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Abstract 

A new options-pricing formula applies to far-out-of-the money put options on the stock market 
when disaster risk dominates, the size distribution of disasters follows a power law, and the 
economy has a representative agent with Epstein-Zin utility.  The elasticity of the put-options 
price is one with respect to maturity and above one with respect to exercise price.  An additional 
term reflects the volatility of disaster probability.  The formula conforms with data on put-
options prices for the U.S. S&P index from 1983 to 2017 and for analogous indices for other 
countries starting in the mid-1990s.  The estimated disaster probability, inferred from monthly 
fixed effects, is highly correlated across countries and peaks during the financial crisis of 
2008-09.  The U.S. peak is more dramatic in the stock-market crash of October 1987.  The 
estimated U.S. disaster probability is highly positively correlated with the VIX indicator. 
 
 
 
 
 
*We appreciate helpful comments and assistance with data from Josh Coval, Ben Friedman, 
Xavier Gabaix, Tina Liu, Matteo Maggiori, Greg Mankiw, Robert Merton, Richard Roll, Steve 
Ross, Emil Siriwardane, Jessica Wachter, and Glen Weyl, and participants in the 
macroeconomics seminar at Harvard University.  
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 We derive a new options-pricing formula that applies when disaster risk is the dominant 

force, when the size distribution of disasters is characterized by a power law, and when the 

economy has a representative agent with Epstein-Zin utility with a constant coefficient of 

relative risk aversion.  Specifically, we consider far-out-of-the-money put options on the overall 

stock market, corresponding empirically to the S&P 500 in the United States and analogous 

indices for other countries.  The pricing formula applies when the option is sufficiently far out of 

the money (operationally, a relative exercise price or moneyness of 0.9 or less) and when the 

maturity length is not too long (operationally, up to 6 months). 

 In the prescribed region, the elasticity of the put-options price with respect to maturity is 

close to one.  The elasticity with respect to the exercise price is greater than one, roughly 

constant, and depends on the difference between the power-law tail parameter, denoted α, and 

the coefficient of relative risk aversion, γ.  (This difference has to be positive for various rates of 

return not to blow up.) 

 The options-pricing formula involves a term that is proportional to the disaster 

probability, p.   This term depends also on three other parameters:  γ, α, and the threshold 

disaster size, z0.  If these three parameters are fixed, we can use estimated time fixed effects to 

gauge the time variations in p.  The options-pricing formula depends also on potential changes in 

p.  Specifically, sharp increases in p can get out-of-the-money put options into the money 

without the realization of a disaster.  We find empirically that the probability, q, of a large 

upward movement in p can be treated as roughly constant. 

 We show that the theoretical formula conforms with data from 1994 to 2017 on far-out-

of-the-money put options on the U.S. stock market and analogous indices over shorter periods 

for other countries.  Our analysis relies on two types of data—indicative prices on over-the-
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counter (OTC) contracts offered to clients by a large financial firm and U.S. market data 

provided by Berkeley Options Data Base and OptionMetrics.  The Berkeley data allow us to 

extend the U.S. analysis back to 1983, thereby bringing out the key role of the stock-market 

crash of October 1987.  The OptionMetrics information allows us to check whether the results 

using U.S. OTC data differ from those using market data.  We find that the main results are 

similar with the two types of data. 

 Section I lays out the basic rare-disasters framework.  Section II works out a formula for 

pricing of put options within the disaster setting.  The analysis starts with a constant probability, 

p, of disasters and then introduces possibilities for changing pt.  Section III sets up the empirical 

framework and describes the results.  The main data comprise OTC information on options 

prices for far-out-of-the money put options on seven major stock-market indices.  These data are 

supplemented for the United States with longer-term information from Berkeley Options Data 

Base and with market-based data from OptionMetrics.  Section IV concludes. 

 

I. Baseline Disaster Model and Previous Results 

We use a familiar setup based on rare-macroeconomic disasters, as developed in Rietz 

(1988) and Barro (2006, 2009).  The model is set up for convenience in discrete time.  Real 

GDP, Y, is generated from 

 (1)  log(Yt+1) = log(Yt) + g + ut+1 + vt+1, 

where, g≥0 is the deterministic part of growth, ut+1 (the diffusion term) is an i.i.d. normal shock 

with mean 0 and variance σ2, and vt+1 (the jump term) is a disaster shock.  Disasters arise from a 

Poisson process with probability of occurrence p per period.  For now p is taken as constant; 

later, variations in p over time play a central role.  When a disaster occurs, GDP falls by the 
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fraction b, where 0<b≤1.  The distribution of disaster sizes is time invariant.  (The baseline 

model includes disasters but not bonanzas.)  This jump-diffusion process for GDP is analogous 

to the one posited for stock prices in Merton (1976, equations [1]-[3]).1 

In the underlying Lucas (1978)-tree model, which assumes a closed economy, no 

investment, and no government purchases, consumption, Ct, equals GDP, Yt.  The implied 

expected growth rate of C and Y is given, if the period length is short, by 

 (2)  g* = g + (1/2)∙ σ2 –p∙Eb, 

where Eb is the mean of b.  In this and subsequent formulas, we use an equal sign, rather than 

approximately equal, when the equality holds as the period length shrinks to zero. 

 The representative agent has Epstein-Zin/Weil utility,2 as in Barro (2009): 

 (3)  [(1 − 𝛾𝛾)𝑈𝑈𝑡𝑡]
(1−𝜃𝜃1−𝛾𝛾) = 𝐶𝐶𝑡𝑡1−𝜃𝜃 + � 1

1+𝜌𝜌
� ∙ [(1 − 𝛾𝛾)𝐸𝐸𝑡𝑡𝑈𝑈𝑡𝑡+1](1−𝜃𝜃1−𝛾𝛾), 

where γ>0 is the coefficient of relative risk aversion, θ>0 is the reciprocal of the intertemporal-

elasticity-of-substitution (IES) for consumption, and ρ>0 is the rate of time preference.  As 

shown in Barro (2009) (based on Giovannini and Weil [1989] and Obstfeld [1994]), with i.i.d. 

shocks and a representative agent, the attained utility ends up satisfying the form: 

 (4)  𝑈𝑈𝑡𝑡 = 𝛷𝛷 ∙ 𝐶𝐶𝑡𝑡
1−𝛾𝛾/(1 − 𝛾𝛾), 

where the constant 𝛷𝛷>0 depends on the parameters of the model.  Using equations (3) and (4), 

the first-order condition for optimal consumption over time follows from a perturbation 

argument as 

1Related jump-diffusion models appear in Cox and Ross (1976). 
2Epstein and Zin (1989) and Weil (1990). 
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 (5)  �𝐸𝐸𝑡𝑡(
𝐶𝐶𝑡𝑡+1
𝐶𝐶𝑡𝑡

)1−𝛾𝛾�
(𝛾𝛾−𝜃𝜃𝛾𝛾−1)

= � 1
1+𝜌𝜌

� ∙ 𝐸𝐸𝑡𝑡 �(
𝐶𝐶𝑡𝑡+1
𝐶𝐶𝑡𝑡

)−𝛾𝛾 ∙ 𝑅𝑅𝑡𝑡+1�, 

where Rt+1 is the gross rate of return on any available asset from time t to time t+1.  When γ=θ—

the familiar setting with time-separable power utility—the term on the left-hand side of 

equation (5) equals one. 

 The process for C and Y in equation (1) implies, if the period length is negligible: 

 (6) 𝐸𝐸𝑡𝑡(
𝐶𝐶𝑡𝑡+1
𝐶𝐶𝑡𝑡

)1−𝛾𝛾 = 1 + (1 − 𝛾𝛾)𝑔𝑔 − 𝑝𝑝 + 𝑝𝑝 ∙ 𝐸𝐸(1 − 𝑏𝑏)1−𝛾𝛾 + (1
2
)(1 − 𝛾𝛾)2𝜎𝜎2. 

This condition can be used along with equation (5) to price various assets, including a risk-free 

bond and an equity claim on a perpetual flow of consumption (that is, the Lucas tree). 

Equations (5) and (6) imply that the constant risk-free interest rate is given by 

(7)   𝑟𝑟𝑓𝑓 = 𝜌𝜌 + 𝜃𝜃𝑔𝑔∗ − 𝑝𝑝 ∙ �𝐸𝐸(1 − 𝑏𝑏)−𝛾𝛾 − �𝛾𝛾−𝜃𝜃
𝛾𝛾−1

� 𝐸𝐸(1 − 𝑏𝑏)1−𝛾𝛾 − 𝜃𝜃 ∙ 𝐸𝐸𝑏𝑏 + �1−𝜃𝜃
𝛾𝛾−1

�� − (1
2
)𝛾𝛾(1 + 𝜃𝜃)𝜎𝜎2 . 

Let Pt be the price at the start of period t of an unlevered equity claim on the Lucas tree.  Let Vt 

be the dividend-price ratio; that is, the ratio of Pt to Ct.  In the present model with i.i.d. shocks, Vt 

equals a constant, V, so that the growth rate of Pt equals the growth rate of Ct.  The reciprocal of 

V equals the dividend-price ratio and can be determined from equations (5) and (6) to be 

(8)     1
𝑉𝑉

= 𝜌𝜌 − (1 − 𝜃𝜃)𝑔𝑔∗ + 𝑝𝑝 ∙ ��1−𝜃𝜃
𝛾𝛾−1

� 𝐸𝐸(1 − 𝑏𝑏)1−𝛾𝛾 − (1 − 𝜃𝜃) ∙ 𝐸𝐸𝑏𝑏 − �1−𝜃𝜃
𝛾𝛾−1

�� + (1
2
)𝛾𝛾(1 − 𝜃𝜃)𝜎𝜎2. 

 The constant expected rate of return on equity, re, is the sum of the dividend yield, 1/V, 

and the expected rate of capital gain on equity, which equals g*, the expected growth rate of the 

 5 



dividend (consumption).  Therefore, re is the same as equation (8) except for the elimination of 

the term -g*.3  The constant equity premium is given from equations (7) and (8) by: 

(9)  𝑟𝑟𝑒𝑒 − 𝑟𝑟𝑓𝑓 = 𝛾𝛾𝜎𝜎2 + 𝑝𝑝 ∙ [𝐸𝐸(1 − 𝑏𝑏)−𝛾𝛾 − 𝐸𝐸(1 − 𝑏𝑏)1−𝛾𝛾 − 𝐸𝐸𝑏𝑏]. 

