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By Paul H Kupiec1 
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ABSTRACT 

Multi-year forecasts of bank performance under stressful economic conditions determine large institution 

regulatory capital requirements and yet the accuracy of these forecasts is undocumented. I compare the 

accuracies of alternative stress test model forecasts using the financial crisis as the stress scenario. Models 

include specifications that mimic the Federal Reserve CLASS model and alternatives that use Lasso, the 

AIC and an abridged set of explanatory variables. A simple single-equation Lasso model has, by far, the 

best forecast accuracy. Large differences in model forecast accuracy are undetectable from estimation 

sample statistics highlighting the need for new stress test model evaluation methods.  
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On the Accuracy of Alternative Approaches for Calibrating Bank Stress Test Models 

1. Introduction 

The success of the 2009 Federal Reserve Supervisory Capital Assessment Program 

spawned a new paradigm of bank regulation built around forecasts of bank performance under 

stressful economic conditions.  While details differ, many countries now use “dynamic stress 

tests” in their large bank supervision processes. These stress tests use complex econometric 

models to forecast bank income and calculate regulatory capital over one or more hypothetical 

multi-year economic stress scenarios. Banks are required to project their performance under the 

specified stress conditions and regulators evaluate bank estimates by comparing bank forecasts to 

projections from a supervisory stress test model.  

In evaluating a bank’s stress scenario performance, forecasts of significant losses can 

trigger remedial supervisory actions. For example, in the US, the Dodd-Frank Wall Street 

Reform and Consumer Protection Act requires the Federal Reserve Board (FRB) to perform 

annual stress tests on the largest financial institutions. Should an institution “fail” its stress test, 

the FRB may take actions including prohibiting bank dividends and capital repurchases or 

requiring the bank to improve its stress test modeling practices.    

In the US, the FRB uses its own stress test model to evaluate the results produced by 

individual banks’ stress test models. The Dodd-Frank Act includes no requirement that the FRB 

document and disclose the accuracy of the models it uses in its stress test evaluations. Moreover, 

there is no widely-accepted method for determining which stress test model— the FRB’s model 

or a bank’s own internal model— produces a more accurate forecast of bank performance over a 

hypothetical stress scenario.  
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The dearth of statistical methods available for reliably determining the accuracy of 

alternative stress test models is an important issue. In this paper, I analyze the performance of 

alternative stress test modelling approaches by comparing model forecasts to actual bank 

performance over a three-year period beginning in September 2008. The results demonstrate that 

there can be an extremely large divergence in the out-of-sample forecast accuracies of alternative 

models, and these differences are not predictable based on within-sample regression diagnostics. 

My baseline stress test model is built to mimic the design and estimation process that was 

used to specify the Federal Reserve CLASS model (Hirtle, et.al., 2015). This complex model 

includes an extensive set of macroeconomic factors and bank-specific characteristics as 

explanatory variables. It uses a traditional step-wise regression method for variable selection and 

estimation.  

My alternative stress test models are designed to be parsimonious relative to CLASS-

style models in order to reduce the chance of overfitting the data. These alternative models 

include only macroeconomic factors as explanatory variables and make use of the Akaike (1973) 

information criterion (AIC) and soft threshold coefficient constraints imposed by Tibshirani’s 

(1996) least absolute shrinkage and selection (Lasso) machine learning algorithm. I consider the 

forecasting accuracy of multi-equation and single equation Lasso model specifications.    

My forecast comparison focuses on bank income before tax and extraordinary items 

(INBFTXEX) because bank income (or loss) is the most important factor driving changes in 

bank capital adequacy over a three-year stress scenario.2  Forecasts are constructed for an 

                                                           
2 Extraordinary gains and losses, by their very nature, should not be predictable using macroeconomic factors. 

Retained earnings are INBFTXEX, less tax (or plus tax refunds) and capital distributions. Capital adequacy 

calculations require, in addition to an estimate of INBFTXEX, estimates of retained earnings and bank risk-weighted 

assets. The INBFTXEX projection process is the part of the capital adequacy calculation that is directly linked to the 

macroeconomic stress scenario.  
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“average” or representative bank using quarterly bank regulatory data from March 1993 through 

June 2008. The forecasts are compared to the actual performance of the representative bank over 

the first 12 quarters of the financial crisis. The exercise simulates the accuracy of a regulatory 

stress testing exercise if one had been conducted in the summer of 2008, just prior to the onset of 

the 2008 financial crisis. 

The analysis yields many interesting results. Among the approaches I examine, models 

that are specified and calibrated using a complex CLASS-style approach generate the least 

accurate forecasts even though these models fit exceptionally well within the estimation sample. 

In contrast, a simple single-equation stress test model that uses only macroeconomic factors as 

explanatory variables produces, by far, the most accurate forecasts. Finally, the combination of 

the AIC and the Lasso for variable selection and model calibration significantly improves 

forecast accuracy. 

I analyze the forecast errors of the CLASS-style model and show that the magnitude of 

the error is linked to the complexity of the model. Model forecast errors are magnified when 

CLASS model specifications are selected from an expanded set of explanatory variables and 

when the model decomposes INBFTXEX into multiple separately-modeled components. The 

disaggregation of INBFTXEX and the inclusion of bank-specific characteristics as explanatory 

variables improves the within-sample fit of CLASS-style stress test models, but these features 

severely degrade the model’s out-of-sample forecast accuracy.  

These results also suggest that overfitting the data is a serious concern as stress test 

models with superior estimation sample fits can have demonstrably poor forecast accuracy out-

of-sample. The existing literature on stress testing has paid little attention to these important 
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issues nor has it discussed any inherent cost-benefit tradeoffs between simple and complex 

approaches for stress test modeling.3 

The forecast comparison highlights the need to develop reliable methods for assessing the 

forecasting accuracy of stress test models. True out-of-sample stress test model forecast errors 

are rarely observed and, when they are observable, sample sizes are small. Moreover, in the 

present context, differences in model forecast errors are not covariance stationary, a condition 

that precludes statistical tests using the Diebold-Mariano (1995) statistic. The regulatory stress 

testing process would benefit from research that prioritizes the development of new statistical 

methods for accessing stress test model accuracy.  

The remainder of this paper is organized as follows. Section 2 provides background 

information on the regulatory use of stress tests. Section 3 reviews supervisory stress testing 

practices with a focus on the use of stress tests in the United States. Section 4 considers 

important issues related to stress test model specification. Section 5 discusses the data and 

experimental design used to compare model forecasts. Section 6 reviews the stress test model 

estimates. Section 7 compares the forecast accuracy of alternative stress test models over the first 

three years of the 2008 financial crisis. Section 8 focuses on statistical methods for comparing 

forecast accuracy. Section 9 discusses policy issues and Section 10 concludes the paper.  

2. Background 

Banking regulators, including both the US FRB and the European Banking Authority 

(EBA), have adopted dynamic stress testing as a component of their large financial institution 

supervision process. In the case of the FRB, the use of stress tests was mandated in the 2010 

                                                           
3 Bidder, Giacomini and McKenna (2016) discuss an alternative approach that may improve stress test accuracy.  
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Dodd-Frank Act. In Europe, Article 23 of European Union Regulation No. 1095/2010 requires 

the EBA to develop “an adequate stress testing regime”.  

