable x and a dependent variable y are integral to theories of orga-
nizational founding and failure (Hannan and Freeman 1989), competitive positioning (Deephouse
1999), innovation rates in competitive industries (Aghion et al. 2005), social status and conformity

(Phillips and Zuckerman 2001), and ambidextrous search (Laursen and Salter 2006). As a result of
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this widespread interest in identifying u-shaped and inverse u-shaped relationships in data and the
well-known problems with standard parametric approaches based on quadratic regression models,
there has been considerable recent interest in finding new ways to evaluate such theories using
alternative approaches.

In this paper, I propose a new semi-parametric method for evaluating these theories, which I call
the “Goldilocks” algorithm. The algorithm is so named because it involves estimating three models
in order to evaluate a u-shaped or inverse u-shaped hypothesis. One model is too flexible (“too
hot”) because it permits multiple inflection points in the expected relationship between z and y.
One is too inflexible (“too cold”) because it does not permit any inflection points. The final model
(“Just right”) permits exactly one inflection point. The logic behind the Goldilocks algorithm is
that, if the expected relationship between x and y is indeed well-characterized by a single inflection
point, e.g., an inverse u-shape, then the “too cold” model should be a poor fit for the data and the
“just right” and “too hot” models should fit the data just about equally well after correcting for
overfitting.

After introducing the algorithm, I compare the performance of Goldilocks to the recently-
proposed Robin Hood algorithm, which is a heuristic method for setting the break point in a two-
lines test (Simonsohn 2018). Based on a simulation study that evaluates 315 monotonic-increasing
functional forms and 3420 inverse u-shaped functional forms, Simonsohn (2018) concludes that his
approach, which uses a cubic spline regression model to approximate the ideal breakpoint in an
interrupted regression model, “is arguably the most straightforward test of the hypothesis that
the average effect of z on y is of opposite sign for high versus low values on z [and] the Robin
Hood procedure to set the break point for the two lines achieves notably higher power than any
alternative with which I have compared it” (p. 553). As a result, the Robin Hood algorithm has
quickly become a favored method for evaluating u-shaped and inverse u-shaped theories in the
management and strategy literatures (see, e.g., Aven et al. 2021, Bechler et al. 2021, Denrell and
Liu 2021, Shin and Grant 2019).

Based on a representative sample of the same functions used to demonstrate the superiority of
the Robin Hood algorithm over existing methods, I show that the Goldilocks algorithm outperforms
the Robin Hood algorithm both with respect to not falsely identifying monotonic-increasing data
as inverse u-shaped (i.e., control of the false rejection rate at a 5 percent target) and correctly
identifying inverse u-shaped data (i.e., the power of the test). Across 63 monotonic-increasing
functional forms, the Goldilocks algorithm incorrectly identifies the data as inverse u-shaped 3.1
percent of the time, compared with 3.8 percent for Robin Hood. Additionally, the false rejection
rate for the Goldilocks algorithm exceeds the 5 percent target for just 9 of the functional forms,

compared with 18 for Robin Hood. Across 342 inverse u-shaped functional forms, the Goldilocks
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algorithm correctly identifies the data as inverse u-shaped 53.4 percent of the time, compared with
49.3 percent for Robin Hood. Further, the power of the Goldilocks algorithm exceeds 90 percent
for 110 functional forms compared with 87 for Robin Hood. The advantages of the Goldilocks
algorithm in terms of control of false rejection rate and statistical power can be further leveraged
when it is used in conjunction with the Robin Hood algorithm. Specifically, I propose an ensemble
method in which a dataset is identified as inverse u-shaped if either algorithm identifies the data
as inverse u-shaped at the 0.01 significance level, which reduces the average false rejection rate to
1.6 percent while achieving the equivalent power as when the Goldilocks algorithm is used on its
own.

The paper proceeds as follows. I begin by introducing the Golidlocks algorithm, focusing first on
the “too hot, too cold, just right” approach to identifying functional families using nested shape-
constraints, then describing the implementation of the algorithm, and finally applying the algorithm
to an example dataset. Then, I briefly summarize the Robin Hood algorithm for setting the break
point in the two-lines test, focusing in particular on how the Robin Hood approach departs from
the Golidlocks approach. I then apply both methods to a representative sample of the functional
forms evaluated in Simonsohn (2018). I also introduce two ensemble methods—one in which the
significance level on both tests is raised to 0.1 and the data is classified as inverse u-shaped if both
classify the data as inverse u-shaped and one in which the significance level is decreased to 0.01
and the data is classified as inverse u-shaped if either classify the data as inverse u-shaped—and
demonstrate that the latter improves the false rejection rate of the Goldilocks algorithm at no cost

with respect to statistical power.

2. The Goldilocks Algorithm

In this section, I introduce the Goldilocks algorithm. I begin by introducing the high-level structure
of my proposed approach. I continue by describing each of the steps of the algorithm in detail.! I
then apply the Goldilocks algorithm to an example dataset, which is the same example presented

in Simonsohn (2018, fig. 6).

2.1. “One Too Hot, One Too Cold, One Just Right.”

The “too hot, too cold, just right” logic of the Goldilocks algorithm involves estimating three
models—one under-constrained, one over-constrained, one appropriately-constrained—and then
evaluating their relative fit in order to evaluate whether the data are consistent with the
appropriately-constrained model. This logic points to the following three-stage structure for eval-
uating an inverse u-shaped hypothesis: The first stage involves selecting three models: one that

! Computer code for implementing the algorithm and replication materials for the presented simulations are also
available from the author upon request. An R-package for implementing the algorithm is in the works, as well.
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permits multiple inflection points in the conditional mean, one that permits no inflection points,
and one that permits exactly one inflection point. In the implementation of the algorithm used here,
I use unconstrained, monotonic-increasing, and inverse u-shaped linear spline regression models.
The second stage evaluates each model in order to determine which fit the data best. I use the
Model Confidence Set (MCS) procedure, which returns a set of models that are equally well-fitting
for which a model is incorrectly excluded at a user-specified rate (Hansen et al. 2011). The third
stage uses this set of best-fitting models to evaluate the claim that the data are well-characterized
by the theorized non-monotonic relationship, e.g., u-shaped or inverse u-shaped. Note that, because
the monotonic-increasing vs. inverse u-shaped test is the one emphasized in the simulations in
Simonsohn (2018) it is also the one examined here, with the former hypothesis treated as the
null and the latter hypothesis treated as the alternative. However, other hypothesis tests with a
monotonic null and an alternative with a single inflection point are easily accommodated.

Next, I describe each of the three stages in detail, emphasizing both the choices made in my
proposed implementation of the algorithm and, in some cases, opportunities for alternative imple-

mentations.

2.1.1. Step 1: Select three models The algorithm begins with the identification of three
models—one under-constrained, one over-constrained, and one appropriately constrained. In the
implementation of the algorithm presented here, I select three shape-constrained linear spline
regression models. In linear spline regression, a function is fit to the data in which a set of values
of x called knots are connected by linear pieces. The estimated conditional expectation of y given
x is therefore linear in each bin but not differentiable at the knots where the slope of the function
changes. For background on estimating basis splines, see Cattaneo et al. (2019) or Hastie et al.
(2009, pp. 142-150).

A shape constraint describes a family of functions that satisfy a set of constraints that collectively
describe a shape. For example, in order for a function f(x) to be monotonically-increasing, f(x;) <
f(za) if &y <y for all 2y, z5. A monotonic-increasing shape-constrained regression, by extension,
returns a conditional expectation function E(y|z) subject to the constraint that E(y|x,) < E(y|xs)
if 1 < x5 for all z,,25,. A monotonic-increasing shape constraint applied to a linear spline thus
requires that the slope of each piece is weakly positive. An inverse u-shaped shape constraint applied
to a linear spline regression model asks that one knot serve as an inflection point such that the
slopes of the linear pieces are weakly positive for low values of x and weakly negative for high values
of z. An unconstrained linear spline regression places no restrictions on the slopes of the pieces
in the conditional expectation function. These three models are therefore nested, i.e., an inverse
u-shaped model is a constrained version of an unconstrained model and a monotonic-increasing

model is a constrained version of an inverse u-shaped model.
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Next, I discuss why I use shape-constrained linear splines, given the multitude of potential choices
for describing the expected relationship between x and y. Then I discuss why I choose these three
shape constraints, noting the impact of excluding the unconstrained model or including additional
shape-constrained models.

The choice to estimate linear spline regression models as opposed to other flexible summaries of
the conditional expectation function is motivated by three interrelated concerns. The first is com-
putational. I need to be able to compute a best-fitting shape-constrained model for the monotonic-
increasing and inverse u-shaped models. For linear spline regression, adding a shape constraint
involves solving a quadratic program, which can be done quickly and reliably using standard soft-
ware (see, e.g., Boyd and Vandenberghe 2004). For other non-parametric models, e.g., cubic spline
regression, algorithms for computing the optimal solution may not exist or require grid search
over a large number potential inflection points in order to estimate. Further, shape-constrained
linear splines can be straightforwardly estimated as part of a wide variety of multivariate models
through the application of a convex optimization algorithm. Thus, the Goldilocks algorithm can be
applied to multivariate linear models, generalized additive models, nonlinear least squares, discrete
choice models, count models, and hazard models, among others (see Boyd and Vandenberghe 2004,
Hothorn et al. 2018).

