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Abstract 

Rates of COVID deaths, hospitalizations, and cases differ markedly across U.S. states, as do 
rates of vaccination.  This study uses cross-state regressions to assess impacts of vaccinations on 
COVID outcomes.  A number of familiar issues arise concerning cross-sectional regressions, 
including omitted variables, behavioral responses to vaccination, and reverse causation.  The 
benefits from a field context and from the broad range of observed variations suggest the value 
from dealing with these issues.  Results along these lines reveal sizable negative effects of 
vaccination on deaths, hospitalizations, and cases up to early December 2021, although vaccine 
efficacy seems to wane over time.  The estimates imply that 250 additional doses, with a 
marginal cost around $40000, leads to one expected life saved.  This $40000 is far below typical 
estimates of the value of a statistical life.  Results since December 2021 suggest smaller effects 
of vaccinations on deaths and, especially, hospitalizations and cases.  These findings may reflect 
diminishing effectiveness of vaccines against new forms of the virus, notably the omicron 
variant.  A further possibility is that confidence engendered by vaccinations may have motivated 
individuals and governments to lessen non-pharmaceutical interventions, such as masking and 
social distancing. 
 
 
 
 
*The research reported in this working paper was supported by the National Institute on Aging 
of the  National Institutes of Health under Award Number P30AG012810.  The content is solely 
the responsibility of the author and does not necessarily represent the official views of the 
National Institutes of Health.  I have benefited from comments by Stephen Barro, David Cutler, 
Ed Glaeser, Niels-Jakob Hansen, Rui Mano, Bruce Meyer, Lisa Robinson, Michael Strain, Stan 
Veuger, and Mark Warshawsky. 
 



Vaccination rates against COVID-19 differ markedly across U.S. states.  For example, 

based on CDC data and as shown in Table 1, the rate of “full” vaccination over a recent period of 

roughly three months, 11/17/21-2/11/22, averaged 61% with a standard deviation of 8%.  These 

rates varied from 48% in Alabama to 77% in Vermont.  If vaccinations are effective at reducing 

infections and deaths, these differences should map into differences in COVID-related cases and 

deaths. 

Table 1 shows that CDC data on reported COVID-related cases, hospitalizations, and 

deaths also varied substantially across the states.  For example, for 12/1/21-2/25/22 (14 days 

after the vaccination period), the change in cumulative cases per person—corresponding to 

cumulations of new cases over the period—averaged 0.39 with a standard deviation of 0.069.1  

The range was from 0.27 for Idaho to 0.66 for Rhode Island.  Over the same period, the change 

in cumulative hospitalizations per person averaged 0.077 with a standard deviation of 0.028 and 

a range from 0.049 for Vermont to 0.226 in the District of Columbia.  Cumulative deaths per 

person averaged 0.0021 with a standard deviation of 0.0007 and a range from 0.0007 for the 

District of Columbia to 0.0037 for Michigan. 

Table 1 shows comparable statistics for earlier periods.  For vaccinations, the data start at 

3/5/21, corresponding to the beginning of CDC information on full vaccinations.2  Each of the 

four periods shown covers roughly three months (86 days).  Note that the mean of full 

vaccination rates rose from 0.24 in 3/5/21-5/30/21 to 0.45 in 5/30/21-8/23/21, 0.55 in 

8/23/21-11/17/21, and 0.61 in 11/17/21-2/11/22.  (The table also shows national averages, which 

differ to a minor extent from the means of values across the states.) 

                                                            
1These and subsequent numbers are expressed at annual rates; that is, the changes over 86 days were multiplied 
by 365/86. 
2The national fraction reported as fully vaccinated on 3/5/21 was already positive, 0.086. 
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For cases, hospitalizations, and deaths, the corresponding periods in Table 1 are each 14 

days subsequent to the periods for vaccinations.  Note that the mean of Covid cases per person 

rose from 0.05 in 3/19/21-6/13/21 to 0.08 in 6/13/21-9/6/21, 0.13 in 9/6/21-12/1/21, and 0.39 in 

12/1/21-2/25/22 (all measured at annual rates).  For hospitalizations per person, the mean was 

0.036 in 3/19/21-6/13/21 and then climbed to 0.048 in 6/13/21-9/6/21, 0.077 in 9/6/21-12/1/21, 

and 0.111 in 12/1/21-2/25/22.  For COVID deaths per person, the mean was 0.0007 in 

3/19/21-6/13/21 and 0.0006 in 6/13/21-9/6/21, then rose to 0.0018 in 9/6/21-12/1/21 and 0.0021 

in 12/1/21-2/25/22.  Note that, probably because of expanded testing, cases rose proportionately 

much more than hospitalizations and deaths in the most recent period. 

The objective of this study is to use cross-sectional regressions for the U.S. states to 

attempt to assess the effects of vaccinations on COVID-related outcomes.  The regression 

framework takes as dependent variables the outcomes (cases, hospitalizations, and deaths) over 

the four periods shown in Table 1.  That is, each dependent variable is the number of cases or 

hospitalizations or deaths per person cumulated over periods of roughly three months.  The 

corresponding explanatory variables related to levels of vaccinations are averages over periods 

lagged 14 days compared to the dependent variables.3  The idea is that, at any point in time, the 

probabilities of infection, hospitalization, and death depend (with some lag) on the fractions of 

the population vaccinated. 

