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Abstract

This paper integrates a microsimulation (partial equilibrium) model of tax
policy with a dynamic scoring approach to tax policy analysis using a dynamic
general equilibrium macroeconomic model. Both approaches have strengths
and weaknesses. Our integration of the two models combines the strength of
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as well as dynamic model estimates that account for the e↵ects of tax changes
on macroeconomic variables.
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1 Introduction

This note describes the macroeconomics e↵ects of a simple change in tax policy—

a 10% reduction in all statutory marginal tax rates on personal income. For the

purposes of our simulations, we assume these changes in tax law are permanent and

are instituted on January 1, 2015 with no anticipatory e↵ects.

We present a static score of the revenue e↵ects over the budget window. We then

report the percentage changes in macroeconomic aggregates and prices in the budget

window and in the model’s long-run steady state equilibrium.

The rest of the paper is organized as follows. Section 2 provides background on

the microsimulation model we use to obtain the static revenue estimate. The DGE

model we use to compute the macroeconomic changes is detailed in Section 3. We

describe our methodology for integrating the microsimulation and DGE models in

Section 4. We present some the results of the policy proposal example in Section 5.

Section 6 provides a discussion of the qualitative results, along with the caveats and

limitations of the model.

2 Microsimulation Model: Tax-Calculator

The microsimulation model we use is called Tax-Caculator and is developed and

maintained by a group of researchers at the Open Source Policy Center (OSPC).1.

Here we outline the main structure of the Tax-Calculator microsimulation model, but

encourage the interested reader to follow the links to the more detailed documentation.

The Tax Calculator uses as its base microdata on tax filers from the tax year 2009

Public Use Files (PUF) produced by the IRS. These data contain detailed records

from the tax returns of about 200,000 tax filers who were selected from the population

of filers through a stratified random sample of tax returns. These data come from

IRS Form 1040 and a set of the associated forms and schedules. The PUF data are
1The documentation for using Tax-Calculator is available at

http://taxcalc.readthedocs.org/en/latest/index.html A simple web application that provides
an easy user interface for Tax-Calculator is available at http://www.ospc.org/taxbrain/. And all
the source code is freely available at https://github.com/open-source-economics/Tax-Calculator.
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then matched to the Current Population Survey (CPS) to get imputed values for filer

demographics such as age, which are not included in the PUF, and to incorporate

households from the population of non-filers. The PUF-CPS match includes 219,814

filers.

Since these data are for calendar year 2009, they must be “aged” to be represen-

tative of the potential tax paying population in the years of interest (e.g. the current

year through the end of the budget window). To do this, macroeconomic forecasts of

wages, interest rates, GDP, and other variables are used to grow the 2009 values to be

representative of the values one might see in the years within the budget window. In

addition to using macroeconomic variables to extrapolate the 2009 variables, a linear

programming algorithm is used to re-weight the observations in each year in order to

match target levels in the data such as total income and deduction amounts reported

in more recent IRS data.

Using these microdata, the Tax Calculator is able to determine total tax liability

and marginal tax rates by computing filer’s tax reporting that minimize their to-

tal tax liability subject to the parameters describing the tax policy they face. Our

determination of total tax liability from the microsimulation model includes federal

income taxes and payroll taxes but excludes state income taxes and estate taxes.2

The output of the microsimulation model is forecasts of the total tax liability in each

year derived from marginal tax rates, and items from the filers’ tax returns for each

of the 219,814 filers in the microdata. Population sampling weights are determined

through the extrapolation and targeting of the microsimulation model. These weights

allow one to calculate population representative results from the model. One can de-

termine changes in tax liability and marginal tax rates by doing the same simulation

where the parameters describing the tax policy are updated to reflect the proposed

policy rather than the baseline policy. Note that the baseline policy is a current-law

baseline.
2As the microsimulation model is further developed, we will account for these.
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3 Dynamic General Equilibrium Model

The DGE model in this paper is a close variant of the model used in DeBacker et

al. (2015).3 Our DGE model is comprised of heterogeneous individuals, perfectly

competitive firms, and a government with a balanced budget requirement. A unit

measure of identical firms make a static profit maximization decision in which they

rent capital and hire labor to maximize profits given a Cobb-Douglas production

function. The government levies taxes on individuals and makes lump sum transfers

to individuals according to a balanced budget constraint. The model thus will present

a relatively rich set of heterogeneity among households, but less in the production

sector and a simple government sector. Further development of the model along these

other dimensions is ongoing. But the household sector is the most relevant to how we

integrate these two models, even if other elements of the model such as government

financing are important determinants of the macroeconomic outcomes.

Individuals are assumed to live for a maximum of E + S periods. We define an

age-s individual as being in youth and out of the workforce during ages 1  s  E.

We implement this dichotomy of being economically relevant by age in order to more

easily match true population dynamics. Individuals enter the workforce at age E +1

and remain in the workforce until they die or until the maximum age E+S. Because

of mortality risk, individuals can leave both intentional bequests at the end of life

(s = E + S) as well as accidental bequests if they die before the maximum age of

E + S.

When individuals are born at age s = 1, they are randomly assigned to one

of J lifetime income (ability) types. Individuals remain deterministically in their

assigned lifetime income group throughout their lives. Related to hourly earnings, this

process is calibrated to match the wage distribution by age in the United States, and

labor is endogenously supplied by individuals. Our calibration of the hourly earnings

process allows for a skewed distribution of earnings that fits U.S. life-cycle hourly

earnings data. The economic environment is one of incomplete markets because

3This paper can be downloaded at http://mtweb.mtsu.edu/jdebacker/WealthTax.pdf.
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the overlapping generations structure prevents households from perfectly smoothing

consumption.

3.1 Population dynamics and lifetime earnings profiles

We define !s,t as the number of individuals of age s alive at time t. A measure !1,t of

individuals with heterogeneous working ability is born in each period t and live for up

to E+S periods, with S � 4.4 Individuals are termed “youth”, and do not participate

in market activity during ages 1  s  E. The individuals enter the workforce and

economy in period E + 1 and remain in the workforce until they unexpectedly die or

live until age s = E + S.5 The population of agents of each age in each period !s,t

evolves according to the following function,

!1,t+1 =
E+S
X

s=1

fs!s,t 8t

!s+1,t+1 = (1 + is � ⇢s)!s,t 8t and 1  s  E + S � 1

(1)

where fs � 0 is an age-specific fertility rate, is is an age-specific net immigration

rate, ⇢s is an age specific mortality hazard rate,6 and 1 + is � ⇢s is constrained to

be nonnegative. The total population in the economy Nt at any period is simply the

sum of individuals in the economy, the population growth rate in any period t from

the previous period t � 1 is gn,t, Ñt is the working age population, and g̃n,t is the

working age population growth rate in any period t from the previous period t� 1.7

These parameters are defined as:

Nt ⌘

E+S
X

s=1

!s,t 8t (2)

4Theoretically, the model works without loss of generality for S � 3. However, because we are
calibrating the ages outside of the economy to be one-fourth of S (e.g., ages 21 to 100 in the economy,
and ages 1 to 20 outside of the economy), we need S to be at least 4.

5We model the population with individuals age s  E outside of the workforce and economy in
order most closely match the empirical population dynamics. Appendix A-1 gives more detail on
the population process and its calibration.

6The parameter ⇢
s

is the probability that a individual of age s dies before age s+ 1.
7Appendix A-1 describes in detail the exogenous population dynamics.
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gn,t+1 ⌘
Nt+1

Nt

� 1 8t (3)

Ñt ⌘

E+S
X

s=E+1

!s,t 8t (4)

g̃n,t+1 ⌘
Ñt+1

Ñt

� 1 8t (5)

At birth, a fraction �j of the !1,t measure of new agents is randomly assigned to

each of the J lifetime income groups, indexed by j = 1, 2, ...J , such that
PJ

j=1 �j = 1.

Note that lifetime income is endogenous in the model, therefore we define lifetime

income groups by a particular path of earnings abilities. For each lifetime income

group, the measure �j!s,t of individuals’ e↵ective labor units (which we also call

ability) evolve deterministically according to ej,s. This gives a di↵erent life cycle

profile of earnings to each lifetime income group. An individual’s working ability

evolves over its working-age lifetime E + 1  s  E + S according to this age-

dependent deterministic process. The processes for the evolution of the population

weights !s,t as well as lifetime earnings are exogenous inputs to the model.

Figure 1 shows the calibrated trajectory of e↵ective labor units (ability) ej,s 2

E ⇢ R++ by age s for each type j for lifetime income distribution {�j}
7
j=1 =

[0.25, 0.25, 0.20, 0.10, 0.10, 0.09, 0.01]. We show e↵ective labor units in logarithms be-

cause the di↵erence in levels between the top one percent and the rest of the distribu-

tion is so large. These exogenous earnings processes are taken from DeBacker et al.

(2015). All model individuals have the same time endowment and receive the same

wage per e↵ective labor unit, but some are endowed with more e↵ective labor units.

We utilize a measure of lifetime income, by using potential lifetime earnings, that

allows us to define income groups in a way that accounts for the fact that earnings

of individuals observed in the data are endogenous. It is in this way that we are able

to calibrate the exogenous lifetime earnings profiles form the model with their data

counterparts.
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Figure 1: Exogenous life cycle income ability
paths log(ej,s) with S = 80 and J = 7

3.2 Individual problem

Individuals are endowed with a measure of time l̃ in each period t, and they choose

how much of that time to allocate between labor nj,s,t and leisure lj,s,t in each period.