The disaster or jump term in equation (9) is proportional to the disaster probability, p.  

The expression in brackets that multiplies p depends on the size distribution of disasters, b, and 

the coefficient of relative risk aversion, γ.  These effects were calibrated in Barro (2006) and 

Barro and Ursua (2012) by using the long-term history of macroeconomic disasters for 40 

countries to pin down p and the distribution of b.  The results accord with an observed average 

unlevered equity premium of 0.04-0.05 per year if γ is around 3-4. 

The diffusion term, γσ2, in equation (9) is analogous to the expression for the equity 

premium in Mehra and Prescott (1985) and is negligible compared to the observed average 

equity premium if γ and σ2 take on empirically reasonable values.  For many purposes—

including the pricing of far-out-of-the-money stock options—this term can be ignored. 

 

II. Pricing Stock Options 

 A.  Setup for pricing options 

We now discuss the pricing of stock options within our model, which fits into the class of 

jump-diffusion models.  Options pricing within this general class goes back to Merton (1976) 

and Cox and Ross (1976).  The use of prices of far-out-of-the-money put options to infer disaster 

probabilities was pioneered by Bates (1991).  This idea has been applied recently by, among 

others, Bollerslev and Todorov (2011a, 2011b); Backus, Chernov, and Martin (2011); Seo and 

Wachter (2016); and Siriwardane (2015). 

3The transversality condition, which ensures that the value of tree equity is positive and finite, is re>g*. 
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We derive a pricing solution for far-out-of-the-money put options under the assumption 

that disaster events (jumps) are the dominant force.  Key underlying conditions for the validity of 

the solution are that the option be sufficiently far out of the money and that the maturity not be 

too long.  Under these conditions, we derive a simple pricing formula that reflects the underlying 

Poisson nature of disaster events, combined with an assumed power-law distribution for the sizes 

of disasters.  This formula generates testable hypotheses—which we subsequently test—on the 

relation of the put-options price to maturity and exercise price.  The formula also allows for a 

time-fixed-effects procedure to back out a time series for disaster probability. 

Consider a put option on equity in the Lucas tree.  To begin, suppose that the option has a 

maturity of one period and can be exercised only at the end of the period (a European option).  

The exercise price or strike on the put option is 

 (10)   exercise price = ε∙Pt, 

where we assume 0<ε≤1.  We refer to ε, the ratio of the exercise price to the stock price, as the 

relative exercise price (often described as “moneyness”). 

The payoff on the put option at the start of period t+1 is zero if Pt+1≥ ε∙Pt.   If Pt+1<ε∙Pt, 

the payoff is εPt-Pt+1.  If ε<1, the put option is initially out of the money.  We focus empirically 

on options that are sufficiently far out of the money (ε sufficiently below one) so that the 

diffusion term, u, in equation (1) has a negligible effect on the chance of getting into the money 

over one period.  The value of the put option then hinges on the disaster term, v.  Specifically, 

the value of the put option depends on the probability, p, of experiencing a disaster and the 

distribution of disaster sizes, b.  Further, what will mostly matter is the likelihood of 

experiencing one disaster.  As long as the period (the maturity of the option) is not too long, the 
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chance of two or more disasters has a second-order pricing impact that can be ignored as a good 

approximation.4 

 Let the price of the put option at the start of period t be Ω∙Pt.  We refer to Ω, the ratio of 

the options price to the stock price, as the relative options price.  The gross rate of return, 𝑅𝑅𝑡𝑡+1𝑜𝑜 , 

on the put option is given by 

 (11)   𝑅𝑅𝑡𝑡+1𝑜𝑜  = 0 if  𝑃𝑃𝑡𝑡+1
𝑃𝑃𝑡𝑡

≥ 𝜀𝜀 

    𝑅𝑅𝑡𝑡+1𝑜𝑜  =  1
𝛺𝛺
∙ �𝜀𝜀 − 𝑃𝑃𝑡𝑡+1

𝑃𝑃𝑡𝑡
� 𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡+1

𝑃𝑃𝑡𝑡
< 𝜀𝜀 . 

 If there is one disaster of size b, the put option is in the money at the start of period t+1 if 

    𝑃𝑃𝑡𝑡+1
𝑃𝑃𝑡𝑡

= (1 + 𝑔𝑔) ∙ (1 − 𝑏𝑏) < 𝜀𝜀 . 

We work with the transformed variable z≡1/(1-b), which corresponds to the ratio of normal to 

disaster consumption.  The condition 0<b≤1 translates into z>1, with z tending to infinity as b 

tends to 1.  When expressed in terms of z, the gross rate of return on the put option is modified 

from equation (11) to: 

 (12)  𝑅𝑅𝑡𝑡+1𝑜𝑜  =  1
𝛺𝛺
∙ �𝜀𝜀 − 1+𝑔𝑔

𝑧𝑧
� 𝑖𝑖𝑖𝑖 1 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑑𝑑 𝑑𝑑𝑎𝑎𝑑𝑑 𝑧𝑧 > (1 + 𝑔𝑔)/𝜀𝜀 , 

   𝑅𝑅𝑡𝑡+1𝑜𝑜  = 0 otherwise. 

To determine Ω, we use the first-order condition from equation (5), with Rt+1 given by 𝑅𝑅𝑡𝑡+1𝑜𝑜  from 

equation (12).  The results depend on the form of the distribution for z, to which we now turn. 

 

4Similarly, if we allowed for possible bonanzas, we could neglect the chance of a disaster and a bonanza both 
occurring over the period. 
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B. Power-law distribution of disaster sizes 

Based on the findings for the distribution of observed macroeconomic disaster sizes in 

Barro and Jin (2011), we assume that the density function for z conforms to a power law:5 

 (13)  𝑖𝑖(𝑧𝑧) = 𝐴𝐴𝑧𝑧−(1+𝛼𝛼),𝑤𝑤ℎ𝑑𝑑𝑟𝑟𝑑𝑑 𝐴𝐴 > 0,𝛼𝛼 > 0,𝑑𝑑𝑎𝑎𝑑𝑑 𝑧𝑧 ≥ 𝑧𝑧0 > 1 . 

The general notion of this type of power law was applied by Pareto (1897) to the distribution of 

high incomes.  The power-law distribution has since been applied widely in physics, economics, 

computer science, and other fields.  For surveys, see Mitzenmacher (2003) and Gabaix (2009), 

who discusses underlying growth forces that can generate power laws.  Examples of applications 

include sizes of cities (Gabaix and Ioannides [2004]), stock-market activity (Gabaix, et al. [2003] 

and Plerou, et al. [2004]), CEO compensation (Gabaix and Landier [2008]), and firm size 

(Luttmer [2007]).  The power-law distribution has been given many names, including heavy-tail 

distribution, Pareto distribution, Zipfian distribution, and fractal distribution. 

The parameter z0>1 in equation (13) is the threshold beyond which the power-law density 

applies.  For example, in Barro and Ursua (2012), the floor disaster size of b0=0.095 corresponds 

to z0=1.105.  We treat z0 as a constant.  The condition that f(z) integrate to one from z0 to infinity 

implies 𝐴𝐴 = 𝛼𝛼𝑧𝑧0𝛼𝛼.  Therefore, the power-law density function in equation (13) becomes 

 (14)  𝑖𝑖(𝑧𝑧) = 𝛼𝛼𝑧𝑧0𝛼𝛼 ∙ 𝑧𝑧−(1+𝛼𝛼), 𝑧𝑧 ≥ 𝑧𝑧0 > 1 . 

The key parameter in the power-law distribution is the Pareto tail exponent, α, which governs the 

thickness of the right tail.  A smaller α implies a thicker tail. 

5In Kou (2002, p. 1090), a power-law distribution is ruled out because the expectation of next period’s asset price is 
infinite.  This property applies because Kou allows for favorable jumps (bonanzas) and, more importantly, he 
assumes that the power-law shock enters directly into the log of the stock price.  This problem does not arise in our 
context because we consider disasters and not bonanzas, and, more basically, because our power-law shock 
multiplies the level of GDP (and consumption and the stock price), rather than adding to the log of GDP. 
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The probability of drawing a transformed disaster size above z is given by 

 (15)   1 − 𝐹𝐹(𝑧𝑧) = ( 𝑧𝑧
𝑧𝑧0

)−𝛼𝛼. 

Thus, the probability of seeing an extremely large transformed disaster size, z (expressed as a 

ratio to the threshold, z0), declines with z in accordance with the tail exponent α>0. 

 One issue about the power-law density is that some moments related to the transformed 

disaster size, z, might be unbounded.  For example, in equation (7), the risk-free rate depends 

inversely on the term 𝐸𝐸(1 − 𝑏𝑏)−𝛾𝛾.  Heuristically (or exactly with time-separable power utility), 

we can think of this term as representing the expected marginal utility of consumption in a 

disaster state relative to that in a normal state.  When z≡1/(1-b) is distributed according to f(z) 

from equation (14), we can compute 

 (16)  𝐸𝐸(1 − 𝑏𝑏)−𝛾𝛾 = 𝐸𝐸(𝑧𝑧𝛾𝛾) = � 𝛼𝛼
𝛼𝛼−𝛾𝛾

� ∙ 𝑧𝑧0
𝛾𝛾   if α>γ.   

The term on the right side of equation (15) is larger when γ is larger (more risk aversion) 

or α is smaller (fatter tail for disasters).  But, if α≤γ, the tail is fat enough, relative to the degree 

of risk aversion, so that the term blows up.  In this case, rf equals minus infinity in equation (7), 

and the equity premium is infinity in equation (9).  Of course, in the data, the risk-free rate is not 

minus infinity and the equity premium is not infinity.  Therefore, the empirical application of the 

power-law density in Barro and Jin (2011) confined γ to a range that avoided unbounded 

outcomes, given the value of α that was estimated from the observed distribution of disaster 

sizes.  That is, the unknown γ had to satisfy γ<α in order for the model to have any chance to 
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accord with observed average rates of return.6  This condition, which we assume holds, enters 

into our analysis of far-out-of-the-money put-options prices.   