The Basel Committee on Banking Supervision (BCBS) and the International Monetary 

Fund (IMF) have promoted supervisory emphasis on stress testing.  For example, the BCBS has 

included requirements for supplemental stress tests in various parts of Basel II and Basel III 

international capital standards and published guidance on “best practice” standards for regulatory 

stress testing processes (BCBS, May 2009). Stress tests have been a mandatory component of the 

IMF’s Financial Sector Assessment Program for nearly 20 years.4   

The benefits of the supervisory use of dynamic stress tests depend, at least in part, on the 

accuracy of supervisory stress test projections. Yet neither the national laws that require 

supervisory stress tests, nor guidance issued by international standard setting bodies ever 

mentions the accuracy of supervisory stress test models as an important concern. There are no 

guidelines or recommendations to ensure that supervisory stress test models meet a specified 

minimum level of precision before stress tests become a mandatory part of the supervisory 

assessment process. 

 On the specific issue of Federal Reserve stress tests, the accuracy of the FRB’s stress test 

models remains opaque to the public and to the banks required to undergo periodic stress test 

assessments. In its 2016 official stress testing methodology document (Board of Governors of the 

Federal Reserve, 2016, p. 13), the FRB describes its own model validation process as “A central 

                                                           
4 IMF rules require each member country to submit to a Financial Stability Assessment on a periodic basis and the 

IMF has actively promoted stress testing as an important tool for monitoring financial stability. A collection of IMF 

staff working papers on stress testing can be found in Ong (2014). 
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oversight group consisting of senior-level Federal Reserve experts closely scrutinized the models 

and assumptions used in the supervisory stress test and model outputs.” 

The absence of explicit guidance on minimum acceptable accuracy standards for stress 

test models can in part be traced to the hypothetical nature of a stress test exercise. Econometric 

models are used to simulate a bank’s performance over one or more scenarios characterized by 

severely stressful macroeconomic conditions. Because the stress scenario conditions almost 

never materialize, it is impossible to compare a bank’s actual stress scenario performance to the 

stress test model’s forecast.  

If supervisory stress tests are used to set a bank’s minimum capital adequacy requirement 

and mandate improvements in bank stress test processes, it is important to understand whether 

supervisory actions are predicated on accurate stress test projections. The accuracy of the bank 

stress test models is a critical issue for the supervision of large complex banking institutions and 

yet there is little research on this topic.    

3. Overview of Supervisory Stress Test Models 

The details of the models that bank supervisors use to assess the internal stress tests 

conducted by banks are kept confidential. FRB officials (Tarullo (2016)) have defended opacity 

on the grounds that full transparency would enable regulated banks to “game” stress test 

processes, and transparency could create a “herd mentality” in which every bank adopted the 

same stress test model. 

While the FRB does not make its stress test models fully transparent, it does publish a 

summary discussion of its stress test modeling approach. The FRB’s own model uses an 
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“industry average” approach. The models are estimated using pooled institution data, and are not 

bank specific, 

“The estimated model parameters are the same for all BHCs and reflect industrywide, 

portfolio- specific, and instrument-specific response to variation in the macroeconomic 

and financial market variables. This industrywide approach reflects both the challenge in 

estimating separate, statistically robust models for each of the 33 BHCs and the desire of 

the Federal Reserve not to assume that historical BHC-specific results will prevail in the 

future.” (Board of Governors of the Federal Reserve, 2016, p. 3.) 

Both the FRB and the EBA use highly disaggregated approaches to conduct their stress 

tests.5 Consider, for example, the FRB model. According to public descriptions, for loss 

estimation purposes alone, the FRB segregates bank assets into more than 12 categories and 

models the performance of each category independently. For each institution, each loan category 

is assumed to grow at the industry average growth rate (Board of Governors of the Federal 

Reserve, 2016, p.11).6  Bank net revenues, gross of losses and impairments, are decomposed into 

22 separate components, each of which has its own separately estimated model specification.7  

The complexity of banks’ own internal stress test models appears to mirror the 

complexity of the FRB’s supervisory stress test model.  Brown, McGourty and Schuermann 

(2015) report that it is not uncommon for large bank holding companies to use between 50 and 

150 models to project their FRB mandated stress test performance and formulate capital plans. 

                                                           
5 The European Banking Authority (2016). The ClearingHouse (2016) provides a summary comparison of the FRB 

and EBA stress test methodologies.   
6 The FRB provides no details regarding the individual asset category growth rates it uses in its models. The Federal 

Reserve CLASS models (Hirtle. et. al., p. 24) assume that assets grow at 1.25 percent per quarter throughout the 

stress period.  
7 The FRB emphasizes that its stress test models are undergoing continuous revision as the FRB receives and 

processes additional confidential data from bank holding companies, and as FRB staff discover changes that 

improve component model performance.   
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A Federal Reserve Bank of New York Staff Report on the CLASS model provides 

perhaps the most detailed description of a regulatory stress test model (Hirtle, et. al., 2015). 

Bhanot, Hirtle, Kovner, and Vickery (2014) suggest that the CLASS model has been used in 

earlier Federal Reserve stress tests exercises. The CLASS model is estimated using publicly 

available regulatory data whereas the FRB’s Dodd-Frank stress test models use confidential 

supervisory data that is not available to the public.  

The CLASS model disaggregates bank net non-provision income-to-asset ratios into 6 

components that are modeled independently: net interest income, trading income, non‐interest 

non‐trading income, compensation expense, expenses related to premises and fixed assets, and 

other non‐interest expense. Each individual component model includes endogenous variables 

that measure time-varying bank characteristics.  

The CLASS model does not estimate bank loan and lease loss provision expenses 

directly. Rather, it uses a judgmental algorithm to project quarterly loan and lease loss provisions 

during a stress scenario. The algorithm, described in the appendix, uses forecasts of loan and 

lease write-off amounts generated from individual models for 15 separate categories of loans and 

leases.8 CLASS model loan and lease loss provision estimates are not calibrated to reproduce 

actual historical loan and lease loss provisions.  

                                                           
8 First lien and junior lien residential mortgages, home equity lines of credit (HELOC), construction loans, 

multifamily and non‐farm non‐residential commercial mortgages, credit cards, other consumer loans, commercial 

and industrial (C&I) loans, leases, loans to foreign governments, loans to depository institutions, agriculture loans, 

other real estate loans, and all other loans. 8 Quarterly loan and lease write-off amounts scaled by loan and lease 

initial balances. 
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The within-sample fits of the individual models that comprise the Federal Reserve 

CLASS model are all exceptionally good. Many individual CLASS regression models have 

adjusted R2 statistics close to 90 percent.  

4. Issues in Stress Test Model Specification  

Because regulatory data on bank income and assets have a common time-trend, bank 

stress test models are typically estimated in ratio form, with bank assets or balance sheet values 

used to deflate bank income and expense components.9 Typically, bank income and expense 

ratios are modeled as stationary time series without pre-whitening or any formal testing to 

confirm this maintained hypotheses. The Fed’s CLASS model follows this convention and treats 

bank income and expense ratios as stationary time series even though many of the stress test 

dependent variables exhibit near unit-root autoregressive coefficient estimates. I adopt the 

CLASS model convention and model bank income and expense ratios as stationary time series.10  

CLASS stress test models are calibrated using a traditional step-wise econometric 

modelling approach. Stress test model specifications are chosen on the basis of model fit within 

the estimation sample. Stress test model specifications are selected to be parsimonious, to 

produce a high adjusted-R2 and to minimize the regression residual standard error estimate 

among specifications that have statistically significant coefficient estimates. Variables that have 

only weak statistical significance are typically dropped from model specifications during stress 

                                                           
9 To model some income components, some approaches may use an alternative bank balance sheet “stock” variable 

(e.g. total loans, or a total loan type—total 1-4 family residential mortgages) as a denominator.  For example, the 

CLASS model uses multiple denominators among its 22 models.   
10 Subsequent results for the Lasso stress test models show that these series can be modeled as stationary time series.    