As is familiar from the extensive work by epidemiologists on contagious disease, the 

high-frequency behavior of infections, hospitalizations, and deaths features waves of rising and 

falling outcomes.  The idea in the regression analysis is to consider periods of sufficient length, 

                                                            
3The relevant lag may differ from 14 days and would differ for cases, hospitalizations, and deaths.  However, in 
practice, the regression results are not sensitive to the use of different lags between 14 and 28 days.  These lags 
are consistent with those described by Bjornskov (2021, p. 320) 
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such as three months, so that these short-run dynamics tend to average out.  The estimated 

coefficients may then give estimates of the effects of vaccination rates on average probabilities 

of infection, hospitalization, and death. 

 

I.  Issues with Cross-Sectional Regressions 

As is well known, inferences from cross-sectional regressions may be difficult to draw.  

Because of these problems, detailed below, many researchers have moved increasingly away 

from these types of regressions, preferring instead to rely on randomized control trials (RCTs) or 

natural experiments.  Although RCTs are important for assessing the efficacy of vaccines, 

including those recently developed for COVID-19, it is more difficult to evaluate impacts on 

cases and deaths in the “field.”  As far as I know, there are no RCTs applicable to field results 

connecting COVID vaccinations to COVID outcomes.  In some cases, natural experiments—

such as regression-discontinuity designs applied to state borders—have been used successfully in 

the context of COVID-19.  For example, this approach has been applied to facemask mandates 

by Goolsbee and Syverson (2021), who consider economic impacts, and Hansen and 

Mano (2021a), who assess health outcomes.4 

There are also important advantages of cross-sectional regressions.  In particular, they 

apply to the field context and can exploit the large observed cross-sectional variations in the 

variables of interest—such as differences in vaccination uptake across U.S. states.  Because of 

                                                            
4Herby, Jonung, and Hanke (2022) carry out a meta-analysis of 24 studies of the effects of facemask mandates on 
COVID-19 mortality.  Their overall conclusion is “lockdowns have had little to no effect on COVID-19 mortality.”  
Many of the  studies considered seem to lack convincing causal evidence—the cross-border approach of Hansen 
and Mano (2021a) and the instrumental-variable regressions of Welsch (2020) seem superior in this regard.  These 
two studies were not included in the Herby, Jonung, and Hanke (2022) analysis. 
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these major benefits, it seems worthwhile to pursue the cross-sectional regression approach in the 

context of COVID vaccinations and outcomes. 

I consider now three major issues in interpreting the results from the cross-state 

regressions.  The first concern is that vaccination take-up may be correlated with other variables 

that influence COVID outcomes.  If these other variables are omitted from the regressions, the 

estimated coefficient on the vaccination rate may proxy for the influences of these other 

variables.  For example, if older people are more susceptible to COVID infection and, especially, 

death, they are likely to be vaccinated more frequently (and earlier).  In this case, the observed 

correlation between vaccine take-up and COVID cases, hospitalizations, and deaths may be 

positive.  This issue is handled by including as explanatory variables a set of major socio-

economic variables—specifically, the fraction of the state population aged 65 and over in 2020, 

state life expectancy at birth in 2018, the fraction of the state adult population with education of 

four years of high school or more in 2019, the fraction of the state population classified by the 

U.S. Census as black in 2020, and the urbanization rate in 2010.  The analysis also includes 

differences in average temperature across states at different times of the year.  Inclusion of some 

other variables, such as population share aged 75 and over in 2020, per capita personal income in 

2020, and college education in 2019, do not materially affect the results.5 

 The second issue is that persons vaccinated may alter their behavior in ways that impact 

probabilities of COVID infection, hospitalization, and death.  For example, a vaccinated person 

may feel protected and react accordingly by engaging in more social interactions or other risky 

behaviors.  An analogous mechanism for seatbelt use, analyzed in research that began with 

Peltzman (1975), is that a person who uses a seatbelt (perhaps because of a legal mandate) may 

                                                            
5Data by U.S. state on the socio-economic variables come from the U.S. Census Bureau.  The data on personal 
income are from the Bureau of Economic Analysis.  The temperature data are from usclimatedata.com. 



5 
 

drive faster.  These kinds of mitigating actions may not arise in clinical trials (particularly if 

persons do not know their vaccination status) but would apply in the field.  In the regression 

analysis, the estimated effects of vaccinations on COVID outcomes comprise direct effects 

combined with any mitigation behavior.  In some contexts, these combined effects are the objects 

of interest—e.g. overall effects of vaccinations on deaths (or of seatbelt use on automobile 

fatalities).  In other contexts, there would be more interest in the effects of vaccinations, holding 

fixed the behavioral variables.6  In any event, the present regression results apply only to the 

combined effects. 

 The third issue concerns reverse causation.  Higher vaccination rates likely reduce 

COVID infections, hospitalizations, and deaths, and these are the effects that we seek to isolate.  

However, in addition, higher probabilities of infection, hospitalization, and death likely 

encourage people to get vaccinated (and motivate governments to mandate or subsidize 

vaccinations and to support the creation and distribution of vaccines).  The first channel, 

whereby vaccination reduces probabilities of adverse outcomes, tends to generate a negative 

association between vaccination rates and rates of infection, hospitalization, and death, whereas 

the second channel tends to generate a positive association.  If the second channel is not held 

constant, the observed association between vaccination rates and rates of infection, 

hospitalization, and death tends to underestimate the magnitude of the (negative) effects from 

vaccination. 

A common way to deal with reverse causation is to use instrumental variables that 

explain a substantial part of the variation in the explanatory variable, in the present context the 

                                                            
6This analysis would allow for welfare benefits derived from the mitigating actions; for example, people getting 
pleasure from greater social interactions or from driving faster while wearing seatbelts.   
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vaccination rate, but do not enter directly as determinants of outcomes, in the present case the 

rates of COVID cases, hospitalizations, and deaths.  That is, the instrument matters for outcomes 

only through the channel of affecting the frequency of vaccination.  The present analysis uses as 

an instrument a variant of the variable proposed by Welsch (2020, Section 3.2)—the Trump 

(Republican) share of the 2020 Presidential vote.7  Welsch (Table 2) used the 2016 value of this 

variable as an instrument for facemask usage, measured in July 2020 in a survey conducted by 

The New York Times. 

