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Abstract 

 

A safe asset’s real value is insulated from shocks, including declines in GDP from rare 

macroeconomic disasters.  However, in a Lucas-tree world, the aggregate risk is given by the 

process for GDP and cannot be altered by the creation of safe assets.  Therefore, in the 

equilibrium of a representative-agent version of this economy, the quantity of safe assets will be 

nil.  With heterogeneity in coefficients of relative risk aversion, safe assets can take the form of 

private bond issues from low-risk-aversion to high-risk-aversion agents.  The model assumes 

Epstein-Zin/Weil preferences with common values of the intertemporal elasticity of substitution 

and the rate of time preference.  The model achieves stationarity by allowing for random shifts in 

coefficients of relative risk aversion.  We derive the equilibrium values of the ratio of safe to 

total assets, the shares of each agent in equity ownership and wealth, and the rates of return on 

safe and risky assets.  In a baseline case, the steady-state risk-free rate is 1.0% per year, the 

unlevered equity premium is 4.2%, and the quantity of safe assets ranges up to 15% of economy-

wide assets (comprising the capitalized value of GDP).  A disaster shock leads to an extended 

period in which the share of wealth held by the low-risk-averse agent and the risk-free rate are 

low but rising, and the ratio of safe to total assets is high but falling.  In the baseline model, 

Ricardian Equivalence holds in that added government bonds have no effect on rates of return 

and the net quantity of safe assets.  Surprisingly, the crowding-out coefficient for private bonds 

with respect to public bonds is not 0 or -1 but around -0.5, a value found in some existing 

empirical studies. 
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Columbia and Brown, and participants at the conference on “Safe Assets” at Columbia in 

February 2015.



 In a Lucas-tree world (Lucas [1978]), the aggregate risk reflects the uncertainty in the 

process for GDP, which corresponds to the fruit that drops from the tree.  This process may 

include rare macroeconomic disasters, which correspond to sharp and possibly permanent drops 

in the productivity or number of the trees.  A safe asset in this world can be viewed as one whose 

real value is insulated from shocks, including the declines in GDP due to the rare disasters.  

However, if the GDP process is given, safe assets cannot mitigate overall risk but can only 

redistribute this risk across agents.  In a representative-agent setting, the redistribution of 

aggregate risk cannot occur, and the economy’s equilibrium quantity of safe assets will be nil. 

To put this observation another way, it is possible to construct safe assets by issuing risk-

free private bonds, by creating a financial structure with risk-free tranches, by entering into a 

variety of insurance contracts, and so on.  However, the creation of any of these safe assets 

always goes along with a corresponding expansion in the riskiness of (levered) claims on the 

underlying asset, which is the Lucas tree.  In equilibrium, the representative agent ends up 

holding the representative share of the overall risk, and this overall magnitude is unaffected by 

the various financial arrangements.  The bottom line is that a meaningful analysis of safe assets 

requires heterogeneity across agents. 

Differences in the degree of risk aversion are a natural form of heterogeneity for a study 

of safe assets.  The present analysis relies on these differences in risk aversion and uses the 

simplest possible setup, where there are two types of agents.  Type 1 has comparatively low risk 

aversion and type 2 has comparatively high risk aversion.  Specifically, an agent of type i has a 

constant coefficient of relative risk aversion γi, where we assume 0<γ1≤γ2, so that agent type 1 is 

at least as willing as agent type 2 to absorb risk. 
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We focus on a model in which the desire to redistribute risk across agents is the source of 

safe private assets.  In equilibrium, the representative agent with relatively low risk aversion, 

type 1, issues safe bonds (or equivalent claims) that are held by the representative agent with 

relatively high risk aversion, type 2.  Correspondingly, agent 1 owns a disproportionate share of 

risky assets, which are equity claims on the Lucas tree.  The quantity of safe assets in this 

economy equals the magnitude of the bonds issued by agent 1 and held by agent 2.  The 

equilibrium amount of these assets depends on the differences in risk aversion across the agents, 

the levels of risk-aversion coefficients, the characteristics of the stochastic process (including 

rare disasters) that generate aggregate GDP, and some other parameters. 

The equilibrium requires an enforcement mechanism for repayments of safe claims; that 

is, agent 1 has to make payments of principal and interest to agent 2 even in bad states of the 

world, such as realizations of macroeconomic disasters.  Repayment mechanisms may involve 

collateral, liquidity, and contractual features related to the legal system.  However, these 

mechanisms are not the subject of the present analysis, which focuses on the underlying supply 

of and demand for safe private assets.  Potentially complementary research that emphasizes 

liquidity, collateral, and asymmetric information includes Holmstrom and Tirole (1998) and 

Gorton and Ordoñez (2013). 

 A pure claim on the Lucas tree corresponds to unlevered equity.  A match with the 

empirically observed high equity premium requires the expected rate of return on this equity to 

be substantially higher than the risk-free rate, which equals the rate of return on non-contingent, 

private bonds.  Previous analyses with rare-disaster models, summarized in Barro and Ursúa 

(2012), found that the replication of this high equity premium requires first, a coefficient of 

relative risk aversion, γ, around 3-4 (for a representative agent) and, second, the presence of fat-



3 
 

tailed uncertainty, such as a non-negligible potential for drops in GDP in the short run by more 

than 10%.  The present analysis incorporates these features. 

 With the familiar specification where utility is time separable with a power form, a 

coefficient of relative risk aversion, γ, of 3-4 implies an intertemporal elasticity of substitution 

(IES) of 1/3-1/4, which seems unrealistically low.1  Specifically, the high γ needed to generate a 

realistic equity premium precludes the case of log utility in the sense of IES=1.  More generally, 

in the standard utility formulation, it is impossible for all agents to have the same IES, such as 

IES=1, along with coefficients of relative risk aversion that differ across agents. 

 As is well known, the Epstein-Zin/Weil form of recursive utility, based on Epstein and 

Zin (1989) and Weil (1990), allows for a separation between the coefficient of relative risk 

aversion and the IES.  Typically, this benefit from EZW comes at the cost of analytical 

complexity, when compared with time-separable power utility.  However, with heterogeneity in 

risk-aversion coefficients, the EZW specification allows for a simpler analysis.  The key property 

of EZW is that it allows for high values of the γi coefficients that can differ across agents i, while 

maintaining values of the IES that are of reasonable magnitude and the same for each agent.  The 

rate of time preference, ρ, is also assumed to be the same for each agent. 

 Previous models of asset pricing with two types of agents distinguished by their 

coefficients of relative risk aversion include Dumas (1989), Wang (1996), Chan and Kogan 

(2002), Garleanu and Pedersen (2011), Longstaff and Wang (2012), Gennaioli, Shleifer, and 

Vishny (2012), Caballero and Farhi (2014), and Garleanu and Panageas (2015).  Except for the 

                                                           
1For example, the well-identified estimation in Gruber (2013) estimates an IES around 2.  Bansal and Yaron (2004) 
and Barro (2009) argue that an IES below 1 produces puzzling patterns in the relation of growth rates and 
uncertainty to ratios of stock prices to earnings. 
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last reference, these analyses assume time-separable power utility, augmented in Chan and 

Kogan (2002) to include an external habit in household utility.   

In Wang (1996), one agent has log utility and the other has square-root utility—

coefficients of relative risk aversion of 1 and 0.5, respectively.  In Garleanu and Pedersen (2011), 

one agent has log utility and the other has a coefficient of relative risk aversion greater than one.  

In the main analysis of Longstaff and Wang (2012), one agent has log utility and the other has 

squared utility—coefficients of relative risk aversion of one and two, respectively.  Gennaioli, 

Shleifer, and Vishny (2012) assume that one agent is risk neutral and the other has infinite risk 

aversion, and Caballero and Farhi (2014) use an analogous setup.  Garleanu and Panageas (2015) 

allow for two agents with Epstein-Zin utility, so that coefficients of relative risk aversion are not 

constrained to equal corresponding reciprocals of intertemporal elasticities of substitution.  

However, in practice, they focus on cases in which each agent’s IES is close to the reciprocal of 

its coefficient of relative risk aversion.  This specification means that risk-aversion coefficients 

well above one are constrained to associate with IES values well below one.  Hall (2016) uses 

the heterogeneous risk-aversion framework developed in a working-paper version of our study 

(Barro and Mollerus [2014]) to analyze the evolution of safe real interest rates. 

Section I works out a baseline model that derives equilibrium holdings of equity claims 

and private bonds by the two types of agents, distinguished by their degrees of relative risk 

aversion.  We assume Epstein-Zin utility, so that intertemporal elasticities of substitution for 

consumption need not correspond to reciprocals of the coefficients of relative risk aversion.  For 

heuristic purposes, we begin with an approximate solution to a tractable case where utility is 

logarithmic so that the IES for both agents equals one.  We show subsequently with more 
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powerful but less transparent numerical techniques that the results generalize to settings without 

log utility.   

The initial model with permanent differences in coefficients of relative risk aversion is 

non-stationary because, in the long run, the wealth share of the group with comparatively low 

risk aversion tends to approach one.  Our main approach for achieving stationarity is to assume 

that agents are continually replaced by new agents (possibly children) who are randomly 

assigned one of the two possible coefficients of relative risk aversion.  We focus on a metaphor 

in which infinite-lived agents randomly experience changes in coefficients of relative risk 

aversion but where these changes do not have “wealth effects” (so that the potential for these 

future changes does not influence earlier plans).  Because of this churning of types, the economy 

has a steady state in which the mean wealth shares of each agent are interior in the sense of being 

between 0 and 1.  We also note that analogous steady-state results can be attained by introducing 

a system of public finance with lump-sum transfers financed by a graduated-rate income tax.  

With this graduation (but not otherwise), the economy can again have an interior steady state. 

Section II carries out quantitative analyses based on specifications of the underlying 

parameters, including coefficients of relative risk aversion and the characteristics of the macro-

disaster process.  We focus on parameters that generate “reasonable” steady-state values of the 

risk-free interest rate (around 1.0% per year) and the unlevered equity premium (around 4.2%).  