That is, an individual’s labor and leisure choice is constrained by his total time

endowment, which constraint is identical across all individuals.

nj,s,t + lj,s,t = l̃ (6)

At time t, all age-s individuals with ability ej,s know the real wage rate, wt, and know

the one-period real net interest rate, rt, on bond holdings, bj,s,t, that mature at the

beginning of period t. They also receive accidental and intentional bequests. They

choose how much to consume cj,s,t, how much to save for the next period by loaning

capital to firms in the form of a one-period bond bj,s+1,t+1, and how much to work

6



nj,s,t in order to maximize expected lifetime utility of the following form,

Uj,s,t =
E+S�s
X

u=0

�

u

"

s+u�1
Y

v=s

(1� ⇢v)

#

u (cj,s+u,t+u, nj,s+u,t+u, bj,s+u+1,t+u+1)

and u (cj,s,t, nj,s,t, bj,s+1,t+1) =
(cj,s,t)

1��
� 1

1� �

...

+ e

gyt(1��)
�

n
s

 

b



1�

✓

nj,s,t

l̃

◆�� 1
�

+ k

!

+ ⇢s�
b
j

(bj,s+1,t+1)
1��

� 1

1� �

8j, t and E + 1  s  E + S

(7)

where � � 1 is the coe�cient of relative risk aversion on consumption and on in-

tended (precautionary) bequests, � 2 (0, 1) is the agent’s discount factor, and the

product term in brackets depreciates the individual’s discount factor by the cumula-

tive mortality rate. The disutility of labor term in the period utility function looks

nonstandard, but is simply the upper right quadrant of an ellipse that closely ap-

proximates the standard CRRA utility of leisure functional form.8 The term �

n
s is a

constant term that varies by age s influencing the disutility of labor relative to the

other arguments in the period utility function,9 and gy is a constant growth rate of

labor augmenting technological progress, which we explain in Section 3.3.10

The last term in (7) incorporates a warm-glow bequest motive in which individuals

value having savings to bequeath to the next generation in the chance they die before

the next period. Including this term is essential to generating the positive wealth

levels across the life cycle and across abilities that exist in the data. In addition,

the term �

b
j is a constant term that varies by lifetime income group j influencing the

8Appendix A-2 describes how the elliptical function closely matches the more standard utility

of leisure of the form (l̃�nj,s,t)
1+✓

1+✓

. This elliptical utility function forces an interior solution that
automatically respects both the upper and lower bound of labor supply, which greatly simplifies the
computation of equilibrium. In addition, the elliptical disutility of labor has a Frisch elasticity that
asymptotes to a constant rather than increasing to infinity as it does in the CRRA case. For a more
in-depth discussion see Evans and Phillips (2015)

9DeBacker et al. (2015) calibrate �n

s

and �b

j

to match average labor hours by age and some
moments of the distribution of wealth.

10The term with the growth rate egyt(1��) must be included in the period utility function because
consumption and bequests will be growing at rate g

y

and this term stationarizes the individual Euler
equation by making the marginal disutility of labor grow at the same rate as the marginal benefits
of consumption and bequests. This is the same balanced growth technique as that used in Mertens
and Ravn (2011).
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marginal utility of bequests, bj,s+1,t+1 relative to the other arguments in the period

utility function. Allowing the �b
j scale parameter on the warm glow bequest motive

vary by lifetime income group is critical for matching the distribution of wealth. As

was mentioned in Section 3.1, individuals in the model have no income uncertainty

because each lifetime earnings path ej,s deterministic, model agents thus hold no

precautionary savings. Calibrating the �b
j for each income group j captures in a

reduced form way some of the characteristics that individual income risk provides.

The parameter � � 1 is the coe�cient of relative risk aversion on bequests, and

the mortality rate ⇢s appropriately discounts the value of this term.11 Note that,

because of this bequest motive, individuals in the last period of their lives (s = S)

will die with positive savings b > 0. Also note that the CRRA utility of bequests

term prohibits negative wealth holdings in the model, but is not a strong restriction

since none of the wealth data for the lifetime income group j and age s cohorts is

negative except for the lowest quartile.

The per-period budget constraints for each agent normalized by the price of con-

sumption are the following,

cj,s,t + bj,s+1,t+1  (1 + rt) bj,s,t + wtej,snj,s,t +
BQj,t

�jÑt

� Ts,t

where bj,E+1,t = 0 for E + 1  s  E + S 8j, t

(8)

where Ñt is the total working age population at time t defined in (4) and �jÑt is the

number of the total working individuals of type j in period t. Note that the price of

consumption is normalized to one, so wt is the real wage and rt is the net real interest

rate. The term BQj,t represents total bequests from individuals in income group j

who died at the end of period t � 1. Ts,t is a function representing net taxes paid,

which we specify more fully below in equation (10).

Implicit in the period budget constraint (8) is a strong assumption about the

distribution of bequests. We assume that bequests are distributed evenly across all

11It is necessary for the coe�cient of relative risk aversion � to be the same on both the utility of
consumption and the utility of bequests. If not, the resulting Euler equations are not stationarizable.
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ages to those in the same lifetime income group. It is di�cult to precisely calibrate

the distribution of bequests from the data, both across income types j and across

ages s. However, the assumptions about the bequest motive as well as how bequests

are distributed are clearly important modeling decisions. Our current specification of

bequests is the most persistent, which should make wealth inequality more persistent

relative to other bequest specifications.12 A large number of papers study the e↵ects

of di↵erent bequest motives and specifications on the distribution of wealth, though

there is no consensus regarding the true bequest transmission process.13

Because the form of the period utility function in (7) ensures that bj,s,t > 0 for all

j, s, and t, total bequests will always be positive BQj,t > 0 for all j and t.

BQj,t+1 = (1 + rt+1)�j

 

E+S
X

s=E+1

⇢s!s,tbj,s+1,t+1

!

8j, t (9)

In addition to each the budget constraint in each period, the utility function (7)

imposes nonnegative consumption through infinite marginal utility, and the elliptical

utility of leisure ensures individual labor and leisure must be strictly nonnegative

nj,s,t, lj,s,t > 0. Because individual savings or wealth is always strictly positive, the

aggregate capital stock is always positive.14 An interior solution to the individual’s

problem (7) is assured.

In reality, each household is subject to many di↵erent taxes, all of which cannot

be modeled in a DGE framework. It is the net tax liability function Ts,t that we

estimate from the microsimulation model output. This output includes information

on all taxes paid in the American tax code. We also assume that every individual

also receives an equal lump sum transfer T

H
t which is generated from a balanced

budget constraint on the government. We represent the net tax liability function as

12Another allocation rule at the opposite extreme would be to equally divide all bequests among
all surviving individuals. An intermediate rule would be some kind of distribution of bequests with
most going to ones own type and a declining proportion going to the other types.

13See De Nardi and Yang (2014), De Nardi (2004), Nishiyama (2002), Laitner (2001), Gokhale
et al. (2000), Gale and Scholz (1994), Hurd (1989), Venti and Wise (1988), Kotliko↵ and Summers
(1981), and Wol↵ (2015).

14An alternative would be to allow for individual borrowing as long as an aggregate capital con-
straint K

t

> 0 for all t is satisfied.
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an average e↵ective tax rate times total income.

Ts,t(x, y) = ⌧s,t(x, y)
�

x+ y

�

� T

H
t

where x ⌘

wtej,snj,s,t

e

gyt
and y ⌘

rtbj,s,t

e

gyt

(10)

Note that the both the total tax liability function Ts,t(x, y) and the average e↵ective

tax rate functions ⌧s,t(x, y) are functions of stationarized labor income x and capital

income y, separately. We detail the estimation of the tax functions ⌧s,t(x, y) and

Ts,t(x, y) in Section 4.

The solution to the lifetime maximization problem (7) of individual with ability j

subject to the per-period budget constraint (8) and the specification of taxes in (10)

is a system of 2S Euler equations. The S static first order conditions for labor supply

nj,s,t are the following,

(cj,s,t)
��

 

wtej,s �
@Ts,t

@nj,s,t

!

= e

gyt(1��)
�

n
s

✓

b

l̃

◆✓

nj,s,t

l̃

◆v�1
"

1�

✓

nj,s,t

l̃

◆�
#

1�v
v

8j, t, and E + 1  s  E + S

where cj,s,t = (1 + rt) bj,s,t + wtej,snj,s,t +
BQj,t

�jÑt

� bj,s+1,t+1 � Ts,t

and bj,E+1,t = 0 8j, t

(11)

where the marginal tax rate with respect to labor supply @Ts,t

@nj,s,t
is described in equation

35.15

An individual also has S�1 dynamic Euler equations that govern his saving deci-

sions, bj,s+1,t+1, with the included precautionary bequest saving in case of unexpected

15We also have to use a parameter H that multiplies the model labor income and the model capital
income in the tax function in order to match their levels to the corresponding average levels in the
microsimulation model data.
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death. These are given by:

(cj,s,t)
�� = ⇢s�

b
j

�

bj,s+1,t+1

���
+ �(1� ⇢s)(cj,s+1,t+1)

��

"

(1 + rt+1)�
@Ts+1,t+1

@bj,s+1,t+1

#

8j, t, and E + 1  s  E + S � 1

(12)

where the marginal tax rate with respect to savings @Ts,t

@bj,s,t
is described in equation 37.

