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We develop a model of a prediction market with ambiguity and

derive testable implications of the presence of Knightian uncertainty.

Our model can also explain two commonly observed empirical

regularities in betting markets: the tendency for longshots to win

less often than odds would indicate and the tendency for favorites

to win more often. Using historical data from Intrade, we further

present empirical evidence that is consistent with the predicted

presence of Knightian uncertainty. Our evidence also suggests that,

even with information acquisition, the Knightian uncertainty of

the world may be not “learnable” to the traders in prediction markets.
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At least since the work of Knight (1921), economists have understood that eco-

nomic agents may behave differently in risky circumstances, where outcomes are

random but governed by known probabilities, as opposed to uncertain circum-

stances, where risks are unknown. Ellsberg (1961) provides examples that highlight

the tendency for some decision makers to be averse to the presence of Knightian

uncertainty—or, ambiguity.

In recent years, there has been an explosion of theoretical work developing mod-

els that incorporate ambiguity aversion, building off of the seminal contribution of

Gilboa and Schmeidler (1989). In the literature to date, Knightian uncertainty has

been a factor inserted in a model that could possibly explain puzzling observations.

It has served a role analogous to that of dark matter in cosmological models, lurking

behind the scenes to explain observed phenomena, never being directly observed.

At the same time, a rich literature has evolved exploring the efficiency of betting

and prediction markets that price specific events. Following on the early work of

Kahneman and Tversky (1979) and Asch, Malkiel and Quandt (1982), the ability of

these markets to predict future events has been studied extensively, and a number

of empirical anomalies have been identified.

In this paper, we extend the theoretical literature and connect it to the prediction

market application. In so doing, we develop more directly observable implications

of the presence of Knightian uncertainty than has been achieved previously in the

literature, and we provide a method to test for its presence.

While we below will formally derive a model that suggests our test, the intuition

of our approach is quite straightforward and can be illustrated using an example

from Ellsberg (1961). Suppose that we have two urns. In one urn, we have 50 black

balls and 50 red balls. In another urn—the “Knightian urn”—we have 100 balls,

but we have no information regarding the proportions. A subject is offered a game.

If she pulls a black ball out of the urn, she wins $1. If she pulls a red ball out she

wins nothing. The literature has documented a tendency for individuals to prefer

the urn with the known probabilities, suggesting that they exhibit the aversion to

ambiguity discussed above.

Suppose that an econometrician could observe games played with both of the urns
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in Ellsberg’s game. With a number of repeated trials, the sample proportions from

the first urn would fairly rapidly indicate an estimate that the binomial probability

of victory is 50 percent. With enough data, one would say that with great confidence.

On the other hand, if one observed repeated play with the second, Knightian urn

which, after all, has some number of black balls in it, then the sample proportion

would also converge to an estimated binomial probability, but that probability would

not necessarily be 50 percent.

The observation that motivates this paper stems from this thought experiment.

Given a market-derived ex ante probability of a binary event, as one frequently ob-

serves in betting markets, there will naturally be circumstances where information

is extremely solid, and odds are quite far from 50 percent. There will also be situ-

ations where information suggests there is an even match (as with a coin flip), and

the contract suggests there is close to a 50 percent chance of either outcome. This

often happens, for example, in presidential futures markets in the U.S. after the

conventions are over. But it is also possible that there are contracts that suggest

that the odds of either outcome are 50 percent because the event is shrouded in

ambiguity. If we were to estimate the ex post sample proportions from just these

contracts with ex ante 50 percent probabilities, then they could, as in the Ellsberg

example above, be anything. If we were to estimate the ex post sample proportions

of the high information contracts with probabilities far from 50 percent, the propor-

tions and ex ante probabilities should, if markets are efficient, align. But close to

50 percent, they might not, and if they do not, it is an indication of the presence of

Knightian uncertainty. Thus, the pattern by which the relationship between ex post

proportions and ex ante probabilities deviates from the 45 degree line becomes infor-

mative regarding the presence of Knightian uncertainty. We also discuss the extent

to which learning can occur in markets over time. If Knightian uncertainty induces

knowledge acquisition, then the relationship between proportions and probabilities

will evolve as a market matures, a possibility we explore in the paper.

The next section briefly reviews the literature. In Sections II and III, we draw on

the work of Gilboa and Schmeidler (1989) and Dow and Werlang (1992) and develop

a model that suggests that the pattern described by our intuitive example would
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emerge in a market influenced by the present of significant Knightian uncertainty.

In Section IV, we provide some high-level evidence that the relationship between ex

post proportions and ex ante probabilities is consistent with the predictions of our

model. The last section concludes.

I. Literature Review

This paper draws from two different strands in the literature. First, theorists

have made remarkable strides in recent years incorporating Knightian uncertainty

and ambiguity aversion into models of financial markets.

These models have, according to an exhaustive recent review, “implications for

portfolio choice and asset pricing that are very different from those of SEU (subjec-

tive expected utility theory) and that help to explain otherwise puzzling features of

the data.”1 Ambiguity aversion could help explain the tendency of markets to stop

operating during financial crises, for prices to not be completely informative, and

even for there to be bank runs.2

This branch of the literature has focused on financial markets in general. At the

same time, an equally impressive literature has emerged exploring the functioning

of prediction markets, which, for the most part, price in the probability of specific

binary events. As Thaler and Ziemba (1988) first noted, these prediction markets

may be a better laboratory to test cutting edge theories, as they contain contracts

with known durations, and observable discrete events that stop the trading. While

an equity might live on virtually forever, a presidential election future has a specific

end date, and its ability to forecast the outcome can be precisely evaluated.

This second literature has advanced both empirically and theoretically. On the

theoretical side, Ali (1977) and Manski (2006) illustrate that the beliefs of bettors

may not necessarily yield a market-based probability. More recently, Snowberg and

Wolfers (2010) identify the conditions under which prediction market prices coin-

cide with bettors’ mean beliefs about probabilities. On the empirical side, prediction

markets have been found to be informative regarding the odds of events occurring.