When the gross replacement rate is 2% per year, the steady-state ratio of safe to total assets 

ranges up to 15%.  We carry out dynamic analyses for two cases:  the realization of a 

macroeconomic disaster and the experience of tranquility (no disasters) for 40 years.  

 Section III distinguishes further the gross quantity of private bonds from the net quantity 

corresponding to loans from group 2 to group 1.  With infinitesimal transaction costs for paying 
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interest and principal payments on bonds, agents in our model will not be simultaneously holding 

and issuing bonds.  This condition pins down the equilibrium gross amount of safe assets.  We 

then introduce public debt.  Added government bonds create more safe assets while 

simultaneously creating corresponding “safe liabilities” in the form of the present value of taxes.  

In the baseline setting, where the government and private sector are equally good at creating safe 

assets, Ricardian Equivalence holds, in the sense that changes in the quantity of government 

bonds do not affect rates of return and the net quantity of safe assets.  More surprisingly, the 

model predicts that an increase in government bonds by 1 unit crowds out private bonds by 

around 0.5 units.  This prediction accords with some existing empirical evidence. 

Section IV relates the model’s predictions on the quantity of safe assets to empirical 

estimates of this quantity.  We argue that the model accords with the observed stability of ratios 

of safe to total assets.  And we argue further that reasonable modifications of the model make it 

consistent with estimates of safe assets at 30-35% of total assets. 

Section V concludes with suggestions for future research. 

I.  Baseline Model 

 A.  Structure and First-Order Conditions 

The model is set up for convenience in discrete time, where we think of the period as 

short.  Agent i, for i=1, 2, has an Epstein-Zin (1989)/Weil (1990) utility function, given by: 

(1)          𝑈𝑖𝑡 = {(
𝜌

1+𝜌
) 𝐶𝑖𝑡

1−𝜃 + (
1

1+𝜌
) [𝐸𝑡 (𝑈𝑖,𝑡+1

1−𝛾𝑖 )]
(1−𝜃)/(1−𝛾𝑖)

}

1/(1−𝜃)

 . 

The coefficients of relative risk aversion satisfy 0<γ1≤γ2; that is, agent 1 is the comparatively 

low-risk-aversion agent.  The IES, 1/θ>0, and the rate of time preference, ρ>0, are the same for 

the two agents.  We simplify initially by assuming θ=1 (log utility).  In the representative-agent 
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case, this specification implies that the consumption of each agent, C1 and C2, equals ρ 

multiplied by a measure of each agent’s assets.  It also follows here that the price of equity is 

independent of parameters that govern expected growth and uncertainty.2 

 Parts of the structure parallel Longstaff and Wang (2012).  The single Lucas tree 

generates real GDP of Yt in period t.  This GDP is consumed by the two agents: 

(2)    C1t + C2t = Yt. 

Ownership of the tree is given by K1t and K2t, which add to full ownership, normalized to one: 

(3)    K1t + K2t  = 1. 

We use a convention whereby Kit applies at the end of period t, after the payment of the 

dividend, Ki,t-1∙Yt , to agent i in period t.  This timing convention is unimportant when the length 

of the period is short.  The price of the tree in period t in units of consumables is Pt. 

 The stochastic process that generates Yt corresponds to previous rare-disaster models, 

except for the omission of a normally-distributed business-cycle shock, which is quantitatively 

unimportant.  The probability of a disaster is the constant p per period.  With probability 1-p, real 

GDP grows over one period by the factor 1+g, where g≥0 is constant.  With probability p, a 

disaster occurs and real GDP grows over one period by the factor (1+g)∙(1-b), where b>0 is the 

size of a disaster.  In the present simplified setting, disasters last for only one “period” and have a 

                                                           
2This result means that the expected rate of return on equity, re, is independent of uncertainty parameters.  
Therefore, with θ=1, all of the effects of uncertainty parameters on the equity premium work through the risk-free 
rate, rf, rather than re.  We know from previous analyses of this i.i.d. setting with a representative agent, such as 
Barro (2009), that the equity premium is independent of the parameter θ.  Therefore, in this context, the setting of 
θ=1 would not affect the model’s implications for the equity premium. 
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single size.  The expected growth rate per year of GDP, denoted g*, is given when the length of 

the period is short by 

 (4)    g* ≈ g – pb, 

where g and p are measured per year. 

The analysis can be extended to allow for a time-invariant size distribution of disasters, 

as in Barro and Ursúa (2012).  With more complexity, the analysis can be modified to allow 

disasters to have stochastic duration and cumulative size and to be followed by a tendency for 

recovery in the sense of above-normal growth rates (Nakamura, Steinsson, Barro, and 

Ursúa [2013], Barro and Jin [2016]).3  Other feasible extensions include time variation in the 

disaster probability, p (as in Gabaix [2012]), and the growth-rate parameter, g (as in Bansal and 

Yaron [2004]).   

The baseline calibration specifies p=0.04 per year.  This probability corresponds to the 

empirical frequency of disasters—defined as short-term declines in real per capita GDP by at 

least 10%—in a long-term panel of countries.  The effective disaster size—in the sense of the 

single value in the representative-agent economy that generates an equity premium 

corresponding roughly to the full size distribution of disasters—is set at b=0.32.  The growth-rate 

parameter, intended to correspond to the non-disaster mean growth rate of real per capita GDP or 

consumption, is set at g=0.025 per year. 

 The analysis assumes that agents can deal in two types of assets.  The first type is an 

unlevered equity claim, Kit, on the tree.  Individual agents are allowed to go short on this claim.  

We also consider a non-contingent, one-period private bond, Bit.  The quantity Bit is negative for 

                                                           
3The recovery tendency lowers the effective size, b, of a disaster.  Therefore, for some purposes, we could allow 
for recoveries within the present framework by adjusting b. 
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a borrower (issuer of a bond) and positive for a lender (holder of a bond).  Since the analysis 

assumes a closed economy, the total quantity of these private bonds, when added up across the 

two types of agents, is always zero: 

(5)    B1t + B2t  = 0. 

The analysis ignores possibilities of default and neglects transaction costs associated with 

interest and principal payments; that is, with collecting on loans.4  In this case, bonds pay the 

risk-free interest rate for period t, denoted 𝑟𝑡
𝑓
.   The amount of principal and interest received or 

paid on bonds by agent i in period t is (1 + 𝑟𝑡
𝑓

) ∙ 𝐵𝑖,𝑡−1. 

In the baseline case with a single disaster size and no normally-distributed shock, the two 

forms of assets are sufficient to generate a complete-markets solution.  More generally, a wider 

array of assets would be needed to span the possible outcomes. 

 Each agent’s budget constraint for period t is: 

 (6)  𝐶𝑖𝑡 + 𝑃𝑡𝐾𝑖𝑡 + 𝐵𝑖𝑡 = (𝑌𝑡 + 𝑃𝑡)𝐾𝑖,𝑡−1 + (1 + 𝑟𝑡
𝑓

)𝐵𝑖,𝑡−1 . 

The choice for period t of Cit and the portfolio allocation, (Kit, Bit), occur when Yt, Pt, and 𝑟𝑡+1
𝑓

 

are known but Yt+1 and Pt+1 are unknown. 

 Let Rt+1 represent the gross return on an asset between periods t and t+1.  This return 

equals (Yt+1+Pt+1)/Pt for equity and (1+𝑟𝑡+1
𝑓

) for bonds.  Each agent seeks to maximize expected 

utility, given in equation (1), subject to the budget constraint in equation (6) and the levels of 

initial assets.  The first-order optimization conditions for each agent can be expressed by means 

of a perturbation argument for periods t and t+1 as: 

                                                           
4In the cases considered, debtors always have sufficient assets to make the prescribed principal and interest 
payments on bonds. 
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 (7)  [𝐸𝑡(𝑈𝑖,𝑡+1
1−𝛾𝑖)]

(
𝜃−𝛾𝑖
1−𝛾𝑖

)
= (

1

1+𝜌
)𝐸𝑡 [𝑈𝑖,𝑡+1

𝜃−𝛾𝑖 ∙ (
𝐶𝑖,𝑡+1

𝐶𝑖𝑡
)

−𝜃

∙ 𝑅𝑡+1] . 

This expression simplifies in straightforward ways under log utility, θ=1. 

 Previous analyses (Giovannini and Weil [1989], Obstfeld [1994]), Barro [2009]) showed 

that, in a representative-agent model with Epstein-Zin/Weil preferences and i.i.d. shocks, the 

measure of utility, 𝑈𝑡+1
1−𝛾

, can be expressed as a positive constant multiplying (𝐶𝑡+1)1−𝛾. This 

result suggests looking for an approximate solution to the present two-agent model in which 

𝑈𝑖,𝑡+1
1−𝛾

 is a positive constant (different for each agent) multiplying the analogous object for 

agent i,  (𝐶𝑖,𝑡+1)
1−𝛾𝑖

 .  This condition implies that equation (7) can be rewritten as 

 (8)  [𝐸𝑡(
𝐶𝑖,𝑡+1

𝐶𝑖𝑡
)1−𝛾𝑖]

(
𝜃−𝛾𝑖
1−𝛾𝑖

)

≈ (
1

1+𝜌
) ∙ 𝐸𝑡 [(

𝐶𝑖,𝑡+1

𝐶𝑖𝑡
)−𝛾𝑖 ∙ 𝑅𝑡+1] . 

When Rt+1 equals the risk-free return, 1+𝑟𝑡+1
𝑓

, and θ=1, equation (8) implies 

 (9)   1 + 𝑟𝑡+1
𝑓

≈ (1 + 𝜌) ∙
𝐸𝑡(

𝐶𝑖,𝑡+1
𝐶𝑖𝑡

)(1−𝛾𝑖)

𝐸𝑡(
𝐶𝑖,𝑡+1

𝐶𝑖𝑡
)−𝛾𝑖

 .                     