The second relates to controlling the false rejection rate. If, e.g., the overly-flexible model is too
flexible, then the application of an inverse u-shaped shape-constraint may produce a better fit with
the data than an unconstrained model when evaluated using a loss criterion that incorporates an
overfitting penalty in cases for which the true expected relationship between x and y has multiple
inflection points. This would lead the monotonic-increasing vs. inverse u-shaped test to be biased
toward supporting the inverse u-shaped hypotheses. A feature of the linear spline model is that
there exist algorithms for selecting knots that minimize the asymptotic integrated mean squared
error (IMSE) (see Cattaneo et al. 2019) and, thus—at least for large samples—I can feel fairly
confident that the unconstrained model is not badly over-fit.

The third relates to maximizing the power of the test. By estimating nested functions, I improve
the MCS procedure’s ability to distinguish between the fit of the three models relative to testing
three functions from different non-parametric families (Hansen et al. 2011, Ganz 2020). So, while
I could, e.g., estimate an isotonic regression for the monotonic-increasing model, an interrupted
regression for the inverse u-shaped model, and a kernel regression for the unconstrained model—
and perhaps these functions would individually fit the data better than a shape-constrained linear
spline would—it would come at a large cost in terms of the ability to reject the claim that a subset

of models are equally well-fitting at the target confidence level.
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Of note, these second and third considerations imply a trade-off between the false rejection rate
and the power of the test given my choice of models. In order for the models to be nested, the shape-
constrained linear splines must have the same number and location of knots as the unconstrained
linear spline. But, the number and location of those knots may be a worse choice for the shape-
constrained models than they are for the unconstrained model. This can lead to elevated false
rejection rates in cases where the monotonic-increasing model is rejected in favor of the inverse
u-shaped and unconstrained models due to the choice of knots. Relative to other sources of error
that emerge from the fact that the models are being estimated on limited samples, I suspect this
bias is quite small. Nevertheless, it does exist and, as a result, makes it difficult to make statistical
claims about the large-sample properties of the Goldilocks algorithm.

Next, I discuss how selecting three models—one “too hot”, one “too cold”, and one “just right” —
helps balance these competing concerns about the false rejection rate and the power of the test,
as well. Given the goal of differentiating between monotonic-increasing and inverse u-shaped data,
it is perhaps counter-intuitive to also estimate a third unconstrained model. The purpose of the
unconstrained model is to add a conservative bias to the test by ensuring that data that are not well-
characterized as either monotonic-increasing or inverse u-shaped are not incorrectly classified as
inverse u-shaped merely because the inverse u-shaped model is more flexible. Applying a hypothesis
testing framework that does not also account for the possibility that the data are neither monotonic-
increasing or inverse u-shaped will thus lead to an elevated false-rejection rate (see, e.g., the shape-
restricted hypothesis-testing approach in Cattanco et al. 2019).

A related question, then, is why just three models? I could estimate a larger set of nested
models, including, e.g., a constant model or a “sideways s-shaped” model with two inflection points.
Because, in expectation, the monotonic-increasing model and constant model will fit the data
equally well if the data are constant (and the sideways s-shaped model and the unconstrained model
will fit the data equally well if the data are sideways s-shaped), the inclusion of these additional
shapes has an ambiguous impact on the false rejection rate and the power of the test, but comes at
a high computation cost. That said, if a researcher has a theory about a specific additional shape

the data are likely to take then there is likely little harm in adding that shape to the test.

2.1.2. Step 2: Evaluate model fit The second step of the algorithm involves evaluating the
relative fit of each model with the data. I implement the MCS procedure (Hansen et al. 2011), which
is a step-down multiple hypothesis testing procedure applied to the problem of model selection. The
MCS procedure has two benefits which explain why I adopt it rather than a different model selection
algorithm. First, it permits the user to specify a rate at which a true best-fitting model is excluded

from the set returned by the procedure, which permits control of the Goldilocks algorithm’s false
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rejection rate at a user-specified level. Second, prior simulation studies have shown that when the
expected Kullback-Leibler Information Criterion (KLIC) loss criterion is used, the MCS procedure
performs well for shape-constrained bivariate regression models with ordinal data (Wand 2012,
Ganz 2020) and for multivariate linear regression models with continuous data (Hansen et al. 2011).
Thus, it is a good candidate for evaluating the relative fit of shape-constrained models estimated
on continuous data as well.

The MCS procedure involves iterative comparisons of the relative fit of sets of candidate models
with the data. At each stage, the algorithm evaluates whether all of the candidate models M fit the
data equally well according to a given loss criterion. If the hypothesis that the models indeed fit the
data equally well is rejected, then the worst-fitting model is removed from the set of candidates and
the culled set of models M’ C M is subsequently evaluated. The Model Confidence Set M is the
set of models that is returned either when the algorithm fails to reject the claim that the models
fit the data equally well or when just a single model remains. The design of the MCS procedure
ensures that, as n — oo, P(M* C M*) converges to a user-specified rate that exceeds 1 — «, where
M is the subset of true best-fitting models in an initial candidate set of models M°.

In my implementation of the MCS procedure, the initial set of candidate models M includes the
monotonic-increasing linear spline model (M »), the inverse u-shaped linear spline model (M), and
the unconstrained linear spline model (M..). I evaluate the fit of the models with the data according
to the expected KLIC loss criterion. For regression models, ranking models according to expected
KLIC is equivalent to ranking them according to the maximum of their quasi-log-likelihood. Define
Q(Z,60;) as twice the negative quasi-log-likelihood for the data Z = (y,x) evaluated at the popu-
lation parameters for model M;, where i € { /,~,~~}. Define the true set of best-fitting models
according to the expected KLIC loss criterion as M« ={Jj: E[Q(Z,0;)] = min, E[Q(Z,0;)]} and
Mf(mc as the set of best-fitting models inferred from the sample.

Estimating E[Q(Z,0;)] from the sample analog E[Q(Z,6;)] requires an cffective degrees of free-
dom correction k! = E[Q(Z,60;) — Q(Z,6;)]. Unlike in a traditional linear regression model, the
effective degrees of freedom £ for a shape-constrained linear spline cannot be directly inferred from
the number of estimated parameters because the location of the knots and the expected number of
binding shape-constraints depend on the data itself. To see this, consider the case where the true
data were produced by a monotonic-decreasing function. The difference in effective degrees of free-
dom for the best-fitting monotonic-increasing function and the best-fitting constant function should
be approximately equal. In contrast, if the true data were produced by a monotonic-increasing
function, it is likely that each piece of the monotonic-increasing function would have a different
slope and, thus, the difference in the the effective degrees of freedom would approximately equal

the number of pieces.
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The need to estimate k] given the data implies the desirability of a simulation-based estima-
tor, which I compute in the following manner, as recommended in Shibata (1997). Define Z;, =
(yp, ) for b=1, ..., B bootstrap samples constructed from a semiparametric bootstrap, where y;, =
E[y|x,9Al] + ey and e, is randomly sampled with replacement from e; =y — E[y|x,01] Define
kr = 5 2.,Q(Z;,, 0;) — Q(Z; 4 A;i)] as our estimate of £} given the data, where é;;i is the estimate
of §; inferred from bootstrap sample Zy -

For my implementation of the MCS procedure it is also useful to define lAﬁj =5 2%, 0;) —
Q(Z; é;z)] as the effective degrees of freedom for model i when estimated on data produced by
model j. That is, if 7 is an inverse u-shaped model and j is a monotonic-increasing model, then £
is the effective degrees of freedom correction applied to Q(Z,0,..) under the assumption that E(y|x)
-k

J,m?

is in fact characterized by the monotonic-increasing model. Further, define Al;:;ij,m = l%,j‘ym
i.e., the difference in the number of effective degrees of freedom for models ¢ and j for data produced
by model m.

Next, I describe the details of my implementation of the MCS procedure, which follows a rec-
ommendation in Wand (2012) for taking advantage of the nesting of the models in M? in order to
improve the power of the test.? Note that, for each iteration of the MCS procedure, the hypoth-
esis that all of the models fit the data equally well is equivalent to the claim that the data are
consistent with the most restrictive model in M. For example, in the first iteration of the proce-
dure, the monotonic-increasing model and inverse u-shaped model must fit the data equally well
in order for the hypothesis of equal fit to be rejected, which occurs only if the data are in fact
monotonic-increasing.

Each iteration of the MCS procedure begins with a set of candidate models M, where M = M"
in the first iteration of the procedure. Define My € M as the most restrictive model in M. The
procedure tests the claim that all of the models in M fit the data equally well by computing a range
statistic Ty = max; jenm |[Q(Z,6;) — Q(Z, éj) + Al%f7j7M0} |. Ta is thus the largest pairwise difference
in expected KLIC among candidate models in M under the null assumption that the data are
produced by Mj.

I next compute the distribution of 7 and compare Tr; to the 1 —a quantile of this distribution
using the following algorithm:

(1) Define Zyny = (Yo,my5 ), Where yy ar, = E(y|z,001,) + €501, for be 1,...,B and ey, is ran-
domly sampled with replacement from ey, =Y — E(y|z,0y,)-

(2) For each bootstrap sample b, compute the range statistic 7g, o = max; jeq \[Q(Z;Mo,éi) -

Q(Zi a1y 0) + Ak -

2 Many thanks to Jonathan Wand for sharing the code used in his implementation of the MCS procedure.



Ganz: Goldilocks vs. Robin Hood

(3) Compare Ty to the 1 —« quantile of 7o, . If Ty exceeds this level, then reject the claim
that all of the models in M are all equally well-fitting. Otherwise, fail to reject the claim.

