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The Impact of Driver Cell Phone Use on Accidents 

Robert W. Hahn and James E. Prieger 

 

1. Introduction 

 

Cell phone use is increasing worldwide.1  Strong demand, declining prices, and 

improvements in service quality have led to substantial increases in usage.  In January of 1985, 

there were fewer than 100,000 subscribers in the U.S.  Today there are over 159 million.2  

During that period revenues climbed from under $1 million in 1985 to $88 billion in 2003.3  

Roughly 65% of the U.S. population owns a cell phone and that number can be expected to grow 

as rates continue to decline and services, such as email and Internet access, increase (Gallup 

Organization, 2003).  In fact, the number of cellular phones is estimated to exceed the number of 

traditional, fixed line phones worldwide, and accounts for about 45% of total phone lines in the 

U.S.4   

The increase in cell phone demand has led to concern that cell phone use while driving 

increases accidents.  Risk associated with calling while driving has been widely discussed in the 

media, and has been investigated by governmental agencies (NHTSA, 1997).  Previous studies 

estimate that cell phone use in vehicles may cause anywhere from 10 to 1,000 fatalities per year 

in the U.S. and a great many more non-fatal accidents.5  The regulation of cell phones while 

driving has become a significant policy issue.  The states of New York and New Jersey, dozens 

of municipal governments in the U.S., and many countries worldwide have banned the use of 

hand-held cell phones while driving.  Many other bans are being considered (Lissy et al., 2000; 

Hahn and Dudley, 2002); most proposed legislation would ban the use of hand-held cell phones 

while driving, while allowing the use of phones with hands-free devices.6

                                                           
1 The term “cell phone” is used in this paper for any type of mobile radiotelephone.   
2 Data from December 2003, from the Cellular Telecommunications and Internet Association Web site, at 
http://www.wow-com.com/industry/stats/surveys.   
3 Revenues are in nominal dollars and include the total service revenues from providers of cellular, PCS and ESMR 
services.  See id. 
4 International Telecommunications Union, “Key Global Telecom Indicators for the World Telecommunication 
Service Sector, available at <http://www.itu.int/ITU-D/ict/statistics/at_glance/KeyTelecom99.html>; FCC (2003). 
5  This range represents about 0.02% to 2% of traffic fatalities in the U.S.  See Redelmeier and Weinstein (1999), 
which estimates 730 annual fatalities a year caused by cell phones.  Hahn, Tetlock, and Burnett (2000) calculate a 
range of 10 to 1,000 deaths, with a best estimate of 300 fatalities per year. 
6 “Hands-free” refers to a phone that has a headset, is built into the car, or otherwise does not require the user to hold 
it during operation.   

 

http://www.wow-com.com/industry/stats/surveys
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Economically rational policymaking should weigh the costs and the benefits of a ban.  A 

small literature estimates the costs and benefits of cell phone use while driving (Redelmeier and 

Weinstein, 1999; Hahn, Tetlock, and Burnett, 2000; Cohen and Graham, 2003).  A key 

deficiency in this literature is that not much is known about the relationship between cell phone 

use while driving and accident levels.  Previous statistical work estimates risk of use as a 

multiple of an individual’s unknown baseline accident rate rather than absolute risk of use 

(Redelmeier and Tibshirani, 1997a; Violanti, 1998).  No existing paper uses data and methods 

that allow for a direct computation of the effect of a cell phone ban on the number of accidents.  

Consequently, the cost-benefit analysis literature has relied on out-of-sample assumptions about 

average minutes of use while driving and average accident rates to estimate accidents from 

usage.  If individuals who use cell phones have different baseline accident rates than those who 

do not, however, using average rates to calculate the reduction in accidents from a ban can be 

inaccurate.  We estimate accident rates and the impacts of various amounts of cell phone usage 

for each driver, and use individual-level data on minutes of phone use to directly estimate the 

effect of a cell phone ban on the number of accidents.  

The purpose of this paper is to develop a new approach for estimating the relationship 

between cell phone use while driving and accidents.  We explore data from a new survey of over 

7,000 individuals that provides information on cell phone use and vehicle accidents.  This 

research differs from previous work in two significant ways.  First, our econometric 

methodology is designed to detect and correct for selection bias of two types.  Specifically, we 

hypothesize that drivers who use cell phones while driving may be more likely to get into 

accidents than drivers who do not, even when they are not using the phone (Hypothesis 1).  If so, 

cell phone users are a selected group of riskier drivers.  We also hypothesize that the causal 

impact of usage on accidents may be heterogeneous across drivers, in the sense that the same 

amount of usage increases some drivers’ risk more than others’ (Hypothesis 2).  In this case, a 

sample of drivers who all had accidents, such as Redelmeier and Tibshirani (1997a) and Violanti 

(1998) use, will be composed disproportionately of individuals with large usage effects. 

Our second expansion upon previous studies is that our work is based on a more 

comprehensive sample of drivers.  The sample is larger than other studies using individual-level 

data, and contains both drivers who use a cell phone and drivers who do not.  Under Hypothesis 

1, a sample containing both users and non-users is required to reveal selection effects and 
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determine the causal impact of cell phone usage on accidents.  Furthermore, our sample contains 

drivers who had accidents and drivers who did not.  Under Hypothesis 2, restricting the sample 

to drivers who had accidents may lead to incorrectly high estimates of the causal impact of usage 

on accidents.   

To expand upon these two hypotheses, consider the stylized representation of 

determinants of accident risk in Figures 1 and 2.  The determinants of collision risk begin with 

the type of driver on the left.  Drivers’ types range from very careless drivers to extremely safe 

drivers.  The inherent type of the driver is not completely captured by any set of characteristics 

(age, sex, income, etc.) that the econometrician could observe.  In Figure 1, which depicts 

Hypothesis 1, this unobserved type affects the amount of cell phone usage while driving and 

whether the driver uses a hands-free device.  Usage is also determined by external factors 

influencing demand for calling while driving, such as income and price of usage.  The most 

natural story, which is supported by our analysis, is that more careless people are more likely to 

use the phone while driving, and less likely to use hands-free devices.  Collision risk is 

determined by cell phone usage while driving, external factors such as weather, and the driver’s 

type.  A simple observed correlation between cell phone usage and collisions therefore 

confounds the direct causal effect from usage with the effect of the unobserved type.  If riskier 

drivers are more likely to use cell phones, then simple estimates of the impact on accident rates 

from cell phone usage may be biased upward due to the common factor of the unobserved type 

influencing both usage and accidents. 

Hypothesis 2, that usage risk is heterogeneous, is depicted in Figure 2.  Here the usage 

impact is assumed to vary across individuals due to unobservable factors.  The wide arrow from 

usage to collision risk represents the effect of the driver’s unobserved type on the relationship 

between usage and accident risk.  A natural expectation is that more careless drivers are those for 

whom cell phone usage increases accident risk the most.  This would be true if, for example, 

inherently careless people use a cell phone in a more careless fashion, such as allowing 

themselves to become engrossed in conversation. 

We find support for both hypotheses.  Selection effects due to the endogeneity of cell 

phone usage appear to be present.  The evidence for endogeneity is strongest for the decision to 

use a hands-free device:  individuals who are more likely to use hands-free devices are more 

careful drivers anyway.  Once we correct for the endogeneity of hands-free usage, our models 
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find accident risk from hands-free usage to be the same as from handheld usage, which calls into 

question bans on hand-held usage such as the ones passed in New York and New Jersey.  We 

also find support for Hypothesis 2, that usage impacts are heterogeneous in the population even 

after controlling for observable driver characteristics, particularly for female drivers.  This 

second result implies that previous studies of cell phone usage and accident risk are subject to 

selection bias; we calculate that the causal impact of usage on risk for the population may be 

27% lower than previous estimates.   

Finally, we explore the impact of a ban on all kinds of cell phone use while driving.  We 

cannot reject the hypothesis that a ban would have no effect on the number of accidents, even if 

compliance with the ban were 100%.  Our estimates of the reduction in accidents from a ban on 

cell phone use while driving are both lower and less certain than some previous studies indicate.  

The plan of the paper is as follows.  The next section reviews the literature on the effect 

of cell phone use on driving.  In section III we describe our survey data.  We report the results of 

our statistical work in section IV, consider the effects of a ban in section V, and conclude in 

section VI. 

 

2. Literature Review 

 

There are four strands to the literature on the effects of cell phone use on driving.  Several 

studies attempt to find a statistical association between cell phone use and accidents using 

individual-level data (Violanti and Marshall,1996; Redelmeier and Tibshirani, 1997a; Violanti, 

1998; Dreyer, Loughlin, and Rothman, 1999).  The other strands are simulator or on-road 

controlled experimental studies, analysis of automobile crash data from police reports, and 

analysis of aggregate crash and cell phone statistics.7  Hahn and Dudley (2002) review and 

critique this literature, and find that while each approach has its shortcomings, there is 

widespread agreement that using a cell phone while driving increases the risk of an accident.  

Most germane to our study, and the most influential among policy makers, is the case-crossover 

study by Redelmeier and Tibshirani (1997a) (hereafter, RT).  Case-crossover methods (Maclure, 

1991; Marshall and Jackson, 1993) are used in the medical literature to study the determinants of 

rare events—accidents, in RT’s case.  RT collect a sample of Toronto-area drivers who own cell 

                                                           
7 See Lissy et al. (2000) for citations. 
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phones and had recent minor traffic accidents .  They examine cell phone records to determine if 

the driver was using the phone at the time of the crash and during a reference period at the same 

time the previous day.  The case-crossover method relies on the observation that if cell phone 

usage increases accident risk, then the driver is more likely to be on the phone at the time of the 

crash than during the earlier reference period.  By comparing the individual’s behavior across 

time, each person serves as his own control.  RT’s case-crossover methodology yields fixed-

effects estimates that approximate the relative risk of phone usage on accidents.8  RT conclude 

that a driver is 4.3 times as likely to have a collision while using a phone as when not using a 

phone, with a 95% confidence interval of (3.0, 6.5).  

Although there are a few other epidemiological studies on cell phones and accidents 

(Tibshirani and Redelmeier, 1997; Violanti, 1998), RT’s results are widely quoted in the media 

and continue to be the most highly cited in policy discussions about banning phone usage while 

driving.  RT were careful not to assert causality,9 but others have used RT’s results to perform 

cost-benefit analyses of hypothetical cell phone bans, thereby ascribing a causal interpretation to 

RT’s results (Redelmeier and Weinstein, 1999; Cohen and Graham, 2003).  The case-crossover 

methodology is not without weaknesses, however (Redelmeier and Tibshirani, 1997b; Hahn and 

Dudley, 2002).  While it avoids bias due to bad controls (in the sense that an individual is the 

best control for himself), it does not avoid bias due to selection of the cases.  In particular, since 

the method uses only cell phone users, all of whom had accidents, the representativeness of the 

sample is open to question, if either of our hypotheses discussed above are true.  If the sample is 

not representative, then extrapolating RT’s results to the population is incorrect.  We explore 

how representative the drivers who had accidents in our data are compared to our full sample, 

and find that their accident rates increase much more from cell phone usage than do the rest of 

our sample.  