Lastly, Each individual also has one static first order condition for the last period

of life s = E + S, which governs how much to bequeath to the following generation

given that the individual will die with certainty. This condition is:

(cj,E+S,t)
�� = �

b
j(bj,E+S+1,t+1)

��
8j, t (13)

Define �̂t as the distribution of stationary individual savings across individuals at

time t, including the intentional bequests of the oldest cohort.

�̂t ⌘

n

�

b̂j,s,t

 J

j=1

oE+S+1

s=E+2
8t (14)

As will be shown in Section 3.5, the state in every period t for the entire equilibrium

system described in the stationary, non-steady-state equilibrium characterized in Def-

inition 2 is the stationary distribution of individual savings �̂t from (14). Because

individuals must forecast wages, interest rates, and aggregate bequests received in ev-

ery period in order to solve their optimal decisions and because each of those future

variables depends on the entire distribution of savings in the future, we must assume

some individual beliefs about how the entire distribution will evolve over time. Let

general beliefs about the future distribution of capital in period t+u be characterized

by the operator ⌦(·) such that:

�̂e
t+u = ⌦u

⇣

�̂t

⌘

8t, u � 1 (15)

where the e superscript signifies that �̂e
t+u is the expected distribution of wealth at

11



time t+ u based on general beliefs ⌦(·) that are not constrained to be correct.16

3.3 Firm problem

A unit measure of identical, perfectly competitive firms exist in the economy. The

representative firm is characterized by the following Cobb-Douglas production tech-

nology,

Yt = ZK

↵
t

�

e

gyt
Lt

�1�↵
8t (16)

where Z is the measure of total factor productivity, ↵ 2 (0, 1) is the capital share of

income, gy is the constant growth rate of labor augmenting technological change, and

Lt is aggregate labor measured in e�ciency units. The firm uses this technology to

produce a homogeneous output which is consumed by individuals and used in firm

investment. The interest rate rt paid to the owners of capital is the real interest rate

net of depreciation. The real wage is wt. The real profit function of the firm is the

following.

Real Profits = ZK

↵
t

�

e

gyt
Lt

�1�↵
� (rt + �)Kt � wtLt (17)

As in the individual budget constraint (8), note that the price output has been nor-

malized to one.

Profit maximization results in the real wage, wt, and the real rental rate of capital

rt being determined by the marginal products of labor and capital, respectively:

wt = (1� ↵)
Yt

Lt

8t (18)

rt = ↵

Yt

Kt

� � 8t (19)

3.4 Government fiscal policy

The government is represented by a balanced budget constraint. The government

collects taxes ⌧s,t(x, y)(x + y) from all individuals and divides total revenues equally

16In Section 3.5 we will assume that beliefs are correct (rational expectations) for the stationary
non-steady-state equilibrium in Definition 2.
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among individuals in the economy to determine the lump-sum transfer.

T

H
t =

1

Ñt

X

s

X

j

!s,t�j⌧s,t(wtej,snj,s,t, rtbj,s,t)
�

wtej,snj,s,t + rtbj,s,t

�

(20)

Lump sum transfers have an impact on the distribution of income and wealth.

However, if one constrains policy experiments to have the same steady-state revenue

impact, the changes in inequality in economic outcomes due to changes in government

transfers is equivalent in each policy experiment in the steady-state.

3.5 Market clearing and stationary equilibrium

Labor market clearing requires that aggregate labor demand Lt measured in e�-

ciency units equal the sum of individual e�ciency labor supplied ej,snj,s,t. Capital

market clearing requires that aggregate capital demand Kt equal the sum of capi-

tal investment by individuals bj,s,t. Aggregate consumption Ct is defined as the sum

of all individual consumptions, and aggregate investment is defined by the resource

constraint Yt = Ct+ It as shown in (23). That is, the following conditions must hold:

Lt =
E+S
X

s=E+1

J
X

j=1

!s,t�jej,snj,s,t 8t (21)

Kt =
E+S+1
X

s=E+2

J
X

j=1

!s�1,t�1�jbj,s,t 8t (22)

Yt = Ct +Kt+1 � (1� �)Kt 8t

where Ct ⌘

E+S
X

s=E+1

J
X

j=1

!s,t�jcj,s,t

(23)

The usual definition of equilibrium would be allocations and prices such that indi-

viduals optimize (11), (12), and (13), firms optimize (18) and (19), and markets clear

(21) and (22). However, the variables in the equations characterizing the equilibrium

are potentially non-stationary due to the growth rate in the total population gn,t each

period coming from the cohort growth rates in (1) and from the deterministic growth

13



Table 1: Stationary variable definitions

Sources of growth Not

egyt Ñt egytÑt growinga

ĉj,s,t ⌘
cj,s,t
egyt !̂s,t ⌘

!s,t

Ñt
Ŷt ⌘

Yt

egytÑt
nj,s,t

b̂j,s,t ⌘
bj,s,t
egyt L̂t ⌘

Lt

Ñt
K̂t ⌘

Kt

egytÑt
rt

ŵt ⌘
wt

egyt B̂Qj,t ⌘
BQj,t

egytÑt

ŷj,s,t ⌘
yj,s,t
egyt

T̂s,t ⌘
Tj,s,t

egyt

a The interest rate rt in (19) is already stationary because Yt and Kt

grow at the same rate. Individual labor supply nj,s,t is stationary.

rate of labor augmenting technological change gy in (16).

Table 1 characterizes the stationary versions of the variables of the model in terms

of the variables that grow because of labor augmenting technological change, popula-

tion growth, both, or none. With the definitions in Table 1, it can be shown that the

equations characterizing the equilibrium can be written in stationary form in the fol-

lowing way. The static and intertemporal first-order conditions from the individual’s

optimization problem corresponding to (11), (12), and (13) are the following:

(ĉj,s,t)
��

 

ŵtej,s �
@T̂s,t

@nj,s,t

!

= �

n
s

✓

b

l̃

◆✓

nj,s,t

l̃

◆��1
"

1�

✓

nj,s,t

l̃

◆�
#

1��
�

8j, t, and E + 1  s  E + S

where ĉj,s,t = (1 + rt) b̂j,s,t + ŵtej,snj,s,t +
B̂Qj,t

�j

� e

gy
b̂j,s+1,t+1 � T̂s,t

and b̂j,E+1,t = 0 8j, t

(24)

(ĉj,s,t)
�� = ...

e

�gy�

 

⇢s�
b
j

�

b̂j,s+1,t+1

���
+ �(1� ⇢s)(ĉj,s+1,t+1)

��

"

(1 + rt+1)�
@T̂s+1,t+1

@b̂j,s+1,t+1

#!

8j, t, and E + 1  s  E + S � 1

(25)

14



(ĉj,E+S,t)
�� = �

b
je

�gy�(b̂j,E+S+1,t+1)
��

8j, t (26)

The stationary firm first order conditions for optimal labor and capital demand

corresponding to (18) and (19) are the following.

ŵt = (1� ↵)
Ŷt

L̂t

8t (27)

rt = ↵

Ŷt

K̂t

� � = ↵

Yt

Kt

� � 8t (19)

And the two stationary market clearing conditions corresponding to (21) and (22)—

with the goods market clearing by Walras’ Law—are the following.

L̂t =
E+S
X

s=E+1

J
X

j=1

!̂s,t�jej,snj,s,t 8t (28)

K̂t =
1

1 + g̃n,t

 

E+S+1
X

s=E+2

J
X

j=1

!̂s�1,t�1�j b̂j,s,t

!

8t (29)

where g̃n,t is the growth rate in the working age population between periods t � 1

and t described in (5). It is also important to note the stationary version of the

characterization of total bequests BQj,t+1 from (9) and for the government budget

constraint in (20).

B̂Qj,t+1 =
(1 + rt+1)�j
1 + g̃n,t

 

E+S
X

s=E+1

⇢s!̂s,tb̂j,s+1,t+1

!

8j, t (30)

T̂

H
t =

X

s

X

j

!̂s,t�jT̂s,t (31)

We can now define the stationary steady-state equilibrium for this economy in the

following way.

Definition 1 (Stationary steady-state equilibrium). A non-autarkic stationary
steady-state equilibrium in the overlapping generations model with S-period lived
agents and heterogeneous ability ej,s is defined as constant allocations nj,s,t = n̄j,s

15



and b̂j,s+1,t+1 = b̄j,s+1 and constant prices ŵt = w̄ and rt = r̄ for all j, s, and t such
that the following conditions hold:

i. individuals optimize according to (24), (25), and (26),

ii. Firms optimize according to (27) and (19),

iii. Markets clear according to (28) and (29), and

iv. The population has reached its stationary steady state distribution !̄s for all
ages s, characterized in Appendix A-1.

The steady-state equilibrium is characterized by the system of 2JS equations and

2JS unknowns n̄j,s and b̄j,s+1. Appendix A-3 details how to solve for the steady-state

equilibrium.

The non-steady state equilibrium is characterized by 2JST equations and 2JST

unknowns, where T is the number of periods along the transition path from the

current state to the steady state. The definition of the stationary non-steady-state

equilibrium is similar to Definition 1, with the stationary steady-state equilibrium

definition being a special case of the stationary non-steady-state equilibrium.