If we fail to reject the claim that all of the models in M are equally well-fitting, then /\;l’;( Lic=
M. If we reject the claim and there are more than two models in M, then remove the model i € M
with the highest value of Q(Z,6;)+ l;:f m, and re-evaluate the smaller candidate set M’ C M. If we
reject the claim and there are two models in M then we define the model with the lowest value of
Q(Z,6,) + l%;"MO as the lone member of M3, ..

As a result of the nesting of models in M° and the expected KLIC loss criterion, it is usually the
case that, if the claim that all models in M are equally well-fitting is rejected in each iteration,
M ~ will be rejected in the first iteration, followed by M, in the second. Thus, if there is only one
model in M, then it is usually M_.. But, on rare occasions, simulation-based error can lead a

less-constrained model to be rejected in favor of a more-constrained one.

2.1.3. Step 3: Monotonic-increasing vs. inverse u-shaped We use M;(LIC to evaluate
the claim that the data are monotonic-increasing vs. inverse u-shaped. Recalling that, as n — oo,
a model will correctly be included in ./\;l’;{ r1c With probability approaching 1 — « and incorrectly
included with probability approaching 0, we reject the claim that the data are produced by an
inverse u-shaped function if M ~ € Mo or if M. & M, and support the claim if M A&
Mo and M~ € Micp .

Note that the construction of the test is consistent with classical hypothesis testing in the
linear regression framework. All else equal, we are biased in favor of a null, more constrained
model relative to an alternative, less constrained model. This explains why the algorithm does not
reject the monotonic-increasing model in favor of the inverse u-shaped model when neither M »
nor M, are in ./\;l’;{ r1c- This conservative bias is important for controlling the rate at which the
algorithm incorrectly classifies data as inverse u-shaped at (approximately) the user-defined « in
small samples. Further, it helps explain why it is inappropriate to use tests of the form monotonic-
increasing vs. not monotonic-increasing to evaluate claims of inverse u-shaped relationships in data,
because the alternative hypothesis would both be supported when the data are inverse u-shaped
and when the data have a different non-monotonic functional form. Asymptotic control of the
false rejection rate when the alternative is “not monotonic-increasing” does not control the false
rejection rate when the alternative is “inverse u-shaped.”

Finally, it is worth highlighting why we cannot expect the test to achieve the exact user-defined
false rejection rate for all data, even in large samples. The MCS procedure selects the best-fitting
models out of a set of candidates, all of which may be misspecified. And, in the proposed imple-

mentation of the MCS procedure, this is almost surely the case. (It is hard to imagine data in the
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real world that are produced by a linear spline conditional expectation function.) Our test relies
on the assumption that linear spline regression offers a reasonably good description of conditional
expectation of y given x. But, as I demonstrate in the simulated data, we may experience elevated
false rejection rates for data that are especially poorly modeled by the estimated piecewise-linear

functional form.

2.2. An Application of the Goldilocks algorithm

I now apply the Goldilocks algorithm to an example in which data are produced by an inverse
u-shaped function. In Figure 1, T display the sample along with the actual function (the black line),
the best-fitting monotonic-increasing linear spline (the red dashed line), inverse u-shaped linear
spline (the blue dashed line), and unconstrained linear spline (the orange dashed line). Note that
the latter two models fit the exact same function to the data, because the best-fitting unconstrained

linear spline is inverse u-shaped.

Figure 1 Estimated Shape Constrained Models
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Next, I illustrate some of the mechanics of the MCS procedure. Figure 2 displays one bootstrap
sample produced by the monotonic-increasing model, which is the most-constrained model in M°
(and thus denoted M, in the figure). I display the bootstrap sample along with the monotonic-
increasing function fit to the original sample (the black line) and the best-fitting monotonic-

increasing linear spline, inverse u-shaped linear spline, and unconstrained linear spline for the
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bootstrap sample (the red dashed, blue dashed, and orange dashed lines, respectively). In the
bottom-right, I present Q(Z;,6;) for i € M°, which are the log-likelihoods of the three models in
M? fit to the bootstrap sample. The difference between these values of @ offer insight into the
difference in effective degrees of freedom across the shape-constrained models when applied to data
produced by this monotonic-increasing function. Note that the inverse u-shaped and unconstrained
models fit two additional slope parameters than the monotonic-increasing model, leading Q(Z;, 0 )

to be greater than Q(Z;,0~) and Q(Z;,6..).

Figure 2 Iteration 1 of the MCS Procedure: Evaluating Relative Fit from Bootstrap Samples
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In Figure 3, I display the CDF of the estimated range statistic under the null that all the models
in M are equally well-fitting 757;,, m across 500 bootstrap samples. The 95" percentile is 2.5, as
indicated by the red dashed line. The observed range statistic Ty is 3.9, which exceeds this critical
value. Thus, the null is rejected and the worst-fitting model M » is dropped from M.

In the second iteration of the MCS procedure, M includes the inverse u-shaped and uncon-
strained models. In Figure 4, 1 display one bootstrap sample produced by the current most-
constrained model M,, which is the inverse u-shaped model. As before, I display the bootstrap
sample along with the inverse u-shaped function fit to the original sample (the black line) and the
best-fitting inverse u-shaped linear spline and unconstrained linear spline for the bootstrap sample

(the blue dashed and orange dashed lines, respectively). In this case, the unconstrained model fits
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one additional slope parameter than the inverse u-shaped model, shown by the increasing slope of

the right-most piece of the unconstrained linear spline.

Figure 4 Iteration 2 of the MCS Procedure: Evaluating Relative Fit from Bootstrap Samples
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In Figure 5, I display the CDF of the estimated range statistic under the null that the two
models in M are equally well-fitting ’ff)b M across 500 bootstrap samples. The 95 percentile is
0.75, as indicated by the red dashed line. The observed range statistic T is 0.16, which is less than
this critical value. Thus, the null is not rejected and both the inverse u-shaped and unconstrained
models (M., and M_., respectively) are returned as M, ;¢

Because M, € M* and M A& M*, the data are classified as inverse u-shaped.

Figure 5 Iteration 2 of the MCS Procedure: Implementing the Test of Equal Fit
Empirical CDF of Bootstrapped Range Statistic, M = (ius, unc)
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3. The Robin Hood Algorithm
In this section, I briefly describe the Robin Hood algorithm in order to compare the manner in
which the two algorithms evaluate the inverse u-shaped claim. I also apply the algorithm to the
same example dataset analyzed previously.

The Robin Hood algorithm returns a break-point for use in an interrupted regression model.
The slope parameters and significance levels of the model are then used to evaluate the inverse
u-shaped hypothesis. The method for computing the break-point involves first estimating a flexible
conditional expectation function (i.e., cubic spline regression) in order to get a good approximation
of its peak, partitioning the data into two groups using this approximation, and then intelligently

adjusting the partition so that the side with weaker statistical significance receives relatively more
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data than the size with stronger statistical significance. The hypothesis test then uses the param-
eters estimated from the interrupted regression model with the adjusted partition to evaluate the
inverse u-shaped claim. If the estimated slope parameter for the data to the left of the break-
point is significantly positive at the 0.05-level and the estimated slope parameter to the right of
the break-point is significantly negative at the 0.05-level, then the inverse u-shaped hypothesis is
supported?

The logic that supports the two approaches to evaluating non-monotonic theories in data are
at once complementary and contrasting. The two methods are complements in that they both
estimate constrained models in order to evaluate the inverse u-shaped hypothesis. Further, both
constrained models arc estimated for the purpose of facilitating a valid hypothesis test, rather
than to return the best-fitting conditional expectation function or for out-of-sample prediction.
Neither the inverse u-shaped linear spline regression estimated by the Golidlocks algorithm nor the
interrupted regression model estimated using the Robin Hood algorithm’s break-point is necessarily
a good summary of the data generating process. If the analyst, e.g., wants an estimate of the
location of the inflection point of the inverse u-shaped function, there are many better methods
that exist.

However, the manner in which the two algorithms use these constrained models to inform the
hypothesis test is quite different. Whereas the hypothesis test in Goldilocks algorithm is derived
from the relative fit of shape-constrained families of models with the data, the hypothesis test
associated with the Robin Hood algorithm is derived from the slope and significance levels of
parameters within a specific model. The different ways of approaching of the problem of testing
inverse u-shaped hypotheses leads the two methods to arrive at widely divergent conclusions for
certain monotonic-increasing and inverse u-shaped functional families.

Finally, the two methods disagree about whether a function with multiple inflection points whose
average slope is strongly increasing to the left of global peak and then strongly decreasing to the
right of that peak is indeed inverse u-shaped. For the Golidlocks algorithm, it is not. The multiple
inflection points in the function may lead the unconstrained model to be a better fit for the data
than the inverse u-shaped model. For the Robin Hood algorithm it is. The strongly increasing
and decreasing average slopes will lead the interrupted regression model to identify the slopes as
strongly statistically significant and of different sign. That said, if the researcher desires the latter
3n the original presentation of the algorithm, Simonsohn (2018) identifies the data as inverse u-shaped or u-shaped
if the slope parameters are of different sign and both are significant at the 0.05-level. For the purposes of testing a
monotonic-increasing vs. inverse u-shaped hypothesis, I add the additional restrictions that the slope for low values
of  is positive and high values of z is negative. Given the setup of the original simulation study in which all of

the functional forms are either monotonic-increasing or inverse u-shaped, this change has no effect on the presented
results.
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interpretation of inverse u-shaped and the functional form of the non-monotonicity that generates
the multiple inflection points is known, then this can be easily accommodated through the inclusion
of of appropriate control variables in the linear spline models estimated as part of the Goldilocks
algorithm.