Barro and Jin (2011, Table 1) estimated the power-law tail parameter, α, in single power-

law specifications (and also considered double power laws).  The estimation was based on 

macroeconomic disaster events of size 10% or more computed from the long history for many 

countries of per capita personal consumer expenditure (the available proxy for consumption, C) 

and per capita GDP, Y.  The estimated values of α in the single power laws were 6.3, with a 95% 

confidence interval of (5.0, 8.1), for C and 6.9, with a 95% confidence interval of (5.6, 8.5), 

for Y.7  Thus, the observed macroeconomic disaster sizes suggest a range for α of roughly 5-8. 

C. Options-pricing formula 

 To get the formula for Ω, the relative options price, we use the first-order condition from 

equations (5) and (6), with the gross rate of return, Rt+1, corresponding to the return 𝑅𝑅𝑡𝑡+1𝑜𝑜  on put 

options in equation (12).  We can rewrite this first-order condition as 

 (17)  1 + 𝜌𝜌� = (1 + 𝑔𝑔)−𝛾𝛾 ∙ 𝐸𝐸𝑡𝑡(𝑧𝑧𝛾𝛾𝑅𝑅𝑡𝑡+1𝑜𝑜 ), 

where z≡1/(1-b) is the transformed disaster size and  1 + 𝜌𝜌� is an overall discount term, given 

from equations (5) and (6) (when the diffusion term is negligible) by 

 (18)  1 + 𝜌𝜌� = 1 + 𝜌𝜌 − (𝛾𝛾 − 𝜃𝜃)𝑔𝑔 + 𝑝𝑝 ∙ �𝛾𝛾−𝜃𝜃
𝛾𝛾−1

� ∙ [𝐸𝐸(1 − 𝑏𝑏)1−𝛾𝛾 − 1] . 

6With constant absolute risk aversion and a power-law distribution of disaster sizes, the relevant term has to blow 
up.  The natural complement to constant absolute risk aversion is an exponential distribution of disaster sizes.  In 
this case, the relevant term is bounded if the parameter in the exponential distribution is larger than the coefficient of 
absolute risk aversion.  With an exponential size distribution and constant relative risk aversion, the relevant term is 
always finite. 
7Barro and Jin (2011, Table 1) found that the data could be fit better with a double power law.  In these 
specifications, with a threshold of z0=1.105, the tail parameter, α, was smaller in the part of the distribution with the 
largest disasters than in the part with the smaller disasters.  The cutoff value for the two parts was at a value of z 
around 1.4. 
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 We can evaluate the right-hand side of equation (17) using the density f(z) from 

equation (14) along with the expression for 𝑅𝑅𝑡𝑡+1𝑜𝑜  from equation (12).  The result involves 

integration over the interval z≥(1+g)/ε where, conditional on having one disaster, the disaster 

size is large enough to get the put option into the money.  The formula depends also on the 

probability, p, of having a disaster.  Specifically, we have: 

(19)  (1 + 𝜌𝜌�)(1 + 𝑔𝑔)𝛾𝛾 = 𝑝𝑝
𝛺𝛺
∙ ∫ �𝑧𝑧𝛾𝛾 ∙ �𝜀𝜀 − 1+𝑔𝑔

𝑧𝑧
� ∙ 𝛼𝛼𝑧𝑧0𝛼𝛼𝑧𝑧−(1+𝛼𝛼)� 𝑑𝑑𝑧𝑧∞

(1+𝑔𝑔𝜀𝜀 )  . 

Evaluating the integral (assuming γ<α and ε<[1+g]/z0) leads to a closed-form formula for the 

relative options price: 

 (20)   𝛺𝛺 = 𝛼𝛼𝑧𝑧0𝛼𝛼

(1+𝜌𝜌�+𝛼𝛼𝑔𝑔)
∙ 𝑝𝑝𝜀𝜀1+𝛼𝛼−𝛾𝛾

(𝛼𝛼−𝛾𝛾)(1+𝛼𝛼−𝛾𝛾)
 . 

D. Maturity of the option 

 Equation (20) applies when the maturity of the put option is one “period.”  We now take 

account of the maturity of the option.  In continuous time, the parameter p, measured per year, is 

the Poisson hazard rate for the occurrence of a disaster.  Let T, in years, be the maturity of the 

(European) put option.  The density, h, for the number of hits (disasters) over T is given by8 

 (21)    ℎ(0) = 𝑑𝑑−𝑝𝑝𝑝𝑝, 

     ℎ(1) = 𝑝𝑝𝑝𝑝𝑑𝑑−𝑝𝑝𝑝𝑝, 

     … 

     ℎ(𝑥𝑥) = (𝑝𝑝𝑝𝑝)𝑥𝑥𝑒𝑒−𝑝𝑝𝑝𝑝

𝑥𝑥!
, 𝑥𝑥 = 0,1, …  

8See Hogg and Craig (1965, p. 88). 
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 If pT is much less than 1, the contribution to the options price from two or more disasters 

will be second-order, relative to that from one disaster.  For given p, this condition requires a 

consideration of maturities, T, that are not “too long.”  In this range, we can proceed as in our 

previous analysis to consider just the probability and size of one disaster.  Then, in equation (20), 

p will be replaced as a good approximation by pT. 

The discount rate, 𝜌𝜌�, and growth rate, g, in equation (20) will be replaced 

(approximately) by 𝜌𝜌�T and gT.  For given 𝜌𝜌� and g, if T is not “too long,” we can neglect these 

discounting and growth terms.  The impacts of these terms are of the same order as the effect 

from two or more disasters, which we have already neglected. 

When T is short enough to neglect multiple disasters and the discounting and growth 

terms, the formula for the relative options price simplifies from equation (20) to: 

(22)   𝛺𝛺 = 𝛼𝛼𝑧𝑧0𝛼𝛼∙𝑝𝑝𝑝𝑝∙𝜀𝜀1+𝛼𝛼−𝛾𝛾

(𝛼𝛼−𝛾𝛾)(1+𝛼𝛼−𝛾𝛾)
 . 

Here are some properties of the options-pricing formula: 

• The formula for Ω, the ratio of the options price to the stock price, is well-

defined if α>γ, the condition noted before that ensures the finiteness of various 

rates of return. 

• The exponent on maturity, T, equals 1. 

• The exponent on the relative exercise price, ε, equals 1+α-γ, which is constant 

and greater than 1 because α>γ.  We noted before that α ranged empirically 

between 5 and 8.  The corresponding range for γ (needed to replicate an 

average unlevered equity premium of 0.04-0.05 per year) is between 2.5 and 
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5.5, with lower γ associating with lower α.  The implied range for α-γ (taking 

account of the association between γ and α) is between 2.5 and 4.5, implying a 

range for the exponent on ε between 3.5 and 5.5.  

• For given T and ε, Ω depends on the disaster probability, p; the shape of the 

power-law density, as defined by the tail coefficient, α, and the threshold, z0; 

and the coefficient of relative risk aversion, γ.  The expression for Ω is 

proportional to p. 

• For given p and γ, Ω rises with a once-and-for-all shift toward larger disaster 

sizes; that is, with a reduction in the tail coefficient, α, or an increase in the 

threshold, z0. 

• For given p, α, and z0, Ω rises for sure with a once-and-for-all shift in γ if ε≤1, 

which is the range that we are considering for put options.  Note that, in 

contrast, the Black-Scholes options-pricing formula implies that Ω is 

independent of γ.9 

We can look at the results in terms of the “risk-neutral probability,” pn, defined as the 

value of p that would generate a specified relative options price, Ω, when γ=0.  The formula for 

the ratio of the risk-neutral to the objective probability, pn/p, implied by equation (22) is: 

 (23)    
𝑝𝑝𝑛𝑛

𝑝𝑝
= 𝛼𝛼(1+𝛼𝛼)

(𝛼𝛼−𝛾𝛾)(1+𝛼𝛼−𝛾𝛾)
∙ 𝜀𝜀−𝛾𝛾 . 

Note that pn/p depends on the relative exercise price, ε, but not on the maturity, T.  If we assume 

parameter values consistent with the previous discussion—for example, α=7 and γ=3.5—the 

9See, for example, Hull (2000, pp. 248 ff.).  However, this standard result depends on holding fixed the risk-free 
rate, rf.  Equation (7) shows that rf depends negatively on γ. 
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implied pn/p is 5.1 when ε=0.9, 7.8 when ε=0.8, 12.4 when ε=0.7, 21.3 when ε=0.6, and 40.3 

when ε=0.5.  Hence, the relative risk-neutral probability associated with far-out-of-the-money 

put options is sharply above one. 

 To view it another way, the relative options price, Ω, may seem far too high at low ε, 

when assessed in terms of the (risk-neutral) probability needed to justify this price.  Thus, people 

who are paying these prices to insure against the risk of an enormous disaster may appear to be 

irrational.  In contrast, the people writing these far-out-of-the-money puts may seem to be getting 

free money by insuring against something that is virtually impossible.  Yet the pricing is 

reasonable if people have roughly constant relative risk aversion with γ of 3-4 (assuming a tail 

parameter, α, for disaster size around 7).  The writers of these options will have a comfortable 

income almost all the time, but will suffer tremendously during the largest rare disasters (when 

the marginal utility of consumption is extremely high). 

E. Diffusion term 

The formula for Ω, the relative options price, in equation (22) neglects the diffusion term, 

u, in the process for GDP (and consumption and the stock price) in equation (1).  This omission 

is satisfactory if the put option is sufficiently far out of the money so that, given a reasonable 

variance σ2 of the diffusion term, the chance of getting into the money over the maturity T is 

negligible.  In other words, the tail for the normal process is not fat enough to account by itself 

for, say, 10% or greater declines in stock prices over periods of a few months.  Operationally, 

our main empirical analysis applies to options that are at least 10% out of the money (ε≤0.9) and 

to maturities, T, that range up to 6 months. 