Definition 2 (Stationary non-steady-state equilibrium). A non-autarkic sta-

tionary non-steady-state equilibrium in the overlapping generations model with S-

period lived agents and heterogeneous ability ej,s is defined as allocations nj,s,t and

b̂j,s+1,t+1 and prices ŵt and rt for all j, s, and t such that the following conditions

hold:

i. individuals have symmetric beliefs ⌦(·) about the evolution of the distribution

of savings, and those beliefs about the future distribution of savings equal the

realized outcome (rational expectations),

�̂t+u = �̂e
t+u = ⌦u

⇣

�̂t

⌘

8t, u � 1

ii. individuals optimize according to (24), (25), and (26)

iii. Firms optimize according to (27) and (19), and

16



iv. Markets clear according to (28) and (29).

We describe the methodology to compute the solution to the non-steady-state

equilibrium to Appendix A-4. We will use the time path solution to find e↵ects of

tax policies on macroeconomic variables over the budget window.

3.6 Calibration

Table 2 shows the calibrated values for the exogenous variables and parameters taken

from DeBacker et al. (2015).

Note that the scale parameter �n
s takes on 80 values (one for each model age) that

increase with age, representing an increasing disutility of labor that is not modeled

anywhere else in the utility function. An hour of labor for an older person becomes

more costly due to biological reasons related to aging. Such a parametrization helps

to fit fact that hours worked decline much more sharply later in life than do hourly

earnings.

Heterogeneity in the scale parameter multiplying useful in having the model gen-

erate a distribution of wealth similar to that observed in the data. Note that without

such heterogeneity in this parameter, individuals at the high end of the earnings dis-

tribution in our model would not save as much as their real world counterparts given

the deterministic earnings process in our model. They have no precautionary savings

motive, only the warm-glow bequest motive for savings. One can view the assumption

of heterogeneous utility weights as not just variation in preference across households,

but also as reflecting di↵erences in family size, expectations of income growth, or

other variations that are not explicitly modeled here. We thus allow {�

b
j}

7
j=1 to take

on seven values, one for each lifetime income group.
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Table 2: List of exogenous variables and baseline calibra-
tion values

Symbol Description Value

�̂1 Initial distribution of savings �̄

N0 Initial population 1

{!
s,0}

S

s=1 Initial population by age (see App. A-1)

{f
s

}

S

s=1 Fertility rates by age (see App. A-1)

{i
s

}

S

s=1 Immigration rates by age (see App. A-1)

{⇢
s

}

S

s=1 Mortality rates by age (see App. A-1)

{e
j,s

}

J,S

j,s=1 Deterministic ability process (see DeBacker et al., 2015)

{�
j

}

J

j=1 Lifetime income group percentages [0.25, 0.25, 0.20, 0.10, 0.10, 0.09, 0.01]

J Number of lifetime income groups 7

S Maximum periods in economically active 80
individual life

E Number of periods of youth economically round
�

S

4

�

outside the model

R Retirement age (period) round
�

9
16S

�

l̃ Maximum hours of labor supply 1

� Discount factor (0.96)
80
S

� Coe�cient of constant relative risk aversion 3

b Scale parameter in utility of leisure 0.6701

� Shape parameter in utility of leisure 1.3499

k constant parameter in utility of leisure -0.6548

�n

s

Disutility of labor level parameters [1.53, 43.22]

�b

j

Utility of bequests level parameters [9.264⇥ 10�5, 118, 648.915]

Z Level parameter in production function 1

↵ Capital share of income 0.35

� Capital depreciation rate 1� (1� 0.05)
80
S

g
y

Growth rate of labor augmenting (1 + 0.03)
80
S
� 1

technological progress

T Number of periods to steady state 160

⌫ Dampening parameter for TPI 0.2
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4 Integration of Microsimulation Model with DGE

Model

We interface between the microsimulation and DGE model through the tax function

Ts,t in the household budget constraint (8). In particular, the tax calculator will

produce microdata that can be used to calibrate these functions in a way that is

consistent with the tax law parameters entered into the microsimulation model. Note

that our estimated net tax liability function will be an approximation of the true

underlying tax structure, incentives, and behavior, but our estimated parameters will

fit smooth functions to the microsimulation model data that can be entered into the

DGE model.

We begin our discussion of the integration by describing the functional form we

use approximate the e↵ective tax rate function. We then explain how these functional

forms are estimated using data generated by the microsimulation model and provide

some measures of the fit of the functional form under the baseline tax policies. Finally,

we discuss how the tax parameters a↵ecting payroll taxes are linked between the

microsimulation and DGE models.

4.1 Modeling microsimulation tax structure

We model the average e↵ective tax rate as a ratio of polynomials in labor and capital

income. Important properties of this functional form are that it allows for negative

average and marginal tax rates and that it produces marginal tax rate functions that

are function of both labor and capital income. While we could have fit functions of

total tax liability or marginal tax rates, fitting the average e↵ective tax rate function

has the benefit that the average e↵ective tax rate is bounded above by one when the

income concept used is total economic income.

Let x be total labor income x ⌘ wen, and let y be total capital income y ⌘ rb.

Also, let the labor income share of total income be � ⌘

x
x+y

= wen
rb+wen

. We then write

our average e↵ective tax rate functions as follows:
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⌧(x, y) =�⇤+K

where � ⌘

h

�(maxx �minx) + (1� �)(maxy �miny)
i

and ⇤ ⌘

✓

Ax

2 +By

2 + Cxy +Dx+ Ey

Ax

2 +By

2 + Cxy +Dx+ Ey + F

◆

and K ⌘ �minx + (1� �)miny

where A,B,C,D,E, F,maxx,maxy > 0

and maxx > minx and maxy > miny

(32)

Figure 2: Scatter plot of e↵ective tax rates, la-
bor income, and capital income from
microsimulation model: t = 2015 and
s = 43

This functional form with the ratio of polynomials ⇤ = z
z+k

is a nice structure

because it is bounded between 0 and 1 for positive polynomial coe�cients and positive

labor and capital income. This class of functions also seems to robustly fit the shape

of the tax data. Figure 2 shows a 3 dimensional scatterplot of the e↵ective tax rate

data from the microsimulation model as a function of total labor income x and total

capital income y with both incomes truncated at $500,000 in order to better see
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the data. These data clearly have the negative exponential shape delivered by the

functional form ⇤.

The parameter maxx is the maximum average tax rate and minx is the minimum

average tax rate for all labor income x when capital income is zero y = 0. Conversely,

the parameter maxy is the maximum average tax rate and miny is the minimum

average tax rate for all capital income y when labor income is zero x = 0. The

parameters in the � and K term allow for some simple slope changes from labor

income to capital income to better fit the data. These parameters are summarized in

Table 3.

Table 3: Description of tax function ⌧(x, y) pa-
rameters

Symbol Description

A Coe�cient on squared xterm in ⌧(·)

B Coe�cient on squared y term in ⌧(·)

C Coe�cient on interaction term in ⌧(·)

D Coe�cient on linear x term in ⌧(·)

E Coe�cient on linear y term in ⌧(·)

F Constant term in ⌧(·)

max
x

Maximum AETR on labor income x given y = 0

min
x

Minimum AETR on labor income x given y = 0

max
y

Maximum AETR on capital income y given x = 0

max
y

Minimum AETR on capital income y given x = 0

The total tax liability function is simply the average tax function times total

income ⌧(x, y)(x+ y).

T (x, y) ⌘ ⌧(x, y)
�

x+ y

�

=
�

�⇤+K

��

x+ y

�

(33)

For the marginal tax rates in the next section, it will be helpful to rearrange terms in

(33) in the following way, which cancels out the total income term (x + y) with the
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total income term in the denominator of �, which appears in both � and K.

T (x, y) = (�⇤+K)(x+ y)

=
⇥

x(maxx �minx) + y(maxy �miny)
⇤

⇤+ xminx + y miny

(34)

Using the expression in (34), we can solve for the marginal tax rates with respect

to both total labor income x and total capital income y and show that they are both

strictly positive.

MTRx ⌘

@T (x, y)

@x

= (maxx �minx)⇤+
⇥

x(maxx �minx) + y(maxy �miny)
⇤

@⇤

@x

+minx

where
@⇤

@x

=
(2Ax+ Cy +D)F

(Ax2 +By

2 + Cxy +Dx+ Ey + F )2
> 0

(35)

The marginal tax rate with respect to labor income x is not everywhere positive. In

particular, MTRx > 0 only when the following condition holds.

MTRx > 0 , ⇤maxx+(1�⇤)minx >

⇥

x(maxx�minx)+y(maxy�miny)
⇤

@⇤

@x

(36)

This expression holds true more often when ⇤ is close to 1, which is when x and y

are large. Marginal tax rates are more likely to be negative when minimum tax rates

are negative and when x and y are small (⇤ close to 0). Intuitively, if the minimum

tax rate on labor income is negative and an individual shifts more income to labor

income x (� "), this could reduce their tax liability.

The marginal tax rate with respect to capital income y is the following.

MTRy ⌘
@T (x, y)

@y

= (maxy �miny)⇤+
⇥

x(maxx �minx) + y(maxy �miny)
⇤

@⇤

@y

+miny

where
@⇤

@y

=
(2By + Cx+ E)F

(Ax2 +By

2 + Cxy +Dx+ Ey + F )2
> 0

(37)
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The marginal tax rate with respect to capital income y is not everywhere positive. In

particular, MTRx > 0 only when the following condition holds.

MTRy > 0 , ⇤maxy+(1�⇤)miny >
⇥

x(maxx�minx)+y(maxy�miny)
⇤

@⇤

@y

(38)

The same intuition as described regarding MTRx holds true here.

