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Abstract 

Rare events (RE) and long-run risks (LRR) are complementary approaches for characterizing 

macroeconomic variables and for understanding asset pricing.  We estimate a model with RE and LRR 

using long-term consumption data for 42 economies.  RE typically associates with major historical 

episodes, such as world wars and depressions and analogous country-specific events.  LRR reflects 

gradual processes that influence long-run growth rates and volatility.  A match between the model and 

observed average rates of return requires a coefficient of relative risk aversion, γ, around 6.  Most of the 

explanation for the equity premium derives from RE, although LRR makes a moderate contribution. 
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Rare macroeconomic events, denoted RE, provide one approach for modeling the long-

term evolution of macroeconomic variables such as GDP and consumption.  Another approach, 

called long-run risks or LRR, emphasizes variations in the long-run growth rate and the variance 

of shocks to the growth rate (stochastic volatility).  An extensive literature has studied RE and 

LRR as distinct phenomena, but a joint approach does better at describing the macro data.  

Moreover, although we prefer a model that incorporates both features, we can assess the relative 

contributions of RE and LRR for explaining asset-pricing properties, such as the average equity 

premium and the volatility of equity returns. 

As in previous research, this study treats RE and LRR as unobserved latent variables.  

Our specification views RE as comprising sporadic, drastic, and jumping outbursts, whereas 

LRR exhibits persistent, moderate, and smooth fluctuations.  Our formalization of this 

distinction provides the basis for separately identifying the two forces using data on real per 

capita consumption for 42 economies going back as far as 1851 and ending in 2012 (4814 

country-year observations).   

With respect to RE, our results include characterizations for when the world and 

individual countries are in disaster states and by how much.  We also isolate patterns of 

economic recovery, related to the extent to which disaster shocks have permanent or temporary 

impacts.  At the world level, the periods labeled as RE (based on posterior probability 

distributions) correspond to familiar historical events, such as the world wars, the Great 

Depression, and possibly the Great Influenza Epidemic of 1918-20 (but not the recent Great 

Recession).  For individual or small groups of countries, examples of events associated with rare 

disasters are the Asian Financial Crisis of 1997-98, the Russian Revolution and Civil War after 

World War I, the 1973 Chilean coup and its aftermath, and the German hyperinflation 

in 1921-24. 



 

 

Similarly, for LRR, our results include ex-post characterizations of movements in the 

long-run growth rate and volatility.  In contrast to RE, LRR exhibits much smoother, low-

frequency evolution.  For example, for the United States, the long-run growth component is 

estimated to be well above normal for 1962-67, 1971, 1982-85, and 1997-98—recent periods 

typically viewed as favorable for economic growth.  At earlier times, the long-run growth rate is 

unusually high in 1933-36 (recovery from the Great Depression), 1898, and 1875-79 (resumption 

of the gold standard).  On the down side, the estimated U.S. long-run growth rate is unusually 

low in 2007-09 (Great Recession), 1990, 1979, 1910-13, 1907, 1882-93, 1859-65, and 1852-55. 

 As examples for other countries, the estimated long-run growth rate is high in Germany 

for 1945-71; Japan for 1945-72; Chile for 1986-96, 2003-06, and 2009-11; Russia for 1999-

2011; and the United Kingdom for 1983-88 and 1995-2002.  Weak periods for the long-run 

growth rate include Russia in 1989-97 and the United Kingdom in 2007-11. 

 The estimated process for stochastic volatility is even smoother than that for the long-run 

growth rate.  The results for recent years exhibit the frequently mentioned pattern of 

moderation—the estimated volatility was particularly low in the late 1990s for many countries, 

including the United States, Germany, and Japan.  In contrast, Russia experienced a sharp rise in 

volatility from 1973 to 2007. 

To assess asset pricing, we embed the estimated time-series process for consumption into 

an endowment economy with a representative agent that has Epstein-Zin-Weil (EZW) 

preferences (Epstein and Zin [1989] and Weil [1990]).  This analysis generates predictions for 

the average equity premium, the volatility of equity returns, and so on.  Then we compare these 

predictions with averages found in the long-term data for a group of countries. 

The rest of the paper is organized as follows.  Section I relates our study to the previous 

literature on rare macroeconomic events and long-run risks.  Section II lays out our formal 



 

 

model, which includes rare events (partly temporary, partly permanent) and long-run risks 

(including stochastic volatility).  Section III discusses the long-term panel data on consumption, 

describes our method of estimation, and presents empirical results related to the time evolution 

of consumption in each country.  The analysis includes a detailed description for six illustrative 

countries of the evolution of posterior means of the key variables related to rare events and long-

run risks.  Section IV presents the framework for asset pricing.  We draw out the implications of 

the estimated processes for consumption for various statistics, including the average equity 

premium and the volatility of equity returns.  Section V discusses the potential addition of time 

variation in the disaster probability or the size distribution of disasters.  Section VI has 

conclusions. 

 

I. Relation to the Literature 

Rietz (1988) proposed rare macroeconomic disasters, particularly potential events akin to 

the U.S. Great Depression, as a possible way to explain the “equity-premium puzzle” of Mehra 

and Prescott (1985).  The Rietz idea was reinvigorated by Barro (2006) and Barro and Ursúa 

(2008), who modeled macroeconomic disasters as short-run cumulative declines in real per 

capita GDP or consumption of magnitude greater than a threshold size, such as 10%.  Using the 

observed frequency and size distribution of these disasters for 36 countries, Barro and Ursúa 

(2008) found that a coefficient of relative risk aversion, , around 3.5 was needed to match the 

observed average equity premium of about 7% (on levered equity).  Barro and Jin (2011) 

modified the analysis to gauge the size distribution of disasters with a fitted power law, rather 

than the observed histogram.  This analysis estimated the required  to be around 3, with a 95% 

confidence interval of 2 to 4. 



 

 

Nakamura, Steinsson, Barro, and Ursúa (2013), henceforth NSBU, modified the baseline 

rare-disasters model in several respects:  (1) the extended model incorporated the recoveries 

(sustained periods of unusually high economic growth) that typically followed disasters;  

(2) disasters were modeled as unfolding in a stochastic manner over multiple years, rather than 

unrealistically occurring as a jump over a single “period;” and (3) the timing of disasters was 

allowed to be correlated across countries, as is apparent for world wars and global depressions. 

 The empirical estimates indicated that, on average, a disaster reached its trough after six 

years, with a peak-to-trough drop in consumption averaging about 30% and that, on average, half 

of the decline was reversed in a gradual period of recovery.  With an intertemporal elasticity of 

substitution (IES) of two, NSBU found that a coefficient of relative risk aversion, γ, of about 6.4 

was required to match the observed long-term average equity premium.  Although the NSBU 

model improved on the baseline rare-disasters models in various ways, the increase in the 

required γ was a negative in the sense that a value of 6.4 may be unrealistically high.  The main 

reason for the change was the allowance for recoveries from disasters; that is, disasters had a 

smaller impact on asset pricing than previously thought because they were not fully permanent.  

In the present formulation, we improve in several respects on the NSBU specification of rare 

events. 

The notion of rare macroeconomic events has been employed by researchers to explain a 

variety of phenomena in asset and foreign-exchange markets, as surveyed in Barro and 

Ursúa (2012).  Examples of this literature are Gabaix (2012), Gourio (2008, 2012), Farhi and 

Gabaix (2016), Farhi et al. (2015), Wachter (2013), Seo and Wachter (2016), and Colacito and 

Croce (2013). 

Bansal and Yaron (2004), henceforth BY, introduced the idea of long-run risks.  The 

central notion is that small but persistent shocks to expected growth rates and to the volatility of 



 

 

shocks to growth rates are important for explaining various asset-market phenomena, including 

the high average equity premium and the high volatility of stock returns.  The main results in BY 

and in the updated study by Bansal, Kiku, and Yaron (2010) required a coefficient of relative risk 

aversion, γ, around 10, even higher than the values needed in the rare-disasters literature.  (BY 

assumed an intertemporal elasticity of substitution of 1.5 and also assumed substantial leverage 

in the relation between dividends and consumption.)  In our study, we incorporate the long-run 

risks framework of BY, along with an updated specification for rare macroeconomic events. 

The idea of long-run risks has been applied to many aspects of asset and foreign-

exchange markets.  This literature includes Bansal and Shaliastovich (2013); Bansal, Dittmar, 

and Lundblad (2005); Hansen, Heaton, and Li (2008); Malloy, Moskowitz, and Vissing-

Jorgensen (2009); Croce, Lettau, and Ludvigson (2015); Chen (2010); Colacito and Croce 

(2011); and Nakamura, Sergeyev, and Steinsson (2016).  Beeler and Campbell (2012) provide a 

critical empirical evaluation of the long-run-risks model. 