1See Epstein and Schneider (2010), p. 315.
2See Caballero and Krishnamurthy (2008), Caballero and Simsek (2013), Guidolin and Rinaldi (2010),

Routledge and Zin (2009), and Ulrich (2013).
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Berg et al. (2008), for example, find that the Iowa Electronic Markets outperformed

polls in predicting election outcomes. At the same time, markets have been found to

exhibit a favorite-longshot bias, with favorites outperforming their odds, and long-

shots underperforming (see, e.g., Cain, Law and Peel 2000). A number of possible

explanations for this pattern include insider trading (Shin 1992), risk-loving behav-

ior (Weitzman 1965; Quandt 1986), belief dispersion (Gandhi and Serrano-Padial

2015), and imperfect ability to process information (Snowberg and Wolfers 2010).

The connection of these two literatures is promising, as betting markets often exist

for events, such as Brexit or elections, for which Knightian uncertainty may well be

present. Since they also have finite and determinate life spans, they also allow the

econometrician the ability to evaluate their performance ex post. We now turn to

illustrating the utility of this approach.

II. A Model of Prediction Market with Ambiguity

A. Setup

Events and Contracts.

Consider a prediction market for the occurrence of a binary event. There are two

all-or-nothing contracts corresponding to the two possible realizations. One contract

pays $1 if event A occurs and $0 otherwise, while the other contract pays $1 if the

complementary event Ac occurs and $0 otherwise. Let π denote the price of contract

A. No-arbitrage condition dictates that, in equilibrium, the price of contract Ac be

1− π.

Traders.

There is a continuum I of competitive traders, each endowed with homogeneous

initial wealth w. The net position on contract A held by trader i is denoted by
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xi ∈ R.3 Given price π, the final wealth wi of trader i is

wi =

 w + (1− π)xi if event A occurs,

w − πxi if event Ac occurs.

All traders have log utility of their final wealth: u (wi) = lnwi.

Beliefs and Ambiguity.

Suppose trader i has a subjective belief that event A occurs with probability

q̃ ∈ [0, 1]. Then, the subjective expected utility of trader i from holding position xi

at price π is given by

U (π, xi; q̃) = q̃ ln (w + (1− π)xi) + (1− q̃) ln (w − πxi) .

However, ambiguity exists, for traders may be uncertain about how likely event

A is to occur. We follow Gilboa and Schmeidler (1989) and model ambiguity using

the “multiple-prior” framework. Specifically, suppose each trader i considers every

probability q̃ ∈ [qi − ε, qi + ε], where ε ≥ 0, an admissible probability that governs

the realization of the binary event. Under this framework, qi represents the “mean”

belief of trader i, while ε is interpreted as a measure of ambiguity. Given price

π, trader i chooses position xi to maximize the minimum—that is, the worst-case

scenario—of all her admissible, subjective expected utilities:

(1) max
xi∈R

[
min

q̃∈[qi−ε,qi+ε]
U (π, xi; q̃)

]
.

Traders are heterogeneous in mean belief. Let the distribution of traders’ mean be-

liefs be characterized by a cumulative distribution function F over interval [ε, 1− ε].

That is, for the most pessimistic trader, the worst-case belief that A occurs is prob-

ability 0 while, for the most optimistic trader, the best-case belief that A occurs is

3In practice, trader i can long and/or short contract A and/or contract Ac, but some strategies are
mathematically equivalent. For example, holding mi > 0 units of contract A and ni > mi > 0 units of
contract Ac would be equivalent to holding mi units of cash, 0 unit of contract A , and ni −mi > 0 units
of contract Ac. Therefore, without loss of generality, we let a single decision variable xi = mi − ni (which
could be positive, zero, or negative) represent the net position held by trader i.
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probability 1.

B. Optimal Demand and Portfolio Inertia

Solving the inner minimization reduces the optimization problem (1) to

max
xi∈R

U (π, xi; qi − sgn (xi) ε) ,

where sgn (·) is an indicator function that takes the sign of its argument.

The intuition behind the above expression is straightforward. If trader i has a

positive position on contract A, then the worst-case scenario would be that event A

occurs with probability qi− ε, the lower bound. Similarly, if the position of trader i

is negative, then, in the worst-case scenario, event A occurs with the upper-bound

probability, qi + ε.

Solving the maximization problem gives the optimal (net) demand for contract A

by trader i,

(2) x (π; qi) =


qi−ε−π
π(1−π)w if π ∈ [0, qi − ε) ,

0 if π ∈ [qi − ε, qi + ε] ,

qi+ε−π
π(1−π)w if π ∈ (qi + ε, 1] ,

as a function of price and mean belief. Therefore, trader i longs contract A when

the price is lower than her most pessimistic belief, and shorts contract A when the

price is higher than her most optimistic belief. For any price in the intermediate

range [qi − ε, qi + ε], trader i does not participate in the prediction market—the

phenomenon of portfolio inertia.

That portfolio inertia arises when investors have maxmin preferences is well known

in the finance literature since the work by Dow and Werlang (1992). The setup of

this model replicates this phenomenon in the context of prediction markets. In

particular, for each trader, the size of price region at which portfolio inertia occurs

is given by 2ε. In other words, the higher the degree of ambiguity, the more inertial

the traders’ portfolios.
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C. Equilibrium

Given price π for contract A and distribution function F of traders’ mean beliefs,

the aggregate (net) demand for the contract is given by

(3) XF (π) =

∫ 1−ε

ε
x (π; q) dF (q) .

The prediction market is in equilibrium when the aggregate demand for contract

A equals zero, that is, XF (π) = 0. The following proposition establishes the equi-

librium price.4

PROPOSITION 1: Given distribution function F , the equilibrium price π∗F is such

that

π∗F = EF (q) +

∫ π∗
F +ε

π∗
F−ε

F (q) dq − ε.

When ambiguity is absent (i.e., ε = 0) the prediction market aggregates the wis-

dom of crowds:

π∗F |ε=0= EF (q) .

That is, the equilibrium price of contract A corresponds to the average of traders’

mean beliefs about the occurrence of event A.

In the presence of ambiguity, however, the prediction market does not necessarily

aggregate the wisdom of crowds. In particular, it aggregates the wisdom of crowds

if and only if the distribution function F is such that
∫ π∗

F +ε

π∗
F−ε

F (q) dq = ε. The next

proposition shows that the situations in which such equality happens to hold are

topologically rare.