As discussed in the introduction, a further weakness of existing cost-benefit analyses is 

that the epidemiological studies upon which they are based (Violanti and Marshall, 1996; 

Redelmeier and Tibshirani, 1997a; Violanti, 1998) estimate relative risk, the risk multiple on 

baseline crash risk from cell phone usage.  Unlike our study, they do not estimate individual-

                                                           
8 While it is not clear from RT that case-crossover analysis is maximum likelihood, the connection is made explicit 
in Tibshirani and Redelmeier (1997).   
9 For example, RT note that emotional stress may lead to both increased cell phone use and decreased driving 
ability, leading to spurious correlation.  
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specific baseline accident rates and cannot directly estimate the effect of a cell phone ban 

without using out-of-sample information. 

 

3. Description of the Survey Data 

 

Survey Design 

We commissioned a survey to gather individual-level data on cell phone usage and 

driving patterns.  The survey was administered over the Internet in January and early February 

2003.10  Internet-based surveying has advantages over telephone surveying, particularly for 

sensitive questions (Chang and Krosnick, 2003).  Although Internet survey samples are not 

random, because participants self-select into the panels, survey research indicates that Internet 

surveys are better at eliciting socially undesirable answers (such as admitting cell phone use 

while driving) from respondents than are telephone surveys.11  Our largest usable sample consists 

of 7,327 individuals.12  We explore the degree to which our final survey panel is representative 

of the general public below. 

The survey design is retrospective:  we ask individuals to provide data on driving 

accidents and cell phone usage over calendar years 2001 and 2002.  From the survey responses 

we create a panel data set with quarterly observations on individuals.  Of the up to eight quarters 

of data collected per individual, we use the four quarters from October 2001 to September 2002 

in most of our estimations.  Data in these quarters are available for 7,268 individuals, yielding 

26,572 observations (an average of 3.7 quarters per individual).13  This subset avoids using the 

                                                           
10 The survey administrator, NFO Worldgroup, recruits individuals on their web site by offering “reward points” that 
can be redeemed for cash and prizes, sweepstakes, and the claim that “Your opinions shape new products!”  The 
survey project management was done by Allison-Fisher International (AFI), which protects the confidentiality of 
respondents. AFI does not release personally identifying information of respondents, and household location is 
known only at the five digit ZIP code level.  
11 See Chang and Krosnick (2003), who also cite many other studies showing that eliminating interaction with an 
interviewer increases willingness to report behavior that is not “respectable”.   In addition, Chang and Krosnick 
(2003) also find that Internet survey participants’ responses contained fewer errors than their telephone counterparts, 
and offered two explanations for these differences in addition to the “social compliance” phenomenon noted above.  
First, unlike telephone surveys, Internet surveys have no time pressure because they are self-paced.  Second, limited 
short-term memory leads telephone respondents to disproportionately choose the last response offered.  The only 
two other studies we found that directly compare survey modes (Best et al., 2001; Berrens et al., 2003) found that 
the Internet mode produced data of comparable quality to the telephone mode. 
12 Our survey was sent to 48,110 households, of which 20,287 responded (a 42% response rate).  The final sample 
size is smaller due to screening and survey non-completion. 
13 A quarter is missing for an individual if they did not drive a 1999 or newer model year vehicle that quarter. 
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earliest quarters, for which recall bias may be worst, and the last quarter, for which overcounting 

of accidents may be present.14

Given the potentially sensitive nature of questions concerning phone use while driving, 

we designed the survey with an eye toward eliciting candid responses.  The respondents 

answered whether they had an accident in the past two years at the beginning of the survey in a 

way that gave them no reason to believe the survey was about cell phones or accidents.15  

Questions about cell phone usage while driving were asked before collecting specific 

information about accidents for those who had them.  To increase the likelihood of truthful 

reporting, we did not give those who said they had an accident an option to reverse their answer 

after answering the cell phone questions.  

The variable for intensity of cell phone usage is taken from the question “how many 

minutes of use did you typically talk on the phone while driving”, where the categories are none, 

0-15 minutes per week, 2-20 minutes per day, 20-60 minutes per day, or more than one hour per 

day.16  This question is asked separately for each year, but the usage variable can also vary 

quarter to quarter if the driver began or stopped using a cell phone during the year.17  Much of 

the variation in this variable is across individuals, however:  the “between” standard deviation 

for the 0-15 minutes per week indicator variable is 2.8 times the “within” standard deviation, for 

example.  The other usage variable of interest is whether the driver uses a hands-free device. 

Other variables collected in the survey include the vehicle driven each quarter, driving 

patterns, annual miles driven, duration of typical commute, and whether most driving is rural vs. 

urban and freeway vs. surface street.  We use these to control for other factors that can affect 

accident rates.  For each accident reported in the two year period, we collect the quarter of 

occurrence and characteristics of the accident (property damage in excess of $500, injury 

accident, etc.).  We also have demographic information for the drivers and their households, 

                                                           
14 Respondents were asked if they had any accidents “in the last two years”.  Given that the survey was administered 
in January and early February 2003, a person with an accident in January 2003 would have answered “yes” but later 
in the survey would have been asked to place the accident in one of the quarters of 2001 and 2002.  Q4 2002 would 
have been the closest option.   
15 We asked the respondents if they had had 12 unrelated “life experiences” (including “get into an automobile 
accident in which you were the driver,” “get married,” and “purchase or upgrade a home computer”) in the past two 
years.   
16 We also asked about the typical number of calls made or received; this variable is highly correlated with the 
minutes of use variable (ρ = 0.84). 
17 Because we know each quarter that the driver had a cell phone, usage while driving in quarters the driver did not 
have a phone is set to “none”.  The frequency of observation of the variables is in Table 1. 
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including most variables one would find in Census data.  We also collected additional data from 

other sources, such as vehicle characteristics and quarter-specific local meteorological variables 

(counts of days with rainfall, snowfall, and temperatures below freezing, and average hours of 

light in the quarter) based on the ZIP code of the household.  We use these additional variables to 

control for differences in vehicle safety and for driving conditions that varied over time or 

location.18

 

Representativeness of the Survey Sample 

In this section we explore how representative our sample is of the general population, in 

terms of demographics, cell phone usage, and vehicular accidents.  Summary statistics for the 

four quarter estimation sample are presented in Table 1.  Given that our survey respondents pass 

through several levels of screening to make it into the estimation sample (e.g., they all drive late-

model vehicles and are Internet users), we explore the representativeness of our sample through 

several means.  First, note that about 68% of adults in the U.S. used the Internet at the time our 

survey was administered.19  In Table 2 we compare the demographic characteristics of our 

estimation sample with the general population, the Internet-using population, and the survey 

respondent sample before screening on vehicle driven or survey completion.  Our sample is 

representative of the age and regional distribution of the population.  However, Internet users, 

and our sample even more so, tend to be from higher population areas and have higher incomes 

than average.  Finally, our sample contains a disproportionate number of females:  two-thirds of 

the respondents in our sample are female.20  A subsample of responses from a gender-balanced 

panel is available,21 which we explore below, but our main estimation strategy is to use the full 

unbalanced sample and to control for gender by interacting it with the main variables of interest 

or using single-gender samples.  We also calculated survey weights (see Appendix) for use in the 

counterfactual exercises in Section VI. 

                                                           
18 Details on the weather variables and geocoding are in Appendix B.7. (Appendix B is available upon request). 
19 Three polls conducted in the first quarter of 2003 report Internet usage at 67% (Pew Research Center (2003a) or 
68% (Council for Excellence in Government, 2003; CBS News, 2003) of adults in the U.S.   
20 Due to an error by the survey administrator, the survey offer was sent to a panel that was balanced with respect to 
general Internet users’ demographics along many dimensions, but not on gender.  The panel was balanced on age, 
Census division, household income and size, and market size.  
21 The survey administrator combined a subset of the first survey panel with an additional panel of male respondents 
that were contacted in a second survey round to create an a priori gender-balanced panel, from which 1,491 men and 
1,750 women responded.   
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There are no official statistics on cell phone usage while driving.  We instead compare 

our survey results with other recent surveys on cell phone usage (Table 3).  Of our respondents, 

84% have a cell phone and 73% use a cell phone while driving at least occasionally.  When the 

survey weights are used to adjust these figures, our estimates of cell phone ownership and use 

while driving are 78% and 64%, respectively.  Our estimates of phone use while driving are on 

the high end of the range found in other surveys in Table 3, which is 30% to 59%.  Table 3 also 

reports the few external estimates of hands-free device usage that we found and compares them 

with our figures.  We find that 28% of drivers and 44% of those who use a cell phone while 

driving use a hands-free device of some sort at least sometimes with their phone while driving.  

These figures are also higher than the external estimates.  Our estimates of phone use while 

driving may be higher than other estimates because our question was very broad:  a driver is 

categorized as a cell phone user if they answer anything other than “never” to the usage while 

driving question.  Some of the other surveys lumped “rarely or never” responses together as non-

users.  Furthermore, given the evidence mentioned above that Internet surveys can elicit more 

candid answers than telephone surveys, our estimates may be higher than the others because 

respondents feel uncomfortable admitting usage while driving to a live questioner over the 

telephone.   

The accident rates in our sample (5.4% per year; 6.3% per year using survey weights) are 

comparable to those of the general driving public in the U.S.; there is thus no evidence of 

underreporting of accidents.22  The accident rates differ significantly according to whether the 

driver has a cell phone and whether he or she uses it while driving (see Table 4).23   In our data, 

those who use the phone while driving have the highest accident rate (5.9% raw, 7.1% 

weighted).  An intriguing finding is that those who have a cell phone but do not use it while 

driving have a lower accident rate (3.7%) in the raw data than those who do not have a cell 

phone at all (4.4%).  This provides some evidence against dishonest reporting of phone usage 

while driving.  If respondents who reported having an accident falsely claimed they did not use a 

cell phone while driving later in the survey,  then we would expect the accident rate for drivers 

who claim not to use their phone to be higher than average, not lower.   
                                                           
22 The most comprehensive collision data are from the National Highway Traffic Safety Administration (NHTSA), 
which calculates the collision rate for drivers in non-fatal accidents to have been 5.7% per year in 2002.  NHTSA 
data are meant to be comprehensive (NHTSA, 2004, table 63), but because some accidents are not reported are an 
undercount.   
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Table 4 also shows that drivers who use the phone more while driving have higher 

accident rates (except for the highest category of use).  Accident rates also differ by amount of 

hands-free device usage (accident rates are lower if hands-free devices are always used instead of 

just sometimes used) and gender (men have more accidents).   These accident rates do not 

control for other factors.   For example, drivers who use hands-free devices have higher accident 

rates than those who do not, but this is probably because the latter group drives less.  Without 

controlling for miles traveled (and other factors) we cannot isolate the impact of hands-free 

device usage.  The model-based estimations in the next section are designed to control for other 

factors and to test the hypotheses of selection effects and heterogeneous impacts of cell phone 

use. 