Perhaps surprisingly, the Trump variable has a great deal of explanatory power for 

vaccination rates across states, even after holding constant key socio-economic variables, such as 

those mentioned before—old-age share, life expectancy, education, fraction black, and 

urbanization.  That is, the Trump variable does not matter for vaccine take-up because it proxies 

for these kinds of socio-economic factors.  Therefore, from the standpoint of having a lot of 

independent explanatory power for vaccination rates, the Trump variable is a good candidate as 

an instrument.  In effect, the 2020 Presidential voting pattern sorts people (and states) into bins 

for vaccine attitudes in a manner that is largely orthogonal to socio-economic characteristics. 

A reasonable concern is that the Trump variable would matter for COVID outcomes in 

ways that do not work entirely through vaccination status.  For example, Welsch (2020, 

Appendix Table A1) found that the Trump vote share was inversely related to facemask usage in 

the New York Times survey.  Consistent with Welsch’s findings, for the period 3/16/20-2/1/21, 

which precedes the distribution of vaccines, the presence of a facemask mandate at the state level 

is significantly negatively related to the Trump vote share.8   However, a combination of the 

                                                            
7The voting data are from Federal Election Commission (fec.gov). 
8The facemask mandate is measured from information given in Raifman, et al. (2022)  as the fraction of days 
between March 16, 2020 and February 1, 2021 in which a statewide facemask mandate was in effect. 



7 
 

estimated negative effect of the Trump vote variable on facemask mandates with the Hansen and 

Mano (2021a) estimated negative effect of facemask mandates on COVID deaths yields a very 

small implied positive effect of the Trump vote on COVID deaths, compared with the effects 

estimated below that work through vaccinations.  Therefore, from a quantitative standpoint, the 

Trump variable may be a satisfactory instrument for vaccination rates even though this variable 

has influences on COVID outcomes that work through facemask mandates and usage. 

 

II.  Data and Empirical Setup 

 Data on COVID-related deaths, hospitalizations, and cases, measured relative to 

population, are reported by the CDC and provided by Opportunity Insights, Economic Tracker 

(see Chetty, et al. [2022]).  The data used in this study are for the 50 U.S. states plus the District 

of Columbia.   

The three measures of COVID outcomes enter as dependent variables in the regressions 

and are examined over the four periods noted before.  The starting date, March 19, 2021, is 14 

days after the beginning of data on vaccination rates (fully vaccinated persons relative to state 

population), also coming from the CDC and Opportunity Insights.9  The first three periods, 

shown in Table 1, are 3/9/21-6/13/21, 6/13/21-9/6/21, and 9/6/21-12/1/21.  These periods are of 

                                                            
9The CDC data reported by Opportunity Insights have occasional large jumps in cumulative COVID deaths and 
vaccinations.  (The death and case data are reported by the CDC as 7-day moving averages of daily data, whereas 
the vaccination data are reported daily.)  My interpretation, consistent with feedback obtained from the CDC, is 
that the jumps do not represent real changes but rather reflect shifts in procedures or assessments of data already 
processed (with past data not revised).  This view accords with the observation that some of the jumps are 
negative.  As one example of a jump, the reported cumulative COVID deaths per 100,000 persons in Oklahoma 
shifts from 125 on 4/6/21 to 169 on 4/13/21.  In the most egregious case, for the full vaccination rate in West 
Virginia, the variable jumps from .415 to .489 on 12/2/21, from .492 to .690 on 12/8/21, from .690 to .710 on 
12/10/21, and from .716 to .548 on 12/23/21.  The data were modified to smooth out these jumps (by making 
proportional adjustments at dates that precede the jumps).  The main inferences from the results, notably from 
Table 2, do not change when the original data are used.  However, the overall fit of the regressions is much poorer 
with the original data. 
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equal length (86 days) and extend to the rough date of onset of the omicron variant in the United 

States.  The most recent period, 12/1/21-2/25/22, is the same length as the previous three.  For 

each period, COVID-related deaths or hospitalizations or cases are the changes in the cumulative 

per capita numbers (corresponding to the cumulations of new cases), expressed at annual rates. 

 

III.  Regression Results 

I begin with results on deaths because these data are likely much more reliable than those 

on cases (which are sensitive to amounts of testing and likely leave many cases uncounted or 

misreported).  Then I consider results for hospitalizations and cases. 

Regression results in Table 2 are for COVID-related deaths per capita, observed over the 

four periods of 86 days:  12/1/21-2/25/22, 9/6/21-12/1/21, 6/13/21-9/6/21, and 3/19/21-6/13/21.10  

The first two columns are for seemingly-unrelated regressions, which use a least-squares 

procedure but compute standard errors of estimated coefficients when allowing for correlation of 

the error terms across the periods.  The first column has on the right-hand side the average of the 

full vaccination rate over periods lagged 14 days relative to the dependent variable.11  Note that, 

whereas the dependent variable is the change in cumulative deaths per person over the periods 

shown, the independent variable is the cumulative level of full vaccinations per person (with a 

14-day lag compared to the dependent variable). 