PROPOSITION 2: With ambiguity, the prediction market “rarely” aggregates the

wisdom of crowds. Formally, let ∆ be the space of probability distributions over

[ε, 1− ε], endowed with the weak topology. Then, the subset of probability distribu-

tions such that the equilibrium price equals the average of traders’ mean beliefs is

nowhere dense in ∆.

4We relegate all proofs to the Mathematical Appendix.
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Propositions 1 and 2 together suggests that the presence of ambiguity renders

the prediction market ineffective in aggregating the beliefs held by heterogeneous

traders.

PROPOSITION 3: The equilibrium quantity of trades is strictly decreasing in the

degree of ambiguity.

Proposition 3 is a direct consequence of portfolio inertia. As the degree of ambi-

guity increases, the “inaction range” of each trader i, [qi − ε, qi + ε], becomes wider.

Since each trader is more likely to stay put in a more ambiguous environment,

the aggregate trades must be fewer as well. This result is reminiscent of well-known

models of ambiguity in financial economics (e.g.,Caballero and Krishnamurthy 2008;

Guidolin and Rinaldi 2010; Routledge and Zin 2009), which suggest that a signif-

icant increase in Knightian uncertainty may contribute to liquidity hoarding and

market breakdown.

Moreover, the deterrence of trades in a particular way is what causes the failure of

the prediction market to aggregate beliefs. Specifically, for any prevailing price π, the

traders who stay put are those with moderate beliefs such that their inaction ranges

cover π. Those who trade have beliefs that are more extreme—either more optimistic

or more pessimistic—than the abstainers. Suppose the abstaining traders did trade,

the chance of the hypothetical market price, after aggregating the abstaining traders’

beliefs, happens to be exactly the same as π is zero.

III. Testable Implications

The previous section has derived the equilibrium results under ambiguity. How-

ever, since the degree of ambiguity is not observable, those results cannot be tested

directly. In this section, we impose more structures on the model and derive impli-

cations that are testable with prediction market data.

A. Preliminaries

Suppose the true probability that event A occurs is given by p ∈ [ε, 1− ε]. Traders

do not know the true probability, but each holds an interval of (subjective) admissible
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beliefs—their multiple priors. We assume that the true probability p coincides with

the mean beliefs of a mass m ∈ (0, 1) of traders. For the other traders, their

mean beliefs are continuously distributed over [ε, 1− ε]. Assumption 1 embeds these

additional structures into the distribution function F .

ASSUMPTION 1: The distribution function F takes the following form:

F (q) ≡

 (1−m)F (q) if q ∈ [ε, p) ,

(1−m)F (q) +m if q ∈ [p, 1− ε] ,

where F is some continuous distribution function of q over [ε, 1− ε].

The functional form of F is left unspecified. We let Φ denote the integral of F ,

i.e., Φ (q) ≡
∫ q
ε F (q′) dq′.

The interpretation of Assumption 1 is that there are some traders whose beliefs

happen to be “correct.” In practice, this might mean that, prior to trading, some

traders have received private signals that are partially informative of the true prob-

ability.

One may wonder to what extent the mass of traders with “correct” mean beliefs

matters to deriving testable implications. We will show in the next subsection that

the exact size of the mass does not affect our main results.

B. Main Results

Since the distribution function F is given and parameterized by the true prob-

ability p, applying Proposition 1 allows us to solve for the equilibrium price as a

function of p, as shown below.

PROPOSITION 4: Under Assumption 1, the equilibrium price π∗ (p) is:

1) continuous, with π∗ (ε) > ε and π∗ (1− ε) < 1− ε;

2) such that π∗ (p) = π̂ for any p ∈ [π̂ − ε, π̂ + ε];

3) strictly increasing for p /∈ [π̂ − ε, π̂ + ε];
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where π̂ is identified by π̂ − Φ (π̂ + ε) + Φ (π̂ − ε) = 1− 2ε− Φ (1− ε).

Figure 1 plots the equilibrium price in a p-π diagram, where the true probability

p = (π∗)−1 (π) is a correspondence of the equilibrium price π. Specifically, it attains

a non-singleton set value when π = π̂, with the size of that set equal to 2ε.

Before discussing Proposition 4, we establish the fact that the result is invariant

to the size of mass m.

COROLLARY 1: Under Assumption 1, the size of mass m does not affect the equi-

librium price π∗ (p).

The most important feature of Proposition 4, in part 2, is that there exists a

range of true probabilities, [π̂ − ε, π̂ + ε], within which the market price is not at all

responsive to any change in the underlying distribution of states. That is, π∗′ (p) = 0

for any p in that range. Instead of predicting, the prediction market simply “assigns”

an uninformative number π̂, the mid-point of the range [π̂ − ε, π̂ + ε], as the price.

The reason for this result is straightforward: Since the traders who have the correct

mean beliefs about p are not trading, what exactly those traders think about the

true state of the world must not be reflected in the market price.

Outside the vertical segment [π̂ − ε, π̂ + ε], however, the prediction market “works”

(part 3). Specifically, if all parameters of the model were known, one would be able

to infer the true probability p from the equilibrium market price π∗ (p). The higher

the true probability, the higher the price.

Part 1 of Proposition 4 also shows that, for a true probability that is very high

(near 1 − ε) or very low (near ε), the equilibrium price exhibits a favorite-longshot

bias commonly observed in the literature (e.g., Cain, Law and Peel 2000): favorite

events are under-priced while longshot events are over-priced. The intuition is as

follows. For a longshot event where p = ε, for example, if the market price was as

low as ε, that would imply all traders’ mean beliefs were greater than the prevailing

price and, hence, all traders would long the contract, which cannot be an equilibrium.

Therefore, the equilibrium price of a longshot must be significantly larger than the

longshot’s odds.
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As noted in Corollary 1, the exact value of the mass m does not affect the size

of the vertical segment [π̂ − ε, π̂ + ε], which equals twice the degree of ambiguity.

In other words, whether the “informed” mass is extremely small, in which case

few traders have the “correct” beliefs, or very large, which means most traders do,

the opportunity to “observe” Knightian uncertainty remains in the same, vertical

segment in the figure.

This vertical segment is the consequence of the traders’ portfolio inertia under

ambiguity. When some traders who have the “correct” beliefs are in their inaction

range—no matter how few of them there are—the beliefs they hold will not be

reflected in the market equilibrium. Their abstention, therefore, results in the same

price for different underlying true probabilities.