 

4. Estimations

 

The Model 

The estimations we perform are based on various special cases and extensions of an 

econometric model for panel data on accidents, cell phone usage, and vehicle safety 

characteristics.  Let i = 1, …, N  index individuals and t = 1, …, T  index periods.  Denote the 

number of collisions in period t for individual i as y1it , the amount of cell phone usage as y2it , 

and a safety characteristic of the individual’s primary vehicle as y3it .  We model y1it as a count 

variable, y2it as a vector of binary indicator variables representing an ordered discrete variable, 

and y3it as either a vector of indicator variables or a scalar continuous variable, depending on the 

specification.  Conditional on covariates (xit, y2it, y3it) and a random effect vit, the number of 

accidents, y1it, follows the Poisson distribution with mean 

 

 E(y1it|xit, y2it , y3it, vit) = s exp(β 'xit + γ'y2it + δ 'y3it)vit  (1) 

 

 vit = exp(αi + εit) (2) 

 

  

                                                                                                                                                                                           
23 Pearson’s chi-square equality-of-proportions test has a two-sided p-value of 0.012.   
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where s is 0.25, the period length in years,24 xit is a vector of exogenous variables, and vit is an 

unobserved multiplicative effect composed of an individual-specific effect αi and an i.i.d. shock 

εit.  The mixing term vit induces heterogeneity into the mean accident rate even for individuals 

who are observably similar.  We assume αi is independent of εit but (unlike in typical random 

effect models) may be correlated with y2it and y3it; in other words, cell phone usage and vehicle 

safety may be endogenous.  Depending on the specification, y2it represents either average cell 

phone usage minutes while driving (none, low usage [0-15 minutes per week], medium usage [2-

20 minutes per day], high usage [20-60 minutes per day], or very high usage [more than one hour 

per day]), or usage of a hands-free device while driving (never, sometimes, all the time).  Thus, 

γ, the coefficient on the cell phone usage variable, is of primary interest.  The vehicle variable y3it 

is a characteristic affecting safety, such as the category of the vehicle (minivan, SUV, luxury car, 

etc.) or a continuous measure such as vehicle weight.  Below, we also consider a random 

coefficient version of (1) in which the cell phone coefficient vector γ  varies across individuals.   

Given the multiplicative specification in (1), coefficients are easiest to interpret when 

exponentiated, which yields the “incident rate ratio” (IRR) for the variable.  For example, if the 

driver is female, she has exp(βFemale) times as many expected accidents as does a male driver.  

Thus, variables that are correlated with higher accident rates have IRR’s greater than one.   

 

Reduced Form Estimations 

Our first estimation is of a reduced form (RF) model.  The RF model is Poisson 

regression performed on the pooled data, which is equivalent to maximum likelihood estimation 

(MLE) of (1) assuming that y1it in (1) follows a Poisson distribution and that vit = 1 (i.e., that 

there is no individual-specific effect αi or heterogeneity term εit in the mean accident rate).  As is 

typical with pooled estimators of this sort, if either αi or εit is present, or if there is correlation of 

any other kind among an individual’s observations, then RF still yields consistent estimates of 

                                                           
24 It is common in vehicle accident studies to perform all analysis on the accident rate per vehicle mile traveled 
(VMT).  In terms of equation (1), this would mean replacing time with VMT as our measure of risk exposure.  
Using VMT as the exposure measure is equivalent to including log VMT as an explanatory variable in equation (1) 
and restricting the coefficient to one.  Given that individuals may not be able to accurately report their VMT, we 
instead include it (measured for the quarter as reported annual VMT divided by four) as an explanatory variable but 
leave its coefficient unrestricted.  The 1995 Nationwide Personal Transportation Survey performed by the Federal 
Highway Administration found that the correlation between self-reported and odometer-measured vehicular mileage 
was 0.11. Our own exploration of the NPTS data (see Appendix B.6) confirms that drivers make systematic errors 
when self-reporting mileage. 
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the coefficients in model (1)-(2) (as long as y2it or y3it are not endogenous) but is no longer 

MLE.25  The RF model does not yield consistent estimates if y2it or y3it is correlated with the 

individual-specific effect αi.  In this section, therefore, we assume that cell phone usage and 

vehicle choice are exogenous—an assumption we explore and reject in the next section.  Despite 

the suspect assumption of exogeneity, the RF estimations in this section reveal correlations in the 

data and provide a useful baseline for more general models that correct for endogeneity.   

In the first specification, RF1 in Table 5, we include only the cell phone usage and hands-

free variables (along with a full set of quarter and state dummy variables included in all 

regressions).  The cell phone usage dummy variables are coded (here and in all subsequent 

models) so that the coefficient of a usage category represents the incremental risk over having a 

cell phone but not using it while driving.  Thus if cell phone usage is not correlated with accident 

rates, the IRRs for all the usage categories would be 1.0.  The estimated usage IRRs are in fact 

all greater than one.  The effects are significant, and the associated increase in accident risk is 1.5 

times to 2.8 times, rising with the amount of usage.26  The IRR for not having a phone at all is 

(insignificantly) higher than one, reflecting the same pattern shown in Table 4.  The average risk 

multiplier in the sample, conditional on cell phone usage (weighted by fraction of drivers in each 

phone and hands-free device usage category), is 1.7.  This risk multiplier cannot be compared 

directly to RT’s risk multiple of 4.3; we defer comparing the magnitude of our results with RT’s 

until section V.27  The IRR for always using a hands-free device is 0.73, implying use is 

associated with 27% reduction in accident risk. 

Given the gender imbalance in our main survey sample, we are interested in exploring 

differences in the cell phone effects between men and women.  In Table 6, we present the results 

from four estimations that allow the cell phone effects to differ by gender.  The first, RF2, is the 

same as RF1 except for the gender-specific cell phone coefficients.  Although the weighted 

average IRR for cell phone users, 1.6, is about the same as in RF1, splitting the IRRs by gender 

                                                           
25 In this case the RF estimation is pseudo maximum likelihood (see section 3.2.3 of Cameron and Trivedi (1998)).  
We report standard errors robust to the presence of εit and αi. 
26 The coefficient for CellMinsVHi is slightly lower than that for CellMinsHi, but the difference is not statistically 
significant (p-value = 0.27). 
27 Our IRRs are incomparable to RT’s figure for two reasons.  First, RT examine minor accidents only (i.e., property 
damage).  Second, our risk multiplier implies that an individual who uses a cell phone while driving has an average 
of 1.7 times as many accidents during a quarter as he would if he did not use his phone while driving; in RT’s case 
the risk multiplier implies that the instantaneous accident risk for the individual is 4.3 times as high when using a 
cell phone as when not.   
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reveals that the women’s cell phone effects in RF2 are significantly higher than the men’s.28  The 

men’s effects are generally statistically insignificant, perhaps due to the relatively smaller 

number of men in the sample.  RT also found that cell phone usage by women appears to be 

riskier than usage by men.29  Similarly, the only hands-free device IRR that is significant is for 

the women. 

There are additional factors that may influence accident risk.  If these factors are not 

accounted for, the cell phone usage coefficients may be biased.  For example, a driver may feel 

invulnerable when driving a large vehicle and be more likely to engage in distracting behaviors 

like using the phone.  If large vehicles have higher accident rates than other cars, then not 

controlling for vehicle choice could result in spuriously high cell phone usage coefficients.  We 

include several covariates such as weather and driving variables in specification RF3.  Because 

the vehicle safety variable, y3 (a vector of indicators for vehicle type:  SUV, minivan, etc.), is not 

available for 5% of the sample we include it in a separate estimation, RF4.  In RF3, the 

magnitudes of the cell phone effects are smaller than in RF2 and only the two highest usage 

categories for the women remain significant at the 5% level.   The weighted average IRR for cell 

phone users is 1.1, lower than before, which indicates that some of the correlation between usage 

and accidents found in RF1 and RF2 is due to omitted variables such as miles driven.  The 

“always use hands-free” variable is still significantly correlated with lower accident risk for 

women.  Many of the additional covariates also have significant effects.  Women and married 

drivers have lower accident risk.  Age has a U-shaped effect, with the minimum accident risk 

occurring around age 55.30  Full time employment, higher annual mileage, and longer commuting 

time are all correlated with increased accident risk.  More daylight hours and driving mainly on 

rural roads are correlated with decreased accident risk.  The plausibility of these results lends 

credence to the survey data.  The weather variables generally show no significant effects, 

perhaps because they reflect average conditions in the quarter rather than precisely at the time of 

the accident.  In estimation RF3, the addition of the vehicular controls increases the cell phone 

                                                           
28 A Wald test of the cell phone and hands-free effects rejects the null hypothesis of equal coefficients between the 
sexes in estimations RF2 and RF3 at the 5% level.  The same test for RF4 has a p-value of 0.052. 
29 Redelmeier and Tibshirani (1997) estimated a multiple on accident risk from using a cell phone while driving of 
4.1 for men and 4.8 for women.  As previously discussed, the magnitudes of their figures are not directly 
comparable to ours. 
30 Lower accident rates for women and a U-shaped age pattern are also evident in official accident statistics 
(NHTSA, 2004).   
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effects a small amount for the women.  The coefficients for the other covariates are generally 

similar to those in RF2. 

We also estimate models with a host of alternative samples of the data, other dependent 

and explanatory variables, and weighted estimations.31  The main alternative sample for 

estimation is the gender-balanced sample (RF5 in Table 6).32  The cell phone effects rise for the 

women, but because the IRR for females is lower than before, the net impact of the women’s 

usage IRRs is roughly the same magnitude as in RF3 and RF4.  Other samples include using all 

quarters of data and dropping various outliers.  None of these alternatives leads to starkly 

different results (the results of these and other alternative estimations are included in Appendix 

B.13).33    We also experimented with weighted estimations using the survey weights we 

constructed.  Under the maintained assumptions of the pooled Poisson model (in particular, 

correct specification of the conditional mean, constant cell phone effects, and exogeneity of 

covariates), weighting is not needed for consistency of the estimates.  However, when 

coefficients actually vary across individuals, weighting the data can bring the estimates more in 

line with the average coefficient values in the population.  The cell phone coefficients display the 

same general pattern as in RF3, but are smaller in magnitude with larger standard errors. 

The following three points summarize the results from the RF estimations.  First, the 

significance and plausible direction of the effects for many of the covariates give us confidence 

in the veracity of our survey data.  Second, in our sample more phone usage while driving is 

associated with higher accident risk for women.  Third, use of hands-free devices is correlated 

with lower accident risk, at least for women.  If the association is causal, the growing movement 

to ban usage while driving unless a hands-free device is used may be justified.  However, this 

result depends on the exogeneity of hands-free usage, a suspect assumption that we reject in the 
                                                           
31 We perform these alternative estimations with the RF model instead of the MLE models in the next section 
because the RF model can be estimated much quicker than the MLE models. 
32 Refer to the discussion in section III on the gender imbalance in the main sample. 
33 Other subsamples included dropping any individual with implausibly high mileage, dropping the 79 individuals 
that required resurveying due to a survey programming error, and dropping the two individuals who had right 
censoring in the number of accidents reported for a quarter (if the individual had more than three accidents, we 
asked for the quarter of the latest three only).  Alternative dependent variables we try for y1 include various 
subcategories of accidents: accidents resulting in property damage only, injury accidents, accidents requiring 
hospitalization, accidents requiring medical treatment, and accidents resulting in someone taken away by 
ambulance.  The cell phone coefficients are not significant in these models, due to the lack of precision caused by 
the small number of accidents in the sample in any subcategory.   Alternative explanatory variables include race, 
income, and vehicle characteristics such as four wheel drive, traction control, and antilock brakes, and usage/age 
interactions.  No variable that we add is significant or substantially changes the cell phone effects from those 
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following two subsections.  The estimated effects on accidents of cell phone usage are generally 

robust to alternative specifications and estimation subsamples.  Therefore, in the following 

estimations we restrict attention to the main specification (RF4) and sample.   