Next, I describe the steps of the Robin Hood algorithm in detail and illustrate its implementation

using an example.

3.1. Robin Hood Step 1: Estimate a Flat Maximum Range

The Robin Hood algorithm begins by fitting a cubic spline regression to the data and then identi-
fying the values of x for which §+ s(z) exceeds the maximum value of §, where g are fitted values
of y and s(x) is the standard error of § evaluated at x. These values of = correspond to the flat
maximum region.

In Figure 6, I demonstrate how the flat maximum region is estimated. The left panel shows the
actual functional relationship between x and y and the observed sample. The dashed dark blue
line in the right panel shows g and the dashed light blue line shows g + s(x). The horizontal gray
dotted line represents the maximum value of ¢ and the vertical gray dotted lines represent the
intersection of this horizontal line with ¢+ s(z). The area between these vertical lines, represented

in orange on the graph, is the estimated flat maximum range.

Figure 6 Identifying the Flat Maximum Range
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3.2. Robin Hood Step 2: Estimate an Initial Interrupted Regression Model

In the second stage, an interrupted regression is estimated where the break point is set at the
midpoint of the estimated flat maximum range. The interrupted regression computes separate best-
fit lines for the data to the left and right of the break point and, as a result, has a discontinuity at
the break point.

In Figure 7, I show the midpoint of the estimated flat maximum range in the left panel and
then present the results of the interrupted regression model in the right panel. The slope of the
regression function to the left of the break point b; is 0.83 and to the right of the break point b,
is —0.16. I also report the z-scores for the two slope parameters. Note that the absolute value of
the z-score for b, is much larger than the absolute value of the z-score for by, indicating that the
slope parameter differs from 0 at a higher significance level. In fact, by is indistinguishable from 0

at the 0.05 significance level.

Figure 7 Computing Interrupted Regression Model Using Midpoint
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3.3. Robin Hood Step 3: Adjust the Break Point, Re-estimate the Model, and
Interpret the Results

In the third stage, the coefficients estimated from the first interrupted regression model are used to
update the break point. Define Z = |2z5|/(|21| + |22]), where 2; is the z-score associated with b; and
2, is the z-score associated with z,. Then place the adjusted break point at the Z*" percentile of
the estimated flat maximum range and re-estimate the interrupted regression model. As a result,
more of the sample is allocated to the segment of the interrupted regression that initially has a

lower z-score.
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In the left panel Figure 8, I show the adjusted midpoint of the interrupted regression model.
In this example, Z =1.71/(24.28 + 1.71) = 6.58, so the adjusted break point is much closer to the
left boundary of the estimated flat maximum range than the right boundary. In the re-estimated
model, both slope parameters b; and b, differ from 0 at the 0.05-significance level.

The Robin Hood algorithm evaluates the shape of the data based on the sign and significance
level of by and by. If both are significantly different from zero at the 0.05-level, the sign of b; is
positive, and the sign of b, is negative, then the data are classified inverse u-shaped. Otherwise, they
are not. Because the slope of the interrupted regression to the left of the break-point is significant
and positive and to the left of the break-point is significant and negative, the test identifies the

data as inverse u-shaped.

Figure 8 Computing Interrupted Regression Model Using Adjusted Break Point
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3.4. Application to Data with Multiple Inflection Points
I next present a slight modification of the previous example in order to demonstrate how the two
algorithms differ by design when the functional form has multiple inflection points. The example
here replicates the previous example, except the values of y for all observations for which x <0.25
or 0.5 <z <0.75 are increased by 0.2 and all observations for which 0.25 <x < 0.5 or z > 0.75 are
decreased by 0.2.

Figure 9 presents the true functional form (in the sold black line) and the best-fitting monotonic-
increasing, inverse u-shaped, and unconstrained linear spline regression models (in the dashed red,
blue, and orange lines, respectively). Given the additional flexibility afforded by the unconstrained

model, it does a much better job of accommodating the multiple inflection points than the two
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more-constrained models and, as a result, is the lone model returned in M kLic, implying that the

data are not inverse u-shaped.

Figure 9  Goldilocks Applied to Modified Example

— actual S o o o°
g- - - - |inc o o 9
- - us o O/M*@-\O
©
©
>3
N
A
o
S
OO
| | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

Figure 10 evaluates the same example using the Robin Hood algorithm. The blue dashed line
indicates the estimated interrupted regression after using the Robin Hood algorithm to identify the
break-point. As the slope of the interrupted regression to the left of the break-point is significant
and positive and to the right is significant and negative, the test identifies the data as inverse
u-shaped.

Whether the researcher prefers the interpretation of the Goldilocks algorithm or the Robin Hood
algorithm in this case is context-dependent, I suspect. That said, in cases where the functional form
has multiple inflection points and the cause of the multiple inflection points cannot be controlled
for and the resecarcher desires to characterize a function like the one in the example as inverse
u-shaped, I would recommend using the Robin Hood algorithm and the two-lines test. In contrast,
if the fact that the data are neither monotonic-increasing nor inverse u-shaped leads the researcher
to prefer to retain the more restrictive null hypothesis, then it would be preferable to use the

Goldilocks algorithm.
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Figure 10 Robin Hood Applied to Modified Example
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4. Goldilocks vs. Robin Hood

Next, I present results from a horse-race in which the performance of the Goldilocks algorithm and
Robin Hood algorithm are compared. The simulation evaluates the performance of both algorithms
in terms of falsely-identifying monotonic-increasing data as inverse u-shaped and correctly iden-
tifying inverse u-shaped data across a variety of functional forms. The horse-race is constructed
to mirror the design of the simulations presented in Simonsohn (2018) so that the same evidence
used to show the superiority of the Robin Hood algorithm to competing methods can also be used
to show the superiority of the Goldilocks algorithm to competing methods.

Simonsohn (2018) evaluates four families of functions, two of which are monotonic increasing and
two of which are inverse u-shaped. The first monotonic-increasing family includes 180 functions that
are either piecewise-linear or piecewise-log-linear, where the function is increasing for low values of
x and constant for high values of x. The second monotonic-increasing family includes 135 logistic
functions of the form y = e=*®. The first inverse u-shaped family includes 2520 piecewise-linear
or piecewise-log-linear functions, where the function is increasing for low values of z, decreasing
for high values of x and, in some cases, constant for intermediate values of . The second inverse
u-shaped family includes 900 functions of the form y = x — ax”*, where a and k are selected such
that the inflection point of the function lies in the support of the data.

I first replicate the simulations in Simonsohn (2018) using the code made public by the author and

then order the functions in each family according to the rate at which they classify the simulated
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data as inverse u-shaped. For the monotonic-increasing families, T select every 5" function from
this ordered list (i.e., I select the function that identifies the smallest share of simulated datasets as
inverse u-shaped, the function that identifies the 6**-smallest share of simulated datasets as inverse
u-shaped, and so on). For the inverse u-shaped family, I select every 10" function (i.e., the 1%,
10", and so on). In all, this sampling approach returns 36 functions from the first family, 27 from
the second, 252 from the third, and 90 from the fourth. Then, I generate 500 simulated datasets

from each of the sampled functions and apply the Goldilocks and Robin Hood algorithms to each.

4.1. Two Linear/Log-Linear Segments
I begin by replicating the results for the monotonic-increasing functions, starting with functions
with two linear or log-linear segments for which the function is increasing for low values and flat
for high values. The full list of 36 functions along with the estimated false rejection rates from the
original simulations in Simonsohn (2018) is presented in Table 1 in section 6.

The functions vary according to:

e The distribution of z: Normal, Uniform, Beta with left skew, Beta with right skew, or Opti-
mized for quadratic regression (see McClelland 1997, for discussion of the optimized distribution).

e Linear / Log-linear: For low values of z, FE(y|z) =z or E(y|x)=log(x).

e Sample Size: 100, 200, or 500.

e Standard Deviation of the Noise: The noise is distributed N (0,0), where o is 1 xSD of de-noised
y, 2xSD of de-noised y, or 3xSD of de-noised y.

e Break point: Break between positive slope and constant slope at 30*" or 50" percentile.

Figure 11 is a scatter plot that compares the false rejection rate for the Robin Hood algorithm
and the Goldilocks algorithm. The blue dashed line represents the boundary at which the false
rejection rate for the two algorithms are equal and the gray dashed lines represent 5 percent false
rejection rates. Across the 36 functions, the average false rejection rate for the Goldilocks algorithm
is 4.0 percent, compared to 5.0 percent for the Robin Hood algorithm. 23 of the functions fall below
the blue line, indicating the Robin Hood algorithm has a higher false rejection rate, compared with
13 that fall above the line. In all, the correlation of false rejection rates across the functions is 0.14.

Next, I present the 10 functions for which there is the largest difference in the false rejection
rate in Figure 12. The top 5 panels in the figure are functions for which the Goldilocks algorithm
outperforms the Robin Hood algorithm. The bottom 5 are functions for which Robin Hood outper-
forms Goldilocks. The Goldilocks algorithm consistently outperforms the Robin Hood algorithm
when the standard deviation of the noise is elevated. The Robin Hood algorithm outperforms the

Goldilocks algorithm when the standard deviation of the noise is low.
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Figure 11 False Rejection Rates for Two Linear/Log-linear Segments
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Figure 12  Cases with Largest Difference in False Rejection Rate, Two Linear/Log-linear Segments
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4.2. Logistic Functions
I next replicate the results for logistic functions, which have the form y = =% . The full list of 27
functions is presented in Table 2 in section 6.