Thus, a key implication of the first-order conditions is that, in equilibrium, the right-hand side of 

equation (9) has to be the same for each agent; that is, for γ1 and γ2, respectively.  This 

correspondence implies that the prospective paths of uncertain consumption levels for the two 

agents have to accord with the differences in the coefficients of relative risk aversion. 

 Under log utility, θ=1, each agent’s consumption in period t is approximately the multiple 

ρ of that agent’s resources for period t: 5 

 (10)  𝐶𝑖𝑡 ≈ 𝜌 ∙ [(𝑌𝑡 + 𝑃𝑡) ∙ 𝐾𝑖,𝑡−1 + (1 + 𝑟𝑡
𝑓

)𝐵𝑖,𝑡−1] . 

                                                           
5This condition holds exactly in a representative-agent economy, as discussed by Giovannini and Weil (1989, 
Appendix B). 
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Equations (10) and (9) jointly determine agent i’s choices of consumption, Cit, and portfolio 

allocation, (Kit, Bit). 

Adding up equation (10) for the two agents and using the conditions from equations (2), 

(3), and (5)—total consumption equals GDP, equity holdings add to one, and bond holdings add 

to zero—leads to  

 (11)   Pt ≈ Yt∙(1-ρ)/ρ ≈ Yt/ρ, 

where the second approximation assumes that the length of the period is negligible.  Thus, under 

log utility, the equity price and, hence, the value of total assets is independent of parameters 

related to expected growth and uncertainty and the degree of risk aversion.  This result implies 

that the expected rate of return on equity, re, is the dividend yield, ρ, plus the expected rate of 

capital gain, which equals g*, the expected growth rate of GDP and consumption: 

 (12)   re ≈ ρ + g* ≈ ρ + g – pb, 

where g* is given in equation (4). 

B.  Market Equilibrium 

Agent i’s wealth at the end of period t-1 is 

    Wi,t-1 = Pt-1Ki,t-1 + Bi,t-1, 

so that agent 1’s wealth share at the end of period t-1 is 

    
𝑊1,𝑡−1

𝑊𝑡−1
= 𝐾1,𝑡−1 +

𝜌𝐵1,𝑡−1

(1−𝜌)𝑌𝑡−1
 . 

Note that total wealth, Wt-1, equals the equity price, Pt-1.   
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The analysis requires an initial value for agent 1’s wealth share.  For example, with an 

equal number of agents of each type, this share might start at 0.5 in period 0.  Heuristically, if 

γ1<γ2, there is an incentive in this initial position for agent 1 to issue risk-free bonds, so that 

B11<0 in period 1, and these bonds will be held by agent 2, so that B21>0.  That is, agent 1 

borrows from agent 2 on a safe basis.  Correspondingly, agent 1 uses its bond issue to increase its 

share of equity, so that K11>0.5 and K21<0.5.  In a richer model, this process of safe credit 

creation would affect the equilibrium amount and composition of investment. 

 The pattern of bond and equity positions shifts risk from the high-risk-aversion agent 2 to 

the low-risk-aversion agent 1.  However, the process does not entail complete risk shifting; 

rather, enough bond issue occurs so that the resulting stochastic paths of future consumption for 

each agent make the right-hand side of equation (9) the same for each agent i.  This equation also 

determines 𝑟1
𝑓
. 

We can use equations (9) and (10), along with the agents’ budget constraints, to find 

numerically the equilibrium values for period 1 of 𝑟1
𝑓
, each agent’s consumption, and each 

agent’s allocation of assets between equity and bonds.6  The realization for Y1 (disaster or no 

disaster in the present case) then determines each agent’s wealth at the end of period 1 and, 

hence, agent 1’s wealth share at the end of period 1.  This share determines the equilibrium 

values for period 2, and so on. 

Using the budget constraint from equation (6) and the condition for consumption in 

equation (10), we can show that agent 1’s wealth share at the end of period t relates to asset 

holdings from the end of period t-1 in accordance with 

                                                           
6We carried out this analysis numerically using periods of quarterly length. 
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 (13)   
𝑊1𝑡

𝑊𝑡
= 𝐾1,𝑡−1 +

𝜌(1+𝑟𝑡
𝑓

)𝐵1,𝑡−1

𝑌𝑡
 . 

We can also show that the change in agent 1’s wealth share from t-1 to t is 

 (14)   
𝑊1𝑡

𝑊𝑡
−

𝑊1,𝑡−1

𝑊𝑡−1
≈

𝜌𝐵1,𝑡−1

𝑌𝑡
(𝑟𝑡

𝑓
− 𝜌 − 𝑔𝑡), 

where gt≡(Yt/Yt-1 – 1) is the stochastic growth rate of GDP. 

Since the risk-free rate, 𝑟𝑡
𝑓
, will be less than ρ+g*, which equals the expected rate of 

return on equity, re, the expectation of the right-hand side of equation (14) is positive if B1,t-1<0.  

In other words, the expected change in agent 1’s wealth share is positive whenever agent 1 (the 

low risk-aversion agent) is borrowing in a risk-free manner from agent 2.  The reason that agent 

1’s wealth share tends to rise over time is that this agent’s wealth is relatively concentrated in 

risky equity, which has a higher expected rate of return than risk-free bonds (even after factoring 

in the occasional macroeconomic disasters, which tend to reduce agent 1’s wealth share).  

Consequently, we find numerically that agent 1’s wealth share asymptotically approaches one, 

and the ratio of risk-free bonds, B1t, to total assets or GDP asymptotically approaches zero.  In 

effect, there is a selection or survival effect, whereby wealth is concentrated asymptotically in 

the agent with relatively low risk aversion.  Hence, the model behaves in the long run like a 

representative-agent economy with a coefficient of relative risk aversion equal to γ1.   

The non-stationarity of the initial form of the model makes it unsatisfactory for studying 

the determination of wealth shares and quantities of safe assets.7  To get a satisfactory analysis, 

the model has to be modified to achieve stationarity; in particular, to have the expected wealth 

share of agent 1 asymptotically approach a value less than one. 

                                                           
7An example of this problem in earlier research is Longstaff and Wang (2012, p. 3208). 
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C.  Replacement and Stationarity 

 A natural way to achieve stationarity is to have agents die off randomly, with 

replacement by new agents who have a random (50-50) chance of being type 1 or type 2; that is, 

having a coefficient of relative risk aversion of γ1 or γ2.
8  Since type-1 agents tend to have above-

average wealth, this process tends to redistribute wealth back to type-2 agents. 

The replacement agents might inherit the assets of their altruistic predecessors, who 

might be parents.  Alternatively, as in Blanchard (1985), agents may leave no bequests and hold 

all of their bond-like assets as annuities, on which the returns factor in the probability of dying.  

In either case, a full analysis requires the optimizing choices of consumption and asset holdings 

to take account of the possibility of dying with replacement by children whom one may or may 

not care about. 

 When agents are linked to their descendants via operative intergenerational transfers, the 

main effect in the model from death and replacement is the random change in the coefficient of 

relative risk aversion.  Therefore, we can use a simpler metaphor in which infinite-lived persons 

randomly experience moments in which shifts occur in their coefficients of relative risk aversion 

to either γ1 or γ2.  We assume that each destination has a 50-50 chance of being picked.  We 

denote by ν≥0 the gross replacement rate, in the sense of the random rate at which each agent 

moves to a state that has a fifty-fifty chance of switching from the incumbent γi to the other γi.  In 

this scenario, the net replacement rate for the overall population is ν/2. 

                                                           
8Chan and Kogan (2002) generate stationarity effectively by having each agent’s coefficient of relative risk 
aversion, γi, be an increasing function of that agent’s wealth share.  The assumed sign of this effect is not obvious; 
that is, it is unclear that richer agents would have higher coefficients of relative risk aversion.  In any event, this 
type of model functions in the steady state as a representative-agent model with a single coefficient of relative risk 
aversion.  Garleanu and Panageas (2015) have agents dying off stochastically and being replaced by unloved 
children in the manner of Blanchard (1985). 
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The structure of randomly shifting γi‘s avoids having to deal with intergenerational 

transfers and the degree of altruism.  In general, however, each agent’s current optimizing 

decisions on consumption and asset holdings would depend on the potential for future shifts in 

one’s own γi.  With Epstein-Zin-Weil preferences, as in equation (1), the channel for these 

effects has to work through expected future utility, EtUi,t+1.  We choose as our replacement 

metaphor a “wealth-neutral” case, whereby any direct effect on Ci,t+1 from a shift in γi at time t+1 

is offset by a contemporaneous shift in the utility function that keeps Ci,t+1 fixed overall.  In this 

setting, the first-order condition in equation (9) remains valid.9 

 The replacement process is stochastic at the individual level but roughly deterministic in 

the aggregate.   We retained the first-order conditions derived from the initial model but 

modified the equilibrium analysis to factor in the shifting of wealth composition across the two 

types of agents.  Specifically, if ν is the gross replacement rate, the expression for the change in 

wealth share of agents of type 1 is modified from equation (14) to: 

 (15)  
𝑊1𝑡

𝑊𝑡
−

𝑊1,𝑡−1

𝑊𝑡−1
≈

𝜌𝐵1,𝑡−1

𝑌𝑡
(𝑟𝑡

𝑓
− 𝜌 − 𝑔𝑡 − 𝜈) − 𝜈 ∙ (𝐾1,𝑡−1 − 0.5). 

 Equation (15) takes account of shifts in wealth between agents of type-1 and type-2 when 

agents change their type.  However, this shifting also means that individuals within the two 

groups have to be heterogeneous in wealth.  Typically, someone who just moved from type 1 to 

type 2 will have wealth above the mean of the existing type-2 agents, and vice versa for someone 

who just changed from type 2 to type 1.  As this process evolves, the agents within each group 

will have a range of wealth levels, depending on their history of past transitions. 