The RF models are not robust to endogeneity of cell phone use and vehicle safety choice, 

and we do not treat the results here as having significance for policy.  We now turn to models 

that allow us to investigate our two hypotheses discussed in the introduction.   Given that there 

are statistically significant differences in the cell phone effects between men and women in our 

sample, we allow these coefficients to differ in subsequent estimations.   

 

Multiple-Equation Models for Heterogeneity and Endogeneity 

This section contains our preferred estimations, in which we explicitly model the 

endogeneity of the use of cell phones and hands-free devices while driving in a parametric 

multiple-equation system.  We also consider a model that estimates whether the cell phone 

effects are heterogeneous across individuals, even after controlling for observables such as 

gender.  Our three equation model adds equations for cell phone usage and car weight to accident 

equation (1) (repeated here as (3)), to allow usage and car choice to be endogenous: 

 y1it|x1it, y2it , y3it, vt ~Poisson (mean = s exp(β1'x1it + γ'y2it + δy3it)vi ) (3) 

 

  = β*
2ity 2'x2it + u2it (4) 

 

 y3it = β3'x3it + u3it (5) 

 

We use the notation from above.  Expression (3) is the equation for the quarterly accident counts.  

Equation (4) is for cell phone usage.  We explore two definitions of y2 in this section:  minutes of 

use while driving and usage of a hands-free device.  Because usage levels are discrete, we 

impose the ordered probit observation rule:  instead of observing the latent, normally-distributed 

 in (4), we observe y*
2y 2, which takes one of K discrete values.  Each value of y2 represents a 

different class of cell phone usage while driving.  In one set of estimations, the classes are the 

five minutes–of-usage categories; thus K = 5.  With this definition, equation (4) is present only 

                                                                                                                                                                                           
reported in Table 6.  
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for those individuals who have a cell phone.  In the other set of estimations, the cell phone usage 

classes for y2 are the amount of hands-free device usage while driving:  never, sometimes, and all 

the time.  Here K = 3, and (4) is present only for those individuals who both have a cell phone 

and use it while driving.34  For k = 0,1,…,K-1, the observation rule is  

 y2it = k if  (6) 1
*
2 +≤< kitk y κκ

 

By convention, κ0 = −∞,  κ0 = 0, and κK = ∞.   

The third equation, (5), is for log car weight, where y3 is a fully observed normal random 

variable.  We use log vehicle weight for y3 as a single characteristic to control for vehicle safety 

choice instead of using the vehicle categories as in RF3 and RF6 for four reasons.  First, it is 

infeasible to include the whole set of vehicle indicators used above; each indicator would add 

another equation to the system.  Second, car weight has a significant coefficient in the accident 

equation (if the vehicle category indicators are not present) in RF estimations.  Third, there is 

evidence that heavier cars are safer for their occupants in a crash than are lighter cars, so that 

endogenous safety choices may be embodied in car weight.35  Finally, car weight has been found 

in external data sets to be highly correlated with (and thus to control for) other vehicle safety 

variables such as antilock brakes and four wheel drive.36

The errors in (3)-(5) are specified as: 

 vi = exp(α1i) (7) 

 

 u2it = α2i + ε2it (8) 

 

 u3it = α3i + ε3it  
                                                           
34 In other words, we assume that there is no selection bias caused by the choice to have a phone or not, and that 
selectivity problems arise with choice of hands-free usage only when the individual already uses a phone while 
driving.  
35 A recent federal study concludes that the heavier the vehicle, the lower the risk of a fatality to any occupant in a 
crash, for all but the heaviest vehicles (Kahane, 2003).  These results were widely reported in the press.  
Summarizing other studies on vehicle weight and crash safety, the Los Angeles Times (February 18, 2003, part 3, 
p.1) concluded that despite conflicting evidence on heavy vehicles and overall fatalities, “[n]o expert contends that, 
all other things being equal, heavier vehicles aren’t safer for their passengers than are light ones.”  The association 
between vehicle weight and crash safety has been known for decades; Crandall and Graham (1989) cite many such 
studies, dating back to 1977.  Recent studies indicate that heavier vehicles may crash more, negating their greater 
safety given a crash (Gayer, 2004).  However, for vehicle weight to be a good proxy for vehicle safety choice, it is 
only required that car buyers believe that heavier cars are safer. 
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where the α are correlated across equations but the ε are not.  The random effects uit are 

composed of individual-specific components αi and idiosyncratic shocks εit as described above 

for model (1)-(2).  Because there is no evidence of heterogeneity in the mean accident rates after 

controlling for α1i and covariates, we do not include an ε1it in (7) (i.e., we set εit = 0 in (2)).37  

The vector (ε2it , ε3it) is normally distributed with zero mean and covariance matrix  

  ⎥
⎦

⎤
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⎡
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and E(εitkεjsl) = 0 if i ≠ j, t ≠ s, or k ≠ l.38  The individual-specific random effect αi = (α1i,α2i,α3i) 

is normally distributed with mean ( 22
1σ− ,0,0) and covariance matrix  
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and is assumed to be independent of x.39  The α are independent of ε for all individuals and 

periods.  With this specification, y2 is endogenous in (3) if ρ12 ≠ 0 and y3 is endogenous if 

ρ13 ≠ 0.  In addition to the coefficients of interest (β1, γ, δ), the model requires estimation of 

nuisance parameters (β2, β3, σ1
2, σ2

2, σ3
2, ρ12, ρ13, ρ23, τ, κ).40  We estimate the model by MLE.  

Given the parametric assumptions it is possible to find a closed-form expression for the density 

of all quarters of an individual’s observations on (y1it,y2it,y3it) conditional on vi, denoted fi(yi|vi).  

The likelihood for MLE is then  

                                                                                                                                                                                           
36 See, e.g., Kahane (2003), pp. 65 and 126. 
37 Formally, we test and fail to reject that y1it|x1it, y2it , y3it is equidisperse relative to the variance implied by the 
model with vi specified as in (7). We use tests inspired by the overdispersion tests for simpler models from Cameron 
and Trivedi (1998), sec. 3.4.  If there is no overdispersion in y1it after including individual-specific random effects, 
then an additional heterogeneity term ε1it is not needed.  Furthermore, if ε1it is added to the model, the estimate of its 
variance is nearly zero.  See Appendix B.10 for details of the tests. 
38 The variance of ε2 is fixed for identification in the ordered probit equation. 
39 The mean of α1 is adjusted so that E[exp(α1i)|x1it,y2it,y3it] = 1. 
40 When y2 takes the definition of hands-free device usage, there is one minor modification to the above.  In this case 
y2 does not vary over time for an individual, so α2 and ε2 are redundant and ε2 is dropped from the model. 
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where F(v) is the lognormal density of v.  The integral is evaluated numerically and MLE 

proceeds as usual; see Appendix for the likelihood function and details.41  We have not found 

this model developed elsewhere in the literature, but we use standard techniques to solve for the 

likelihood of multiple equation models for mixed continuous and discrete variables. 

The covariates for the accident equation (3) are the same as in estimation RF3.  We use 

two sets of covariates for x2 in (4), the cell phone usage equation.  The “small set” contains 

several variables also included in x1 (age, VMT, commute length, drive mostly on freeways, 

employment status, gender, and marital status), and some that are not.  These latter “instruments” 

are variables that potentially affect prices, quality, and competition in the mobile phone service 

market.42  When competition is stronger, mobile phone service providers may offer lower prices, 

higher service quality, and may be more likely to offer hands-free devices with subscription, all 

of which may be correlated with minutes of use and hands-free device usage.  These mobile 

phone market variables are the number of subscribers per capita in the state (in levels and 

squares), the size of the market (MSA) the individual lives in, the cellular antenna site density 

within 25 miles of the household,43 and two industry cost shifters:  the average wage in the 

cellular industry,44 and the average electricity price in the state.  The small set also includes two 

variables related to the willingness of the individual to adopt modern communications 

technology: indicators for whether the household has a VCR and cable TV service.  

The second, larger set of covariates for x2 includes the small set plus additional 

demographic variables such as income that may influence phone and hands-free device usage.45  

None of these variables appear in x1, and their exclusion may be harder to defend than for the 
                                                           
41 This estimation problem is also a candidate for simulated maximum likelihood.  However, given that expectation 
need be taken over a univariate random variable only, numerical integration of the likelihood via Gauss-Hermite 
quadrature is tractable and yields more precise estimates than simulation.  
42 Unlike linear systems of equations, there are no exclusion restrictions for x1 in (3); the Poisson parametric 
assumption alone identifies the coefficients in (3).  Thus x2 and x3 need not contain any variables not found in x1, 
even when y2 and y3 are endogenous in (3).  Due to the tenuous nature of identification solely through functional 
form, we do not rely on this to identify the system but instead use the instruments discussed here. 
43 This variable was constructed by taking the number of cellular antenna sites within 25 miles of the household’s 
location (as proxied by their five digit ZIP code centroid), and dividing by the population of all Census tracts that 
overlap with that circle.  The antenna data are from the FCC’s cellular tower registration database. 
44 The county average is used when available; the state average is used when not.  Data are from the BLS. 
45 The variables new to the large set are racial and ethnicity dummies, employment status, whether she lives in a 
condominium, whether she is a female head of household, her education level, whether she took a major vacation, 
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excluded variables in the small set.  For example, although there are no statistically significant 

impacts of income on accident rates once other variables are included, it may be that income 

belongs in the accident equation, if (for example) wealthier drivers buy cars that are safer in 

ways for which we do not adequately control.   

For x3 in (5), the car weight equation, we use age, marital status, commute length, and 

two variables not included in x1: gas price in levels and squares.46  In addition to this small set of 

covariates, we also use a larger set of covariates for x3.47   

To test for the endogeneity of cell phone use and car weight in the accident equation, we 

first define y2 to be cell phone usage minutes while driving.  Based on estimations for various 

samples (men and women separately and together) and using both the small and large sets of 

instruments, we cannot reject the hypothesis that there is no endogeneity in the accident 

equation.  The endogeneity parameters ρ12 and ρ13 are estimated to be negligible in magnitude 

and statistically insignificant.  This is in contrast to alternative IV estimations we discuss below, 

in which there is evidence that usage in endogenous.  The estimated cell phone effects differ 

little from the corresponding RF estimations and we do not report the results here.   

However, when we switch the role of the second equation and let it represent usage of a 

hands-free device, we find evidence of endogeneity.  In this model, hands-free devices are 

treated as endogenous in the accident equation, and cell usage minutes (given the results just 

described) are taken to be exogenous.  Use of a hands-free device may be endogenous if, for 

example, drivers that are inherently more careless are also less likely to use a headset while 

speaking on the phone.  Estimation results are presented in Table 7.48  For each instrument set 

results are presented for the combined samples (estimations ML1-2) and the single gender 

sample (ML3-6).   