There is a large literature investigating separately the implications of rare events, RE, and 

long-run risks, LRR.  However, our view is that—despite the order-of-magnitude increase in the 

required numerical analysis—it is important to assess the two core ideas, RE and LRR, in a 

simultaneous manner.1  This study reports the findings from this joint analysis. 

 

II. Model of Rare Events and Long-Run Risks 

The model allows for rare events, RE, and long-run risks, LRR.  The RE part follows 

Nakamura, Steinsson, Barro, and Ursúa (2013) (or NSBU) in allowing for macroeconomic 

                                                 
1Nakamura, Sergeyev, and Steinsson or NSS (2016, section 3) filter the consumption data for crudely estimated disaster effects 

based on the results in Nakamura, Steinsson, Barro, and Ursúa (2013) or NSBU.  Thus, NSS do not carry out a joint analysis of 

rare events and long-run risks.  This joint analysis was also not present in NSBU (which neglected long-run risks). In their 

analysis of asset pricing, NSS consider only the role of long-run risks (applied to their disaster-filtered data), whereas NSBU 

allowed only for effects from rare events.  Thus, neither NSS nor NSBU carried out an analysis that allows for both rare events 

and long-run risks. 



 

 

disasters of stochastic size and duration, along with recoveries that are gradual and of stochastic 

proportion.  We modify the NSBU framework in various dimensions, including the specification 

of probabilities for world and individual country transitions between normal and disaster states.  

Most importantly, we expand on NSBU by incorporating long-run risks, along the lines of 

Bansal and Yaron (2004).  The LRR specification allows for fluctuations in long-run growth 

rates and for stochastic volatility. 

A. Components of consumption 

As in NSBU, the log of consumption per capita for country i at time t, , is the sum of 

three unobserved variables: 

 (1)   , 

where  is the “potential level” (or permanent part) of the log of per capita consumption and  

is the “event gap,” which describes the deviation of  from its potential level due to current and 

past rare events.  The potential level of consumption and the event gap depend on the disaster 

process, as detailed below.  The term  is a temporary shock, where  is an i.i.d. standard 

normal variable.  The standard deviation, σεi, of the shock varies by country.  We also allow σεi to 

take on two values for each country, one up to 1945 and another thereafter.2  This treatment 

allows for post-WWII moderation in observed consumption volatility particularly because of 

improved measurement in national accounts—see Romer (1986) and Balke and Gordon (1989). 

 

B. Disaster probabilities 

 We follow NSBU, but with significant modifications, in assuming that rare 

macroeconomic events involve disaster and normal states.  Each state tends to persist over time, 

                                                 
2When the data for country i begin after 1936,  takes on only one value. 



 

 

but there are possibilities for transitioning from one state to the other.  The various probabilities 

have world and country-specific components. 

For the world component, we have in mind the influence from major international 

catastrophes such as the two world wars and the Great Depression of the early 1930s.  Additional 

possible examples are the Great Influenza Epidemic of 1918-20 and the current threat from 

climate change.3  However, the recent global financial crisis of 2008-09 turns out not to be 

sufficiently important to show up as a world disaster. 

We characterize the world process with two probabilities—one, denoted p0, is the 

probability of moving from normalcy to a global disaster state (such as the start of a world war or 

global depression), and two, denoted p1, is the probability of staying in a world disaster state. 

Thus,   is the probability of moving from a world disaster state to normalcy (such as the 

end of a world war or global depression).  Formally, if  is a dummy variable for the presence 

of a world event, we assume: 

 (2)   

We expect p1 > p0; that is, a world event at t is (much) more likely if the world was experiencing 

an event at t  1. 

For each country, we assume that the chance of experiencing a rare macroeconomic event 

depends partly on the world situation and partly on individual conditions.  We specify four 

probabilities—reflecting the presence or absence of a contemporaneous world event and whether 

the country experienced a rare event in the previous period.  Formally, if Iit is a dummy variable 

for the presence of an event in country i, we have 

                                                 
3See Barro (2015) for an application of the rare-events framework to environmental issues. 



 

 

 (3)          

We expect q01 > q00 and q11 > q10; that is, the presence of a world event at time t makes it (much) 

more likely that country i experiences an event at t.  We also expect q10 > q00 and q11 > q01; that 

is, an individual country event at t is (much) more likely if the country experienced an event 

at t- 1.  In the present specification, the various disaster probabilities—p0, p1, q00, q01, q10, and 

q11—are constant over time.  The q-parameters also do not vary across countries. 

C. Potential consumption 

The growth rate of potential consumption includes effects from rare events, RE, and 

long-run risks, LRR.  The specification for country i at time t is:  

 (4)   ,   

where ,  is the constant long-run average growth rate of potential 

consumption,  picks up the permanent effect of a disaster,  is the evolving part of the 

long-run growth rate,  represents stochastic volatility, and  is an i.i.d. standard normal 

variable. 

D. Rare events 

The RE part of equation (4) appears in the term , which operates for country i at 

time t when the country is in a disaster state (Iit = 1).  The random shock ηit determines the long-

run effect of a current disaster on the level of country i’s potential consumption.  If ηit < 0, a 

disaster today lowers the long-run level of potential consumption; that is, the projected recovery 

from a disaster is less than 100%.  We assume that ηit is normally distributed with a mean and 

variance that are constant over time and across countries.   In practice, we find that the mean of 

ηit is negative, but a particular realization may be positive.  Thus, although the typical recovery is 



 

 

less than complete, a disaster sometimes raises a country’s long-run level of consumption (so 

that the projected recovery exceeds 100%). 

E. Long-run risks 

The LRR part of equation (4) appears in the terms  and .  These terms 

capture, respectively, variations in the long-run growth rate and stochastic volatility.  Our 

analysis of these variables follows Bansal and Yaron (2004, p. 1487, equation [8]).4 

We think of the sum of μi and  as a country’s long-run growth rate for period t.  The 

 term is the evolving part of the long-run growth rate and is governed by: 

 (5)  , 

where  is a first-order autoregressive coefficient, with 0 ≤  < 1.  The shock includes the 

standard normal variable eit, multiplied by the stochastic volatility, , and adjusted by the 

positive constant, k.  The parameter k is the ratio of the standard deviation of the shock to the 

long-run growth rate, , to the standard deviation of the shock to the growth rate of potential 

consumption,  from equation (4).  The constancy of k means that the volatility of these 

two shocks moves in tandem over time within each country. 

F. Stochastic volatility 

 Stochastic volatility, , enters in equations (4) and (5).  We follow Bansal and Yaron 

(2004, p. 1487) in modeling the evolution of volatility as an AR(1) process for the variance: 

(6)  , 

where  is the average country-specific variance, and  is a first-order autoregressive 

coefficient, with 0 ≤  <1.  The shock includes the standard normal variable  multiplied by 

the country-specific volatility of volatility, .  In the estimation, we use a method similar to 

                                                 
4The main difference in specification is that Bansal and Yaron (2004) exclude rare-event components.  Another difference, 

important for asset pricing, is that they assume a levered relationship between dividends and consumption. 



 

 

Bansal and Yaron (2004, p. 1495, n. 13) in constraining  to be non-negative (see 

Appendix A.3). 

G. Dynamics of event gaps 

Returning to equation (1), we now consider the event gap, , which describes the 

deviation of  from its potential level due to current and past rare events.  We assume, 

following NSBU, that  follows a modified autoregressive process: 

(7)  , 

where  is a first-order autoregressive coefficient, with 0 ≤  < 1.  The term  picks up the 

immediate effect of a disaster on consumption, whereas the term  captures the permanent 

part of this effect. Thus, the term  is the temporary part of the disaster shock.  The 

error term includes the standard normal variable  multiplied by the country-specific constant 

volatility . 

The direct effect of a disaster during period t appears in equation (7) as the term .  

We assume that  is negative, and we model it as a truncated normal distribution (with mean 

and variance for the non-truncated distribution that are constant over time and across countries).  

Thus, in the short run, a disaster lowers  in equation (1).  However, as the event gap vanishes 

in equation (7), part of this disaster effect on  disappears.  Specifically, for given , the 

shock  does not affect  in the long run. 

The long-run impact of a disaster involves the term  in equation (7), which 

operates in conjunction with the term  in equation (4).  The combination of these two 

terms means that the short-run effect of  on  in equation (1) is nil.  However, as the event 

gap, , vanishes, the long-run impact on consumption approaches .  Thus, if  < 0 (the 

typical case), the effect on the long-run consumption level is negative. 