To allow for a possible waning effectiveness of the vaccine, the specification in column 2 

of Table 2 includes two measures of vaccination rates—one for vaccinations that occurred 

roughly within the last six months and the other covering vaccinations from six or more months 

                                                            
10Results are broadly similar when the data are broken down into eight periods of 43 days between 3/19/21 and 
2/25/22. 
11The results are similar with a lag of 28 days. 
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in the past.  In this specification, booster shots, for which CDC information starts on 10/20/21,12 

are viewed as converting an old vaccination into a recent one.  That is, when combined with the 

remaining efficacy of a full vaccination from six months ago, a booster is viewed as generating 

effectiveness equal to that of a recent full vaccination.  The inclusion of booster shots applies 

only to the two most recent periods in Table 2; that is, no boosters existed and none of the full 

vaccinations were “old” up to roughly September 2021.   

Aside from the vaccination variables, the regressions also include on the right-hand sides 

the socio-economic variables mentioned before (old-age fraction, life expectancy, high school 

education, fraction black, and urbanization).  Also included is the historical average maximum 

temperature over the relevant period (computed from monthly data for the largest city in each 

state).  In the estimation, separate coefficients are estimated for each period for each independent 

variable, including the constant term.  In this specification, the constant terms absorb variations 

over time in aggregate COVID outcomes. 

In column 1, the estimated coefficients on the (roughly) contemporaneous vaccination 

rate are all negative, significant at the 1% level for 9/6/21-12/1/21 and 6/13/21-9/6/21, and 

significant at the 5% level for 12/1/21-2/25/22.  To assess the magnitudes of the estimated 

responses, consider the period 9/6/21-12/1/21, for which the estimated coefficient is the largest 

in magnitude, -0.0091.  Over this period, the mean of the vaccination rate variable is 0.548 with a 

standard deviation of 0.078.  Therefore, a one-standard-deviation increase in the vaccination rate, 

which is a rise by 14.2%, is estimated to lower the death rate by 0.00071, compared to the mean 

death rate of 0.00175.  That is, the death rate falls by 40.6%.  The implied elasticity of response 

is the ratio of -40.6 to 14.2, which equals -2.9.  The estimated elasticities are smaller in 

                                                            
12The national fraction of reported booster shots on 10/21/21 was already positive, 0.034. 
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magnitude for the other periods, corresponding to the smaller sizes of the estimated coefficients 

in Table 2, column 1.13 

When the two measures of vaccination rates are included in column 2, the results for the 

period 9/6/21-12/1/21 suggest that recent vaccinations are roughly twice as effective against 

deaths as older vaccinations; estimated coefficients are -.0097 and -.0064, respectively.  Each of 

these estimated coefficients is statistically significant at least at the 5% level.  However, the two 

estimated coefficients differ from each other only with the high p-value of 0.31.  For the most 

recent period, 12/1/21-2/25/22, there is essentially no information about a possible waning 

influence of vaccinations. 

The small size of the estimated coefficient for the earliest period, 3/19/21-6/13/21, may 

reflect reverse causation from COVID deaths to vaccination propensity.  This effect is likely to 

be powerful during the early stages of vaccination rollout, when the places most adversely 

impacted are especially likely to have large rollouts of vaccinations.  This channel could also be 

operating in the most recent period, 12/1/21-2/25/22, which features the introduction of booster 

shots. 

Another way to interpret the estimated effects of vaccinations on COVID deaths comes 

from the literature on the value of a statistical life (surveyed in Viscusi and Aldy [2003]).  The 

point estimates for 9/6/21-12/1/21 from Table 2 imply that the coefficient -0.0097 applies to 

vaccination rates over the first six months and the coefficient -0.0064 applies over the next six 

                                                            
13For the other explanatory variables, the fraction over age 65 is significantly positive in each period, and high 
school education is negative and at least marginally significant in each period.  Life expectancy and fraction black 
are each significantly negative in two periods, and urbanization rate is significantly positive in two periods.  The 
temperature variable is significantly negative in two periods, with a particularly strong effect in the most recent 
period, 12/1/21-2/25/22.  This last result suggests a tendency for colder places to have more COVID deaths during 
the winter.  However, the temperature variable is not statistically significant when considered for an earlier winter 
period, 12/23/20-3/19/21, which precedes the advent of full vaccinations. 
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months.  If vaccinations are ineffective after 12 months and boosters are ignored, a quantity V of 

vaccinations would be expected to reduce deaths over one year by V∙(.5∙.0097 + .5∙.0064) = 

.00805∙V.  Therefore, to expect to save one life over the year, one needs 1/.000805 = 124 full 

vaccinations, which correspond to 248 shots for a two-dose regime.  A recent estimate from 

Health and Human Services (2021, Table 18) for marginal costs is that the direct cost of each 

dose is $20, the cost per vaccine administration is $20, and the value of time for person dosed is 

$82, for a total marginal cost of $162.  (These numbers ignore any costs due to adverse reactions 

to the vaccine.)  The value $162 for marginal cost per dose implies that it costs about $40000 at 

the margin to expect to save one life.  Since usual estimates of the value of a statistical life are 

much larger than $40000 (see Viscusi and Aldy [2003]), this result indicates that vaccinations 

against COVID-19 are a great bargain.  The results are less powerful with the smaller 

magnitudes of coefficients estimated for other periods.  For example, with the coefficients 

estimated for 12/1/21-2/25/22 in Table 2, it requires 455 full vaccinations or 910 shots or 

$147,000 to expect to save one life.  Even this higher magnitude suggests that vaccinations are a 

great deal. 