12 

 

test development. CLASS models may also require that model coefficient signs and magnitudes 

be consistent with economic priors (Hirtle, et. al., p. 20).11 

Focusing on stress test model fit within the estimation sample can create important issues 

regarding out-of-sample forecast accuracy. There is the well-known risk of model overfitting and 

including variables that have spurious explanatory power in the estimation sample.12 It is also 

possible that the use of explanatory variables that measure bank-specific characteristics, while 

improving model fit within the estimation sample, may negatively impact forecast accuracy.  

The inclusion of time-varying bank characteristics as stress test explanatory variables has 

intuitive appeal. Their presence imparts model flexibility. When an individual bank is evaluated 

using the supervisory model, the bank’s stress scenario projections are based on the bank’s own 

risk characteristics and not the characteristics of the “average” bank that are used to estimate the 

model. As a consequence, the models seemingly adapt, at least in part, to individual bank 

performance characteristics. The use of time-varying bank characteristics in every CLASS 

regression model is a testament to the intuitive appeal of this approach.  

However, including time-varying bank characteristics as explanatory variables can have a 

detrimental impact on forecast accuracy. Individual banks may not have the same coefficient 

value attached to the specific characteristics included in the models. For example, a bank that 

imposes very strict underwriting standards for mortgage approvals may have a coefficient on a 

mortgage share variable that differs substantially from the coefficient value for an average bank 

using average underwriting.  Regional differences in housing markets conditions could also 

                                                           
11 The CLASS model specification searches do not make use of any information criteria like the AIC, BIC or 

Mallows Cp statistics. 
12 See, for example, Forster and Sober (1994), Forster (2000), Forster (2001), Leinweber (2007), Green and 

Armstrong (2015), and Hastie, Tibshirani and Friedman (2009).  
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create differences among bank coefficient estimates even if banks used similar underwriting 

standards. Whether or not forecasting accuracy is improved by the inclusion of bank-specific 

explanatory variables is an open issue.  

Moreover, and more importantly for the present analysis, bank balance sheet and 

exposures characteristics are endogenous variables that change as banks respond to changing 

macroeconomic conditions. Consequently, while bank characteristics should be modeled and 

forecast over the stress scenario, current supervisory practice is to hold a bank’s characteristics 

constant throughout the scenario.13   

 The inclusion of bank-specific explanatory variables may improve stress test model fit 

during the estimation sample, but it may reduce the impact multipliers of the macroeconomic 

factors and lagged dependent variables that drive bank stress scenario forecasts. Since bank-

specific variables are held constant over the stress scenario, the inclusion of these variables may 

reduce the model sensitivity of out-of-sample forecasts to macroeconomic factor variability.  

A final issue concerns the level of aggregation used in the stress test model. The CLASS, 

FRB, EBA and indeed the internal stress test models of many banks are complex. The models 

project income and loss using many individual econometric models for specific bank income and 

expense categories. Complexity creates an illusion of precision, but complex models need not 

produce the most accurate forecasts. Moreover, if the CLASS modelling approach has been 

applied more generally, the individual component models used in the stress test are estimated 

independently without taking account of error correlations. Individual model errors are likely to 

be correlated and model forecast errors may compound when many separate income and expense 

                                                           
13 The FRB’s stress tests keep bank characteristics constant throughout the stress scenario.   
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model projections are aggregated to forecast bank net income. There is no guarantee that a 

disaggregated approach will produce more accurate stress scenario forecasts.14  

5. Data and Experimental Design 

I use the financial crisis that began in 2008 to compare the accuracy of alternative stress 

test modeling approaches for a representative bank. I compare stress test model forecasts with 

actual performance when true underlying macroeconomic conditions are used to seed the stress 

test scenario. The representative bank is constructed as the asset-weighted average of data on all 

insured institutions.   

My analysis uses quarterly data from March 1993 to June 2011 on all US insured 

depository institutions’ income statements, balance sheets, and off-balance sheet items as 

reported in the “Reports of Conditions and Income” regulatory filings.15 Stress test models are 

estimated using data from March 1993 through June 2008 and the stress scenario forecasts are 

for the period September 2008 through June 2011. 

The representative bank’s performance and time-varying characteristics are measured by 

asset-weighted banking system average values. Let 𝑤𝑖𝑡
𝑗
 represent the value of bank characteristic 

𝑗 for bank 𝑖 at time 𝑡.  Let 𝑎𝑖𝑡 represent the total assets of bank 𝑖 at time t and 𝐴𝑡 represent the 

                                                           
14 An analog from astronomy is the historical debate between the Copernican and the Ptolemaic model of planetary 

motion. The simple Copernican system eventually displaced the much more complex Ptolemaic model because the 

Copernican model was both simpler and more accurate it its forecasts of planetary motion. See Forester and Sober 

(1994). 
15 The Call Report data is from the Federal Deposit Insurance Corporation’s Statistics on Depository Institutions. 

These reports include data on all insured depository institutions (commercial banks, state and federally chartered 

thrifts, savings banks, savings associations, and insured US branches for foreign chartered institutions).  The asset-

weighted average of these data are used to construct the “representative bank” even though the aggregate data 

includes data from other insured depository institutions.   
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total value of all insured depository institutions’ assets at time t,   𝐴𝑡 = ∑ 𝑎𝑖𝑡.∀𝑖  Then, for every 𝑡, 

and bank characteristic j, the average system-wide variable-𝑗-to-asset ratio is defined as,   

∑ (
𝑤𝑖𝑡

𝑗

𝑎𝑖𝑡 
)

𝑎𝑖𝑡

𝐴𝑡
 ∀ 𝑖 =  𝐴𝑡

−1 ∑ 𝑤𝑖𝑡
𝑗

∀ 𝑖                                                                (1) 

The list of variables that measure bank income, balance sheet and exposure characteristics used 

in the analysis along with their sample summary statistics are reported in in Table 1. 

The macroeconomic factors used in the analysis are derived from data provided in the 

Federal Reserve Bank of St. Louis FRED economic database. The single macroeconomic factor 

that is not sourced from FRED is the change in the real house price index as calculated by the 

American Enterprise Institute International Center on Housing Price Risk. The definitions of the 

macroeconomic factors used in the analysis are reported in Table 2 along with summary statistics 

for the sample period March 1993 through June 2011.  

5.1 The CLASS-style stress test model 

My CLASS-style model decomposes bank INBXTEX into five components: net interest 

income, noninterest income, noninterest expense, security gains and losses, and provisions for 

loan and lease losses. I model bank provisions for loan and lease losses directly rather than 

employing the algorithm used by the CLASS model because the CLASS algorithm does not 

accurately reproduce the historical loan and lease loss provisions reported by banks. 

To remove the effect of the common time trend, each of the five components that 

comprise INBFTXEX are modeled in ratio form, with the representative bank’s total assets in a 

quarter used as the common denominator. Each of the 5 component CLASS models include both 

bank-specific characteristics (Table 1) and macroeconomic factors (Table 2) as explanatory 
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variables. Because bank-specific characteristics are endogenous, I use the lagged values of these 

variables in the respective regression models.  

The preferred parameterization of each component model was selected using the same 

step-wise algorithm employed by the Federal Reserve’s CLASS model. The model was 

estimated including all potential explanatory variables including a constant and a lagged 

dependent variable. In subsequent estimation steps, variables that exhibit weak statistical 

significance are excluded from the model. The final model specification selected was the model 

that included statistically significant explanatory variables and produced the smallest regression 

mean square error estimate. In one case, the preferred econometric specification includes some 

explanatory variables that have only weak statistical significance because omitting these 

variables markedly increases the regression standard error estimate.16 I retained a constant term 

in each specification regardless of statistical significance.17 

Forecasts of INBFTXEX require stress scenario estimates of the representative bank’s 

asset growth rate. Following the CLASS model approach, I use the historical average asset 

growth rate to project bank assets in each quarter of the stress scenario. 

