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ABSTRACT 

I develop an algorithm to approximate the loss rate distribution for fixed income portfolios with obligor 

concentrations. The approximation requires no advanced mathematics or statistics, only the summation of 

large exposures and the evaluation of binomial probabilities. The approximation is model-independent 

and can be used after removing default dependence using any risk modeling approach. It is especially 

useful for capital calculations given its inherent accuracy in the upper tail of the cumulative portfolio loss 

rate distribution. The approximation provides a simple way to calculate the capital needed when a 

marginal credit is added to a concentrated portfolio. 
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Portfolio Diversification in Concentrated Bond and Loan Portfolios 

 

I. Introduction 

Compound interest and risk diversification, if not among the most powerful forces in nature, are still 

perhaps the two most important forces in finance.2 The modern theory of portfolio diversification began 

when Markowitz (1952) emphasized the importance of efficient mean-variance portfolios for investment 

management.  Markowitz’s insights lead to the development of Sharpe’s (1964) Capital Asset Pricing 

Model, the first equilibrium model that links risk and expected return.   

Despite the fundamental importance of diversification, it took almost 50 years after Markowitz’s original 

insights before formal diversification techniques were adopted to manage high-quality loan and bond 

portfolios. For example, according to Altman and Saunders (1998), “ [While] one might expect that these 

very same [Markowitz] techniques would (and could) be applied to the fixed income area …there has 

been, however, very little published work in the bond area and a recent survey of practices by commercial 

banks found fragmented and untested efforts.” (p. 1728)   

There are many reasons why fixed income managers were slow to adopt formal portfolio diversification 

models. One is that it is not so obvious how diversification works for fixed income investments given the 

abbreviated nature of their positive return tails.  Moreover, fixed income investments often are not 

actively traded and most lack the return histories necessary to construct Markowitz efficient portfolios. 

Finally, fixed income investments tend to be discrete, meaning that they come in prepackaged sizes that 

may be large and not as easily disaggregated and traded. This discrete, illiquid nature makes it inherently 

difficult and expensive to diversify a portfolio of fixed income claims and consequently many credit 

portfolios contain obligor concentrations―large unbalanced exposures to a borrower or multiple 

borrowers.  Obligor concentrations can significantly reduce portfolio diversification.    

In this paper, I develop a simple algorithm to approximate the loss rate distribution of a fixed income 

portfolio with obligor credit concentrations. The intuition that underlies the approximation is easy to 

understand and the approximation calculations require no advanced mathematics or statistics—only the 

summation of a portfolio’s largest loss exposures and an evaluation of binomial probabilities. Unlike the 

so-called “granularity adjustment” approach for measuring concentration risk, this approximation is not 

                                                           
2 Legend has it that Albert Einstein once called compound interest “the most powerful force in the universe” or “the 

greatest invention in human history.” However, there is no official record or transcript that supports this claim.  
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model-dependent.3  It can be used after removing obligor default dependence using any risk modeling 

approach.   

In closely related work on CDO and CDS pricing, Hull and White (2004) develop a “probability 

bucketing” algorithm to approximate a credit portfolio loss rate distribution. The Hull and White 

approach is also model independent and accounts for obligor concentration risk, but it involves 

substantially more computation than the approach proposed in this paper. My approximation also 

provides a simpler method for calculating the “value-at-risk” capital increment that is required when a 

new obligor is added to a concentrated credit portfolio.  

The approximation results show that, to a very close approximation, the value-at-risk capital required to 

fund a portfolio is given by the sum of the q-largest portfolio exposures, where the portfolio exposure of 

an individual obligor is defined as the product of the credit’s loss given default and exposure at default, 

normalized by the total portfolio exposure at default. The number of large exposures, q, that must be 

added up to calculate the portfolio capitalization rate is determined by the desired capital coverage rate 

(e.g. 95 or 99 percent), the credits’ correlation and unconditional probabilities of default, and the binomial 

cumulative probability distribution. The approximation is very accurate for typical value-at-risk capital 

coverage rates.     

The paper is organized as follows.  Section II provides an abbreviated overview of the development of 

formal portfolio diversification models for high-quality fixed income portfolios including the granularity 

adjustment approach for measuring obligor concentration risk and the Hull and White approach.  Section 

III reviews the structure of the Vasicek (1987, 1991) model for measuring default risk diversification 

including the so-called asymptotic single factor model. Section IV discusses concentration risks that arise 

in finite portfolios of obligors with uniform risk and exposure characteristics. Section V derives the 

portfolio loss rate distribution when there is obligor concentration risk generated by varying obligor 

exposure or loss rate characteristics.  For portfolios of even moderate size, the calculation of the exact 

portfolio loss rate distribution may be impractical because of its demands on computing capacity. Section 

VI introduces the approximation algorithm which is easily computed even for a very large number of 

obligors. Section VII uses the approximation to construct a value-at-risk style capital requirement for the 

marginal credit in a portfolio with obligor concentrations. Section VIII summarizes the paper’s findings.  

                                                           
3 A granularity adjustment for obligor concentration risk was first introduced by Vasicek (1991). The Basel 

Committee on Banking Supervision included a granularity adjustment in its 1991 consultative paper. Subsequently, 

the concept of a granularity adjustment has been refined by Wilde (2001), Martin and Wilde (2002), Gordy (2004), 

Gordy and Lütkebohmert (2013), Gordy and Marrone (2012) and others.  
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II. Background 

The intuition behind portfolio diversification with stock returns is simple. By distributing invested funds 

among a broad set of individual stocks with less than perfectly correlated returns, unexpectedly large 

positive returns on some stocks will tend to offset unexpectedly large negative returns on others. 

Consequently, the overall return variation on a well-diversified portfolio will be smaller than the variation 

of the return on a portfolio with fewer more concentrated holdings.  But when it comes to understanding 

the mechanics of diversification in a portfolio of high-quality loans or bonds, the intuition underlying 

stock return diversification falls short.  

Unlike stocks, upside payoffs on bonds and loans are capped. Performing credits do not provide an 

outsized gain to offset the large losses generated by defaulting credits.  Moreover, the covariance terms 

needed to construct Markowitz mean-variance efficient portfolios are not easily estimated for loans and 

bonds. Unlike stocks, most credit claims do not actively trade, and when they are traded, day-to-day 

return variation must be parsed among multiple causes including a changing term structure of default free 

interest rates, variation in the market-wide default risk premium and changing expectations for the 

performance of individual credits. Modeling diversification for a fixed income portfolio requires a 

framework that can recognize the unique features of returns on bond and loan investments. 

Practical approaches for measuring diversification in credit portfolios began with Vasicek (1987, 1991).  

Vasicek (1991) formulates a single common factor approach for modeling default correlations and shows 

that this structure becomes especially parsimonious for a so-called asymptotic portfolio, a portfolio with 

an infinite number of obligors with identical risk and exposure characteristics.  Vasicek’s asymptotic 

single factor model was embraced by bank regulators [Gordy (2003)] and, in modified form, was 

eventually adopted in 2006 as an international standard for setting minimum regulatory capital 

requirements for internationally active banks. This so-called Basel II approach sets minimum regulatory 

capital requirements for banks using the Vasicek portfolio loss distribution under a specialized and 

restrictive set of assumptions.  Bank portfolios are assumed to be comprised of infinitely many loans of 

identical size, with identical default probabilities, default correlations, and loss rates in default. Default 

correlations are assumed to driven by a single latent common factor.  

The highly restrictive assumptions of the asymptotic single common factor model greatly simplifies the 

computation of the portfolio loss rate distribution.  However, the assumptions rule out credit risk 

concentration in any form. There are no outsized exposures to any single borrower and idiosyncratic 

default risks are assumed to be completely diversified away. The only factor driving portfolio 

performance is the single latent common factor that in part determines individual bond or loan defaults.   



5 

 

The single factor asymptotic model’s failure to recognize credit risk concentrations is a serious 

shortcoming.  Indeed, even the official Basel II documentation states, “Risk concentrations are arguably 

the single most important cause of major problems in banks.”  Despite this ominous warning, Basel 

capital regulations include no formal models for analyzing credit risk concentration but instead identify 

concentration risk as an issue to be addressed by national supervisors on an ad hoc basis.  