The instrumental estimation treats the vaccination rates as endogenous.  The instrument 

list includes the 2020 Republican vote share for President, along with the other explanatory 

variables mentioned before.  That is, the Trump vote share is the one excluded instrument.14  

Table 3 shows first-stage regressions, with the vaccination rate over the various periods as the 

dependent variable.  The remarkable aspect of these results is the strong explanatory power of 

                                                            
14When two vaccination variables are included, an additional instrument is required.  The results in column 4 of 
Table 2 include the 6-month lag of the full vaccination rate on the instrument list.  Hansen and Mano’s (2021b) 
county-level analysis used as an instrument the state-level vaccine allocation interacted with the county density of 
pharmacies. Possibly a variable along these lines could be used for the state-level analysis. 
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the Republican vote share in the 2020 election (Trump vote), especially for the three most recent 

periods.  The important point is that a higher Trump vote share strongly associates with a lower 

vaccination rate even when the other explanatory variables are held fixed.  An increase by 0.12 

in this vote share (which has a mean of 0.49 and a standard deviation of 0.12) associates in the 

most recent period, 11/17/21-2/11/22, with a decline by 0.065 in the vaccination rate (which has 

a mean in this period of 0.61).  The results are similar for the two preceding periods but are much 

weaker for the earliest period, 3/5/21-5/3/21.  In this case a rise by 0.12 in the Trump vote share 

associates with a fall in the vaccination rate by only 0.011, compared to the mean of 0.24. 

The results from instrumental estimation are in columns 3 and 4 of Table 2.  For the two 

periods where the estimated effects from vaccinations on COVID deaths were strongest, 9/6/21-

12/1/21 and 6/13/21-9/6/21, the estimated coefficients from instrumental estimation are still 

highly significant and now slightly larger in size.  These changes go in the direction expected—if 

there is positive reverse causation from COVID deaths to vaccinations—but the magnitudes of 

change are minor. 

For the earliest period, 3/19/21-6/13/21, the extent of the change in the point estimate of 

the coefficient is much larger under instrumental estimation, and this estimated value is now in 

the ballpark of those found for other periods.  However, the standard error of the coefficient 

estimate blows up, likely because the excluded instrument—the Trump vote variable—is only 

marginally significant for explaining the vaccination rate in this period (see Table 3).  That is, the 

instrument is weak. 

For the most recent period, 12/1/21-2/25/22, the instrumental estimate in column 3 of 

Table 2, which includes only one vaccine variable, is close to that found before.  In column 4, the 

results do not clearly distinguish the effect from recent vaccinations (including boosters) to that 
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from older vaccinations.  In any event, the main inference is that vaccinations had less effect 

overall against COVID deaths, compared to that in periods that preceded the rise of the omicron 

variant in early December 2021. 

Table 4 has regression results with COVID-related hospitalizations per capita as the 

dependent variable.  This setting parallels that in Table 2 for COVID deaths.  Results on 

hospitalizations in Table 4 for the second and third periods, 9/6/21-12/1/21 and 6/13/21-9/6/21, 

roughly parallel those for COVID deaths.  To evaluate the magnitudes of the estimated responses 

for hospitalizations, consider the period 9/6/21-12/1/21, for which the estimated coefficient on 

the vaccination rate in column 1 is -0.29.  Over this period, the mean of the vaccination rate is 

0.548 with a standard deviation of 0.078, so that a one-standard-deviation increase in the 

vaccination rate, which is a rise by 14.2%, is estimated to lower the hospitalization rate by 0.023, 

compared to the mean of 0.077.  That is, the hospitalization rate falls by 29.9%.  The implied 

elasticity of response is the ratio of -29.9 to 14.2, which equals -2.1 (compared to -2.9 for 

deaths). 

Results in Table 4 for the earliest period, 3/19/21-6/13/21, are also parallel to those for 

deaths in the sense that the vaccination rate does not have a statistically significant effect on 

hospitalizations.  These results may again reflect reverse causation in this period—the point 

estimate of the coefficient on the vaccination rate is negative and larger in magnitude in the 

instrumental estimation, but the standard error blows up. 

The hardest results to interpret for COVID hospitalizations are for the most recent period, 

12/1/21-2/25/22, which covers the rise of the omicron variant.  There is no indication in this 

period that vaccinations reduce COVID-related hospitalizations. 
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Table 5 has regression results with COVID cases per capita as the dependent variable.  

This setting parallels that in Tables 2 and 4 for COVID deaths and hospitalizations, respectively.  

The results for cases in Table 5 for the second and third periods, 9/6/21-12/1/21 and 

6/13/21-9/6/21, roughly parallel those for deaths and hospitalizations.  To evaluate the 

magnitudes of the estimated responses for cases, consider 9/6/21-12/1/21, for which the 

estimated coefficient on the vaccination rate in column 1 is -0.42.  As noted before, the mean of 

the vaccination rate over this period is 0.548 with a standard deviation of 0.078, so that a one-

standard-deviation increase in the vaccination rate, a rise by 14.2%, is estimated to lower the 

case rate by 0.033, compared to the mean of 0.134.  That is, the case rate falls by 24.6%.  The 

implied elasticity of response is the ratio of -24.6 to 14.2, which equals -1.7 (compared to -2.1 

for hospitalizations and -2.9 for deaths). 

Results in Table 5 for the earliest period, 3/19/21-6/13/21, are also parallel to those for 

deaths and hospitalizations in the sense that the vaccination rate does not have a statistically 

significant effect on cases.  These results may again reflect reverse causation—the point estimate 

of the coefficient on the vaccination rate is negative and much larger in magnitude in the 

instrumental estimation, but the standard error blows up. 

The hardest results to interpret are again for the most recent period, 12/1/21-2/25/22, 

which covers the rise of the omicron variant.  As with hospitalizations, there is no indication in 

this period that vaccinations reduce COVID cases. 