Of most interest from the estimations are three results.  First, the correlation between the 

accident equation and the hands-free equation, ρ12, is large and negative in every specification 

we tried, regardless of the instrument set or sample used.  A finding of negative correlation 

between α1 and α2 implies that unobserved factors that make an individual more likely to use a 

                                                                                                                                                                                           
got married, and purchased or upgraded a computer in the last two years, and the household size. 
46 After controlling for miles traveled, the price of gas should not affect the accident rate. 
47 The variables new to the large set are racial and ethnicity dummies, employment status, home ownership, and the 
household size.  They are significant in OLS estimations with log car weight as the dependent variable. 
48 Coefficients for the cell phone and car weight equations are not reported in Table 7, but generally had plausible 
signs.  See Table B.13.5 in Appendix B.13. 
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hands-free device also make the individual a safer driver, independent of any causal effect of cell 

phone usage mode.  Results regarding the statistical significance of the negative correlation vary 

across specifications, but generally we reject the hypothesis that use of hands-free devices is 

exogenous.49   

The second fact of interest is that there is no evidence of significant reductions in 

accidents from the use of hands-free devices, as opposed to the large effects found in the reduced 

form specifications in which ρ12 is constrained to be zero.  Finding that hands-free devices have 

no significant impact on accidents is in accord with many other field and laboratory studies (e.g., 

RT; Haigney and Taylor, 1999; Crawford et al., 2001; Strayer and Johnston, 2001; and Strayer, 

Drews, and Johnston, 2003).50  In fact, the IRRs for the hands-free variables are all greater than 

one.  None of these IRRs is statistically significant, and we therefore do not want to overinterpret 

this result.  However, it may be that some aspects of hands-free device usage lead to greater 

driver inattention.51   

Third, we find that when hands-free usage is treated as endogenous, the effects of 

minutes of cell phone usage while driving are smaller than in the RF models.  For example, in 

specifications ML1 and ML2 (the estimations including both genders), the IRRs for the CellMins 

variables are lower for each variable than in RF1.  The same is true when comparing the single 

gender estimations to the gender-specific coefficients in RF2-RF5.  This is true despite the fact 

that minutes of usage are treated as exogenous in both the RF and the ML models. 

Of less importance for our main investigation in this paper, but interesting in its own 

right, is that the correlation between the accident equation and the vehicle safety equation is 

generally estimated to be positive, implying that drivers choosing heavier cars have a higher 

baseline accident rate to begin with.   

                                                           
49 For the combined gender sample, t tests of ρ12 = 0 have low p-values (below 0.01) in ML2 but not in ML1.  The 
LR statistics testing the full models vs. their restricted counterpart lacking heterogeneity and correlation (see 
Appendix A.4 for details) have p-values less than 0.001 for all models.  For the male sample, t tests of ρ12 = 0 have 
low p-values (below 0.001) and the LR statistics have p-values less than 0.001. For the female sample, the t tests do 
not have small p-values but the LR statistics do. 
50 In addition, Hahn and Dudley (2002) review the numerous studies comparing hands-free to handheld phones and 
conclude that while the literature is not unanimous, the general finding is that the risk posed by dialing is small 
compared to the risks associated with conversation, and that conversation risks are unaffected by phone type. 
51 For example, a consumer review of several hands-free devices found that fumbling with putting on a headset 
when answering a call and the poor audio quality of some hands-free phones may be more distracting than using a 
handset (Susan Stellin, “Hands-Free Calling Options for the Road,” New York Times, July 26, 2001, p.G9).    
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We turn now to our second hypothesis, which is that identical amounts of cell phone use 

affect accident risk differently across people, even after controlling for observables.  To keep the 

model simple, we treat cell phone use and vehicle choice as exogenous and drop equations (4) 

and (5).  Using the same notation as above, the accident equation is modified to be: 

 y1it|x1it, y2it , y3it, vi, ηi ~Poisson(mean = s exp(β1'x1it + iγ~ 'y2it + δy3it)vi ) (10)  

 

where iγ~  is a random coefficient, possibly correlated with the individual-specific random effect 

vi : 

 ii ηγγ +=~  (11) 

 

 )exp( iiv α=    

 

In (11), γ  is the mean coefficient vector and ηi is a scalar that represents driver i’s departure 

from the average cell phone coefficients.  Because ηi is scalar, the randomness in the usage 

effects is symmetric across usage classes.  For example, if a driver has ηi = log(1.1) then his 

usage IRR for all categories of cell phone minutes is 10% higher than the average IRR, exp(γ ).  

This assumption is made for convenience, to keep the dimension of the numerical integration of 

the likelihood manageable, and because it parallels the way the multiplicative random effect vi 

enters the model.  The (αi, ηi) are assumed to be independent across individuals and normally 

distributed with covariance matrix  
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The mean accident rate in (10) can be rewritten as 

 λit = s exp(β1'x1it + γ 'y2it + δy3it)ζit  (13)  

 

where the random terms have been collected into a heteroskedastic, unit mean, composite error 

ζit = exp(αi + ηidit), where dit is an indicator that usage is not in the excluded category.52  The 

                                                           
We assume that E(αi) = −σ2/2 and E(ηi) = −ω2/2−ρσω  to ensure that E(ζ) = 1 and that the constant in β1 is 
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density of all quarters of an individual’s observations on y1 conditional on αi and ηi is available 

in closed form; evaluating the likelihood for MLE requires numerical integration as above.  To 

our knowledge, ours is the first application of a random coefficient panel Poisson model in the 

literature.  The likelihood is presented in the Appendix.   

The results of MLE for this model for the combined-gender sample (labeled RC1) and the 

women-only sample (RC2) are presented in Table 8.53  In both samples, the likelihood is 

maximized with σ2 = 0 (and thus ρ is neither interesting nor identified).  In RC1, there is no 

convincing evidence of heterogeneity in the cell phone effects; neither a t test nor an LR test 

rejects the hypothesis that ω = 0  (i.e., that there is no randomness in the usage coefficients).54  

The lack of significance may be due to the smaller number of observations in the four-quarter 

subsample; when all quarters are used (results not reported),55 0  and the LR test does reject 

that σ

ˆ 2 >σ
2 = ω = 0.  There is more evidence of heterogeneity in the usage effects in RC2.  For the 

women, ω̂  is significant, whether tested by a t- or LR test.   

 The means of the cell phone usage coefficients, γ , are not far from the analogous 

reduced form estimations above.  However, the standard deviation of the random coefficients is 

quite large:  ω̂  = 0.49 for the combined sample and 0.71 for the women.  This would give the 

IRR for CellMinsLow, for example, a 95% confidence interval of (0.45, 3.07) from RC1 and 

(0.35, 5.58) from RC2.  Note that these wide intervals are not due to estimation error but the 

intrinsic variability of the random coefficient.  Thus, there appears to be wide variation across 

individuals in the impact of identical amounts of phone use on accidents. 

If indeed the contribution of cell phone use to accident risk is so heterogeneous even after 

controlling for observables, it suggests that methods using only a sample of drivers who had 

accidents will overestimate the average cell phone effects in the population.  Within each usage 

class, drivers with the highest realized values of the phone usage coefficients γ~  are most likely 

                                                                                                                                                                                           
identified.  Since the conditional variance of ζ is σ² + 2ρωσd + ω2d2 , there is an identification problem when y2 
consists of a set of zero-one  indicator variables for the usage categories.  In that case d2 = d2 and only σ2 and 
(2ρωσ+ ω2) are identified.  Given that the MLE of σ2 turns out to be zero, however this additional complication is 
moot. 
53 Results for the men-only sample are not reported; both the heterogeneity in the baseline accident rate (σ2) and the 
s.d. of the random coefficient (ω) were negligible.  MLE requires two-dimensional Gauss-Hermite quadrature to 
integrate ε and u out of the likelihood (see Appendix A.3 for details). 
54 The LR statistic has a non-standard distribution because ω is on the boundary of the parameter space under the 
null hypothesis (Self and Liang, 1987). 
55 See Table  
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to have accidents.  The expected value of η (and thus γ~ ) given that the driver had an accident 

can be calculated using Bayes’ rule.  For the combined gender estimation, the cell phone usage 

IRR is 5.6% higher on average within each usage category conditional on having an accident 

than the population mean IRR; for the women-only estimation, the cell phone effects are 13.6% 

higher conditional on having an accident.  Thus, a case-crossover estimation would overestimate 

the true average cell phone effects in the population, and by more than the above amounts.  This 

is because RT estimate an instantaneous risk multiple from phone usage, and our IRRs, on the 

other hand, reflect changes in total risk, averaged over time when the phone is in use and when it 

is not.  To be precise, in our model the percentage change in expected accidents in a time period 

from cell phone use is IRR – 1.  The same in terms of RT’s relative risk (RR) is f(RR – 1), where 

f is the fraction of driving time spent on the phone.56  Equating these leads to the conversion 

formula 

 11
+

−
=

f
IRRRR   (14)  

We use equation (14) with Cohen and Graham’s “central” estimate of  f of 2% and the average 

IRR from our RC models to analyze how much RT’s estimates are overstated.  The results, in 

Table 9, show that RT’s relative risk estimate of 4.3 is overstated by 36.3%.  Similarly, RT’s 

estimate of 4.8 for women is overstated by 36.0%. 

 

Alternative Estimations 

In this final estimation section we briefly mention alternative estimations we tried:  instrumental 

variables (IV) and fixed effects models.  Each is an alternative method to the multiple-equation 

models for endogeneity to obtain consistent estimates of the cell phone usage effects.  These 

methods do not, however, incorporate random coefficients.  In the IV model we treat the cell 

phone and hands-free device usage variables and car weight as endogenous and instrument for 

them with the variables described for the multiple-equation models.57  For the sake of brevity we 

mention here only the main results from the estimations; details on the method are in the 
                                                           
56 This expression is equation (2) in Cohen and Graham (2003).  
57 To assess the strength of the instruments we used two tests found in the weak instrument literature:  Stock and 
Staiger’s (1997) F test (variable by variable), and Stock and Yogo’s (2002) test for multiple endogenous regressors 
(see Appendix B.9).  The results from the F test show that weak instruments may be of concern, particularly with the 
small set.  Stock and Yogo’s (2002) test rejects the null hypothesis of weak instruments for the large set but not the 
small set.  These tests are only meant to be suggestive, since are not designed for models with multiplicative means 
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Appendix.  Linear IV methods, which assume additive means and errors, are not appropriate for 

our specification for the accident equation (1), which has a multiplicative mean and error.  We 

instead follow Windmeijer and Santos Silva (1997) and use GMM based on moment conditions 

appropriate for (1).  The generalized method of moments (GMM) estimator we use is consistent 

even if accidents do not have the Poisson distribution or (y2,y3) are endogenous, as long as the 

specification of the mean is correct and the instruments are valid.  Following our treatment in the 

RF model we pool the data.   