5.2 The alternative stress test models 

The alternative stress test models I consider include only macroeconomic factors as 

explanatory variables.  One alternative models the ratio of INBFTXEX to assets as a single 

equation. A second disaggregates the ratio into the same 5 component ratios used in my CLASS-

                                                           
16 The preferred CLASS model for non-interest income include some variables with relatively weak t-statistics 

because excluding these variables increases the regression model standard error estimate. 
17 In the bank provision model, the constant is not statistically significant, but is retained regardless.  
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style model. Both models forecast bank asset balances using a separate regression model that 

projects the representative bank’s asset growth rate as a function of macroeconomic factors.  

Variable selection and calibration of these alternative models is accomplished using the 

AIC and Tibshirani’s (1996) Lasso algorithm. The Lasso is designed to reduce the chances of 

overfitting the data and including spurious explanatory variables. The Lasso has the potential to 

produce forecasts with lower mean-square-errors than ordinary least squares forecasts, but at a 

cost of producing biased estimates of the model coefficients. As a consequence, the statistical 

significance of individual Lasso coefficient estimates is not an important consideration.   

Lasso minimizes the model’s means square error while simultaneously imposing a 

penalty on the sum of the absolute values of the model’s coefficient estimates. If 𝑦𝑡 represents an 

observation on the dependent variable, 𝑥𝑖𝑡 represents an observation on the 𝑖𝑡ℎ explanatory 

variable and 𝛽𝑖 represents the coefficient on the 𝑖𝑡ℎ explanatory variable, Zou, Hastie and 

Tibshirani (2007) show that the Lasso coefficient estimates satisfy, 

𝛽̂ = arg min
𝛽

[(∑ (𝑦𝑡 − ∑ 𝑥𝑖𝑡𝛽𝑖
𝑝
𝑖=1 )𝑇

𝑡=1 ) + 𝛾 ∑ |𝛽𝑖|
𝑝
𝑖=1 ]                                   (2) 

The Lasso penalty on the 𝐿1 norm of the coefficients, 𝛾,  imposes a soft-threshold 

condition on the coefficient estimates. Coefficient estimates are set to zero unless the estimate’s 

absolute value exceeds a threshold set by the penalty rate. If the penalty rate is set to zero, Lasso 

produces ordinary least squares estimates. If the penalty rate is set too high, Lasso will set all 

coefficient estimates to zero.   

I estimate the Lasso model using the Wu and Lange (2008) coordinate decent algorithm 

over the global grid of relevant Lasso penalty rates using data from March 1993 through June 

2008. For each Lasso penalty rate, I calculate the AIC estimate following Zou, Hastie and 
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Tibshirani (2007). I select the Lasso penalty rate and corresponding Lasso coefficient estimates 

that minimize the AIC.  

My Lasso model specifications include only macroeconomic factors as explanatory 

variables.18 I exclude bank-specific balance sheet and exposure characteristics to reduce the 

chances of overfitting as Flynn, Hurvich, and Simonoff (2017) show that the introduction of 

extraneous explanatory variables can compromise the performance of Lasso-based forecasts.  

Another reason to exclude these variables is the regulatory practice of holding the values of these 

variables constant over the stress scenario. This convention makes it highly unlikely that the 

addition of bank-specific variables will improve the accuracy of stress test forecasts.  

My calibration and use of the Lasso differs from earlier applications in the stress testing 

literature. Kapinos and Mitnik (2015) use Lasso to identify a parsimonious number of 

macroeconomic variables, from which, principle components are extracted and used as stress test 

model explanatory variables. Chan-Lau (2017) uses Lasso in a stress test model of default 

probabilities. The Chan-Lau study uses a large cross sectional data set and calibrates Lasso using 

multiple holdout samples.     

6. Model Estimation Results 

The best-fitting CLASS model estimates are reported in Table 3.  All CLASS component 

models fit the estimation sample data exceptionally well. All models include bank-specific 

explanatory variables as well as macroeconomic factors. Interestingly, no model includes the 

contemporaneous GDP growth rate as an explanatory variable. All models exhibit adjusted-𝑅2 

statistics in excess of 83 percent. 

                                                           
18 There is no intercept term in a Lasso model because means are removed from all variables. 



19 

 

Lasso requires that the data be normalized. All variables have their sample means 

removed and explanatory variables are normalized by their sample standard deviation estimates.  

Means and standard deviations are calculated over the period March 1993 through June 2008.  

The 5-equation Lasso coefficient estimates are reported in Table 4.  The estimates 

correspond with the penalty rate that produces the smallest AIC for each respective model. Each 

of these component Lasso models records its minimum AIC value with a positive Lasso penalty 

rate.  The root mean-square error (RMSE) of each component Lasso model exceeds the RMSE of 

its CLASS-model counterpart suggesting that each of the CLASS models has the superior in-

sample fit.   

Table 5 reports optimal estimates for the single equation Lasso model and the 

representative bank’s asset growth rate. Again the coefficient estimates correspond to the Lasso 

penalty rates that minimizes each model’s AIC. The optimal Lasso penalty rate for the single 

equation model for INBFTXEX-to-assets is 0, indicating ordinary least squares is optimal.  In 

contrast, the optimal growth rate model has a large penalty rate. The latter also has a relatively 

large RMSE suggesting a poor in-sample fit.       

Table 6 compares the implied stress test model coefficient estimates for the ratio of 

INBFTXEX to assets from the 5-equation CLASS model, the 5-equation Lasso model, and the 

single-equation Lasso model.  The ratio can be reconstructed from the 5 component models as, 

𝐼𝑁𝐵𝐹𝑇𝑋𝐸𝑋𝑡

𝐴𝑡
=

𝑁𝐼𝑀𝑡

𝐴𝑡
+

𝑁𝐼𝐼𝑡

𝐴𝑡
−

𝑁𝐼𝐸𝑋𝑡

𝐴𝑡
+

𝑆𝐸𝐶𝐺𝐿𝑡

𝐴𝑡
−

𝑃𝑟𝐿𝐿𝐿𝑡

𝐴𝑡
,                                        (3) 

where 𝐼𝑁𝐵𝐹𝑇𝑋𝐸𝑋𝑡 denotes interest before taxes and extraordinary items, 𝑁𝐼𝑀𝑡 net interest 

income, 𝑁𝐼𝐼𝑡 non-interest income, 𝑁𝐼𝐸𝑋𝑡 non-interest expense, 𝑆𝐸𝐶𝐺𝐿𝑡 securities gains and 

losses, 𝑃𝑟𝐿𝐿𝐿𝑡 provision for loan and lease losses, and 𝐴𝑡 total bank assets (all at quarter 𝑡). 
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Replacing each ratio with its model estimate, and aggregating across coefficients, yields the 

coefficients for the 5-equation models reported in Table 6.   

The growth rate of GDP appears in both Lasso models in Table 6 whereas this 

macroeconomic factor is completely forced out of the optimal specification in the 5-equation 

CLASS-style model. Similarly, the 3-month and the 1-year Treasury yields are important 

explanatory variables in the Lasso models whereas both variables have diminished importance in 

the 5-equation CLASS-style model.19 The results show that the inclusion of bank-specific 

explanatory variables in the CLASS-style model can reduce the model sensitivity to stress events 

by reducing the magnitude of impact multipliers attached to the macroeconomic factors.    

The within estimation sample fit, as measured by the respective models’ root-mean 

square regression errors, strongly favors the 5-equation CLASS model. The 5-equation Lasso 

model has a RMSE that is nearly twice as large as the RMSE of the 5-equation CLASS model; 

the RMSE of the single-equation Lasso model is over 1.5 times the RMSE of the CLASS model.  

