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Testing for Systemic Risk using Stock Returns 

Paul Kupiec and Levent Guntay
1
 

January 2015 

 

ABSTRACT 

Conditional value at risk (CoVaR) and marginal expected shortfall (MES) have been proposed as stock 

return based measures of the systemic risk created by individual financial institutions even though the 

literature provides no formal hypothesis test for detecting systemic risk. We address this shortcoming by 

constructing hypothesis test statistics for CoVaR and MES that can be used to detect systemic risk at the 

institution level. We apply our tests to daily stock returns data for over 3500 firms during 2006-2007. 

CoVaR (MES) tests identify almost 500 (1000) firms as systemically important. Both tests identify many 

more real-side firms than financial firms, and they often disagree about which firms are systemic. 

Analysis of the hypothesis tests’ performance for plausible alternative hypotheses finds that return 

skewness can cause test rejections and, even when systemic risk imparts a strong signal in stock return 

distributions, hypothesis tests based on CoVaR and MES may fail to detect it. Our overall conclusion is 

that CoVaR and MES are not reliable measures of systemic risk.   
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Testing for Systemic Risk using Stock Returns 

I. Introduction 

A number of economists have proposed using econometric measures of the tail dependence in 

stock returns as indicators of the “systemic risk” created by large financial institutions.
2
  In this 

paper, we focus on two of these proposed measures: conditional value at risk (CoVaR) and 

marginal expected shortfall (MES).  Proponents have argued that CoVaR and MES should be 

used as a basis to tax large complex financial institutions to penalize them for the systemic risk 

that they create [Acharya, Engle and Richardson (2012), Acharya, Pedersen, Philippon and 

Richardson (2010)] or to indirectly tax these institutions by requiring enhanced regulatory capital 

and liquidity requirements calibrated using these measures [Adrian and Brunnermeier (2011)].   

The argument for using CoVaR and MES to measure systemic risk is simple enough.  Should a 

systemically important financial institution teeter on the brink of default, its elevated risk of 

failure will negatively impact the lower tail of the stock return distributions of many other firms 

in the economy. The loss-tail of firms’ return distributions will undergo a negative shift if a 

financial institution’s failure will spread losses throughout the financial sector and choke off 

credit intermediation to the real economy.  The implication is that stock returns will have 

asymptotic left-tail dependence with the stock returns of systemically important financial 

institutions. Because CoVaR and MES measure the thickness of the loss-tail of stock return 

distributions under a negative conditioning event, they hold promise as stock return-based 

measures of the systemic risk that would be created by the failure of individual financial 

institutions.  

The CoVaR measure is the difference between two 1 percent value-at-risk (VaR)
3
 measures. The 

1 percent VaR of a reference portfolio is calculated using returns conditioned on the event that a 

single large financial institution experiences a return equal to the 1 percent quantile of its 

unconditional return distribution. The second step is to subtract the VaR of the same reference 

portfolio conditioned on the event that the large financial institution in question experiences a 

                                                           
2
 These papers include: Acharya, Engle and Richardson (2012), Acharya, Pedersen, Philippon and Richardson 

(2010), Adrian and Brunnermeier (2011) and Brownlees and Engle (2012).  While these studies define firm-level 

systemic risk measures, Allen, Bali, and Tang (2012) introduce an aggregate systemic risk measure for the financial 

sector. See Flood, Lo and Valavanis (2012) for a recent survey of this literature. Kupiec (2012) or Benoit, Colletaz, 

Hurlin and Perignon (2012) provide a critical assessment. 
3
 In this literature, a 1 percent VaR measure is defined as the 1 percent quantile of the underlying return distribution. 
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median return realization. The literature suggest that CoVaR be estimated using quantile 

regression on the grounds that such estimates are non-parametric and free from biases that may 

be introduced by inappropriately restrictive parametric distributional assumptions.  

MES is the expected shortfall calculated from a conditional return distribution for an individual 

financial institution where the conditioning event is a large negative market return realization.
4
  

The literature suggests using a nonparametric MES estimator: the institution’s average stock 

return on the selected sample of days when the market portfolio experiences a realization in the 

five percent lower tail of its sample return distribution. This measure requires no maintained 

hypothesis about the probability density that generates observed stock return data.
5
  

The existing literature argues that should a financial firm have a CoVaR or MES estimate that is 

large relative to other financial firm estimates, the financial institution with the large CoVaR or 

MES estimate is a source of systemic risk. The “validity” of these systemic risk measures is 

established by showing that virtually all of the large financial institutions that required 

government assistance or failed during the recent financial crisis exhibited large CoVaR or MES 

measures immediately prior to the crisis.   

An important shortcoming in the CoVaR and MES literatures is that systemic risk is identified 

on the basis of ad hoc reasoning without the use of formal statistical hypothesis tests. This issue 

has important policy implications. Beginning in 2010, the Dodd-Frank Wall Street Reform and 

Consumer Protection Act requires regulators to assess the significance of the systemic risk that 

would be created by the failure of large non-bank financial institutions and decide which 

institutions, if any, should be designated a “systemically important financial institution” and 

thereby be subjected to enhanced supervision and heighted prudential standards.  

Our objective in this paper is to improve the technology for identifying systemic risk and move it 

beyond simple rank ordering of individual financial institution CoVaR and MES estimates. To 

do this, we develop classical hypothesis test statistics that can detect systemic risk. Our approach 

                                                           
4
 Two additional measures of systemic risk proposed in the literature, Systemic Expected Shortfall (SES) [Acharya, 

Pedersen, Phillipon, and Richardson (2010)] and the Systemic Risk Index (SRISK) [Acharya, Engle, and Richardson 

(2012)] are simple transformations of MES.   
5
 The results and conclusions in this paper are about the nonparametric versions of MES and CoVaR statistics which 

uses stock returns and the equally weighted market return as the reference portfolio. Girardi and Ergun (2013) and 

Jiang (2012) discuss alternative parametric estimation approaches. Mainik and Schaanning (2014) identify 

inconsistencies in CoVaR and MES statistics’ ability to rank order firms by systemic risk.   
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requires us to adopt a joint null hypothesis.  We can only test for the presence of systemic risk by 

assuming a specific null hypothesis for the distribution of stock returns that precludes systemic 

risk.
6
 The null hypothesis we adopt is that stock returns are Gaussian, a distribution with 

asymptotically independent tails, but there are many other possible return distributions that could 

have been selected as the null hypothesis. Using the Gaussian null hypothesis, we use the Durbin 

(1954)-Wu (1973)-Hausman (1978) technique of exploiting the difference between two 

consistent estimators to develop a hypothesis test statistic that can detect asymptotic tail 

dependence in stock returns data. We use Monte Carlo simulations to construct the critical values 

of the small sample distributions of our CoVaR and MES hypothesis test statistics.  

We apply out test statistics to daily returns data on 3518 firms and the CRSP equally-weighted 

market portfolio over the sample period 2006-2007. The CoVaR test identifies roughly 500 firms 

as sources of systemic risk; the MES test identifies nearly 1000 firms.  Both tests identify many 

more real-side than financial firms, and the tests often disagree about which firms are a source of 

systemic risk.  

To better understand our hypothesis test results, we perform simulations to evaluate the 

performance of our hypothesis tests for nested alternative return distributions, some with 

asymptotic tail dependence, and others that are asymptotically tail independent. This analysis 

shows that our hypothesis tests may reject the null hypothesis when stock return distributions 

have skewness patterns that are commonly observed in the data, even when the return 

distributions are asymptotically tail independent.
7
 While the test statistics are performing as they 

should (they are detecting non-Gaussian returns), the test rejection could be interpreted (falsely) 

as evidence of asymptotic tail dependence in returns. While this finding points to the value of 

additional research to refine the choice of the test statistic null hypothesis, our overall view is 

that, regardless of further generalizations, CoVaR and MES based tests are likely to have weak 

power characteristics.  

                                                           
6
 Many problems in finance face a similar joint hypothesis problem.  See for example, the discussion in Fama (1970) 

or Jarrow and Larsson (2012). 
7
 A distribution’s skewness can cause the hypothesis tests to under- or over-reject, depending on the pattern of 

skewness in the data.  When the market return distribution is strongly negatively skewed, and individual returns are 

weakly positively skewed, the tests over-reject the null hypothesis.  This pattern is particularly common in our 

sample of stock returns.  
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The analysis of several plausible nested alternative stock return generating processes suggests 

that stock returns with weak asymptotic tail dependence will produce CoVaR and MES 

hypothesis test statistic distributions that significantly overlap the sampling distributions of test 

statistics calculated from Gaussian returns.  Moreover, even when asymptotic tail dependence is 

strong, our analysis suggest that the CoVaR and MES test statistics have relatively weak power.   

The power issue arises because the variation in the nonparametric CoVaR and MES estimators 

increases as the asymptotic tail dependence in stock returns strengthens. While the 

nonparametric estimators are consistent under asymptotic tail dependence (systemic risk), there 

is no guarantee that these estimators will have small standard errors in a sample size of 500 

observations. This increase in variability of the nonparametric estimators increases the likelihood 

rejecting a false null hypothesis, which limits the power of the test statistics.     

The remainder of the paper is organized as follows. Section II provides a brief overview of the 

existing literature. Section III estimates CoVaR and MES statistics for a wide cross section of 

stocks to illustrate the pitfalls of identifying systemic risk from ranking the magnitude of CoVaR 

and MES sample estimates. Section IV develops hypothesis test statistics that can identify 

systemic risk from stock returns using CoVaR and MES sample estimates under the null 

hypothesis that returns are Gaussian. Section V develops a simplified formulation of the 

hypothesis test statistics that reduce computational burden. Section VI applies our hypothesis 

tests to a sample of 3518 individual daily stock returns over the pre-crisis sample period 2006-

2007. Section VII investigates the properties of our hypothesis test statistics under nested 

alternative return distribution assumptions that both include and exclude asymptotic tail 

dependence. Section VIII provides our summary and conclusions. 

II. Literature Review 

1.  Conditional Value at Risk (CoVaR) 

Let 𝑅̃𝑃  represent the return on any reference portfolio of stocks, 𝑅̃𝑗  represent the return on an 

individual stock, 𝑅̃𝑃|𝑅𝑗 = 𝑟 be the return on the reference portfolio conditional on a specific 

realized value for 𝑅̃𝑗  , 𝑅̃𝑗 = 𝑟, and 𝑉𝑎𝑅(𝑅𝑗̃,p) represent the p-percent value at risk for stock j, or 

the critical value of the return distribution for 𝑅̃𝑗 below which, there is at most p-percent 

probability of a smaller return realization.  The CoVaR measure can be defined for any reference 
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portfolio, 𝑅̃𝑃. For purposes of the discussion in this paper, we define the reference portfolio to be 

the equally-weighted CRSP market portfolio, 𝑅̃𝑃 = 𝑅̃𝑀 . 

Adrian and Brunnermeier (2012) define the q-percent CoVaR measure for firm j to be the q-

percent quantile of a reference portfolio’s conditional return distribution, where the reference 

portfolio’s distribution is conditioned on a return realization for stock j equal to its q-percent 

VaR value.  Using our notation, firm j’s q-percent CoVaR is defined as: 

𝐶𝑜𝑉𝑎𝑅(𝑅̃𝑀|𝑗 , 𝑞  ) = 𝑉𝑎𝑅[𝑅̃𝑀|𝑅𝑗 = 𝑉𝑎𝑅(𝑅̃𝑗,q), q]                             (1)                           

Adrian and Brunnermeier measure systemic risk using ∆CoVaR, which they define as the 

difference between stock j’s q-percent CoVaR and the stock’s CoVaR conditional on a median 

return of stock j,   

∆𝐶𝑜𝑉𝑎𝑅(𝑅̃𝑀|𝑗 , 𝑞) = 𝐶𝑜𝑉𝑎𝑅(𝑅̃𝑀|𝑗 , 𝑞) − 𝐶𝑜𝑉𝑎𝑅(𝑅̃𝑀|𝑗 , 50%)                     (2) 

Adrian and Brunnermeier (2011) set “q” equal to 1-percent and estimate ∆CoVaR using quantile 

regressions. They argue that ∆CoVaR measures how an institution contributes to the systemic 

risk of the overall financial system.
8
  

2. Marginal Expected Shortfall (MES) 

Acharya, Pedersen, Phillipon, and Richardson (2010) define MES for firm j is the expected value 

of the stock return 𝑅̃𝑗 conditional on the market portfolio return 𝑅̃𝑀 being at or below the sample 

q-percent quantile.  

𝑀𝐸𝑆(𝑅̃𝑗 , 𝑞) = 𝐸(𝑅̃𝑗|𝑅𝑀 < 𝑉𝑎𝑅(𝑅̃𝑀, 𝑞))                                              (3) 

Higher levels of MES imply that firm j is more likely to be undercapitalized in the bad states of 

the economy and thus contribute systemic risk to the broader financial system.  They use 

𝑞 = 0.05 as the left-tail market return threshold and estimate MES by taking a selected-sample 

                                                           
8
 Adrian and Brunnermeier (2011) also estimate a measure they call “forward-∆CoVaR” by projecting estimates of 

∆CoVaR on bank-level characteristics. 
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average. They argue that that MES calculated over the 2006-2007 period can predict stock 

returns during the crisis.
9
  

III.   Do ΔCoVaR and MES Statistics Measure Systemic Risk? 

The existing ΔCoVaR and MES literature focuses on the stock returns of large financial 

instructions just prior to the financial crisis.  It argues that ΔCoVaR and MES are measures of 

systemic risk because there is a high correspondence between large financial institutions with 

large MES and ∆CoVaR estimates immediately prior to the crisis, and institutions that 

subsequently required extensive government capital injections or failed.  