                                                           
9This idea was suggested to us by Emmanuel Farhi. 
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The wealth distribution within groups might be interesting to analyze but is unimportant 

for the present analysis.  For our purpose, what matters is the total wealth held by agents of each 

type, not the distribution of wealth within types.  In particular, equations (9) and (10) imply that, 

for a given γi, higher wealth scales up proportionately the chosen values of consumption, without 

changing the proportionate amounts held of risky and risk-free claims.  Thus, we can use 

equation (15) to gauge the changing wealth shares of groups 1 and 2, while neglecting effects 

from the differing levels of wealth within each group. 

If ν=0, as before, the expectation of the right-hand side of equation (15) is positive if 

B1,t-1<0.  As agent 1’s wealth share approaches one, B1,t-1/Yt asymptotically approaches zero and, 

therefore, equation (15) implies that the expectation of the change in agent 1’s wealth share 

asymptotically approaches zero.  Another property of the equilibrium with ν=0 is that K1,t-1 

asymptotically approaches 1. 

If ν>0, when K1,t-1 is close to 1 and B1,t-1/Yt is negligible, the term on the far right of 

equation (15) is negative and dominates in magnitude the first term on the right.  It follows that 

the expected change in agent 1’s wealth share reaches zero before K1,t-1 gets close to one and 

B1,t-1/Yt becomes negligible.  For this reason, the economy tends to approach a stochastic steady 

state in which mean wealth shares for each agent are between zero and one.  We compute these 

steady-state mean wealth shares as well as steady-state means of safe assets (expressed relative 

to total assets or GDP) and risk-free rates, 𝑟𝑡
𝑓
. 

D. Numerical Solution Method 

In making the numerical calculations, we work directly with the first-order conditions 

shown in equation (7).  That is, we do not rely on the approximations that allow for the form of 

the first-order conditions shown in equation (8).  We also extend beyond the case of log utility, 
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θ=1, to consider alternative values of the intertemporal elasticity of substitution (still assumed to 

be the same for the two types of agents). 

We solve the model using the Taylor projection algorithm proposed by Levintal (2016). 

This method has been shown to work well in models with rare disasters by Fernández-Villaverde 

and Levintal (2016).  See these two papers and the appendix for further details. 

Imagine we want to find an agent’s decision rule for some endogenous variable, 𝑦, as a 

function of the model’s 𝑛 state variables, 𝑥; that is, 𝑦 = 𝑔(𝑥).  To identify this decision rule, 

Taylor projection combines features of projections and Taylor-based perturbation algorithms.  In 

a first, “projection” step, Taylor projection postulates that 𝑔(𝑥) can be approximated by a k-

order polynomial �̂�(𝑥, Θ), where Θ is a vector of size 𝑚 of polynomial coefficients to be 

determined.  If we plug �̂�(𝑥, Θ) into the equilibrium conditions of the model (first-order 

conditions, resource constraints, etc.), we obtain a residual function, ℛ(𝑥, Θ), that depends on 𝑥 

and the unknown coefficients Θ.  The term “residual” comes from the observation that if we 

were plugging in 𝑔(𝑥), the equilibrium conditions would hold exactly; since instead we are 

plugging in �̂�(𝑥, Θ), we are left with a “residual.”  This first step of building a residual function 

is the same as in any standard projection. 

 In a second, “Taylor” step, Taylor projection expands ℛ(𝑥, Θ) around a point 𝑥0 with a 

k-order Taylor series.  Then it determines Θ as those coefficients that zero the terms of this 

series:  if all the Taylor coefficients up to the kth-order are zero, then ℛ(𝑥, Θ)≈ 0 around 𝑥0, as 

desired. This procedure requires finding values for Θ that satisfy: 

ℛ(𝑥, Θ) = 0, 

𝜕ℛ(𝑥,Θ)

𝜕𝑥𝑖
|𝑥0

= 0, ∀𝑖 = 1, … , 𝑛, 

⋮ 
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𝜕𝑘ℛ(𝑥,Θ)

𝜕𝑥𝑖1…𝜕𝑥𝑖𝑘

|𝑥0
= 0, ∀𝑖1, … , 𝑖𝑘 = 1, … , 𝑛. 

This system is solved using the Newton method with the analytic Jacobian. This second 

step is similar but not identical to the series expansion undertaken by a perturbation. The main 

difference is that we can apply Taylor projection at any point 𝑥0, whereas perturbation is 

applicable only at the steady state of a deterministic version of the model.  In our application, 

this difference is important, because the model economy travels to states that are far away from 

the deterministic steady state.10 

In contrast to our procedure, a standard projection finds the values of Θ by making 

ℛ(𝑥, Θ) as close as possible to zero over the whole domain of x, instead of zeroing the terms of 

the Taylor series.  This projection has the advantage of high global accuracy, but it comes at the 

cost of wasting much effort getting ℛ(𝑥, Θ)≈ 0 for infrequently traveled areas of the domain 

of 𝑥.  This projection therefore suffers from an acute curse of dimensionality, while the same 

problem is much milder with Taylor projection.  Furthermore, Taylor projection exploits the 

information embedded in the derivatives of the residual function, information that is ignored in 

projection methods.  Finally, the Jacobian resulting from solving the system above is much 

smaller and sparser than the one resulting from a standard projection and, thus, faster to solve.  

Levintal (2016) shows how the main cost of Taylor projection, the computation of all the 

required derivatives, can be accomplished efficiently by a chain-rule method that exploits 

symmetry, permutations, repeated partial derivatives, and sparsity. 

                                                           
10Note also that a traditional perturbation finds a Taylor series of the agent’s decision rules by perturbing the 

volatility of the shocks of the model around zero.   Taylor projection, instead, considers the true volatility of the 
shocks when building ℛ(𝑥, Θ)≈ 0 and evaluating its derivatives.  Considering the true volatility of shocks is a crucial 
advantage in models with rare disasters, which are characterized by large shocks. 

 



19 
 

Fernández-Villaverde and Levintal (2016) document that the simulated moments and 

impulse-response functions of a model with rare disasters solved with Taylor projection are 

nearly indistinguishable from those when the model is solved with a much costlier and less 

scalable standard projection.  They also show that Taylor projection generates very small errors 

throughout different simulations.  Finally, much of the economics of rare disasters is not in what 

happens after a disaster, but on how the positive probability of a future disaster changes 

consumption, saving, and asset pricing in non-disaster times.  Therefore, obtaining accuracy in 

normal periods, as Taylor projection does by taking an expansion around 𝑥0, is important.11 

II.  Quantitative Analysis of Stationary Model 

 Aside from the coefficients of relative risk aversion, γ1 and γ2, the baseline parameter 

values, listed in the notes to Table 1, are ρ=0.04 per year (rate of time preference), g=0.025 per 

year (growth-rate parameter), p=0.04 per year (disaster probability), and b=0.32 (effective 

disaster size).  These values accord with the prior empirical analysis summarized in Barro and 

Ursúa (2012).  These parameter values imply from equation (4) that the expected growth rate is 

(16)   g* = g - p∙b = 0.0122 per year.   

The baseline analysis assumes log utility, θ=1. 

 A.  A Representative Agent 

 Table 1 considers a representative agent, where γ1=γ2=γ.  In these cases, if we start with 

agent 1’s wealth share at 0.5, Bit and Kit stay constant over time at 0 and 0.5, respectively, 

irrespective of the realizations of Yt.  Because of log utility, the expected rate of return on equity, 

                                                           
11 MATLAB codes to replicate our computations are available at 
http://economics.sas.upenn.edu/~jesusfv/Matlab_Safe_Assets.zip. 
 

http://economics.sas.upenn.edu/~jesusfv/Matlab_Codes_Safe_Assets.zip
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re, is fixed at ρ+g*, where ρ=0.04 per year and g*=0.0122 (equation [16]), so that re=0.052 per 

year.  A higher γ lowers the risk-free rate, rf, and, thereby, raises the equity premium.  

Specifically, Table 1 shows that rf ranges from 0.046 at γ=1 to -0.055 at γ=6.12  An unlevered 

equity premium between 0.03 and 0.06 (corresponding to historical data) requires γ to be 

between 3 and 4.5.  For a given γ, rf is fixed over time, regardless of the realizations of Yt.  This 

risk-free rate is a shadow rate in the sense that no risk-free borrowing and lending occur in 

equilibrium.  That is, no net safe assets are created in this representative-agent environment. 

 B.  Heterogeneity in Risk Aversion 

 Table 2 allows for differences between γ1 and γ2.  We begin with a gross replacement rate 

of ν=0.02 per year, which corresponds roughly to adult mortality rates.  The implied net 

replacement rate for the γi coefficients is ν/2=0.01 per year. 

The table shows combinations of γ1 and γ2 that generate a mean steady-state risk-free rate 

of rf=0.010 and a mean steady-state unlevered equity premium of re-rf=0.042.  That is, these 

combinations of γ1 and γ2 accord roughly with empirically observed averages of the risk-free rate 

and the equity premium.  The table shows the corresponding steady-state means of a set of 

variables:  agent 1’s share of risky assets, K1, and wealth, W1/W, and the ratio of the amount of 

safe assets, │B1│, to wealth and GDP.  Because economy-wide assets equal annual GDP times 

25 (1/ρ ) in this model, the amount of safe assets expressed relative to annual GDP is 25 times 

the ratio to total assets.  Note that total assets correspond to the capitalization of the entire flow 

of GDP, effectively including human capital as well as physical capital. 

                                                           
12In the present model (which lacks risk-free and costless storage of final product), there is nothing special about a 
risk-free rate of zero. 
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The first row of Table 2 shows that, if γ1= γ2, the value of γ1 and γ2 needed to generate a 

mean steady-state rf of 0.010 is 3.86 (see Table 1).  Columns 1 and 2 of Table 2 show that values 

of γ1 below 3.86 require higher values of γ2.  For example, γ1=3.6 matches up with γ2=4.25, 

γ1=3.4 with γ2=4.9, γ1=3.2 with γ2=7.0, and γ1=3.1 with γ2=8.7.  For still lower values of γ1, the 

required value of γ2 explodes.  However, our numerical procedure does not work well in this 

extreme range. 