The functions vary according to:
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e The distribution of z: Normal, Uniform, Beta with left skew, Beta with right skew, or Opti-
mized for quadratic regression.

e Sample Size: 100, 200, or 500.

e Standard Deviation of Noise: The noise is distributed N(0,0), where o is 1xSD of de-noised
y, 2xSD of de-noised y, or 3xSD of de-noised y.

e Slope parameter: b is 0.5, 1, or 1.5.4

Figure 13 replicates the analysis in Figure 11 for the logistic functions. Across the 27 functions,
the average false rejection rate for the Goldilocks algorithm is 1.8 percent, compared with 2.2
percent for the Robin Hood algorithm. Further, the Goldilocks algorithm outperforms the Robin
Hood algorithm for 18 of the 27 functions. The correlation between the false rejection rate for the

two algorithms is 0.44 for the logistic functions, considerably higher than in the prior case.

Figure 13 False Rejection Rates for Logistic Functions
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Figure 14 highlights the 10 functions for which the false rejection rate most differs. A pattern
emerges when comparing the right-most plot on the bottom row to the right-most plot on the
bottom row of Figure 12, two functions for which Robin Hood outperforms Golidlocks. In both,
more data fall in the flat region of the function. For the Robin Hood algorithm, this suppresses
the significance of the slope of the left segment in the initial interrupted regression with the break

point set at the midpoint of the estimated flat maximum range. This leads to a relatively smaller

4 The caption in Figure 7a in Simonsohn (2018) incorrectly lists the values of b as 0.5, 1.5, and 2.5.
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adjustment of the break point than would be the case if the data were symmetrically distributed,
ensuring that the function is not falsely classified as inverse u-shaped. However, as will become
clear in the subsequent analyses, this also suppresses the power of the Robin Hood algorithm in

some cases where the data are indeed inverse u-shaped.

Figure 14 Cases with Largest Difference in False Rejection Rate, Logistic Functions
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4.3. Three Linear/Log-Linear Segments
Next, I present simulation results for data produced by the inverse u-shaped functional families.
The first set of power analyses is for functions with three linear/log-linear segments. For these
functions, the slope of E(y|x) is increasing for low values of = and decreasing for high values of x
and, in some cases, constant for intermediate values of x. The full list of 252 functions is presented
in Table 3 through Table 6 in section 6.

The functions vary according to:

e The distribution of x: Normal, Uniform, Beta with left skew, Beta with right skew, or Opti-
mized for quadratic regression.

e Linear / Log-linear: For low values of z, E(y|z) =z or E(y|x) =log(x).

e Sample Size: 100, 200, or 500.

e Standard Deviation of the Noise: The noise is distributed N (0, o), where o is 1xSD of de-noised

y, 2xSD of de-noised y, or 3xSD of de-noised y.
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e Break point 1: Break between positive slope and constant /negative slope at 30" or 50" per-
centile of z.

e Break point 2: Break between positive/constant slope and negative at 30", 50" 70" or 90*®
percentile of z (where Break Point 1 is always less than or equal to Break Point 2)

e Magnitude of Change in Slope: For high values of z, the slope of E(y|z) is —0.25, —0.5, —1,
or —2 times the slope for low values of .

I plot the power of each algorithm to detect an inverse u-shaped function in Figure 15. The blue
dashed line represents the boundary at which the false rejection rate for the two algorithms are
equal and the gray dashed lines represent 90 percent true classification rates. For many functions,
the Goldilocks algorithm is slightly under-powered relative to the Robin Hood algorithm. However
for a subset of the functions, the Goldilocks algorithm performs considerably better. As a result,
the average power for the Goldilocks algorithm is 53.9 percent, compared with 52.0 percent for the
Robin Hood algorithm. Although the Robin Hood algorithm outperforms the Goldilocks algorithm
for 198 out of the 252 functions, the difference in power exceeds 10 percent for just 14 of the
functions and the maximum difference is 18 percent. Goldilocks outperforms Robin Hood by more
than 10 percent for 31 functions and by more than 25 percent for 22. The overall correlation in

power to detect an inverse u-shaped function for the two algorithms is 0.89.

Figure 15 Power for Three Linear/Log-Linear Segments
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Robin Hood (replication)

In Figure 16, I present the functions for which the two algorithms have the largest divergence in

power. The functions for which Robin Hood outperforms Goldilocks in terms of power are similar
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to those for which Goldilocks outperforms Robin Hood in terms of the false rejection rate, which
is a classic trade-off in the design of classification algorithms. These functions have elongated flat
or near-flat segments and high variance. As a result, they are settings where specification error is
likely to occur in for the Golidlocks algorithm, largely due to the number and location of the knots
in the linear spline functions.

Of particular interest, however, are the functions in the bottom panel, where Goldilocks so
strongly outperforms Robin Hood. Here, we see the cost of the conservatism described earlier in
the false rejection rate analysis. In settings where the majority of the observations in the sample
is drawn from a weakly increasing region of the function and there are fewer observations from
a strong decreasing region, the Robin Hood algorithm has difficulty identifying the function as

inverse u-shaped.

Figure 16 Cases with Largest Difference in Power, Three Linear/Log-Linear Segments
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4.4. y=2z—az® Functions
I last present the power analysis for the inverse u-shape functions of the form y = x — ax*. The full
list of 90 functions is presented in Table 7 and Table 8 in the appendix.

The functions vary according to:

e The distribution of z: Normal, Uniform, Beta with left skew, Beta with right skew, or Opti-
mized for quadratic regression.

e Sample Size: 100, 200, or 500.
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e Standard Deviation of Noise: The noise is distributed N(0,0), where o is 1xSD of de-noised
y, 2xSD of de-noised y, or 3xSD of de-noised y.

e Inflection point: The inflection point between negative slope and positive slope of E(y|z) falls
at the 500, 60", 702, 80", or 90" percentile of x.

e Exponent k: The exponent k takes values 2, 3, 4, or 5.

Figure 17 replicates the power analysis in Figure 15 for this family of functions. In this analysis,
the Goldilocks algorithm more strongly outperforms the Robin Hood algorithm. The average power
of the Goldilocks algorithm across the 90 functions is 52 percent, compared with 41 percent for the
Robin Hood algorithm. As with the previous case, this divergence is largely driven by a subset of
functions for which Goldilocks substantially outperforms Robin Hood. However, for the remainder,
the two algorithms perform nearly equally well. The overall correlation for the power of the two

tests across the functions is 0.74.

Figure 17 Power for y =z — az® Functions
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Figure 18 displays the functions for which the power of the two algorithms diverges most. As
with Figure 16, the top row of the panel shows that the Robin Hood algorithm outperforms
the Goldilocks algorithm for some functions with high variance errors. The bottom row similarly
reinforces the conclusions drawn from the bottom row in Figure 16. The sample has a leftward
skew for all five of the functions for which the Goldilocks algorithm most outperforms the Robin
Hood algorithm and, for all five, the slope for low values of x is only weakly positive relative to

the magnitude of the negative slope for high values of x.
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Figure 18 Cases with Largest Difference in Power, y = x — az® Functions
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4.5. Goldilocks + Robin Hood: Ensemble Methods

The divergent approaches for evaluating the inverse u-shaped hypothesis create opportunities to
use the Golidlocks and Robin Hood algorithms together in order to improve the false-rejection
rate and power to identify inverse u-shaped data. In particular, the fairly low correlation in false-
rejection rates across the 63 functional forms points to the potential to leverage the information of
both tests in order to decrease the frequency with which monotonic-increasing data is incorrectly
identified as inverse u-shaped.

I explore this possibility with two ensemble methods. The first requires that both methods
support the inverse u-shaped hypothesis at the 0.1-level. In this case, the increased false-rejection
rate and increased power resulting from the higher significance level for any individual test is offset
by the requirement that both methods agree in order to reject the null hypothesis. The second
requires that either method support the inverse u-shaped hypothesis at the 0.01-level. In this case,
the decreased false-rejection rate and decreased power resulting from the lower significance level
for any individual test is offset by the requirement that just one method must reject the null in
order to for inverse u-shaped hypothesis to be supported.

I begin by examining the false-rejection rates for the two ensemble methods across the 63
monotonic-increasing functional forms. Both control the false-rejection rate better than either
Goldilocks or Robin Hood on their own. The first and second ensemble methods falsely identify the

data as inverse u-shaped 0.07 percent and 1.6 of the time, respectively. The maximum false-rejection
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rates for both ensemble methods—1.8 percent and 3.8 percent, respectively—are well below the 5
percent target. Figure 19 compares the two ensemble methods in terms of their false-rejection rates
for all of the monotonic-increasing functional forms. Of note, although the first ensemble method
(the horizontal axis) consistently outperforms the second (the vertical axis), the second continues

to perform quite well across all the functional forms relative to the target 5 percent false-rejection

rate.
Figure 19 False-rejection Rates for Monotonic-increasing Functions
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I next examine the power of the two ensemble methods to detect an inverse u-shaped function
across the 342 functional forms. As demonstrated in Figure 20, the ability of the first ensemble
method to control the false-positive rate comes at a high cost in terms of statistical power, which
is indicated by the fact that all of the points in the figure lie above the blue dashed line. Note
further that the power of the second ensemble method across these functional forms (53.3 percent)
is nearly equivalent to the power of the Goldilocks algorithm on its own (53.4 percent), while also
achieving a nearly 50 percent reduction in the false-rejection rate (3.1 percent vs. 1.6 percent). In
all, the power of the second ensemble method exceeds 90 percent for 125 of the functional forms,
compared with 92 for the second ensemble method and 110 for the Goldilocks algorithm on its

owIl.