While this justification can seem convincing in the context of the financial crisis bailouts and a 

selected sample of financial firms, the argument becomes less convincing when it is viewed in a 

broader context. ∆CoVaR and MES statistics can be calculated for any firms with stock return 

data.  It is unclear whether the large financial firms identified in these studies actually have large 

∆CoVaR or MES estimates relative to the entire population of firms. It is informative to compare 

the magnitude of ∆CoVaR and MES estimates for firms outside of the financial services industry 

to firms that specialize in banking and financial services before making any judgment that 

specific ∆CoVaR or MES estimates are “abnormally” large. 

To illustrate the shortcomings of identifying systemically risky firms as the financial firms with 

the largest ∆CoVaR or MES estimates, we calculate the MES and ∆CoVaR measures for all 

CRSP stocks with about 500 days of daily return data in the sample period 2006-2007 using the 

nonparametric methods used in the literature.   

To construct our sample, we start with all firms identified in CRSP database between 2006 and 

2007 (3.5 million daily returns by 7481 firms). We calculate daily log returns on days where 

reported closing prices are based on actual transactions. We exclude security issues by non-US 

issuers and issues other than common stock such as ADRs and REITs. We eliminate firms if the 

market capitalization is less than $100 million. These filters result in 3518 individual stock return 

series.  

                                                           
9
 Acharya, Pedersen, Phillipon, and Richardson (2010) define an additional systemic risk measure, Systemic 

Expected Shortfall (SES), which is a simple transformation of an MES estimate from stock returns data. Acharya, 

Engle, and Richardson (2012) define a similar measure, but call it SRISK. Brownlees and Engle (2012) and 

Acharya, Engle and Richardson (2012) use more complex volatility and correlation models to estimate MES from 

stock returns. 
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For each firm in the sample, we estimate 1 percent ΔCoVaR statistics using quantile regression. 

We measure MES for each stock as the average stock returns on days when the equally-weighted 

market portfolio experiences a return in the 5 percent lower tail of its sampling distribution. Our 

reference portfolio is the CRSP equally-weighted market portfolio for both measures.
10

   

Table 1 describes the sample. It lists the number of firms in the sample by industry and the 

average ∆CoVaR and MES estimates for each industry. The ΔCoVaR estimates indicate that, on 

average, the construction industry has the largest (negative) ∆CoVaR estimates.  Using the 

identification approach applied in the prior literature, this would suggest that, on average, the 

construction industry is the largest source of systemic risk.  Following the construction industry, 

according to the ΔCoVaR measure, on average, broker-dealers and mining firms are the next 

most important industry sources of systemic risk. According to the MES statistic, on average 

broker-dealers are the largest contributors to systemic risk, followed by mining companies and 

then the construction industry. 

Table 2 lists the fifty companies that exhibit the largest ΔCoVaR measures in descending order 

of “systemic risk” importance as indicated by the magnitude of their 1-percent ΔCoVaR 

statistics. Most of the firms listed in Table 1 are part of the “real-side” of the economy and have 

nothing to do with the financial services sector. Among the firms listed in Table 2 are 7 financial 

firms. It is very unlikely that anyone would label any of these 7 firms as “systemically 

important.” The depository institution with the largest ΔCoVaR statistic, Citizens First Bancorp, 

has less than half the indicated systemic risk of Proquest, the company with the largest ΔCoVaR 

systemic risk measure among traded firms.  

Table 3 lists, in descending order, the fifty companies with the largest (negative) MES systemic 

risk measures. While the top-fifty MES firms are still dominated by the real sector, the MES 

statistic does generate a list of “high risk” financial firms that did subsequently flounder during 

the crisis.  CompuCredit, E-trade, Countrywide Financial, IndyMac, BankUnited Financial, Net 

Bank, Accredited Home Lenders and Fremont General Corporation all experienced serious 

distress or failed subsequent to the onset of the financial crisis. Still, none of these firms are 

                                                           
10

 We obtain similar estimates of ∆CoVaR and MES statistics when we use the CRSP value-weighted index as the 

reference portfolio. The correlation between statistics based on equally-weighted and value-weighted references 

portfolios is 0.85 for ∆CoVaR and 0.93 for MES. When we rank the firms based on the magnitude of ∆CoVaR and 

MES measured against the CRSP value-weighted portfolio return, similar firms appear in the top 50 lists.  
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exceptionally large and none was considered to be systemically important or “too-big-to-fail” 

during the financial crisis. The firm with the largest MES, China Precision Steel, is not a 

financial firm. It is not particularly important for the U.S. domestic economy as more than 60 

percent of its operations are in China.  

The results in Table 1 through 3 demonstrate that when ΔCoVaR and MES statistics are 

calculated for all traded stocks in the years immediately preceding the crisis (2006-2007), the 

largest financial institutions that are alleged to be the primary sources of systemic risk for the 

economy do not even appear among the list of firms with the fifty most negative ΔCoVaR or 

MES estimates. The absence of the largest financial institutions from either list casts serious 

doubt on previous claims that ΔCoVaR and MES measures accurately identify a firm’s potential 

to cause systemic risk.  

A troubling feature of this simple rank-ordering approach for identifying systemic risk is that it 

lacks of any formal statistical hypothesis test to identify firms that create systemic risk. Our 

objective in writing this paper is to advance systemic risk measurement beyond the simple rank 

ordering of ΔCoVaR and MES estimates and introduce formal statistical hypothesis tests that can 

detect systemic risk in stock returns data.   

IV. Testing for Systemic Risk using ΔCoVaR and MES Statistics 

1. Systemic Risk Specification Test 

We develop a hypothesis test for the presence of systemic risk using a specification testing 

approach pioneered by Durbin (1954), Wu (1973) and Hausman (1978) (or DWH).  The DWH 

approach requires the existence of two estimators, 𝑏̂1 and 𝑏̂2 for an unknown value 𝑏. The 

estimators 𝑏̂1  and 𝑏̂2 are both consistent under the null hypothesis, but  𝑏̂1 is designated to be the 

more efficient estimator.  If, under the alternative hypothesis,  𝑏̂1 is no longer a consistent 

estimator for 𝑏, but  𝑏̂2 remains consistent, then it is possible to construct a test of the null 

hypothesis using the difference between  𝑏̂1 and  𝑏̂2.  The intuition for the test statistic being that, 

under the null hypothesis, the difference between 𝑏̂1 and  𝑏̂2 should approximate zero whereas 

under the alternative, the difference will be non-zero. 
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 The ∆CoVaR and MES estimators that have been proposed in the literature are both 

nonparametric and consistent under a wide range of alternative stock return generating 

distributions. The nonparametric estimation approach was intentionally specified to make the 

estimates robust to any parametric return distribution assumptions. The cost of this 

generalization is a reduction in the efficiencies of the ∆CoVaR and MES estimators compared to 

the efficiencies of estimators that utilize the parametric characterization of the stock returns 

distribution. 

An explicit assumption underlying our testing approach is that asymptotic tail dependence in 

stock returns is symptomatic of systemic risk. Thus, statistics that can identify asymptotic tail 

dependence in the left tail of stock returns distribution are statistics that can detect of systemic 

risk.
11

  Since the ∆CoVaR and MES estimators focus on the left tail of the return distribution, it 

is plausible that they might be capable of detecting asymptotic tail dependence in stock returns.
12

  

The formal definition of asymptotic tail dependence follows.  Let (𝑅1̃, 𝑅2̃) represent a bivariate 

random vector with individual univariate marginal distributions defined by: 

𝐺1(𝑟) = 𝑃𝑟(𝑅̃1 ≤ 𝑟), and 𝐺2(𝑟) = 𝑃𝑟(𝑅̃2 ≤ 𝑟).                                   (4) 

Let 𝐿(𝑢) represent the conditional probability, 

𝐿(𝑢) = 𝑃𝑟(𝐺1(𝑅1) < 𝑢| 𝐺2(𝑅2) < 𝑢)                                            (5) 

Asymptotic left tail dependence between 𝑅1̃ and 𝑅2̃ is defined as, 𝐿 = lim𝑢→0 𝐿(𝑢).   If this limit 

is zero, the random variables are asymptotically independent in their left tails.  If the limit is 

positive, then the random variables have asymptotic tail dependence in the left tail.  The larger is 

the value of the limit, the stronger is the left-tail dependence. 

                                                           
11

 We assume that asymptotic left tail dependence is a necessary condition for systemic risk. If there is no such 

dependence then we can infer that there is no systemic risk. However, since our null hypothesis is a joint hypothesis, 

it may be rejected by non-Gaussian returns even if the returns do not exhibit asymptotic tail dependence.  Thus the 

rejection of the null hypothesis cannot be interpreted as definitive evidence of systemic risk. This issue is discussed 

in detail in Section VII.   
12

 The link between asymptotic and sub-asymptotic tail dependence, systemic risk and the ∆CoVaR and MES 

measures is made explicit in Adrian and Brunnermeier (2011), Acharya, Pedersen, Philippon and Richardson 

(2010), and Acharya, Engle and Richardson (2012). The extremal dependence of economy/market level and 

institution level losses/returns is also consistent with the systemic risk definitions adopted in studies by the 

International Monetary Fund [Blancher et.al. (2013)] and the Financial Stability Board (2011). 
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To use the DWH approach to construct hypothesis tests to detect systemic risk, we must adopt a 

return distribution that is consistent with the null hypothesis; that is, we must select a parametric 

return distribution that excludes the possibility of systemic risk. Thus, our null hypothesis is a 

joint hypothesis no systemic risk and a specific parametric return distribution that excludes 

systemic risk. The joint nature of our null hypothesis must be taken into account when 

interpreting test results. We discuss the construction of a specific null hypothesis in the next 

section.    

2. The Null Hypothesis: Stock Returns are Gaussian  

Under the null hypothesis, admissible distribution candidates for stock returns must be 

asymptotically independent in the left tail of the distribution to rule out systemic risk. Among the 

possible alternative distributions that satisfy this condition, we choose the Gaussian return 

distribution. The Gaussian distribution is analytically tractable and has a long history as a model 

of stock returns. In the penultimate section of this paper, we discuss the performance of our test 

statistic under alternative hypotheses that deviate from the Gaussian null hypothesis including 

alternatives distributions that are asymptotically tail independent and thereby exclude systemic 

risk.       

Let  (𝑅̃𝑗 , 𝑅̃𝑀) be distributed bivariate normal, N [( 𝜇𝑗
𝜇𝑀

) , (
𝜎𝑗

2 𝜌𝑗𝑀𝜎𝑗𝜎𝑀

𝜌𝑗𝑀𝜎𝑗𝜎𝑀 𝜎𝑀
2 )], where  

N(𝑎0, 𝑎1) represents the Gaussian distribution function with mean a mean vector “𝑎0” and 

covariance matrix “𝑎1”;  𝜇𝑗 and 𝜇𝑀 represent the individual (univariate) return means, 𝜎𝑗
2 and 𝜎𝑀

2  

represent the individual return variances, and 𝜌𝑗𝑀 represents the correlation between the returns.   

The conditional return distributions are also normal random variables, 

𝑅̃𝑗|(𝑅̃𝑀 = 𝑟𝑀𝑖) ~ N [𝜇𝑗 + 𝜌𝑗𝑀
𝜎𝑗

𝜎𝑀
(𝑟𝑀𝑖 − 𝜇𝑀), (1 − 𝜌𝑗𝑀

2 )𝜎𝑗
2]                                          (6a) 

𝑅̃𝑀|(𝑅̃𝑗 = 𝑟𝑗𝑖  )~ N [𝜇𝑀 + 𝜌𝑗𝑀
𝜎𝑀

𝜎𝑗
(𝑟𝑗𝑖 − 𝜇𝑗), (1 − 𝜌𝑗𝑀

2 )𝜎𝑀
2 ]                                            (6b) 

3. Parametric ∆CoVaR Estimator for Gaussian Returns  
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We derive a closed form expression for the parametric ΔCoVaR estimator for the reference 

portfolio 𝑅̃𝑀, conditional on 𝑅̃𝑗 equal to its 1 percent value at risk in Section A.1 of the 

Appendix.  The expression is given by,
13

  

∆𝐶𝑜𝑉𝑎𝑅 (𝑅̃𝑀| (𝑅̃𝑗 = Φ−1(. 01,   𝑅̃𝑗))) = − 𝛽𝑗𝑀 ∙ 2.32635 
𝜎𝑀

2

𝜎𝑗
                              (7a) 

or,                                                                           = −𝜌𝑗𝑀 ∙ 2.32635𝜎𝑀,                                  (7b)                  

where,  𝛽𝑗𝑀 =
𝐶𝑜𝑣(𝑅̃𝑗,𝑅̃𝑀)

𝜎𝑀
2 .    

The parametric estimator of  ∆𝐶𝑜𝑉𝑎𝑅,  𝑏̂1(∆𝐶𝑜𝑉𝑎𝑅),  is constructed by replacing the Gaussian 

population parameters with their maximum likelihood sample estimators. Based on a sample size 

of N, the estimator is, 

𝑏̂1(∆𝐶𝑜𝑉𝑎𝑅) = −𝜌̂𝑗𝑀 ∙ 2.32635𝜎𝑗̂,                                                  (8) 

where    𝜌̂𝑗𝑀 =
1

𝑁
∑ (𝑅𝑗𝑖−𝑅̅𝑗)(𝑅𝑀𝑖−𝑅̅𝑀)𝑁

𝑖=1

√∑ (𝑅𝑗𝑖−𝑅̅𝑗)𝑁
𝑖=1

2

𝑁
√∑ (𝑅𝑀𝑖−𝑅̅𝑀)𝑁

𝑖=1

2

𝑁

 ,      𝜎̂𝑗 = √∑ (𝑅𝑗𝑖−𝑅̅𝑗)
2𝑁

𝑖=1

𝑁
,   𝑅̅𝑗 =

1

𝑁
∑ 𝑅𝑗𝑖

𝑁
𝑖=1 ,    

and  𝑅̅𝑀 =
1

𝑁
∑ 𝑅𝑀𝑖

𝑁
𝑖=1 . 