 

 

If , the long- and short-run effects of a disaster coincide; that is, disasters have 

only permanent effects on .  If , the long-run effect of a disaster is nil; that is, disasters 

have only temporary effects on .  We find empirically, as do NSBU, that recoveries tend to 

occur but are typically only partial.  This result corresponds to a mean for  that is negative but 

smaller in magnitude than that for . 

H. Consumption growth 

The estimation is based on the observable growth rate of per capita consumption, Δ .  

To see how this variable relates to the underlying rare events and long-run risks, start by taking a 

first-difference of equation (1).  Then substitute for Δ  from equation (4) and for  and  

from equation (7) to get: 

(8)  

+  . 

Equation (8) shows that consumption growth can be decomposed into a rare-events (RE) 

component, the long-run growth rate (which includes long-run risks or LRR), and an error term.  

This error depends on  (equation [4]) and the contemporaneous and lagged values of  

(equation [1]) and  (equation [7]).   

To bring out the main properties for the RE term, assume first that  in equation (8), 

so that event gaps have zero persistence over time in equation (7).  In an RE state ( =1), the 

shock <0 gives the initial downward effect on consumption growth.  For given , this effect 

exactly reverses the next period—that is, the effect on the level of c is temporary, so that an 

equal-size rise in consumption growth follows the initial fall.  In contrast, if , the effect 

on the level of c is permanent, and there is no impact on next period’s consumption growth rate.  



 

 

The lagged term  in equation (8) brings in more lags of rare-events shocks through the 

dynamics of event gaps in equation (7).  This lag structure applies when . 

To assess LRR, consider the term for the long-run growth rate in equation (8).  The first 

part, , is assumed to be constant for country i.  The LRR effect is given by , which is the 

variable part of the long-run growth rate.  This term evolves in accordance with equations (5) 

and (6), which allow for stochastic volatility. 

  

III. Data, Estimation Method, and Empirical Results 

 We use an expanded version of the data on annual consumption (real per capita personal 

consumer expenditure) provided for 42 economies in Barro and Ursúa (2010).  We extended on 

this data set by including observations as far back as 1851 (rather than 1870) and going through 

2012.  There are 4814 country-year observations.  Appendix A.1 provides details. 

 We follow NSBU in estimating the model with the Bayesian Markov-Chain Monte-Carlo 

(MCMC) method.  Our application features nearly flat prior distributions for the various 

underlying parameters.  See Appendix A.3 for details.  We focus our discussion on the posterior 

means of each parameter. 

A. Estimated model 

 Table 1 contains the posterior means and standard deviations for the main parameters of 

the model.  These parameters apply across countries and over time.  

1.  Transition probabilities.  The first group of parameters in Table 1 applies to 

transition probabilities between normal and disaster states.  With respect to a world event, we 

find that p0, the estimated probability of moving from a normal to a disaster state, is 2.9% per 

year.  Once entering a disaster, there is a lot of persistence:  the estimated conditional 

probability, p1, of the world remaining in a disaster state the following year is 65.8%. 



 

 

 The probability of a disaster for an individual country depends heavily on the global 

situation and also on whether the country was in a disaster state in the previous year.  If there is 

no contemporaneous world disaster, the estimated probability, q00, of a country moving from a 

normal to a disaster state is only 0.66% per year.  The estimated conditional probability, q10, of a 

country remaining in a disaster state from one year to the next is 71.9% (if there is no 

contemporaneous world disaster). 

 In the presence of a world disaster, the estimated probability, q01, of a country moving 

from normalcy to disaster is 36.0% per year.  Finally, if there is a world disaster, the estimated 

conditional probability, q11, of a country staying in a disaster state from one year to the next is 

85.7%. 

 The matrix of transition probabilities determines, in the long run, the fraction of time that 

the world and individual countries spend in normal and disaster states.  Specifically, the world is 

estimated to be in a disaster state 7.8% of the time, and each country is estimated to be in a 

disaster state 9.8% of the time.  The average duration of a disaster state is 4.2 years for a country 

(2.9 years for the world). 

As a comparison, Barro and Ursúa (2008, Figure 1, p. 285) found a mean duration for 

consumption disasters of 3.6 years.  That study used a peak-to-trough methodology for 

measuring disaster sizes and defined a disaster as a cumulative contraction by least 10%.  If we 

restrict our present analysis to condition on a disaster cumulating to a decline by at least 10%, we 

get that a country is in a disaster state 8.6% of the time and that the duration of a disaster 

averages 5.0 years. 

 We can also compute for each year the posterior mean of , the dummy variable for a 

world disaster event.  This value, plotted in Figure 1, exceeds 50% for 14 of the 162 sample 

years (which covers 1851 to 2012):  1914-19, 1930, and 1939-45.  In many of these years, the 



 

 

posterior mean exceeds 90% (1914-15, 1930, 1939-40, 1943-45).  These results accord with 

Barro and Ursúa (2008), who noted that the main world macroeconomic disasters in the long-

term international data (in that study since 1870) applied to World War I, the Great Depression, 

and World War II, with the possible addition of the Great Influenza Epidemic of 1918-20. 

Aside from 1914-19, 1930, and 1939-45, the only other years where the posterior mean 

of  is at least 10% in Figure 1 are 1867, 1920, 1931, and 1946.  In particular, the recent global 

financial crisis of 2008-10 does not register in the figure (although it does show up for Greece 

and Iceland).  Specifically, the posterior world event probability peaks at only 0.001 in 2008. 

 We can similarly compute for each year the posterior mean of , the dummy variable for 

a disaster event for each country.  Not surprisingly, many countries are gauged to be in a disaster 

state when the world is in a disaster.  Outside of the main world disaster periods (1867, 1914-20, 

1930-31, 1939-46), the cases in which individual countries have posterior means for  of 25% 

or more are shown in Table 2.  These events include the 1973 Chilean coup, the collapse of the 

Argentinean fixed-dollar regime in 2001-02, the German hyperinflation in 1921-24, the Great 

Recession in Greece for 2009-12, Indian independence in 1947, the Asian Financial Crisis of 

1997-98 for Malaysia and South Korea, the Mexican financial crisis of 1995, the violence and 

economic collapse in Peru in 1985-89, the Portuguese Revolution of 1975, the Russian 

Revolution and civil war for 1921-24, the Spanish Civil War in 1936-38, the Korean War for 

South Korea for 1950-52, the Russo-Turkish War for Turkey in 1876-81, and the extended Great 

Depression in the United States for 1932-33. 

 2. Size distribution of disasters.  The next group of parameters in Table 1 relates to rare 

events, corresponding to the RE term in equation (8) and the dynamics of event gaps in 

equation (7).  The parameter  determines how rapidly a country recovers from a disaster.  The 

estimated value, 0.30 per year, implies that only 30% of a temporary disaster shock remains after 



 

 

one year; that is, recoveries are rapid.  Note, however, that recovery refers only to the undoing of 

the effects from the temporary shock,  in equation (7).  The economy’s consumption 

approaches, in the long run, a level that depends on the permanent part of the shock, .  This 

channel implies that there can be a great deal of long-run consequence from a disaster—

depending on the realizations of  while the disaster state prevails. 

 The estimated mean of the disaster shock, , is 0.079; that is, consumption falls on 

average by about 8% in the first year of a disaster.  (Note that this mean applies to a truncated 

normal distribution; that is, one that admits only negative values of the shock.)  The estimated 

standard deviation, , of this shock is 0.057.  Hence, there is considerable dispersion in the 

distribution of first-year disaster sizes.  The dispersion in cumulative disaster sizes depends also 

on the stochastic duration of disaster states, which depends on the transition probabilities given 

in equations (2) and (3). 

 The estimated mean of the permanent part of the disaster shock, , is 0.028; that is, 

consumption falls on average in the long run by about 3% for each year of a disaster.  (In this 

case, the mean applies to a normal distribution.)  The estimated standard deviation, , is 0.148.  

Hence, there is a great deal of dispersion in the long-run consequences of a disaster. 

   The final group of parameters in Table 1 concerns long-run risks (LRR), corresponding 

in equation (8) to the term , which is the variable part of the long-run growth rate.  The 

estimated value of , the AR(1) coefficient for  in equation (5), is 0.73, which indicates 

substantial persistence from year to year.  Recall that the shock to  has a country-specific 

standard deviation, , which evolves over time in accordance with the model of stochastic 

volatility in equation (6).  The estimated value of , the AR(1) coefficient for , is 0.96, which 



 

 

indicates very high persistence from year to year.5  The baseline volatility, corresponding to the 

mean across countries of the σi, is 0.024. 