5. Discussion and Conclusion

This paper presents the Goldilocks algorithm as an alternative approach for evaluating u-shaped
and inverse u-shaped hypotheses, which are exceedingly common throughout the social sciences
and, specifically, in management theory and strategy. Rather than fitting a function to the sample
and then conducting inference based on the estimated parameters, the Goldilocks algorithm iden-

tifies three potential shape-constrained functions ex ante and then evaluates the fit of the data to
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Figure 20 Power for Inverse u-shaped Functions
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those functions. In the implementation of the algorithm presented here, I evaluate the relative fit
of three linear spline regressions—one constrained to be monotonic-increasing, one constrained to
be inverse u-shaped, and one unconstrained—using the MCS procedure. One function is thus too
flexible or “hot”, one is too constrained or “cold”, and one is “just right”.

I then conduct a horse race to compare the performance of the Goldilocks algorithm to the
Robin Hood algorithm, the latter of which has been demonstrated to have superior performance
than existing methods for classifying inverse u-shaped functions in continuous data. Using a rep-
resentative sample of the functional forms evaluated in Simonsohn (2018), I demonstrate that the
Goldilocks algorithm achieves better control of the false rejection rate and better power across
405 functions in four functional families and, in all, over 200 thousand simulated samples. I then
show that a combination of the two algorithms in an ensemble method—a “Robingold” method,
perhaps—controls the false-rejection rate substantially better than either of two methods does
individually and also produces very nearly equivalent power as the Goldilocks method. Based on
the horse race, then, my recommendation for researchers evaluating inverse u-shaped theories in
data is to apply both algorithms. If either support the inverse u-shaped claim at the 0.01-level,
then this should be interpreted as support for the theory at the 0.05-level.

That being said, I am hopeful that this is just one more step forward in the continuing devel-
opment of new research methods for evaluating shaped theories in data. I suspect that the imple-
mentation of the Goldilocks algorithm recommended here may not be the best one in terms of
minimizing false rejection nor for maximizing power and look forward to future researchers discov-
ering combinations of models and model selection algorithms that outperform mine. I also suspect
that there are alternative implementations that are not quite so computationally costly that achieve
roughly the same control of the false rejection rate and power. Further, while this paper demon-

strates improved performance in a bi-variate setting using linear regression-based methods, it is
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also possible that the relative performance of the algorithms could differ for multivariate or nonlin-
ear models, which points to the desirability of expanding the scope of the simulation study beyond
those functions evaluated in Simonsohn (2018) to include, e.g., control variables that are corre-
lated with the independent variable of interest. To the extent that this paper sparks additional
healthy competition among researchers proposing useful, whimsically-named algorithms, applied

social science research will collectively be better off.
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6. Appendix

The appendix includes a selection of tables and figures references that are referenced in the body

of the paper.

Table 1 List of Sampled Functions in Two Linear / Log-Linear Segments Family

Break point | SD multiplier | N | Distribution of x | Form of y | RH Classification Rate (original)
0.5 2 200 normal log 0.0160
0.3 1 500 normal log 0.0300
0.5 1 200 beta.rs log 0.0300
0.5 1 500 beta.rs log 0.0320
0.3 2 100 uniform linear 0.0360
0.5 1 200 optimal linear 0.0360
0.3 1 500 beta.rs log 0.0380
0.3 3 100 beta.ls linear 0.0400
0.5 1 200 beta.ls log 0.0400
0.3 1 500 beta.ls linear 0.0420
0.5 3 100 optimal log 0.0420
0.5 2 100 normal linear 0.0420
0.3 3 200 beta.ls log 0.0440
0.3 1 500 beta.rs linear 0.0440
0.5 3 100 beta.ls linear 0.0440
0.5 1 100 normal linear 0.0440
0.3 1 100 uniform log 0.0460
0.3 2 500 beta.ls linear 0.0480
0.3 1 200 beta.rs linear 0.0480
0.5 1 200 normal log 0.0480
0.3 3 500 optimal log 0.0500
0.3 2 200 beta.rs linear 0.0500
0.5 2 100 beta.ls log 0.0500
0.3 2 500 beta.rs linear 0.0520
0.5 3 100 uniform linear 0.0520
0.5 2 100 optimal linear 0.0520
0.3 2 100 beta.rs log 0.0540
0.5 2 500 optimal linear 0.0540
0.3 3 100 beta.rs linear 0.0554
0.5 3 500 beta.rs linear 0.0560
0.5 2 200 optimal log 0.0560
0.3 2 200 beta.ls linear 0.0580
0.5 3 200 optimal linear 0.0580
0.5 1 100 beta.rs log 0.0600
0.5 3 500 normal log 0.0620
0.3 2 100 optimal linear 0.0640
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Table 2 List of Sampled Functions in Logistic Family
SD multiplier | N | Distribution of x | b | RH Classification Rate (original)

3 500 beta.ls 0.5 0.000
1 100 normal 0.5 0.000
3 200 normal 0.5 0.002
3 200 beta.ls 1.0 0.004
1 500 beta.ls 1.5 0.006
2 200 beta.ls 1.0 0.008
3 500 normal 1.0 0.012
1 200 normal 1.0 0.012
3 500 uniform 0.5 0.014
3 500 beta.rs 1.0 0.016
2 500 normal 1.0 0.018
1 500 beta.rs 1.5 0.018
2 500 beta.rs 0.5 0.022
1 200 optimal 0.5 0.022
2 200 optimal 1.0 0.024
3 100 uniform 1.5 0.026
3 200 normal 1.0 0.028
3 100 beta.rs 0.5 0.030
2 100 optimal 1.0 0.032
1 200 uniform 1.5 0.034
1 100 normal 1.5 0.036
3 500 normal 1.5 0.040
2 200 normal 1.5 0.042
1 200 optimal 1.5 0.044
3 100 optimal 0.5 0.048
3 100 uniform 1.0 0.050
3 500 beta.rs 1.5 0.054
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Table 3 List of Sampled Functions in Three Linear / Log-Linear Segments Family
Break point 1 | Break point 2 | SD multiplier | N | Magitude of Change in Slope | Distribution of x | Form of y | RH Classification Rate (original)
0.3 0.9 3 100 0.25 uniform log 0.0340
0.3 0.9 2 500 0.25 beta.rs linear 0.0500
0.5 0.9 3 100 0.25 beta.rs log 0.0520
0.5 0.7 3 100 0.50 beta.ls log 0.0540
0.3 0.9 3 200 0.25 optimal log 0.0560
0.3 0.9 3 100 0.50 optimal log 0.0580
0.3 0.9 1 200 0.25 optimal log 0.0600
0.3 0.9 3 100 2.00 optimal log 0.0612
0.3 0.9 1 200 0.25 beta.rs linear 0.0620
0.3 0.9 3 200 1.00 beta.rs log 0.0632
0.5 0.9 2 100 1.00 beta.rs log 0.0652
0.5 0.7 3 100 0.25 beta.ls log 0.0660
0.5 0.9 1 100 1.00 uniform log 0.0660
0.5 0.9 3 500 0.50 beta.rs log 0.0676
0.5 0.9 3 100 0.25 optimal linear 0.0680
0.5 0.9 3 100 1.00 beta.rs linear 0.0696
0.5 0.9 3 100 1.00 beta.rs log 0.0700
0.5 0.9 3 500 2.00 beta.rs log 0.0716
0.3 0.9 2 100 0.50 optimal log 0.0720
0.3 0.9 3 100 1.00 beta.rs linear 0.0732
0.5 0.7 3 100 0.25 optimal log 0.0740
0.5 0.9 2 200 0.50 beta.rs linear 0.0748
0.5 0.9 3 500 1.00 uniform log 0.0760
0.3 0.9 1 200 1.00 uniform log 0.0772
0.3 0.9 2 200 0.50 beta.rs log 0.0780
0.5 0.9 2 200 0.50 optimal linear 0.0780
0.3 0.9 2 200 0.25 beta.rs log 0.0800
0.5 0.9 2 200 0.25 optimal linear 0.0800
0.5 0.9 3 200 0.25 beta.rs log 0.0820
0.3 0.9 3 500 0.50 optimal linear 0.0840
0.3 0.3 3 100 0.50 beta.ls log 0.0860
0.5 0.9 1 200 0.25 uniform linear 0.0860
0.5 0.9 3 500 0.50 optimal linear 0.0880
0.3 0.9 1 500 0.50 uniform log 0.0900
0.5 0.9 1 200 0.25 beta.rs linear 0.0916
0.5 0.9 1 500 1.00 optimal log 0.0920
0.5 0.9 3 200 1.00 beta.ls log 0.0940
0.3 0.9 2 200 0.25 beta.ls log 0.0980
0.3 0.9 3 200 1.00 optimal linear 0.1000
0.3 0.9 2 500 0.50 uniform log 0.1020
0.5 0.9 2 100 0.50 optimal linear 0.1020
0.5 0.9 1 100 2.00 uniform log 0.1040
0.5 0.9 3 500 0.50 beta.ls log 0.1060
0.5 0.9 3 100 0.50 normal log 0.1080
0.3 0.7 2 100 0.25 uniform log 0.1120
0.5 0.9 1 200 0.50 optimal linear 0.1120
0.5 0.7 3 100 0.25 normal log 0.1140
0.3 0.7 3 200 0.50 uniform log 0.1160
0.5 0.7 3 200 0.25 optimal log 0.1180
0.5 0.7 3 100 0.25 optimal linear 0.1200
0.3 0.7 2 100 0.50 uniform log 0.1240
0.3 0.5 2 100 0.25 beta.ls log 0.1280
0.5 0.9 3 200 2.00 optimal linear 0.1280
0.3 0.3 2 100 0.25 beta.ls log 0.1320
0.3 0.9 3 100 2.00 beta.ls linear 0.1340
0.3 0.7 2 200 0.25 beta.ls log 0.1360
0.5 0.9 2 200 2.00 uniform linear 0.1372
0.3 0.3 3 100 1.00 uniform linear 0.1420
0.5 0.5 2 500 0.25 beta.rs linear 0.1440
0.3 0.7 2 200 0.50 beta.rs linear 0.1460
0.5 0.7 2 200 0.50 beta.rs log 0.1480
0.3 0.7 2 200 2.00 beta.ls linear 0.1540
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Table 4 List of Sampled Functions in Three Linear / Log-Linear Segments Family (cont’d)
Break point 1 | Break point 2 | SD multiplier | N | Magitude of Change in Slope | Distribution of x | Form of y | RH Classification Rate (original)