4. Parametric MES Estimator for Gaussian Returns 

Under the assumption of bivariate normality, Section A.2 of the Appendix shows that parametric 

marginal expected shortfall measure is given by, 

𝑀𝐸𝑆 =  𝐸(𝑅̃𝑗|𝑅̃𝑀 < 𝑉𝑎𝑅(𝑅̃𝑀, 95%)) = 𝜇𝑗 − 𝜌𝑗𝑀𝜎𝑗 [
𝜙(−1.645)

Φ(−1.645)
]                         (9a) 

or,                                                                        = 𝜇𝑗 − 2.062839 𝜎𝑀 𝛽𝑗𝑀                               (9b) 

                                                           
13

 Reversing the order of the conditioning variable (i.e., the CoVaR for  𝑅̃𝑗 conditional on 𝑅̃𝑀 equal to its 1 percent 

VaR), it is straight-forward to show that the so-called exposure CoVaR measure is,   

∆𝐶𝑜𝑉𝑎𝑅 (𝑅̃𝑖| (𝑅̃𝑀 = Φ−1(. 01,   𝑅̃𝑀))) = − 𝛽𝑗𝑀 ∙ 2.32635 𝜎𝑀 
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where,𝜙(𝑥) represents the standard normal probability density evaluated at 𝑥, Φ(𝑥) represents 

the cumulative standard normal distribution function evaluated at 𝑥, and   
𝜙(−1.645)

Φ(−1.645)
= 2.062839.  

The parametric estimator for the expected shortfall measure, 𝑏̂1(𝑀𝐸𝑆), is constructed by 

replacing the Gaussian population parameters in expression (9a) by their maximum likelihood 

sample estimators. Based on a sample size of N, the parametric estimator is, 

𝑏̂1(𝑀𝐸𝑆) = 𝜇̂𝑗 − 2.062839 𝜎̂𝑗𝜌̂𝑗𝑀,                                                      (10) 

where,  𝜇̂𝑗 = 𝑅̅𝑗 .  

5. Nonparametric ΔCoVaR Estimator 

We estimate the nonparametric ΔCoVaR statistic, 𝑏̂2(∆𝐶𝑜𝑉𝑎𝑅), following the exact approach 

taken in the literature:
14

  

 We run a 1-percent quantile regression of the CRSP equally-weighted market return on 

𝑅𝑗 and estimate, 𝛽̂𝑗𝑀
𝑞 , the slope coefficient of the firm’s stock return from the quantile 

regression. 

 We estimate the 1-percent sample quantile of the firm’s stock return, 𝑄̂𝑗(. 01) =

𝐹̂𝑗
−1

(. 01), where 𝐹̂𝑗(𝑅𝑗) is a nonparametric sample estimate of the cumulative 

distribution for 𝑅̃𝑗.
15

 

  We estimate the median firm stock return, 𝑄̂𝑗(. 5) = 𝐹̂𝑗
−1

(. 5). 16 

 The nonparametric ΔCoVaR estimator is defined as: 

𝑏̂2(∆𝐶𝑜𝑉𝑎𝑅) = 𝛽̂𝑗𝑀
𝑞  ( 𝑄̂𝑗(. 01) − 𝑄̂𝑗(. 5))                                    (11) 

6. Nonparametric MES Estimator 

We follow the exact approach taken in the literature and define the nonparametric MES 

estimator, 𝑏̂2(𝑀𝐸𝑆), to be the average of individual stock returns on days when the equally-

weighted stock market index realizes a return in the 5 percent lower tail of the sample 

                                                           
14

 Adrian and Brunnermeier (Sept 15, 2011), p. 15, equation (9). 
15

 In a sample size of 500 observations, the 1 percent quantile estimate is the 5
th

 smallest return observation. 
16

 In a sample size of 500, the median is the simple average of the 250
th

 and 251
st
 ordered return observation. 
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observations.  Let  𝐼 (𝑅𝑀𝑖 ≤ Q̂𝑀(. 05)) be an indicator function that equals one when 𝑅𝑀𝑖 ≤

Q̂𝑀(. 05) and zero otherwise, where  𝑄̂𝑀(. 05) = 𝐹̂𝑀
−1

(. 05) and 𝐹̂𝑀(𝑅𝑀) is the sample estimate 

of the nonparametric cumulative distribution for 𝑅̃𝑀.  The nonparametric MES estimator is 

defined as, 

𝑏̂2(𝑀𝐸𝑆) = (∑ 𝑅𝑗𝑖 
𝑁
𝑖=1 𝐼(𝑅𝑀𝑖 ≤ 𝑄̂𝑀(.05))) (∑ 𝐼(𝑅𝑀𝑖 ≤ 𝑄̂𝑀(.05))𝑁

𝑖=1 )
−1

                           (12) 

7. Systemic Risk Test Statistics when Returns are Gaussian 

Following DHW, we construct our hypothesis test statistic as the difference between two 

estimators of ∆CoVaR and MES that are both consistent under the null hypothesis of no systemic 

risk. Under the null hypothesis, the parametric ∆CoVaR and MES estimators are more 

efficient.
17

  Under the alternative hypothesis, systemic risk will be associated with asymptotic 

tail dependence in return distributions. The nonparametric ∆CoVaR and MES estimators remain 

consistent but the parametric ∆CoVaR and MES estimators will no longer be consistent. 

The DWH ∆CoVaR test statistic is, 

𝐷𝑊𝐻∆𝐶𝑜𝑉𝑎𝑅 =
(𝑏̂2(∆𝐶𝑜𝑉𝑎𝑅)−𝑏̂1(∆𝐶𝑜𝑉𝑎𝑅))

2

𝑉𝑎𝑟(𝑏̂2(∆𝐶𝑜𝑉𝑎𝑅))−𝑉𝑎𝑟(𝑏̂1(∆𝐶𝑜𝑉𝑎𝑅))
 ,                                    (13) 

where, 𝑉𝑎𝑟 (𝑏̂𝑗(∆𝐶𝑜𝑉𝑎𝑅)) is a consistent estimator of the variance of the estimator 𝑏̂𝑗, {𝑗 =

1,2}, under the null hypothesis.  The 𝐷𝑊𝐻∆𝐶𝑜𝑉𝑎𝑅 test statistic has an asymptotic Chi-Square 

distribution with 1 degree of freedom. In the single parameter case, the test can also be 

formulated as a “t-test” of the difference between the two estimators,
18

 

 

𝐷𝑊𝐻𝑇∆𝐶𝑜𝑉𝑎𝑅 =
𝑏̂2(∆𝐶𝑜𝑉𝑎𝑅)−𝑏̂1(∆𝐶𝑜𝑉𝑎𝑅)

√𝑉𝑎𝑟(𝑏̂2(∆𝐶𝑜𝑉𝑎𝑅))−𝑉𝑎𝑟(𝑏̂1(∆𝐶𝑜𝑉𝑎𝑅))

 .                                 (14) 

                                                           
17

 Under the null hypothesis, the parametric ∆CoVaR and MES estimators are the maximum likelihood estimators 

with asymptotic sample variances equal to the Cramér-Rao Lower bound. See, for example, the discussion in 

Kmenta (1971), p. 159-160. 
18

 The test statistic is asymptotically normally distributed, it merely takes the form of a “t-test” of the difference 

between means where the variance of the difference between the parametric and nonparametric estimators is the 

difference of the estimator variances.  The covariance between these estimators is 0 because, under the null 

hypothesis, the parametric estimate is the minimum variance efficient estimator and hence uncorrelated with the 

inefficient nonparametric estimator.  



16 
 

We prefer the “t-test” version of the statistic because it allows us to focus our hypothesis test on 

the lower tail of the stock returns distribution.  

The DWH MES test statistic is, 

𝐷𝑊𝐻𝑀𝐸𝑆 =
(𝑏̂2(𝑀𝐸𝑆)−𝑏̂1(𝑀𝐸𝑆))

2

𝑉𝑎𝑟(𝑏̂2(𝑀𝐸𝑆))−𝑉𝑎𝑟(𝑏̂1(𝑀𝐸𝑆))
  .                                        (15) 

𝐷𝑊𝐻𝑀𝐸𝑆 has an asymptotic Chi-Square distribution with 1 degree of freedom. In the single 

parameter case, the “t-test” formulation of the statistic is, 

  

𝐷𝑊𝐻𝑇𝑀𝐸𝑆 =
𝑏̂2(𝑀𝐸𝑆)−𝑏̂1(𝑀𝐸𝑆)

√𝑉𝑎𝑟(𝑏̂2(𝑀𝐸𝑆))−𝑉𝑎𝑟(𝑏̂1(𝑀𝐸𝑆))

  .                                        (16) 

In expressions (13) and (15), in vary large samples, under the null hypothesis, the numerator 

difference between the two estimators (nonparametric and parametric) will converge to zero. 

Still, as a consequence of sample variation, the test statistic will have a sampling distribution.  

Under the alternative hypothesis, stock returns display characteristics consistent with systemic 

risk (asymptotic tail dependence) and yet the nonparametric estimators remain consistent. In 

particular, they will produce larger negative estimates of ∆CoVaR and MES as a reflection of 

asymptotic left tail dependence in the return data.  This intuition is confirmed by the results of a 

Monte Carlo simulation analysis that is discussed in Section A.3 of the Appendix. 

Under the null hypothesis, the 𝐷𝑊𝐻𝑇∆𝐶𝑜𝑉𝑎𝑅 and 𝐷𝑊𝐻𝑇𝑀𝐸𝑆 estimators will be asymptotically 

normally distributed, but the speed of convergence to asymptotic normality is unknown.  We use 

bootstrap resampling to consistently estimate 𝑉𝑎𝑟 (𝑏̂𝑗(∆𝐶𝑜𝑉𝑎𝑅)) and 𝑉𝑎𝑟 (𝑏̂𝑗(𝑀𝐸𝑆)), {𝑗 =

1,2}, and use Monte Carlo simulation to estimate the small sample distributions of the hypothesis 

test statistics. Because our subsequent empirical tests focus on a sample sizes of 500 

observations (about two years of daily return data), we estimate the sampling distribution of the 

𝐷𝑊𝐻𝑇∆𝐶𝑜𝑉𝑎𝑅 and 𝐷𝑊𝐻𝑇𝑀𝐸𝑆 for a sample size of N=500. The specific details of the Monte 

Carlo simulation are reported in Section A.4 of the Appendix.  

The properties of sampling distributions of the 𝐷𝑊𝐻𝑇∆𝐶𝑜𝑉𝑎𝑅 and 𝐷𝑊𝐻𝑇𝑀𝐸𝑆 test statistics for a 

sample size of N=500 are summarized in Table 4.  The critical values from our small sample 
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simulated Monte Carlo distribution are close to the critical values of the standard normal 

distribution, and so the results suggest that relatively little error is introduced by using the 

asymptotic normal approximation in a sample size of 500.  

V. Systemic Risk Hypothesis Tests without Bootstrap Variance Estimates 

1. Bootstrap Variance Estimates Increase Computational Burden 

The 𝐷𝑊𝐻𝑇∆𝐶𝑜𝑉𝑎𝑅 and 𝐷𝑊𝐻𝑇𝑀𝐸𝑆 test statistics require bootstrap resampling to estimate the 

sample variances of the nonparametric and parametric estimators. These bootstrap simulations 

are computationally time intensive. To avoid the bootstrap, we create an alternative, more user-

friendly test statistic that uses a different normalization to construct the hypothesis test statistic. 

The “cost” of this computational simplification is the modified test statistic will depend on a 

nuisance parameter, the correlation coefficient, and so we have to calculate critical test statistic 

values conditional on the observed estimate of the stock return correlation when we estimate 

small sample distributions of this test statistic using Monte Carlo simulation. 

2. A Simplified and More Feasible ∆𝐶𝑜𝑉𝑎𝑅 Statistic 

Expression (7b) shows that the parametric ∆𝐶𝑜𝑉𝑎𝑅 estimator is proportional to the bivariate 

correlation 𝜌𝑗𝑀 parameter and the reference portfolio standard deviation, 𝜎𝑀.  Under the null 

hypothesis, the standard error of the non-parametric quantile regression estimator for ∆CoVaR, 

𝛽̂𝑗𝑀
𝑞 , is also proportional 𝜎𝑀.  Consequently, we normalize by the difference between the 

nonparametric and parametric ∆𝐶𝑜𝑉𝑎𝑅 estimators by 𝜎̂𝑀,  and our reformulated Δ𝐶𝑜𝑉𝑎𝑅 

systemic risk test statistic is,  

= −
𝑏̂2(Δ𝐶𝑜𝑉𝑎𝑅)−𝑏̂1(Δ𝐶𝑜𝑉𝑎𝑅)

𝜎𝑀̂
.                                                   (17)                                                  

Under the Gaussian null hypothesis, the sampling distribution of 𝜅𝐶𝑜𝑉𝑎𝑅 still depends on the 

estimated correlation between the stock returns and the returns on the CRSP equally-weighted 

market portfolio and we explicitly account for this dependence when we estimate the small 

sample critical values for the test statistic. 