 In column 5, the steady-state mean of the share of risky assets held by agent 1, K1, equals 

0.50 when γ1=γ2, then rises toward 1.0 as γ1 falls and γ2 rises.  When γ1=3.1 and γ2=8.7, the 

steady-state mean of K1 is 0.92. 

In column 6, the steady-state mean of the wealth share, W1/W, starts at 0.50 when γ1=γ2, 

then rises as γ1 falls and γ2 rises.  This wealth share equals 0.77 when γ1=3.1 and γ2=8.7.  Note 

that equity ownership is much more unequally distributed than overall wealth. 

 Column 7 shows that │B1│/W, the steady-state mean of the ratio of the magnitude of 

safe to total assets, rises from 0 when γ1=γ2 to 3.4% when γ1=3.6 (γ2=4.25), 7.1% when γ1=3.4 

(γ2=4.9), 12.8% when γ1=3.2 (γ2=7.0), and 14.7% when γ1=3.1 (γ2=8.7).  For subsequent 

purposes, we are particularly interested in the model’s predictions about the size of safe assets.  

From this perspective, an important result is that the predicted quantity of safe assets remains 

below 15% of economy-wide assets as long as γ2 is less than 8.7, which is a high degree of 

relative risk aversion.  In column 8, the corresponding ratio to GDP is 3.7.  

 Table 3 redoes the analysis for alternative settings of four of the parameters:  the 

reciprocal of the IES, θ, is allowed to be 0.5 or 2.0, rather than 1.0; the gross replacement rate, ν, 

is 0.05 per year, rather than 0.02; the disaster probability, p, is 0.02 per year, rather than 0.04; 

and the population share of type 1 agents is 0.25, rather than 0.5.  In each case, the table shows 
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steady-state values of re and rf and the other variables for three of the combinations of (γ1, γ2) 

considered in Table 2.  Aside from the parameter value that changed, the other parameters are 

held fixed at the values assumed in Table 2. 

Shifts in the reciprocal of the IES, θ, have only moderate effects on the steady-state 

equilibrium.  Consider, as an example, the case where γ1=3.4 and γ2=4.9.  With θ=1 (in Table 2), 

the rates of return are re=0.052 and rf=0.010.  Table 3 shows that these rates of return change to 

0.053 and 0.013, respectively, when θ=0.5 and to 0.049 and 0.006, respectively, when θ=2.  

Correspondingly, the steady-state means of K1 and W1/W were 0.695 and 0.625, respectively, in 

Table 2.  These values change in Table 3 to 0.750 and 0.687, respectively, when θ=0.5 and to 

0.661 and 0.584, respectively, when θ=2.  The steady-state mean of │B1│/W was 0.071 in 

Table 2 and changes in Table 3 to 0.063 when θ=0.5 and 0.077 when θ=2.  Correspondingly, the 

steady-state mean of │B1│/Y was 1.76 in Table 2 and changes in Table 3 to 1.52 when θ=0.5 

and 2.08 when θ=2.  A key point is that the results for the magnitude of safe assets show little 

sensitivity to the assumed IES.  Or, to put it another way, the results in the simplified setting of 

log utility, θ=1, are likely to be reasonably accurate. 

An increase in the replacement rate, ν, means that the higher risk-aversion type, group 2, 

counts more for the steady-state equilibrium.  Therefore, the rise in ν to 0.05 in the middle of 

Table 3 lowers the steady-state shares of agent 1 in equity and wealth.  For the case where γ1=3.4 

and γ2=4.9, the values of K1 and W1/W go from 0.695 and 0.625, respectively, in Table 2 to 

0.631 and 0.556, respectively, in Table 3.  Correspondingly, the rise in ν lowers the risk-free rate, 

rf, which falls from 0.0100 in Table 2 to 0.0080 in Table 3.  However, the change in ν has only a 

minor effect on the size of safe assets.  │B1│/W goes from 0.071 in Table 2 to 0.076 in Table 3, 

and │B1│/Y goes from 1.76 in Table 2 to 1.88 in Table 3.  Therefore, an important finding is 
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that the results—particularly with regard to the quantity of safe assets—do not change greatly 

when ν is 0.05, rather than 0.02. 

The next part of Table 3 sets the disaster probability, p, at 0.02 per year, rather than the 

value 0.04 assumed in Table 2.  The decrease in p makes the steady-state risk-free rate, rf, 

sharply higher, around 0.036, rather than 0.010.  Correspondingly, the equity premium becomes 

too low in Table 3, compared with empirically observed averages.  Thus, as in previous research, 

the model does not accord with regularities on mean rates of return unless the disaster risk is 

sufficiently high.  A similar conclusion arises if the disaster size, b, is lowered substantially 

below its initially assumed value of 0.32. 

The last part of Table 3 shows the effects from setting the population share, N1, of the 

low risk-aversion agents to 0.25, rather than 0.50 (see the appendix for the corresponding 

equilibrium conditions).  This shift effectively lowers the supply of safe assets (from agents of 

type 1) compared to the demand (from agents of type 2) and results, thereby, in a drop in the 

risk-free rate, rf, and a corresponding rise in the equity premium. 

C.  Tax/Transfer Systems 

 Some forms of tax/transfer systems provide an alternative to our type-replacement setup 

as a way to achieve a stationary equilibrium in the steady state.  The results depend on the details 

of the structure of taxes and transfers, and this kind of public-finance analysis is not the focus of 

our present analysis.  Therefore, we limit the present discussion to a description of a simple 

income-tax system that generates results analogous to those from our type-replacement 

mechanism. 

One possibility is that the basis of the tax system is income from dividends and interest, 

but not capital gains.  (We would interpret dividends in the model to encompass labor income.)  
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In this setup, interest expenses are deductible for income-tax purposes.  For type i, taxable 

income is then 

 (17)   𝐼𝑖𝑡 = 𝑌𝑡 ∙ 𝐾𝑖,𝑡−1 + 𝑟𝑡
𝑓

∙ 𝐵𝑖,𝑡−1 . 

The average tax rate levied on this income is assumed to be linear in type i’s relative income: 

 (18)   𝜏𝑖𝑡 = 𝑎0 + 𝑎1 ∙ (
𝐼𝑖𝑡

𝐼𝑡
), 

where It is aggregate income.  If a1=0, the income-tax system is proportional at rate a0, whereas if 

a1>0, the system is graduated with marginal income-tax rate equal to a0+2a1∙ (
𝐼𝑖𝑡

𝐼𝑡
).  Any 

aggregate taxes collected are assumed to be remitted as lump-sum transfers, equally to the two 

agents. 

 We find that a purely proportional income tax (a1=0) does not generate an interior 

equilibrium for our model in the steady state.  That is, as in the initial setup with no replacement 

and no taxes, agent 1 ends up asymptotically with all of wealth, equity ownership, and 

consumption.  In contrast, a graduated-rate system (a1>0) can support an interior equilibrium, 

analogous to those studied in the regime with replacement.  The results under alternative systems 

of public finance will be studied in future research. 

 D.  Dynamics 

 The dynamics of the economy reflects the evolution of the share of agent 1 in total 

wealth, W1/W.  Disaster shocks and long periods free of disasters affect this wealth share and, 

thereby, have persisting influences on the risk-free interest rate, rf, the ratio of safe to total assets, 

and other variables.  We consider first the dynamic effects from a disaster and then examine the 

consequences from a long period free of disasters. 
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 1.  Aftermath of a Disaster.   

Figure 1 shows the dynamics of the economy starting from a steady state (that is, with all 

variables at their mean steady-state values) and assuming the realization of a disaster of size 

b=0.32 in period 1.  The results correspond to the parameter combination γ1=3.3 and γ2=5.6 in 

Table 2.  The paths of variables in Figure 1 assume no further disasters and are, therefore, 

deterministic in our specification.  The variables considered over ten years are agent 1’s wealth 

share, W1/W, the risk-free interest rate, rf, agent 1’s share of total equity, K1, and the ratio of the 

magnitude of safe to total assets,│B1│/W. 

 Because of agent 1’s relatively high concentration in risky assets, this agent’s wealth 

share, W1/W, falls with the disaster from 0.670 to 0.626.  The share rises thereafter (in the 

absence of further disasters) but remains below the steady-state value even after 10 years, when 

the share reaches 0.654.  Another way to look at this pattern is that relatively low inequality of 

wealth and consumption persist for a long time after a disaster shock.  However, the recovery 

toward the steady state is accompanied by rising inequality.  These patterns also appear in 

agent 1’s share of equity, K1.  This share falls on impact from its steady-state value of 0.767 to 

0.731, then rises to 0.755 after 10 years. 

For the risk-free rate, rf, we can view the disaster shock and consequent shift in relative 

wealth toward agent 2 as raising the demand for safe bonds (from agent 2) compared to the 

supply (from agent 1).  In response to the shift in excess demand, rf falls on impact from its 

steady-state mean value of 0.0100 to 0.0083.  That is, the disaster leads to a low risk-free interest 

rate.  In the recovery period, rf rises but remains below its steady-state value.  After 10 years, rf 

reaches 0.0094. 
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The enhanced wealth share of agent 2 is accompanied on impact by a rise in the ratio of 

the magnitude of safe to total assets,│B1│/W.  This ratio increases initially from its steady-state 

mean value of 0.097 to 0.106.  Thus, safe assets are comparatively large immediately after a 

disaster.  The ratio then falls gradually and reaches 0.101 after 10 years. 

To summarize, disasters generate low but rising wealth (and consumption) inequality, 

low but rising risk-free real interest rates, and high but declining ratios of safe to total assets.  In 

particular, low inequality and risk-free interest rates and high safe-asset ratios are all symptoms 

of a gradual recovery from a serious adverse shock to the economy. 