In Table 10, we first present the GMM estimates when all the variables in (1) are taken to 

be exogenous (GMM1).  The estimated IRRs for the x1 covariates are similar to those in RF3 and 

RF4 above and we omit them from the table.  The cell phone effects in GMM1 are similar to 

those in RF4, the analogous parametric specification, although dropping the Poisson assumption 

leads to some loss of precision of the estimates.  When the phone and hands-free usage and 

vehicle weight variables are treated as endogenous (estimations GMM2, which uses the small set 

of instruments, and GMM3, which uses the large set of instruments, in Table 10), all statistical 

significance of the impacts of the cell phone minutes of usage variables goes away.58  

Furthermore, the magnitude of the female cell phone effects—the ones that appear large in the 

RF, ML, and RC models—fall in GMM2 and GMM3 to modest levels (with the exception of the 

highest use category in GMM2).   As in the ML models, the large reduction in accidents due to 

the use of hands-free devices by women implied in the RF models disappears—the hands-free 

IRRs are not significant and the direction of the effect even switches.  These IV results confirm 

the findings from the multiple-equation models that selection is present and that correcting for 

the endogeneity of cell phone and hands-free use removes all certainty about the impact of usage 

on accidents (in the sense of statistical significance).59  These IV results also show that our 

conclusions are not dependent on the particular distributional assumptions chosen for the ML 

models. 

                                                                                                                                                                                           
and errors.  Nevertheless, we note that our instruments are not ideal and proceed with that caution in mind. 
58 To aid convergence in these models, the top two usage categories (which have relatively few drivers in them) 
were combined for each gender.  
59 To test whether the cell phone and car weight variables are indeed endogenous we performed Hausman tests.  
Each model is tested against a pooled Poisson MLE.  The Hausman test rejects the null hypothesis that (y2,y3) are 
exogenous if all coefficients in the model are tested; we fail to reject exogeneity if only the suspect coefficients—
those for y2 and y3–are tested.  The failure to reject exogeneity in the latter case is due to the large standards errors 
on the coefficients of the instrumented variables. 
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As a final alternative estimation we explored a fixed effects (FE) model, the closest 

model to the case-crossover method that is estimable with our data.60  FE models (Hausman, 

Hall, and Griliches, 1984) for count data are often attractive because they are robust to the 

presence of heterogeneity and endogeneity due to αi and εit in (1), and do not require the 

parametric assumptions of our multiple-equation models.  The disadvantage of the FE model that 

renders it unsuitable for our application is that (like the case-crossover model) estimates are 

based solely on drivers who had at least one accident.  In our sample this amounts to throwing 

away about 90% of the data in a potentially non-random manner.  Given the evidence from the 

previous section that the cell phone coefficients vary in the sample, FE estimates would suffer 

from the same upward bias we demonstrated for RT’s estimates.  Indeed, the average IRRs for 

cell phone use from FE models estimated with our data (see Appendix B.13) range from 2.6 to 

4.2.  These IRRs are much higher than the analogous figures from the other estimations above, 

which is entirely consistent with selection into the accident sample created by the RC model.  

There is no significant impact from usage of hands-free devices in these FE estimations.   

 

5. The Effect of Banning Cell Phone Use While Driving on Accidents 

 

As discussed in the literature review, several studies have combined RT’s results with 

assumptions on the number of cell phone users, average phone use while driving, and miles 

driven to calculate the reduction in accidents from a hypothetical ban on cell phone usage while 

driving.  Redelmeier and Weinstein (1999) calculate that a ban would result in 2% fewer 

collisions.  Cohen and Graham (2003) calculate that a ban would result in 2-21% fewer 

accidents, with a central estimate of 6%.61  We have argued above that RT’s estimates are not 

representative of the population; if so, extrapolating them for purposes of cost-benefit analyses 

will overstate the number of accidents prevented by a cell phone ban.  To compare the magnitude 

of our findings with these studies we perform similar calculations using our data.  We use the 

survey weights to make all figures nationally representative.  Because we have individual-level 

frequency of cell phone use, and can calculate individual-level accident risk, we perform a finely 
                                                           
60 We cannot replicate RT’s case-crossover analysis exactly because we do not have closely spaced point-in-time 
observations on cell phone usage.     
61 There are other estimates of the impact of a ban on accidents, based on police accident reports (Hahn, Tetlock, and 
Burnett (2000), NHTSA (1997)).  These estimates are lower than those based on RT, and range from 0.003% to 
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tuned analysis, unlike previous analyses that based calculations on national averages and out-of-

sample assumptions about accident rates and cell phone usage.  

As mentioned in the discussion of Table 3, the fraction of drivers using cell phones while 

driving is open to question.  We report figures in Table 11 based on three sets of survey weights 

that span the range of estimates from Table 3:  a “high estimate” assuming 64% of drivers use 

cell phones while driving (the figure from our survey), a central estimate of 50%, and a low 

estimate of 30%.  We assume an unrealistic 100% compliance with a ban, so that the mean 

accident rate for a driver after the ban is given by equation (1) with all phone usage and hands-

free device indicator variables set to zero.62  Given that compliance with an actual ban would not 

be perfect, our estimates are upper bounds on accident reductions. 

In Table 11 we report reductions in accidents based on the ML and RC estimations.  

Given the significant gender differences found in our data, we use estimates that account for the 

gender disparity in cell phone effects.  The ML estimations (rows one and two) imply accident 

reductions in the 1.9-4.1% range, somewhat lower than Cohen and Graham’s (2003) central 

estimate.  The random coefficient model consistent with hypothesis two (row three) yields the 

lowest estimated reductions:  0.9-1.9%.  Note that, in contrast to previous analyses, in all cases 

the 95% confidence intervals are wide enough to include the possibility that there is no effect of 

a ban at all.  Because the cell phone effects were insignificant in the GMM estimations, those 

estimations would also fail to exclude zero effect of a ban on accidents.  Given that none of our 

models rejects the possibility that a ban on cell phone usage while driving has no effect at all on 

accidents, and given that the sample RT use may overstate the impacts of cell phone use, we 

believe that the evidence that a ban would prevent accidents is not as clear as Redelmeier and 

Weinstein (1999) or Cohen and Graham (2003) indicate. 

 

6. Conclusion 

 

Our new approach for estimating the relationship between cell phone use while driving 

and accidents is the first to test for selection effects and the first that allows direct estimation of 

                                                                                                                                                                                           
0.03% 
62 For the mean accident calculations, vi in (1) is replaced with its expected value (unity) in the RF and RC models.  
For the ML models, vi is replaced with its expected value for the individual given (y2it,y3it).  Mean accident rates are 
calculated using actual covariate values for each driver and are the average over the sample.   
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the impact of a cell phone ban while driving.  We have three key findings.  First, there is 

evidence of selection effects.  Our analysis suggests that individuals who are more likely to use 

hands-free devices are more careful drivers even without them.  Once we correct for the 

endogeneity of hands-free usage, our models predict no statistically significant reduction in 

accidents from bans on hand-held usage, such as the bans enacted in New Jersey and New York.  

Second, we find that the impact of cell phone use on accidents varies across the population.  In 

particular, even after controlling for observed driver characteristics, our random coefficient 

models show there is additional variation in the cell phone impacts on accidents, particularly for 

female drivers.  Previous studies, which study accident cases only, thus suffer from selection 

bias, and we calculate that previous estimates of the impact of cell phone usage on risk for the 

population may be overstated by 36%.  Finally, we explore the impact of a ban on cell phone use 

while driving.  We cannot reject the hypothesis that a ban would have no effect on the number of 

accidents.  Our estimates of the reduction in accidents from a ban on cell phone use while driving 

are both lower and less certain than some previous studies indicate. 

Our study has several policy implications.  First, policy makers should factor into their 

decisions that we find no significant impact of a cell phone ban or a hands-free requirement on 

accidents.  Furthermore, because we find there is more uncertainty than previously suggested in 

the relationship between cell phone use while driving and accidents, cost-benefit analyses of 

proposed bans should reflect this uncertainty.  We expect that including the uncertainty in the 

relationship between cell phone use and accidents will make the decision to regulate more 

difficult.  Finally, however, we note that our results do not imply that nothing should be done to 

regulate drivers while using cell phones.  Rather, our study provides additional evidence that 

policy makers should consider before regulating. 

A natural question following from our study is how to get more precise estimates of the 

impact of cell phone use while driving on accidents.  We see a few promising avenues, but no 

panaceas.  One is to do larger surveys of the type done here, recognizing that such surveys have 

clear limitations.  A second is to consider real-world policy changes and look for “natural 

experiments”.  For example, there are many jurisdictions that have implemented policy changes 

requiring hands-free devices.  These policies could be evaluated using standard statistical 

methods.  There are several problems that would need to be addressed in such empirical studies, 

however.  For example, when compliance with a ban is low, then failure to find a lower accident 
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rate after a ban may be due to a low compliance rate, a lack of causality between cell phone 

usage and accidents, or both.63  Disentangling these two explanations would be complicated by 

the fact that the effects of a hand-held ban are likely to be small.64  Furthermore, it may be 

difficult to find individual-level data for such studies, and the selection effects and varying 

impacts of cell phone use found in our study imply that aggregated data may mask important 

parts of the story.   

Because cell phone use while driving is likely to increase unless it is constrained by 

regulation, it poses interesting challenges for researchers as well as policy makers. This paper 

has shown that analyzing cell phone use while driving is more complicated than some earlier 

studies would suggest.  In essence, we have shown that selection effects and heterogeneity 

among drivers are likely to be important, and should not be ignored in a policy setting.  Exactly 

how important is less clear.  What is clear is that more work will be needed on various aspects of 

this problem to develop policies that actually reduce accidents at a reasonable social cost.    

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
63 Compliance with the ban on hand-held cell phone usage in New York State appears to be low, for example.  As of 
March 2003 (two years after the ban), McCartt and Geary (2004) find that handheld cell phone usage while driving 
was back up to pre-ban levels.  
64 As noted earlier, however, there is little research supporting the view that existing hands-free technology will 
reduce accidents. 
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Appendix 

 

This appendix contains brief additional information on the data and estimations.  

Additional supplementary material and greater detail can be found in Appendix B.   

 

Survey Weights 

Survey weights for our data were constructed to make each cross section representative 

of the general population in the mainland U.S.  The weights sum to the correct marginal 

distributions for the number of households in each state, and the same for the household type 

(married couple, single male, etc.), size, and income; size of MSA the household is in; and 

individual age/gender, race, ethnicity, and education in the mainland U.S.   

 

Likelihood of the Multiple Equation System 

Here we present the likelihood for the model defined in equations (3)-(9), a three 

equation random effects system for count data with endogenous ordered and continuous 

variables.   

The notation in the main text does not reflect the differing frequency of observation in the 

data. The accident counts for the first equation and the car weights in the third equation are 

observed each quarter. The cell phone usage variables y2 are observed yearly and the time 

subscript for uit2 and εit2 is for years. Collect the random effects in (4)-(5) into column vectors ui2 

= (ui12, ui22)′ and ui3 = (ui13, . . ., ui83)′ and let  u1i = α1i. Here the likelihoods are derived for all 

eight quarters of data; the modification for the four quarter subset or for missing quarters is 

straightforward. Define 

 

ui = [ui1, u′i2, u′i3]′. Then var (ui) is 
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where ιk is a k-row column vector of ones and Ik is a k-rank identity matrix.   

The observed data for an individual is yi1 = (yi11, . . . , yi81)′, yi2 = (yi12, yi22)′, yi3 = (yi13, . . . 

, yi83)′. To simplify notation, drop the i subscripts from here on. The joint density of the data 

conditional on , , is 1u )|,,( 1321 uyyyf
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All densities are to be read as conditional on the x covariates. The limits of the 

rectangular integration region in (A.1) are the appropriate κ’s for the value of yt2 for year 1 and 
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year 2, based on (6). φp(µ, Σ) in (A.2) and (A.3) is the p.d.f. of a p−variate normal r.v. with mean 

vector µ and covariance matrix Σ. If the individual does not have a cell phone in any period in a 

year, there is no selection equation for minutes of usage and the integral pertaining to that year in 

(A.1) drops out. 