We provide simulation evidence that the 𝜎̂𝑀 normalization results in a test statistic with a 

distribution that is independent of the market return volatility. We perform a Monte Carlo 

exercise in which we estimate the sampling distributions for expression (17) under the null 
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hypothesis of Gaussian returns for different values for the market return volatility parameter, 

𝜎𝑀.  We use the Cramer von Mises two sample test to test the hypothesis that each sample is 

drawn from the same underlying population. We calculate the test statistic using pairwise sample 

comparisons, and test the individual samples against the pooled sample. The test results, reported 

in Table 5, do not reject the hypothesis that all of the samples are drawn from an identical 

underlying population. 

Under the alternative hypothesis of systemic risk, we expect 𝑏̂2(Δ𝐶𝑜𝑉𝑎𝑅) − 𝑏̂1(Δ𝐶𝑜𝑉𝑎𝑅) is to 

be negative, and since 𝜎̂𝑀 is positive, systemic risk may be present when the test statistic 

produces a large positive value.  Statistical significance is determined by comparing the 

estimated value for 𝜅𝐶𝑜𝑉𝑎𝑅 with its sampling distribution under the null.
19

  When the test value of 

𝜅𝐶𝑜𝑉𝑎𝑅 is in the far right-hand tail of its sampling distribution, we can reject the null hypothesis 

of no systemic risk. For example, rejecting the null hypothesis for test values at or above the 95 

percent quantile of the sampling distribution for 𝜅𝐶𝑜𝑉𝑎𝑅 is consistent with a 5 percent type 1 error 

meaning there is at most 5 percent chance of rejecting a true null hypothesis.  

3. A Simplified and More Feasible MES Test Statistic 

Expression (9a) indicates that, under the null hypothesis, the parametric MES estimator is 

proportional to both 𝜌𝑗𝑀 and 𝜎𝑗 .  Expression (12) also shows that, under the null hypothesis, the 

nonparametric estimator will also be proportional to 𝜎𝑗 through the term.  As a consequence, we 

scale the difference between the nonparametric and parametric MES estimators by 𝜎𝑗,  and define 

our MES systemic risk test statistic as, 

𝜅𝑀𝐸𝑆 = −
𝑏̂2(MES)−𝑏̂1(MES)

𝜎̂𝑖
                                                     (18) 

When comparing 𝜅𝑀𝐸𝑆 test statistics across stocks with different mean parameters, the variation 

in the location parameter 𝜇𝑗 in expression (9a) is exactly offset by a shift in the mean of the 

distribution 𝑅̃𝑗  in the nonparametric estimator (12), and so the variation in 𝜇𝑗  does not impact the 

distribution of the 𝜅𝑀𝐸𝑆 test statistic.  

                                                           
19

 Monte Carlo simulations demonstrate that  √𝑁𝜅𝐶𝑜𝑉𝑎𝑅  converges in distribution. Our analysis suggests that the 

limiting distribution is leptokurtotic relative to the normal distribution. For modest correlation values we cannot 

reject normality, but for correlations above 0.75 our simulation results reject standard tests for normality. The exact 

parametric form of the limiting distribution is not critical for our purposes.  In our empirical tests, we compare 

sample tests statistics to the exact small sample distribution critical value estimates reported in Table 7.   
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We provide simulation evidence that the normalization produces a hypothesis test statistic with a 

distribution that is independent of 𝜎̂𝑖.  We estimate the sampling distribution for expression (18) 

under the null hypothesis of Gaussian returns using Monte Carlo simulations for different values 

for 𝜎̂𝑖 . We use the Cramer von Mises two sample test to test the hypothesis that each sample is 

drawn from the same underlying population. The test is employed both pairwise and comparing 

each sample against the pooled sample. The test results, reported in Table 6, do not reject the null 

hypothesis that all of the samples are drawn from an identical underlying population. 

Under the alternative hypothesis of systemic risk, 𝑏̂2(MES) is expected to produce a larger 

negative number compared to 𝑏̂1(MES), and since 𝜎̂𝑖 is positive, systemic risk should generate a 

test statistic with a large positive value. As in the ∆CoVaR case, expression (18) still depends on 

the correlation between the stock and the reference portfolio and so we condition for the 

correlation parameter estimate when we estimate the critical values of the test statistic’s small 

sample distribution.
20

  

4. Small Sample Critical Values for the 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆  Test Statistics 

We calculate the small sample critical values for the 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆  test statistics under the 

null hypothesis of no systemic risk using Monte Carlo simulation.  To account for estimation risk 

in the test static correlation parameter, we use the Fisher z-transformation to randomize the 

correlation coefficient estimate in the Monte Carlo simulations.  

The shape of the sampling distribution for 𝜌̂𝑗𝑀 depends the true correlation parameter, 𝜌𝑗𝑀 , and 

the sample size N.  Fisher (1915, 1921) developed a transformation for 𝜌̂𝑗𝑀, called the 𝜌 to z 

transformation,   

𝑧̂ =
1

2
 𝐿𝑛 [

1+𝜌̂

1−𝜌̂
].                                                             (19) 

For large N, the distribution for 𝑧̂ approaches normality with a variance approximately equal 

to, (𝑁 − 3)−1, which is independent of 𝜌. 

                                                           
20

 In a Monte Carlo analysis of the distribution of the  𝜅𝑀𝐸𝑆 test statistic for alternative Gaussian parameter values, 

we cannot reject the hypothesis that as N increases, the sampling distribution of √𝑁 𝜅𝑀𝐸𝑆 converges to a normal 

distribution with a mean of 0 and a standard deviation approximately equal to 3.92 − 1.96 𝜌̂𝑗𝑀
2 .  In our empirical 

tests, we use critical values from the small sample distribution estimates reported in Table 7.  
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We incorporate the estimation uncertainty associated with the correlation parameter using the 

following algorithm: 

 For each correlation value, 𝜌̂𝑗𝑀.we construct  𝑧̂𝑗𝑀 =
1

2
 𝐿𝑛 [

1+𝜌̂𝑗𝑀

1−𝜌̂𝑗𝑀
].  

 The first Monte Carlo draw for the Fisher z statistic is constructed as 

  𝑧̂𝑗𝑀(1) = 𝑧̂𝑗𝑀 + 𝑒1√
1

𝑁−3
 where 𝑒1 is a random draw from a standard normal distribution. 

 We invert the Fisher z-statistic transformation to construct the correlation parameter used 

in the first Monte Carlo replication,  𝜌̂𝑗𝑀(1) =
𝑒𝑥𝑝(2∙ 𝑧̂𝑗𝑀(1) )−1

𝑒𝑥𝑝(2∙ 𝑧̂𝑗𝑀(1) )+1
  

 The randomization process for the correlation parameter is repeated with new random 

draws, 𝑒𝑖, for each of the remaining Monte Carlo Replications i=2,3,…,50,000. 

 

Table 7 reports the small sample distribution estimates for the 1, 5 and 10 percent critical values 

for the 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆  test statistics for 12 different portfolio-stock return correlation 

assumptions between -0.2 and 0.9.
21

 The critical values are calculated for a sample size of 500 

observations.
 22

 We focus on 500 trading days, a two-year estimation window using daily returns, 

because the characteristics of institutions, especially large financial institutions, change very 

quickly over time as mergers and acquisitions change both their size and their business activities. 

The critical value statistics we report in Table 7 are based on 50,000 Monte Carlo replications. 

VI. Systemic Risk Test Application to 2006-2007 Stock Returns Data  

 

We use daily CRSP stock return data from the period 2006-2007 to calculate 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆   

and compare individual test statistics to Monte Carlo critical value estimates calculated for 

𝜌̂𝑗𝑀 correlation estimates measured to two decimal places. Table 8 summarizes 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆 

hypothesis test results.  Evaluated at the 5 percent level of the test, the 𝜅𝐶𝑜𝑉𝑎𝑅 test identifies 496 

of 3518 firms as systemically important, or 14 percent of all sample firms.  Ranked by industry, 

the mining industry has the largest share of firms identified as systemically important (36.4 

percent), followed by “other financial” (25.7 percent) and wholesale trade (22.1 percent).  

                                                           
21

 We calculated critical test values for correlation values between -0.2 and 0.9 in increments of 0.01 to use in our 

empirical tests. However we only report the critical values for 12 correlation setting. 
22

 We use the quantile regression package QUANTREG in R written by Roger Koenker. 
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Among the remaining financial services industries, broker dealers have the largest share of firms 

identified as systemically important (14.5 percent), followed by insurance (13 percent) and 

depository institutions (9.4 percent). 

The 𝜅𝑀𝐸𝑆 test identifies a much larger number of firms as systemically important.  At the 5 

percent level, the MES test identifies 979 firms as potential sources of systemic risk, or 28 

percent of the firms in the sample. Among specific industries, public administration has the 

largest share of firms with systemic risk potential (54.5 percent), followed by broker dealers 

(49.1 percent), and transportation, communications and utilities (46.9 percent).  Among the 

remaining financial services industries, insurance had the largest share of firms identified as 

systemically risky (43.5 percent), followed by depository institutions (37.7 percent) and other 

financial (28.4 percent). 

These hypothesis tests identify many more firms as sources of systemic compared to previous 

papers that examined only a small subset of financial institutions. And, unlike prior papers, 

because we examine all firms with actively traded equity, we identify many real-side firms as 

systemically important. If systemic risk is manifested as asymptotic tail dependence in stock 

returns, and if our MES and ΔCoVaR tests reliably identify tail dependence, then a lot of firms 

are sources of systemic risk. But before jumping to conclusions, it is important to assess the 

reliability of these test statistics.  

Our hypothesis test is the test of a joint hypothesis: asymptotic tail independent returns and 

Gaussian distributed returns. Violations of either of these conditions could trigger a test 

rejection.  Since the Gaussian null hypothesis is a restrictive model for stock returns, it is 

important to understand when non-Gaussian stock return characteristics can lead to a test 

rejection even when returns are asymptotically tail independent.  
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VII. Do 𝜿𝑪𝒐𝑽𝒂𝑹 and 𝜿𝑴𝑬𝑺 Rejections Detect Asymptotic Tail Dependence? 

Many distributions can be used to model stock returns, and among these, any distribution that 

exhibits asymptotic left-tail independence is a candidate for use as the null hypothesis in the 

construction of our 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆 test statistics.  In this section, we consider the properties of 

the Gaussian null hypothesis test statistic against a family of alternative distributions nested 

within the bivariate skew-t distribution. Depending on parameter values, the bivariate skew-t-

distribution nests the bivariate skewed Gaussian distribution and the bivariate symmetric 

Student-t and Gaussian distributions.  

Let 𝑑 be the dimension of the multivariate distribution.  Let 𝑦 be a (𝑑 × 1) random vector, 

and  𝛽  and 𝛼  (𝑑 × 1) vectors of constants.  Ω is a (𝑑 × 𝑑) positive definite matrix.  𝜈 ∈

(0, ∞)  be a scalar degrees of freedom parameter. The multivariate skew-t density 

𝑦~𝑓𝑇(𝑦, 𝛽, Ω, 𝛼, 𝜈) is defined in Azzalini (2005): 

𝑓𝑇(𝑦, 𝛽, Ω, 𝛼, 𝜈) = 2𝑡𝑑(𝑦; 𝛽, 𝛺, 𝜈)𝑇1 (𝛼𝑇𝜔−1(𝑦 − 𝛽) (
𝜈+𝑑

𝑄𝑦+𝜈
)

0.5

; 𝜈 + 𝑑)                      (20) 

where,                             𝑡𝑑(𝑦; 𝛽, 𝛺, 𝜈) =
𝛤(0.5(𝜈+𝑑))

|𝛺|0.5(𝜋𝜈)𝑑 2⁄ 𝛤(0.5𝜈)(1+𝑄𝑦 𝜈⁄ )
(𝜈+𝑑) 2⁄    

is the density function of a d-dimensional student t random variate with ν degrees of freedom. 

T1(x;ν+d) denotes the scalar t distribution with ν+d degrees of freedom; 𝛽 is the location 

parameter which controls the distribution means; 𝛼 is the parameter which controls the skewness 

of the distribution;
23

 and, Ω is a generalized covariance matrix.
24

   The remaining parameters are, 

𝜔 = 𝑑𝑖𝑎𝑔(𝛺)0.5 and  𝑄𝑦 = (𝑦 − 𝛽)𝑇𝛺−1(𝑦 − 𝛽). 

The skew-t distribution nests the symmetric t-distribution, (𝛼 = 0 ,0 < 𝜈 < ∞), the skewed 

Gaussian distribution, (𝛼 ≠ 0, 𝜈 = ∞), and the symmetric Gaussian distribution, (𝛼 = 0, 𝜈 = ∞).  

The flexibility of the skew-t distribution is ideal for evaluating the behavior of the 𝜅𝐶𝑜𝑉𝑎𝑅 and 

𝜅𝑀𝐸𝑆 test statistics under a number of alternative hypothesis that generate plausible 

representations of stock return data. 

                                                           
23 α is not equal to but monotonically related to skewness. α=0 implies a symmetric non-skewed distribution, 

whereas  α > 0 (α < 0) implies positive (negative) skewness. It is also called the “shape” or the “slant” parameter.  
24

 Ω is equal to the covariance matrix of y only when the skewness and kurtosis are 0 (α=0, ν=∞). 
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Like the Gaussian distribution, the skewed-Gaussian distribution is asymptotically tail 

independent [Bortot (2010)]. Both the skewed and symmetric t-distributions have asymptotic tail 

dependence where the tail dependence depends on the degrees of freedom parameter, the 

generalized correlation parameter, and the skewness parameters.   