 

IV.  CDC Reports on COVID Outcomes in Relation to Vaccination Status 
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The regression findings can be compared with CDC reports on COVID outcomes in 

relation to vaccination status.15  On October 30 2021, data from 29 jurisdictions indicate that 

COVID cases per capita for unvaccinated persons were 4.3 times those for fully vaccinated and 

12.7 times for those with booster shots.  These ratios fell to 2.0 and 3.7, respectively, on 

January 1, 2022, and 3.1 and 3.0, respectively, on February 19, 2022.  That is, case rates for 

unvaccinated had become much closer to those for fully vaccinated and boosted, and the 

distinction between fully vaccinated and boosted no longer appeared.  For COVID deaths, 

covering 26 jurisdictions, the ratios were 12.0 and 36.6, respectively, on October 30 2021 and 

fell to 6.2 and 24.1, respectively, on January 1, 2022.  For February 19 2022, the ratio for fully 

vaccinated or more was 2.8 but separate data for boosters were not yet available.  In any event, 

death rates for unvaccinated had become much closer to those for vaccinated. 

Overall, the CDC data on outcomes in relation to vaccination status seem consistent with 

the regression findings, which indicate weaker effects of vaccinations on COVID deaths and, 

especially, cases since early December 2021.  It is worth keeping in mind, however, that the 

CDC analysis is subject to issues similar to those that apply to the cross-state regressions.  For 

example, if less healthy people are more likely to die from COVID, for given vaccination status, 

and more likely to be vaccinated, then the association between vaccination and death would tend 

to understate the beneficial benefits from vaccination.  Similar effects arise if older people are 

more likely to die for given vaccination status and more likely to be vaccinated, although the 

CDC indicates that its statistics adjust for age.  However, the CDC data do not adjust for other 

socio-economic variables or for vintage of vaccination. 

 

                                                            
15See cdc.gov/covid-data-tracker/#rates-by-vaccine-status. 
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V.  Speculative Thoughts and Research Plans 

 The results in Tables 2, 4, and 5 reveal substantial negative effects of vaccinations on 

COVID deaths, hospitalizations, and cases up to roughly the emergence of the omicron variant of 

the virus in early December 2021.  Results on deaths (Table 2) suggest that the power of 

vaccines wanes over time but still remains effective even after about six months.  This waning 

influence is offset by the introduction of booster shots.  In comparison to the findings from 

earlier periods, the results since early December 2021 indicate that vaccinations have a weaker 

effect in reducing COVID deaths and may no longer reduce COVID hospitalizations and cases. 

The cross-state regression results accord in a sense with the aggregate U.S. data, which 

do not directly enter into the regressions.  That is, since early December 2021, COVID deaths 

and hospitalizations and, particularly, cases surged in an upward wave, followed by a downward 

wave.  This overall rise in adverse outcomes over the roughly 3-month period after December 1, 

2021 occurred despite the continuing rise in “full” vaccination rates and the spread of booster 

shots (see Table 1).  One caveat in interpreting the aggregate data is that the rise in reported 

cases should be discounted because of the sharp increase in testing.  Another consideration is that 

the rises in aggregate deaths, hospitalizations, and cases in winter 2021-2022 may to some extent 

reflect seasonal factors (which enter through the temperature variable in the cross-state 

regressions). 

 There are a number of possible explanations for the apparent reduction in the 

effectiveness of vaccinations in the cross-state analysis for the period since early December 2021 

(Tables 2, 4, and 5).  One is waning efficacy of vaccinations over time, though the regression 

analysis attempted to take account of this channel by considering the vintages of vaccinations 

and allowing for the introduction of booster shots.  Another factor is diminishing effectiveness of 
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existing vaccines against new forms of the virus, notably the omicron variant.  A further 

possibility is that the confidence engendered by vaccinations (despite the increases in overall 

deaths and hospitalizations and, particularly, cases) may have motivated individuals and 

governments to lessen non-pharmaceutical interventions, such as masking and social distancing.  

These responses may have been reinforced by “COVID fatigue,” which raised the perceived 

benefits from social interactions compared to the costs attached to health risks.  Of course, this 

response need not be irrational; that is, the benefits from heightened social interactions may, in 

fact, more than offset the costs from the increases in deaths, hospitalizations, and cases. 

More narrowly, in terms of research plans, the first idea is to carry out the analysis at the 

county level.  This change will sharply raise the available number of cross-sectional 

observations.  However, the county-level data introduce new concerns about measurement error 

and about the connection between location of vaccination and location of outcome. 

 Second, a key issue in the estimation involves the instrumental variables employed.  Even 

if the Trump 2020 vote is viewed as an appropriate instrument, there are difficulties in extending 

the analysis to allow for more than one endogenous variable on the right-hand side of the 

regressions.  This issue arises, for example, in attempting to distinguish the impact of recent from 

older vaccinations.  Relatedly, this analysis involves the role of booster shots.  At this stage, it is 

unclear what additional instruments are available. 
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Table 1  Means and Standard Deviations of Variables 

 

Variable Mean Std. 
Dev. 