 In key respects, our estimated parameters for the LRR part of the model accord with 

those presented by Bansal and Yaron (2004) and in an updated version, Bansal, Kiku, and 

Yaron (2010).  Our estimated  of 0.73 compares to their respective values of 0.78 and 0.74 

(when their monthly values are expressed in annual terms).  Our estimated  of 0.96 compares 

to their respective values of 0.86 and 0.99.  Our estimated mean σi of 0.024 compares to their 

respective values of 0.027 and 0.025. 

 From the perspective of equation (8), we can think of how the three components 

contribute to explaining the observed variations in the growth rate of consumption.  Table 3 

summarizes these results.  The overall mean of the annual growth rate of per capita consumption, 

, is 0.0201, and the means of the three parts are -0.0025 for rare events (RE), 0.0223 for the 

long-run growth rate (of which the variable part is the long-run risk or LRR), and 0.0003 for the 

error term.  When considering the relative contributions to the variance of , the RE part has 

53%, LRR has 10%, and the error term has 36%.  Therefore, the RE part is roughly five times as 

important as LRR from the perspective of explaining variations in consumption growth rates. 

 The combination of the various parameters determines the size distribution of disasters 

and recoveries.  Simulations reveal that the mean negative cumulative effect of a disaster on a 

country’s level of per capita consumption is 22%.  This effect combines the first-year change 

with those in subsequent years until the transition occurs from a disaster to a normal state.  If we 

condition on a disaster cumulating to at least 10%, the mean cumulative disaster size is 28%.6  

                                                 
5The estimated value of k is 0.71.  This parameter determines the standard deviation of the shock in equation (5) compared to that 

in equation (4). 
6In Nakamura, et al. (2013, p. 47), the effect of a “typical disaster is approximately a 27 percent fall in consumption.”  This 

typical disaster corresponds roughly to our consideration of disasters that cumulate to contractions by at least 10%. 



 

 

As a comparison, Barro and Ursúa (2008, Figure 1, p. 285) found a mean size of consumption 

disaster of 22% when conditioning on disasters of 10% or more. 

In our present analysis, the mean recovery turns out to cumulate to 44% of the prior 

decline.  That is, on average, 56% of the fall in consumption during a disaster is permanent.  

Recoveries were not considered in Barro and Ursúa (2008).  In Nakamura, et al. (2013, p. 47), 

the typical recovery is estimated to be 48%. 

 Because the estimated standard deviation of the permanent part of the disaster shock, , 

is large, 0.15, there is considerable variation across disasters in the extent of recovery.  In fact, 

simulations of the estimated model reveal that 42 percent of disasters have recoveries that exceed 

100%.  That is, the estimated long-run effects of many disasters are positive for the level of per 

capita consumption.  One possible explanation is the long-term “cleansing” effects of some wars 

and depressions on the quality of institutions, wealth distribution, and so on.  However, the 

estimated long-run level effect is negative in the majority of cases. 

B. Six illustrative countries 

 Figures 2-7 describe the dynamics of the model by considering the time evolution of the 

main variables for six illustrative countries:  Chile, Germany, Japan, Russia, United Kingdom, 

and United States.  An online appendix contains comparable figures for the other countries in the 

sample.  The figures show the evolution of each country’s posterior mean of the disaster state, 

, the disaster shock, , the permanent part of the disaster shock, , the variable part of 

the long-run growth rate, , and the stochastic volatility, .  This volatility is expressed as a 

standard deviation and is multiplied by ten to be visible in the graphs.  The other variables are 

expressed as quantities per year. 

 A general finding is that variables related to rare disasters behave very differently from 

those related to long-run risks.  The disaster shocks,  and , operate only on the rare 



 

 

occasions when the posterior mean of the disaster dummy variable, , is high.  For example, for 

Germany (Figure 3), the posterior disaster probability is close to one during World War I and its 

aftermath (including the hyperinflation) and during World War II and its aftermath.  Similar 

patterns hold for Russia (Figure 5) and in a milder form for the United Kingdom (Figure 6).  For 

Japan (Figure 4), World War II is the main event.  For the United States (Figure 7), the 

prominent times of disaster are the Great Depression of the early 1930s and the aftermath of 

World War I (possibly reflecting the Great Influenza Epidemic).  Chile (Figure 2) has a much 

greater frequency of disaster, notably following the Pinochet coup of 1973. 

 Figures 2-7 show that the disaster periods feature sharply negative shocks, , that are 

particularly large in the wartime periods for Germany, Japan, and Russia.  For the United States, 

the main disaster shocks are for the early 1930s and just after World War I. 

The figures show that the permanent part of the disaster shocks, , are also often large 

in magnitude during disaster periods.  However, these shocks are much more diverse than the 

temporary shocks and are often positive—for example, in Germany during much of the 1920s 

and 1947, in Japan in 1945, and in Russia in the early 1920s and in 1943, 1945, and 1946.  These 

occurrences of favorable permanent shocks may reflect improvements in a country’s prospects 

for the coming post-war or post-financial-crisis environment.  An interesting extension would 

relate these measured permanent disaster shocks to observable variables, such as military 

outcomes or institutional/legal changes.   

In our approach, the permanent parts of disaster shocks are classified as dimensions of 

rare disasters, rather than long-run risks.  We use this terminology because the permanent shocks 

under consideration, , arise only during the unusual times when rare events are present.  

Moreover, these episodes can usually be identified with clear historical events, such as the world 

wars and the Great Depression.  However, these permanent shocks surely have long-term 



 

 

implications for the economy’s level of consumption and are, in that sense, a “long-run risk.”  

More broadly, we view rare disasters and long-run risks as complementary ideas, and our 

analysis reflects the combination of these forces. 

 In contrast to the disaster variables, the long-run-risk variables,  and , exhibit much 

smoother, low-frequency evolution, as shown in Figures 2-7.  (In Table 3, the first-order 

autocorrelation of the long-run growth rate term is 0.88.)  The variable  indicates the excess of 

the projected growth rate of per capita consumption (over a persisting interval) from its long-run 

mean, which averaged 0.020 per year across the countries in our sample.  For the United States 

(Figure 7), the estimated  exceeds 0.010 for 1962-67, 1971, 1982-85, and 1997-98—recent 

periods that are typically viewed as favorable for economic growth.  At earlier times, this 

variable exceeds 0.010 for 1933-36 (recovery from the Great Depression), 1898, and 1875-79 

(resumption of the gold standard).  On the down side, the estimated  is negative and larger 

than 0.010 in magnitude for 2007-09 (Great Recession), 1990, 1979, 1910-13, 1907, 1882-93, 

1859-65, and 1852-55. 

 For the other illustrative countries, the estimated is particularly high in Chile for 

1986-96, 2003-06, and 2009-11; in Germany for 1945-71; in Japan for 1945-72; in Russia for 

1999-2011; and in the United Kingdom for 1983-88 and 1995-2002.  Bad periods for  include 

Russia in 1989-97 and the United Kingdom in 2007-11. 

 The estimated stochastic volatility, gauged by the standard deviation, , is even 

smoother than the estimated .  In the figures, the United States, Germany, and Japan exhibit 

the frequently mentioned pattern of moderation, whereby the estimated  reaches low points of 

0.0115 for the United States in 2000, 0.0106 for Germany in 1995, and 0.0117 for Japan in 1999.  

In all three cases,  ticks up going toward 2012.  As a contrast, Russia experiences a sharp rise 

in the estimated  from 0.0142 in 1973 to 0.0343 in 2007. 



 

 

IV. Asset Pricing 

A. Framework 

 

The asset-pricing implications of the estimated model are analyzed following Mehra and 

Prescott (1985), Nakamura, et al. (2013) (NSBU), and other studies.  To delink the coefficient of 

relative risk aversion, CRRA, from the intertemporal elasticity of substitution, IES, we assume 

that the representative agent has Epstein-Zin (1989)-Weil (1990) or EZW preferences.  For these 

preferences, Epstein and Zin (1989) show that the return on any asset satisfies the condition 

 ,                 (10) 

where subjective discount factor = β, CRRA = γ, IES = 1/θ,  is the gross return on asset  

from  to , and  is the corresponding gross return on overall wealth.  Overall wealth 

in our model equals the value of the equity claim on a country’s consumption (which 

corresponds to GDP for a closed economy without capital or a government sector). 

Since the model cannot be solved in closed form, we adopt a numerical method that 

follows Nakamura, et al. (2013, p.56, n.26).  Specifically, Equation (10) gives a recursive 

formula for the price-dividend ratio (PDR) of the consumption claim, and the iteration procedure 

finds the fixed point of the corresponding function.  Then the pricing of other assets follows from 

equation (10). 