Various authors, including Vasicek (1991), recognized the need to measure obligor concentration risk in 

credit portfolios.  A common approach is to treat concentration risk as a perturbation from the asymptotic 

portfolio’s loss rate distribution function.4  In this approach, for a given realized value of the common 

factor, concentration risk causes the conditional portfolio loss rate to deviate from the conditional 

asymptotic portfolio loss rate. The true portfolio loss rate distribution is the sum of the asymptotic 

portfolio loss rate distribution and a mean zero idiosyncratic loss rate distribution. The conditional 

composite loss rate distribution including concentration risk is approximated using a second-order Taylor 

series expansion around the conditional asymptotic portfolio loss rate distribution. The Taylor series 

approximation will differ according to the statistical properties of the specific modeling approach that is 

used to model default correlation.5  Different models require different granularity adjustments. The 

granularity adjustment is the difference between conditional portfolio loss rate calculated using the Taylor 

series approximation and the conditional asymptotic portfolio loss rate.  

The granularity adjustment does not appear to have been widely adopted in practice. The original 

adjustment never made it into the formal Basel Capital Accord because it was considered too complicated 

to impose as a regulation.6  And the subsequent academic literature developing the granularity adjustment 

is even more complex.  It requires familiarity with advanced probability theory before one can become 

comfortable with the intuition behind the granularity adjustment and the required calculations. The 

granularity adjustment is also model-dependent, and also dependent on the quantile of the loss 

distribution that is being evaluated.  So different modeling approaches for capturing portfolio default 

dependence require bespoke granularity adjustment factors, and even these bespoke factors vary 

depending on the loss quantile of interest.  

                                                           
4 The so-called “granularity adjustment” for concentration risk was first proposed by Vasicek in 1991. The Basel 

Committee on Banking Supervision (1991) proposed a granularity adjustment based on estimates from Monte Carlo 

simulations using commercial risk measurement software [CreditRisk+]. Subsequently, Wilde (2001), Martin and 

Wilde (2002), Gordy (2004), Gordy and Lütkebohmert (2013), Gordy and Marrone (2012) provided generalized 

statistical theory to support the granularity adjustment in a number of model settings. 
5 For example, the Vasicek and CreditRisk+ portfolio models have different probability structures that drive defaults, 

so they have different granularity adjustment factors. The volume edited by Gundlach and Lehrbass (2004) includes 

a discussion of the CreditRisk+ model and various generalizations. 
6 Wilde (2002). 
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Hull and White (2004) discuss an alternative approach for approximating a credit portfolio loss rate 

distribution in the context of pricing CDOs and nth to default CDS contracts. Rather than focus on the 

Vasicek (Gaussian) copula model, they adopt a generalized copula model to generate default correlation. 

After conditioning on specific value(s) for the common copula model factor(s), they use a “probability 

bucketing” algorithm to approximate a conditional loss rate distribution. Similar to the approach I develop 

in the paper, the Hull and White bucketing algorithm can be used with any default correlation model by 

operating on conditional default rates. The user defines a series of loss rate buckets that span the loss 

space. The algorithm iterates through all the individual credits in the portfolio. At each iteration, it adds 

the credit’s conditional default probability to an appropriate loss bucket and adjusts the probabilities in 

the remaining user-defined loss buckets.  

The Hull and White approximation is flexible and can be used in the presence of obligor concentration 

risk.  However, the approach requires that every portfolio credit be evaluated and assigned to a loss 

bucket.  In other words, the entire loss rate distribution must be approximated, which involves 

substantially more computation than the approached proposed in this paper.  Moreover, the extra work 

required by the Hull and White approximation is completely unnecessary for capital requirement 

calculations as my approximation is guaranteed to be very accurate for the upper tails of the cumulative 

portfolio loss rate distribution.  

III. The Vasicek single factor model of portfolio credit risk 

The Vasicek single common factor model of credit diversification assumes that credits in a 

portfolio have an identical size, probability of default, loss given default, and default correlation.  An 

individual credit’s default is determined by the realized value of a random variable, iV
~

, with the 

following properties: 
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where )(z  represents the value of the standard normal density function evaluated at 𝑧. iV
~

 has a standard 

normal distribution7 and is often interpreted as a proxy for the market value of the creditor firm. The 
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common factor in expression (1), Me~ , induces correlation among credit defaults , 
 
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Defaults are less than perfectly correlated because each credit also has an latent idiosyncratic risk factor, 

𝑒̃𝑖, that also governs the default process.  

Individual Obligor Default 

Credit i is assumed to default when ii DV 
~

. The unconditional probability that credit i defaults 

is  ,iDPD   where  z  represents the value of the cumulative standard normal density function 

evaluated at 𝑧.  All credits in a portfolio are assumed to have the same unconditional probability of 

default, 𝐷𝑖 = 𝐷, ∀ 𝑖. Time is not an independent factor in this model, but is implicitly recognized through 

the calibration of input values for PD.   

An indicator function can be used to record the default status of individual credits, 



 


otherwise

DVif
I i

i
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~
1~ .                                                                 (2) 

iI
~

 has a binomial distribution with an expected value of  .D   By construction, the indicator functions 

of individual credits are correlated through the common factor Me~ . The default indicator function for 

credit 𝑖 conditional on a specific realized value of 𝑒𝑀 is, 
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Expression (3) shows that the default threshold for credit 𝑖 changes as the realized value of the common 

factor, 𝑒̃𝑀, changes.  A positive value of Me  lowers the credit’s default threshold, thereby decreasing the 

probability that the credit will default.  A negative value of Me increases the credit’s default threshold, 

increasing the probability that the credit will default.  The expected value of the conditional default 

indicator, conditioned on a specific realization of the common factor, is given by, 

 𝐸[𝐼𝑖 |𝑒̃𝑀 = 𝑒𝑀] = Φ (
𝐷−√𝜌𝑒𝑀

√1−𝜌
).                                                    (4) 

Portfolio Default Rate Distribution 
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Let 
NX

~
 be the portfolio default rate on a portfolio comprised of 𝑁 individual credits; that is, the 

proportion of credits in the portfolio that default, 
N

I

X
i

N

i
N

~

~ 1


  .  

NX
~

 is the average value of the indicator 

functions of credits included in a portfolio.   

Portfolio Loss Rate Distribution 

Let 𝐸𝐴𝐷𝑖 represent the exposure at default created by credit 𝑖 (the loan balance or maturity value), and 

𝐿𝐺𝐷𝑖 represent the loss rate experienced should credit 𝑖 default. The loss rate at default is measured 

relative to 𝐸𝐴𝐷𝑖.  

In the asymptotic portfolio model, 𝐸𝐴𝐷𝑖 = 𝐸𝐴𝐷 ∀ 𝑖, and 𝐿𝐺𝐷𝑖 = 𝐿𝐺𝐷, ∀ 𝑖.  Under the assumptions that 

𝐸𝐴𝐷 and 𝐿𝐺𝐷 are respectively uniform across all credits, the loss rate on a portfolio of 𝑛 credits is, 

n

n

i

i

XLGD
EADn

LGDEADI
~

~

1 

 .                                                                  (5) 

If 𝐸𝐴𝐷 is measured as the maturity value of a credit, then nXLGD
~

 represents the portfolio loss rate from 

the contract maturity value caused by portfolio defaults.8  

The Asymptotic Single Factor Model 

Let  MMN eeX ~|
~

 be the proportion of 𝑛 credits that default in the portfolio conditional on the 

realization of a specific value of the single common factor,  
 

N

eeI

eeX

N

i

MMi

MMN






 1

~|
~

~|
~ .  Individual 

credit’s conditional indicator functions are uncorrelated random variables since their randomness is 

determined solely by idiosyncratic risk, 𝑒̃𝑖 . 

In an asymptotic portfolio, the number of individual credits is assumed to increase without bound, 

.N  The law of large numbers ensures that the sample average of a random sample of independently  

identically distributed observations converges almost surely to the expected value of the underlying 

distribution as the sample sizes increases without bound. Thus, in an asymptotic portfolio,   

                                                           
8 Alternatively, EAD can be measured as the initial loan balance.  Here LGD would exclude the loss of accrued 

interest and expression (7) is the loss rate of the initial portfolio that owes to defaults. 
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Expression (5) shows that, in the limit, idiosyncratic default risk is completely diversified away in an 

asymptotic single common factor portfolio and default rate uncertainty is driven by the common market 

factor alone.  

The unconditional distribution function of the asymptotic portfolio’s default rate is given by, 

     
 1,0,

1~
Pr

11














 




 x
PDx

xX



,                              (7) 

where expression (7) makes use of the identity 𝐷 = Φ−1(𝑃𝐷).  Expression (7) implies that an asymptotic 

portfolio’s default rate is a random variable with a probability distribution that is determined by two 

parameters, the credits’ unconditional default rate, PD, and the default correlation parameter,  .  Figures 

1a and 1b illustrate the shape of the cumulative probability distribution for the default rate of an 

asymptotic portfolio for selected default correlation values (  ) and unconditional probability of default 

(PD) characteristics.  