An important feature of the disaster shock that we examined is that it disproportionately 

affects the low-risk-aversion agent, group 1, and, therefore, shifts the wealth share initially 

toward the high-risk-aversion agent, group 2.  This pattern arises because the shock affects the 

value of equity, which is disproportionately held by group 1.  Hart and Zingales (2014) argue 

that this kind of pattern characterizes some macro-financial shocks, such as the bursting of the 

Internet boom in 2000.  They argue, however, that other shocks—notably the Great Recession of 

2007-2009—feature the erosion in value of assets that were previously viewed as nearly safe.  In 

the 2007-2009 case, this pattern applied particularly to claims associated with real estate, whose 

safety had been greatly exaggerated. 

In our model, we could analyze the Hart-Zingales case by allowing for an unexpected 

decline in the value of the existing “safe” assets, which are the private bonds.  That is, the zero-

probability event of large losses on safe assets could be viewed as a one-time happening.  In this 
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case, agent 1’s wealth share would initially shift discretely above its steady-state value.13  The 

subsequent dynamics corresponds to that described in our next example. 

2.  Forty years of tranquility.  Figure 2 assumes that, starting from the steady state, the 

economy has a long period with no disasters (“40 years of tranquility”).  This situation accords 

broadly with the U.S. experience from the 1950s up to the Great Recession of 2007-2009.  The 

parametric assumptions for Figure 2 are the same as those for Figure 1. 

In Figure 2, agent 1’s wealth share rises gradually above its steady-state value of 0.670.  

Conditional on no disasters, this ratio rises after 40 years to 0.711—and would asymptotically 

approach a higher value, 0.723, if no disaster ever occurred.  The value 0.723 is a kind of steady-

state wealth share (shown in quotes in the figure) in that it applies asymptotically conditional on 

the realization of no disasters.  In contrast, the lower steady-state mean wealth share of 0.670 is 

defined inclusive of the occasional occurrence of disasters. 

The dynamic path of the wealth share in Figure 2 shows that sustained tranquility is 

accompanied by rising inequality, in the sense of growing wealth (and consumption) shares of 

group 1.  The dynamics also features a rising risk-free rate, which increases above its steady-

state value of 0.010 and eventually approaches 0.0121.  The ratio of safe to total assets falls from 

its steady-state value of 0.10 and gradually approaches 0.087. 

In the paths shown in Figure 2, agent 1’s wealth share would never rise above the 

“steady-state” value of 0.723.  However, a shock mentioned before—where the value of safe 

assets declines sharply because this safety had been exaggerated—could put agent 1’s wealth 

share above 0.723.  In that case, the post-shock dynamic paths (conditional on no further 

                                                           
13A counter-vailing force in 2007-2009 is that large financial institutions, including Lehman, experienced sharp 
losses in the value of assets linked to real estate.  This aspect of the shock tends to lower group 1’s wealth share 
and, thereby, works like the disaster realization that was already analyzed. 
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disasters) would feature a gradually declining wealth share of agent 1, with this share 

asymptotically approaching from above the value 0.723.  Correspondingly, the risk-free rate 

would rise initially above its “steady-state” value and then fall gradually, whereas the ratio of 

safe to total assets would fall initially below its “steady-state” value and then rise gradually. 

III.  Gross versus Net Lending and Ricardian Equivalence 

The bond holdings, B1, shown in Table 2 correspond to net safe lending from the high-

risk-aversion agent, group 2, to the low-risk-aversion agent, group 1.  There is a sense, however, 

in which gross bond issuance is not pinned down, because the model would admit unlimited 

borrowing and lending within groups.  That is, agent 1 could effectively issue an arbitrary 

amount of bonds to himself, and analogously for agent 2. 

If the model were augmented to include an infinitesimal amount of transaction costs for 

bond issuance or collection of interest and principal, then borrowing and lending within groups 

would not occur in equilibrium in the present model.  In this case, the quantity of bonds, B1, 

shown in Table 2 would be the unique equilibrium for the gross amount outstanding. 

If transaction costs associated with bonds are substantial, the quantity of net bond 

issuance and the risk-free rate might differ significantly from the values shown in Table 2.  

Correspondingly, the risk-free rate received by lenders (group 2) would deviate from that paid by 

borrowers (group 1).  For example, if transaction costs were prohibitive, the results would 

correspond to autonomy for groups 1 and 2 and, therefore, to the results shown in Table 1.  The 

quantity of net bond issuance would be 0, and the share of capital held by each group would 

be 0.5.  As an example, if γ1=3.0, the shadow risk-free rate for group 1 would be 0.025 (from 

Table 1) and if γ2=5.0, the shadow risk-free rate for group 2 would be -0.019 (again from 

Table 1).  That is, members of group 1 would be willing to pay a rate of 0.025 per year at the 
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margin on risk-free borrowing, whereas members of group 2 would be willing to accept a rate of 

-0.019 per year at the margin on risk-free lending.  However, no issue of safe debt occurs 

because of the prohibitive transaction costs. 

Suppose now that the government issues one-period bonds with characteristics 

corresponding to those of private bonds.  The real interest rate on government bonds held from t 

to t+1 must then be 𝑟𝑡+1
𝑓

, the same as that on private bonds.  The simplest way to introduce public 

debt is for the government to make a lump-sum transfer of bonds in year t in the aggregate 

quantity 𝐵𝑡
𝑔

.  This distribution is assumed to go 50-50 to members of groups 1 and 2.  The 

aggregate principal and interest, (1 + 𝑟𝑡+1
𝑓

)𝐵𝑡
𝑔

, is paid out to government bondholders in 

period t+1.  This payout is financed by lump-sum taxes, levied equally in period t+1 on members 

of groups 1 and 2. 

What is the impact of this government bond issue on private bond issue, the risk-free 

interest rate, and so on?  The government bond issue does not affect the households’ first-order 

conditions, which appear in equations (7) and (9).  There is also no effect on households’ budget 

constraints in equation (6) (updated to apply to periods t and t+1), once one factors in the transfer 

payments in year t and the taxes levied in year t+1.  Therefore, it is immediate that the 

equilibrium involves the same net borrowing and lending as before between groups 1 and 2, the 

same risk-free interest rate, 𝑟𝑡+1
𝑓

, the same equity price, Pt, and the same expected rate of return 

on equity, re.  That is, the equilibrium features Ricardian Equivalence with respect to net 

quantities of safe assets and the various rates of return. 

Consider now how the added government bonds end up being held by groups 1 and 2.  

One possibility, assumed in the upper part of Table 4, is that each group holds the 50% of the 

government bonds that they initially received.  These quantities correspond to the present value 
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of the (certain) tax liabilities imposed on each group.  The quantity of net private borrowing and 

lending, corresponding to B1t, is then the same as before. 

The problem with this proposed equilibrium is that type-1 agents are simultaneously 

holding government bonds and issuing private bonds.  Since government and private bonds are 

assumed to be indistinguishable, we can think of them as trading on a single bond market with a 

single rate of return.  Therefore, in the upper part of Table 4, type-1 agents would be operating 

simultaneously on both sides of this bond market.  As before, if there are infinitesimal 

transaction costs for bond issuance or collection of interest and principal, this type of equilibrium 

would be ruled out.  Specifically, starting from the configuration in the upper part of Table 4, 

type-1 agents would be motivated to sell their government bonds and use the proceeds to retire 

private bonds. 

In the full equilibrium, shown in the lower part of Table 4, the magnitude of the reduction 

in private bonds equals the amount of government bonds received by group 1.14  Since this 

amount was assumed to be one-half of the government bond issue, it follows that the magnitude 

of the reduction in private bonds expressed as a ratio to government bonds issued equals one-

half.  That is, the crowding-out coefficient for private bonds with respect to government bonds is 

minus one-half.  More generally, this coefficient equals minus the share of the government bond 

issue that goes to group 1—the group that is issuing the private bonds.15 

                                                           
14This result assumes that the gross quantity of private bonds outstanding was initially at least as large as the 
added government bonds going to group 1.  We have assumed that this amount was one-half of the total 
government bond issue. 

15This generalization of our one-half result was pointed out to us by Xavier Gabaix.  He noted that “our basic 
finding was independent of the disaster theme and would come from pretty much any reason to hold debt.”  He 
then observed:  “If there is a fraction f of lenders and 1-f of borrowers, then the crowding out coefficient is d(Gross 
private debt)/d(Govt debt) = - (1-f).”  The result that we stress, where f=0.5, is not general but is likely to be a good 
approximation because private lenders and borrowers have to be balanced in terms of dollars lent and borrowed 
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When compared to the equilibrium prior to the government bond issue, the only 

difference in the lower part of Table 4 is that some of the borrowing and lending between 

groups 1 and 2 is purely private, while some works through the government as intermediary 

(collecting taxes from group 1 and using the proceeds to pay principal and interest on half of the 

government bonds held by group 2).  When viewed this way, the finding of Ricardian 

Equivalence is not surprising—it corresponds to the assumption that the private sector and the 

government are equally good at arranging for loans between groups 1 and 2.  

The surprising part of our result is that the crowding-out coefficient for private bonds 

with respect to public bonds is -0.5, not 0.0 or -1.0.  The one-half result came from a model with 

a number of simplifying assumptions; notably, there were just two groups characterized by their 

coefficients of relative risk aversion, γi, and the incidence of the present value of taxes net of 

transfers associated with the government bond issue was the same for each group.  However, the 

crowding-out coefficient around -0.5 does not depend on these assumptions holding precisely.  

For example, the restriction to two groups is unimportant.16  The assumption that matters most is 

that there is little relation across groups between γi and the share of taxes net of transfers 

applying to the group.  For example, in our baseline case, the share of taxes net of transfers is 

one-half for each group. 

                                                           
even if not in terms of numbers of persons or wealth.  Abel (2015) used the working-paper version of our analysis 
(Barro and Mollerus [2014]) to generalize our results on crowding-out along the lines sketched by Gabaix. 