If we consider put options at or close to the money, the diffusion term would have a first-

order impact on the value of the option.  If we neglect the disaster (jump) term—which will be 
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satisfactory here—we would be in the standard Black-Scholes world.  In this setting (with i.i.d. 

shocks), a key property of the normal distribution is that the variance of the stock price over 

interval T is proportional to T, so that the standard deviation is proportional to the square root 

of T.  This property led to the result in Brenner and Subrahmanyam (1988) that the value of an 

at-the-money put option would be proportional to the square root of the maturity. 

We, therefore, have two theoretical results concerning the impact of maturity, T, on the 

relative options price, Ω.  For put options far out of the money (operationally for ε≤0.9), the 

exponent on T is close to 1.  For put options close to the money (operationally for ε=1), the 

exponent on T is close to one-half. 

F. Stochastic Volatility 

 The asset-pricing formula in equation (22) was derived under the assumption that the 

disaster probability, p, and the size distribution of disasters (determined by α and z0) were 

fixed.10  We focus here on shifting p, but the results are isomorphic to shifting disaster intensity 

(reflecting changes in α and z0). 

We can rewrite equation (22) as 

 (24)    Ω = 𝜂𝜂1pT𝜀𝜀1+𝛼𝛼−𝛾𝛾, 

where 𝜂𝜂1 = 𝛼𝛼𝑧𝑧0
𝛼𝛼

(𝛼𝛼−𝛾𝛾)(1+𝛼𝛼−𝛾𝛾) is a constant.  We can estimate equation (24) with data on Ω for 

far-out-of-the-money put options on, say, the S&P 500.  Given ranges of maturities, T, and 

relative exercise prices, ε, we can estimate elasticities of Ω with respect to T and ε.  We can also 

test the hypothesis that 𝜂𝜂1𝑝𝑝 is constant.  Using month-end data on put options for several stock-

market indices, we estimated monthly fixed effects and tested the hypothesis that these fixed 

10We also assumed that preference parameters, including the coefficient of relative risk aversion, γ, are fixed. 
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effects were all equal for each stock-market index.  The results, detailed in a later section, 

strongly reject the hypothesis that 𝜂𝜂1𝑝𝑝 is constant.  Instead, the estimated monthly fixed effects 

fluctuate dramatically, including occasional sharp upward movements followed by gradual 

reversion over several months toward a baseline value that is close to zero.  From the perspective 

of the model, if we assume that α, γ, and z0 are fixed, so that η1 is constant, these shifts reflect 

variations in the disaster probability, p. 

 If γ>1, as we assume, equation (8) implies that a once-and-for-all rise in disaster 

probability, p, lowers the price-dividend ratio, V, if θ<1 (meaning that the intertemporal elasticity 

of substitution, 1/θ, exceeds 1).11  Bansal and Yaron (2004) focus on IES>1 because it 

corresponds to the “normal case” where an increase in the expected growth rate, g*, raises V.  

Barro (2009) argues that IES>1 is reasonable empirically and, therefore, also focuses on this 

case. 

 Generally, the effects on options pricing depend on θ and other parameters and also on 

the stochastic process that generates variations in p, including the persistence of these changes.  

However, for purposes of pricing stock options, we need only consider the volatility of the 

overall term, 𝜂𝜂1𝑝𝑝, which appears on the right side of equation (24).  Our first-round look at the 

data—that is, the estimated monthly fixed effects—suggested that this term looks like a disaster 

process.  On rare occasions, this term shifts sharply and temporarily upward and leads, thereby, 

to a jump in the corresponding term in equation (24).  We think of this shock as generated by 

another Poisson probability, q, with a size distribution (for changes in stock prices) involving 

another power-law distribution, in this case with tail parameter α*>γ.  If this process for 

changing p is independent of the disaster realizations (which depend on the level of p), then 

equation (22) is modified to 

11Under the same conditions, a fall in α or a rise in σ2 reduces V. 
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(25)  𝛺𝛺 = 𝛼𝛼𝑧𝑧0𝛼𝛼∙𝑝𝑝𝑡𝑡𝑝𝑝∙𝜀𝜀1+𝛼𝛼−𝛾𝛾

(𝛼𝛼−𝛾𝛾)(1+𝛼𝛼−𝛾𝛾)
+ 𝛼𝛼∗( 𝑧𝑧0∗)𝛼𝛼∗∙𝑞𝑞𝑝𝑝∙𝜀𝜀1+𝛼𝛼∗−𝛾𝛾

(𝛼𝛼∗−𝛾𝛾)(1+𝛼𝛼∗−𝛾𝛾)
 . 

The first term on the right side of equation (25) reflects put-option value associated with the 

potential for realized disasters, and the second term gauges value associated with changing pt and 

the effects of these changes on stock prices.12  The inclusion of pt in the first term is an 

approximation that neglects the tendency for pt to revert over time toward a baseline value that is 

close to zero.  This approximation for options with relatively short maturity is similar to others 

already made, such as the neglect of multiple disasters and the ignoring of discounting and 

expected growth. 

We can rewrite the formula in equation (25) as 

 (26)   Ω = T𝜀𝜀1+𝛼𝛼−𝛾𝛾 ∙ [𝜂𝜂1𝑝𝑝𝑡𝑡 + 𝜂𝜂2𝑞𝑞𝜀𝜀(𝛼𝛼∗−𝛼𝛼)], 

where  

 (27)  𝜂𝜂1 = 𝛼𝛼𝑧𝑧0
𝛼𝛼

(𝛼𝛼−𝛾𝛾)(1+𝛼𝛼−𝛾𝛾) , 𝜂𝜂2 = 𝛼𝛼∗( 𝑧𝑧0
∗)𝛼𝛼∗

(𝛼𝛼∗−𝛾𝛾)(1+𝛼𝛼∗−𝛾𝛾) 

are constants.13  The new term involving η2>0 turns out to be important for fitting the data on 

put-options prices.  Notably, this term implies Ω>0 if pt=0 because of the possibility that pt will 

rise during the life of the option.  The preclusion of changing 𝑝𝑝𝑡𝑡 (corresponding to η2=0) leads, 

as emphasized by Seo and Wachter (2016), to overestimation of the average level of 𝑝𝑝𝑡𝑡 in the 

sample.14  In addition, our hypotheses about elasticities of Ω with respect to T and ε in 

equation (26) turn out to accord better with the data when η2>0 is admitted. 

 

12The formulation would also encompass effects on stock prices from changing α or γ. 
13These values are constant if α, α*, z0, (z0)*, γ, and q are all constant.  α*-α is identified in our estimation because 
we have sample variation in relative exercise prices, ε. 
14As Seo and Wachter (2016) note, these problems appear, for example, in Backus, Chernov, and Martin (2011). 
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III. Empirical Analysis 

The model summarized by equation (26) delivers testable predictions.  First, the elasticity 

of the put-options price with respect to maturity, T—denoted βT—is close to one.  Second, for a 

given value of 𝜂𝜂2𝑞𝑞𝜀𝜀(𝛼𝛼∗−𝛼𝛼), the elasticity of the put-options price with respect to the relative 

exercise price, ε—denoted βε—is greater than one and corresponds to 1+α-γ.  Given a value of γ 

and the estimated value of α*-α from equation (26), the results can be used to back out estimates 

of the tail parameters α and α*.  Finally, the monthly fixed effects provide estimates of each 

period’s disaster probability, pt (or, more precisely, of pt multiplied by the positive constant η1).  

We assess these results empirically by analyzing prices of far-out-of-the-money put options on 

the U.S. S&P 500 and analogous broad indices for other countries. 

A. Data and methodology 

Our primary data source is a broker-dealer with a sizable market-making operation in 

global equities.  We utilize over-the-counter (OTC) options prices for seven equity-market 

indices—S&P 500 (U.S.), FTSE (U.K.), DAX (Germany), ESTX50 (Euro zone), Nikkei (Japan), 

OMX (Sweden), and SMI (Switzerland).  We subsequently check the U.S. results with OTC data 

against those with market-based information from OptionMetrics.  This check is useful because 

the OTC data do not necessarily correspond to actual trades. 

Our data derive from implied-volatility surfaces generated by the broker-dealer for the 

purpose of analysis, pricing, and marking-to-market.15  These surfaces are constructed from 

15A common practice in OTC trading is for executable quotes to be given in terms of implied volatility instead of the 
actual price of an option.  Once the implied volatility is agreed on, the options price is determined from the Black-
Scholes formula based on the readily observable price of the underlying security.  Since the Black-Scholes formula 
provides a one-to-one link between price and implied volatility, quotes can be given equivalently in terms of implied 
volatility or price. 
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transactions prices of options and OTC derivative contracts.16  The dealer interpolates these 

observed values to obtain implied volatilities for strikes ranging from 50% to 150% of spot and 

for a range of maturities from 15 days to 2 years and more.   Even at very low strikes, for which 

the associated options seldom trade, the estimated implied volatilities need to be accurate for the 

correct pricing of OTC derivatives such as variance swaps and structured retail products.  

Institutional-specific factors are unlikely to influence pricing in a significant way because other 

market participants can profitably pick off pricing discrepancies among dealers.  Therefore, sell-

side dealers have strong incentives to maintain the accuracy of their implied-volatility surfaces. 

As mentioned, the OTC data source is superior to market-based alternatives in the 

breadth of coverage for exercise prices and maturities.  Notably, the market data tend to be less 

available for options that are far out of the money and for long maturities.  The broad range of 

strikes in the broker-dealer data is important for our analysis because it is the prices of far-out-of-

the-money put options that will mainly reflect disaster risk.  In practice, we use put options with 

exercise prices of 50%, 60%, 70%, 80%, and 90% of spot; that is, we exclude options within 

10% of spot. 

For maturities, we focus on the range of 30 days, 60 days, 90 days, and 180 days.17  Our 

main analysis excludes options with maturities greater than six months because the prices in this 

range may be influenced significantly by the possibility of multiple disaster realizations and also 

by discounting and expected growth.  However, in practice, the results for one-year maturity 

accord reasonably well with those for shorter maturities. 