The likelihood for the data is then found as (9), where the integral there 

can be written 
2

1 1
1 2 3 1 1

1 1

21( , , | ) ( )uf y y y u duσφ
σ σ

∞
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+
∫  

 

This integral is evaluated for each i by Gauss-Hermite quadrature with 16 evaluation points. 

MLE is performed using the BFGS variant of the DFP algorithm with numerical derivatives. 

When y2 represents hands-free device usage, minor modifications are required.  First, the 

hands-free usage question is asked once for all quarters, so a period-specific error in (8) is 

redundant with αi2 and εit2 is dropped. Furthermore, with a single observation per individual on 

y2, the integral in (A.1) becomes unidimensional and σ2 is no longer identified and is fixed to 

unity. Finally, if the individual does not use a cell phone while driving in any period, there is no 

selection equation for hands-free device usage and the integral in (A.1) drops out. 

 

Likelihood of the Random Coefficient Model 

Here we present the likelihood for the model defined in equations (10)-(13), a random 

coefficient model for count data with random effects. The density of the observed data yi1 is 

Poisson mixed over (vi, ηi). Thus the log likelihood for MLE is 
18

2
1 1 1

exp( )( )ln ln ( , )
!

ityN
it it

i t it

s sL d
y
λ λ dφ µ α

∞ ∞

−∞ −∞
= =

−
= ∑ ∏∫ ∫ η∑    (A.4) 

 

where λit is the Poisson conditional mean from (13), 

 

µ = (− σ2/2,  − ω2/2 − ρ σ ω)′      (A.5) 

 

and Σ is as in (12). See the footnote following (13) on identification. This likelihood is evaluated 

with bivariate 32-point Gauss-Hermite quadrature and MLE is performed as described for the 
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previous model. 

 

LR Tests of the Parametric Models 

The likelihood ratio tests of the parametric models mentioned in the text are non-standard 

because they involve parameters on the boundary of the parameter space and because some of 

the nuisance parameters appear only under the alternative hypothesis.  The null hypothesis for 

the tests for the ML models is H0: σ1 =  σ3 = 0 vs. HA: σ1 > 0, σ3 > 0, ρ  ≡ (ρ12,ρ13,ρ23)∈ (-1,1)3.  

Under the null, σ1 and σ3 are on the boundary of the parameter space and ρ is a nuisance 

parameter that appears only under the alternative.  Test statistics with parameters appearing only 

under the alternative hypothesis have complicated distributions in general (Andrews, 2001), 

whereas parameter-on-the-boundary (PB) problems with all parameters appearing both under the 

null and the alternative hypotheses generally lead to simpler distributions.  Using techniques 

from King and Shively (1993), we therefore transform this test through reparameterization into a 

simpler PB problem so that the test statistic is a mixture of chi-squares.  Appendix B.11 contains 

details. 

 

GMM Estimation 

Here we follow Windmeijer and Santos Silva (1997).  Equation (1) implicitly defines a 

multiplicative model  

 y1i = s exp(β'xi + γ'y2i + δy3i) ξi      (A.6) 

 

where ξi =  vi ζi, ζi  is a multiplicative error satisfying E(ζi|xi, y2i , y3i, vi) = 1, and time subscripts 

are suppressed. If instruments zi satisfy E(vi|zi) = 1, then E(ξi − 1|zi) = 0.  Solving for ξi from 

(A.6) then leads to the conditional moment condition 
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Our GMM procedure relies on (A.7), using sample analogs of unconditional moments of the 

form  
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with zi equal to the instrument sets discussed in the text (plus the predicted values of the binary 

endogenous variables from the first stage probit regressions) and h chosen to be optimal 

instruments.  See Appendix B.8 for further detail.   

 

Additional References in Appendix 

 

Andrews, Donald W.K. (2001).  “Testing When a Parameter is on the Boundary of the 
Maintained Hypothesis,” Econometrica 69:683-734. 

 
King, Maxwell L. and Thomas S. Shively (1993), “Locally Optimal Testing When a Nuisance 

Parameter is Present Only Under the Null Alternative,” The Review of Economics and 
Statistics, 75(1):1-7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 



 

Table 1:  Summary Statistics of the Data 
 

Variable Obs Freq. Mean 
Std. 
Dev. Min Max Source 

Accidents in quarter 26,572 Q 0.013 0.117 0.000 2.000 Survey 
Cell phone minutes of use while driving:       
NoPhone (no cell phone) 26,572 Q 0.162 0.369 0.000 1.000 Survey 
CellMinsLow (1-15 mins/wk) 26,572 C 0.474 0.499 0.000 1.000 Survey 
CellMinsMed (2-20 mins/day) 26,572 C 0.152 0.359 0.000 1.000 Survey 
CellMinsHi (20-60 mins/day) 26,572 C 0.066 0.248 0.000 1.000 Survey 
CellMinsVHi (> 1 hour/day) 26,572 C 0.024 0.153 0.000 1.000 Survey 
NoPhoneM (no cell phone, male) 26,572 Q 0.058 0.233 0.000 1.000 Survey 
NoPhoneF(no cell phone, female) 26,572 Q 0.105 0.306 0.000 1.000 Survey 
CMinsLowM (1-15 mins/wk, male) 26,572 C 0.140 0.347 0.000 1.000 Survey 
CMinsLowF (1-15 mins/wk, female) 26,572 C 0.335 0.472 0.000 1.000 Survey 
CMinsMedM (2-20 mins/day, male) 26,572 C 0.056 0.231 0.000 1.000 Survey 
CMinsMedF (2-20 mins/day, female) 26,572 C 0.095 0.294 0.000 1.000 Survey 
CMinsHiM (20-60 mins/day, male) 26,572 C 0.027 0.161 0.000 1.000 Survey 
CMinsHiF (20-60 mins/day, female) 26,572 C 0.039 0.194 0.000 1.000 Survey 
CMinsVHiM (> 1 hour/day, male) 26,572 C 0.012 0.107 0.000 1.000 Survey 
CMinsVHiF (> 1 hour/day, female) 26,572 C 0.012 0.110 0.000 1.000 Survey 
Use of hands free device while driving:       
HFreeSome (sometimes use) 26,572 H 0.151 0.358 0.000 1.000 Survey 
HFreeAlwys (always use) 26,572 H 0.145 0.352 0.000 1.000 Survey 
HFreeSomeM (sometimes use, male) 26,572 H 0.056 0.229 0.000 1.000 Survey 
HFreeSomeF (sometimes use, female) 26,572 H 0.095 0.294 0.000 1.000 Survey 
HFreeAlwysM (always use, male) 26,572 H 0.053 0.225 0.000 1.000 Survey 
HFreeAlwysF (always use, female) 26,572 H 0.092 0.289 0.000 1.000 Survey 
Variables appearing in accident equation  (not all used in all specifications):   
Age 26,572 O 44.931 13.30 18.00 98.00 Survey 
CarWgtLn (log vehicle weight) 25,251 Q 1.253 0.212 0.703 2.000 a 
CommuteLn (log time of commute) 26,572 Y 2.865 1.110 0.000 5.704 Survey 
Female 26,572 O 0.670 0.470 0.000 1.000 Survey 
FreezeTemp (# days below freezing) 26,572 Q 18.037 24.73 0.000 90.00 b 
HrsOfLight (ave. hours of daylight) 26,572 Q 12.108 1.671 9.217 14.86 c 
KidsInHH (children in household) 26,572 O 0.471 0.499 0.000 1.000 Survey 
Luxury Car (vehicle type indicator) 25,251 Q 0.082 0.274 0.000 1.000 d 
Married 26,572 O 0.725 0.446 0.000 1.000 Survey 
MilesLn (quarterly mileage driven) 26,572 Y 1.041 0.931 -8.294 3.359 Survey 
Minivan (vehicle type indicator) 25,251 Q 0.005 0.068 0.000 1.000 d 
Pickup Truck (vehicle type indicator) 25,251 Q 0.104 0.305 0.000 1.000 d 
Precip (# days with precipitation) 26,572 Q 5.525 3.996 0.000 30.00 b 
Quarter_5 (quarter indicator for 1Q02) 26,572 Q 0.243 0.429 0.000 1.000 Survey 
Quarter_6 (quarter indicator for 2Q02) 26,572 Q 0.256 0.437 0.000 1.000 Survey 
Quarter_7 (quarter indicator for 3Q02) 26,572 Q 0.268 0.443 0.000 1.000 Survey 
RuralFrwy (drive on rural freeways) 26,572 Y 0.187 0.390 0.000 1.000 Survey 
RuralSrfc (drive on rural surface streets) 26,572 Y 0.064 0.245 0.000 1.000 Survey 
Snow (# snow days) 26,572 Q 2.701 9.121 0.000 90.00 b 
Sporty Car (vehicle type indicator) 25,251 Q 0.038 0.191 0.000 1.000 d 
SUV (vehicle type indicator) 25,251 Q 0.247 0.431 0.000 1.000 d 

 



 

UrbanSrfc (drive on city surface streets) 26,572 Y 0.322 0.467 0.000 1.000 Survey 
Van (vehicle type indicator) 25,251 Q 0.114 0.318 0.000 1.000 d 
WorkFullTime (employment status) 26,572 O 0.589 0.492 0.000 1.000 Survey 
Additional variables appearing in cell phone usage or vehicle weight equations  (not all used in all 
specifications): 
Antenna sites per capita 26,572 O 0.043 0.046 0.000 0.591 e 
Asian 26,572 O 0.021 0.145 0.000 1.000 Survey 
Black 26,572 O 0.039 0.193 0.000 1.000 Survey 
Cable TV (subscribe to cable) 26,455 O 0.705 0.456 0.000 1.000 Survey 
Carriers (wireless carriers in state) 26,486 S 11.624 3.171 4.000 19.00 f 
Cellular industry wages (in state) 26,140 O 55.278 16.43 8.173 144.7 g 
Drive mostly on freeway 26,572 Y 0.614 0.487 0.000 1.000 Survey 
Electricity price (in state) 26,572 Y 8.103 2.397 5.000 13.30 h 
Employment: no answer 26,327 O 0.039 0.194 0.000 1.000 Survey 
Employment: not employed 26,327 O 0.123 0.329 0.000 1.000 Survey 
Employment: part time 26,327 O 0.102 0.303 0.000 1.000 Survey 
Employment: retired 26,327 O 0.141 0.348 0.000 1.000 Survey 
Female head of household 26,572 O 0.211 0.408 0.000 1.000 Survey 
Gasoline price (in city or state) 26,572 Q 1.345 0.155 1.041 1.680 i 
Income (household income) 26,572 O 84.534 52.72 5.279 349.7 Survey 
Live with parents 26,572 O 0.024 0.153 0.000 1.000 Survey 
Market size (size of MSA) 26,572 O 3.117 1.084 1.000 4.000 Survey 
Recent new computer (within 2 years) 26,572 O 0.524 0.499 0.000 1.000 Survey 
Recent vacation travel (within 2 years) 26,572 O 0.250 0.433 0.000 1.000 Survey 
Recently married (within 2 years) 26,572 O 0.056 0.229 0.000 1.000 Survey 
Subscribers (per capita wireless subs.) 26,509 S 0.438 0.048 0.277 0.728 f 
VCR (have a VCR in household) 26,455 O 0.928 0.258 0.000 1.000 Survey 

Table notes:  Statistics are for the 4Q2001-3Q2002 subset of periods used for most of the estimations. 
 