C. Testable Implications

Although the degree of ambiguity, ε, is not directly observable in reality, Propo-

sition 4 yields implications of the presence of ambiguity that are testable with pre-

diction market data. Suppose an econometrician could conduct a large number of

repeated trials for each value of the true probability. Then, with enough data, the

ex post sample proportion, denoted by P , would converge to the corresponding true

probability, p. It follows that the estimated relationship between P and the market

price, π, would converge to the graph of the correspondence p = (π∗)−1 (π). As in

Figure 1, such ideal trials would show a big jump at price level π = π̂, with P being

generally below the 45-degree line below but close to π̂, and above it just thereafter.

Moreover, since the relationship between P and π fundamentally shifts between the

two continuous segments, our result suggests a testable structural change near the

jump in at π̂.

Before conducting the test, the econometrician may not know where the jump

would appear, because π̂, given by

π̂ − Φ (π̂ + ε) + Φ (π̂ − ε) = 1− 2ε− Φ (1− ε) ,

depends on the distribution of mean beliefs among all prediction market traders. It
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follows from the above equation that π̂ would be smaller than 0.5 if F is skewed

towards the lowest mean belief ε, and larger than 0.5 if F is skewed towards the

highest mean belief 1 − ε. But when F is symmetrically distributed over [ε, 1− ε],

π̂ would be equal to 0.5, which is the following corollary.

COROLLARY 2: Under Assumption 1, if F is a symmetric distribution function

over [ε, 1− ε] (i.e., F (1− x) = 1− F (x) for any x ∈ [ε, 1− ε]), then

π̂ = 0.5.

In practice, the empirical chart would precisely follow Figure 1 with the jump at 0.5

in the case of symmetry, but not if asymmetries were present. But even if one might

expect skewness to be present for some contracts but not others, the range for the

crossover point could be scattered about the neighborhood of 0.5. The aggregation

of a large number of contracts, therefore, could push the average π̂ to be in the

neighborhood of 0.5. Since each contract would exhibit a similar (if slightly shifted)

pattern, the overall pattern should loosely follow Figure 1 if Knightian uncertainty

is important in these markets, even though some reflect symmetry whereas others

do not.

Accordingly, the theory suggests that the empirical relationship between P and

π would contain a testable structural break around the neighborhood of 0.5, where

one would expect to see observations scattered below the 45-degree line to the left

of the break-point, and above the 45-degree line to the right of it. The presence of

a structural break adjacent to 0.5, therefore, would be an indication that Knightian

uncertainty is a factor in the market, and would be consistent with the intuition

provided in the introduction.

IV. Empirical Evidence

In this section, we provide some high-level evidence that is consistent with the

theoretical predictions.5

5See the Data Appendix for details.
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We use the historical data from Intrade, a popular online prediction platform which

operated from 2003 to 2013. The platform hosted prediction contracts across wide-

ranging categories of events, such as politics (e.g., which candidate would be elected

the U.S. president), entertainment (e.g., which movie would win the Academy Award

for the Best Picture), current events (e.g., which city would host the Olympic), etc.

We collect all those contracts that are on binary events, regardless of their categories,

and record how each binary event had turned out.

The aim of the empirical analysis is to estimate the ex post sample proportion,

P , of event A’s occurrence as a function of the ex ante price, π, of contract A.

We process the data in the following way. The observations are sorted by price

and evenly partitioned into a number of percentile bins. For each percentile bin, we

calculate the sample proportion of event A’s occurrences whose corresponding prices

fall into that bin. Finally, we plot the sample proportions against the mid-points of

the corresponding price bins.

If the theory developed in the previous section holds, the following is what one

would expect in the empirics. Recall that the value of π̂ depends on the distribution

of mean beliefs among traders. Since each observation in the dataset is from a certain

market with a certain distribution of mean beliefs held by the participating traders,

we can interpret each observation as a single draw from the data-generating process

associated with a certain version of Figure 1. For a price bin closer to 0, therefore,

it is more likely that the observations contained in the bin have been drawn from

the left part of Figure 1, i.e., below the break-point. Similarly, for a price bin closer

to 1, the observations are more likely to have been drawn from the right part of

Figure 1, i.e., above the break-point. More important, when the price bin is near

0.5, the observations are more likely to be from just around the jump, suggesting a

structural break.

We start with the empirical evidence from political events, one of the largest

categories in the Intrade dataset. These events, like Brexit and U.S. presidential

elections, often see a high volume of transactions between bettors. Figure 2, based

on a partition into 50 bins (i.e., 2% of observations per bin), plots the sample

proportion for all bins against the corresponding price. Since prices evolve in the
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prediction markets until the random events are realized, the two panels of the figure

together capture the effect of timing by showing the estimation for two different

dates: (a) the first day market opens to bettors, and (b) the last trading day before

the event starts to take place. For example, the market for whether Barack Obama

would win the 2008 U.S. presidential election first opened on October 23, 2006. For

our purpose, November 3, 2008—the day before the election day—is identified as

the last trading day.6

We are interested in whether there is a discontinuity in the relationship between

the price and the sample proportion, which falls into the well-developed literature

about testing structural breaks. For each panel of Figure 2, we conduct three analy-

ses. First, a linear regression assuming no structural breaks is shown as the dashed

line in the diagram. Next, we run two types of break-point tests—an F test7 and

a moving sum of residuals (MOSUM) test8—against the null hypothesis that there

is no structural breaks for the entire sample. Lastly, we re-run the linear regression

by estimating the location of one break-point (as suggested by our theory). The es-

timation returns (i) a linear segment on each side of the estimated structural break,

plotted as the solid lines in the diagram, as well as (ii) the location of the structural

break, identified by two red dots in the diagram corresponding to, respectively, the

last observation of the first segment and the first observation of the second segment.

The details of the three analyses are shown in the column “50 bins” of Table 1.

A few remarks on the results follow. First, in both panels, the regression lines

without structural breaks fall very close to the 45-degree line, suggesting the overall

efficiency of markets in pricing the probabilities of random events. The evidence of

market efficiency on the first trading day is remarkable because, for politics, a lot

of markets opened a long time—sometimes years—ahead of the resolution of the

events. Yet, as the regression table shows, the slopes are statistically significant and

very close to 1.