To analyze the asset-pricing implications of the model, we need the parameter estimates 

from Table 1, along with values of CRRA (γ), IES (1/θ), and the subjective discount factor ( ).  

The macroeconomics and finance literature has debated appropriate values for the IES.  For 

example, Hall (1998) estimates the IES to be close to zero, Campbell (2003) and Guvenen 

(2009) claim that it should be less than 1, Seo and Wachter (2016) assume that the IES equals 1, 

Bansal and Yaron (2004) use a value of 1.5, and Barro (2009) adopts Gruber’s (2013) empirical 



 

 

analysis to infer an IES of 2.  Nakamura, et al. (2013) show that low IES values, such as IES ≤ 1, 

are inconsistent with the observed behavior of asset prices during consumption disasters.  

Moreover, as stressed by Bansal and Yaron (2004), IES > 1 is needed to get the “reasonable” 

sign (positive) for the effect of a change in the expected growth rate on the price-dividend ratio 

for an unlevered equity claim on consumption.  Similarly, Barro (2009) notes that IES > 1 is 

required for greater uncertainty to lower this price-dividend ratio.  For these reasons, our main 

analysis follows Gruber (2013) and Barro (2009) to use IES = 2 (θ = 0.5). 

We determine the values of  and to fit observed long-term averages of real rates of 

return on corporate equity and short-term government bills (our proxy for risk-free claims).  

Specifically, for 17 countries with long-term data, we find from an updating of Barro and Ursúa 

(2008, Table 5) that the average (arithmetic) real rate of return is 7.90% per year on levered 

equity and 0.75% per year on government bills (see Table 4, column 1).  Hence, the average 

levered equity premium is 7.15% per year.  Therefore, we calibrate the model to fit a risk-free 

rate of 0.75% per year and a levered equity premium of 7.15% per year (when we assume a 

corporate debt-equity ratio of 0.5).  It turns out that, to fit these observations, our main analysis 

requires γ = 5.9 and β = 0.973. 

We follow Nakamura, et al. (2013) and Bansal and Yaron (2004) by making the 

assumption for asset pricing that the representative agent is aware contemporaneously of the 

values of the underlying shocks.  These random variables include the indicators for a world and 

country-specific disaster state, the temporary and permanent shocks during disasters, the current 

value of the long-run growth rate, and the current level of volatility.  We think that the 

assumption of complete current information about these underlying shocks is unrealistic.  

However, we also found that relaxation of this assumption had only a minor impact on the equity 



 

 

premium delivered by the model.  The effects on the model’s volatility of equity returns was 

more noticeable.7 

B. Empirical Evaluation 

Table 4, column 1, shows target values of various asset-pricing statistics.  These targets 

are the mean and standard deviation of the risk-free rate, , the rate of return on levered equity, 

, and the equity premium, ; the Sharpe ratio;8 and the mean and standard deviation of 

the dividend yield.  These target statistics are inferred from averages in the cross-country panel 

data described in the notes to Table 4.   

Table 4, column 2, refers to our baseline model, which combines rare events (RE) and 

long-run risks (LRR).  Given the parameter estimates from Table 1, along with IES = 1/θ = 2 

(and a corporate debt-equity ratio of 0.5), the model turns out to require a coefficient of relative 

risk aversion, γ, of 5.9 and a subjective discount factor, β, of 0.973 (in an annual context) to fit 

the target values of  = 0.75% per year and  = 7.15% per year.  Heuristically, we can 

think of γ as chosen to attain the target equity premium, with β selected to get the right overall 

level of rates of return. 

As comparisons, Barro and Ursúa (2008) and Barro and Jin (2011) required a coefficient 

of relative risk aversion, γ, of 3-4 to fit the target average equity premium.  In these analyses, the 

observed macroeconomic disasters were assumed to be fully permanent in terms of effects on the 

level of per capita consumption.  In Nakamura, et al. (2013), the required γ was higher—around 

6.4—mostly because the incorporation of post-disaster recoveries meant that observed disasters 

had smaller effects on the equilibrium equity premium.  A required γ of 6.4 may be 

                                                 
7We analyzed incomplete current information about the extent to which a disaster shock was temporary or permanent.  This 

extension introduces effects involving the time resolution of uncertainty.  This time resolution would not matter in the standard 

case of time-additive utility, where the coefficient of relative risk aversion, γ, equals θ, the reciprocal of the intertemporal 

elasticity of substitution.  In our case, where γ>θ, people prefer early resolution of uncertainty, and incomplete current 

information about the permanence of realized shocks affects the results.  However, we found quantitatively that the impact on the 

model’s equity premium was minor. 

8This value is the ratio of the mean of to its standard deviation. 



 

 

unrealistically high, and one motivation for the present analysis was that the incorporation of 

long-run risks (LRR) into the rare-disaster framework would reduce the required γ.  In fact, there 

is a modest reduction—to 5.9—and, therefore, the required degree of risk aversion may still be 

too high. 

Table 4, column 2, shows that the baseline model substantially underestimates measures 

of volatility.  Specifically, the model’s predicted standard deviation of  (0.096) is substantially 

lower than that observed in the data (0.245 in column 1).  We had thought that the incorporation 

of long-run risks, especially stochastic volatility, would help to improve the model’s fit with 

respect to the volatility of .9  However, even with the LRR component included, this volatility 

is substantially underestimated.  We think that a major remaining gap is the omission of time-

varying disaster probability, p (or time variation in the distribution of disaster sizes).  We plan to 

make this extension, but the required numerical analysis is an order-of-magnitude more 

complicated than that in our present model. 

The Sharpe ratio in the baseline model, 0.83 (column 2), is substantially higher than the 

value 0.29 found in the data (column 1).  However, this result is essentially a restatement of the 

model’s understatement of the volatility of the return on equity (or of the equity premium).  That 

is, the values of γ and β are determined to match the average equity premium, which is the 

numerator of the Sharpe ratio.  Then the Sharpe ratio is too high because the model’s estimated 

volatility of the equity premium (the denominator of the ratio) is too low (when evaluated using 

the specified γ and β).  This finding of an excessive Sharpe ratio applies also to the models 

considered next. 

The remaining columns of Table 4 divide up the baseline model—which incorporates the 

rare events, RE, and long-run risks, LRR, pieces—into individual contributions to the 

                                                 
9The observed volatility of also involves the impact of realized inflation on the real return on a nominally denominated asset.  

This consideration is not present in the underlying real model. 



 

 

explanations of means and volatilities of returns.  In all cases, we retain the parameter estimates 

for the consumption process from Table 1, along with IES = 1/θ = 2 (and a debt-equity ratio 

of 0.5).  We then recalculate for each case the values of γ and β needed to match the observed 

averages of 0.75% for and 7.15% for .  Given these tailored parameter values, each 

model matches the target averages of and . 

Table 4, column 3 (RE only), shows results with the omission of the long-run risks, LRR, 

parts of the model.  In this case, the value of γ has to be 6.4, rather than 5.9, for the model to 

generate the observed average equity premium of 0.072.  From this perspective, the inclusion of 

LRR in the baseline model (column 2) generates moderate improvements in the results; that is, 

the lower required value of γ seems more realistic.  Viewed alternatively, if we retain the 

baseline parameter values of γ = 5.9 and β = 0.973, the model’s average equity premium would 

fall from 0.072 (column 2) to 0.057 (column 3).   

With regard to the standard deviation of , the model with rare events only (column 3) 

has a value of 0.086, whereas the model that incorporates LRR has the higher value of 0.096 

(column 2).  In this sense, the incorporation of LRR improves the results on volatility of equity 

returns.  However, as already noted, the standard deviation of  in the baseline model 

(column 2) still understates the observed value of 0.245 (column 1). 

Table 4, column 4 (LRR only), shows the results with the omission of the rare-events, RE, 

parts; that is, with only the long-run-risk part, LRR, included.  In this case, the value of γ 

required to fit the target mean equity premium of 0.072 is 18, an astronomical degree of risk 

aversion.10  Hence, the omission of the RE terms makes the model clearly unsatisfactory with 

respect to explaining the average equity premium.  Viewed alternatively, if we keep the baseline 

                                                 
10Bansal and Yaron (2004) argued that a value of γ = 10 was sufficient, although that value is still much too high to be realistic.  

Our results differ mostly because Bansal and Yaron incorporate high leverage in the relation between dividends and 

consumption. 