16Dealers observe prices through own trades and from indications by inter-dealer brokers.   It is also a common 
practice for dealers to ask clients how their prices compare to other market makers in OTC transactions. 
17We omit 15-day options because we think measurement error is particularly serious in this region in pinning down 
the precise maturity.  Even the VIX index, which measures short-dated implied volatility, does not track options 
with maturity less than 23 days. 
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Using the data on implied volatilities, we re-construct options prices from the standard 

Black-Scholes formula, assuming a zero discount rate and no dividend payouts.  We should 

emphasize that this use of the Black-Scholes formula to translate implied volatilities into options 

prices does not bind us to the Black-Scholes model of options prices.  The formula is used only 

to convert the available data expressed as implied volatilities into options prices.  Our calculated 

options prices are comparable to directly quoted prices (subject to approximations related to 

discounting and dividend payouts). 

B. Estimation of the Model 

We estimate the model based on equation (26) with non-linear least-squares regression.  

In this form, we think of the error term as additive with a constant variance (although we 

calculate standard errors of estimated coefficients by allowing for serial correlation in the error 

terms).  Log-linearization with a constant-variance error term (that is, a shock proportional to 

price) is problematic because it understates the typical error in extremely far-out-of-the-money 

put prices, which are close to zero.  That is, this specification gives undue weight to puts with 

extremely low exercise prices. 

In the non-linear regression, we allow for monthly fixed effects to capture the unobserved 

time-varying probability of disaster, pt, in equation (26).  We allow the estimated pt to differ 

across the seven stock-market indices; that is, we estimate index-time fixed effects.  Note that, 

for a given stock-market index and date, these effects are the same for each maturity, T, and 

relative exercise price, ε.  We carry out the estimation under the constraint that all of the index-

time fixed effects are non-negative—corresponding to the constraint that all pt are non-negative.  

On average for the seven stock-market indices, the constraint of non-negative monthly fixed 
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effects is binding for 8% of the observations.  Only a negligible number of the unconstrained 

estimates of the fixed effects are significantly negative.   

 We sample the data at monthly frequency, selecting only month-end dates, to allow for 

ease of computation with a non-linear solver.  The selection of mid-month dates yields similar 

results.  The sample period for the United States in our main analysis is August 1994-

February 2017.  Because of lesser data availability, the samples for the other stock-market 

indices are shorter.  Subsequently, we expand the U.S. sample back to 1983, particularly to 

assess pricing behavior before and after the global stock-market crash of 1987.  However, we do 

not use this longer sample in our main analysis because the data quality before 1994 is 

substantially poorer. 

Table 1 shows the estimated equations.  The regressions apply to each of the seven stock-

market indices individually and also to joint estimation with pooling of all of the data.  In the last 

case, we constrain the estimated coefficients (including the monthly fixed effects) to be the same 

for each stock-market index. 

1.  Maturity Elasticities.  The estimated elasticities with respect to maturity, 𝛽𝛽𝑝𝑝, are 

close to one, as hypothesized.  For example, the estimated coefficient for the U.S. S&P 500 is 

0.988 (s.e.=0.036) and that for all seven indices jointly is 0.958 (0.027).  The only cases in which 

the estimated coefficient differs significantly from 1 at the 5% level are Japan (NKY), where the 

estimated coefficient is 0.878 (s.e.=0.032) and Sweden (OMX), estimated coefficient of 0.918 

(0.040).  The p-values for these estimated coefficients to be statistically different from 1 are 

0.0001 and 0.040, respectively.  In the main, with the exception of Japan, the results indicate that 

prices of far-out-of-the-money put options on broad market indices are roughly proportional to 

maturity, in accordance with the rare-disasters model.  This nearly proportional relationship 
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between options price and maturity for far-out-of-the-money put options is a newly documented 

fact that cannot be explained under the Black-Scholes model. 

The unit elasticity of options price with respect to maturity for far-out-of-the-money put 

options contrasts with the previously mentioned result from Brenner and Subrahmanyam (1988) 

that prices of at-the-money put options in the Black-Scholes model are proportional to the square 

root of maturity.  This result arises because, with a diffusion process driven by i.i.d. normal 

shocks, the variance of the log of the stock price is proportional to time and, therefore, the 

standard deviation is proportional to the square root of time.  In contrast, as discussed earlier, the 

roughly proportional relationship between far-out-of-the-money put prices and maturity arises 

because, in a Poisson context, the probability of a disaster is proportional to maturity.  The 

resulting pricing formula is only approximate because it neglects, for example, the potential for 

multiple disasters within the time frame of an option’s maturity, omits a diffusion term, ignores 

discounting and expected growth, and also neglects the tendency of the disaster probability to 

revert over the life of an option toward a baseline value close to zero.  However, for options that 

are not “too long,” these approximations will be reasonably accurate, consistent with the findings 

on maturity elasticity shown in Table 1. 

We verified empirically that the maturity elasticity is close to one-half for at-the-money 

put options.  For the pooled sample with data from all seven stock-market indices, the estimated 

𝛽𝛽𝑝𝑝 is 0.497 (s.e.=0.030).  Similar point estimates apply for each of the seven stock-market 

indices considered individually. 

2.  Elasticities with respect to exercise price.  Table 1 shows estimates of the elasticity, 

𝛽𝛽𝜖𝜖, of the put-options price with respect to the relative exercise price (holding fixed the term that 

involves η2q in equation [26]).  The coefficient 𝛽𝛽𝜖𝜖 corresponds in the model to 1 + 𝛼𝛼 − 𝛾𝛾, where 
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α is the tail coefficient for disaster sizes and γ is the coefficient of relative risk aversion.  The 

estimated 𝛽𝛽𝜖𝜖 for the various stock-market indices are all positive and greater than one, as 

predicted by the model.  The estimated coefficients are similar across indices, falling into a range 

from 4.0 to 4.8.  The joint estimate across the seven indices is 4.55 (s.e.=0.17). 

Rare-disasters research with macroeconomic data, such as Barro and Ursua (2008) and 

Barro and Jin (2011), suggested that a γ of 3-4 would accord with observed average (unlevered) 

equity premia.  With this range for γ, the estimated values of βε in Table 1 suggest that α would 

be between 6 and 8.  This finding compares with an estimate for α based on macroeconomic data 

on consumption in Barro and Jin (2011, Table 1) of 6.3 (s.e.=0.8).  Hence, the estimates of α 

implied by Table 1 accord roughly with those found from direct observation of the size 

distribution of macroeconomic disasters (based on consumption or GDP). 

3.  Estimated disaster probabilities.  We use the estimated monthly fixed effects for 

each stock-market index from the regressions in Table 1 to construct time series of estimated 

(objective) disaster probabilities, pt.  Note from equations (26) and (27) that the estimation 

identifies pt multiplied by the parameter 𝜂𝜂1 = 𝛼𝛼𝑧𝑧0𝛼𝛼

(𝛼𝛼−𝛾𝛾)(1+𝛼𝛼−𝛾𝛾)
 , which will be constant if the size 

distribution of disasters (determined by α and z0) and the coefficient of relative risk aversion, γ, 

are fixed.  When η1 is constant, the estimated pt for each stock-market index will be proportional 

to the estimated monthly fixed effect. 

To measure the level of pt, we need a value for η1, which depends in equation (27) on α, 

z0, and γ.  We assume for a rough calibration that the threshold for disaster sizes is fixed at z0 

=1.1 (as in Barro and Jin [2011]) and that the coefficient of relative risk aversion is γ=3.  We 

allow the tail coefficient, α, to differ for each stock-market index; that is, we allow places to 

differ with respect to the size distribution of potential disasters.  We use the estimated 
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coefficients from Table 1 for βε (which equals 1+α-γ in the model) to back out the implied α, also 

shown in Table 1.  These values range from 6.0 to 6.8, implying a range for η1 from 0.71 to 0.89.  

Dividing the estimated monthly fixed effects for each stock-market index by the associated η1 

generates an estimated time series of pt for each country or region. 

These values of pt are shown for the seven stock-market indices in Figure 1, Panel A.  

Panel B presents the results just for the United States (SPX), with the standard volatility indicator 

(VIX) included as a comparison.18  Panel C shows the results for all indices estimated jointly 

(last column of Table 1).  Note that our assumed parameter values, embedded in the computation 

of η1, influence the levels of the pt series in Figure 1, but not the time patterns.  

Table 2 provides summary statistics for the estimated disaster probabilities.  These 

probabilities, shown in Figure 1, Panel A, have high correlations among the countries, with an 

average pair-wise correlation for the monthly data of 0.89.  The average pair-wise correlation 

with Japan (NKY), 0.80, is notably lower than the others.   The high correlations across stock-

market indices indicate that the main variations in inferred disaster probabilities reflect the 

changing likelihood of a common, global disaster. 

The mean estimated disaster probability from Table 2 is 6.4% per year for the S&P 500 

and 6.3% for all countries jointly.  For the other indices, the means range from 4.6% for Japan 

(NKY) to 9.0% for Sweden (OMX).  These estimates can be compared with average disaster 

probabilities of 3-4% per year estimated from macroeconomic data on rare disasters—see, for 

example, Barro and Ursua [2008]).  However, this earlier analysis assumed that disaster 

probabilities were constant across countries and over time. 

The estimated disaster probabilities in Figure 1, Panel A, are volatile and right-skewed, 

with spikes during crisis periods and lower bounds close to zero.  The U.S. disaster probability 

18A discussion of the VIX is contained in Chicago Board Options Exchange (2014). 
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hit a peak of 42% per year in October-November 2008, just after the Lehman crisis.  Similarly, 

the other six stock-market indices show their highest disaster probabilities around 40% in 

October-November 2008.  Additional peaks in disaster probability occurred around the time of 

the Russian and Long-Term Capital Management (LTCM) crises in August-September 1998.  In 

this case, the estimated U.S. disaster probability reached 29% in August 1998.   