6 On election days, November 4 in this example, exit polls are informative even before the result is
determined. We thus treat it as part of the resolution of uncertainty and, hence, exclude it from our data.

7The F test is an extension of the Chow test (Chow 1960), against the alternative hypothesis of an
unknown break-point. See, e.g., Andrews (2003) and Andrews and Ploberger (1994) for details.

8The MOSUM test analyzes the moving sum of residuals and detects whether a strong shift of the
fluctuation process exists. See, e.g., Chu, Hornik and Kuan (1995b,a) for details.
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Second, although panel (a) is relatively noisier, panel (b) shows a clear pattern as

predicted by our theory: The null hypothesis of no structural breaks is rejected by

the MOSUM test in (a) and by both tests in (b), and the break-point estimation

shows a significant jump near price level 0.5. The diagram, hence, resembles our

prediction shown in Figure 1. For observations in the intermediate price range,

one might think that the price is close to 0.5 because traders have solid information

suggesting an “even match” between outcome A and Ac. It is also possible, however,

that the market is shrouded in ambiguity as some traders, albeit partially informed,

are reluctant to trade. Just like in the example of a Knightian urn, an intermediate

price in this case could mean a wide range of true probabilities. In panel (b), for

a price in the break region between 0.57 and 0.69, the sample proportion could be

as low as 33%, or as high as 83%. In other words, the degree of ambiguity, ε, in

this particular example is about 0.25 (i.e., half of 83%− 33%). Such a magnitude is

significant not only statistically—as the rejection of null hypothesis “no structural

breaks” implies the rejection of “ε equals to zero”—but also economically. According

to the multiple-prior framework, it would mean that a typical trader would consider

all the probabilities within an interval of length 0.5 equally admissible to themself

in governing the realization of the binary event. A significant jump near price level

0.5 like the one in panel (b), therefore, is an indication of the presence of Knightian

uncertainty. As the linear regression without breaks shows, the specific pattern

of observations also causes the regression line to have a slope larger—albeit only

slightly—than 1.

Another important difference between the two panels is that, in panel (b), more

observations are clustered near price levels 0 and 1. This means, by the last day,

more traders hold (posterior) beliefs that some outcome—either A or Ac—is very

likely to be realized, suggesting a decrease in risks over time. Such a decrease in

risks can be a result of information acquisition by the traders, who, until the random

events resolve, may have the incentives to learn about the events and update their

bets accordingly. Since risks have decreased while ambiguity remains, our empirical

evidence also suggests an observational distinction between the concepts of risk and

Knightian uncertainty.
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Furthermore, the above empirical patterns are to some extent robust against the

choice of the number of bins. Figure 3 reproduces the diagram by partitioning the

data into 30 bins instead. The column “30 bins” of Table 1 shows the details of

the regression and break-point analysis. Overall, the observations drawn earlier still

hold.9

The observation that ambiguity remains until the last trading day suggests, unlike

risks, Knightian uncertainty may be not “learnable” in practice to the traders. The

intuition can be illustrated using the Knightian urn where the composition of black

and red balls is unknown. Imagine two different scenarios. In the first scenario, a

subject observed repeated draws from the same Knightian urn. In this case, the

sample proportion over time would reveal the true composition of the two colors

because, after all, the composition is fixed over time. In the second scenario, there

was an experimenter who replaced the Knightian urn with a new one every time

a ball was drawn by the subject. In this case, the sample proportion may not

inform the subject of what to expect in the next Knightian urn, simply because

the composition of black and red balls in the new urn could be anything of the

experimenter’s choosing. If the underlying data-generating process—that is, the

way the experimenter changed every other Knightian urn—was not learnable to the

subject, then the degree of ambiguity would not decrease over time.10 One might

think that, in politics, it is intuitively easy for traders to acquire knowledge—from

polls, news reports, political analyses, etc. Yet, our empirical evidence, which is

based on a large number of prediction markets about various political events, seems

to fit the second scenario, suggesting that the Knightian uncertainty of politics may

indeed be not “learnable” through information acquisition.

We now turn to another major category: entertainment events, such as the winners

of cinematic awards or the box offices of movies. Figures 4 and 5 reproduce the P -π

diagram for 30 bins and 50 bins, respectively, and Table 2 reports the details of

the regressions and break-point tests. Although qualitatively similar, the patterns

9We have checked other variations between 30 and 50, which yield similar results (omitted to limit space).
Obviously, the number of bins should be neither too small (which would leave too few points in the diagram),
nor too large (which would leave too few observations per bin).

10See Epstein and Schneider (2007) for a theoretical treatment of learning under ambiguity.
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are less pronounced compared to politics. The jump near 0.5 is less clear and,

interestingly, the clustering near 0 and 1 is less marked. This evidence suggests less

learning in entertainment than in politics, which is understandable since it might be

more difficult for bettors to acquire information about the general public’s personal

tastes of movies and music.

Politics and entertainment together account for over 80% of the Intrade dataset.

However, for completeness, we reproduce the empirical evidence with the full sample,

as shown in Figures 6 and 7, as well as Table 3. The patterns, essentially by

construction, are similar to what we established above.

V. Concluding Remarks

Knightian uncertainty—an important theoretical concept in the literature that is

often used to explain observed phenomena—has never been directly evidenced in an

empirical setting. In this paper, we have developed a model of a prediction market

with ambiguity, where traders have maxmin preferences. We have derived more

direct, observational implications of the presence of Knightian uncertainty. Using

the historical betting data from Intrade, we have further presented some high-level

evidence that is consistent with the prediction of our model. In particular, for price

levels close to 0.5, the market-implied, ex ante probability of a random event is not

indicative of the ex post sample proportion, suggesting the presence of Knightian

uncertainty.

Moreover, our empirical evidence has shown that, although traders seem to have

acquired information which leads to a decrease in risks, ambiguity remains until the

last trading day, suggesting that the Knightian uncertainty of the world may be not

“learnable” to traders. By comparing political events and entertainment events, we

have also shown that the empirical patterns we identified are more pronounced in

politics than in entertainment.

The evidence we have provided is only preliminary, since the empirics of this

paper are based on a single prediction platform that is skewed towards political and

entertainment events. In a future, empirical study, we will collect more prediction

market data across different platforms and different event types, and we will examine
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more closely the relationship between the ex post sample proportion and the ex ante

price by taking into account the type of events, the time ahead of the resolution of

randomness, and other aspects of the betting markets.
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Figure 1. Prediction Market Equilibrium in p-π Diagram.
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Figure 2. Prediction Market Data in P -π Diagram: Politics (50 bins).