IV. Idiosyncratic Default Risk in a Finite Portfolio with Uniform Obligor Exposures 

Concentration risk arises when any of the assumptions underlying the asymptotic single common factor 

portfolio model are violated.  As a first step, I consider the implications of relaxing the assumption that 

the portfolio contains an infinite number of individual credits.  I maintain the uniformity assumptions for 

EAD, LGD, PD, and ρ, but assume that the portfolio contains only a finite number of independent credits. 

The assumption of an infinite number of independent identically distributed credits assumes the portfolio 

achieves the maximum possible risk reduction from diversification. In reality, all portfolios include only a 

finite number of independent credits and so all portfolios will have some remaining idiosyncratic risk.   
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Conditional on a specific realized value of the common market factor, 𝑒̃𝑀 = 𝑒𝑀 , the probability that a 

credit defaults is, Φ (
Φ−1(𝑃𝐷)−√𝜌𝑒𝑀

√1−𝜌
).  Also, conditioned on a specific realized value for the single 

common factor, individual credit defaults are uncorrelated.  The independence of conditional defaults 

implies that, in a portfolio of 𝑁 individual credits, the probability of realizing exactly 𝑛 defaults is, 

(
𝑁
𝑛

) (Φ (
Φ−1(𝑃𝐷)−√𝜌𝑒𝑀

√1−𝜌
))

𝑛

(1 − Φ (
Φ−1(𝑃𝐷)−√𝜌𝑒𝑀

√1−𝜌
))

𝑁−𝑛

.                                 (8) 
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The probability of experiencing a default rate less than or equal to 
𝑛

𝑁
 is equal to the probability of 

experiencing 𝑛 or fewer defaults in 𝑁 independent trials, or,  
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The conditional portfolio loss rate distribution is constructed by multiplying the conditional default rate 

distribution [expression (9)] by the uniform loss given default rate, 𝐿𝐺𝐷.  

The unconditional portfolio loss rate density is a discrete function in three-dimensions: a realization of the 

(continuous) common factor, 𝑒𝑀, a realization of the (discrete) portfolio loss rate, 𝐿𝐺𝐷 × 𝑋𝑁 , and the 

probability that the specific values of 𝑒𝑀 and 𝐿𝐺𝐷 × 𝑋𝑁 jointly occur. This joint probability, 

 𝑝𝑟𝑜𝑏 (𝑒𝑀,𝐿𝐺𝐷 ×
𝑛

𝑁
), is,  

  𝑝𝑟𝑜𝑏 (𝑒𝑀,𝐿𝐺𝐷 ×
𝑛

𝑁
) = 𝜙(𝑒𝑀) (

𝑁
𝑛

) (Φ (
Φ−1(𝑃𝐷)−√𝜌𝑒𝑀

√1−𝜌
))

𝑛

(1 − Φ (
Φ−1(𝑃𝐷)−√𝜌𝑒𝑀

√1−𝜌
))

𝑁−𝑛

            (10) 

for 𝑒𝑀 ∈ (−∞, ∞), 𝑛 ∈ {0,1,2,3, … , 𝑁}. 

The unconditional portfolio loss rate probability densities for two different examples of finite portfolios 

with uniform obligor exposures are pictured in Figure 2. The top panel of Figure 2 represents the portfolio 

loss rate density for a portfolio with 30 uniform credits, each with a 𝑃𝐷 = 0.01, 𝐿𝐺𝐷 = 0.5, and a default 

correlation parameter of 𝜌 = 0.20.  While distributions in Figure 2 are discrete, the graphs include a 

“mesh” that interpolates between discrete event probabilities to improve the visualization of these 

densities. The bottom panel of Figure 2 represents a portfolio of 100 credits with the same individual 

characteristics as in the top panel.  

A comparison of the top and bottom panels of Figure 2 illustrates the impact of diversification on 

idiosyncratic default risk. For every possible realization of the common factor, , 𝑒𝑀 , while the mean of the 

expected portfolio loss rates are identical in the two panels, the range of possible portfolio loss rates is 

much larger for the portfolio with 30 obligors. The variance of the portfolio loss rate is an inverse 

function of N, the number of credits in the portfolio.9 The mean of both portfolios equals 𝑃𝐷 × 𝐿𝐺𝐷, and 

                                                           
9 The portfolio loss rate is given by (

𝐿𝐺𝐷

𝑁
) 𝑛̃,  where 𝑛 is the number of defaults in a portfolio of 𝑁 credits.  𝑛̃ is 

distributed binomially with a mean, 𝐸(𝑛̃) = 𝑁 × 𝑃𝐷,  and variance of 𝑉𝑎𝑟(𝑛̃) =  𝑁 × 𝑃𝐷(1 − 𝑃𝐷).    
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the variance equals, 
𝐿𝐺𝐷2

𝑁
× 𝑃𝐷(1 − 𝑃𝐷), and so the variance of the loss rate on the 100 obligor portfolio 

is only 30 percent of the loss rate variance on the 30 obligor portfolio. 

 

 

 

 

 Figure 2: Unconditional Loss Rate Density for Two Finite Portfolios with Uniform Exposures 

Credits have uniform 𝐸𝐴𝐷, uniform 𝐿𝐺𝐷 = 0.5, and uniform 𝜌 = 0.20. The portfolio pictured in the top 

panel has 30 individual credits; the portfolio in the bottom panel has 100 credits. 

 

 

Concentration risk, even in this simplest form —a portfolio containing less than an infinite number of 

portfolio credits with uniform exposure characteristics–has a dramatic effect on the portfolio default rate 



13 

 

distribution.  For a second example, consider the effect of diversification on the cumulative portfolio 

default loss rate that encompasses 99 percent of all potential portfolio losses.  Estimates of extreme 

critical loss distribution values like the 99 percent quantile of the portfolio loss rate distribution are 

frequently used to set value-at-risk style minimum capital requirements for regulated banks and other 

financial intermediaries. 

Table 1 reports the loss rates associated with the 99 percent cumulative probability loss rate thresholds for 

portfolios with a different number of identical credits.  Each credit is assumed to be of identical size, with 

identical values for ρ, LGD, and PD. To further simplify, I assume 𝐿𝐺𝐷 = 1, so Table 1 is equivalent to 

the default rate distribution. The common market factor is set equal to 1 percent quantile value,  𝑒𝑀 =

Φ−1(. 01) = −2.32635, which generates high conditional default rates for the portfolio credits.  The 

rows in Table 1 report the 99 percent cumulative default rate thresholds for finite portfolios with different 

numbers of obligors. The columns differ according to the assumed unconditional default rate (PD) for the 

individual portfolio credits. The last line in Table 1 (highlighted in grey) reports the 99 percent 

cumulative default rate threshold for an asymptotic portfolio.   

 

The elements in Table 1 show that the default rate thresholds for finite portfolios are multiple times larger 

than the default rate thresholds for an asymptotic portfolio of similar credits.  From the values reported, it 

is possible to construct a concentration risk multiplier—the ratio of the exact critical default rate for a 

finite portfolio divided by the critical value for an otherwise similar asymptotic portfolio.  When these 

multipliers are applied to the asymptotic portfolio critical default rate values, they reproduce the true 

critical values for portfolios with a finite number of credits.  

number 

of portfolio number of default number of default number of default number of default

credits defaults rate defaults rate defaults rate defaults rate

50 9 18.000 6 12.000 4 8.000 3 6.000

100 14 14.000 10 10.000 7 7.000 4 4.000

500 52 10.400 33 6.600 21 4.200 12 2.400

1,000 95 9.500 59 5.900 36 3.600 19 1.900

5,000 420 8.400 249 4.980 147 2.940 73 1.460

10,000 814 8.140 478 4.780 278 2.780 134 1.340

asymptotic 7.525 4.301 2.412 1.096

PD=0.10 percent

Default correlation parameter 20 percent.  Common factor realization is set at 1 percent lower tail 

value. 

Table 1: Portfolio Default Rate that Provides at Least 99 percent Loss Coverage when 

Credits have Uniform Size and Loss Given Default

PD=1 percent PD=0.5 percent PD=0.25 percent
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Table 2 reports the value of these credit risk multipliers. These concentration risk multipliers are larger in 

magnitude the smaller the number of credits in the portfolio, and the smaller is a credit’s unconditional 

probability of default.  For example, for a portfolio of 50 high-quality loans with an unconditional 

probability of default equal to 0.1 percent, the concentration risk multiplier is nearly 5.5, implying that 

minimum economic capital needed to achieve 99 percent coverage for the concentrated portfolio is almost 

5.5 times larger than the capital suggested by the asymptotic model.         