The expression for the asymptotic left tail dependence of a bivariate symmetric t distribution is 

given by, 

𝐿𝑠𝑦𝑚 𝑡 = 2𝑇1 (−
√(𝜈+1)(1−𝜌)

√1+𝜌
, 𝜐 + 1)                                            (21) 

where 𝑇1(𝑥, 𝜈) is the distribution function for a univariate t distribution with 𝜈 degrees of 

freedom.  Figure 1 illustrates the relationship between the asymptotic tail dependence in the 

symmetric bivariate t distribution and the distribution’s correlation and degrees of freedom 

parameters.  The higher the bivariate correlation, ρ and smaller the degrees of freedom, ν, the 

stronger is the distribution’s asymptotic tail dependence. More specifically, as  𝜈 → ∞, the t 

distribution converges to the Gaussian distribution.  Figure 1 shows, as  𝜈 → ∞, the distribution 

becomes asymptotically tail independent. 

In most cases, there is no closed-form expression for the asymptotic tail dependence of a 

bivariate skew-t distribution.  In the special case where the skew is identical across the individual 

random variables, 𝛼1 = 𝛼2 = 𝛼 ,  the distribution’s asymptotic tail dependence is given by   

𝐿𝑠𝑘𝑒𝑤−𝑡 = 𝐾(𝛼, 𝜈, 𝜌)  2𝑇1 (−
√(𝜈+1)(1−𝜌)

√1+𝜌
, 𝜐 + 1),                                                 (22) 

where,                       𝐾(𝛼, 𝜈, 𝜌) =
𝑇1(2𝛼√

(𝜈+2)(1+𝜌)

2
;𝜈+2)

𝑇1(
𝛼(1+𝜌)√𝜈+1

√1+𝛼2(1−𝜌2)

; 𝜈+1)

 

Figure 2 illustrates the relationship between strength of the asymptotic tail dependence for the 

skew-t distribution and the degrees of freedom parameter, 𝜈, correlation parameter ρ,  and 

skewness parameters 𝛼1 = 𝛼2 = 𝛼. We observe that negative skewness increases tail 

dependence, but only when degrees of freedom are small, that is when tails of the distribution are 

fat.     
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We estimated the parameters for the bivariate skew-t distribution using maximum likelihood for 

each of the 3518 stocks in our sample paired with the CRSP equally-weighted market return.
25

  

The subscript 𝑗 (𝑀) indicates a parameter estimate that is associated with the individual stock 

return (equally-weighted CRSP portfolio return). The distribution of resulting parameter 

estimates is reported in Table 9, where key parameters of interest are 𝛼𝑗 , 𝛼𝑀, 𝜐, and 𝜌𝑗𝑀. 

Table 9 shows that, for most of the stocks in the sample over the 2006-2007 sample period, 

𝛼̂𝑗 > 0, indicating that most individual stock’s return distributions are positively skewed. This 

finding is consistent with the literature [e.g., Singleton and Wingender (2006), or Carr et al. 

(2002)].    

𝛼𝑀 is the parameter that determines the skewness of the market return distribution. While its 

magnitude varies among the 3518 bivariate maximum likelihood estimations, Table 9 reports 

that in all cases, 𝛼̂𝑀 < 0, indicating that the market return distribution is negatively skewed.
26

  

The finding that the market return distribution is negatively skewed is also consistent with the 

literature [e.g., Fama (1965), Duffee (1995), Carr et al. (2002)), or Adrian and Rosenberg 

(2008)].    

The degrees of freedom parameter, 𝜐, is the most important determinant of the asymptotic tail 

dependence for this bivariate distribution.  The results in Table 9 show that in more than 75 

percent of the sample, 𝜐 < 4.5.  

Our 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆 test statistics are derived under the null hypothesis that stock returns 

Gaussian. The results in Table 9 suggest that the Gaussian null hypothesis is too restrictive in a 

large number of cases as indicated by non-zero skewness parameter estimates and a 

predominance of small values for the estimated degrees of freedom. It is important to understand 

how alternative return distributions affect the sampling distribution of our test statistics.   

                                                           
25

 We used the “sn” package in “R” written by Adelchi Azzalini 
26

 The market skewness parameter is estimated simultaneously with the individual stock’s skewness parameter and 

the single degrees of freedom parameter for the bivariate distribution.  Ideally we would prefer to estimate the entire 

multivariate (3518 dimensions) skew-t distribution simultaneously and thereby get one set of parameters for the 

market portfolio.  However, with only 500 daily observations, the joint return system not be identified unless 

additional structural simplification are imposed to reduce the number of independent parameters that must be 

estimated. 
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In the remainder of this section, we generate simulated stock return data from alternative 

parameterizations of the skew-t distributions and estimate the sampling distribution for our 

hypothesis test statistics using Monte Carlo simulation and kernel density estimation.  For 

alternative parameterizations, we calculate our hypothesis test statistics for 10,000 samples of 

500 observations.  We consider alternative parameterizations of the skew-t distribution that use 

parameter values representative of the underlying distribution of the actual stock returns. 

We first investigate whether 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆 have statistical power against alternative 

hypothesis that include negative asymptotic tail dependence.  Figure 3 plots the sampling 

distribution for the 𝜅𝐶𝑜𝑉𝑎𝑅 test statistic under the Gaussian null hypothesis distribution and two 

symmetric t distributions with degrees of freedom that are characteristic of the estimates 

produced in our cross section of stock returns.   

Across the panels in Figure 3, as 𝜌 increases, the underlying stock return distributions have 

stronger and stronger asymptotic tail dependence.  For most of the distributions, the sampling 

distribution for the 𝜅𝐶𝑜𝑉𝑎𝑅 calculated under the null hypothesis substantially overlaps the 

sampling distributions for 𝜅𝐶𝑜𝑉𝑎𝑅 calculated for returns generated by the alternative hypothesis. 

Moreover, the sampling distributions under the alternative hypothesis have relatively little 

cumulative probability to the right of the 5 percent critical values of the test statistic. These 

relationships indicate that is highly probable that, should the alternative hypothesis be true, the 

calculated test statistics may not reject the null.  In other words, the 𝜅𝐶𝑜𝑉𝑎𝑅 test has lower power 

for detecting asymptotic tail dependence.  This is especially true in the panels for which  𝜌 = 0 

and 𝜌 = .2.  For these panels the asymptotic tail dependence of the alternative t distributions is 

under 30 percent. 

Figure 4 repeats the symmetric t distribution power simulations for the 𝜅𝑀𝐸𝑆  test statistic and the 

results are similar. While the 𝜅𝑀𝐸𝑆 test has slightly better power characteristics compared to 

𝜅𝐶𝑜𝑉𝑎𝑅, it still has poor power unless the returns have strong asymptotic tail dependence.  For 

example, the panel with 𝜌=.7 shows that, even when asymptotic tail dependence is 0.489, the 

power of the 𝜅𝑀𝐸𝑆 test is still only about 50 percent meaning that, if the alternative hypothesis of 

tail dependence is true, the test will not reject the null hypothesis about half the time.   
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Another notable feature evident in these Figures is that, as asymptotic tail dependency increases, 

the variance of 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆 test statistics grow significantly. Hence, almost paradoxically, 

these test statistics become noisier and less efficient when the distribution has greater systemic 

risk. We return to this issue at the end of this section and explain why the test statistics become 

less precise as asymptotic tail dependence becomes stronger.  

Figures 5 and 6 analyze the behavior of the 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆 test statistics under alternative 

return distributions in which market returns are symmetric Gaussian, but individual firm returns 

are positively skewed Gaussian. For these alternatives, returns are asymptotically independent.  

Figures 5 and 6 show that the sampling distributions for 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆 test statistics under 

these alternative hypothesis are very similar to the sampling distribution under the null, and there 

is little risk that positively skewed Gaussian individual returns (with symmetric Gaussian market 

returns) will generate rejections of the null hypothesis. 

Figures 7 and 8 analyze the behavior of the 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆 test statistics under alternative 

return distributions in which market returns are negatively skewed Gaussian, but individual firm 

returns are symmetric Gaussian.  Returns are asymptotically independent. These figures show 

that negatively skewed market returns can cause false rejections of the null hypothesis. This is 

especially true when the individual stocks and the market are highly positively correlated.  The  

𝜅𝐶𝑜𝑉𝑎𝑅 test seems to be more sensitive to these characteristics, but both statistics frequently 

reject the null hypothesis. The null hypothesis should be rejected because returns are not 

Gaussian. However, the rejection is not caused by asymptotic tail dependence, but by return 

skewness. The issue is one of interpretation. Unless the joint nature of the hypothesis test is taken 

into account, these rejections could easily be mistaken as a false indications of systemic risk.   

Figures 9 and 10 analyze the behavior of the 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆 test statistics under alternative 

return distributions in which market returns are negatively skewed Gaussian, and individual firm 

returns are positively-skewed Gaussian.  Negative market skewness with positive individual 

stock skewness is the most common pattern observed in the data. Here again, returns are 

asymptotically independent. The pattern in Figures 9 and 10 is similar.  Mild positive individual 

stock skewness with relatively strong negative market skewness and strong positive return 

correlation is a pattern that is likely to generate rejections of the null hypothesis. This particular 

skewness and correlation pattern is predominant in the 2006-2007 sample data suggesting that 
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the large number of rejections in our sample may owe in part to an overly restrictive null 

hypothesis.  Generalizing the test statistic to incorporate a skewed Gaussian distribution under 

the null would be a step in the right direction, but again the poor ∆CoVaR and MES test power 

characteristics show there may be limited benefits for further hypothesis test refinements.  

Our final two figures speak directly to the power issue.  Figure 11 plots the sampling distribution 

for the nonparametric ∆CoVaR estimator applied to stock returns generated by a Student t 

distribution with varying degrees of freedom. The chart shows that, as the degrees of freedom 

parameter declines and the asymptotic tail dependence in returns increases, the variance of the 

nonparametric ∆CoVaR estimator increases dramatically.  While the nonparametric ∆CoVaR 

estimator remains consistent when applied to asymptotically tail dependent stock return 

distributions, it becomes increasingly noisy as the tail dependence increases. Figure 12 shows 

that the nonparametric MES estimator shares this characteristic.  These results suggest that the 

nonparametric ∆CoVaR and the nonparametric MES estimators are unlikely to provide a basis 

for constructing powerful hypothesis tests for systemic risk (asymptotic tail dependence) in a 

sample size of 500.
 27

  

VIII. Summary and Conclusions 

We contribute to the systemic risk measurement literature by developing formal hypothesis test 

statistics that can be used to detect systemic risk using ∆CoVaR and MES estimates based on 

daily stock return data. Our test statistics are based on the null hypothesis of Gaussian stock 

returns, however our methodology can be generalized other distributions that exhibit asymptotic 

tail independence. We use Monte Carlo simulation to estimate the critical values of the sampling 

distributions of our proposed test statistics and use these critical values to test for evidence of 

systemic risk in a broad cross section of stocks using daily return data over the period 2006-

2007.  

While we are the first to introduce formal hypothesis tests for detecting systemic risk using 

∆CoVaR and MES estimates, our hypothesis tests are composite tests, and they do not provide 

                                                           
27

 A way to mitigate the power issue could be to employ intraday returns in the estimation of systemic risk proxies. 

As a result, the number of return series used in the estimation will increase and the nonparametric estimators can 

become more efficient.. For instance, Zhang, Zhou, Zhu (2009) show that volatility measures based on high-

frequency tick data can better explain the likelihood of tail events, such as default probabilities. A caveat of this 

approach is that trading noise in tick data might adversely bias the systemic risk estimates.  
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an ideal solution to the testing problem. Our hypothesis tests are joint test because they require 

the adoption of a specific return distribution under the null hypothesis. The joint nature of the 

null hypothesis is problematic because there is a wide range of distributions that exhibit 

asymptotic tail independence.  The joint nature of the test complicates the interpretation of test 

rejections. For example, we show that, depending on the return generating process, our tests may 

reject the null hypothesis of no systemic risk when returns are generated by skewed, but tail-

independent distributions. Thus, the choice of a specific return distribution to characterize returns 

under the null hypothesis is a crucial aspect of systemic risk test design. While this finding 

suggests the need for additional research focused on clarifying the null hypothesis used to 

characterize stock return distributions, our findings suggest that ∆CoVaR and MES tests are 

likely to have only weak power, so further efforts to refine this test may provide only limited 

improvements in test performance.  

In particular, our simulation results suggest that nonparametric ∆CoVaR and MES statistics are 

unlikely to detect asymptotic tail dependence unless the tail dependence is strong.  And even 

then, the power of these test statistics is limited by large variation in sampling distribution of 

nonparametric estimators.  If systemic risk is truly manifested as asymptotic left-tail dependence 

in stock returns, our analysis suggests that ∆CoVaR and MES measures may be incapable of 

reliably detecting a firm’s systemic risk potential. 
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Appendix 

A.1  Parametric Estimator for ∆CoVaR when Returns are Gaussian  

In this section, we derive the CoVaR measure for the returns on a market portfolio, 𝑅̃𝑀, 

conditional on a specific stock return, 𝑅̃𝑗 , equal to its 1 percent value at risk.  The market 

portfolio conditional return distribution is given by, 

𝑅̃𝑀| (𝑅̃𝑗 = G−1(. 01,   𝑅̃𝑗)) ~ 𝑁 [𝜇𝑀 + 𝜌
𝜎𝑀

𝜎𝑗
(Φ−1(. 01,   𝑅̃𝑗)  − 𝜇𝑗), (1 − 𝜌𝑗𝑀

2 )𝜎𝑀
2 ] ,              (A1) 

where G−1(. 01,   𝑅̃𝑗) represents the inverse cumulative normal distribution of the unconditional 

return 𝑅̃𝑗 evaluated at the 0.01 cumulative probability.  Using, G−1(. 01, 𝑅̃𝑗) = 𝜇𝑗 − 2.32635 𝜎𝑗, 

the 1 percent CoVaR for the market conditional on 𝑅̃𝑗   equal to its 1 percent VaR is, 

𝐶𝑜𝑉𝑎𝑅 (𝑅̃𝑀| (𝑅̃𝑗 = Φ−1(. 01,   𝑅̃𝑗))) = 𝜇𝑀 − 𝜌𝑗𝑀
𝜎𝑀

𝜎𝑗
(2.32635 𝜎𝑗) − 2.32635 𝜎𝑀√1 − 𝜌𝑗𝑀

2  .      