Note: The dashed lines are regression lines without breaks. The solid lines are regression lines with one
estimated break, with two red dots identifying the location of the break.
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Figure 3. Prediction Market Data in P -π Diagram: Politics (30 bins).

Note: The dashed lines are regression lines without breaks. The solid lines are regression lines with one
estimated break, with two red dots identifying the location of the break.
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Figure 4. Prediction Market Data in P -π Diagram: Entertainment (50 bins).

Note: The dashed lines are regression lines without breaks. The solid lines are regression lines with one
estimated break, with two red dots identifying the location of the break.
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Figure 5. Prediction Market Data in P -π Diagram: Entertainment (30 bins).

Note: The dashed lines are regression lines without breaks. The solid lines are regression lines with one
estimated break, with two red dots identifying the location of the break.
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Figure 6. Prediction Market Data in P -π Diagram: Full Sample (50 bins).

Note: The dashed lines are regression lines without breaks. The solid lines are regression lines with one
estimated break, with two red dots identifying the location of the break.
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Figure 7. Prediction Market Data in P -π Diagram: Full Sample (30 bins).

Note: The dashed lines are regression lines without breaks. The solid lines are regression lines with one
estimated break, with two red dots identifying the location of the break.
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Table 1—Estimation and Test of Structural Breaks: Politics

Dependent variable: ex post sample proportion
Independent variable: ex ante price

50 bins 30 bins
(a) first trading day

slope (no breaks) 0.953 0.948
(0.046) (0.047)

tests of “no breaks”
F test not rejected not rejected

(4.232) (6.818)

MOSUM test rejected rejected
(1.417) (1.331)

structural break estimation
slope (segment 1) 0.680 0.641

(0.151) (0.142)

break region [0.45, 0.47] [0.43, 0.47]
slope (segment 2) 0.893 0.839

(0.117) (0.121)

(b) last trading day
slope (no breaks) 1.03 1.04

(0.022) (0.026)

tests of “no breaks”
F test rejected rejected

(223.660) (90.312)

MOSUM test rejected rejected
(1.804) (1.586)

structural break estimation
slope (segment 1) 0.614 0.749

(0.033) (0.041)

break region [0.57, 0.69] [0.60, 0.75]
slope (segment 2) 0.464 0.318

(0.077) (0.124)

For regression coefficients, standard errors are in parentheses
For F test and MOSUM test, test statistics are in parentheses.
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Table 2—Estimation and Test of Structural Breaks: Entertainment

Dependent variable: ex post sample proportion
Independent variable: ex ante price

50 bins 30 bins
(a) first trading day

slope (no breaks) 0.933 0.932
(0.045) (0.047)

tests of “no breaks”
F test not rejected not rejected

(4.832) (3.886)

MOSUM test not rejected not rejected
(0.870) (0.782)

structural break estimation
slope (segment 1) 0.864 0.773

(0.099) (0.106)

break region [0.50, 0.50] [0.48, 0.50]
slope (segment 2) 0.876 0.847

(0.130) (0.128)

(b) last trading day
slope (no breaks) 1.04 1.03

(0.031) (0.029)

tests of “no breaks”
F test rejected rejected

(18.348) (25.542)

MOSUM test rejected not rejected
(1.728) (0.956)

structural break estimation
slope (segment 1) 0.680 0.679

(0.089) (0.075)

break region [0.46, 0.49] [0.44, 0.49]
slope (segment 2) 0.991 1.00

(0.083) (0.068)

For regression coefficients, standard errors are in parentheses
For F test and MOSUM test, test statistics are in parentheses.
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Table 3—Estimation and Test of Structural Breaks: Full Sample

Dependent variable: ex post sample proportion
Independent variable: ex ante price

50 bins 30 bins
(a) first trading day

slope (no breaks) 0.918 0.927
(0.028) (0.029)

tests of “no breaks”
F test not rejected rejected

(8.104) (11.156)

MOSUM test not rejected not rejected
(1.049) (0.970)

structural break estimation
slope (segment 1) 0.730 0.725

(0.077) (0.070)

break region [0.45, 0.47] [0.44, 0.48]
slope (segment 2) 0.871 0.882

(0.071) (0.067)

(b) last trading day
slope (no breaks) 1.03 1.03

(0.019) (0.021)

tests of “no breaks”
F test rejected rejected

(42.064) (18.113)

MOSUM test rejected not rejected
(1.362) (1.141)

structural break estimation
slope (segment 1) 0.858 0.915

(0.036) (0.040)

break region [0.62, 0.68] [0.65, 0.75]
slope (segment 2) 0.680 0.604

(0.094) (0.152)

For regression coefficients, standard errors are in parentheses
For F test and MOSUM test, test statistics are in parentheses.
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Table 4—Intrade Data: Event Categories and Number of Markets.

Event category Number of markets
Art 60
Business 43
Chess 52
Climate & Weather 861
Construction & Engineering 9
Current Events 1540
Education 1
Entertainment 8715
Fine Wine 5
Foreign Affairs 87
Legal 310
Media 10
Politics 5460
Real Estate 2
Science 20
Social & Civil 30
Technologies 65
Transportation 11

Table 5—Intrade Data: Number of Observations in Final Analysis.

Event category Total observations Observations per bin
(50 bins) (30 bins)

Politics 897 18 30
Entertainment 1157 23 39
Full sample 2509 50 84
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Mathematical Appendix

Proof of Proposition 1

Note that any equilibrium price π has to satisfy (i) π > 2ε and (ii) π < 1 − 2ε.

If (i) does not hold, then π∗ ≤ qi + ε for all i, which means any trader will have

either a long position or a zero position—not an equilibrium. Similarly, if (ii) does

not hold, no trader will have a long position, which cannot be an equilibrium either.

Substitute (2) into (3) and rewrite the aggregate demand as

XF (π) =

∫ π−ε

ε

q + ε− π
π (1− π)

wdF (q) +

∫ 1−ε

π+ε

q − ε− π
π (1− π)

wdF (q) .