 

 

V. Idiosyncratic Risk and Obligor Concentrations in a Finite Portfolio 

When the individual credits in a portfolio differ in size (EAD) or loss given default (LGD), then the 

portfolio loss rate distribution depends not only on the portfolio default rate, but on the exposure 

characteristics of the individual credits. Under these conditions some credits will create larger potential 

losses for the portfolio should they default.  Exposure differences complicate the calculation of the 

portfolio loss rate distribution. The logic behind the construction of the loss distribution is transparent, but 

the calculations, while simple, are voluminous and can quickly exhaust desktop computer memory.   

The calculation of the portfolio loss distribution requires the enumeration and ranking of each possible 

loss outcome and its attached probability. After loss outcome possibilities are enumerated, losses must be 

ranked from smallest to largest. The probabilities associated with each ranked loss are then accumulated 

to generate the cumulative portfolio loss distribution.  

Consider a simple example of this process using only 3 credits. Table 3 lists the obligors’ characteristics.  

Each credit is assigned a unique identifier (credit ID).  The portfolio loss rate is calculated as the potential 

loss associated with each credit measured as a proportion of total portfolio exposure,  
𝐿𝐺𝐷𝑖×𝐸𝐴𝐷𝑖

∑ 𝐸𝐴𝐷𝑖
.  

number 

of portfolio

credits 1 percent 0.5 percent 0.25 percent 0.1 percent

50 2.39 2.79 3.32 5.48

100 1.86 2.33 2.90 3.65

500 1.38 1.53 1.74 2.19

1,000 1.26 1.37 1.49 1.73

5,000 1.12 1.16 1.22 1.33

10,000 1.08 1.11 1.15 1.22

Table 2: Selected Concentration Risk Multipliers when 

Credits have Uniform Size and Loss Given Default

Unconditional Probability of Default

asymptotic 

default rate
7.525 4.301 2.412 1.096
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For purposes of this example, I assume each credit has a probability of default of 5 percent and individual 

obligor defaults are independent.10 The first 3 columns of Table 4 enumerate the entire sample space of 

potential outcomes―all the possible default combinations that could occur. The first column enumerates 

the possible default events and the second column reports the portfolio loss rates that are generated by 

each specific default event. The third column reports the probability that the specific occurs. To take a 

particular example, the probabilities associated with experiencing 1 default are given in rows 2, 3 and 4 of 

the third column. When there are 3 obligors, each with an independent probability of default of 5 percent, 

the probability of experiencing a single default is 0.135375.11  There are 3 unique ways that the portfolio 

could experience a single default.12  Since each of these possibilities is equally likely, the probability of 

any one of these outcomes is,  
0.135375

3
 = 0.045125.  The remaining entries in column 3 of Table 4 

represent the outcomes of similar calculations for the probabilities associated with specific defaults events 

that involve 0, 2 and 3 credits.  

The final 3 columns of Table 4 represent the cumulative portfolio loss rate distribution for the portfolio. 

The portfolio loss rate distribution is calculated from the event space by ranking the possible credit loss 

events (column 2) from smallest to largest beginning with the 0 default event. The resulting loss event 

ranking appears in columns 4 and 5.  The probabilities associated with each specific event are 

accumulated.   For example, the probability of 0 losses is .85738. The next smallest possible loss rate is 

0.0667, and the probability of experience a loss rate that is at most 0.0667 is 0.90250, and so on. 

                                                           
10 The default events will be independent after conditioning on a specific value of the common factor.  To keep the 

discussion as simple as possible, I assume the conditioning step has already been done.   
11 The probability of experiencing 1 success in 3 independent Bernoulli trials, where the probability of a successes 

on each Bernoulli trial is 5 percent, (
𝑁
𝑘

) 𝑃𝐷𝑘(1 − 𝑃𝐷)𝑁−𝑘 = (
5
1

) . 05 (. 95)2 where (
𝑁
𝑘

) =
𝑁!

𝑘!(𝑁−𝑘)!
. 

12 The number of unique combinations of  k obligor defaults in a portfolio of N obligors is (
𝑁
𝑘

). 

Loss in Portfolio

Credit ID EAD LGD Default Loss Rate

1 30 0.4 12 0.100

2 20 0.4 8 0.067

3 70 0.4 28 0.233

Total 120 48 0.4

Table 3: Concentration Risk Example



16 

 

 

Obligor concentration changes some important features of the cumulative portfolio loss rate distribution. 

When portfolio credits have identical EADs and LGDs, the number of unique outcomes in the sample 

space is reduced.  For example, with 3 credits of identical size and LGD, there are only four possible loss 

rate outcomes: those associated with 0, 1, 2 or 3 defaults. Whereas, when the credits differ in size, LGD, 

or in both dimensions, there are eight possible loss rate outcomes. Uniformity reduces the size of the 

sample space because when 1 credit defaults, the loss is the same no matter which of the individual 

credits defaults—and there is no need to keep track of individual obligor performance in order to calculate 

the associated portfolio loss rate.     

Figure 3 compares the portfolio loss distribution example in Table 4 with a portfolio of equivalent size 

and total exposure, but with uniform credits. The blue points in Figure 3 represent the portfolio loss 

distribution for the portfolio with obligor concentrations―the three-credit example from Table 4.  This 

portfolio has total EAD of 120 and a possible worst-case loss rate of 40 percent. The orange columns in 

Figure 3 represent the portfolio loss distribution associated with a portfolio comprised of three 

independent uniform credits, each with PD=5 percent, EAD=40, and LGD=40 percent13. This uniform 

portfolio has the same size and total loss potential as the portfolio with obligor concentration. The 

numbers in the call-out boxes in Figure 3 represent the number of defaulted credits associated with each 

point in the respective distributions. 

Figure 3 shows the reduced unique number of outcomes in the sample space associated with the uniform 

credit portfolio relative to the portfolio with obligor concentrations.  While the two portfolio loss 

distributions have two points in common {(0, 0.86), (0.4, 1)}, the uniform credit distribution has only two 

                                                           
13 The credits’ individual portfolio loss rates equal 16/120=13.33 percent. 

Credit Portfolio Probability Loss Events Portfolio Cumulative

Defaults Loss Rate  of Event Rank Ordered Loss Rate Probability

0 0.0000 0.85738 0 0.0000 0.85738

1 0.1000 0.04513 2 0.0667 0.90250

2 0.0667 0.04513 1 0.1000 0.94763

3 0.2333 0.04513 1,2 0.1667 0.95000

1,2 0.1667 0.00238 3 0.2333 0.99513

1,3 0.3333 0.00238 2,3 0.3000 0.99750

2,3 0.3000 0.00238 1,3 0.3333 0.99988

1,2,3 0.4000 0.00013 1,2,3 0.4000 1.00000

Event Space Cumulative Loss Rate Distribution

Table 4: Event Space and Cumulative Loss Rate Distribution

Each credit is assumed to have a probability of default of 5 percent and 

individual credit defaults are assumed to be independent.
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possible intermediate loss rates, while the portfolio with obligor concentration has 6 possible intermediate 

loss rats.  

 

A general feature associated with obligor concentration risk is that individual credit exposure differences 

can cause events with fewer defaults to have portfolio loss severities that exceed events with a larger 

number of defaults. An example of this phenomenon appears in Figure 4 where the joint default of credits 

1 and 2 (red square) produces a smaller portfolio loss rate than the default of the single credit with the 

largest exposure (green triangle).  This feature implies that the cumulative probability associated with the 

largest single default exposure in the concentrated portfolio will always be at least as large as the 

cumulative probability of a single default in a comparable uniform obligor portfolio. In other words, in 

terms of Figure 4, the cumulative probability (height) of the point inside the green triangle will always be 

as large, or larger, than the cumulative probability of the orange column associated with one default.  

While single default events are equally likely regardless of their severity, when there are obligor 

concentrations, two-default events can rank below the largest single default event.   

When portfolios include obligor concentration risk, the calculation of the loss distribution follows the 

logic outlined in Table 4. However, even for portfolios with a modest number of obligors, the number of 

calculations required to construct the exact loss distribution can quickly become unmanageable. For 

example, in a portfolio with 25 obligors with different exposure characteristics, there are 3,268,760 

unique ways the portfolio can experience 10 obligor defaults. When there are 100 obligors, the number of 

unique combinations of 10 obligor defaults exceeds, 1.73 × 1013, and the total number of unique default 

combinations in the entire event space is approximately 1.27 × 1030.  As these examples illustrate, the 

full enumeration of the possible set of loss outcomes becomes impractical except when the portfolio has 
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only a modest number of obligors. This motivates the need for the approximation outlined in the next 

section. 