The tax functions above are specific to a given age and tax year. Thus, average

e↵ective tax rates in the DGE model will vary across the age of the model household,

the model year, and amounts of capital and labor income. In this way, the tax function

will incorporate some of the variation in statutory rates, as well as heterogeneity in

income items, deductions items, credits, filing unit structure, and so forth into the

DGE model that cannot account for this degree of heterogeneity. The e↵ect of such

heterogeneity on tax burdens will a↵ect the average e↵ective tax rate functions we fit

to the output of the microsimulation model. For example, if filing units with a primary

filer that is 65 years old and with total income of $60,000 have a higher proportion of

income from tax exempt interest than do filing units who also have $60,000 in total

income, but a primary filer who is 40 years old, then the tax functions will be able to

account for these di↵erent portfolios by finding a lower average e↵ective tax rate for

the older filing unit than that younger filing unit, for a given amount of total income.

4.2 Estimating tax functions

Tax functions of the form above are estimated with output from the microsimulation

model, a sample of which is shown in Figure 2. To map the output of the microsimu-

lation model, which is based on income reported on tax returns, to the DGE model,

where income is defined more broadly, we use the following definitions.

To calculate the average e↵ective tax rates from the microsimulation model, we

divided total tax liability by a measure of “adjusted total income”. Adjusted total

income is defined as total income (Form 1040, line 22) plus tax-exempt interest in-

come, IRA distributions, pension income, and Social Security benefits (Form 1040,

lines 8b, 15a, 16a, and 20a, respectively).
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We consider adjusted total income from the microsimulation model to be the

counterpart of total income in the DGE model. Total income in the DGE model

is the sum of capital and labor income. We define labor income as earned income,

which is the sum of wages and salaries (Form 1040, line 7) and self-employment

income (Form 1040 lines 12 and 18) from the microsimulation model output. Capital

income is defined as a residual.17

When we look at the raw output from the microsimulation model, we find that

there are several observations with extreme values for their average e↵ective tax rate.

Since this is a ratio, such outliers are possible, for example when the denominator,

adjusted total income, is very small. We omit such outliers by making the follow-

ing restrictions on the raw output of the microsimulation model. First, we exclude

observations with an average e↵ective tax rate greater than 1.5 times the highest

statutory marginal tax rate. Second, we exclude observations where the average ef-

fective tax rate is less than the lowest statutory marginal tax rate on income minus

the maximum phase-in rate for the Earned Income Tax Credit (EITC). Finally, since

total income cannot be negative in our DGE model, we drop observations from the

microsimulation model where adjusted total income is less than $5.18

With the output of the microsimulation model cleaned, we move to our estimation.

We estimate a transformation of the AETR function in Equation (32) separately

for each tax year and each year of age of the primary filer. We estimate separate

tax functions of capital income and labor income for each age tax filer in each year

⌧s,j(x, y). We also estimate the version of (32) in which the labor income x and capital

income y variables in the polynomials are transformed to percent deviations from

their respective means. This helps with the scale of the variables in the optimization

routine. The transformed AETR function is estimated using a constrained, weighted,

non-linear least squares estimator. The weighting in this estimator come from the

17This is not an ideal definition of capital income, since it includes transfers between filers (e.g.,
alimony payments) and from the government (e.g., unemployment insurance), but we have chosen
this definition for now in order to ensure that all of total income is classified as either capital or
labor income. This accounting will be refined in the future.

18We choose $5 rather than $0 to provided additional assurance that small income values are not
driving large AETRs.
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CPS weights assigned to the filers in the microsimulation model.

Figure 3: Fitted tax function ⌧(x, y) versus microsimulation
data ⌧i: t = 2015 and s = 43

Let ✓s,t = (A,B,C,D,E, F,maxx,minx,maxy,miny) be the vector of parameters

of the tax function for a particular age of filers in a particular year. The estimate ✓̂s,t

is the following,

✓̂s,t = ✓s,t : min
✓s,t

N
X

i=1

h

⌧i � ⌧

�

xi, yi|✓s,t

�

i2

wi,

subject to A,B,C,D,E, F,maxx,maxy > 0

and maxx � minx and maxy � miny

(39)

where ⌧i is the average e↵ective tax rate for observation i from the microsimulation

output, ⌧(xi, yi|✓s,t) is the predicted average tax rate for individual i with xi labor

income and yi capital income given parameters ✓s,t, and wi is the CPS sampling

weight of this observation. The number N is the total number of observations from
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the microsimulation output for age s and year t. Figure 3 shows the typical fit of an

estimated tax function ⌧s,t
�

x, y|✓s,t

�

to the data. The data in Figure 3 are the same

age s = 43 and year t = 2015 as the data Figure 2. The only di↵erence is that we

have truncated both labor income x and capital income y in Figure 2 at $1 million

rather than $500,000.

We use the microsimulation model data to estimate S ⇥ T sets of the 10 tax

function parameters listed in Table 3. The total number of years of microsimulation

data for which we estimate tax functions corresponds to the budget window of our

desired revenue estimates, which is usually T = 10. Because the DGE model has a

time horizon well beyond 10 years, we assume that the file year tax policy in year T

is continued indefinitely from the end of the budget window forward. In addition, the

data provide very few observations of primary filers with ages greater than 80 years

old. The DGE model allows individuals to live for up to 100 periods. We apply the

tax function estimated for 80 year-olds to those with model ages 80-100.

5 A 10% Reduction in Income Tax Rates

The policy change we consider is a reduction in the marginal statutory rates on

individual filers ordinary income. The changes in tax policy are summaries in Table

4.

Table 4: Statutory Marginal Rates Under the Baseline and Policy Change

Bracket Baseline Policy
1 0.100 0.090
2 0.150 0.135
3 0.250 0.225
4 0.280 0.252
5 0.330 0.297
6 0.350 0.315
7 0.396 0.356
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5.1 The Static Revenue E↵ects

Using the web application for the Tax-Calculator at www.ospc.org/TaxBrain, we

calculate the revenue e↵ects of the proposal to reduce the statutory marginal tax rate

by 10% for each tax bracket. The static revenue e↵ects as displaying on the Tax

Brain webpage are about -$1.25 trillion over 10 years (2015-2024).

Figure 4: Static Revenue Estimate from the Tax Calculator

5.2 The Macroeconomic E↵ects

Table 6 displays the percentage changes in aggregate quantities and prices over the

budget window and in the long-run steady state. These are computed through the

DGE model described above, using the estimated tax functions for the baseline and

policy tax parameters. The parameters of the estimated tax functions are given in

Table 5.
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Table 5: Tax Function Parameters

Parameter Baseline Policy
A 3.10E-10 9.45E-11
B 2.26E-10 1.57E-10
C 6.37E-12 7.29E-12
D 3.45E-04 1.99E-04
E 1.54E-04 7.94E-05
F 29.0441 18.3836
max x 0.2910 0.2835
min x -0.0544 -0.0487
max y 0.3037 0.2987
min y -0.0240 -0.0199

Table 6: Macroeconomic E↵ects of the Policy Change (% Change)

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2015-2024 SS
GDP 1.64 1.59 1.58 1.57 1.56 1.56 1.56 1.56 1.56 1.55 1.57 1.55
Consumption 1.68 1.67 1.68 1.67 1.67 1.67 1.68 1.64 1.64 1.58 1.66 1.33
Investment 3.66 3.22 2.68 3.48 2.33 3.24 3.06 2.62 2.85 2.22 2.92 2.04
Hours Worked 1.94 1.73 1.53 1.83 1.37 1.74 1.66 1.44 1.53 1.23 1.60 1.18

Avg. Wage 0.19 0.29 0.37 0.27 0.46 0.32 0.36 0.45 0.41 0.52 0.36 0.36
Interest Rate -0.61 -0.93 -1.19 -0.86 -1.43 -0.99 -1.13 -1.39 -1.28 -1.62 -1.15 -1.23

Total Taxes -2.73 -2.83 -2.69 -2.88 -2.57 -2.78 -2.81 -2.55 -2.72 -2.23 -2.68 -2.20
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6 Discussion

Qualitatively, the results of the macro model are consistent with economic theory.

The reduction in marginal tax rates increases the incentives to work and save. We

subsequently see increases aggregate hours worked and investment. As a result, both

GDP and consumption increase. That the increases in the capital stock are larger

than the increase in hours worked, means that the marginal product of capital falls,

while the marginal product of labor rises. Given our assumption of a competitive

production sector, this results in lower real interest rates and higher wages.

Total tax revenue decreases due to the lower tax rates, but the increase in aggre-

gate income that results from the additional investment and labor supply o↵set the

revenue losses to some extent. Consider that the static score suggests revenue losses

on the order of 4% of total tax revenue. These losses are between 2% and 3% when

accounting for the macroeconomic e↵ects of the tax policy.

A few caveats about the limitations of the model are in order. Of first order

importance in determining the macroeconomic e↵ects of changes in tax policy are the

assumptions about how such tax changes are financed. The DGE model used here has

a simple balanced budget requirement for the government. This means that tax cuts,

as we consider here, are financed by immediate reductions in the lump sum transfers

the government makes to all households. The assumption is the most conducive to

reductions in taxes providing positive macroeconomic e↵ects. If these tax cuts were

temporary and financed by future tax increases, the stimulative e↵ects of such cuts

would be substantially reduced.

Not considered in this model but also important in determining the macroeco-

nomic e↵ects of fiscal policy are the policy responses of the central bank. Implicit

in the results presented here is that the central bank does not respond to fiscal pol-

icy. If, for example, the central bank responded by holding interest rates constant,

the supply side e↵ects would be smaller and their would be less of a change in the

macroeconomic aggregates.