Hence, XF (π) = 0 if and only if

∫ π−ε

ε
(q + ε− π) dF (q) +

∫ 1−ε

π+ε
(q − ε− π) dF (q) = 0

⇔
∫ π−ε

ε
(q − π) dF (q) +

∫ 1−ε

π+ε
(q − π) dF (q) +

∫ π−ε

ε
εdF (q)−

∫ 1−ε

π+ε
εdF (q) = 0

⇔ EF (q)− π −
∫ π+ε

π−ε
(q − π) dF (q) + ε [F (π − ε) + F (π + ε)− 1] = 0

⇔ EF (q)− π +

∫ π+ε

π−ε
F (q) dq − [(q − π)F (q)]π+ε

π−ε + ε [F (π − ε) + F (π + ε)− 1] = 0,

where the last step follows from integration by parts. Simplifying and rearranging

terms yields the stated expression in the proposition. Q.E.D.

Proof of Proposition 2

Let G be the space of distribution functions over [ε, 1− ε], endowed with the Lévy

metric `, where

` (G1, G2)

≡ inf {ε > 0 | G1 (q − ε)− ε ≤ G2 ≤ G1 (q + ε) + ε for all q ∈ [ε, 1− ε]}
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for any G1, G2 ∈ G. Let F be the subset of G that satisfies π∗F = EF (q) for any

F ∈ F . Since the Lévy metric metrizes the weak topology,11 the proposition is

equivalent to the claim that F is nowhere dense in (G, `).

Note that F is closed. Since a set is nowhere dense if and only if the complement

of its closure is dense,12, it remains to be shown G \F is dense, that is, for any point

in G, there is a sequence from G \ F converging to that point. It is thus enough

to show, for any F ∈ F and any δ > 0, there exists some G ∈ G \ F such that

` (F,G) < δ.

F is non-decreasing since it is a distribution function. It follows that

lim
q→[EF (q)+ε]−

F (q) ≥ F (EF (q)− ε) .

We show prove the results by examining two cases.

Case 1 : limq→[EF (q)+ε]− F (q) > F (EF (q)− ε).

Given δ > 0, we construct a distribution function G from F as

G (q) ≡


F (q) if q ∈ [ε,EF (q)− ε− δ1) ,

F (EF (q)− ε) if q ∈ [EF (q)− ε− δ1,EF (q) + ε+ δ2) ,

F (q) if q ∈ [EF (q) + ε+ δ2, 1− ε] ,

where δ1, δ2 > 0 are such that function g ≡ G− F satisfies conditions

∫ EF (q)+ε+δ2

EF (q)−ε−δ1
g (q) dq = 0

and

max {g (EF (q)− ε− δ1) ,−g (EF (q) + ε+ δ2)} =
δ

2
.

It is easily verified that G is a mean-preserving spread of F , with two new atoms

created at points EF (q)− ε− δ1 and EF (q) + ε+ δ2. By construction, this implies

11See, e.g., Huber and Ronchetti (2009), p. 28.
12See, e.g., Sutherland (1975), p. 64.
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that

∫ EG(q)+ε

EG(q)−ε
G (q) dq =

∫ EF (q)+ε

EF (q)−ε
G (q) dq

=

∫ EF (q)+ε

EF (q)−ε
[F (q) + g (q)] dq

= ε+

∫ EF (q)+ε

EF (q)−ε
g (q) dq < ε,

where the last equality holds because F ∈ F , and the inequality holds because

g (EF (q) + ε) < 0, which implies
∫ EF (q)+ε
EF (q)−ε g (q) dq < 0. Since

∫ EG(q)+ε
EG(q)−ε G (q) dq < ε,

G ∈ G \ F . Finally, let ρ be the uniform metric, that is,

ρ (G1, G2) ≡ sup {|G1 (q)−G2 (q)| | q ∈ [ε, 1− ε]}

for any G1, G2 ∈ G. By construction, ρ (F,G) = δ
2 . Since the Lévy metric is

bounded by the uniform metric from above, that is, ` (G1, G2) ≤ ρ (G1, G2) for any

G1, G2 ∈ G, we have ` (F,G) ≤ δ
2 < δ.

Case 2 : limq→[EF (q)+ε]− F (q) = F (EF (q)− ε).

Given δ > 0, we construct a distribution function H from F as

H (q) ≡


F (q) if q ∈ [ε,EF (q)− ε) ,

F (EF (q)− ε) + δ3 if q ∈ [EF (q)− ε,EF (q) + ε+ δ4) ,

F (q) if q ∈ [EF (q) + ε+ δ4, 1− ε] ,

where δ3, δ4 > 0 are such that function h ≡ H − F satisfies conditions

∫ EF (q)+ε+δ4

EF (q)−ε
h (q) dq = 0

and

max {δ3,−h (EF (q) + ε+ δ4)} =
δ

2
.

It is easily verified that H is a mean-preserving spread of F , with two new atoms
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created at points EF (q)− ε and EF (q) + ε+ δ4. By construction, this implies that

∫ EG(q)+ε

EG(q)−ε
H (q) dq =

∫ EF (q)+ε

EF (q)−ε
H (q) dq

=

∫ EF (q)+ε

EF (q)−ε
[F (q) + h (q)] dq

= ε+

∫ EF (q)+ε

EF (q)−ε
h (q) dq

= ε+ 2εδ3 > ε,

where the last but second equality holds because F ∈ F , and the last equality follows

from the construction of H. Since
∫ EG(q)+ε
EG(q)−ε H (q) dq > ε, H ∈ G \F . Finally, similar

to Case 1, we have ρ (F,H) = δ
2 and, hence, ` (F,H) < δ. Q.E.D.

Proof of Proposition 3

Decompose XF (π) into the aggregate supply (shorts) SF (π) and the aggregate

demand (longs) DF (π), where

SF (π) =

∫ π−ε

ε
−q + ε− π
π (1− π)

wdF (q) , DF (π) =

∫ 1−ε

π+ε

q − ε− π
π (1− π)

wdF (q) ,

and SF (π∗F ) = DF (π∗F ) in equilibrium. We show that an increase in ε shifts the

supply curve inwards. That is,

dSF (π)

dε
= 0 +

ε+ ε− π
π (1− π)

wdF (ε)−
∫ π−ε

ε

∂

∂ε

q + ε− π
π (1− π)

wdF (q) < 0.