VI. Obligor Concentration Risk and an Approximate Portfolio Loss Rate Distribution    

When portfolios with obligor concentrations include more than a modest number of credits, it becomes 

infeasible to enumerate the entire sample space and construct the exact portfolio loss rate distribution.  

However, it is possible to approximate the portfolio loss rate distribution. The approximation is 

computationally simple, yet it produces reasonably accurate quantile estimates for the true cumulative 

portfolio loss rate distribution, especially for quantiles in the upper tails of the distribution―the quantiles 

that are typically used to set capital allocations or regulatory capital requirements.  I will explain the 

intuition behind the portfolio loss rate approximation by referencing the three-obligor example in the prior 

section. 

When credits are uniform, after conditioning on the common market factor realization, the uncertainty in 

portfolio loss rate distribution is entirely determined by the binomial distribution that determines the 

probability associated with experiencing each possible integer number of defaults.  When credits are non-

uniform in size or LGD (or both), the portfolio loss associated with “n” defaults depends on which 

specific “n” credits default.  Moreover, it is also possible that the loss generated by “n+1” defaults can be 

smaller than the loss generated by “n” defaults (or even “n-1”, “n-2”, or “n-j” defaults)  depending on 

which particular credits default.  

The algorithm to approximate the portfolio loss rate distribution in the presence of obligor concentrations 

uses a specific isomorphic portfolio in the approximation. The isomorphic portfolio has the same number 

of credits, identical PD and correlation parameters, the same total portfolio exposure and same maximum 

loss rate, but the individual credits have uniform exposure characteristics.    

Suppose there are 𝑁 independent obligors in the credit portfolio. Let 𝑇𝐸 represent the total portfolio 

exposure at default; 𝑇𝐿 the maximum possible portfolio loss; 𝐿𝑅 the maximum portfolio loss rate, and 

𝑝𝑙𝑟𝑖 the portfolio loss rate associated with the default of credit 𝑖, 

𝑇𝐸 = ∑ 𝐸𝐴𝐷𝑖
𝑁
𝑖=1 ;   𝑇𝐿 = ∑ 𝐸𝐴𝐷𝑖 × 𝐿𝐺𝐷𝑖

𝑁
𝑖=1 ;   𝐿𝑅 =

𝑇𝐿

𝑇𝐸
 ; and p𝑙𝑟𝑖 =

𝐸𝐴𝐷𝑖×𝐿𝐺𝐷𝑖

𝑇𝐸
. 

Let 𝑃𝑙𝑟 represent the rank-ordered vector of individual credit portfolio loss rates,    

𝑃𝑙𝑟 = {𝑝𝑙𝑟1, 𝑝𝑙𝑟2, 𝑝𝑙𝑟3, … , 𝑝𝑙𝑟𝑁},  where, 𝑝𝑙𝑟1 ≤ 𝑝𝑙𝑟2 ≤ 𝑝𝑙𝑟3 ≤ ⋯ ≤ 𝑝𝑙𝑟𝑁. 
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Without loss of generality, I will assume the portfolio loss rate attached to each credit is unique.14 

Now consider the isomorphic credit portfolio. For this portfolio, 𝐿𝐺𝐷𝑖 =
𝐿𝑅

𝑁
, and 𝐸𝐴𝐷𝑖 =

𝑇𝐸

𝑁
.  This 

portfolio has the same underlying binomial probability structure and the same maximum portfolio default 

rate as the credit portfolio with obligor concentration risk.15  

Both portfolio loss rate distributions are discrete. The quantile values of the isomorphic uniform exposure 

distribution are defined as follows.  For 𝑞 ∈ [0,1], and a set of integers, 𝐾 = {0,1,2, … , 𝑁}, the quantile 

𝑞 of the portfolio loss rate distribution is the smallest portfolio loss rate that has a cumulative probability 

at least as large as 𝑞, or the loss rate 𝑘𝑞 ×
𝐿𝑅

𝑁
,  such that, 

𝑘𝑞 = inf {𝐾: ∑ (
𝑁
𝑖

) 𝑃𝐷𝑖(1 − 𝑃𝐷)𝑁−𝑖 ≥𝑘
𝑖=0  𝑞}.                                         (11) 

In expression (11), 𝑘𝑞 represents the number of defaults that are needed to generate a cumulative 

probability at least as large as 𝑞.  Depending on the value of 𝑞 selected, 𝑘𝑞 can be any integer value 

between 0 and N.  Finally, let 𝐹𝑖 (𝑘𝑞 ×
𝐿𝑅

𝑁
) = ∑ (

𝑁
𝑖

) 𝑃𝐷𝑖(1 − 𝑃𝐷)𝑁−𝑖𝑘𝑞

𝑖=0
 represent the cumulative 

probability distribution function associated with 𝑘𝑞defaults under the isomorphic portfolio loss rate 

distribution.   

The quantiles of the portfolio loss rate distribution with obligor concentrations can be approximated as 

follows.  Let 𝐹(𝑙𝑟), 𝑙𝑟 ∈ [0, 𝐿𝑅]  represent the cumulative probability distribution for the loss rate on the 

portfolio with obligor concentrations. Select the desired quantile 𝑞, and use expression (11) to solve for 

𝑘𝑞 .  Construct, 𝐿𝑅̂𝑞,  

𝐿𝑅̂𝑞 = ∑ 𝑝𝑙𝑟𝑁−𝑖+1
𝑘𝑞

𝑖=1
 for 𝑝𝑙𝑟𝑖 ∈ 𝑃𝑙𝑟.                                                   (12) 

𝐿𝑅̂𝑞 is a “conservative” estimate16 for portfolio loss rate that generates a cumulative probability of  at 

least 𝑞 under the true cumulative probability distribution 𝐹(𝑙𝑟), 

 𝐹(𝐿𝑅̂𝑞) ≥ 𝐹𝑖 (𝑘𝑞 ×
𝐿𝑅

𝑁
) .                                                            (13) 

                                                           
14 There is no conceptually difficultly incorporating credits with identical portfolio default rates.  However, it would 

needlessly complicate the discussion. 
15 The orange bars in Figure 2 represent the isomorphic loss rate distribution that corresponds to the obligor 

concentration portfolio loss rate distribution (blue points). 
16 By conservative, I mean, by way of example: if 𝑞 = .95 and 𝐿𝑅̂𝑞 sets the required capitalization rate for the 

portfolio, the true probability of default associated with a capitalization rate of 𝐿𝑅̂𝑞 be always be 5 percent or less. 
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A formal proof of this inequality is given in the appendix.  

In plain English, the algorithm says the following: (1) use the isomorphic distribution and solve for the 

number of defaults that are required to reach the desired quantile of the cumulative portfolio loss rate 

distribution (𝑘𝑞 defaults) ; (2) calculate the sum of the 𝑘𝑞 largest individual credit portfolio loss rates in 

the portfolio with obligor concentrations; (3) the sum of the 𝑘𝑞 largest individual credit portfolio loss 

rates will have a true cumulative probability that is at least as large a  𝑞.   

For small values of q (relatively small portfolio loss rates) the approximation for the cumulative 

probability associated with 𝐿𝑅̂𝑞 will likely understate the true value, 𝐹(𝐿𝑅̂𝑞).  However, the 

approximation becomes very good as q gets large, and it becomes exact as 𝑞 approaches 1,    

lim
𝑞→1

[𝐹(𝐿𝑅̂𝑞) − 𝐹𝑖 (𝑘𝑞 ×
𝐿𝑅

𝑁
)] = 0.                                                 (14) 

Expression (14) implies that for high quantile values [for example, 𝑞 = .95, or  𝑞 = .99], there is very 

little error involved is using 𝐹𝑖 (𝑘𝑞 ×
𝐿𝑅

𝑁
) as an approximation for  𝐹(𝐿𝑅̂𝑞).  Formal justification for this 

claim is provided in the appendix. 

Consider a step-by-step example of the approximation algorithm for a ten-credit portfolio with obligor 

concentration risk. Table 5 provides the details on the individual obligor exposure characteristics.  Each 

credit is assumed to have 𝑃𝐷 = .01, 𝜌 = .20, 𝐿𝐺𝐷 = .40, and 𝜌 = 0.2.  Total portfolio exposure at 

default is 1680, and the worst case default losses are 672, which implies a maximum portfolio loss rate of 

40 percent.  