Finally, one should note that while the levels of the macroeconomic aggregates
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change in the steady state as a result of tax policy, that long run growth rates do

not. These long run growth rates are governed by exogenous changes in population

growth and factor productivity. Thus these long run growth rates, in this framework,

are not dependent on tax policy.
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APPENDIX

A-1 Characteristics of exogenous population growth
assumptions

In this appendix, we describe in detail the exogenous population growth assumptions
in the model and their implications. In Section 3.1, we define the laws of motion for
the population of each cohort !s,t to be the following.

!1,t+1 =
E+S
X

s=1

fs!s,t 8t

!s+1,t+1 = (1 + is � ⇢s)!s,t 8t and 1  s  E + S � 1

(1)

We can transform the nonstationary equations in (1) into stationary laws of motion
by dividing both sides by the total populations Nt and Nt+1 in both periods,

!̂1,t+1 =

PE+S
s=1 fs!̂s,t

1 + gn,t+1

8t

!̂s+1,t+1 =
(1 + �s � ⇢s)!̂s,t

1 + gn,t+1

8t and 1  s  E + S � 1

(A.1.1)

where !̂s,t is the percent of the total population in age cohort s and the population
growth rate gn,t+1 between periods t and t+ 1 is defined in (3),
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(A.1.2)

where we restrict 1 + is � ⇢s � 0 for all s.
We write (A.1.2) in matrix notation as the following.

!̂t+1 =
1

1 + gn,t+1

⌦!̂t 8t (A.1.3)
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The stationary steady state population distribution !̄ is the eigenvector ! with eigen-
value (1 + ḡn) of the matrix ⌦ that satisfies the following version of (A.1.3).

(1 + ḡn)!̄ = ⌦!̄ (A.1.4)

Proposition 1. There exists a unique positive real eigenvector !̄ of the matrix ⌦,
and it is a stable equilibrium.

Proof. First, note that the matrix ⌦ is square and non-negative. This is enough for a
general version of the Perron-Frobenius Theorem to state that a positive real eigen-
vector exists with a positive real eigenvalue. This is not yet enough for uniqueness.
For it to be unique by a version of the Perron-Fobenius Theorem, we need to know
that the matrix is irreducible. This can be easily shown. The matrix is of the form

⌦ =
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Where each * is strictly positive. It is clear to see that taking powers of the matrix
causes the sub-diagonal positive elements to be moved down a row and another row
of positive entries is added at the top. None of these go to zero since the elements
were all non-negative to begin with.
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Existence of an m 2 N such that (⌦m)ij 6= 0 (> 0) is one of the definitions of
an irreducible (primitive) matrix. It is equivalent to saying that the directed graph
associated with the matrix is strongly connected. Now the Perron-Frobenius Theorem
for irreducible matrices gives us that the equilibrium vector is unique.

We also know from that theorem that the eigenvalue associated with the positive
real eigenvector will be real and positive. This eigenvalue, p, is the Perron eigenvalue
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and it is the steady state population growth rate of the model. By the PF Theorem
for irreducible matrices, |�i|  p for all eigenvalues �i and there will be exactly h

eigenvalues that are equal, where h is the period of the matrix. Since our matrix ⌦ is
aperiodic, the steady state growth rate is the unique largest eigenvalue in magnitude.
This implies that almost all initial vectors will converge to this eigenvector under
iteration.

For a full treatment and proof of the Perron-Frobenius Theorem, see Suzumura
(1983). Because the population growth process is exogenous to the model, we calibrate
it to annual age data for age years s = 1 to s = 100. As is shown in Figure 5, period
s = 1 corresponds to the first year of life between birth and when an individual turns
one year old.

Figure 5: Correspondence of model timing to
data timing for model periods of one
year

Our initial population distribution {!s,1}
100
s=1 in Figure 6 comes from Census Bu-

reau (2014) population estimates for both sexes for 2013. The fertility rates {fs}100s=1

in Figure 7 come from Center for Disease Control (2010, Table 1). The mortality
rates {⇢s}

99
s=1 in Figure 8 come from the 2010 death probabilities in Social Security

Administration (2010). We enforce a strict maximum age mortality rate of ⇢100 = 1
in our model.

The immigration rates {is}99s=1 in Figure 9 are essentially residuals. We take total
population for two consecutive years Nt and Nt+1 and the population distribution
by age in both of those years !t and !t+1from the Census Bureau (2014) data. We
then deduce the immigration rates {is}

99
s=1 using equation (A.1.1). We do this for

three consecutive sets of years, so that our calibrated immigration rates by age are
the average of our three years of deduced rates from the data for each age.
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Figure 6: Initial population distribution !s,1 by
year, 1  s  100

Figure 7: Fertility rates fs by year, 1  s  100
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Figure 8: Mortality rates ⇢s by year, 1  s  100

Figure 9: Immigration rates is by year, 1  s 

100
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Figure 10 shows the predicted time path of the total population Nt given !s,1 fs,
is, and ⇢s. Notice that the population approaches a constant growth rate. This is a
result of the stationary population percent distribution !̄ eventually being reached.
Figure 11 shows the steady-state population percent distribution by age !̄.

Figure 10: Forecast time path of population
growth rate gn,t
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Figure 11: Steady-state population percent dis-
tribution by age !̄
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A-2 Derivation of elliptical disutility of labor sup-
ply

Evans and Phillips (2015) provide an exposition of the value of using elliptical disu-
tility of labor specification as well as its relative properties to such standard disutility
of labor functions such as constant relative risk aversion (CRRA) and constant Frisch
elasticity (CFE). A standard specification of additively separable period utility in
consumption and labor supply first used in King et al. (1988) is the following,

u(c, n) =
c

1��
� 1

1� �

+ �

n

⇣

l̃ � n

⌘1+✓

1 + ✓

(A.2.1)

where � � 1 is the coe�cient of relative risk aversion on consumption, ✓ � 0 is
proportional to the inverse of the Frisch elasticity of labor supply, and l̃ is the time
endowment or the maximum labor supply possible. The constant �n is a scale pa-
rameter influencing the relative disutility of labor to the utility of consumption.

Although labor supply is only defined for n 2 [0, l̃], the marginal utility of leisure at
n = l̃ is infinity and is not defined for n > l̃. However, utility of labor in this functional
form is defined for n < 0. To avoid the well known and significant computational
di�culty of computing the solution to the complementary slackness conditions in the
Karush, Kuhn, Tucker constrained optimization problem, we impose an approximat-
ing utility function that has properties bounding the solution for n away from both
n = l̃ and n = 0. The upper right quadrant of an ellipse has exactly this property and
also has many of the properties of the original utility function. Figure 12 shows how
our estimated elliptical utility function compares to the utility of labor from (A.2.1)
over the allowed support of n.

The general equation for an ellipse in x and y space with centroid at coordinates
(h, k), horizontal radius of a, vertical radius of b, and curvature � is the following.

✓

x� h

a

◆�

+

✓

y � k

b

◆�

= 1 (A.2.2)

Figure 13 shows an ellipse with the parameterization [h, k, a, b, �] = [1,�1, 1, 2, 2].
The graph of the ellipse in the upper-right quadrant of Figure 13 (x 2 [1, 2] and

y 2 [�1, 1]) has similar properties to the utility of labor term in (A.2.1). If we let
the x variable be labor supply n, the utility of labor supply be g(n), the x-coordinate
of the centroid be zero h = 0, and the horizontal radius of the ellipse be a = l̃, then
the equation for the ellipse corresponding to the standard utility specification is the
following.

✓

n

l̃

◆�

+

✓

g � k

b

◆�

= 1 (A.2.3)

Solving the equation for g as a function of n, we get the following.

g(n) = b



1�

✓

n

l̃

◆�� 1
�

+ k (A.2.4)
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Figure 12: Comparison of standard utility of la-
bor n to elliptical utility
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The � parameter acts like a constant elasticity of substitution, and the parameter b
is a shape parameter similar to �n in (A.2.1).

We use the upper-right quadrant of the elliptical utility function because the
utility of n is strictly decreasing on n 2 (0, l̃), because the slope of the utility function
goes to negative infinity as n approaches its maximum of l̃ and because the slope
of the utility function goes to zero as n approaches its minimum of 0. This creates
interior solutions for all optimal labor supply choices n⇤

2 (0, l̃). Although it is more
realistic to allow optimal labor supply to sometimes be zero, the complexity and
dimensionality of our model requires this approximating assumption to render the
solution method tractable.

Figure 12 shows how closely the estimated elliptical utility function matches the
original utility of labor function in (A.2.1) with a Frisch elasticity of 1.519 . We
choose the ellipse parameters b, k, and � to best match the points on the original
utility of labor function for n 2 [0, 1]. We minimize the sum of absolute errors for
101 evenly spaced points on this domain. The estimated values of the parameters
for the elliptical utility shown in Figure 12 and represented in equation (A.2.4) are
[b, k, �] = [.6701,�.6548, 1.3499].

19See Chetty et al. (2011), Keane and Rogerson (2012) and Peterman (2014) for discussion of this
choice.
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Figure 13: Ellipse with [h, k, a, b, �] =
[1,�1, 1, 2, 2]

Ͳ4

Ͳ3

Ͳ2

Ͳ1

0

1

2

Ͳ1 0 1 2 3 4 5

42



A-3 Solving for stationary steady-state equilibrium

This section describes the solution method for the stationary steady-state equilibrium
described in Definition 1.