(A2) 

Similarly, the return distribution for 𝑅̃𝑀, conditional on 𝑅̃𝑗 equal to its median is,  

𝑅̃𝑀| (𝑅̃𝑗 = G−1(. 50,   𝑅̃𝑗)) ~ 𝑁[𝜇𝑀, (1 − 𝜌𝑗𝑀
2 )𝜎𝑀

2 ].                                             (A3) 

Consequently, the CoVaR for the portfolio with  𝑅̃𝑗 evaluated at its median return is, 

𝐶𝑜𝑉𝑎𝑅 (𝑅̃𝑀| (𝑅̃𝑗 = G−1(. 50,   𝑅̃𝑗))) = 𝜇𝑀 − 2.32635𝜎𝑀√1 − 𝜌𝑗𝑀
2  ,                     (A4) 

Subtracting (A4) from (A2) and defining 𝛽𝑗𝑀 =
𝐶𝑜𝑣(𝑅̃𝑗,𝑅̃𝑀)

𝜎𝑀
2 ,  the so-called contribution CoVaR 

measure,  ∆CoVaR is
28

, 

∆𝐶𝑜𝑉𝑎𝑅 (𝑅̃𝑀| (𝑅̃𝑗 = G−1(. 01,   𝑅̃𝑗))) = − 𝛽𝑗𝑀 ∙ 2.32635 
𝜎𝑀

2

𝜎𝑗
                              (A5a) 

= −𝜌𝑗𝑀 ∙ 2.32635𝜎𝑀                                   (A5b)                  

                                                           
28

 Reversing the order of the conditioning variable (i.e., the CoVaR for  𝑅̃𝑗 conditional on 𝑅̃𝑀 equal to its 1 percent 

VaR), it is straight-forward to show that the so-called exposure CoVaR measure is,   

∆𝐶𝑜𝑉𝑎𝑅 (𝑅̃𝑖| (𝑅̃𝑀 = G−1(. 01,   𝑅̃𝑀))) = − 𝛽𝑗𝑀 ∙ 2.32635 𝜎𝑀 
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A.2  Parametric MES Estimator for Gaussian Returns 

The marginal expected shortfall measure is the expected shortfall calculated from a conditional 

return distribution. The conditioning event is the return on a market portfolio, 𝑅̃𝑀, less than or 

equal to its 5 percent VaR value.  

Under the assumption of bivariate normality, the conditional stock return is normally distributed, 

and consequently, 

𝐸(𝑅̃𝑗|𝑅̃𝑀 = 𝑟𝑀) = 𝜇𝑗 − 𝜌
𝜎𝑗

𝜎𝑀
 𝜇𝑀 + 𝜌

𝜎𝑗

𝜎𝑀
𝑟𝑀.                                               (A6) 

Now, if 𝑅̃𝑀 is normally distributed with mean 𝜇𝑀 and standard deviation 𝜎𝑀, then the expected 

value of the market return truncated above the value “b” is, 

𝐸(𝑅̃𝑀|𝑅̃𝑀 < 𝑏) = 𝜇𝑀 − 𝜎𝑀 [
𝜙(

𝑏−𝜇𝑀
𝜎𝑃

)

Φ(
𝑏−𝜇𝑀

𝜎𝑀
)
],                                                                (A7) 

If b is the lower 5 percent tail value, 𝑏 = 𝜇𝑀 − 1.645𝜎𝑀, and the expected shortfall measure is, 

𝐸(𝑅̃𝑗|𝑅̃𝑀 < 𝑉𝑎𝑅(𝑅̃𝑀, 95%)) = 𝜇𝑗 − 𝜌𝜎𝑗 [
𝜙(−1.645)

Φ(−1.645)
]                                           (A8a) 

= 𝜇𝑗 − 2.062839 𝜎𝑀 𝛽𝑗𝑀                                     (A8b) 

where the constant (2.062839) is a consequence of the 5 percent tail conditioning on the market 

return, i.e., 
𝜙(−1.645)

Φ(−1.645)
= 2.062839.  

A.3  Can 𝑏̂2(∆𝐶𝑜𝑉𝑎𝑅) − 𝑏̂1(∆𝐶𝑜𝑉𝑎𝑅) and  𝑏̂2(𝑀𝐸𝑆) − 𝑏̂1(𝑀𝐸𝑆) Detect Systemic Risk? 

We use Monte Carlo simulation to confirm the intuition that the difference between the 

nonparametric and the parametric ΔCoVaR and MES estimators can detect systemic risk.  In 

particular, under the alternative hypothesis that stock returns have asymptotic tail dependence, 

we expect the nonparametric ΔCoVaR and MES estimators to produce larger negative values 

relative to their parametric estimator counterparts.  

Table A1 reports the results of a Monte Carlo exercise in which the sampling distribution of the 

difference in the nonparametric and parametric ∆CoVaR (and MES) estimators is constructed for 

a sample size of 500 for bivariate Gaussian and Student-t return generating processes. While the 
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numerical estimates of the sampling distribution quantiles in Table A1 are specific to the 

population parameter values used in the simulation, the qualitative results generalize. When 

returns are generated by the Student-t distribution, a distribution with asymptotic tail 

dependence, the nonparametric ∆CoVaR and MES estimators remain consistent and tend to 

produce larger negative values compared to their parametric counterparts. As a consequence, the 

quantiles of sampling distribution of the difference between the nonparametric and parametric 

estimators are shifted to the left under alternative hypothesis that include asymptotic tail 

dependence.  

 

 

A.4  Small Sample Properties of the 𝐷𝑊𝐻𝑇∆𝐶𝑜𝑉𝑎𝑅 and 𝐷𝑊𝐻𝑇𝑀𝐸𝑆 Test Statistics 

To better understand the small sample properties of the 𝐷𝑊𝐻𝑇∆𝐶𝑜𝑉𝑎𝑅 and 𝐷𝑊𝐻𝑇𝑀𝐸𝑆 test 

statistics, we performed a Monte Carlo simulation to estimate the distributions of these test 

statistics in a sample size of 500 daily stock returns.  

Our Monte Carlo estimates were constructed as follows.  For both ∆𝐶𝑜𝑉𝑎𝑅  and MES 

simulations, we set the reference portfolios equal to the equally-weighted CRSP market return 

portfolio, 𝑅̃𝑃 = 𝑅̃𝑀.  We draw a set of three bivariate Gaussian parameter values (𝜌𝑗𝑀 , 𝜎𝑀, 𝜎𝑗) 

Monte Carlo 

Sample 

Quantile

∆CoVaR Bivariate 

Gaussian Returns

ΔCoVaR 

Bivariate 

Student t with 2 

Degrees of 

Freedom

MES Bivariate 

Gaussian Returns

MES Bivariate 

Student t with 2 

Degrees of 

Freedom

0.01 -0.173 -1.640 -0.072 -0.337

0.05 -0.125 -1.070 -0.049 -0.221

0.10 -0.097 -0.827 -0.038 -0.179

0.25 -0.051 -0.456 -0.019 -0.117

0.50 -0.001 -0.030 0.002 -0.043

Table A1: The Sampling Distribution of the Difference Between the Nonparameteric 

and Parametric ∆CoVaR and MES Estimators under Gaussian and Alternative 

Student t Return Generating Process 

Monte Carlo Estimates of the sample distributions of the difference between the nonparametric and the 

parametric ΔCoVaR and MES estimators under two alternative return generating provcess: a bivariate Gaussian 

(the null hypothesis) and a bivariate Student-t (an alternative hypothesis with asymptotic tail dependence).  Both 

return generating process have zero mean, return standard deviations of 0.20 for both components, and returns 

correlation of 0.5.  The Monte Carlo quantile estimates are based on a sample size of 500, with 2000 replications 

and the output smoothed using a Gaussian Kernel density estimator.  
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from a set of three possible values that are characteristic of 10 percentile, median, and 90 

percentile values of the parameters observed in the population of stock returns: 𝜌𝑗𝑀 =

{. 17, .42, .58};  𝜎𝑀 = {. 014, .023, .037}; and  𝜎𝑗 = {. 005, .008, .03}. 29
 On each Monte Carlo 

replication, we randomly select one parameter value from each set, where the probability of 

selecting any one of the three possible parameters is 1/3.   

Once the Gaussian parameters are selected, a sample of 500 daily bivariate Gaussian returns is 

simulated and the sample parametric and nonparametric ∆𝐶𝑜𝑉𝑎𝑅 and MES estimators are 

calculated. The 500 simulated returns are then resampled 500 times using the bootstrap technique 

to calculate sample estimates for 𝑉𝑎𝑟 (𝑏̂𝑗(∆𝐶𝑜𝑉𝑎𝑅)) and 𝑉𝑎𝑟 (𝑏̂𝑗(𝑀𝐸𝑆)),  for  𝑗 = 1,2.  The 

𝐷𝑊𝐻𝑇∆𝐶𝑜𝑉𝑎𝑅 and 𝐷𝑊𝐻𝑇𝑀𝐸𝑆 test statistics are calculated.  The process then repeats 25,000 times 

with parameter selection, simulation, estimation, and the bootstrap to generate a Monte Carlo 

sampling distribution for  the 𝐷𝑊𝐻𝑇∆𝐶𝑜𝑉𝑎𝑅 and 𝐷𝑊𝐻𝑇𝑀𝐸𝑆 test statistics.  

 

 

  

                                                           
29

 Percentile distribution for the market volatility is based on a historical distribution between 1990 and 2007. 
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Industry Identifying Information Number of  Firms Mean DCoVaR Mean MES

Broker Dealers SIC 62 55 -0.0321 -0.0102

Construction SIC 15,16,17 41 -0.0345 -0.0095

Depository Institutions SIC 60; NAICS 5221, 551111; FRBNY * 426 -0.0196 -0.0067

Insurance SIC 63,64 138 -0.0206 -0.0075

Manufacturing SIC 20-39 1336 -0.0231 -0.0076

Mining SIC 10-14 151 -0.0272 -0.0100

Other Financial SIC 61,65,67: NAICS 52 74 -0.0267 -0.0087

Public Administration SIC 91-99 11 -0.0085 -0.0033

Retail Trade SIC 52-59 227 -0.0231 -0.0075

Services SIC 70,72,73,75,76,78,79,80-89 626 -0.0213 -0.0070

Transportation, Communications SIC 40-49 320 -0.0211 -0.0086

Wholesale Trade SIC 50-51 113 -0.0234 -0.0084

Table 1: Sample Characteristics by Industrial Classification

∆CoVaR is estimated as the difference between two linear quantile regressions estimates of the market portfolio return on individual stock returns: the 

1 percent quantile estimate less the 50 percent quantile estimate. The reference portfolio is the CRSP equally-weighted market index. Quantile 

regressions are estimated using the R package Quantreg.  MES is estimated as the average of individual stock returns on sample subset of days that 

correspond with the 5 percent worst days of the equally-weighted CRSP stock market index. SIC is the standard industrical classification.  NAICS is the 

North American Industry Classicification System.

*Depository institutions are identified using the Bank Holding Company (BHC) dataset prepared by the Federal Reserve Bank of New York (FRBNY,  

March 18, 2008). http://www.newyorkfed.org/research/banking_research/datasets.html.  We supplement this definition adding institutions that either 

have a 2-digit SIC of “60”, or have a 4-digit NAICS of “5221” or a 6-digit NAICS or “551111” in the depository definition.
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Rank Company Name
Median Market 