7. Stress Test Predictive Accuracy During the Financial Crisis 

The accuracies of three alternative stress test models are compared using out-of-sample 

forecasts over the first 12-quarters of the financial crisis. The forecasts use the actual stress 

scenario values for the macroeconomic factors, and like the Federal Reserve approach, they hold 

the representative bank’s time-varying characteristics fixed at June 2008 values.  

The representative bank’s asset value is forecasted using the applicable asset growth rate 

model. The CLASS-style model uses the historical average growth rate of 1.79 percent per 

                                                           
19 The Lasso model explanatory variables are normalized so the impact multiplier of a 1-standard deviation shock is 

equal to the coefficient estimate. The impact of a 1 standard deviation shock to the 3-month Treasury rate is 0.014 in 

the 5-equation CLASS model compared to 0.211 in the single equation Lasso model, and 0.10 in the 5-equation 

Lasso model.  The impact of a 1 standard deviation shock to the 10-year Treasury yield is -0.002 in the 5 equation 

CLASS model compared to -0.13 in the 5-equation Lasso model and -0.164 in the 1-equation Lasso model. 
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quarter. The Lasso models uses growth rate forecasts from the Lasso asset growth rate equation 

(Table 5). The representative bank’s starting asset balance as of the end of June 2008 is arbitrary. 

To keep the analysis simple, I set this asset balance at $1 in June 2008.  

Forecast accuracy is assessed by comparing each model’s stress scenario forecast to the 

representative bank’s actual performance.  Let the superscript 𝑓 represent a forecasted value. Let 

𝑡 denotes stress scenario time in quarters, and 𝑔𝑟𝑤𝑡 denote the quarterly asset growth rate from 

quarter 𝑡 − 1 to 𝑡.  

The forecast of  
𝐼𝑁𝐵𝐹𝑇𝑋𝐸𝑋𝑡 

𝐴𝑡
 for the first stress test quarter constructed from a 5-equation 

stress test model is given  by, 

𝐼𝑁𝐵𝐹𝑇𝑋𝐸𝑋1
𝑓

𝐴1
= [[

𝑁𝐼𝑀1

𝐴1
]

𝑓

+ [
𝑁𝐼𝐼1

𝐴1
]

𝑓

− [
𝑁𝐼𝐸𝑋1

𝐴1
]

𝑓

+ [
𝑆𝐸𝐶𝐺𝐿1

𝐴1
]

𝑓

− [
𝑃𝑟𝐿𝐿𝐿1

𝐴1
]

𝑓

].                 (4) 

The corresponding first quarter forecast of INBFTXEX is, 

𝐼𝑁𝐵𝐹𝑇𝑋𝐸𝑋1
𝑓

= [[
𝑁𝐼𝑀1

𝐴1
]

𝑓

+ [
𝑁𝐼𝐼1

𝐴1
]

𝑓

− [
𝑁𝐼𝐸𝑋1

𝐴1
]

𝑓

+ [
𝑆𝐸𝐶𝐺𝐿1

𝐴1
]

𝑓

− [
𝑃𝑟𝐿𝐿𝐿1

𝐴1
]

𝑓

] × (1 + 𝑔𝑟𝑤1
𝑓

),          (5) 

where the growth rate forecast in (5) is selected appropriately for each model. The first period 

forecast of INBFTXEX from the single equation Lasso model is, 

𝐼𝑁𝐵𝐹𝑇𝑋𝐸𝑋1
𝑓

= [
𝐼𝑁𝐵𝐹𝑇𝑋𝐸𝑋1

𝐴1
]

𝑓

× (1 + 𝑔𝑟𝑤1
𝑓

),                                      (6) 

where the asset growth rate forecast is from the Lasso growth rate model.  

Many of the stress test models include a lagged dependent variable. The lagged 

dependent variable values are set equal to June 2008 values in the initial stress test quarter. For 
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all subsequent quarters in the stress scenario, lagged dependent variable values are set equal to 

the prior quarter’s predicted value.   

The stress scenario forecasts are true out-of-sample forecasts. The 5-equation model 

forecast of INBFTXEX for the q-th quarter in the stress scenario is given by,   

𝐼𝑁𝐵𝐹𝑇𝑋𝐸𝑋𝑞
𝑓

= [[
𝑁𝐼𝑀𝑞

𝐴𝑞
]

𝑓

+ [
𝑁𝐼𝐼𝑞

𝐴𝑞
]

𝑓

− [
𝑁𝐼𝐸𝑋𝑞

𝐴𝑞
]

𝑓

+ [
𝑆𝐸𝐶𝐺𝐿𝑞

𝐴𝑞
]

𝑓

− [
𝑃𝑟𝐿𝐿𝐿𝑞

𝐴𝑞
]

𝑓

] ×

                                                                       ∏ (1 + 𝑔𝑟𝑤𝑡
𝑓

)𝑞
𝑡=1                                                             (7)                                                     

The q-th quarter single-equation Lasso model forecast is constructed in an analogous manner. 

Figure 1 plots the stress scenario actual and forecasted quarterly values of the 

INBFTXEX-to-assets ratio from the 5-equation CLASS-style model, the 5-equation Lasso 

model, and the single equation Lasso model. Figure 1 shows the CLASS-style model forecasts to 

be inferior to both Lasso model forecasts. Among the Lasso models, the single-equation model 

produces the most accurate forecasts. The results do not suggest there are benefits to be gained 

by using a disaggregated stress test modeling approach. 

Figure 2 decomposes the 5-equation CLASS-style model forecast errors by comparing 

the accuracy of the 5-equation CLASS-style model (Table 3), with two simplified models 

calibrated using the CLASS-style approach.20 The first is a 5-equation model that excludes bank-

specific explanatory variables. The second is a single equation model that excludes bank-specific 

explanatory variables but still uses the CLASS-style step-wise regression approach for variable 

selection. The forecasting accuracy of these alternative models are reported in Table 7. 

                                                           
20 The individual coefficient estimates for these alternative models are unimportant for the discussion so they are 

omitted in the interest of brevity. 



23 

 

 The plots in Figure 2 show that the inclusion of bank-specific explanatory variables is an 

important source of forecast error.  When bank-specific explanatory variables are excluded from 

the 5-equation CLASS-style model, the stress test model root mean-square forecast error 

(RMSFE) drops from 0.842 to 0.182 (Table 7).  The reduction in forecast RMSFE that occurs 

when moving from a 5-equation CLASS-style model without bank-specific variables to a single 

equation CLASS-style model without bank-specific variables is less dramatic (a RMSFE 

reduction of 0.047).   

The results reported in Table 7 show that forecasts of the ratio of INBFTXEX to assets 

generated by the single equation CLASS-style model are inferior to forecasts from the single-

equation Lasso model. The forecast accuracy improvement in this instance owes to the 

superiority of AIC variable selection process (as compared to the CLASS step-wise regression). 

The Lasso is not a source of improvement as the penalty rate (zero) corresponds to ordinary least 

squares estimation.   

Figure 3 plots the actual and forecasted values of the representative bank’s asset growth 

rate over the stress scenario. While the actual assets in the representative bank declined in many 

stress scenario quarters, both the Lasso growth rate model and the historical average growth rate 

used by the CLASS model predict positive asset growth in each quarter. The use of the historical 

average growth rate, while inaccurate, produces a better forecast than the Lasso growth rate 

model.   