1. Use the techniques in Appendix A-1 to solve for the steady-state population
distribution vector !̄ of the exogenous population process.

2. Choose an initial guess for the stationary steady-state distribution of capital
b̄j,s+1 for all j and s = E + 2, E + 3, ...E + S + 1 and labor supply n̄j,s for all j
and s.

• A good first guess is a large positive number for all the n̄j,s that is slightly
less than l̃ and to choose some small positive number for b̄j,s+1 that is small
enough to be less than the minimum income that an individual might have
w̄ej,sn̄j,s.

3. Perform an unconstrained root finder that chooses n̄j,s and b̄j,s+1 that solves the
2JS stationary steady-state Euler equations.

4. Make sure none of the implied steady-state consumptions c̄j,s is less-than-or-
equal-to zero.

• If one consumption is less-than-or-equal-to zero c̄j,s  0, then try di↵erent
starting values.

5. Make sure that none of the Euler errors is too large in absolute value for interior
stationary steady-state values. A steady-state Euler error is the following, which
is supposed to be close to zero for all j and s:

�

n
s

⇣

b
l̃

⌘⇣

n̄j,s

l̃

⌘��1 h

1�
⇣

n̄j,s

l̃

⌘�i 1��
�

(c̄j,s)��
⇣

w̄ej,s �
@T̄s
@n̄j,s

⌘

� 1

8j and E + 1  s  E + S

(A.3.1)
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�gy�
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⇢s�
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�
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���
+ �(1� ⇢s)(c̄j,s+1)��

h

(1 + r̄)� @T̄s+1
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i⌘
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8j and E + 1  s  E + S � 1

(A.3.2)
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�gy�(b̄j,E+S+1)��

(c̄j,E+S)
�� � 1 8j (A.3.3)
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A-4 Solving for stationary non-steady-state equi-
librium by time path iteration

This section describes the solution to the non-steady-state transition path equilib-
rium of the model and outlines the benchmark time path iteration (TPI) method of
Auerbach and Kotliko↵ (1987) for solving the stationary non-steady-state equilibrium
transition path of the distribution of savings.

Taken together, the individual labor-leisure and intended bequest decisions in the
last period of life show that the optimal labor supply and optimal intended bequests
for age s = E + S are each functions of individual savings, total bequests received,
and the prices in that period: nj,E+S,t = �

�

b̂j,E+S,t, B̂Qj,t, ŵt, rt

�

and b̂j,E+S+1,t+1 =

 

�

b̂j,E+S,t, B̂Qj,t, ŵt, rt

�

. These two decisions are characterized by final-age version of
the static labor supply Euler equation (24) and the static intended bequests Euler
equation (26). individuals in their second-to-last period of life in period t have four
decisions to make. They must choose how much to work this period, nj,E+S�1,t,
and next period, nj,E+S,t+1, how much to save this period for next period, b̂j,E+S,t+1,
and how much to bequeath next period, b̂j,E+S+1,t+2. The optimal responses for this
individual are characterized by the s = E+S�1 and s = E+S versions of the static
Euler equations (24), the s = E + S � 1 version of the intertemporal Euler equation
(25), and the s = E + S static bequest Euler equation (26), respectively.

Optimal savings in the second-to-last period of life s = E+S�1 is a function of the
current savings as well as the total bequests received and prices in the current period
and in the next period b̂j,E+S,t+1 =  

�

b̂j,E+S�1,t, B̂Qj,t, ŵt, rt, B̂Qj,t+1, ŵt+1, rt+1|⌦
�

given beliefs ⌦. As before, the optimal labor supply at age s = E + S is a function
of the next period’s savings, bequests received, and prices.

nj,E+S,t+1 = �

�

b̂j,E+S,t+1, B̂Qj,t+1, ŵt+1, rt+1

�

But the optimal labor supply at age s = E + S � 1 is a function of the current
savings, current bequests received, and the current prices as well as the future bequests
received and future prices because of the dependence on the savings decision in that
same period nj,E+S�1,t = �

�

b̂j,E+S�1,t, B̂Qj,t, ŵt, rt, B̂Qj,t+1, ŵt+1, rt+1|⌦
�

given beliefs
⌦. By induction, we can show that the optimal labor supply, savings, and intended
bequests functions for any individual with ability j, age s, and in period t is a function
of current holdings of savings and the lifetime path of total bequests received and
prices given beliefs ⌦.

nj,s,t = �

⇣

b̂j,s,t,
�

B̂Qj,v, ŵv, rv

�t+S�s

v=t
|⌦
⌘

8j, s, t (A.4.1)

b̂j,s+1,t+1 =  

⇣

b̂j,s,t,
�

B̂Qj,v, ŵv, rv

�t+S�s

v=t
|⌦
⌘

8j, t and E + 1  s  E + S

(A.4.2)

If one knows the current distribution of individuals savings and intended bequests,
�̂t, and beliefs about �̂t, then one can predict time series for total bequests received
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B̂Qj,t, real wages ŵt and real interest rates rt necessary for solving each individual’s
optimal decisions. Characteristic (i) in equilibrium definition 2 implies that individ-
uals be able to forecast prices with perfect foresight over their lifetimes implies that
each individual has correct information and beliefs about all the other individuals op-
timization problems and information. It also implies that the equilibrium allocations
and prices are really just functions of the entire distribution of savings at a particular
period, as well as a law of motion for that distribution of savings.

In equilibrium, the steady-state individual labor supply, n̄j,s, for all j and s, the
steady-state savings, b̄j,E+S+1, the steady-state real wage, w̄, and the steady-state
real rental rate, r̄, are simply functions of the steady-state distribution of savings �̄.
This is clear from the steady-state version of the capital market clearing condition
(29) and the fact that aggregate labor supply is a function of the sum of exogenous
e�ciency units of labor in the labor market clearing condition (28). The two firm
first order conditions for the real wage ŵt (27) and real rental rate rt (19) are only
functions of the stationary aggregate capital stock K̂t and aggregate labor L̂t.

Figure 14: Equilibrium time path of Kt for S = 80
and J = 7 in baseline model

To solve for any stationary non-steady-state equilibrium time path of the economy
from an arbitrary current state to the steady state, we follow the time path iteration
(TPI) method of Auerbach and Kotliko↵ (1987). The approach is to choose an ar-
bitrary time path for the stationary aggregate capital stock K̂t, stationary aggregate
labor L̂t, and total bequests received B̂Qj,t for each type j. This initial guess of a
path implies arbitrary beliefs that violate the rational expectations requirement. We
then solve for individuals’ optimal decisions given the time paths of those variables,
which decisions imply new time paths of those variables. We then update the time
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Figure 15: Equilibrium time path of Lt for S = 80
and J = 7 in baseline model

path as a convex combination of the initial guess and the new implied path. Figures
14 and 15 show the equilibrium time paths of the aggregate capital stock and aggre-
gate labor, respectively, for the calibration described in Table 2 for T = 160 periods
starting from an initial distribution of savings in which bj,s,1 = �̄ for all j and s in the
case that no policy experiment takes place. The initial capital stock K̂1 is not at the
steady state K̄ because the initial population distribution is not at the steady-state.

The computational approach to solving for the non-steady-state transition path
equilibrium is the time path iteration (TPI) method of Auerbach and Kotliko↵ (1987).
TPI finds a fixed point for the transition path of the distribution of capital for a
given initial state of the distribution of capital. The idea is that the economy is
infinitely lived, even though the agents that make up the economy are not. Rather
than recursively solving for equilibrium policy functions by iterating on individual
value functions, one must recursively solve for the policy functions by iterating on
the entire transition path of the endogenous objects in the economy (see Stokey and
Lucas (1989, ch. 17)).

The key assumption is that the economy will reach the steady-state equilibrium
described in Definition 1 in a finite number of periods T < 1 regardless of the initial
state. Let �̂t represent the distribution of stationary savings at time t.

�̂t ⌘

n

�

b̂j,s,t

 J

j=1

oE+S+1

s=E+2
, 8t (14)

In Section 3.5, we describe how the stationary non-steady-state equilibrium time path
of allocations and price is characterized by functions of the state �̂t and its law of
motion. TPI starts the economy at any initial distribution of savings �̂1 and solves
for its equilibrium time path over T periods to the steady-state distribution �̄T .
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The first step is to assume an initial transition path for aggregate stationary

capital K̂i =
n

K̂

i
1, K̂

i
2, ...K̂

i
T

o

, aggregate stationary labor L̂i =
n

L̂

i
1, L̂

i
2, ...L̂

i
T

o

, and

total bequests received B̂Q
i

j = {B̂Q

i

j,1, B̂Q

i

j,2, ...B̂Q

i

j,T} for each ability type j such

that T is su�ciently large to ensure that �̂T = �̄, K̂i
T (�T ), L̂i

T (�T ) = L̄

�

�̄
�

, and

B̂Q

i

j,T (�T ) = B̄Qj

�

�̄
�

for all t � T . The superscript i is an index for the iteration
number. The transition paths for aggregate capital and aggregate labor determine
the transition paths for both the real wage ŵi = {ŵ

i
1, ŵ

i
2, ...ŵ

i
T} and the real return

on investment ri = {r

i
1, r

i
2, ...r

i
T}. The time paths for the total bequests received also

figure in each period’s budget constraint and are determined by the distribution of
savings and intended bequests.