Natl 
Avg 

COVID cumulative deaths per capita (change per year) 
   12/1/21-2/25/22 
   9/6/21-12/1/21 
   6/13/21-9/6/21 
   3/19/21-6/13/21 

 
.00207 
.00175 
.00058 
.00068 

 
.00066 
.00090 
.00043 
.00031 

 
.00203 
.00168 
.00061 
.00077 

COVID cumulative hospitalizations per capita (change per year) 
   12/1/21-2/25/22 
   9/6/21-12/1/21 
   6/13/21-9/6/21 
   3/19/21-6/13/21 

 
.1107 
.0773 
.0480 
.0360 

 
.0338 
.0284 
.0297 
.0169 

 
.1115 
.0727 
.0536 
.0398 

COVID cumulative cases per capita (change per year) 
   12/1/21-2/25/22 
   9/6/21-12/1/21 
   6/13/21-9/6/21 
   3/19/21-6/13/21 

 
.389 
.134 
.077 
.049 

 
.069 
.057 
.044 
.022 

 
.387 
.110 
.082 
.049 

“Full” vaccinations per capita 
   11/17/21-2/11/22 
   8/23/21-11/17/21 
   5/30/21-8/23/21 
   3/5/21-5/30/21 (data start 3/5/21) 

 
.606 
.548 
.450 
.237 

 
.083 
.078 
.071 
.031 

 
.614 
.553 
.448 
.228 

Booster vaccinations per capita 
   11/17/21-2/11/22 
   8/23/21-11/17/21 (data start 10/20/21) 

 
.198 
.025 

 
.053 
.008 

 
.196 
.024 

Fraction over age 25 with completed high school, 2019 .901 .027 .886 
Population fraction 65 and older, 2020 .173 .020 .169 
Life expectancy at birth, 2018 78.8 1.8 79.3 
Population fraction black, 2020 .110 .101 .124 
Urbanization rate, 2010 .741 .149 .809 
Fraction of votes Republican, 2020 Presidential election .492 .120 .469 
Population fraction 75 and older, 2020 .068 .010 .067 
Fraction over age 25 with completed college, 2019 .327 .065 .331 
Per capita  personal income ($1000s), 2020 57.7 9.4 59.6 
Maximum temperature, December 1-February 25 25.2 12.7 51.0 
Maximum temperature, September 6-December 1 66.2 8.9 69.7 
Maximum temperature, June 13-September 6 84.7 6.5 85.0 
Maximum temperature, March 19-June 13 69.6 8.1 71.6 
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Notes to Table 1 

 

COVID-related deaths, hospitalization, and cases are differences in cumulative values per person 
for dates shown (corresponding to cumulations of new deaths and cases), expressed at annual 
rates.  Data for cumulative deaths and cases per person are from Chetty, et al. (2022).  Values for 
deaths are adjusted in accordance with n.9.  (Adjustments for cases do not appear to be necessary 
over this period.)  Data for cumulative hospitalizations are given in the downloadable file 
provided in  Chetty, et al. (2022).  (Adjustments in the hospitalization numbers do not seem to be 
necessary.)  The changes in these cumulative values were divided by state population in 2020.  
Full and booster vaccinations are averages per person over periods shown.  The averages apply 
to dates at the start, end, and middle of each period, with the middle value getting double weight.  
Vaccination data are adjusted in accordance with n.9.  Maximum temperature is average high 
temperature in degrees Fahrenheit over dates shown.  Underlying values are monthly for largest 
city in each state.  
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Table 2  Regressions for COVID Deaths per Capita 

 

 (1) (2) (3) (4) 
Estimation method SUR SUR Instruments Instruments 
12/1/21-2/25/22     
   vaccination rate -.0022** 

(.0011) 
-.0021* 
(.0012)) 

-.0024* 
(.0015) 

-.0047 
(.0053) 

   vaccination rate, older 
      

-- -.0023 
(.0015) 

-- .0017 
(.0065) 

   p-value for equal coeffs  0.93  0.58 
9/6/21-12/1/21     
   vaccination rate -.0091*** 

(.0016) 
-.0097*** 

(.0017) 
-.0098*** 

(.0021) 
-.0101*** 

(.0022) 
   vaccination rate, older 
  

-- -.0064** 
(.0031) 

-- -.0064** 
(.0033) 

   p-value for equal coeffs  0.31  0.30 
6/13/21-9/6/21     
   vaccination rate -.0041*** 

(.0008) 
-.0041*** 

(.0008) 
-.0042*** 

(.0012) 
-.0042*** 

(.0012) 
3/19/21-6/13/21     
   vaccination rate -.0007 

(.0015) 
-.0006 
(.0015) 

-.0052 
(.0095) 

-.0052 
(.0095) 

R-squared .64 .66 
.64 .31 

.64 .67 

.64 .31 
.64 .66 
.64 .19 

.54 .67 

.64 .19 
s.e. .0004 .0006 

.0003 .0003 
.0004 .0006 
.0003 .0003 

.0004 .0006 

.0003 .0003 
.0005 .0006 
.0003 .0003 
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Notes to Table 2 

 

Sample is 50 U.S. states plus District of Columbia.  Sample dates shown in the left-most 
column refer to the dependent variable.  This variable is the change in cumulative reported 
COVID-related deaths per capita over each period (values expressed per year).  Vaccination rate 
in columns 1 and 3 is the fraction of the population fully vaccinated against COVID-19 (not 
counting booster shots).  This variable is lagged 14 days from the dependent variable and is 
entered as an average over each period, as described in Table 1.  In columns 2 and 4, vaccination 
rate is the fraction of the population fully vaccinated over roughly the last 6 months plus the 
fraction fully vaccinated earlier who have received booster shots.  In these columns, “vaccination 
rate, older” is the fraction fully vaccinated roughly 6 or more months in the past less the fraction 
who have received booster shots.  Other explanatory variables, shown in Table 1, are fraction of 
population aged 65 and over in 2020, life expectancy at birth in 2018, fraction of population aged 
25 and over who completed high school or more in 2019, fraction of population black in 2020, 
urbanization rate in 2010, and average maximum temperature over periods corresponding to the 
dependent variable.  Coefficients on these variables, constant terms, and the vaccination rates 
differ across periods.  Standard errors of coefficient estimates are in parentheses.  SUR 
(seemingly-unrelated regression) allows for correlation of the error terms across periods.  s.e. is 
the standard error of each regression.  In columns 1 and 3, instrumental estimation (three-stage 
least-squares) uses as the excluded instrument the fraction of the population voting in 2020 that 
voted Republican (as shown in Table 1).  In columns 2 and 4, the instrument list also includes the 
fraction of the population fully vaccinated roughly 6 or more months in the past. 