0.5 0.7 2 100 1.00 beta.rs linear 0.1620
0.5 0.7 2 500 0.25 uniform log 0.1660
0.5 0.7 3 100 2.00 beta.ls lincar 0.1680
0.5 0.9 1 500 0.50 beta.ls log 0.1700
0.5 0.9 2 500 1.00 beta.ls log 0.1740
0.5 0.7 2 500 0.50 beta.rs linear 0.1780
0.5 0.5 3 500 0.50 beta.ls log 0.1820
0.3 0.7 3 200 1.00 beta.ls log 0.1860
0.5 0.9 3 100 1.00 normal linear 0.1880
0.5 0.5 2 100 0.50 beta.rs log 0.1920
0.3 0.5 2 200 0.25 beta.ls log 0.1960
0.5 0.5 3 200 0.25 uniform linear 0.2000
0.3 0.3 2 100 2.00 normal linear 0.2040
0.5 0.9 2 500 2.00 uniform linear 0.2040
0.5 0.9 1 100 1.00 uniform linear 0.2080
0.5 0.9 3 500 0.50 normal linear 0.2140
0.3 0.7 3 200 1.00 uniform log 0.2180
0.5 0.5 2 100 0.25 optimal linear 0.2200
0.5 0.9 2 100 1.00 normal log 0.2240
0.3 0.7 2 100 1.00 beta.rs log 0.2320
0.5 0.5 3 200 0.50 optimal log 0.2340
0.3 0.5 1 100 0.25 beta.ls log 0.2380
0.3 0.3 3 100 0.50 beta.rs linear 0.2440
0.5 0.7 3 500 0.50 beta.rs log 0.2460
0.3 0.7 2 500 0.50 beta.rs linear 0.2500
0.3 0.5 3 200 0.50 beta.rs linear 0.2540
0.3 0.7 1 200 0.25 uniform log 0.2600
0.3 0.3 3 100 2.00 uniform log 0.2660
0.5 0.9 1 200 2.00 uniform linear 0.2700
0.5 0.7 3 500 2.00 uniform log 0.2748
0.3 0.7 3 200 0.25 normal log 0.2780
0.5 0.5 3 100 2.00 optimal linear 0.2820
0.3 0.9 3 100 1.00 beta.ls linear 0.2880
0.3 0.5 3 500 0.50 beta.ls log 0.2940
0.3 0.7 3 100 2.00 normal linear 0.2980
0.3 0.5 3 500 0.25 optimal log 0.3040
0.3 0.7 3 100 2.00 beta.rs linear 0.3120
0.3 0.7 2 200 0.25 beta.rs log 0.3168
0.5 0.5 1 500 0.25 beta.rs linear 0.3200
0.5 0.5 1 100 2.00 beta.ls linear 0.3240
0.3 0.7 2 100 1.00 optimal log 0.3340
0.5 0.9 3 200 1.00 normal linear 0.3380
0.3 0.7 2 500 0.50 beta.ls log 0.3460
0.5 0.9 1 100 0.50 normal linear 0.3500
0.3 0.7 3 500 1.00 beta.rs log 0.3560
0.5 0.5 2 500 0.25 optimal log 0.3600
0.3 0.5 3 200 0.50 beta.ls linear 0.3640
0.5 0.7 1 500 0.25 beta.ls log 0.3660
0.3 0.7 3 500 0.25 beta.ls linear 0.3704
0.3 0.5 2 200 0.50 optimal log 0.3780
0.3 0.5 2 500 1.00 beta.ls linear 0.3840
0.5 0.5 2 100 1.00 beta.rs linear 0.3900
0.3 0.5 2 100 2.00 normal linear 0.3960
0.5 0.7 3 100 2.00 optimal log 0.4020
0.5 0.5 1 200 0.50 beta.ls log 0.4100
0.5 0.9 2 200 0.25 beta.ls linear 0.4160
0.3 0.7 1 200 0.50 uniform log 0.4200
0.3 0.3 3 100 1.00 optimal linear 0.4260
0.3 0.3 3 100 0.50 normal log 0.4340
0.3 0.5 2 500 0.25 optimal log 0.4380
0.3 0.5 3 100 1.00 normal log 0.4460
0.5 0.7 3 100 2.00 normal linear 0.4540
0.5 0.5 3 100 2.00 beta.rs linear 0.4620
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Table 5 List of Sampled Functions in Three Linear / Log-Linear Segments Family (cont’d)
Break point 1 | Break point 2 | SD multiplier | N | Magitude of Change in Slope | Distribution of x | Form of y | RH Classification Rate (original)

0.3 0.7 3 500 0.25 normal linear 0.4720
0.5 0.7 1 100 0.25 optimal linear 0.4800
0.3 0.3 3 100 2.00 optimal log 0.4900
0.3 0.3 2 100 0.50 beta.rs linear 0.4940
0.5 0.9 1 500 1.00 uniform linear 0.4980
0.3 0.3 2 100 0.25 normal linecar 0.5100
0.3 0.3 3 200 1.00 optimal log 0.5140
0.5 0.5 1 100 1.00 beta.ls log 0.5200
0.3 0.3 2 200 1.00 uniform linear 0.5300
0.3 0.3 2 200 2.00 optimal linear 0.5380
0.3 0.5 2 200 1.00 beta.ls log 0.5440
0.5 0.9 2 200 0.25 normal linear 0.5508
0.3 0.3 3 500 2.00 uniform linear 0.5564
0.5 0.7 3 200 0.25 beta.ls linear 0.5660
0.5 0.9 2 500 1.00 normal log 0.5720
0.5 0.7 1 200 0.25 beta.rs linear 0.5804
0.5 0.7 3 500 1.00 optimal log 0.5840
0.5 0.7 1 200 1.00 uniform log 0.5920
0.3 0.5 3 200 1.00 beta.rs linear 0.6000
0.3 0.3 1 100 0.50 beta.ls linear 0.6140
0.3 0.3 3 200 2.00 beta.rs linear 0.6200
0.3 0.9 1 100 1.00 normal log 0.6248
0.3 0.5 2 200 2.00 normal linear 0.6320
0.5 0.7 1 500 0.50 beta.rs log 0.6400
0.3 0.9 2 500 0.50 normal linear 0.6440
0.3 0.5 1 100 0.50 beta.rs linear 0.6500
0.3 0.5 2 200 0.25 normal linear 0.6620
0.5 0.7 2 100 1.00 uniform linear 0.6800
0.5 0.5 2 500 0.50 beta.rs log 0.6860
0.5 0.7 1 200 0.25 optimal linear 0.7040
0.3 0.3 1 200 0.50 beta.ls log 0.7160
0.3 0.5 2 100 2.00 normal log 0.7240
0.3 0.7 1 100 0.25 normal log 0.7300
0.3 0.3 2 200 2.00 normal log 0.7380
0.3 0.3 1 100 1.00 uniform linear 0.7460
0.5 0.5 1 500 0.25 uniform log 0.7520
0.5 0.5 1 200 0.50 beta.rs log 0.7620
0.3 0.9 2 200 0.25 beta.ls linear 0.7752
0.3 0.3 3 500 0.25 beta.rs log 0.7840
0.5 0.7 2 100 2.00 optimal linear 0.7920
0.3 0.7 2 500 0.25 optimal linecar 0.7980
0.3 0.7 3 200 2.00 normal log 0.8080
0.3 0.5 3 500 1.00 optimal log 0.8160
0.3 0.5 3 500 2.00 optimal linear 0.8200
0.5 0.5 2 200 2.00 normal linear 0.8240
0.5 0.5 3 200 2.00 optimal log 0.8300
0.3 0.3 2 100 1.00 uniform log 0.8340
0.5 0.5 1 100 1.00 beta.rs linear 0.8380
0.3 0.3 3 500 0.25 normal linear 0.8440
0.5 0.7 2 500 1.00 optimal log 0.8520
0.3 0.5 2 200 1.00 uniform log 0.8620
0.5 0.9 2 500 0.50 normal linear 0.8680
0.5 0.7 3 200 1.00 optimal linear 0.8720
0.5 0.9 2 500 1.00 normal linear 0.8764
0.3 0.7 3 500 0.50 uniform linear 0.8840
0.5 0.5 3 500 0.50 uniform lincar 0.8880
0.3 0.5 2 500 0.25 optimal linear 0.8920
0.5 0.9 3 500 0.50 beta.ls linear 0.8960
0.5 0.7 3 500 0.25 beta.ls linear 0.9000
0.3 0.7 2 200 0.50 optimal linear 0.9060
0.5 0.9 3 500 2.00 beta.ls linear 0.9100
0.5 0.7 3 500 1.00 normal log 0.9180
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Table 6  List of Sampled Functions in Three Linear / Log-Linear Segments Family (cont’'d)
Break point 1 | Break point 2 | SD multiplier | N | Magitude of Change in Slope | Distribution of x | Form of y | RH Classification Rate (original)