 

 

parameter values of γ and β, the model’s average equity premium would fall from 0.072 

(column 2) to 0.023 (column 4).  With regard to the standard deviation of , the LRR only 

model has a value of 0.074, below the values of 0.086 from the RE only model (column 3), 0.096 

from the baseline model (column 2), and 0.245 in the data (column 1). 

Table 4, column 5, shows the effects from the omission of only the stochastic volatility 

part of the long-run risks, LRR, model.  In this case, the value of γ required to match the 

observed average equity premium is 6.0, not much higher than the value 5.9 in the baseline 

specification (column 2).  Alternatively, if we retain the baseline parameter values of γ and β, the 

model’s average equity premium would fall only slightly from 0.072 (column 2) to 0.069 

(column 5).  Therefore, to the extent that the inclusion of LRR improves the fit with regard to the 

equity premium, it is the evolution of the mean growth rate, not the fluctuation in the variance of 

shocks to the growth rate, that matters.  With regard to the standard deviation of , the value of 

0.0963 in column 5 is very close to the value 0.0964 in the baseline model (column 2).  In this 

sense, the incorporation of stochastic volatility contributes negligibly to explaining the volatility 

of equity returns.   

Column 6 of Table 4 corresponds to using only the permanent-shock part of the rare-

events, RE, model.  In this case, the value of γ required to match the observed average equity 

premium is 6.9, not too much higher than the value 6.4 in column 3.  This result shows that the 

main explanatory power of the RE model for the equity premium comes from the permanent 

parts of rare events.  Recall in this context that earlier analyses, such as Barro and Ursúa (2008) 

and Barro and Jin (2011), assumed that all of the rare-event shocks had fully permanent effects 

on the level of per capita consumption.  Alternatively, if we keep the baseline parameter values 

of γ and β, the model’s average equity premium falls from 0.057 in the full RE model (column 3) 



 

 

to 0.045 (column 6).  Hence, the exclusion of the temporary parts of RE shocks has only a 

moderate impact on the model’s average equity premium.   

Table 5 shows how the results from the baseline model change with differences in the 

coefficient of relative risk aversion, γ, or the intertemporal elasticity of substitution, 1/θ.  

Column 1 has γ = 4, instead of the baseline value of 5.9.  In other respects, the parameters are 

unchanged from those in Table 4, column 2.  The reduction in γ lowers the model’s average 

equity premium from 0.072 (Table 4, column 2) to 0.031 (Table 5, column 1).  Conversely, 

Table 5, column 2, has γ = 10.  This increase in γ raises the model’s average equity premium to 

0.221.  Therefore, the average equity premium is highly sensitive to the value of γ. 

Table 5, column 3, has IES = 1/θ = 1.5, instead of the baseline value of 2.0.  This change 

lowers the model’s mean equity premium to 0.054.  A further reduction in the IES to 1.1 

(column 4) reduces the model’s average equity premium further, to 0.029.  Therefore, changes in 

the IES matter for the equity premium but, in a plausible range, not nearly as much as changes 

in γ.11 

 

V. Time-Varying Disaster Probability 

 A number of rare-disaster models argue that volatility of the disaster probability, p, or 

parameters that describe the size distribution of disasters is important for understanding aspects 

of asset pricing, notably for pricing of stock-index options.  In this context, Gabaix (2012) 

emphasizes time variation in the distribution of disaster sizes, whereas Seo and Wachter (2016), 

Siriwardane (2015), and Barro and Liao (2016) stress changes in disaster probability.  For most 

                                                 
11In a pure i.i.d. model, as in Barro (2009), the equity premium would not depend on the IES.  The dependence on the IES arises 

in our model because of the dynamics of disasters and recoveries.  See Nakamura, et al. (2013) for discussion. 



 

 

purposes, the time-varying disaster variable can be viewed as a composite of disaster probability 

and disaster size density.12 

 We think that an allowance for stochastic variation in disaster probability (or size 

distribution) may be an important extension of our present analysis.  In the “normal” situation 

(associated with θ<1, so that the intertemporal elasticity of substitution exceeds 1), a rise in 

disaster probability or the typical size of a disaster lowers the price of equity.  Through this 

channel, variations in disaster probability and sizes would impact volatility of the rate of return 

on equity.  There may also be less direct effects on means, such as the average equity premium. 

 The extension to allow for stochastic disaster probability (or size distribution) is 

challenging because it constitutes an order-of-magnitude increase in the complexity of our 

numerical analysis.  Since the estimation of the existing framework was already complicated, we 

are unsure about the feasibility of this extension.  However, we hope to carry out this extension 

in future research. 

 

VI. Concluding Observations 

 Rare events (RE) and long-run risks (LRR) are complementary approaches for 

characterizing the long-term evolution of macroeconomic variables such as GDP and 

consumption.  These approaches are also complementary for understanding asset-pricing 

patterns, including the averages of the risk-free rate and the equity premium and the volatility of 

equity returns.  We constructed a model with RE and LRR components and estimated this joint 

model using long-term data on per capita consumption for 42 economies.  This estimation allows 

us to distinguish empirically the forces associated with RE from those associated with LRR.   

                                                 
12Time variation in the coefficient of relative risk aversion, γ, can similarly affect asset pricing. 



 

 

Rare events (RE) typically associate with major historical episodes, such as the world 

wars and the Great Depression and possibly the Great Influenza Epidemic (but not the recent 

Great Recession).  In addition to these global forces, the data reveal many disasters that affected 

one or a few countries.  The estimated model determines the frequency and size distribution of 

macroeconomic disasters, including the extent and speed of eventual recovery.  The distribution 

of recoveries is highly dispersed; that is, disasters differ greatly in terms of the relative 

importance of temporary and permanent components.   

In contrast to RE, the long-run risks (LRR) parts of the model reflect gradual and 

evolving processes that apply to changing long-run growth rates and volatility.  Some of these 

patterns relate to familiar notions about moderation and to times of persistently low or high 

expected growth rates. 

 We applied the estimated time-series model of consumption to asset pricing.  A match 

between the model and observed average rates of return on equity and risk-free bonds requires a 

coefficient of relative risk aversion, γ, of 5.9.  Most of the explanation for the equity premium 

derives from the RE components of the model, although the LRR parts make a moderate 

contribution.   

 We had thought that the addition of LRR to the RE framework would help to match the 

observed volatility of equity returns.  However, the joint model still substantially understates the 

volatility found in the data.  We think that this aspect of the model will improve if we allow for 

stochastic evolution of the probability or size distribution of disasters.  We hope to undertake this 

extension, but the required numerical analysis is challenging. 

 

 



 

 

Table 1 

Estimated Parameters—Model with Rare Events and Long-Run Risks 

Parameter Definition 
Posterior 

Mean 

Posterior 

s.d. 

 World disaster probability, conditional on:   

p0 No prior-year world disaster 0.029 0.011 

p1 Prior-year world disaster 0.658 0.139 

 Country disaster probability, conditional on:   

q00 No prior-year disaster, no current world disaster 0.0066 0.0022 

q10 Prior-year disaster, no current world disaster 0.719 0.050 

q01 No prior-year disaster, current world disaster 0.360 0.052 

q11 Prior-year disaster, current world disaster 0.857 0.037 

ρz AR(1) coefficient for event gap (Eq. 7) 0.304 0.030 

ϕ Temporary disaster shock (Eq. 7) 0.0790 0.0081 

η Permanent disaster shock (Eq. 7) 0.0282 0.0081 

 
s.d. of ϕ shock 0.0574 0.0063 

 
s.d. of η shock 0.148 0.011 

 

AR(1) coefficient for variable part of long-

run growth rate (Eq. 5) 
0.730 0.034 

 

AR(1) coefficient for stochastic volatility  

(Eq. 6) 
0.963 0.014 

k 
Multiple on error term for variable part of 

long-run growth rate (Eq. 5) 
0.705 0.093 

 (mean over i) Long-run average growth rate (Eq. 4) 0.020  

 (mean over i) 
s.d. for shock to consumption (Eq. 1), pre-

1946 
0.0231  



 

 

 (mean over i) 
s.d. for shock to consumption (Eq. 1), post-

1945 
0.0061  

 (mean over i) 
Average variance for stochastic volatility  

(Eq. 6) 
0.000572  

 (mean over i) s.d. for shock to  (Eq. 6) 0.0000840  

 (mean over i) s.d. for shock to event gap (Eq. 7) 0.00515  

 

 

Notes to Table 1 

 

 The model corresponds to equations (1)-(8) in the text.  The model is estimated with data 

on real per capita consumer expenditure for 42 economies observed as far back as 1851 and 

ending in 2012 (4814 country-year observations).  The data and estimation procedure are 

discussed in Appendix A.  The table shows the posterior mean and standard deviation for each 

parameter.   