Similarly, an increase in ε shifts the demand curve inwards (i.e., dDF (π)
dε < 0). It

follows that the equilibrium quantity of trade—SF (π∗F ), or DF (π∗F )—has to be

smaller as the degree of ambiguity increases. Q.E.D.
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Proof of Proposition 4

Let Φ denote the integral of F , i.e., Φ (q) ≡
∫ q
ε F (q′) dq′. It follows from the

definition of F that

Φ (q) =

∫ q

ε
F
(
q′
)
dq′ =

 (1−m) Φ (q) if q ∈ [ε, p) ,

(1−m) Φ (q) +m (q − p) if q ∈ [p, 1− ε] ,

where Φ is the integral of F . The equilibrium condition becomes

π = EF (q) + Φ (π + ε)− Φ (π − ε)− ε

= 1− 2ε− Φ (1− ε) + Φ (π + ε)− Φ (π − ε) ,

where the second equality follows from integration by parts. Since Φ (q) has a kink

at point p, the equilibrium price depends on the position of p relative to π + ε and

π − ε.

Case 1 : π − ε ≤ p ≤ π + ε.

The equilibrium condition is rewritten as

π = 1− 2ε− (1−m) Φ (1− ε)−m (1− ε− p)

+ (1−m) Φ (π + ε) +m (π + ε− p)− (1−m) Φ (π − ε) .

Rearranging terms and dividing both sides by 1−m yields

π − Φ (π + ε) + Φ (π − ε) = 1− 2ε− Φ (1− ε) .

Case 2 : p > π + ε.

The equilibrium condition is rewritten as

π = 1− 2ε− (1−m) Φ (1− ε)−m (1− ε− p)

+ (1−m) Φ (π + ε)− (1−m) Φ (π − ε) .
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Rearranging terms yields

(A1)
π

1−m
− Φ (π + ε) + Φ (π − ε) = 1− 2ε− Φ (1− ε) +

(p− ε)m
1−m

.

Note that the left-hand side of equation (A1) is strictly increasing in π. Thus, the

solution π∗ to the equation is a continuous and strictly increasing function of p.

Furthermore, as p → π̂ + ε, where π̂ is the equilibrium price in Case 1, the right-

hand side of equation (A1) converges to 1− 2ε− Φ (1− ε) + π̂m
1−m , and the solution

to the equation converges to π̂. In other words, the equilibrium price is continuous

at point p = π̂ + ε.

Next, we show π∗ (1− ε) < 1 − 2ε, which implies π∗ (1− ε) < 1 − ε in part 1 of

the proposition. Let LHS (π) and RHS (p) denote the left- and right-hand sides of

equation (A1), as functions of π and p, respectively. Note that

LHS (1− 2ε)−RHS (1− ε) =

[
1− 2ε

1−m
− Φ (1− ε) + Φ (1− 3ε)

]
−
[
1− 2ε− Φ (1− ε) +

(1− 2ε)m

1−m

]
= Φ (1− 3ε) > 0.

Since LHS is strictly increasing in π, the solution to the equation when p = 1 − ε

must be smaller than 1− 2ε.

Case 3 : p < π − ε.

The equilibrium condition is rewritten as

π = 1− 2ε− (1−m) Φ (1− ε)−m (1− ε− p)

+ (1−m) Φ (π + ε) +m (π + ε− p)

− (1−m) Φ (π − ε)−m (π − ε− p) .

Rearranging terms yields

(A2)
π

1−m
− Φ (π + ε) + Φ (π − ε) = 1− 2ε− Φ (1− ε) +

(p+ ε)m

1−m
.
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Similar to Case 2, the solution π∗ to equation (A2) is continuous and strictly in-

creasing in p, and it converges to π̂ as p → π̂ − ε. Hence, the equilibrium price is

continuous at point p = π̂ − ε as well.

Next, we show π∗ (ε) > 2ε, which implies π∗ (ε) > ε in part 1 of the proposition.

Again, let LHS (π) and RHS (p) denote the left- and right-hand sides of equation

(A2). Note that

LHS (2ε)−RHS (ε) =

[
2ε

1−m
− Φ (3ε) + Φ (ε)

]
−
[
1− 2ε− Φ (1− ε) +

2εm

1−m

]
=

[
Φ (1− ε)− Φ (3ε)

]
− [(1− ε)− 3ε] < 0,

where the last inequality holds because Φ is the integral of distribution function F

over [ε, 1− ε]. Since LHS is strictly increasing in π, the solution to the equation

when p = ε must be larger than 2ε. Q.E.D.

Proof of Corollary 2

Recall that π̂ is identified by equation

π̂ − Φ (π̂ + ε) + Φ (π̂ − ε) = 1− 2ε− Φ (1− ε) .

The symmetry of F implies −Φ (1− x) = (x− ε)−Φ (x) for any x ∈ [ε, 1− ε]. Thus,

the equilibrium condition becomes

π̂ −
[
π̂ + Φ (1− π̂ − ε)

]
+ Φ (π̂ − ε) = 1− 2ε−

[
1− 2ε+ Φ (ε)

]
⇔ Φ (1− π̂ − ε)− Φ (π̂ − ε) = Φ (ε) = 0,

to which π̂ = 0.5 is the only solution. Q.E.D.
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Data Appendix

The historical data of Intrade was archived by Ipeirotis (2013) and is available

on GitHub. Table 4 lists all the categories of events and the number of markets

within each category. We complete the dataset by creating an outcome variable and

recording how each random event had turned out. The outcome equals 1 if an event

occurs, and it equals 0 if its complement event occurs.

Some markets have correlated outcomes, because they are about the same, un-

certain circumstances. For example, concerning the 2012 U.S. Republican Party

presidential nominee, there are 53 separate markets corresponding to 53 possible

winners, including Mitt Romney, Rick Santorum, Ron Paul, Newt Gingrich, and

“any other individual” not specified by the prediction platform. To avoid such cor-

relation in the observations, for each group of these correlated markets, we randomly

select one market into the aggregate sample and disregard the rest.

The total number of selected markets included in the final analysis also shown in

Table 5. The table lists the number of observations—the total as well as the number

of observations per percentile bin—for political events, entertainment events, and

the full sample. The dataset is skewed towards political and entertainment events,

as the two categories together accounts for 82% of the full sample.
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