The patterns found for the U.S. disaster probability mirror results for options-derived 

equity premia in Martin (2015) and for disaster probabilities in Siriwardane (2015).  The U.S. 

disaster probability is also highly correlated with the Chicago Board Options Exchange’s well-

known volatility index (VIX), as indicated in Figure 1, Panel B.  The VIX, based on the S&P 500 

index, is an average of Black-Scholes based implied volatility for puts and calls with maturity 

between 23 and 37 days and for an array of exercise prices.  The correlation between the VIX 

and our U.S. disaster probability (using month-end data from August 1994 to February 2017) is 

0.96 in levels and 0.90 in monthly changes.  However, the levels of the two series are very 

different, with the p series having the interpretation as an objective disaster probability (per year) 

and the VIX representing an average implied volatility (with units of annual standard deviation 

of stock-price changes).19 

The estimated U.S. disaster probability, p, is positively but not that strongly correlated 

with the indexes of economic policy uncertainty constructed by Baker, Bloom, and Davis 

(2016).20  From August 1994 to February 2017, the correlation of our p series with their news-

based uncertainty measure was 0.45 and that with their broader uncertainty measure was 0.47.  

19Implied volatility is a puzzling object, because it corresponds to the patch needed to get an observed options price 
to equal the Black-Scholes price.  Implied volatility varies not only over time but also systematically across exercise 
prices, ε, because the underlying assumption of normality deviates from the data.  This cross-ε variation is described 
as a “smile.”  The original form of the VIX was based only on at-the-money options and was, therefore, easier to 
interpret than the current version, which is an average across exercise prices of implied volatilities.  There is also 
systematic variation of implied volatility with maturity, but this property does not matter much for the standard VIX, 
which considers options only in a narrow range around 30 days. 
20Their data are available at policyuncertainty.com. 

 26 

                                                 



Similar correlations show up between their indicators and the VIX.  As an example of deviation, 

in January-February 2017, our p series was around 1% (compared to a mean of 6.4%), the VIX 

was at 12-13 (mean of 20.2), the news-based policy uncertainty indicator was close to 200 (mean 

of 112), and the broader policy uncertainty indicator was about 140 (mean of 106).  In other 

words, disaster probability and the VIX were low (according to the financial markets), while 

policy uncertainty was high (according to Baker, Bloom, and Davis [2016] and, presumably, 

most political commentators). 

The estimated first-order AR(1) coefficient for the estimated U.S. disaster probability 

shown in Figure 1, Panel B, is 0.88 (s.e.=0.03), applying at a monthly frequency.  This 

coefficient implies that shocks to disaster probability have a half-life around eight months.  The 

persistence of disaster probabilities for the other stock-market indices (Figure 1, Panel A) is 

similar to that for the United States, with estimated AR(1) coefficients ranging from 0.85 to 0.89, 

except for Japan at 0.80.  An important inference is that the movements in disaster probability 

shown in Figure 1 are temporary.  The series is associated with occasional sharp upward spikes 

(involving the probability q), followed by reasonably quick reversion toward a baseline value 

close to zero. 

Although we attributed the time pattern in Figure 1 to variable disaster probability, pt, the 

variations in the monthly fixed effects may also reflect changes in the other parameters contained 

in the term that multiplies pt in equation (26) and is shown in equation (27) as  

𝜂𝜂1 = 𝛼𝛼𝑧𝑧0
𝛼𝛼

(𝛼𝛼−𝛾𝛾)(1+𝛼𝛼−𝛾𝛾).21  For example, outward shifts in the size distribution of disasters, 

generated by reductions in the tail parameter, α, or increases in the threshold disaster size, z0, 

21In the model with i.i.d. shocks, this term does not depend on the intertemporal elasticity of substitution for 
consumption, 1/θ, or the rate of time preference, ρ. 

 27 

                                                 



would work like increases in p.22  Similarly, increases in the coefficient of relative risk aversion, 

γ, would raise η1.  This kind of change in risk preference, possibly due to habit formation, has 

been stressed by Campbell and Cochrane (1999).  Separation of changes in the parameters of the 

disaster distribution from those in risk aversion require simultaneous consideration of asset-

pricing effects (reflected in Figure 1) with information on the incidence and size of disasters 

(based, for example, on movements of macroeconomic variables). 

 4.  Coefficients associated with changing disaster probability.  The options-pricing 

formula in equation (26) involves the probability, q, of an upward jump in disaster probability, 

pt.  The probability q enters multiplicatively with η2, given in equation (27).  In other words, η2q 

is identified in the data.23  The results in Table 1 show that the estimates of η2q range from 0.085 

to 0.109, except for Japan at 0.138.  Note that the underlying values of η2q are assumed to be 

constant over time for each stock-market index; we consider later whether this restriction is 

satisfactory.  The effect of η2q on the options price interacts in equation (26) with the exercise 

price, ε, to the power α*-α.  Because the sample for each stock-market index has variation each 

month in ε, the non-linear estimation identifies α*-α.  These estimates range, as shown in 

Table 1, from 8.1 to 11.7.   

 Note in equation (26) that the put-options price, Ω, depends on the sum of η1pt and η2q, 

with the second term multiplied by 𝜀𝜀𝛼𝛼∗−𝛼𝛼.  Given that α*-α is estimated to be around 9.5, this 

last term ranges from 0.001 when ε=0.5 to 0.37 when ε=0.9.  Options pricing depends, 

accordingly, on an effective probability that weighs the current disaster probability, pt, along 

22Kelly and Jiang (2014, p. 2842) assume a power-law density for returns on individual securities.  Their power law 
depends on a cross-sectional parameter and also on aggregate parameters that shift over time.  In contrast to our 
analysis, they assume time variation in the economy-wide values of the tail parameter, analogous to our α, and the 
threshold, analogous to our z0.  (Their threshold corresponds to the fifth percentile of observed monthly returns.) 
23We can therefore identify q if we know the value of 𝜂𝜂2 = 𝛼𝛼∗( 𝑧𝑧0

∗)𝛼𝛼∗

(𝛼𝛼∗−𝛾𝛾)(1+𝛼𝛼∗−𝛾𝛾)
.  If we continue to assume γ=3 and use the 

estimates of α* implied by the results in Table 1, the missing element is the threshold, 𝑧𝑧0∗.  However, reasonable 
variations in 𝑧𝑧0∗ imply large variations in η2 and, hence, in the estimated q. 
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with the probability, q, of a sharp upward future rise in pt.  From this perspective, it is clear that 

omitting the chance of future rises in disaster probability—that is, assuming q=0—will result in 

estimates of pt that are too high on average compared with objective probabilities of disasters.  

Moreover, this effect will be much more significant at high exercise prices, such as ε=0.9, than at 

low ones, such as ε=0.5.  For very low exercise prices, such as ε=0.5, almost all of the option 

value reflects the chance of a realization of a disaster during the life of the option.  In contrast, 

for high exercise prices, such as ε=0.9, the option value depends partly on the possibility of a 

disaster occurrence and partly on the possibility of pt rising sharply. 

 As noted before, the term involving q>0 in equation (26) implies Ω>0 even when pt=0.  

For example, using the estimated value η2q=0.10 (from the pooled sample in Table 1) and taking 

pt=0, the term η1pt+η2q𝜀𝜀𝛼𝛼∗−𝛼𝛼 in equation (26) is 0.037 when ε=0.9.  That is, the effective 

probability that determines Ω can be as high as 4% per year even though pt=0 applies. 

5.  Long-term results for the United States.  A lot of analysis of options pricing, 

starting with Bates (1991), suggests that the nature of pricing changed in character following the 

October 1987 stock-market crash.  In particular, a “smile” in graphs of implied volatility against 

exercise price is thought to apply only post-1987.  To examine this idea, we expanded our 

analysis to the period June 1983 to July 1994 by using market-based quotes on S&P 100 index 

options from the Berkeley Options Data Base.24  These data derive from CBOE's Market Data 

Retrieval tapes.  Because of the limited number of quotes on out-of-the-money options in this 

data base, we form our monthly panel by aggregating quotes from the last five trading days of 

each month.  The available Berkeley data allows us to consider relative exercise prices, ε, around 

24Direct access to this database has been discontinued.  We thank Josh Coval for sharing his version of the data. We 
have the data from Berkeley Options Data Base through December 1995. 
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0.9, with maturities, T, close to 30, 60, and 90 days.  We also have a small amount of data with ε 

around 0.8 and maturity, T, of about 30 days. 

Table 3 extends the analysis of put-options pricing from Table 1 to consider U.S. 

regression estimates over the longer period 1983-2017.  In this estimation, the data from 

Berkeley Options Data Base (for June 1983 to July 1994) relate to the S&P 100 but are treated as 

comparable to the OTC data (for August 1994-February 2017) associated with the S&P 500.  

The estimates of the various coefficients are close to those shown in Table 1, which were based 

on data from August 1994 to February 2017. 

As before, we back out a time series for estimated disaster probability, pt, based on the 

monthly fixed effects, assuming that the parameters in the term η1 in equations (26) and (27) that 

involves pt are fixed.  We use levels for these other parameters similar to those used before 

(including η1=0.72).  Figure 2 graphs the resulting time series of estimated U.S. disaster 

probability.  Readily apparent is the dramatic jump in pt at the time of the October 1987 stock-

market crash, in which the S&P 500 declined by 20.5% in a single day.  The estimated pt reached 

156% per year but fell rapidly thereafter.25  The Persian Gulf War of 1990-1991 caused another 

rise in disaster probability, to 18-19%. 

The bottom part of Table 3 shows statistics associated with the time series in Figure 2.  A 

comparison pre-crash (June 1983-Sept 1987) and post-crash (Oct 1988-July 1994), based on the 

data from the Berkeley Options Data Base, shows an increase in the typical size and volatility of 

the estimated disaster probability, pt.  The change in mean is from 0.005 to 0.027, and the change 

in standard deviation is from 0.009 to 0.045.  The period August 1994-February 2017, based on 

OTC data related to the S&P 500, shows further rises in mean and standard deviation—to 0.067 

25Note that a disaster probability above 100% per year is well defined in the context of a continuous-time Poisson 
specification. 
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and 0.068, respectively.  Thus, the overall suggestion is that the mean and standard deviation of 

the disaster probability shifted permanently upward because of the October 1987 stock-market 

crash. 