Capitalization ($thous)
Industry CoVaR

1 PROQUEST CO 370,338 Manufacturing -0.0400

2 TETRA TECHNOLOGIES INC 1,739,641 Manufacturing -0.0246

3 NEWSTAR FINANCIAL INC 516,271 Other Financial -0.0245

4 IBASIS INC 324,017 Transportation, Communications -0.0226

5 ISILON SYSTEMS INC 852,653 Manufacturing -0.0215

6 NEOWARE SYSTEMS INC 265,074 Manufacturing -0.0207

7 MATTSON TECHNOLOGY INC 493,509 Manufacturing -0.0207

8 TITAN INTERNATIONAL INC ILL 397,960 Manufacturing -0.0203

9 VALERO ENERGY CORP NEW 37,153,498 Manufacturing -0.0200

10 ROBERT HALF INTERNATIONAL INC 6,167,046 Services -0.0200

11 DOVER CORP 9,885,112 Manufacturing -0.0196

12 MURPHY OIL CORP 9,977,096 Manufacturing -0.0194

13 VENOCO INC 814,278 Mining -0.0192

14 CONSTELLATION BRANDS INC 4,953,574 Manufacturing -0.0188

15 CITIZENS FIRST BANCORP INC 203,931 Depository Institutions -0.0187

16 M S C INDUSTRIAL DIRECT INC 2,149,047 Manufacturing -0.0186

17 SMURFIT STONE CONTAINER CORP 2,928,624 Manufacturing -0.0184

18 SOUTHERN COPPER CORP 16,450,064 Mining -0.0180

19 STILLWATER MINING CO 1,095,439 Mining -0.0180

20 A M R CORP DEL 5,753,965 Transportation, Communications -0.0179

21 AMERIPRISE FINANCIAL INC 13,095,030 Broker Dealers -0.0178

22 NASDAQ STOCK MARKET INC 3,617,941 Broker Dealers -0.0178

23 U A L CORP 4,264,734 Transportation, Communications -0.0177

24 PARKER HANNIFIN CORP 9,950,826 Manufacturing -0.0176

25 TECH DATA CORP 2,065,805 Wholesale Trade -0.0176

26 ORMAT TECHNOLOGIES INC 1,368,098 Transportation, Communications -0.0175

27 WESTERN REFINING INC 1,830,752 Manufacturing -0.0175

28 AMERICA SERVICE GROUP INC 152,270 Services -0.0174

29 CIRCOR INTERNATIONAL INC 568,005 Manufacturing -0.0174

30 CATERPILLAR INC 46,739,598 Manufacturing -0.0174

31 RADIO ONE INC 595,811 Transportation, Communications -0.0174

32 CIMAREX ENERGY CO 3,213,883 Mining -0.0173

33 EMPIRE RESOURCES INC DEL 104,041 Wholesale Trade -0.0173

34 CLEVELAND CLIFFS INC 2,149,713 Mining -0.0173

35 R P C INC 1,463,770 Mining -0.0173

36 EVERCORE PARTNERS INC 175,262 Other Financial -0.0172

37 PROCENTURY CORP 194,361 Insurance -0.0172

38 KOMAG INC 1,111,125 Manufacturing -0.0172

39 LEGG MASON INC 12,749,954 Broker Dealers -0.0171

40 PULTE HOMES INC 7,395,542 Construction -0.0171

41 DYNAMEX INC 244,848 Transportation, Communications -0.0170

42 GATEHOUSE MEDIA INC 745,417 Manufacturing -0.0170

43 FREEPORT MCMORAN COPPER & GOLD 11,781,130 Mining -0.0170

44 ROWAN COMPANIES INC 4,092,873 Mining -0.0170

45 MOSAIC COMPANY 9,378,757 Manufacturing -0.0170

46 HOME DIAGNOSTICS INC 198,165 Manufacturing -0.0169

47 OIL STATES INTERNATIONAL INC 1,680,397 Manufacturing -0.0169

48 COOPER CAMERON CORP 6,046,972 Manufacturing -0.0168

49 HANMI FINANCIAL CORP 910,360 Depository Institutions -0.0168

50 MARINE PRODUCTS CORP 358,240 Manufacturing -0.0168

Table 2. Fifty Firms with the Largest DCoVaR Estimates over 2006-2007

∆CoVaR is estimated as the difference between two linear quantile regressions estimates of the market portfolio 

return on individual stock returns: the 1 percent quantile estimate less the 50 percent quantile estimate. The 

reference portfolio is the CRSP equally-weighted market index. Quantile regressions are estimated using the R 

package Quantreg. The median market capitalization is the median value of the closing share price times the number 

of shares outstanding.
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Rank Company Name
Median Market 

Capitalization ($thous)
Industry MES

1 CHINA PRECISION STEEL INC 191,188 Manufacturing -0.0780

2 FREMONT GENERAL CORP 1,083,450 Depository Institutions -0.0771

3 ESCALA GROUP INC 177,063 Services -0.0742

4 ACCREDITED HOME LENDERS HLDG CO 697,385 Other Financial -0.0697

5 URANERZ ENERGY CORP 133,479 Mining -0.0688

6 CRAWFORD & CO 160,407 Insurance -0.0629

7 ORBCOMM INC 360,348 Transportation, Communications -0.0591

8 TRIAD GUARANTY INC 674,462 Insurance -0.0590

9 STANDARD PACIFIC CORP NEW 1,525,954 Construction -0.0589

10 DELTA FINANCIAL CORP 211,543 Other Financial -0.0587

11 W C I COMMUNITIES INC 792,183 Construction -0.0583

12 COMPUCREDIT CORP 1,786,092 Other Financial -0.0582

13 BEAZER HOMES USA INC 1,601,873 Construction -0.0573

14 EMPIRE RESOURCES INC DEL 104,041 Wholesale Trade -0.0570

15 HOUSTON AMERICAN ENERGY CORP 120,614 Mining -0.0566

16 RADIAN GROUP INC 4,673,175 Insurance -0.0557

17 I C O GLOBAL COMMS HLDGS LTD DE 590,548 Transportation, Communi -0.0555

18 E TRADE FINANCIAL CORP 9,718,507 Broker Dealers -0.0552

19 BUCKEYE TECHNOLOGIES INC 451,391 Manufacturing -0.0548

20 BADGER METER INC 383,436 Manufacturing -0.0545

21 CHESAPEAKE CORP VA 280,014 Manufacturing -0.0543

22 AVANEX CORP 376,476 Manufacturing -0.0543

23 BANKUNITED FINANCIAL CORP 945,137 Depository Institutions -0.0538

24 NASTECH PHARMACEUTICAL CO INC 328,747 Services -0.0533

25 IDAHO GENERAL MINES INC 254,642 Mining -0.0533

26 GEORGIA GULF CORP 694,153 Manufacturing -0.0524

27 WINN DIXIE STORES INC 1,001,750 Retail Trade -0.0523

28 PANACOS PHARMACEUTICALS INC 241,728 Manufacturing -0.0520

29 CROCS INC 1,864,861 Manufacturing -0.0517

30 GRUBB & ELLIS CO 266,193 Other Financial -0.0514

31 K B W INC 877,814 Broker Dealers -0.0513

32 FRANKLIN BANK CORP 425,906 Depository Institutions -0.0511

33 ASIAINFO HOLDINGS INC 289,401 Services -0.0508

34 FIRST AVENUE NETWORKS INC 613,862 Transportation, Communications -0.0508

35 WHEELING PITTSBURGH CORP 293,215 Manufacturing -0.0505

36 STILLWATER MINING CO 1,095,439 Mining -0.0504

37 TOREADOR RESOURCES CORP 353,326 Mining -0.0500

38 COUNTRYWIDE FINANCIAL CORP 21,663,474 Depository Institutions -0.0497

39 CHAMPION ENTERPRISES INC 781,824 Manufacturing -0.0495

40 REVLON INC 554,749 Manufacturing -0.0494

41 TIENS BIOTECH GROUP USA INC 285,336 Services -0.0493

42 AIRSPAN NETWORKS INC 142,206 Transportation, Communications -0.0492

43 FREEPORT MCMORAN COPPER & GOLD 11,781,130 Mining -0.0490

44 MERITAGE HOMES CORP 1,069,891 Construction -0.0486

45 EDDIE BAUER HOLDINGS INC 273,345 Retail Trade -0.0485

46 A Z Z INC 235,577 Manufacturing -0.0483

47 GRAFTECH INTERNATIONAL LTD 722,492 Manufacturing -0.0483

48 P M I GROUP INC 3,817,586 Insurance -0.0483

49 ASYST TECHNOLOGIES INC 341,391 Manufacturing -0.0480

50 NEUROGEN CORP 213,849 Manufacturing -0.0480

Table 3. Fifty Firms with the Largest MES Estimates over 2006-2007

MES is estimated as the average of individual stock returns on sample subset of days that correspond with the 5 

percent worst days of the equally-weighted CRSP stock market index. The median market capitalization is the 

median value of the closing share price times the number of shares outstanding.
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Type I error 

rate Normal

Small Sample 

DWHT 

ΔCoVaR DWHT MES

0.01 -2.33 -2.36 -2.28

0.05 -1.64 -1.60 -1.58

0.10 -1.28 -1.23 -1.22

Critical Test Statitic Value

Table 4: Monte Carlo Small Sample Distribution Estimates for the 

Critical Values of the DWHT ∆CoVaR and DWHT MES Test 

Statistics 

Monte Carlo estimates of the hypothesis tests critical values are for a sample 

size 500 observations.  Critical values are estimated as follows. For each 

replication, the Gauassian parmeters are choosen with equal probability from 

a set of three representative population values  ρjM={.17,.42,.58}; 

σM={.014,.023,.037}; and  σj={.005,.008,.03}.  The DHWT ∆CoVaR and 

DHWT MES hypothesis test statistics are calulated using bootstrap estimates 

for the nonparametric and parametric estimator variances using 500 

bootstrap samples. The critical value estimates are based on 25 thousand 

Monte Carlo replications. 

test value probability test value probability

0.10 0.061 0.81 0.059 0.82

0.20 0.046 0.90 0.028 0.98

0.30 0.045 0.91 0.035 0.96

0.40 0.000 1.00 0.024 0.99

Table 5: ΔCoVaR Cramer-von Mises Test for Equality of 

Two Distributions

Against                 sample Against pooled sample

The underlying systemic risk test statistic is the difference between the 

nonparameteric and parametric ∆CoVaR estimators scaled by an estimate of 

the market portfolio return standard deviation in a sample size of 500 

observations when the stock and market return portfolio are distriburted 

bivariate Gaussian. The test statistic sampling distribution is simulated using 

5000 replications for each value of the market return standard deviation holding 

all other distribution parameters constant. The Cramer-von Mises test statistic 

tests whether two specific samples are drawn from the same underlying 

distribution (e.g., a market volatility of .10 versus a market volatility of .40) or 

whether the specific samples are drawn from the same distribution that 

generated the pooled sample. The reported probability value indicates the 

probability that the samples are drawn from the same underlying distribution.     
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σj test value probability test value probability

0.10 0.122 0.49 0.074 0.725

0.20 0.072 0.74 0.041 0.926

0.30 0.083 0.67 0.033 0.966

0.40 0.000 1.00 0.059 0.82

The underlying systemic risk test statistic is the difference between the 

nonparameteric and parametric MES estimators scaled by an estimate of the 

individual stock return standard deviation in a sample size of 500 observations 

when the stock and market return portfolio are distriburted bivariate Gaussian. 

The test statistic sampling distribution is simulated using 20000 replications for 

each value of the market return standard deviation holding all other distribution 

parameters constant. The Cramer-von Mises test statitic tests whether two 

specific samples are drawn from the same underlying distribution (e.g., a stock 

volatility of .10 versus a stock volatility of .40) or whether the specific samples 

are drawn from the same distribution that generated the pooled sample.  The  

reported probability value indicates the probability that the samples are drawn 

from the same underlying distribution.     

Table 6: MES Cramer-von Mises Test for Equality of Two 

Distributions

Against σj=.40 sample Against pooled sample

Type I Type I Type I Type I Type I Type I

Correlation error=10% error=5% error=1% error=10% error=5% error=1%

-0.2 47.6 60.7 87.0 21.7 27.8 39.6

-0.1 47.8 62.3 88.5 21.9 28.1 39.8

0.0 47.4 61.3 88.4 21.9 28.2 39.9

0.1 47.1 61.5 88.9 21.7 28.0 39.7

0.2 46.7 60.7 87.2 21.3 27.6 39.2

0.3 44.6 58.1 83.8 20.8 26.9 38.4

0.4 43.0 56.2 81.9 20.1 25.9 37.1

0.5 40.8 53.4 79.8 19.1 24.8 35.3

0.6 38.1 50.2 74.0 18.0 23.3 33.1

0.7 34.4 45.7 68.2 16.4 21.4 30.4

0.8 30.0 40.3 59.5 14.7 19.0 27.0

0.9 23.7 32.1 48.6 12.3 16.0 22.9

Critical Value of DCoVaR Test Statistic KCoVaR Critical Value of MES Test Statistic, KMES

Table 7: Critical Values for κCoVaR and κMES Test Statistics

In each replication, we draw 500 observations drawn randomly from a  bivariate Gaussian distribution with zero mean and 

the indicated correlation and we estimate the κCoVaR and κMES test statistics. The 10%, 5%, and 1% critical values estimates 

are based on 50,000 Monte Carlo replications.    
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Industry
Number of  

Firms

DCoVaR 

Statistically 

Significant at 

1% level

DCoVaR 

Statistically 

Significant at 

5% level

Percentage of 

Firms Sig. at 

5% Level 

under DCoVaR 

Test

MES 

Statistically 

Significant at 

1% level

MES 

Statistically 

Significant 

at 5% level

Percentage of 

Firms Sig. at 

5% Level 

under MES 

Test

Broker Dealers 55 3 8 14.5% 22 27 49.1%

Construction 41 1 4 9.8% 4 11 26.8%

Depository Institutions 426 16 40 9.4% 88 158 37.1%

Insurance 138 5 18 13.0% 36 60 43.5%

Manufacturing 1336 75 159 11.9% 132 326 24.4%

Mining 151 22 55 36.4% 11 28 18.5%

Other Financial 74 9 19 25.7% 13 21 28.4%

Public Administration 11 1 2 18.2% 0 6 54.5%

Retail Trade 227 10 27 11.9% 27 63 27.8%

Services 626 38 80 12.8% 50 129 20.6%

Transportation, Communications 320 21 59 18.4% 80 150 46.9%

Wholesale Trade 113 9 25 22.1% 8 24 21.2%

Table 8: Summary of κCoVaR and κMES Hypothesis Test Results

The κCoVaR statistic  is statistically significant at 1% (5%) level if the sample estimated value exceeds its critical value for a given 

correlation level and Type I error of 1% (5%) reported in Table 7. Similarly, the κMES statistic is statististically significant if the 

sample estimated value exceeds the critical value reported in Table 7 for a given correlation and Type I error level . 