 

Credit Loss Portfolio

ID EAD in Default Loss Rate

1 50 20 0.0119

2 100 40 0.0238

3 110 44 0.0262

4 125 50 0.0298

5 150 60 0.0357

6 170 68 0.0405

7 200 80 0.0476

8 225 90 0.0536

9 250 100 0.0595

10 300 120 0.0714

Total 1680 672 0.4

Table 5: Ten-Credit Portfolio with 

Obligor Concentrations
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Table 6 illustrates the approximation.  The isomorphic portfolio is identical to the concentrated portfolio 

in all characteristics except its credits have a uniform 𝐸𝐴𝐷 = 168.  To remove default correlation, I 

condition on the 1 percentile of the common market factor distribution (i.e.,  𝑒̃𝑀 = −2.32635).  After 

conditioning, defaults will be independent and each credit will have a conditional probability of default 

equal to 0.0752508.  

Using the relevant parameters, I construct the portfolio loss rates and the cumulative probabilities 

associated with 𝑛 = {1,2,3, … 10} defaults under the isomorphic portfolio loss rate distribution. I calculate 

the loss rates associated with the sum of the k largest individual credit portfolio loss rates for 𝑘 =

{1,2,3, … 10}.  I then construct the full event space for the concentrated portfolio, rank-order the possible 

outcomes, and calculate its true portfolio loss rate distribution.  The true probabilities associated with the 

largest “k” exposures are reported in the Table 6 column labeled “Concentrated Distribution Cumulative 

Probability”.  

 

The final 3 columns in Table 6 provide information on the accuracy of the portfolio loss rate 

approximation.  The column labeled Δ Loss Rate compares the loss rates associated k under the uniform 

isomorphic distribution to the true loss rate for the k largest portfolio default exposures.  This column 

represents the loss rate underestimation that occurs when the concentrated portfolio is modeled as a 

Uniform Portfolio Concentrated Percentage

Uniform Loss Distribution Loss Rate Distribution Change in

Numbers Portfolio Cumulative from Largest Cumulative Portfolio ∆Cumulative

Defaults Loss Rate Probability k exposures Probability ∆Loss Rate Loss Rate Probability

0 0.00 0.4573 0.0000 0.4573 0.0000 0.00 0.0000

1 0.04 0.8295 0.0714 0.8850 0.0314 78.57 0.0555

2 0.08 0.9658 0.1310 0.9864 0.0510 63.69 0.0207

3 0.12 0.9953 0.1845 0.9989 0.0645 53.77 0.0035

4 0.16 0.9996 0.2321 0.9999 0.0721 45.09 0.0004

5 0.20 1.0000 0.2726 1.0000 0.0726 36.31 0.0000

6 0.24 1.0000 0.3083 1.0000 0.0683 28.47 0.0000

7 0.28 1.0000 0.3381 1.0000 0.0581 20.75 0.0000

8 0.32 1.0000 0.3643 1.0000 0.0443 13.84 0.0000

9 0.36 1.0000 0.3881 1.0000 0.0281 7.80 0.0000

10 0.40 1.0000 0.4000 1.0000 0.0000 0.00 0.0000

Table 6: Approximating the Portfolio Loss Rate Distribution when there is Obligor Concentration Risk

Portfolio loss rate distribution approximation calculations. The true portfolio exposures are listed in Table 5. For each obligor, 

PD =0.01, ρ=0.2, and LGD =0.4. All probabilities are conditional probabilities calculated with the common factor equal to its 1 

percentile value (-2.33). The conditional probability of default for each credit is 0.0753. The isomorphic portfolio has 10 

credits, each with EAD =168, LGD =0.4, PD =0.01, ρ=0.2 and conditional probabilities of default = 0.075.  The column ΔLoss 

Rate reports the the portfolio loss rate associated with the largest n exposures from the concentrated portfolio less the portfolio 

loss rate associated with n defaults for the isomorphic portfolio. ΔCumulative Probability reports the true probability associated 

with the largest n exposures and the approximated probability for n defaults using the isomorphic loss rate distribution. ΔLoss 

Rate and ΔCumulative Probability measure the accuracy of the approximation. 
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portfolio with uniform exposures.  The adjacent column to the right expresses this loss rate estimation 

error as a percentage using the uniform isomorphic loss rate as the base. The final column in Table 6 

represents the difference between the true cumulative probabilities associated with the portfolio loss rates 

associated with largest k exposures and the cumulative probability assigned by the approximation 

algorithm.  Notice that as the number of defaults increases, the quantile of the cumulative probability 

increases, the cumulative probability approximation error (Δ Cumulative Probability) monotonically 

declines to the point that there is no measureable error in the cumulative probability beyond n=5 defaults. 

This particular approximation is illustrated in Figure 3.   

 

 

The blue points in Figure 3 represent the actual loss rate distribution for the concentrated portfolio.  The 

red columns represent the loss rate distribution of the isomorphic portfolio with uniform exposures.  The 

grey columns represent the actual points on the concentrated credit portfolio’s loss distribution that 

correspond to the sum of the largest k default exposures, for 𝑘 = 1,2,3, … ,10}.  The callout box with 



23 

 

arrows represent the probability approximations that apply to each of these reference loss rates of the true 

concentrated portfolio loss distribution.  

Figure 4 plots the approximate probability density for a portfolio of 100 credits with obligor concentration 

risk.  The portfolio credits in this example have 𝑃𝐷 = 0.01, 𝐿𝐺𝐷 = 0.4, and 𝜌 = 0.2.  The exposure sizes 

associated with each credit are given by the sequence, 𝐸𝐴𝐷𝑖 = {105, 110, 115, … , 600}.  The isomorphic 

portfolio with uniform EAD has 𝐸𝐴𝐷 = 352.50.   

 

 

The yellow paraboloid in Figure 4 is the density for the isomorphic portfolio loss rate distribution.  The 

blue paraboloid is the approximation for the portfolio loss rate density for the portfolio with obligor 

concentrations.  Figure 4 provides a clear illustration that obligor concentration risk increases the 

portfolio loss rates for any common factor realization.  The imbalances in the portfolio’s obligor 

concentrations reduce the diversification of idiosyncratic risk.  

Figure 4: Approximate Loss Rate Density for a Portfolio with Obligor Concentrations 

The blue paraboloid is the approximate probability density for the loss rate on a portfolio with 100 credits, each credit 

having, 𝑃𝐷 = 0.01, 𝐿𝐺𝐷 = 0.4, and 𝜌 = 0.2.  The portfolio EADs differ by 5 and range from 105 to 600. The yellow 

paraboloid is the probability density of the isomorphic portfolio with 100 credits which is identical to the concentrated 

portfolio in all respects except that its credits have a uniform EAD=352.50.   
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Unlike the granularity assumption, this approximation for the portfolio loss rate distribution does not 

depend on the default correlation modeling assumptions that are used to generate correlation among 

defaults.  Whatever mechanism used to model common factors that drive defaults [e.g. Vasicek model, 

CreditRisk+, etc], once the common factors are controlled, individual defaults can be modelled as 

independent Bernoulli events and the algorithm can be applied to approximate the portfolio loss rate 

distribution in the presence of concentration risk.    

VII. Value-at-Risk Capital for a Marginal Credit 

Economic capital allocation decisions and regulatory capital requirements are often set using value-at-risk 

to set required investment capitalization rates.17  In general, capitalization requirements are often set so 

that the equity used to fund the portfolio will not be exhausted by portfolio losses except in exceptionally 

rare circumstances. Such a rule is often operationalized by setting the share of equity used to fund the 

portfolio equal to a high quantile of the portfolio’s loss rate distribution. Typical coverage rates used in 

capital allocation models range between 95 and 99 percent, although the Basel Committee on Banking 

Supervision sets the coverage rate at 99.9 percent. 

Within a value-at-risk capital framework, it is of interest to know the additional capital that will be needed 

should a new credit be added to an existing portfolio. Under the assumptions of the Vasicek asymptotic 

single common factor model, the capitalization rate that applies to any new credit is independent of the 

composition on the portfolio and equal to the capitalization rate for all the credits already in the portfolio. 

This invariance arises because idiosyncratic risk is fully diversified and there is no additional 

diversification benefit from adding an additional credit. However, in most cases, portfolios are not 

asymptotic and the capitalization rate of the marginal credit will depend on the composition of the 

existing portfolio. 