16Suppose, for example, that there are four groups of agents, where γ1<γ2<γ3<γ4.  Suppose further that the initial 
equilibrium involves private bond holdings of B1=-100, B2=-50, B3=50, and B4=100.  Assume that the government 
issues 4 units of bonds, with the present value of taxes rising by 1 unit for each group.  In this case, the two private 
borrowers go, in equilibrium, to B1=-99 and B2=-49, thereby preserving their positions for bond holdings net of tax 
liabilities (of 1 each) at -100 and -50, respectively.  The two private lenders go, in equilibrium, to overall bond 
positions (inclusive of government bonds) of B3=51 and B4=101, thereby preserving their positions for bond 
holdings net of tax liabilities at 50 and 100, respectively.  Note that the additional 4 units of government bonds 
crowd out the total of private bonds by 2 units. 
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The model’s predicted crowding-out coefficient relates to the study by Krishnamurthy 

and Vissing-Jorgensen (2013, p. 1), who argued “that government debt … should crowd out the 

net supply of privately issued short-term debt.”  They tested this hypothesis on U.S. data for 

1914-2011 and found (Table 4, Panel A) that an increase in the quantity of net U.S. government 

debt had a significantly negative effect on the net short-term debt created by the private financial 

sector.  Remarkably, their estimated coefficient was close to -0.5, the value predicted by our 

baseline model.17  Similarly, Gorton, Lewellen and Metrick (2012, Table 1) estimated a 

crowding-out coefficient close to -0.5 for a broad concept of private financial-sector liabilities 

(their “high estimate”) in the United States for 1952-2011.18 

Ricardian Equivalence would not hold exactly in our model if the government is superior 

to the private sector in the technology of creating safe assets.19  In particular, the government 

might be able to commit better than private agents to honoring payments of principal and interest 

on its bonds and can also use the coercive power of the tax system to ensure the financing of 

these payments.  On the other hand, a private lending arrangement requires only that group 1 

make principal and interest payments in period t+1 to group 2, whereas the public setup entails 

the government collecting taxes in period t+1 from group 1 and then using the proceeds to pay 

                                                           
17Krishnamurthy and Vissing-Jorgensen (2013, p. 23) say:  “These results suggest that a one-dollar increase in 
Treasury supply reduces the net short-term debt issued by the financial sector by 50 cents.”  In their theory 
(Section 3), they derive a crowding-out hypothesis from a model in which Ricardian Equivalence fails.  However, 
their empirical results are actually consistent with a model in which Ricardian Equivalence holds. 
18Gorton, Lewellen and Metrick (2012, p. 103) say:  “These results suggest that financial liabilities and government 
liabilities may be substitutes.” 
19Caballero and Farhi (2014, p.3) make this assumption, although they do not clarify the elements that underlie the 
government’s superior technology:  “Public debt … plays a central role … as typically the government owns a 
disproportionate share of the capacity to create safe assets while the private sector owns too many risky assets. … 
The key concept then is that of fiscal capacity:  How much public debt can the government credibly pledge to 
honor should a major macroeconomic shock take place in the future?”  They also do not consider that public debt 
issue creates additional “safe liabilities” in the form of taxes that match the added safe assets in a present-value 
sense. 
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off group 2.  Once the distorting influences from taxation are considered, it is not obvious that 

the public process entails lower “transaction costs” overall.20 

An additional consideration is that the expansion of public debt and the associated 

taxation are poorly targeted.  In our baseline case described by the lower part of Table 4, 50% of 

the added government bonds—held by group 2—match the added present value of tax liabilities 

for this group and, therefore, do not serve to shift risk toward group 1.  Only the remaining 50% 

of government bonds corresponds to this shifting of risk.  In contrast, all private bonds issued by 

group 1 and held by group 2 associate with risk shifting. 

To highlight a case where the issue of public debt is important, suppose that the private 

sector’s technology for creating safe assets is so poorly developed that no issue of private bonds 

occurs in the initial equilibrium (where no government bonds exist).  In this case, analyzed at the 

beginning of this section, groups 1 and 2 are effectively autonomous, and the equilibrium for 

each group is the one that would apply in the corresponding representative-agent economy.  The 

risk-free interest rate for group 1 can then diverge substantially from that for group 2. 

 In this environment, the government’s issue of bonds can substitute for the private 

lending that would have occurred if the private sector had possessed the technology to create safe 

assets.  In this setting, Ricardian Equivalence fails, and the government’s debt issue moves the 

economy toward a more efficient outcome, where risk is shifted from type-2 to type-1 agents, 

and the risk-free interest rates of the two groups converge. 

We can assess how much public debt is required to get the economy into the equilibrium 

of our baseline model with private debt.  The answer—related to the crowding-out coefficient of 

                                                           
20Even if the interest rate on government bonds is lower than that on private bonds, the overall transaction costs—
including the distorting effects from taxation—associated with the public process might exceed that for the private 
process. 
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one-half discussed before—is that the required quantity of public debt is twice the level of 

private bonds that arose in the initial setting.  Moreover, if public debt expands beyond this 

quantity, it has no further effect on the equilibrium.  That is, Ricardian Equivalence holds in this 

range at the margin even though private bonds are assumed to be absent. 

IV.  The Quantity of Safe Assets 

 In the model, the quantity of safe assets corresponds to the shifting of risk from the high-

risk-averse agent, group 2, to the low-risk-averse agent, group 1.  Table 2 shows that, for 

reasonable parameter values, the steady-state mean for the ratio of safe to total assets ranges up 

to 15%.21 

 Using data to match the model’s predictions for the quantity of safe assets is challenging 

because it is unclear how to measure empirically the amounts of these assets.  Gorton, Lewellen, 

and Metrick (2012) (henceforth, GLM) define safe assets to comprise mostly liabilities of the 

government and the private financial sector.  After making a number of adjustments—for 

example, to eliminate U.S. government securities held by federal trust funds and to deduct 15% 

of long-term debt issued by the financial sector—they focus on a “high estimate” of the amount 

of safe assets.  Using U.S. data from 1952 to 2010, GLM report two major findings.  First, the 

ratio of their measure of safe assets to a concept of total assets remained relatively stable over 

time.  Second, the average size of this ratio was between 30% and 35%. 

In a general sense, the observed stability of the ratio of safe to total assets accords with 

the model.  The results in Table 2 indicate that large changes in the steady-state mean of the ratio 

of safe to total assets might arise from changes in the gap between the risk-aversion coefficients 

                                                           
21We focus on the model’s predictions about the ratio of safe to total assets, rather than the ratio of safe assets to 
annual GDP.  The latter ratio depends on the ratio of total assets to annual GDP, which equals 1/ρ in the baseline 
model with log utility.  This last ratio equals 25 when ρ=0.04 per year but is sensitive to the choice of ρ. 
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of the high- and low-risk-aversion groups; that is, γ1- γ2.  However, if this gap were roughly 

constant, then the steady-state mean of the ratio of safe to total assets would be reasonably stable. 

A comparison of the results in Table 3 with those in Table 2 indicates that the one-time 

variations considered in a set of other parameters—the IES, 1/θ, the gross replacement rate, ν, 

the disaster probability, p, and the share of type-1 agents, N1—do not have large effects on the 

mean of the steady-state ratio of safe to total assets (for given values of γ1 and γ2).  Therefore, 

variations over time in these other parameters are unlikely to be sources of instability in the mean 

of the steady-state ratio of safe to total assets. 

Finally, the results in Figures 1 and 2 show that the ratio of safe to total assets does not 

vary greatly along a dynamic path that is approaching given steady-state values.  For example, in 

Figure 1, the ratio of safe to total assets varies only from 10.6% to 9.7% over a period of 10 

years. 

Another issue is that the average ratio of safe to total assets computed by GLM—30-

35%—exceeds the steady-state values predicted by our model—which ranged up to 15%.  A 

major reason that GLM’s measured ratio of safe to total assets would diverge from our 

theoretical concept concerns the denominator, total assets.  In our theory, total assets comprise 

the discounted value of the whole of GDP (which equals aggregate consumption in the model 

without capital).  Thus, in effect, the theoretical concept of total assets includes human capital as 

well as physical capital.  In contrast, GLM’s concept of total assets corresponds more closely to 

the value of physical capital, though also including the value of government bonds.  These 

considerations may explain why GLM’s measured average ratio of safe to total assets is well 

above the range predicted by our model.  For example, if income from capital constitutes one-

third of GDP, then total assets based on the value of capital would be around one-third of the 



36 
 

capitalized value of GDP.  In this case, if we hold constant the model’s predicted level of safe 

assets, the predicted ratio of safe to total assets would be about 30%, close to the numbers 

calculated by GLM.  However, we have to generalize the model to allow uncertainties associated 

with human capital to affect the quantity of safe assets. 

There are also reasons why GLM’s measure of safe assets would diverge from our 

theoretical concept, which relates to net lending from group 2 (high risk aversion) to group 1 

(low risk aversion).  One issue is that the GLM measure does not compute a net figure for 

liabilities of financial institutions; that is, there is no deduction for safe assets held by these 

institutions.  For example, in 2007-2008, Lehman Brothers issued bonds and commercial paper 

but also held U.S. government securities and liabilities of other financial firms.22  On this 

ground, GLM’s measured liabilities of government and financial institutions would overstate the 

net quantity of safe assets. 

Another consideration is that an array of financial arrangements—including structured 

finance, stock options, and insurance contracts—can be used to convert risky assets into 

relatively safe assets.  On this ground, the measured liabilities of governments and financial 

institutions might understate the quantity of safe assets. 

GLM also include government liabilities as safe assets but do not include any portion of 

capitalized future taxes as “safe liabilities,” even at the margin.  Although it is true that tax 

liabilities cannot be directly traded, it is also true that these liabilities—and how they vary along 

with changes in the quantity of government bonds—affect economic analyses of public debt.  To 

                                                           
22Our model could be extended to account for this kind of borrowing and lending within groups.  These patterns 
might arise because of idiosyncratic shocks that affect individual agents within groups, still defined by coefficients 
of relative risk aversion. 
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the extent that future taxes are factored in by agents, the gross public debt would overstate a 

meaningful measure of safe assets. 