Figure 4 plots the actual and forecasted value of INBFTXEX for each stress test quarter 

for the 5-equation CLASS-style model and the single equation Lasso model.  The simplest Lasso 

model closely tracks the representative bank’s INBFTXEX over the entire stress scenario 

whereas the 5-equation CLASS-style model produces very large forecast errors.  
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The capital adequacy position of a bank hinges on the bank’s cumulative performance 

over the entire 12-quarter stress period. Figure 5 plots the actual and forecasted values of the 

representative bank’s cumulative INBFTXEX over the stress scenario. After recording an initial 

positive value of INBFTXEX in September 2008, the representative bank posts a large loss in 

December 2012, followed by small additional losses in the next two quarters.  In September 

2009, the representative bank again generates positive INBFTXEX and continues to record 

positive INBFTXEX in each remaining stress test quarter.  The largest cumulative INBFTXEX 

loss, - 0.29, occurs in June 2009.  

Figure 5 shows that the 1-equation Lasso model provides a reasonably accurate forecast 

of the representative bank’s cumulative earnings over the stress scenario. This model forecasts 

INBFTXEX losses in the first four quarters of stress scenario, with profits thereafter. The model 

is too pessimistic in the first quarters of the stress scenario and slightly optimistic about the 

bank’s projected recovery in the latter quarters of the stress scenario.  

The largest Lasso model cumulative loss forecast, nearly -0.42, occurs in June 2009. 

Thus, from a capital adequacy standpoint, the single-equation Lasso model is conservative. It 

projects a worst case cumulative loss that is nearly 44 percent larger than the actual worst-case 

cumulative loss posted by the representative bank.  Overall, the simple single-equation Lasso 

model performs remarkably well considering the exercise is a true out- of-sample forecast over a 

stress scenario that corresponds to the worst financial crisis since the great depression. 

In contrast, the out-of-sample stress scenario forecasts from the 5-equation CLASS-style 

model are remarkably poor given this model’s exceptionally strong within-sample goodness-of-

fit statistics. The model projects INBFTXEX losses in each stress test quarter (Figure 4) with the 
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losses growing larger in latter quarters.  As a consequence, the CLASS-style stress test model 

forecasts cumulative losses that compound and accelerate over the course of the stress scenario.           

8. Identifying the Most Accurate Stress Test Model 

Figures 4 and 5 provide a convincing visual case for the superior forecasting accuracy of 

the single-equation Lasso stress test model.  However, the ability to compare the out-of-sample 

forecasting accuracy of these alternative stress tests models over an actual stress scenario is only 

possible because there is an actual stress event in the data. It is unclear how to reproduce these 

conditions when evaluating bank stress test models that are estimated using more contemporary 

data that do not include a stressful economic event. 

Stress test models are built to forecast bank performance over periods of severe economic 

stress. Regulatory stress test scenarios are hypothetical events that (fortunately) never 

materialize, so it is impossible to observe the actual forecasting accuracy of stress test model 

projections over these hypothetical scenarios. Forecast errors are, for the most part, 

unobservable, so judgements about model accuracy must be based on statistics that measure the 

within-sample fit of a stress test model. The results of the prior analysis confirm what 

statisticians have long understood—that a model’s within-sample fit can be a highly misleading 

indicator of the model’s out-of-sample forecasting performance. Indeed, as Forster and Sober 

(1994) argue, a model that fits the estimation sample too well should be cause for concern. 

By using the actual 2008 financial crisis as the stress scenario, my analysis identifies the 

true out-of-sample forecast errors produced by each model.  If there is agreement about the 

economic loss function associated with forecast errors, the Diebold-Mariano (1995) statistic may 

provide a mechanism for identifying statistically significant differences in the forecast accuracy 

of the alternative stress test models.   
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Let 𝑒𝑗𝑡  represent the forecast error for model 𝑗 at date 𝑡, and 𝑔(𝑒𝑗𝑡) represents the 

economic loss associated with a forecast error 𝑒𝑗𝑡.  The Diebold-Mariano statistic can detect 

differences in the expected economic loss rates that are generated by forecast errors from 

competing models. The null hypothesis is 𝐸[𝑔(𝑒1𝑡)] = 𝐸[𝑔(𝑒2𝑡)].   

The Diebold-Mariano statistic is given by, 

𝐷𝑀 =
∑ [𝑔(𝑒1𝑡)−𝑔(𝑒2𝑡)]𝑇

𝑡=1

√𝑇
.                                                                (8) 

If the differences in the economic loss realizations are covariance stationary, for large 𝑇,  under 

the null hypothesis, the 𝐷𝑀 statistic converges to a normally-distributed mean zero random 

variable with a variance equal to 2𝜋 times the spectral density of the loss differential at 

frequency zero. If the loss differential is covariance stationary, the variance of the 𝐷𝑀 statistic 

can be constructed as a weighted average of sample autocorrelation estimates of the loss 

differential series. 

Figure 6 plots the economic loss differential for each quarter in the stress scenario when 

the economic loss is symmetric, measured by the square of the model’s forecast error.  Figure 6 

plots the difference, 𝑑𝑡 = 𝑒𝑡1
2 − 𝑒2𝑡

2 , for each quarter 𝑡 in the stress scenario, where model 1 is the 

5-equation CLASS model (Table 3) and model 2 is the single-equation Lasso model (Table 5).  

A visual inspection of the time series in Figure 6 suggests that economic loss differential could 

be a nonstationary series. A formal Dickey-Fuller regression test cannot reject the null 

hypothesis that the loss differential series, 𝑑𝑡 , contains a unit root,21 

                                                (9) 

                                                           
21 T-statistics are in parenthesis.  For a sample size of 25 observations, Fuller (1976) reports that statistical 

significance at the 5 percent level of the test requires a t-statistic on the lagged value of the series to be smaller than 

- 3.60.  The current test statistic is based on 11 observations, so the true critical value is less than -3.60.   

Δdt = – 0.227 – 0.947 dt-1 + 0.195 t

(-1.67) (-2.90) (-3.13)
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Since the economic loss differential series is not covariance stationary, the Diebold-

Mariano test is not applicable in this particular situation. The loss differential series non-

stationarity is not solely a consequence of the squared-error loss function. Figure 4 indicates that 

the forecast error for the 5-equation CLASS-style model grows continuously over the stress 

scenario. Any loss function that puts significant weight on errors that under-predict INBFTXEX 

will likely generate a non-stationary loss differential series.  For example, if the economic loss 

function is given by,  𝑔(𝑒𝑗𝑡) = 𝑒𝑗𝑡, the loss differential series is still nonstationary.22             

9. Policy Implications 

The very large forecasting errors exhibited by the CLASS-style model highlight the need 

for new approaches for evaluating the accuracy of regulatory stress test models.  While my 

analysis does not evaluate the Federal Reserve’s CLASS model, it does evaluate the forecasting 

accuracy of a similarly-constructed model with similar within-sample goodness of fit 

characteristics.  

The results of this analysis show that the within-sample goodness of fit measures that are 

used to guide construction of CLASS-style models are highly unreliable. Forecasting accuracy 

appears to improve substantially when CLASS-style model specifications are simplified, and 

variable selection is based on within-sample criterion like the AIC, which penalizes over-

parameterized models. The accuracy of the stress test models analyzed in this paper is not merely 

an issue of academic concern as Hirtle et. al. (2015, p. 32) report that the CLASS model 

estimates are very similar to those produced by the FRB’s Dodd-Frank stress test model.  

                                                           
22 The Dickey-Fuller regression t-statistic on dt-1 is -2.58, which is insufficient to reject the null hypothesis that the 

series contains a unit root.  
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True out-of-sample comparisons of forecast accuracy under historical stressful 

conditions, while suitable for an academic study, are unlikely to be a realistic approach for 

evaluating the performance of banks’ contemporary stress test models. Moreover, even under the 

assumptions that allowed me to construct an out-of-sample stress test model forecast 

comparison, the existing statistical methods for comparing the forecast accuracy of competing 

models were inapplicable because of the time series characteristics of the model errors.    