We also checked whether there was a shift around the time of the 1987 crash in the term 

involving the probability, q, of upward shifts in pt.  The result is that the estimated coefficient 

η2q is 0.056 (s.e.=0.019) for the pre-crash period June 1983-Sept 1987 and 0.090 (0.031) for the 

post-crash period Oct 1988-Feb 2017.  The p-value for the statistical significance of the 

difference between these two estimated coefficients is 0.022.  Thus, there is evidence that the 

crash permanently raised the perceived probability q of future sharp increases in disaster 

probability. 

6. Results with market data on put-options prices.  One possible shortcoming of the 

results in Table 1 is that they are based on underlying OTC data that represent menus of options 

prices offered to clients by a large financial firm.  Although these menus are informed by market 

transactions, they do not necessarily correspond to actual trades. 

To check whether the reliance on OTC data is a problem, we redid the U.S. analysis 

shown in Table 1 using market-based information from OptionMetrics on far-out-of-the-money 

put options based on the S&P 500 index.  As in Table 1, these data cover options with exercise 

prices, ε, of 0.5, 0.6, 0.7, 0.8, and 0.9, and maturities of 30, 60, 90, and 180 days.  The sample is 

January 1996 to April 2016.  Unfortunately, we lack comparable data for other countries.26  The 

regression results with the OptionMetrics data are in Table 4. 

The number of observations for the OptionMetrics sample in Table 4 is 3529, compared 

to 5420 for the U.S. SPX in Table 1.  The main reason for the decline in sample size is missing 

data from OptionMetrics, not the truncation of the sampling interval.  Despite the reduction in 

26We have data from Bloomberg but only since late 2010. 
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sample size, it is clear that the OptionMetrics data provide a great deal of coverage over a long 

period on far-out-of-the-money put options on the S&P 500. 

The main inference from Table 4 is that the estimated coefficients and fit using 

OptionMetrics data are very close to those based on the U.S. OTC data in Table 1.  One likely 

reason for this correspondence is that the producers of the OTC information take account of 

market data, including those that appear in OptionMetrics.  In any event, the closeness in results 

for OTC and market data for the United States makes us more comfortable with the OTC results 

for the other six stock-market indices, for which we lack long-term market-based information on 

put-options prices. 

C. Model robustness 

In the underlying theory, the asset-pricing formula in equation (26) applies as an 

approximation—based, for example, on neglecting possibilities of multiple disasters, ignoring 

terms associated with discounting and growth, neglecting pricing implications of a diffusion 

term, and ignoring effects from the tendency of pt to revert over time toward a baseline value 

close to zero.  More generally, properties such as βT=1 (and constant) and βε=1+α-γ (and 

constant) would not hold precisely.  In this section, we explore the empirical robustness of the 

model estimated in Table 1 under various scenarios.   

1.  Constancy of the maturity elasticity, βT.  We re-estimated the regressions in Table 1 

while allowing for different values of βT over ranges of maturity, T.  As an example, we 

estimated one value of βT for T equal to 30 or 60 days and another for T equal to 90 or 180 days.  

For the United States (SPX), the estimated βT is 0.985 (s.e.=0.036) in the low range of T and 

0.942 (0.056) in the high range, with a p-value of 0.31 for equality of these two coefficients.  

Similarly, for all stock-market indices estimated jointly, the estimated βT is 0.954 (s.e.=0.028) in 
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the low range of T and 0.911 (0.044) in the high range, with a p-value of 0.18 for equality of 

these two coefficients. 

 We also redid the regressions in Table 1 while expanding the sample to include put 

options with one-year maturity.  For the United States (SPX), the estimated βT becomes 0.941 

(s.e.=0.032), compared to 0.988 (0.036) in Table 1, which allows for maturities only up to six 

months.  For all stock-market indices estimated jointly, the estimated βT with the inclusion of 

one-year maturity becomes 0.905 (s.e.=0.020), compared to 0.958 (0.027) in Table 1. 

 The general pattern is that the estimated βT declines with the inclusion of longer 

maturities.  However, the effects are moderate even for a range of T up to one year.  These 

findings support the underlying approximations in the model but also suggest that the sample 

should be restricted to options that are not overly long; for example, up to six months. 

We also considered whether βT is the same over different ranges of exercise price, ε 

(knowing that, for ε=1—at-the-money options—βT would be close to 0.5).  We re-estimated the 

regressions in Table 1 while allowing for different values of βT over various ranges of ε.  As an 

example, we estimated one value of βT for ε equal to 0.5, 0.6, or 0.7 and another for ε equal to 

0.8 or 0.9.  For the United States (SPX), the estimated βT is 1.201 (s.e.=0.125) in the low range 

of ε and 0.978 (0.032) in the high range, with a p-value of 0.07 for equality of these two 

coefficients.  Similarly, for all stock-market indices estimated jointly, the estimated βT is 1.189 

(s.e.=0.085) in the low range of ε and 0.946 (0.027) in the high range, with a p-value of 0.004 for 

equality of these two coefficients.  Thus, there is some indication that βT is lower at high ε than 

at low ε.  However, even for ε as high as 0.9, the estimated βT remains close to 1. 

2.  Stability of coefficients associated with exercise price.  We also checked whether 

the coefficient βε in Table 1 is stable over various ranges of ε.  As an example, we estimated one 

 33 



βε for ε equal to 0.5, 0.6, or 0.7 and another for ε equal to 0.8 or 0.9.  For the United States 

(SPX), the estimated βε is 4.66 (s.e.=0.33) in the low range of ε and 4.34 (0.67) in the high range, 

with a p-value of 0.49 for a test of the equality of these coefficients.  Similarly, for all stock-

market indices estimated jointly, the estimated βε is 4.48 (s.e.=0.17) in the low range of ε and 

4.14 (0.32) in the high range, with a p-value of 0.16 for a test of the equality of these 

coefficients.  Thus, these results are consistent with the stability of the coefficient βε over ranges 

of ε. 

3.  Different sample periods.  We checked for stability of the regression coefficients 

over time by re-estimating the regressions in Table 1 with separate coefficients for the four sub-

periods shown in Table 5.  These periods are Aug 1994–Sept 2002, Oct 2002-June 2007, July 

2007-April 2012, and May 2012-Feb 2017.  These intervals were chosen to be of equal length, 

starting from January 1998, at which point five of the seven stock-market indices have data.  The 

results in Table 5 are for the United States (SPX) and for the pooled sample with data for the 

seven indices. 

 The general pattern in Table 5 is that the estimated coefficients are reasonably stable 

across the sub-periods, although hypotheses of equality of coefficients over time tend to be 

rejected at usual critical levels.  For example, for the maturity elasticity, βT, the range of 

estimated values over the four sub-periods is fairly narrow for the U.S. data—1.004 (s.e.=0.035), 

1.135 (0.035), 0.912 (0.039), and 1.296 (0.046).  Similar results obtain for the pooled sample of 

seven indices.  Despite the narrow range of estimates, the hypothesis of equality is rejected in 

each case with a p-value of 0.000 because the estimated coefficients have high precision. 
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 Similarly, for the coefficient βε related to exercise-price elasticity, the range of estimates 

for the United States is from 3.82 to 6.15, and the hypothesis of equal coefficients is rejected 

with a p-value of 0.000.  Analogous findings apply for the sample of seven stock-market indices. 

 For the estimated value of α*-α, the range is wider—from 3.6 to 10.7 for the United 

States—but the relative lack of precision implies that the p-value for the hypothesis of equal 

coefficients has a higher p-value, 0.025.  A similar pattern applies for the sample of seven stock-

market indices. 

 Finally, the hypothesis of equal values of the coefficient η2q fares better in the sense that 

the range of estimated values is narrow, and the hypothesis of equality of coefficients is accepted 

at usual critical levels.  For the United States, the range is from 0.078 to 0.107, and the p-value 

for equal coefficients is 0.084.  For the seven-index sample, the range is from 0.089 to 0.113, and 

the p-value for equal coefficients is 0.34.  These results support the assumption that, at least 

since August 1994, the probability, q, of a sharp upward movement in disaster probability, pt, is 

constant.  That is, unlike the dramatic variations in pt itself, it seems reasonable to assume time 

invariance with regard to the volatility associated with potential variations in pt. 

 

IV. Conclusions 

Options prices contain rich information on market perceptions of rare disaster risks.  We 

develop a new options-pricing formula that applies when disaster risk is the dominant force, the 

size distribution of disasters follows a power law, and the economy has a representative agent 

with Epstein-Zin utility.  The formula is simple but its main implications about maturity and 

exercise price accord with U.S. and other data from 1983 to 2017 on far-out-of-the-money put 

options on broad stock-market indices.   
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If the coefficient of relative risk aversion and the size distribution of disasters are fixed, 

the regression estimates of monthly fixed effects provide information on the evolution of disaster 

probability, pt.  The estimated pt is highly correlated across seven major stock-market indices, 

applicable to the United States, United Kingdom, Euro area, Germany, Japan, Sweden, and 

Switzerland.  All of these series show a sharp peak during the financial crisis of 2008-09.  More 

generally, we think that the estimated time series of pt reflect primarily global disaster risks.  

Using U.S. data, the peak in the estimated disaster probability is much more dramatic in the 

stock-market crash of October 1987. 

Extensions of the empirical analysis would allow for second-order terms.  These terms 

involve the possibility of multiple disasters, the presence of a diffusion term, allowances for 

discounting and expected growth, and the tendency for disaster probability to revert over time 

toward a baseline value close to zero. 

This market-based assessment of objective disaster probability should be a valuable 

indicator of aggregate economic conditions for practitioners, macroeconomists, and 

policymakers.  As an example, in January-February 2017, the estimated U.S. disaster probability 

was around 1% per year, despite the uncertainty suggested by the volatile political climate.  