The net effects from these adjustments to the measured quantity of safe assets are 

ambiguous, and it is possible that the overall proportionate deviation between GLM’s measure 

and our theoretical construct is not large.  That is, the observed average ratio of safe to total 

assets of 30-35% may match up reasonably well with the predictions of our model, once total 

assets are adjusted to exclude human capital. 

V.  Conclusions 

 We constructed a model with heterogeneity in risk aversion to study the determination of 

the equilibrium quantity of safe assets.  The model achieves tractability and transparency by 

assuming two types of agents with Epstein-Zin/Weil utility.  The agents differ by coefficients of 

relative risk aversion but have the same intertemporal elasticity of substitution (IES) and rate of 

time preference.  In the baseline model, each agent has log utility, in the sense of IES=1.   

We focused on a stationary version of the model in which agents randomly experience 

changes in their coefficients of relative risk aversion.  In the baseline setting, Ricardian 

Equivalence holds in that the quantity of government bonds does not affect rates of return or the 

net quantity of safe assets.  The predicted crowding-out coefficient for private bonds with respect 

to government bonds is around -0.5, in line with some existing empirical evidence. 

 We generated quantitative implications for the quantity of safe assets by calibrating the 

model with sufficient disaster risk to get the model’s predictions into the right ballpark for the 

average equity premium and risk-free rate.  In a benchmark case, the magnitude of safe assets 

ranged up to 15% of total assets, which comprised the capitalized value of the full GDP.  These 
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results can be reconciled with an existing estimate that found the ratio of safe to total assets in 

the United States to be roughly stable over time at a value between 30% and 35%. 

 The basic structure of the model with heterogeneity in coefficients of relative risk 

aversion can be applied to other economic problems.  For example, the framework can 

incorporate credit-market imperfections, including the necessity for enforcement mechanisms to 

ensure repayment of private debts.  This extension relates to issues concerning collateral, 

liquidity, and asymmetric information.  This type of extension would be important for assessing 

implications for the magnitude and composition of investment.  
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Table 1 

Representative-Agent Economy  

(Single Coefficient of Relative Risk Aversion) 

 

γ1=γ2=γ re rf 

1 0.052 0.046 

1.5 0.052 0.042 

2 0.052 0.038 

2.5 0.052 0.032 

3 0.052 0.025 

3.5 0.052 0.017 

4 0.052 0.007 

4.5 0.052 -0.005 

5 0.052 -0.019 

5.5 0.052 -0.035 

6 0.052 -0.055 

 

When the coefficients of relative risk aversion are the same for the two agents, γ1=γ2=γ, 

the equilibrium quantities of bonds, B1 and B2, are zero and the ownership of equity is 

evenly distributed, K1=K2=0.5.  The table shows the equilibrium risk-free rate, rf, for 

each value of γ.  The calculations assume that the growth-rate parameter is g=0.025 per 

year, the rate of time preference is ρ=0.04 per year, the disaster probability is p=0.04 per 

year (corresponding in the historical data to contractions of per capita GDP by at least 

10%), and the effective disaster size is b=0.32.  The expected growth rate is g*=g–p∙b= 

0.0122 per year.  The reciprocal of the IES is θ=1.  The expected rate of return on equity, 

given θ=1, is re=ρ+g*=0.052 per year, which is independent of γ.  The price of equity is 

P=Y/ρ=25∙Y.  In this representative-agent case, the equilibrium risk-free rate can be 

written in closed form, if γ≠1, as: 

 𝑟𝑓 = 𝜌 + 𝜃𝑔 + 𝑝 (
𝜃−1

𝛾−1
) − 𝑝(1 − 𝑏)−𝛾 + 𝑝 (

𝛾−𝜃

𝛾−1
) (1 − 𝑏)1−𝛾 .  

If θ=1, as γ approaches 1, rf approaches ρ+g-pb/(1-b). 

  



43 
 

 

Table 2 

Steady-State Equity Ownership, Wealth Share, and Safe Assets  

Alternative values of γ1 and γ2 that generate re=0.052 and rf=0.010 

 

(1) (2) (3) (4) (5) (6) (7) (8) 

γ1 γ2 re rf K1 W1/W │B1│/W │B1│/Y 

3.86 3.86 0.052 0.010 0.500 0.500 0.000 0.00 

3.6 4.25 0.052 0.010 0.593 0.560 0.034 0.84 

3.4 4.9 0.052 0.010 0.695 0.625 0.071 1.76 

3.3 5.6 0.052 0.010 0.767 0.670 0.097 2.40 

3.2 7.0 0.052* 0.010* 0.857* 0.729* 0.128* 3.19* 

3.1 8.7 0.052* 0.010* 0.916* 0.769* 0.147* 3.70* 

 

 

 

This analysis assumes a gross replacement rate for agents of ν=0.02 per year, so that the net 

replacement rate is ν/2=0.01 per year.  The coefficients of relative risk aversion for the two 

agents, γ1 and γ2, are values that generate a steady-state rate of return on equity, re, of 0.052 and a 

risk-free interest rate, rf, of 0.010.  The other parameters, other than the rate of time preference, 

ρ, are the same as those assumed in Table 1.  The value of ρ, needed to target the two rates of 

return, is 0.0400 (as in Table 1) for the first four rows, 0.0397 for row 5, and 0.0387 for the last 

row.  The other columns show the steady-state means of agent 1’s share of equity ownership, K1, 

and total assets, W1/W, and the ratio of the magnitude of safe assets, B1, to total assets and GDP. 

 

*These numerical estimates are subject to significantly higher measurement error than the other 

estimates. 
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Table 3 

 

Steady-State Equity Ownership, Wealth Share, and Safe Assets 

 

Alternative Parameter Values 

 

 

(1) (2) (3) (4) (5) (6) (7) (8) 

γ1 γ2 re rf K1 W1/W │B1│/W │B1│/Y 

θ=0.5 

3.6 4.25 0.054 0.0118 0.635 0.602 0.033 0.79 

3.4 4.9 0.053 0.0128 0.750 0.687 0.063 1.52 

3.2 7.0 0.053 0.0138 0.879 0.778 0.100 2.46 

θ=2.0 

3.6 4.25 0.049 0.0069 0.571 0.537 0.034 0.92 

3.4 4.9 0.049 0.0064 0.661 0.584 0.077 2.08 

3.2 7.0 0.049* 0.0002* 0.777* 0.616* 0.161* 4.40* 

ν=0.05 per year 

3.6 4.25 0.052 0.0095 0.558 0.524 0.034 0.85 

3.4 4.9 0.052 0.0080 0.631 0.556 0.076 1.88 

3.2 7.0 0.053* 0.0041* 0.802* 0.635* 0.166* 4.13* 

p=0.02 per year 

3.6 4.25 0.059 0.0368 0.564 0.530 0.034 0.84 

3.4 4.9 0.059 0.0362 0.641 0.568 0.074 1.83 

3.2 7.0 0.058 0.0345 0.798 0.648 0.149 3.74 

N1=0.25 

3.6 4.25 0.052 0.0065 0.339 0.308 0.030 0.75 

3.4 4.9 0.052 0.0033 0.490 0.413 0.078 1.93 

3.2 7.0 0.053* 0.0027* 0.792* 0.618* 0.174* 4.30* 

 

 

These results use the parameter values from Table 2, except for the change in the indicated 

parameter value.  The first three lines use the reciprocal of the IES θ=0.5 (instead of 1.0), the 

next three use θ=2.0, the next three use the gross replacement rate ν=0.05 per year (instead of 

0.02), the next three use the disaster probability p=0.02 per year (instead of 0.04), and the last 

three use the population share N1=0.25 for the low-risk-aversion group (instead of 0.5). 

 

 

*These numerical estimates are subject to significantly higher measurement error than the other 

estimates. 
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Table 4 

 

Changes in Safe Assets when the Government Issues Bonds 

 

 Agent 1 Agent 2 Total 

Case 1:  Government bonds up by 100, held 50-50 

Changes in:    

Private bond holdings, B 0 0 0 

Government bond holdings, Bg +50 +50 +100 

Taxes (present value) +50 +50 +100 

Net safe assets in model 0 0 0 

Net safe assets as measured by Gorton, et al. (2012) +50 +50 +100 

Case 2:  Government bonds up by 100, all held by agent 2 

Changes in:    

Private bond holdings, B +50* -50 0 

Government bond holdings, Bg 0 +100 +100 

Taxes (present value) +50 +50 +100 

Net safe assets in model 0 0 0 

Net safe assets as measured by Gorton, et al. (2012) 0 +50 +50 

 

 

Note:  In all cases, the government issues 100 of bonds, Bg, and transfers these bonds 50-50 to 

agents 1 and 2.  The present value of taxes rises by 100, divided 50-50 between agents 1 and 2.  

In case 1, the added government bonds are held 50-50 by agents 1 and 2.  In case 2, all of the 

added government bonds are held by agent 2. 

 

*Borrowing by agent 1 goes down by 50. 
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Figure 1 

 

Dynamic Paths Following a Disaster 

 

 
 

 

This analysis corresponds to the case where γ1=3.3 and γ2=5.6 in Table 2.  The simulated paths 

start from the steady state value of W1/W, 0.670, then assume that a disaster of proportionate 

size 0.32 materializes in period 1.  Subsequently, no further disasters occur.  The panels show the 

dynamic paths after period 1 for agent 1’s wealth share, W1/W, the risk-free interest rate, rf, 

agent 1’s share of total equity, K1, and the ratio of the magnitude of safe assets, B1, to total 

assets. 
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Figure 2 

 

Dynamic Paths for 40 Years of Tranquility 

 

 
 

This analysis corresponds to the case where γ1=3.3 and γ2=5.6 in Table 2.  The simulated paths 

start from the steady state value of W1/W, 0.670, then assume that no disasters occur over the 

next 40 years.  The panels show the dynamic paths after period 1 for agent 1’s wealth share, 

W1/W, the risk-free interest rate, rf, agent 1’s share of total equity, K1, and the ratio of the 

magnitude of safe assets, B1, to total assets.  The lines marked as “steady states” are values that 

would be approached asymptotically conditional on disasters never happening. 
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