The exact initial distribution of capital in the first period �̂1 can be arbitrarily
chosen as long as it satisfies the stationary capital market clearing condition (29).

K̂1 =
1

1 + g̃n,1

E+S+1
X

s=E+2

J
X

j=1

!̂s�1,0�j b̂j,s,1 (A.4.3)

Similarly, each initial value of total bequests received B̂Q

i

j,1 must be consistent with
the initial distribution of capital through the stationary version of (9).

B̂Qj,1 =
(1 + r1)�j
1 + g̃n,1

E+S
X

s=E+1

⇢s!̂s,0b̂j,s+1,1 8j (A.4.4)

However, this is not the case with L̂

i
1. Its value will be endogenously determined in

the same way the K

i
2 is. For this reason, a logical initial guess for the time path of

aggregate labor is the steady state in every period L

1
t = L̄ for all 1  t  T .

It is easiest to first choose the initial distribution of savings �̂1 and then choose

an initial aggregate capital stock K̂

i
1 and initial total bequests received B̂Q

i

j,1 that
correspond to that distribution. As mentioned earlier, the only other restrictions on
the initial transition paths for aggregate capital, aggregate labor, and total bequests
received is that they equal their steady-state levels K̂

i
T = K̄

�

�̄
�

, L̂i
T = L̄

�

�̄
�

, and

B̂Q

i

j,T = B̄Qj

�

�̄
�

by period T . Evans and Phillips (2014) have shown that the initial

guess for the aggregate capital stocks K̂i
t for periods 1 < t < T can take on almost any

positive values satisfying the constraints above and still have the time path iteration
converge.

Given the initial savings distribution �̂1 and the transition paths of aggregate

capital K̂i =
n

K̂

i
1, K̂

i
2, ...K̂

i
T

o

, aggregate labor L̂i =
n

L̂

i
1, L̂

i
2, ...L̂

i
T

o

, and total be-

quests received B̂Q
i

j =
n

B̂Q
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j,1, B̂Q
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j,2, ...B̂Q

i

j,T

o

, as well as the resulting real wage

ŵi = {ŵ

i
1, ŵ

i
2, ...ŵ

i
T}, and real return to savings ri = {r

i
1, r

i
2, ...r

i
T}, one can solve for

the period-1 optimal labor supply and intended bequests for each type j of s = E+S-
aged agents in the last period of their lives nj,E+S,1 = �j,E+S(b̂j,E+S,1, B̂Qj,E+S,1, ŵ1, r1)

and b̂j,E+S+1,2 =  j,E+S(b̂j,E+S,1, B̂Qj,E+S,1, ŵ1, r1) using his two s = E+S static Euler
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equations (24) and (26).
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8j (A.4.6)

Note that this is simply two equations (A.4.5) and (A.4.6) and two unknowns nj,E+S,1

and b̂j,E+S+1,2.
We then solve the problem for all j types of E + S � 1-aged individuals in period

t = 1, each of which entails labor supply decisions in the current period nj,E+S�1,1

and in the next period nj,E+S,2, a savings decision in the current period for the
next period b̂j,E+S,2 and an intended bequest decision in the last period b̂j,E+S+1,3.
The labor supply decision in the initial period and the savings period in the ini-
tial period for the next period for each type j of E + S � 1-aged individuals are
policy functions of the current savings and the total bequests received and prices
in this period and the next b̂j,E+S,2 =  j,E+S�1(b̂j,E+S�1,1, {B̂Qj,t, ŵt, rt}

2
t=1) and

n̂j,E+S�1,1 = �j,E+S�1(b̂j,E+S�1,1, {B̂Qj,t, ŵt, rt}
2
t=1). The labor supply and intended

bequests decisions in the next period are simply functions of the savings, total be-
quests received, and prices in that period n̂j,E+S,2 = �j,E+S(b̂j,E+S,2, B̂Qj,2, ŵ2, r2) and

b̂j,E+S+1,3 =  j,E+S(b̂j,E+S,2, B̂Qj,2, ŵ2, r2). These four functions are characterized by
the following versions of equations (24), (25), and (26).
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��

"

(1 + r

i
2)�

@T̂E+S,2

@bj,E+S,2

#!

8j

(A.4.8)

48
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Note that this is four equations (A.4.7), (A.4.8), (A.4.9), and (A.4.10) and four un-
knowns nj,E+S�1,1, b̂j,E+S,2, nj,E+S,2, and b̂j,E+S+1,3.

This process is repeated for every age of individual alive in t = 1 down to the age
s = E + 1 individual at time t = 1. Each of these individuals j solves the full set of
remaining S� s+1 labor supply decisions, S� s savings decisions, and one intended
bequest decision at the end of life. After the full set of lifetime decisions has been
solved for all the individuals alive at time t = 1, each ability j individual born in
period t � 2 can be solved for, the solution to which is characterized by the following
full set of Euler equations analogous to (24), (25), and (26).
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8j and t � 2 (A.4.13)

For each individual of ability type j entering the economy in period t � 1, the
entire set of 2S lifetime decisions is characterized by the 2S equations represented in
(A.4.11), (A.4.12), and (A.4.13).

We can then solve for the entire lifetime of savings and labor supply decisions
for each age s = 1 individual in periods t = 2, 3, ...T . The central part of the
schematic diagram in Figure 16 shows how this process is done in order to solve
for the equilibrium time path of the economy from period t = 1 to T . Note that for
each full lifetime savings and labor supply path solved for an individual born in period
t � 2, we can solve for the aggregate capital stock and total bequests received implied

by those savings decisions K̂i0 and B̂Q
i0

j and aggregate labor implied by those labor

supply decisions L̂i0 .
Once the set of lifetime saving and labor supply decisions has been computed for

all individuals alive in 1  t  T , we use the individual decisions to compute a new
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Figure 16: Diagram of TPI solution method
within each iteration for S = 4 and
J = 1
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implied time path of the aggregate capital stock and aggregate labor. The implied
paths of the aggregate capital stock K̂i0 = {K̂

i
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bor supply decisions K̂i0
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i

j.
Let k · k be a norm on the space of time paths of the aggregate capital stock

K̂ 2 K ⇢ RT
++, aggregate labor supply L̂ 2 L ⇢ RT

++, and J paths of total bequests

received B̂Qj 2 B ⇢ RT
++. Then the fixed point necessary for the equilibrium

transition path from Definition 2 has been found when the distance between these
J + 2 paths is arbitrarily close to zero.
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If the fixed point has not been found
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This process is repeated until the initial transition paths for the aggregate capital
stock, aggregate labor, and total bequests received are consistent with the transition
paths implied by those beliefs and individual and firm optimization.

In essence, the TPI method iterates on individual beliefs about the time path of
prices represented by a time paths for the aggregate capital stock K̂i, aggregate labor

L̂i, and total bequests received B̂Q
i

j until a fixed point in beliefs is found that are
consistent with the transition paths implied by optimization based on those beliefs.

The following are the steps for computing a stationary non-steady-state equilib-
rium time path for the economy.

1. Input all initial parameters. See Table 2.

(a) The value for T at which the non-steady-state transition path should have
converged to the steady state should be at least as large as the number of
periods it takes the population to reach its steady state !̄ as described in
Appendix A-1.
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2. Choose an initial distribution of savings and intended bequests �̂1 and then
calculate the initial state of the stationarized aggregate capital stock K̂1 and
total bequests received B̂Qj,1 consistent with �̂1 according to (29) and (A.4.4).

(a) Note that you must have the population weights from the previous period
!̂s,0 and the growth rate between period 0 and period 1 g̃n,1to calculate
B̂Qj,1.

3. Conjecture transition paths for the stationarized aggregate capital stock K̂1 =
{K̂

1
t }

1
t=1, stationarized aggregate labor L̂1 = {L̂

1
t}

1
t=1, and total bequests re-

ceived B̂Q
1

j = {B̂Q

1

j,t}
1
t=1 where the only requirements are that K̂i

1 and B̂Q

i

j,1

are functions of the initial distribution of savings �̂1 for all i is your initial state

and that K̂

i
t = K̄, L̂i

t = L̄, and B̂Q

i

j,t = B̄Qj for all t � T . The conjectured

transition paths of the aggregate capital stock K̂i and aggregate labor L̂i imply
specific transition paths for the real wage ŵi = {ŵ

i
t}

1
t=1 and the real interest

rate ri = {r

i
t}

1
t=1 through expressions (27) and (19).

(a) An intuitive choice for the time path of aggregate labor is the steady-state
in every period L̂

1
t = L̄ for all t.

4. With the conjectured transition paths ŵi, ri, and B̂Q
i

j one can solve for the
lifetime policy functions of each individual alive at time 1  t  T using the
systems of Euler equations of the form (24), (25), and (26) and following the
diagram in Figure 16.

5. Use the implied distribution of savings and labor supply in each period (each
row of b̂j,s,t and nj,s,t in Figure 16) to compute the new implied time paths for
the aggregate capital stock K̂i0 = {K̂
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2 , ...K̂
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T }, aggregate labor supply L̂
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6. Check the distance between the two sets time paths.
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(a) If the distance between the initial time paths and the implied time paths
is less-than-or-equal-to some convergence criterion " > 0, then the fixed
point has been achieved and the equilibrium time path has been found
(A.4.14).

(b) If the distance between the initial time paths and the implied time paths
is greater than some convergence criterion k·k > ", then update the guess
for the time paths according to (A.4.15) and repeat steps (4) through (6)
until a fixed point is reached.
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