Disaster probability as registered by the financial markets is not the same as political uncertainty. 
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Figure 1 

Estimated Disaster Probabilities 

 

Panel A:  Seven Stock-Market Indices Individually 
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Panel B: United States (SPX) 
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Panel C:  Seven Stock-Market Indices Jointly 

 

 

 

 

Panel A graphs the estimated disaster probabilities for the seven stock-market indices associated 
with the regressions in Table 1.  The annualized disaster probability, pjt  for index j, is calculated 
from the estimated monthly fixed-effect coefficients in the form of equation (26), assuming in 
the formula for η1 in equation (27) that z0=1.1, γ=3, and βε=1+αj-γ, where βε is given in Table 1.  
Panel B is for the United States only (SPX).  The VIX measure of volatility is discussed in 
Chicago Board Options Exchange (2014).  Panel C is for the seven indices estimated jointly (last 
column of Table 1). 
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Figure 2 

Estimated U.S. Disaster Probabilities, 1983-2017 

 

 

This figure presents the estimated U.S. disaster probabilities, pt, associated with the regression in 
Table 3.  The underlying data from August 1994 to February 2017 are the OTC data based on the 
S&P 500 and are the same as those used for the blue graph in Figure 1, Panel B.  The data from 
June 1983 to July 1994 associate with the S&P 100 and are from the Berkeley Options Data 
Base.  The methodology for inferring disaster probabilities from the estimated monthly fixed 
effects corresponds to that used in Figure 1.  Because of missing data, many months before 
August 1994 do not appear in the figure.
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Table 1  Regressions for Put-Options Prices 

OTC Data, 1994-2017 

Index SPX FTSE ESTX DAX NKY OMX SMI -- 
Country/Region US UK EURO GER JAP SWE SWZ ALL 

 

Aug94-  
Feb17 

Jan98- 
Feb17 

Jun98- 
Feb17 

Jan00- 
Feb17 

Jan 98- 
Feb17 

Jan98- 
Feb17 

Jan98- 
Feb17 

Aug94- 
Feb17 

𝜷𝜷𝑻𝑻 0.988 0.994 0.941 0.935 0.878 0.918 1.003 0.958 
  (0.036) (0.040) (0.040) (0.038) (0.032) (0.040) (0.040) (0.027) 
𝜷𝜷𝝐𝝐 4.71 4.68 4.49 4.32 3.98 4.73 4.80 4.55 
  (0.31) (0.31) (0.33) (0.34) (0.29) (0.32) (0.31) (0.17) 
α*-α 9.48 9.86 8.88 8.11 11.69 10.23 11.62 9.52 
 (3.01) (3.63) (2.87) (2.27) (3.26) (3.91) (3.79) (2.01) 
𝜼𝜼𝟐𝟐𝒒𝒒 0.090 0.085 0.100 0.101 0.138 0.109 0.102 0.100 
 (0.029) (0.032) (0.030) (0.025) (0.047) (0.044) (0.040) (0.020) 
Implied est of α 6.71 6.68 6.49 6.32 5.98 6.73 6.80 6.55 
Implied est of η1 0.728 0.733 0.769 0.805 0.892 0.724 0.713 0.757 
R-squared 0.974 0.975 0.974 0.973 0.959 0.967 0.974 0.913 
σ 0.0013 0.0013 0.0016 0.0016 0.0019 0.0019 0.0012 0.0026 
N 5420 4600 4500 4120 4600 4600 4600 32440 
Mean dep var. 0.0039 0.0042 0.0055 0.0052 0.0049 0.0056 0.0036 0.0047 
σ dep var. 0.0077 0.0082 0.0098 0.0096 0.0093 0.0103 0.0075 0.0090 
 

 
This table presents non-linear least-squares regression estimates of the model for pricing far-out-of-the 
money put options with variable disaster probability.  We use OTC data on relative put-option prices, Ω, 
for seven stock-market indices with maturity, T, of 30, 60, 90, and 180 days and relative exercise price, ε, 
of 0.5, 0.6, 0.7, 0.8, and 0.9.  The estimation corresponds to equation (26):  Ω = T𝜀𝜀1+𝛼𝛼−𝛾𝛾 ∙ [𝜂𝜂1𝑝𝑝𝑡𝑡 +
𝜂𝜂2𝑞𝑞𝜀𝜀(𝛼𝛼∗−𝛼𝛼)], where pt is the disaster probability, α is the tail parameter for disaster sizes, α* is the tail 
parameter for stock-price changes induced by upward jumps in pt, q is the probability of an upward jump 
in pt, γ is the coefficient of relative risk aversion, and η1 and η2 are constants shown in equation (27).   We 
use the estimated monthly fixed effects for each stock-market index to gauge the variations in η1pt and 
then use a calibrated value of η1 to infer levels of pt.  The results are in Figure 1.  The estimation 
constrains pt≥0 for each observation.  This constraint turns out to be binding on average for 8% of the 
observations for the seven stock-market indices.  The column labeled “all” pools the data on the seven 
stock-market indices and uses the same coefficients and set of monthly fixed effects for all indices.  The 
estimated exponent on T, 𝛽𝛽𝑝𝑝, should equal 1.  The estimated exponent on the first ε term, 𝛽𝛽𝜖𝜖, should equal 
1+α-γ.  Implied estimates of α are shown, based on γ=3.  Implied estimates of η1 are shown, assuming in 
equation (27) that the threshold value for disaster size is z0=1.1.  Cross-section-clustered standard errors 
(which allow for serial correlation of the error terms) are in parentheses. 
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Table 2 

Statistics for Estimated Disaster Probabilities 

 

Index sample mean std. dev. maximum 
SPX (US) 1994.08-2017.02 0.064 0.067 0.42 
FTSE (UK) 1998.01-2017.02 0.073 0.071 0.40 
ESTX (Euro area) 1998.06-2017.02 0.077 0.069 0.38 
DAX (Germany) 2000.01-2017.02 0.062 0.065 0.35 
NKY (Japan) 1998.01-2017.02 0.046 0.052 0.44 
OMX (Sweden) 1998.01-2017.02 0.090 0.081 0.45 
SMI (Switz.) 1998.01-2017.02 0.064 0.073 0.39 
ALL 1994.08-2017.02 0.063 0.064 0.41 

 

 

This table presents statistics on estimated disaster probabilities from the regressions in Table 1.  
The disaster probabilities are calculated as described in the notes to Figure 1. 
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Table 3  Regression for U.S. Put-Options Prices 

Berkeley and OTC Data, 1983-2017 

𝜷𝜷𝑻𝑻 0.986 (0.035) 
𝜷𝜷𝝐𝝐 4.76 (0.30) 

α*-α 10.39 (3.56) 
η2q 0.091 (0.034) 

R-squared 0.975 
σ 0.0013 
N 5662 

 

Statistics for Estimated Disaster Probabilities (shown in Figure 2) 

Period start Period end mean std. dev. maximum 
June 1983 Feb 2017 0.062 0.104 1.56 
June 1983 Sept 1987 0.005 0.009 0.035 
Oct 1987 Sept 1988 0.309 0.477 1.56 
Oct 1988 Jul 1994 0.027 0.045 0.191 
Aug 1994 Feb 2017 0.067 0.068 0.430 

 

 

The form of the regression corresponds to that for the U.S. SPX in Table 1.  The data from June 
1983 to July 1994 are based on the S&P 100 index and are market-based information from the 
Berkeley Options Data Base.  The data from August 1994 to February 2017 are OTC values 
based on the S&P 500, as in Table 1.  For the Berkeley data, we formed monthly panels of put-
options prices by aggregating quotes from the last five trading days of each month.  We applied a 
bivariate linear interpolation on the implied volatility surface to obtain put prices with granular 
strikes at every 10% moneyness interval and maturities ranging from one to six months.  The 
methodology for inferring disaster probabilities from the estimated monthly fixed effects 
corresponds to that used in Figure 1, with the results shown in Figure 2.  Because of missing 
information in the Berkeley data, many months before August 1994 do not appear in the 
regression or in Figure 2.  Cross-section-clustered standard errors (which allow for serial 
correlation of the error terms) are in parentheses.  
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Table 4  Regression for U.S. Put-Options Prices 

OptionMetrics Data, 1996-2016 

 

𝜷𝜷𝑻𝑻 0.944 (0.032) 
𝜷𝜷𝝐𝝐 4.48 (0.28) 

α*-α 8.96 (2.42) 
η2q 0.090 (0.023) 

R-squared 0.975 
σ 0.0015 
N 3529 

 

 

This regression corresponds to that for the U.S. SPX in Table 1, except for the use of market-
based OptionMetrics data over the period January 1996-April 2016.
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Table 5 

Stability over Different Samples of Estimated Coefficients in Regressions for Put-Options Prices  

Coefficient 1994.08-2002.09 2002.10-2007.06 2007.07-2012.04 2012.05-2017.02 p-value 
 U.S. (SPX)  

βT 1.004 
(0.035) 

1.135 
(0.035) 

0.912 
(0.039) 

1.296 
(0.046) 

0.000 

βε 5.06 
(0.29) 

6.15 
(0.53) 

3.82 
(0.40) 

5.11 
(0.55) 

0.000 

α*-α 10.70 
(3.38) 

6.77 
(2.19) 

3.61 
(2.01) 

4.96 
(2.48) 

0.025 

η2q 0.099 
(0.035) 

0.078 
(0.016) 

0.107 
(0.021) 

0.084 
(0.011) 

0.084 

 All (seven stock-market indices)  
βT 0.963 

(0.031) 
1.010 

(0.054) 
0.901 

(0.028) 
1.150 

(0.048) 
0.000 

βε 4.82 
(0.24) 

5.16 
(0.41) 

3.48 
(0.18) 

5.01 
(0.32) 

0.000 

α*-α 9.35 
(2.79) 

9.03 
(2.09) 

4.14 
(1.21) 

6.62 
(3.51) 

0.038 

η2q 0.111 
(0.029) 

0.092 
(0.020) 

0.113 
(0.008) 

0.089 
(0.014) 

0.34 

 

 

Note:   The estimated coefficients shown for four sub-periods correspond to those shown for full samples in Table 1.  The sub-periods 
were chosen to have roughly equal numbers of observations, starting from January 1998, by which the data are available for five of the 
seven stock-market indices considered in Table 1.  The results apply to the U.S. (SPX) stock-market index and for the pooled sample 
of all seven stock-market indices.  The p-values are for the hypothesis that the associated coefficient is the same across the four sub-
periods.  The p-value for the joint hypothesis that all coefficients are equal across the sub-periods has a p-value of 0.000 for the U.S. 
SPX and for the pooled sample of all seven stock-market indices. 
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