 

 

 
Table 2 

Country-years with Posterior Disaster Probability of 25% or More 

(Outside of global event years:  1867, 1914-20, 1930-31, 1939-46) 

Country Years 

Argentina 1891-1902, 2001-02 

Australia 1932, 1947 

Belgium 1947 

Brazil 1975 

Canada 1921-22, 1932 

Chile 1921-22, 1932-33, 1955-57, 1972-85 

Colombia 1932-33, 1947-50 

Denmark 1921-24, 1947-48 

Egypt 1921-23, 1947-59, 1973-79 

Finland 1868, 1932 

Germany 1921-27, 1947-49 

Greece 1947, 2009-12 

Iceland 2008 

India 1947-50 

Malaysia 1998 

Mexico 1932, 1995 

New Zealand 1894-97, 1921-22, 1947-52 

Norway 1921-22 

Peru 1932, 1985-89 

Portugal 1975 

Russia* 1921-24, 1947-48 

Singapore 1950-53, 1958-59 

South Korea 1947-52, 1997-98 

Spain 1932-38, 1947-52, 1960 

Sweden 1868-69, 1921, 1947-50 

Switzerland 1853-57, 1947 

Taiwan 1901-12, 1947-51 

Turkey 1876-81, 1887-88, 1921, 1947-50 

United States 1921, 1932-33 

Venezuela 1932-33, 1947-58 

 

 

*For Russia in the 1990s, the posterior disaster probability peaks at 0.14 in 1991.  Using data on 

GDP, rather than consumption, Russia clearly shows up as a macroeconomic disaster for much 

of the 1990s. 

 

Note:  These results correspond to those reported in Table 1.  Table 2 reports years in which the 

posterior mean of the rare-event dummy variable, Iit for country i at time t, is at least 0.25.  See 

equation (3) in the text. 



 

 

 

Table 3 

Decomposition of Consumption Growth 

 Mean Share of variance 

of  

 

1st-order auto-

correlation 

 0.0201 -- 0.122 

RE -0.0025 0.53 0.193 

Long-run growth 

rate (includes 

LRR) 

0.0223 0.10 0.876 

Error term 0.0003 0.36 -0.308 

 

 

Note:  The entries refer to the decomposition of the annual growth rate of per capita 

consumption, , into three parts in equation (8).  RE is the rare-events term.  The term for the 

long-run growth rate incorporates long-run risks (LRR).  The share refers to the variance in  

associated with each term expressed as a ratio to the overall variance in  associated with the 

three terms.



 

 

 
Table 4 

Asset-Pricing Statistics:  Data and Alternative Models 

 (1) (2) (3) (4) (5) (6) 

Statistic Data Baseline 

RE & 

LRR 

RE only LRR only RE & LRR 

no stochastic 

volatility 

RE perm. 

shocks only 

mean  0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 

mean  0.0790 0.0790 0.0790 0.0790 0.0790 0.0790 

mean  0.0715 0.0715 0.0715 0.0715 0.0715 0.0715 

 0.0850 0.0251 0.0202 0.0121 0.0241 0.0183 

 0.245 0.0964 0.0861 0.0742 0.0963 0.0765 

 0.245 0.0863 0.0802 0.0686 0.0861 0.0698 

Sharpe ratio 0.29 0.83 0.89 1.04 0.83 1.03 

mean div. yield 0.0449 0.0486 0.0493 0.0457 0.0486 0.0498 

σ(div. yield) 0.0175 0.0158 0.0119 0.00920 0.0147 0.0114 

γ -- 5.89 6.39 17.8 5.98 6.90 

β -- 0.973 0.971 0.977 0.973 0.972 

mean  with 

baseline parameters 
-- 0.0715 0.0569 0.0228 0.0685 0.0452 

 

 

Notes:   is the risk-free rate (proxied by real returns on short-term government bills),  is the 

real total rate of return on corporate equity, σ values are standard deviations, Sharpe ratio is the 

ratio of mean  to , and div. yield is the dividend yield.  A debt-equity ratio of 

0.5 is assumed in the calculations for each model. 

 

Data are means over 17 countries (Australia, Denmark, Finland, France, Germany, Italy, Japan, 

Netherlands, New Zealand, Norway, Spain, Sweden, Switzerland, U.K., U.S., Chile, and India) 

with long-term returns data, as described in Barro and Ursúa (2008, Table 5) and updated to 

2014.  The main underlying source is Global Financial Data.  For the dividend yield, the means 

are for 8 countries with at least 90 years of data (Australia, France, Germany, Italy, Japan, 

Sweden, U.K., and U.S.).  These data are from Global Financial Data and updated through 

2014. 

 

The third- and second-to-last rows give the values of γ (coefficient of relative risk aversion) and 

β (discount factor) required in each model to match the observed average values of the risk-free 

rate, , and the equity return, .  RE & LRR is the baseline model, which includes all the 

elements of rare events (RE) and long-run risks (LRR).  The other columns give results with 

various components eliminated.  RE only eliminates the LRR parts.  LRR only eliminates the RE 

parts.  RE & LRR, no stochastic vol. eliminates only the stochastic volatility part of LRR.  RE 

perm. shocks only eliminates everything except the permanent-shock part of RE. 

 

The last row gives the average equity premium of each model when γ and β take on their baseline 

values, i.e., γ = 5.89 and β = 0.973.



 

 

 
Table 5 

Asset-Pricing Statistics: Baseline Model with Alternative Risk Aversion and IES 

 (1) (2) (3) (4) 

γ (coefficient of relative risk aversion) 4.0 10.0 5.89 5.89 

1/θ (IES) 2.0 2.0 1.5 1.1 

mean  0.0253 0.0661 0.0166 0.0300 

mean  0.0563 0.155 0.0708 0.0593 

mean  0.0310 0.221 0.0541 0.0293 

 
0.0245 0.0221 0.0316 0.0423 

 
0.0869 0.102 0.0823 0.0762 

 
0.0759 0.0972 0.0745 0.0800 

Sharpe ratio 0.41 2.27 0.73 0.37 

mean div. yield 0.0269 0.123 0.0413 0.0304 

σ(div. yield) 0.0139 0.0153 0.0170 0.0186 

 

 

Note:  These results modify the baseline model from Table 4, column 2.  Column 1 has γ = 4, 

column 2 has γ = 10, column 3 has IES = 1/θ = 1.5, column 4 has IES = 1/θ = 1.1.  In other 

respects, the parameters are the same as in Table 4, column 2, including the discount factor 

β=0.973. 

 



 

 

 

 

Figure 1: World Rare-Event Probability 

 

 
 

 

Note: This figure plots the posterior mean of the world rare-event dummy variable, , and, 

therefore, corresponds to the estimated probability that a world rare event was in effect for each 

year from 1851 to 2012.  See equation (2) in the text. 

 



 

 

 
Figure 2: Fitted Model for Chile 
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Figure 3: Fitted Model for Germany 
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Figure 4: Fitted Model for Japan 
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Figure 5: Fitted Model for Russia 
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Figure 6: Fitted Model for United Kingdom 
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Figure 7: Fitted Model for United States 
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Note for Figures 2-7:  The probability of a rare event is the posterior mean of the rare-event 

dummy variable Iit (for country i at time t), ϕit is the rare-event shock, ηit is the permanent part of 

the rare-event shock, χit is the evolving part of the long-run growth rate, σit is stochastic volatility 

(the standard deviation associated with the shocks to growth rates of potential consumption and 

χit), and μi is the long-run mean growth rate of consumption.  See equations (1)-(7) in the text. 
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Appendix 

A.1 Data used in this study 

This study uses an enlarged version of the Barro-Ursúa macroeconomic data set (2010).  The 

original data set contains annual consumption series for 42 economies up to 2009, and we 

expand it to 2012.  This data set covers the major economies in the world:  Argentina, Australia, 

Austria, Belgium, Brazil, Canada, Chile, China, Colombia, Denmark, Egypt, Finland, France, 

Germany, Greece, Iceland, India, Indonesia, Italy, Japan, Korea, Mexico, Malaysia, Netherlands, 

New Zealand, Norway, Peru, Philippines, Portugal, Russia, South Africa, Singapore, Spain, Sri 

Lanka, Sweden, Switzerland, Taiwan, Turkey, United Kingdom, Uruguay, United States, and 

Venezuela. 