 

***Significant at 1%, **significant at 5%, *significant at 10%. 
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Table 3  First-Stage Regressions for Vaccination Rates 

 

 (1) (2) (3) (4) 
Periods for 
vaccination rates 

11/17/21-
2/11/22 

8/23/21-
11/17/21 

5/3/21-
8/23/21 

3/5/21-
5/3/21 

Constant .12 
(.41) 

.17 
(.38) 

.06 
(.37) 

.00 
(.29) 

Over-65 .77*** 
(.27) 

.85*** 
(.25) 

.79*** 
(.23) 

.26 
(.19) 

Life expectancy .0108** 
(.0052) 

.0081* 
(.0048) 

.0051 
(.0046) 

.0022 
(.0036) 

High School Education -.19 
(.24) 

-.12 
(.21) 

.14 
(.20) 

.11 
(.17) 

Black -.214*** 
(.070) 

-.223*** 
(.065) 

-.255*** 
(.062) 

-.134*** 
(.050) 

Urban -.046 
(.060) 

-.029 
(.047) 

-.041 
(.045) 

-.047 
(.035) 

Average Maximum Temperature .0000 
(.0003) 

-.0001 
(.0003) 

.0002 
(.0004) 

.0001 
(.0005) 

Trump vote -.543*** 
(.061) 

-.515*** 
(.057) 

-.464*** 
(.055) 

-.090** 
(.044) 

R-squared .83 .83 .81 .43 
s.e. .037 .035 .034 .026 

 

Notes:  Sample is 50 U.S. states plus District of Columbia.  Dependent variables, over the 
periods shown in the top row, are the averages of full vaccination rates, as used in Table 2.  
Over-65 is the fraction of the population in 2020 that was aged 65 or more.  Life expectancy at 
birth is for 2018.  High School Education is fraction of the population in 2019 aged 25 or more 
that had completed four years of high school or more.  Black is the fraction of the population in 
2020 classified as black.  Urban is the fraction of the population urbanized in 2010.  Trump vote 
is the fraction of votes for President in 2020 that went Republican.  Estimation is by seemingly-
unrelated regression, which allows for correlation of the error terms across periods.  Standard 
errors of estimated coefficients are in parentheses.  s.e. is the standard error of each regression. 

 

***Significant at 1%, **significant at 5%, *significant at 10%. 
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Table 4  Regressions for COVID Hospitalizations per Capita 

 

 (1) (2) (3) (4) 
Estimation method SUR SUR Instruments Instruments 
12/1/21-2/25/22     
   vaccination rate -.001 

(.053) 
-.078 
(.054) 

.084 
(.086) 

.378 
(.509) 

   vaccination rate, older 
     

-- .141** 
(.069) 

-- -.433 
(.624) 

9/6/21-12/1/21     
   vaccination rate -.292*** 

(.046) 
-.331*** 

(.046) 
-.255*** 

(.069) 
-.267** 
(.069) 

   vaccination rate, older 
     

-- -.092 
(.087) 

-- -.077 
(.101) 

6/13/21-9/6/21     
   vaccination rate -.283*** 

(.054) 
-.289*** 

(.053) 
-.266*** 

(.075) 
-.266*** 

(.075) 
3/19/21-6/13/21     
   vaccination rate -.005 

(.059) 
.053 

(.062) 
-.094 
(.420) 

-.094 
(.420) 

R-squared .54 .65 
.71 .49 

.61 .69 

.71 .49 
.51 .65 
.70 .46 

-.62 .68 
.70 .46 

s.e. .025 .018 
.017 .013 

.023 .017 

.017 .013 
.025 .018 
.017 .013 

.047 .018 

.017 .013 
 

Notes:  See notes to Table 2.  The only difference is that the dependent variable is based on 
COVID-related reported hospitalizations per capita. 

 

***Significant at 1%, **significant at 5%, *significant at 10%. 
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Table 5  Regressions for COVID Cases per Capita 

 

 (1) (2) (3) (4) 
Estimation method SUR SUR Instruments Instruments 
12/1/21-2/25/22     
   vaccination rate .296* 

(.169) 
.151 

(.184) 
.291 

(.231) 
.002 

(.765) 
   vaccination rate, older 
     

-- .558** 
(.228) 

-- .800 
(.938) 

9/6/21-12/1/21     
   vaccination rate -.419*** 

(.090) 
-.512*** 

(.087) 
-.339*** 

(.126) 
-.370** 
(.121) 

   vaccination rate, older 
     

-- .032 
(.163) 

-- .136 
(.177) 

6/13/21-9/6/21     
   vaccination rate -.477*** 

(.085) 
-.469*** 

(.085) 
-.528*** 

(.122) 
-.528*** 

(.122) 
3/19/21-6/13/21     
   vaccination rate -.037 

(.094) 
.024 

(.096) 
-.736 
(.813) 

-.736 
(.813) 

R-squared .15 .71 
.65 .43 

.16 .76 

.65 .44 
.17 .71 
.66 -.24 

.13 .75 
.66 -.24 

s.e. .069 .033 
.028 .018 

.069 .030 

.028 .018 
.068 .033 
.028 .026 

.071 .031 

.028 .026 
 

Notes:  See notes to Table 2.  The only difference is that the dependent variable is based on 
COVID-related reported cases per capita. 

 

***Significant at 1%, **significant at 5%, *significant at 10%. 

 