If the goal of stress testing is the accurate prediction of bank performance over prolonged 

stressful economic episodes, then there is a clear need to develop more reliable methods for 

calibrating stress test models. Some of the calibration methods that have been discussed in staff 

reports issued by important bank regulators appear to be problematic. Moreover, flaws in 

existing approaches can be disguised by spuriously tight model fits within the stress test 

estimation sample. Because most bank risk managers and bank regulators will never conduct a 

true out-of-sample test of the forecasting accuracy of their models under stressful conditions, 

many will remain ignorant of the magnitude of the inaccuracies that have unintentionally been 

built into their regulatory capital planning processes.      

10. Conclusion  

Using the 2008 financial crisis as a “natural experiment,” I analyze the accuracy of 

alternative methods for forecasting bank performance over multi-year stress scenarios, including 

methods that mimic those used to specify the Federal Reserve CLASS model.  The results show 

that complex CLASS-style models produce stress test forecasts that severely underestimate the 

income before taxes and extraordinary items earned by a representative bank over the first three 

years of the financial crisis. In contrast, simplified stress test model specifications produce far 

more accurate forecasts.      
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The results challenge the notion that complex stress test modeling approaches are needed 

to produce an accurate assessment of actual bank capital needs. The results show that complex 

disaggregated stress test models that include a large number of explanatory variables, like the 

CLASS model, face an elevated risk of including spurious explanatory variables and ignoring 

component model error correlations that diminish the model’s out-of-sample forecasting 

performance.     

The analysis shows that the traditional step-wise regression approach for specifying stress 

test models can be significantly improved by using information theory and machine-learning 

calibration techniques to penalize non-parsimonious models. In particular, the use of the AIC and 

the Lasso for variable selection and model calibration can vastly improve forecast accuracy 

compared to the traditional CLASS-style modeling approach.  

The relative accuracy of complex versus simplified stress test modeling processes is an 

important issue. The complex stress test models currently utilized by banks and regulatory 

authorities are costly to administer. According to United States Government Accountability 

Office (2016, p. 30), about half of the institutions required to perform Dodd-Frank stress tests 

reported annual stress test compliance expenditures of between $15-$30 million. One institution 

reported costs in excess of $90 million. The costs incurred by bank supervisors, while 

undoubtedly large, have not been reported. It is unclear that the magnitude of such expenditures 

are justified if simpler less costly stress test models are capable of producing more accurate 

forecasts.  

The results highlight the need for national regulators, multinational standard setting 

bodies, and researchers to focus on developing reliable methods to assess the accuracy of 

supervisory stress testing models. The benefits of using costly complex stress testing models to 
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set minimum capital adequacy standards will remain a controversial issue, and appropriately so, 

until it can be demonstrated that complex regulatory stress test models achieve superior 

forecasting accuracy.  
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Appendix: CLASS Model Algorithm for Loan and Lease Loss Provisions 

The CLASS model’s provisions for loan and lease losses are driven by estimates for the 

write-off rates on 15 separate categories of loan and leases. Using the stress scenario 

assumptions for macroeconomic variables and the individual loss rate model coefficient 

estimates, the CLASS model forecasts quarterly loan and lease write-off amounts for each 

category and aggregates them by quarter.  

Let 𝐿𝑊𝑂𝑡 represent the aggregate CLASS model loan and lease write-off estimate for 

quarter t in the stress scenario.  Let 𝑆𝐿𝑊𝑂𝑡 represent the CLASS model estimate of the 

aggregate loan and lease loss write-offs over the next four stress scenario quarters,  

𝑆𝐿𝑊𝑂𝑡 = 𝐿𝑊𝑂𝑡 + 𝐿𝑊𝑂𝑡+1 + 𝐿𝑊𝑂𝑡+2 + 𝐿𝑊𝑂𝑡+3                              (A.1) 

Let  𝐴𝐿𝐿𝐿𝑡 represent the balance sheet value of the bank’s allowance for loan and lease losses at 

stress test quarter t. Let 𝑃𝑟𝐿𝐿𝐿𝑡  represent the estimated value of the bank’s loan and lease loss 

provisions for quarter t. This estimate is given by,  

𝑃𝑟𝐿𝐿𝐿𝑡 = {

𝑆𝐿𝑊𝑂𝑡 − 𝐴𝐿𝐿𝐿𝑡 , 𝑖𝑓 𝐴𝐿𝐿𝐿𝑡 < 𝑆𝐿𝑊𝑂𝑡

𝐿𝑊𝑂𝑡,    𝑖𝑓  𝑆𝐿𝑊𝑂𝑡 <  𝐴𝐿𝐿𝐿𝑡 ≤ 2 ×   𝑆𝐿𝑊𝑂𝑡

2 × 𝑆𝐿𝑊𝑂𝑡 − 𝐴𝐿𝐿𝐿𝑡 , 𝑖𝑓 𝐴𝐿𝐿𝐿𝑡 > 2 ×   𝑆𝐿𝑂𝑊𝑡

                        (A.2) 
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Table 1: Bank variable definitions and data sources 
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Table 2: Macroeconomic factor variables and definitions  

 

 

 

 

  

Macreconomic  Variable Source Variable Series Minimum Maximum Average Median
Standard 

deviation

Nominal Quarterly GDP growth rate, SAAR A191RP1Q027SBEA -7.70 10.20 4.67 4.90 2.89

civilian unemployment rate, unadjusted + 3.80 10.00 5.82 5.50 1.64

10-year Treasury yield* GS10 2.71 7.84 5.00 4.88 1.22

3-month Treasury yield* GS3M 0.04 6.23 3.29 3.60 2.01

Moody's AAA yield* AAA 4.57 8.55 6.39 6.39 1.01

Moody's Baa yield* BAA 5.04 9.19 7.19 7.27 1.01

Federal funds rate* FedFunds 0.09 6.52 3.45 4.06 2.09

Wilshire quarterly market index return WILL5000INDFC -22.92 21.51 2.44 3.29 8.69

Wilshire daily return standard deviation WILL5000INDFC -0.87 4.22 1.02 0.86 0.63

Kansas City Fed Financial Stability Index (FSI) quarterly  average KCFSI -0.94 5.56 0.11 -0.29 1.13

VIX daily average VIXCLS 11.03 58.60 20.57 19.92 8.02

VIX quarterly percent change VIXCLS -82.41 127.50 3.58 -0.49 30.70

Change in Real House Price Index RHPI -6.25 4.68 0.32 0.85 2.08

Notes: All data except the change in the real house price index are from  the Federal Reserve Bank of St. Louis economic research department public database 

https://fred.stlouisfed.org/ .  The change in the real house price index is the American Enterpise Institute International Center on Housing Risk calculated 

quarterly as FHFA's all-transaction house price index divided by BEA's price index for personal consumption expenditures.  + Indicates unemployment rate on 

the first day following quarter-end. * Indicates interest yield on the first day of each quarter.  
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Table 3: 5-equation CLASS-style stress test model estimates  

 

 

 

 

Explanatory Variable

Intercept 0.4425 4.74 0.3647 2.34 -0.4929 -2.29 0.1555 4.05 -0.0589 -0.24
Lagged dependent variable -0.3288 -2.72  0.4663 4.65
GDP growth rate  
civilian unemployment rate -0.0218 -1.46 0.0455 7.32

10-year Treasury yield 0.0448 4.27 -0.0147 -1.67 -0.0181 -12.98 0.0137 3.66
3-month Treasury yield 0.0501 2.01 0.0427 1.96
Moody's AAA yield -0.0366 -3.05  