0.3 0.5 3 500 1.00 beta.rs linear 0.9240
0.5 0.9 1 200 0.50 normal linear 0.9292
0.3 0.3 1 200 1.00 uniform lincar 0.9360
0.3 0.7 1 200 0.25 normal log 0.9400
0.3 0.5 1 200 1.00 beta.ls log 0.9480
0.5 0.5 1 100 2.00 uniform linecar 0.9520
0.5 0.7 1 100 0.25 beta.ls linear 0.9580
0.5 0.5 1 500 0.50 uniform log 0.9640
0.3 0.5 1 200 0.50 beta.ls linear 0.9680
0.3 0.7 1 500 0.50 optimal log 0.9700
0.3 0.7 1 100 2.00 normal linear 0.9720
0.3 0.3 2 200 0.25 uniform linear 0.9760
0.5 0.7 1 500 0.25 optimal linear 0.9780
0.3 0.7 2 500 0.50 normal log 0.9820
0.3 0.3 1 500 2.00 normal linear 0.9840
0.5 0.5 1 500 0.50 beta.rs log 0.9840
0.5 0.5 1 100 0.50 normal linear 0.9860
0.3 0.5 1 200 0.25 normal linear 0.9880
0.3 0.5 2 500 1.00 beta.rs log 0.9900
0.3 0.3 2 500 1.00 normal linear 0.9920
0.5 0.7 3 500 1.00 normal linear 0.9928
0.3 0.5 1 200 0.25 normal log 0.9940
0.3 0.3 2 500 0.25 normal log 0.9960
0.3 0.7 2 500 2.00 normal linear 0.9960
0.3 0.3 3 500 0.50 optimal linear 0.9980
0.3 0.3 1 100 1.00 uniform log 0.9980
0.3 0.7 2 500 0.50 optimal linear 0.9980
0.5 0.5 3 500 2.00 optimal log 0.9980
0.5 0.7 2 500 0.25 beta.ls linear 0.9980
0.3 0.3 3 500 1.00 beta.rs log 0.9988
0.3 0.3 2 500 0.50 uniform linear 1.0000
0.3 0.3 2 500 2.00 optimal log 1.0000
0.3 0.3 1 500 0.50 uniform linear 1.0000
0.3 0.3 1 500 1.00 beta.ls log 1.0000
0.3 0.3 1 500 2.00 optimal linear 1.0000
0.3 0.3 1 200 0.50 optimal linear 1.0000
0.3 0.3 1 200 2.00 beta.ls log 1.0000
0.3 0.3 1 100 2.00 optimal log 1.0000
0.3 0.5 2 500 1.00 optimal linear 1.0000
0.3 0.5 1 500 0.25 uniform linear 1.0000
0.3 0.5 1 500 1.00 normal linear 1.0000
0.3 0.5 1 500 2.00 normal log 1.0000
0.3 0.5 1 200 0.50 uniform linecar 1.0000
0.3 0.5 1 200 2.00 uniform log 1.0000
0.3 0.5 1 100 2.00 beta.rs linear 1.0000
0.3 0.7 2 500 1.00 uniform linear 1.0000
0.3 0.7 1 500 0.50 normal log 1.0000
0.3 0.7 1 500 2.00 normal log 1.0000
0.3 0.7 1 200 1.00 normal linear 1.0000
0.3 0.7 1 100 1.00 normal linear 1.0000
0.3 0.9 1 500 1.00 normal linear 1.0000
0.5 0.5 2 500 0.25 beta.ls linear 1.0000
0.5 0.5 2 500 2.00 beta.rs linear 1.0000
0.5 0.5 1 500 0.50 uniform linear 1.0000
0.5 0.5 1 500 1.00 optimal linear 1.0000
0.5 0.5 1 500 2.00 optimal log 1.0000
0.5 0.5 1 200 2.00 normal linear 1.0000
0.5 0.5 1 100 1.00 uniform linear 1.0000
0.5 0.7 2 500 1.00 normal linear 1.0000
0.5 0.7 1 500 0.50 normal log 1.0000
0.5 0.7 1 500 2.00 normal log 1.0000
0.5 0.7 1 200 1.00 normal linear 1.0000
0.5 0.7 1 100 1.00 normal linear 1.0000
0.5 0.9 1 500 0.50 beta.ls linear 1.0000
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Table 7 List of Sampled Functions in y =z — az® Family
Inflection Point | Exponent k | SD multiplier | N | Distribution of x | RH Classification Rate (original)
0.8 2 1 500 beta.rs 0.018
0.5 5 1 500 beta.ls 0.024
0.9 4 1 200 beta.rs 0.026
0.8 2 2 500 optimal 0.030
0.9 5 2 200 beta.rs 0.030
0.9 2 1 100 uniform 0.032
0.8 4 2 100 beta.rs 0.034
0.9 5 1 100 beta.rs 0.034
0.9 3 2 200 beta.rs 0.036
0.9 3 3 200 optimal 0.038
0.8 3 2 200 optimal 0.040
0.6 5 1 500 beta.ls 0.042
0.5 5) 3 100 beta.ls 0.044
0.7 2 3 500 beta.rs 0.046
0.8 2 3 500 optimal 0.048
0.7 4 3 500 beta.rs 0.050
0.9 5) 3 100 beta.rs 0.050
0.9 5 2 200 uniform 0.052
0.9 5 2 100 optimal 0.054
0.8 4 3 200 beta.rs 0.056
0.8 4 2 100 optimal 0.058
0.8 2 2 200 uniform 0.060
0.7 2 2 500 beta.rs 0.062
0.7 4 2 500 beta.rs 0.064
0.7 5 2 500 beta.rs 0.066
0.8 2 1 100 uniform 0.068
0.9 2 2 100 normal 0.070
0.5 3 2 100 beta.ls 0.076
0.8 3 2 100 uniform 0.080
0.8 2 1 200 uniform 0.086
0.7 5 3 500 beta.ls 0.090
0.7 4 1 500 beta.rs 0.096
0.8 5 3 200 uniform 0.102
0.7 2 3 200 uniform 0.110
0.8 5 2 100 uniform 0.116
0.5 2 2 200 beta.rs 0.124
0.6 3 2 200 beta.ls 0.128
0.5 3 3 200 beta.rs 0.142
0.5 2 3 500 beta.ls 0.152
0.8 2 2 100 normal 0.164
0.8 5 3 200 beta.ls 0.180
0.5 5 3 200 uniform 0.192
0.9 4 1 100 normal 0.208
0.5 2 1 100 beta.rs 0.232
0.6 2 3 200 beta.ls 0.250
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Table 8  List of Sampled Functions in y =z — ax”® Family (cont’d)

Inflection Point | Exponent k | SD multiplier | N | Distribution of x | RH Classification Rate (original)
0.6 4 1 500 beta.rs 0.264
0.9 5) 1 100 normal 0.282
0.5 5 3 500 uniform 0.298
0.6 4 3 100 optimal 0.322
0.7 ) 3 100 normal 0.352
0.5 4 3 200 optimal 0.362
0.6 3 3 100 uniform 0.380
0.7 3 2 200 beta.ls 0.402
0.9 3 2 100 beta.ls 0.426
0.9 3 1 500 normal 0.456
0.7 3 3 200 normal 0.488
0.8 4 3 500 normal 0.522
0.9 5) 3 200 beta.ls 0.548
0.8 4 2 200 beta.ls 0.586
0.7 2 2 100 optimal 0.606
0.9 3 2 200 beta.ls 0.642
0.7 2 3 500 normal 0.662
0.6 2 3 200 normal 0.688
0.9 3 1 100 beta.ls 0.718
0.6 2 3 500 uniform 0.742
0.5 3 2 100 normal 0.766
0.5 2 2 100 normal 0.798
0.5 4 2 500 uniform 0.828
0.9 5 2 200 beta.ls 0.858
0.7 2 2 200 optimal 0.884
0.8 2 1 500 normal 0.904
0.9 3 1 200 beta.ls 0.916
0.5 4 3 500 normal 0.926
0.7 2 1 100 beta.ls 0.940
0.8 3 1 100 beta.ls 0.954
0.6 3 2 200 normal 0.966
0.7 5 3 500 normal 0.974
0.6 2 2 200 optimal 0.984
0.5 2 2 200 uniform 0.988
0.5 3 1 100 optimal 0.994
0.6 3 2 500 uniform 0.996
0.5 4 1 500 uniform 0.998
0.8 3 1 200 beta.ls 0.998
0.5 2 1 200 uniform 1.000
0.5 3 1 200 optimal 1.000
0.6 2 1 200 optimal 1.000
0.6 4 2 500 normal 1.000
0.6 5 1 200 normal 1.000
0.7 3 1 500 optimal 1.000
0.7 5 1 500 normal 1.000