Distribution 

Quantiles
βj βM Ωjj ΩjM ΩMM αj αM ν ρjM

1% -1.050 0.239 0.400 0.002 0.243 -0.304 -1.611 2.306 0.002

5% -0.408 0.332 0.705 0.079 0.311 -0.165 -1.301 2.805 0.100

25% 0.010 0.398 1.501 0.293 0.387 0.062 -1.056 3.426 0.313

50% 0.197 0.435 2.608 0.445 0.426 0.213 -0.925 3.875 0.454

75% 0.389 0.469 4.234 0.601 0.470 0.382 -0.815 4.480 0.549

95% 0.776 0.522 7.767 0.908 0.552 0.698 -0.629 5.737 0.651

99% 1.189 0.574 11.369 1.137 0.663 0.987 -0.468 7.617 0.713

Table 9: Maximum Likelihood Estimates of Bivariate Skew-t Distribution for 3518 firms

This table summarizes the distribution quantiles of the bivariate skew-t parameter estimates for 3518 daily stock and 

market return pairs between January 2006 and December 2007. The parameters are estimated for each firm by 

maximum likelihood using the Adelchi Azzalini's "SN" package in "R". The subscript  j (M ) indicates a parameter 

estimate that is associated with the individual stock return (equally weighted CRSP portfolio return). Parameter ρ jM is 

not estimated but calculated as ρjM= σjM (σjjσMM )
-0.5

. Estimates are for 100 times daily log returns.
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𝐿𝑠𝑦𝑚 𝑡 = 2𝑇1 (−
√(𝜈 + 1)(1 − 𝜌)

√1 + 𝜌
, 𝜐 + 1) 

Figure 1: Symmetric T-Distribution Asymptotic Tail Dependence as a Function of 

Correlation and Degrees of Freedom 

The figure plots the asymptotic tail dependence for various levels of degrees of freedom and correlation for the 

symmetric bivariate t distribution. Asymptotic tail dependence is given by: 
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𝐿𝑠𝑘𝑒𝑤−𝑡 =

𝑇1 (−2𝛼√(𝜈 + 2)(1 + 𝜌)
2

; 𝜈 + 2) ∗ 2𝑇1 (−
√(𝜈 + 1)(1 − 𝜌)

√1 + 𝜌
, 𝜐 + 1)

𝑇1 (
−𝛼(1 + 𝜌)√𝜈 + 1

√1 + 𝛼2(1 − 𝜌2)
;  𝜈 + 1)

 

Figure 2: Magnitude of the Asymptotic Left Tail Dependence in a Skew-t Distribution 

The figure illustrates the relationship between strength of the asymptotic left tail dependence for the skew-t 

distribution and the degrees of freedom parameter, 𝜈, correlation parameter, 𝜌 and skewness parameters, 𝛼1 = 𝛼2 =
𝛼. The distribution’s asymptotic tail dependence, 𝐿𝑠𝑘𝑒𝑤−𝑡 is given by:   

where 𝑇1 represents the cumulative distribution function of univariate student t. 
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Figure 3:  𝜅𝐶𝑜𝑉𝑎𝑅 Power against Symmetric T-Distribution Alternatives 

The figure shows the simulated sampling distributions 𝜅𝐶𝑜𝑉𝑎𝑅  based on a sample size of 500 and 10 thousand Monte Carlo 

replications, and a Gaussian kernel density estimator. The blue distributions are test statistics calculated from the bivariate 

Gaussian distribution (𝛼1 = 𝛼2 = 0, 𝜈 = ∞) using the median parameter values in Table 6 for 𝛽1, 𝛽2, Ω11, Ω22. When 𝜌 varies Ω12  

varies,  Ω12 = 𝜌 ∗ √Ω11Ω22.   The blue vertical lines are the 5 percent critical values of the 𝜅𝐶𝑜𝑉𝑎𝑅  test statistic under the null 

hypothesis.  The red and light green distributions are symmetric t distributions  (𝛼1 = 𝛼2 = 0) with degrees of freedom 𝜈 =

3.6 (𝑙𝑖𝑔ℎ𝑡 𝑔𝑟𝑒𝑒𝑛), 𝜈 = 2.5 (𝑟𝑒𝑑) and median parameter values from Table 6 for the remaining parameters.  “atd” is an 

abbreviation for the asymptotic tail dependence of the t-distribution.  
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Figure 4:  𝜅𝑀𝐸𝑆 Power against Symmetric T-Distribution Alternatives 

The figure shows the simulated sampling distributions for 𝜅𝑀𝐸𝑆 based on a sample size of 500 with 10,000 Monte Carlo 

replications, and a Gaussian kernel density estimator.  The blue distributions are test statistics calculated from the bivariate 

Gaussian distribution (𝛼1 = 𝛼2 = 0, 𝜈 = ∞) using the median parameter values in Table 6 for 𝛽1, 𝛽2, Ω11, Ω22. When 𝜌 

varies Ω12 varies,  Ω12 = 𝜌 ∗ √Ω11Ω22.   The blue vertical lines are the 5 percent critical values of the 𝜅𝑀𝐸𝑆 test statistic 

under the null hypothesis.  The red and light green distributions are symmetric t distributions  (𝛼1 = 𝛼2 = 0) with degrees of 

freedom 𝜈 = 3.6 (𝑙𝑖𝑔ℎ𝑡 𝑔𝑟𝑒𝑒𝑛), 𝜈 = 2.5 (𝑟𝑒𝑑) and median parameter values from Table 6 for the remaining parameters.  

“atd” is an abbreviation for the asymptotic tail dependence of the t-distribution. 
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Figure 5:  𝜅𝐶𝑜𝑉𝑎𝑟 Tests Statistics when Individual Stocks are Positive-Skewed Gaussian 

The figure shows the simulated sampling distributions for 𝜅𝐶𝑜𝑉𝑎𝑅  based on a sample size of 500, with 10,000 Monte Carlo 

replications, and a Gaussian kernel density estimator.  The blue distributions are test statistics calculated from the bivariate Gaussian 

distribution (𝛼1 = 𝛼2 = 0, 𝜈 = ∞) using the median parameter values in Table 6 for 𝛽1, 𝛽2, Ω11, Ω22. When 𝜌 varies Ω12  varies,  

Ω12 = 𝜌 ∗ √Ω11Ω22.   The blue vertical lines are the 5 percent critical values of the 𝜅𝐶𝑜𝑉𝑎𝑅  test statistic under the null hypothesis. The 

red and light green distributions are Gaussian distributions where the market return is symmetric and the individual stock return is 

positively skewed. The light green distribution has mild positive skewness  (𝛼1 = .2 , 𝛼2 = 0, 𝜈 = ∞ ) while the red distribution has 

a stronger positive skew (𝛼1 = .8 , 𝛼2 = 0, 𝜈 = ∞ ).  Remaining parameters are set to median parameter values from Table 6.  All of 

the distributions are asymptotically tail independent. 
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Figure 6:  𝜅𝑀𝐸𝑆 Tests Statistics when Individual Stocks are Positive-Skewed Gaussian 

The figure shows the simulated sampling distributions for 𝜅𝑀𝐸𝑆 based on a sample size of 500 with 10,000 Monte Carlo 

replications, and a Gaussian kernel density estimator.  The blue distributions are test statistics calculated from the bivariate 

Gaussian distribution (𝛼1 = 𝛼2 = 0, 𝜈 = ∞) using the median parameter values in Table 6 for 𝛽1, 𝛽2, Ω11, Ω22. When 𝜌 

varies Ω12  varies,  Ω12 = 𝜌 ∗ √Ω11Ω22.   The blue vertical lines are the 5 percent critical values of the 𝜅𝑀𝐸𝑆 test statistic 

under the null hypothesis.  The red and light green distributions are Gaussian distributions where the market return is 

symmetric and the individual stock return is positively skewed. The light green distribution has mild positive skewness  

(𝛼1 = .2 , 𝛼2 = 0, 𝜈 = ∞ ) while the red distribution has a stronger positive skew (𝛼1 = .8 , 𝛼2 = 0, 𝜈 = ∞ ).  The 

remaining parameters are set to median parameter values from Table 6.  All of the distributions are asymptotically tail 

independent. 
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Figure 7:  𝜅𝐶𝑜𝑉𝑎𝑟 Tests Statistics when Market Returns are Negative-Skewed Gaussian 

The figure shows the simulated sampling distributions for 𝜅𝐶𝑜𝑉𝑎𝑅  based on a sample size of 500 with 10,000 Monte Carlo 

replications, and a Gaussian kernel density estimator.  The blue distributions are test statistics calculated from the bivariate 

Gaussian distribution (𝛼1 = 𝛼2 = 0, 𝜈 = ∞) using the median parameter values in Table 6 for 𝛽1, 𝛽2, Ω11, Ω22. When 𝜌 

varies Ω12  varies,  Ω12 = 𝜌 ∗ √Ω11Ω22.   The blue vertical lines are the 5 percent critical values of the 𝜅𝐶𝑜𝑉𝑎𝑅  test statistic 

under the null hypothesis.  The red and light green distributions are Gaussian distributions where the individual stock return 

is symmetric and the market return is negatively skewed. The light green distribution has mild negative skewness  (𝛼1 =

0, 𝛼2 = −1, 𝜈 = ∞ ) while the red distribution has a stronger negative skew (𝛼1 = 0 , 𝛼2 = −1.6, 𝜈 = ∞ ).  Remaining 

parameters are set to median parameter values from Table 6.  All of the distributions are asymptotically tail independent. 
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Figure 8:  𝜅𝑀𝐸𝑆 Tests Statistics when Market Returns are Negative-Skewed Gaussian 

The figure shows the simulated sampling distributions for 𝜅𝑀𝐸𝑆 based on a sample size of 500, 10,000 Monte Carlo 

replications, and a Gaussian kernel density estimator.  The blue distributions are test statistics calculated from the bivariate 

Gaussian distribution (𝛼1 = 𝛼2 = 0, 𝜈 = ∞) using the median parameter values in Table 6 for 𝛽1, 𝛽2, Ω11, Ω22. When 𝜌 

varies Ω12  varies,  Ω12 = 𝜌 ∗ √Ω11Ω22.   The blue vertical lines are the 5 percent critical values of the 𝜅𝑀𝐸𝑆 test statistic 

under the null hypothesis.  The red and light green distributions are Gaussian distributions where the market return is 

symmetric and the individual stock return is positively skewed. The light green distribution has mild negative skewness  

(𝛼1 = 0 , 𝛼2 = −1, 𝜈 = ∞ ) while the red distribution has a stronger negative skew (𝛼1 = 0 , 𝛼2 = −1.6, 𝜈 = ∞ ).  

Remaining parameters are set to median parameter values from Table 6.  All of the distributions are asymptotically tail 

independent. 
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Figure 9:  𝜅𝐶𝑜𝑉𝑎𝑟  Tests Statistics when Individual Stocks are Positive-Skewed and  

Market Returns are Negative-Skewed Gaussian 

The figure shows the simulated sampling distributions for 𝜅𝐶𝑜𝑉𝑎𝑅  based on a sample size of 500, 10,000 Monte Carlo 

replications, and a Gaussian kernel density estimator.  The blue distributions are test statistics calculated from the bivariate 

Gaussian distribution (𝛼1 = 𝛼2 = 0, 𝜈 = ∞) using the median parameter values in Table 6 for 𝛽1, 𝛽2, Ω11, Ω22. When 𝜌 varies 

Ω12  varies,  Ω12 = 𝜌 ∗ √Ω11Ω22.   The blue vertical lines are the 5 percent critical values of the 𝜅𝐶𝑜𝑉𝑎𝑅  test statistic under the 

null hypothesis.  The red and light green distributions are Gaussian distributions where the market return is negatively skewed 

and the individual stock return is positively skewed. The light green distribution has strong positive skewness  (𝛼1 = .8 , 𝛼2 =

−1, 𝜈 = ∞ ) while the red distribution has a lower positive skew (𝛼1 = .2 , 𝛼2 = −1.6, 𝜈 = ∞ ).  Remaining parameters are set 

to median parameter values from Table 6.  All of the distributions are asymptotically tail independent. 
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Figure 10:  𝜅𝑀𝐸𝑆 Tests Statistics when Individual Stocks are Positive-Skewed and  

Market Returns are Negative-Skewed Gaussian 

This figure plots the simulated sampling distributions for 𝜅𝑀𝐸𝑆 based on a sample size of 500, 10,000 Monte Carlo replications, 

and a Gaussian kernel density estimator.  The blue distributions are test statistics calculated from the bivariate Gaussian 

distribution (𝛼1 = 𝛼2 = 0, 𝜈 = ∞) using the median parameter values in Table 6 for 𝛽1, 𝛽2, Ω11, Ω22. When 𝜌 varies Ω12  varies,  

Ω12 = 𝜌 ∗ √Ω11Ω22.   The blue vertical lines are the 5 percent critical values of the 𝜅𝑀𝐸𝑆  test statistic under the null hypothesis.  

The red and light green distributions are Gaussian distributions where the market return is symmetric and the individual stock 

return is positively skewed. The light green distribution has strong positive skewness  (𝛼1 = .8 , 𝛼2 = −1, 𝜈 = ∞ ) while the red 

distribution has lower positive skew (𝛼1 = .2 , 𝛼2 = −1.6, 𝜈 = ∞ ).  Remaining parameters are set to median parameter values 

from Table 6.  All of the distributions are asymptotically tail independent. 
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The sampling distribution of the nonparmetric ΔCoVaR estimator is estimated for different 

levels of asymptotic tail dependence based on a  Monte Carlo simultaion of 2000 samples of 

size 500 generated from a bivariate t distribution with σM=σj=.20, and ρjM=.50.  A Gaussian 

Kernel density estimator is used to smooth the Monte Carlo estimates. ν indicates the 

Student t degrees of freedom parameter.

Figure 11: The Distribution of the Nonparameteric ∆CoVaR Estimator and 

Asymptotic Tail Dependence
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The sampling distribution of the nonparametric MES estimator for different levels of 

asymptotic tail dependence based on a  Monte Carlo simultaion of 5000 samples of size 

500 generated from a bivariate t distribution with σM=σj=.20, and ρjM=.50.  A Gaussian 

Kernel density estimator is used to smooth the Monte Carlo estimates. ν indicates the 

Student t degrees of freedom parameter.

Figure 12: The Distribution of the Nonparamteric MES Estimator and 

Asymptotic Tail Dependence
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