Moody's Baa yield 0.0142 4.21 0.0308 2.89  
Federal funds rate -0.0207 -7.23 -0.0584 -2.59 -0.0411 -1.90
Wilshire market index return 0.0008 1.75 0.0012 2.88
Wilshire daily return standard deviation -0.0212 -2.10 0.0113 1.77

Kansas City Fed FSI average  -0.0194 -6.89 0.0320 3.94
VIX daily average 0.0017 5.67
VIX percent change 0.0000 -1.58

Change in Real House Price Index    
Lagged securities to total assets 0.0129 3.07  -0.0165 -5.17
Lagged trading assets to total assets 0.0190 3.59  0.0036 1.92

Lagged ORE to total assets 0.2881 4.77  
Lagged income earned and not collected on loans to total assets -0.2673 -2.90  
Lagged total unused commitments to total assets 0.0047 4.66 0.0065 4.23 -0.0020 -5.59
Lagged total notional value of derivatives to total assets -0.0003 -6.98 -0.0003 -4.53 -0.0001 -6.48 0.0002 4.79
Lagged total loans and leases to total assets 0.0077 2.19
Lagged construction and development loans to total assets 0.0537 4.59 0.0732 4.37 0.0229 5.88 -0.0511 -4.29
Lagged commercial realestate loans to total assets
Lagged 1-4 family residential realestate loans to total assets -0.0042 -2.43
Lagged commercial and industrial loans to total assets 0.0146 4.13 0.0198 3.97 0.0183 4.07
Lagged consumer loans to total assets 0.0166 2.51 0.0488 4.55 -0.0223 -3.05
Root mean square error (within sample) 0.0159 0.0236 0.0238 0.00601 0.0126
Adjusted R-square 0.9438 0.8447 0.8335 0.8611 0.9483

Provision 

for loan and 

lease losses 

to assets

t-

statistic

Net 

interest 

income to 

assets

t-

statistic

Non 

interest 

income to 

assets

t-

statistic

Non 

interest 

expense 

to assets

t-

statistic

Securities 

gains 

(losses) 

to assets

t-

statistic
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Table 4: 5-equation Lasso stress test model estimates 

 

 

 

 

 

 

Explanatory Variable

Lagged dependent variable 0.043 0.021 0.005 0.002 0.028

GDP growth rate 0.007 0.006 0.001 0.002 -0.010

civilian unemployment rate 0.008 -0.027 0.010 0.006 0.005

10-year Treasury yield 0.000 -0.071 0.000 -0.033 0.026

3-month Treasury yield 0.000 0.116 0.063 0.008 -0.039

Moody's AAA yield 0.017 0.057 0.013 0.021 -0.021

Moody's Baa yield 0.003 -0.005 0.031 0.000 0.000

Federal funds rate 0.000 -0.119 -0.061 0.000 0.030

Wilshire market index return 0.001 0.005 0.012 0.000 0.004

Wilshire daily return standard deviation 0.000 -0.010 0.001 0.002 0.000

Kansas City Fed FSI average 0.000 0.001 0.000 -0.016 0.024

VIX daily average 0.003 0.006 0.016 0.011 -0.004

VIX percent change 0.000 0.000 0.000 -0.002 0.007

Change in Real House Price Index 0.000 0.000 0.017 0.001 -0.008
AIC 1.3153 1.4078 1.3924 1.43477 1.4449
optimal Lasso penalty 0.0010 0.0002 0.0004 0.0001 0.0003

Root mean-square error (within sample) 0.0208 0.0271 0.0274 0.0067 0.0161

Net interest 

income to 

assets

Non interest 

income to 

assets

Non interest 

expense to 

assets

Securities 

gains 

(losses) to 

assets

Provision 

for loan and 

lease losses 

to assets
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Table 5: Single-equation Lasso and asset growth rate model estimates 

 

 

 

 

 

Explanatory Variable

Lagged dependent variable 0.006 -0.0754

GDP growth rate 0.024 0.0000

civilian unemployment rate -0.038 -0.0658

10-year Treasury yield -0.164 0.0000

3-month Treasury yield 0.211 0.0000

Moody's AAA yield 0.138 0.0000

Moody's Baa yield -0.015 -0.3048

Federal funds rate -0.192 0.0000

Wilshire market index return -0.010 -0.0262

Wilshire daily return standard deviation -0.011 0.0000

Kansas City Fed FSI average -0.085 0.0000

VIX daily average 0.038 -0.0305

VIX percent change -0.011 0.2328

Change in Real House Price Index 0.008 0.0000

AIC 1.467 1.3498

optimal Lasso penalty 0.000 0.0410

Root mean-square error (within sample) 0.047 0.8841

Lasso single-

equation 

INBFTXEX-

to-assets

Lasso asset 

growth rate
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Table 6: Alternative model estimates for INBFTXEX-to-assets  

 

 

 

Explanatory Variable

Intercept 1.515

Lagged NIM to assets 0.000 0.043

Lagged NII to assets 0.000 0.021

Lagged NIEX to assets 0.329 -0.005

Lagged SECGL to assets 0.000 0.002

Lagged provisions to assets -0.466 -0.028

Lagged INBFTX to assets  0.006

GDP growth rate 0.000 0.024 0.024

civilian unemployment rate -0.067 -0.028 -0.038

10-year Treasury yield -0.002 -0.130 -0.164

3-month Treasury yield 0.007 0.100 0.211

Moody's AAA yield -0.037 0.103 0.138

Moody's Baa yield -0.017 -0.033 -0.015

Federal funds rate -0.038 -0.088 -0.192

Wilshire market index return 0.000 -0.010 -0.010

Wilshire daily return standard deviation -0.033 -0.010 -0.011

Kansas City Fed FSI average -0.051 -0.039 -0.085

VIX daily average 0.002 0.008 0.038

VIX percent change 0.000 -0.008 -0.011

Change in Real House Price Index 0.000 -0.008 0.008

Lagged securities to total assets 0.004

Lagged trading assets to total assets 0.023

Lagged ORE to total assets -0.288

Lagged income earned and not collected on loans to total assets -0.267

Lagged total unused commitments to total assets 0.000

Lagged total notional value of derivatives to total assets -0.001

Lagged total loans and leases to total assets -0.008

Lagged construction and development loans to total assets 0.201

Lagged commercial realestate loans to total assets 0.000

Lagged 1-4 family residential realestate loans to total assets -0.004

Lagged commercial and industrial loans to total assets 0.016

Lagged consumer loans to total assets -0.010

Root mean-square error (within sample) 0.034 0.060 0.047

Aggregated 5-

equation 

Lasso model

Single-

equation 

Lasso 

model

Aggregated 

5-equation 

CLASS-

style model
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Table 7: Stress scenario RMSFEs for alternative forecasts of INBFTXEX-to-assets 

 

 

 

 

 

 

stress 

scenario

RMSFE

0.842

0.182

0.135

0.084

5-equation CLASS-style model, no bank-specific variables

1-equation CLASS model, no bank-specific variables

1-equation Lasso model

RMSFE is an abbreviation for root mean-square forecast error.

5-equation CLASS-style model

Stress test model type
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Figure 1: Alternative stress test model forecasts of INBFTXEX-to-assets 
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Figure 2: The impact of altering CLASS-style stress test modeling conventions on INBFTXEX-to-asset forecasts  
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Figure 3: Alternative stress scenario asset growth rate forecasts 
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Figure 4: Stress scenario forecasts of quarterly INBFTXEX  
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Figure 5: Stress scenario forecasts of cumulative INBFTXEX 
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Figure 6: Forecast error loss differentials 
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