In the simplest setting, where portfolio credits are uniform in size and default risk characteristics, the 

capitalization rate on a new marginal credit with exposure and risk characteristics identical to the credits 

already in the portfolio tends to decline as the number of credits in the existing portfolio increases.  The 

tendency for declining capitalization rates is upset periodically as N increases as a consequence of the 

discrete nature of the default rate distribution. Discrete jumps in the critical value of the default rate used 

to set capital creates a capitalization rate that declines with N, but with an irregular saw tooth style 

pattern.  

                                                           
17 The equity used to fund the portfolio is set equal to a value-at-risk estimate for the portfolio return or loss rate 

distribution.  For addition discussion, see for example, Kupiec (2004, 2006).  
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Using the notation defined earlier, the 𝑞-quantile of a portfolio loss rate distribution is associated with 𝑘𝑞 

defaults.  If equity capital is set to cover 𝑞 percent of all possible portfolio losses, the capitalization rate 

on the portfolio (and each of its credits) will be  𝐿𝐷𝐺 ×
𝑘𝑞

𝑁
.   

Now consider adding an additional credit to the portfolio.  For finite distributions, the loss rate 

distribution is discrete, and 𝑘𝑞 may not change for 𝑁 + 1 credits.  In such a case, the capitalization rate on 

the marginal credit, that is the change in the total required capital for the portfolio of 𝑁 + 1 credits 

divided by the EAD of the new credit is, 𝐿𝐺𝐷 × (
𝑁−1

𝑁
) (

𝑘𝑞

𝑁+1
).  The marginal capital is smaller than 

(
𝑘𝑞

𝑁+1
)  because idiosyncratic risk is better diversified in the new portfolio generating capital savings on 

the original N credits.  This is accounted for by the factor 
𝑁−1

𝑁
< 1.   When 𝑁 is small, the extra 

diversification benefit can be large, but as 𝑁 increases, the benefit of additional idiosyncratic 

diversification diminishes.   

As N increases, and more credits with identical characteristics are added to the portfolio, so will the value 

of 𝑘𝑞 .  Binomial probabilities are associated with the number of discrete default events, and once a 

sufficient number of additional credits are added to the portfolio, 𝑘𝑞 will increase.  The increase 𝑘𝑞 as N 

increases creates a declining saw tooth pattern in required capitalization rates.  A specific example of this 

saw tooth capitalization rate pattern is illustrated in Figure 5.  

When there are obligor concentrations in the portfolio, an additional factor enters into the capitalization 

rate calculations. With concentration risk, the value-at-risk capitalization rate is equal to the exposure 

generated by the specific 𝑘𝑞 credits that individually generate the largest portfolio loss rates,  𝐿𝑅̂𝑞 =

∑ 𝑝𝑙𝑟𝑁−𝑖+1
𝑘𝑞

𝑖=1
.   

When a credit is added to the portfolio, new portfolio loss rates must be computed for the individual 

credits that are contained in 𝐿𝑅̂𝑞 ,  

𝑝𝑙𝑟𝑗
′ =

𝐸𝐴𝐷𝑗×𝐿𝐺𝐷𝑗

∑ 𝐸𝐴𝐷𝑖
𝑁+1
𝑖=1

,  for 𝑝𝑙𝑟𝑗 ∈ 𝐿𝑅̂𝑞.                                                   (15) 
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The portfolio loss rate of the newly added credit must be calculated and compared to the portfolio loss 

rates 𝑝𝑙𝑟𝑗
′ of the credits in 𝐿𝑅̂𝑞 .  If the new credit’s portfolio loss rate is less than any 𝑝𝑙𝑟𝑗

′ that is included 

in 𝐿𝑅̂𝑞, the new portfolios’ capitalization rate is 
∑ 𝐸𝐴𝐷𝑖

𝑁
𝑖=1

∑ 𝐸𝐴𝐷𝑖
𝑁+1
𝑖=1

× 𝐿𝑅̂𝑞.  In this instance, the benefit of 

additional diversification is measured by   
∑ 𝐸𝐴𝐷𝑖

𝑁
𝑖=1

∑ 𝐸𝐴𝐷𝑖
𝑁+1
𝑖=1

< 1.  

Should the new credit generate a portfolio loss rate that exceeds the smallest portfolio loss rate 𝑝𝑙𝑟𝑗
′ in 

𝐿𝑅̂𝑞 ,  the new credit will replace the smallest loss rate, and the new larger loss rate associated with the 

quantile must be calculated,  𝐿𝑅̂𝑞
′ > 𝐿𝑅̂𝑞.  Consequently, in cases when 𝑘𝑞is unaffected by the addition of 

a new credit, the change in the portfolio’s required capitalization rate required by the addition of a new 

credit is, 

𝐿𝑅̂𝑞
′ − (

∑ 𝐸𝐴𝐷𝑖
𝑁
𝑖=1

∑ 𝐸𝐴𝐷𝑖
𝑁+1
𝑖=1

) 𝐿𝑅̂𝑞.                                                             (16) 

Of course, in some instances the addition of a new credit will require a unit increase in the value of 𝑘𝑞 .  In 

these cases 𝐿𝑅̂𝑞
′  will also increase because an additional large portfolio loss rate will be added to the sum 

that determines 𝐿𝑅̂𝑞
′ .  Consequently, the capitalization rates will exhibit a declining saw tooth pattern, but 

The capitalization rate needed to achieve 99 percent coverage of the loss rate distribution in a portfolio with N 

credits with equal EAD , PD =0.01,  ρ=0.2, and LGD =0.4. 
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unlike Figure 5, the jump increments will be irregular, with a size that depends on the loss exposure 

concentrations in the portfolio.  

VIII. Conclusion 

The benefit of portfolio diversification is one of the only true “free lunches” available to investors in 

equilibrium. Risk can be reduced merely by the judicious structuring of portfolio investments.  Given the 

practical benefits to be gained, the academic literature offers surprisingly few practical approaches for 

assessing the impact of obligor concentration risk on the diversification of credit risk portfolios.  In this 

paper, I analyze obligor concentration risk and present a new algorithm that can be used to approximate 

the loss rate distribution for a fixed income portfolio with credit risk concentrations. The intuition behind 

the approximation is easily understood using simple set theory without the need for advanced 

mathematics or statistics. The approximation is independent of the modeling structure assumed to 

generate default correlation and is highly accurate in the upper quantiles of a portfolio’s loss rate 

distribution. Its accuracy makes it especially useful for estimating economic capital allocations or setting 

regulatory capital requirements for credit risk portfolios with obligor concentration risk.   
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Appendix 

Consider a portfolio of N credits.  Assume each credit has a probability of default of PD, and default 

events are independent. The individual credit 𝐸𝐴𝐷𝑠 and 𝐿𝐺𝐷𝑠 can be arbitrary admissible values 

[ 𝐸𝐴𝐷𝑖 > 0, 0 ≤ 𝐿𝐺𝐷𝑖 ≤ 1, ∀𝑖].  Consistent with the text, define: 𝑇𝐸 = ∑ 𝐸𝐴𝐷𝑖
𝑁
𝑖=1 ;                            

𝑇𝐿 = ∑ 𝐸𝐴𝐷𝑖 × 𝐿𝐺𝐷𝑖
𝑁
𝑖=1 ;  𝐿𝑅 =

𝑇𝐿

𝑇𝐸
 ; and p𝑙𝑟𝑖 =

𝐸𝐴𝐷𝑖×𝐿𝐺𝐷𝑖

𝑇𝐸
.   Let 𝐹(𝐿𝑅), 𝐿𝑅 ∈ [0,1] be the cumulative 

probability distribution for the loss rate on this portfolio. 

Consider a hypothetical isomorphic portfolio of N credits with uniform obligor exposure characteristics.  

Each credit has a probability of default of PD. Default events are independent.  Each credit has 𝐸𝐴𝐷𝑖 =

𝑇𝐸

𝑁
 and 𝐿𝐺𝐷𝑖 =

𝐿𝑅

𝑁
 .  Let  𝐹𝑖(𝐿𝑅), 𝐿𝑅 ∈ [0,1]  represent the cumulative probability distribution for the loss 

rate on this isomorphic portfolio. 

For either portfolio, the probability of experiencing exactly 𝑘 defaults is (
𝑁
𝑘

) 𝑃𝐷𝑘(1 − 𝑃𝐷)𝑁−𝑘. There 

are (
𝑁
𝑘

) unique combinations in which individual credits in either portfolio can experience 𝑘 defaults. 