 

The availability of uninterrupted annual data varies across economies.  To best utilize the rich 

information contained in the data set, we adopt the longest possible uninterrupted series between 

1851 and 2012 for each economy, yielding a total of 4814 country-year observations.  We 

choose 1851 as the starting date because it is the earliest year when uninterrupted data are 

available for at least 10 countries.  The reason for this criterion is that the model incorporates the 

correlation in the timing of rare events across countries through a world event indicator, and it is 

undesirable if this indicator is estimated from data for only a few countries.  The ten countries 

with uninterrupted data since 1851 are Denmark, France, Germany, Netherlands, Norway, Spain, 

Sweden, Switzerland, the United Kingdom, and the United States.  The data set used in this study 

is much larger than those in previous studies.  For example, the total number of country-year 

observations explored in NSBU is 2685, and that number is almost doubled here. 



 

 

A.2 Missing data at the beginning of series 

When t = 1851, i.e., for the first year in the data, the value of  is missing.  In this case, we 

use the proportion of world event years in all the years in the simulation to simulate the value of 

 and then simulate the value of  based on the simulated  and other information. 

 

Let  denote the earliest date when uninterrupted consumption data are available for country i. 

When = , Formula (3) is not directly applicable, because  is missing.  Following the 

idea of (3), we calculate the following prior conditional probability instead 

 

=  

+                                                            

(A.1) 

. 

For simplicity, we further assume 

, 

where the prior probability  is estimated by , the fraction of event periods in all 

the periods studied for country i. So 

,                 (A.2) 

and we impose the restriction that . 

 

For other cases of missing data, we also specify reasonable prior distributions to improve the 

estimation accuracy 

 



 

 

A.3 Prior distributions of parameters and unknown quantities 

Bayesian MCMC has two major advantages in estimating the model here: (1) necessary 

information can be incorporated into prior beliefs, and (2) it is relatively easy to implement for a 

model as complicated as the one proposed in this study.  The prior distributions of parameters 

and unknown quantities in the proposed model are listed in detail here. 

 

In this study, a prior being “uninformative” means that the posterior distribution is proportional 

to the likelihood.  With an uninformative prior, the mode of the posterior distribution 

corresponds to the maximum-likelihood estimate.  A typical uninformative prior for a parameter 

is the uniform distribution on an infinite interval (e.g., a half-line or the entire real line). 

Extending that idea, we also say that the uniform distribution on a finite interval is uninformative 

if the finite interval contains the parameter with probability 1.  More generally, we say a prior 

distribution is “almost uninformative” (or more rigorously, “not very informative”) if it is close 

to a flat prior.  In this study, the general guideline for the specification of priors is to make them 

as uninformative as possible (in certain regions).  Thus, many priors are taken to be uniform. 

 

Prior distributions of parameters. In this study,  is assumed to follow the normal 

distribution , and  is assumed to follow the truncated normal distribution 

, where  and  denote the mean and variance, respectively, of the 

underlying normal distribution (i.e., the normal distribution before truncation).  The mean value 

and standard deviation of  are denoted by  and , respectively.  Another possible choice 

for the prior distribution of  and  is the exponential distribution. Corresponding to Barro 

and Jin (2011), if  power law distribution with (upper-tail) exponent , where the 



 

 

disaster size b is the fraction of contraction in C, then  exponential distribution 

with rate parameter .  This relationship suggests exponential distributions for  and .  

 

The prior distribution of the long-term average growth rate  of country i is assumed to follow 

, where the prior mean and variance are set to the mean values of the long-

term average growth rates of per capita consumption and Gross Domestic Product (GDP) of the 

42 economies in the enlarged Barro-Ursúa data set.  (More specifically, the corresponding mean 

value and standard deviation are 0.0189 and 3.16105, respectively.)  As a summary, the prior 

distributions of the parameters are listed in the following table. 

 

Parameter   Distribution  Parameter   Distribution  

  U(0, 0.05)     U(0.3, 0.9)  

  U(0.3, 1)     U(0, 0.03) 

  U(0.3, 0.9)     U(0, 0.9) 

  N(0.025, 0.12)    U(0.01, 0.25) 

  U(0.25, 0)     U(0.01, 0.25) 

  U(0.001, 0.015)    U(0, 0.9) 

  U(0, 0.98)    U(0, 0.98) 

  U(0.1, 10)    U(105, 103)  

 
 

 
   

  N(0.02, 0.30.012)   U(0.001, 0.15) 

 

Conditional prior distribution of event gaps.  It is intuitive that event gaps will gradually 

diminish if no events occur in a country.  Based on this notion, we specify the conditional prior 

distribution of  as follows. When , i.e., country i is in a rare event at time t, the prior 

distribution of  is assumed to be .  We take , which is very large, so the prior 

is fairly uninformative on a region local to 0.  If year t is the first uneventful year after a rare 

event in country i, equation (7) becomes 

 , 



 

 

which implies 

 

i.e., 

, 

where “SD” stands for “standard deviation.”  When year t is the mth uneventful year after the 

most recent rare event in country i, the upper bound  of  can be calculated 

recursively, and we assume that the prior distribution of  follows .13  Note that the 

above specification of prior distributions of event gap  is intuitive and is conditional on when 

the last event before year t happens in country i.  

 

Conditional prior distribution of potential consumption.  Based on the prior distribution of 

, we derive the conditional prior distribution of  as follows.  According to equation (1), the 

upper bound  of  satisfies 

, 

when year t is the mth ( ) uneventful year after the most recent event in country i.  We 

define 

 

and assume that the prior distribution of  is .  Figure A.1 shows the standard 

deviation  ( ) of the prior distribution of  ( ) as a function of m.  As m goes to ,  

( ) is decreasing and converges to 0.15 (0.3), which is large (based on economic common 

sense).  Therefore, the prior distributions of  and  are fairly uninformative. 

 

                                                 
13Here, m = 0 indicates that country i is in a rare event.  In the simulation, if no event happens in year  for 

country i, a simple simulation using probability qi is implemented to determine the number m.  (See Appendix A.1 

for the meaning of qi.) 
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Figure A.1.  and  as Functions of m 

 

Non-negativity of . The method for excluding negative values of  is similar to that 

employed by Bansal and Yaron (2004).   Instead of “replacing negative realizations with a very 

small number,” we assume that the prior distribution of  follows the uniform distribution 

. 

Thus, the posterior distribution of  follows a truncated normal distribution. This treatment is 

natural from the Bayesian point of view, and it is similar to that in Bansal and Yaron (2004), as 

both methods are using (variants of) truncated normal distributions to exclude possible negative 

realizations of . 

 



 

 

A.4 Estimation procedure 

The model is estimated by the Bayesian MCMC method, which has been applied to many 

problems in economics and finance, e.g., Chib, Nardari, and Shephard (2002); Pesaran, 

Pettenuzzo, and Timmermann (2006); and Koop and Potter (2007). Specifically, we use the 

algorithm of the Gibbs sampler for the random draws of parameters and unobserved quantities 

(see Gelman, Carlin, Stern, and Rubin, 2004 for a discussion of the MCMC algorithms). 

 

The convergence of the MCMC simulation is guaranteed under very general conditions.  In order 

to accurately estimate parameters and unknown quantities, we run four simulation chains, similar 

to the procedure in NSBU (see Appendix A.5 for details of the specification of the four 

simulation chains).  Besides simulating multiple sequences with over-dispersed starting points 

throughout the parameter space and visually evaluating the trace plots of parameters and 

unknown quantities from the simulation, we also assess the convergence by comparing variation 

“between” and “within” simulated sequences (see Chapter 11 of Gelman, Carlin, Stern, and 

Rubin [2004] for a discussion of this method). 

 

After a half million iterations, the simulation results from the four sets of far-apart initial values 

stabilize and become very close to each other.  So we iterate each chain 2 million times and use 

the later 1 million iterations to analyze the posterior distributions of parameters and unknown 

quantities of interest.  The first million iterations are dropped as burn-in. 

 



 

 

A.5 Specification of four simulation chains 

In order to accurately estimate the model and assess convergence, we run four independent 

simulation chains in a way similar to that of NSBU.  We specify two extreme scenarios: one is 

called the “no-event scenario,” the other the “all-event scenario.”  For the no-event scenario, we 

set , , , and  for all i and t.  For the all-event scenario, we set 

 and  for all i and t and extract a smooth trend using the Hodrick-Prescott filter 

(see Hodrick and Prescott [1997]).  Let  denote the trend component and  the remainder, 

i.e.,  

 . 

We then let 

 and . 

For each scenario, we specify two sets of initial values for parameters: one is called the “lower 

values,” the other the “upper values.”  For the set of “lower values,” the initial parameter values 

are either close to their lower bounds or very low compared to their mean values.  For the “upper 

values,” we have the opposite situation.  Thus, the four sets of initial values of parameters for the 

four simulation chains are far apart from each other. 

 

 