Each unique combination of 𝑘 defaults has a probability of 𝑝𝑘 = 𝑃𝐷𝑘(1 − 𝑃𝐷)𝑁−𝑘. For the isomorphic 

portfolio, the portfolio loss rate is identical for each of the (
𝑁
𝑘

) combinations of 𝑘 defaults.  

In the isomorphic uniform obligor portfolio, the portfolio loss rate increases monotonically with the 

number of portfolio defaults. In the portfolio with arbitrary credit exposure characteristics, the portfolio 

loss rate need not be a monotonic function of the number of defaults. 

Let 𝑅𝑘 be the set of 𝑀(𝑘) = (
𝑁
𝑘

) portfolio loss rates generated by loss events with exactly 𝑘 defaults, 

rank-ordered (from smallest to largest) according to the event’s total portfolio loss rate, 

𝑅𝑘 = {𝑒𝑙𝑟1
𝑘, 𝑒𝑙𝑟2

𝑘 , 𝑒𝑙𝑟3
𝑘 , … , 𝑒𝑙𝑟𝑀(𝑘)

𝑘 }.   𝑒𝑙𝑟1
𝑘  is the minimum portfolio loss rate in 𝑅𝑘; it is the smallest 

portfolio loss rate generated by k defaults.  Similarly, 𝑒𝑙𝑟𝑀(𝑘)
𝑘 is the maximum portfolio loss rate in 𝑅𝑘; the 

largest portfolio loss rate that can be generated by k defaults. Each individual event in 𝑅𝑘 has a 

probability of 𝑝𝑘. 

𝑅1 has 𝑁 elements corresponding to the number of unique ways to generate one default from the 𝑁 

individual credits in the portfolio.  Let 𝑅1
+ be the set of set of events in {𝑅2, 𝑅3, … , 𝑅𝑘 , … 𝑅𝑁} where 

𝑒𝑙𝑟𝑖
𝑘 ≤ 𝑒𝑙𝑟𝑁

1 for all 𝑖, and 𝑘 = {2,3,4, … , 𝑁}. Let  𝑅𝑘
1𝐶 = 𝑅𝑘\𝑅1

+ where the notation 𝑅𝑘\𝑅1
+ indicates 

elements in set 𝑅𝑘 that are not in 𝑅1
+.  Let 𝑝𝑟𝑜𝑏(𝑅𝑘 ∩ 𝑅1

+) represent the cumulative probability of events 

that are in the intersection of sets 𝑅𝑘 and 𝑅1
+. 

The probability of observing a loss at least as large as 𝑒𝑙𝑟𝑁
1 is given by 𝑝𝑟𝑜𝑏(𝑅1 ∪ 𝑅1

+) = 𝑝0 + 𝑝1 +

∑ 𝑝𝑟𝑜𝑏(𝑅𝑖 ∩ 𝑅1
+)𝑁

𝑖=2 .   Since 𝐹𝑖 (
𝐿𝑅

𝑁
) = 𝑝0 + 𝑝1, and  ∑ 𝑝𝑟𝑜𝑏(𝑅𝑖 ∩ 𝑅1

+)𝑁
𝑖=2 ≥ 0, it follows that 𝐹(𝑒𝑙𝑟𝑁

1) ≥

𝐹𝑖 (
𝐿𝑅

𝑁
).   That is, the probability of experiencing a portfolio loss rate that is less than or equal to the 

portfolio loss rate caused by the default of the largest single loss exposure in the concentrated portfolio is 

always greater than or equal to the probability of experiencing one or fewer defaults in the isomorphic 

uniform credit portfolio.   
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In order to demonstrate,  𝐹(𝑒𝑙𝑟𝑀(2)
2 ) ≥ 𝐹𝑖 (2 ×

𝐿𝑅

𝑁
),  let 𝑅2

+ be the set of events in {𝑅3, 𝑅4 … , 𝑅𝑘, … 𝑅𝑁} 

where 𝑒𝑙𝑟𝑖
𝑘 ≤ 𝑒𝑙𝑟𝑀(2)

2 , for all 𝑖, and 𝑘 = {3,4,5, … , 𝑁}.  Let 𝑅𝑘
2𝐶 = 𝑅𝑘\𝑅2

+ for 𝑘 = {3,4,5, … , 𝑁}. 

Using the fact that, 𝑝𝑟𝑜𝑏(𝑅1 + (𝑅1
+ ∩ 𝑅2) ∪ 𝑅2

1𝐶) = 𝑝𝑟𝑜𝑏(𝑅1 + 𝑅2), the probability of observing a 

portfolio loss rate at least as large as 𝑒𝑙𝑟𝑀(2) 2 is given by 𝑝𝑟𝑜𝑏(𝑅1 ∪ 𝑅2 ∪ 𝑅2
+) = 𝑝0 + 𝑝1 + 𝑝2 +

∑ 𝑝𝑟𝑜𝑏(𝑅𝑖 ∩ 𝑅2
+)𝑁

𝑖=3 .  Since 𝐹𝑖 (2 ×
𝐿𝑅

𝑁
) = 𝑝0 + 𝑝1 + 𝑝2, and  ∑ 𝑝𝑟𝑜𝑏(𝑅𝑖 ∩ 𝑅3

+)𝑁
𝑖=3 ≥ 0, it follows that 

𝐹(𝑒𝑙𝑟𝑀(2)
2 ) ≥ 𝐹𝑖 (2 ×

𝐿𝑅

𝑁
).  In plain language, the last equality says that the probability of a portfolio loss 

rate that is less than or equal to the portfolio loss rate caused by the default of the largest two loss 

exposures in the concentrated portfolio will always be greater than or equal to the probability of 

experiencing two or fewer defaults in the isomorphic uniform credit portfolio.   

The remaining inequalities, 𝐹(𝑒𝑙𝑟𝑀(3)
3 ) ≥ 𝐹𝑖 (3 ×

𝐿𝑅

𝑁
), 𝐹(𝑒𝑙𝑟𝑀(4)

4 ) ≥ 𝐹𝑖 (4 ×
𝐿𝑅

𝑁
) , … , 𝐹(𝑒𝑙𝑟𝑀(𝑁)

𝑁 ) ≥

𝐹𝑖(𝐿𝑅), are established by induction. 

While this proves that the approximation is always conservative, it does not provide any evidence in the 

accuracy of the approximation.  The two cumulative probability distributions are actually equal by 

construction for N 𝐹(𝑒𝑙𝑟𝑀(𝑁)
𝑁 ) = 𝐹𝑖(𝐿𝑅) = 1.  The distributions also must agree for 𝑁 − 1 defaults 

because the 𝑝𝑟𝑜𝑏(𝑅𝑁−1
+ ) = 0; that is, the single event that corresponds to 𝑁 defaults must be larger than 

the largest loss rate generated by 𝑁 − 1 defaults 𝑒𝑙𝑟𝑀(𝑁−1)
𝑁−1 .   

Moving back from 𝑞 = 1, in the direction of 𝑞 = 0 , for N-2 defaults,  the term 𝑝𝑟𝑜𝑏(𝑅𝑁−2
+ ) can be larger 

than 0.  For example, consider a portfolio of 10 credits each with EAD=100.  If the loss given default on 

these credits are the integer values from 1 to 10, and {𝑝𝑙𝑟𝑖} represents the vector of individual credit 

portfolio loss rates ranked in ascending order, the sum of the largest 8 credit portfolio loss rates 

∑ 𝑝𝑙𝑟𝑖 = .52 >  ∑ 𝑝𝑙𝑟𝑖 = .45,9
𝑖=1

10
𝑖=3  and so 𝑝𝑟𝑜𝑏(𝑅𝑁−2

+ ) > 0, and 𝐹(𝑒𝑙𝑟𝑀(𝑁−2)
𝑁−2 ) > 𝐹𝑖 (

𝑁−2

𝑁
𝐿𝑅).   

In the far right tail of the distribution, the probabilities associated 𝑅𝑁−2
+  are generally very small for the 

probabilities of default in the ranges normally encountered in fixed income portfolios.  Defaults are 

distributed binomially and so most of the probability mass for the default distribution is located within 

two standard deviations [±2 ×
𝐿𝐺𝐷

√𝑁
× √𝑃𝐷(1 − 𝑃𝐷)] of the expected value of the distribution [a portfolio 

loss rate of 𝐿𝐺𝐷 × 𝑃𝐷].  Progressing back towards 𝑞 = 0, values for 𝑅𝑁−𝑗
+  that are associated with loss 

rates far above the mean portfolio loss rate will also be very small and so the approximation will be 

highly accurate in the upper tail region of the distribution.  
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