Frequency codes: 
C Quarterly at most; question asked annually but is 

linked to the quarterly cell phone use variable. 
H Quarterly at most; question asked once but is 

linked to the quarterly cell phone use variable. 

O Observed once per individual. 
S Semi-annual observation. 
Y Annual observation. 
 

 
Source codes: 
 
a Survey (for vehicle); Ward’s Automotive Yearbook and Automotive News Market Data Book (weight). 
b National Climatic Data Center, Database TD3220 – Monthly Surface Data for U.S. cooperative weather stations. 
c Calculated based on latitude of household’s ZIP code. 
d Survey (for vehicle) and NFO Interactive (for classification) 
e Federal Communications Commission’s Universal Licensing System. 
f Local Telephone Competition:  Status as of December 31, 2002, Industry Analysis and Technology Division, 

Wireline Competition Bureau, Federal Communications Commission, June 2003, and similar earlier semi-annual 
reports. 

g Bureau of Labor Statistics, Covered Employment and Wages. 
h Electric Power Monthly, Energy Information Administration, Department of Energy. 
I Petroleum Marketing Monthly, Energy Information Administration, Department of Energy.  Table 31, Motor      
  Gasoline Prices by Grade, Sales Type, PAD District, and State and Historical Trends in Motor Gasoline Taxes,  
 1918-2002, American Petroleum Institute. 

 



 

Table 2:  Comparison of Survey Sample with General Population 
(percentages) 

 

 

General 
Population 
(age 18+) 

Online 
Households 

Our Survey 
Respondents 
(completes & 
incompletes) 

 
Estimation 
Sample (4Q 
2001 – 3Q 

2002) 

Difference 
between Our 
Survey and 

General 
Population 

 
March 2003 

CPS 
January  

2003  
February 

2003 
February 

2003  
Census Region      

Midwest 23.0     
      

      
      

     
      

     

    

     
     

      
      

     
     

     

23.1 22.9 23.9 0.9
Northeast 19.1 18.7 19.7 19.2 0.1
South 36.0 35.2 32.7 35.5 -0.5
West 21.8 22.9 24.8 21.4 -0.4

Market Size 
Under 100K 21.9 17.5 15.2 13.7 -8.2*
100K – 499K 

 
17.5 14.2 13.6 12.5 -5.0* 

500K+ 60.5 68.4 71.2 73.8 13.3*
Household 
Income  

Under $20K 22.6 15.3 8.6 3.8 -18.8* 
$20K - $34.9K 18.9 19.0 14.0 8.6 -10.3* 
$35K - $54.9K 19.5 19.9 18.0 15.1 -4.4* 
$55K - $84.9K 

 
19.1 22.1 27.6 30.0 10.9* 

$85K+ 19.7 23.7 31.8 42.5 22.8*
Age 

Mean (18+) 45.2 46.0 45.6 44.9 -0.3
Median (18+) 44.0 44.0 45.0 44.0 0.0

Gender 
Female 51.1 49.5† 66.0 67.0 15.9*
Male 48.9 50.5† 34.0 33.0 -15.9*

*Significant at the 1% level.   
†Calculated from gender-specific online access rates from Pew Research Center (2003b) from March 2003 and the gender ratio from the CPS in column one. 
Figures for Online Households are from NFO Worldgroup (unpublished).  Figures for our estimation sample are for the pooled four-quarter data set. 
 

 



 

Table 3:  Estimates of the Proportion of Drivers Using Cell Phones and Hands-Free 
Devices while Driving 

 
  % of drivers who use a cell 

phone while driving, out of… 
% of drivers who use HF 

device while driving, out of… 
 

Study or Poll Time Period All Drivers 

Drivers who 
Have a Cell 

Phone All Drivers 

Drivers who 
Have a Cell 

Phone Source 
Authors’ survey, raw 

average. 
Oct 2001—Sept 

2002 73    86 30 41 Authors’ survey.

Authors’ survey, 
weighted average. 

Oct 2001—Sept 
2002 64    

      

    

        

   

82 28 44 Authors’ survey.

Gallup Poll Nov 2003 40 62 23 NA Gallup Organization 
(2003). 

Quinnipiac Oct 2002 51 78 NA NA Quinnipiac University 
(2003). 

UNC HSRC 2002 June—July 2002 59 NA NA 28 Stutts et al. (2002). 

NHTSA 2002 Feb 2002—Apr 
2002 31 52 NA NA Royal (2003).

AAA/UNC HSRC 
2003 

Nov 2000—Nov 
2001 30 NA NA NA Stutts et al. (2003). 

Highway and Auto 
Safety  July 2001 30 43 NA NA Advocates for Highway 

and Auto Safety (2001). 

Gallup Poll June—July 2001 43 79 NA NA Gallup Organization 
(2001). 

Gallup Poll June—July 2001 49 89 NA NA Gallup Organization 
(2001). 

SurveyUSA June 2001 33 NA NA NA SurveyUSA (2001).

NHTSA 2000 Nov 2000—Jan 
2001 39 73 NA NA Boyle and Vanderwolf 

(2001). 
 
Table notes:   
In the authors’ survey, figures for cell phone use are the percentage of the 7,327 respondents who chose an answer other than “none” to “During [the time period 
in question], how many minutes did you typically talk on your cell phone while driving?”  Details concerning wording of the other survey questions and sample 
sizes are in Appendix B.14. 
 
 
 

 



 

Table 4:  Overview of Accidents and Cell Phone Use 
 

Category N 

Percent 
of 

sample 

Yearly 
Accident 

Rate x 100 
(raw) 

Equality of 
Proportions 

Test 
(p-value) 

Yearly 
Accident 

Rate x 100 
(weighted)

Cell Phone Usage    0.012  
 Do not have cell phone 4,313 16.2 4.4  5.0 
 Have cell phone, do not use 

while driving 3,238 12.2 3.7 
 

5.1 
 Use cell phone while driving 19,021 71.6 5.9  7.1 
Cell Phone Minutes of Use    0.006  
  Less than 15 minutes/week 12,604 47.4 5.3  6.6 
  2-20 minutes/day 4,028 15.2 6.3  6.8 
  20-60 minutes/day 1,755 6.6 9.6  10.9 
  More than 1 hour/day 634 2.4 6.3  3.9 
Hands-Free Device Usage While 

Driving    
0.078 

 
 Never use hands-free device* 11,152 42.0 5.8  5.5 
 Sometimes use hands-free 

device* 4,012 15.1 7.3 
 

10.2 
 Always use hands-free device* 3,857 14.5 4.9  7.1 
Gender    0.083  
 Men 8,773 33.0 6.1  7.6 
 Women 17,799 67.0 5.0  5.2 
Entire Sample 26,572 100.0 5.4  6.3 

*Driver also uses cell phone while driving. 
Table notes:  data source is the authors’ survey, four quarter subsample.  The accident rates are per driver (not per 
vehicle miles traveled).  The counts in column one are quarterly observations on 7,395 drivers.  The equality of 
proportions test is Pearson’s chi-square two-sided test of the null hypothesis that all rates are equal within each 
category.  The last column uses the survey weights described in the text. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Table 5:  Accidents:  Reduced Form (RF) Estimation with 
Combined-Gender Cell Phone Effects 

 
 RF1 
accinqtr IRR P-value 
NoPhone 1.209 0.419 
CellMinsLow 1.472* 0.061 
CellMinsMed 1.770** 0.016 
CellMinsHi 2.792*** 0.000 
CellMinsVHi 1.895* 0.087 
HFreeSome 1.138 0.394 
HFreeAlwys 0.733* 0.069 
   
Log likelihood -1867.48 
χ2 statistic (dof) 72.0 (49) 0.018 
N 26,572 
*, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.  
Notes:  Dependent variable is the quarterly traffic accident count for an individual.  All specifications include 
quarter and state fixed effects.  Sample covers Q4 2001—Q3 2002.  IRR is incident risk ratio, .  P-values 
are for the hypothesis test that the estimated coefficient is zero (equivalently, that the estimated IRR is 1.0) and are 
calculated from standard errors robust to heteroskedasticity and clustering on individuals.   

)ˆexp(β

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Table 6:  Accidents:  Reduced Form (RF) Estimations  
with Gender-Specific Cell Phone Effects 

 RF2 RF3 RF4 RF5 
accinqtr IRR P-value IRR P-value IRR P-value IRR P-value 
NoPhoneM 0.932 0.839 0.850 0.635 0.813 0.543 1.186 0.715 
CMinsLowM 1.058 0.853 0.924 0.796 0.852 0.603 0.716 0.455 
CMinsMedM 0.838 0.627 0.605 0.175 0.591 0.167 0.500 0.200 
CMinsHiM 1.148 0.736 0.816 0.620 0.788 0.575 0.659 0.445 
CMinsVHiM 0.190 0.120 0.143* 0.070 0.168* 0.097 0.211 0.179 
NoPhoneF 1.419 0.279 1.212 0.554 1.319 0.417 2.778 0.114 
CMinsLowF 1.807** 0.039 1.402 0.238 1.556 0.145 2.916* 0.083 
CMinsMedF 2.693*** 0.002 1.713* 0.089 1.761* 0.093 4.573** 0.017 
CMinsHiF 4.639*** 0.000 2.689*** 0.004 3.008*** 0.002 5.447** 0.013 
CMinsVHiF 5.271*** 0.000 2.951*** 0.009 3.365*** 0.008 3.148 0.198 
HFreeSomeM 1.506* 0.096 1.307 0.268 1.281 0.329 1.907* 0.054 
HFreeAlwysM 1.202 0.473 1.180 0.512 1.098 0.732 1.732 0.129 
HFreeSomeF 0.973 0.886 0.883 0.508 0.910 0.622 1.099 0.772 
HFreeAlwysF 0.520*** 0.006 0.506*** 0.003 0.507*** 0.004 0.390** 0.023 
Female 0.498* 0.058 0.593 0.164 0.524* 0.099 0.299* 0.083 
Married   0.685*** 0.003 0.693*** 0.005 0.678** 0.044 
KidsInHH   1.130 0.328 1.165 0.245 1.004 0.983 
Age   0.900*** 0.000 0.905*** 0.000 0.898*** 0.000 
AgeSq   1.001*** 0.000 1.001*** 0.001 1.001*** 0.002 
WorkFullTime   1.433*** 0.006 1.496*** 0.003 1.226 0.283 
MilesLn   1.108 0.162 1.120 0.146 1.104 0.209 
CommuteLn   1.153** 0.014 1.161** 0.012 1.202** 0.042 
RuralFrwy   0.742* 0.063 0.777 0.122 0.895 0.633 
UrbanSrfc   1.122 0.356 1.123 0.365 1.094 0.645 
RuralSrfc   0.503** 0.045 0.540* 0.075 0.309 0.105 
Precip   0.995 0.755 0.993 0.671 0.969 0.283 
Snow   0.985 0.171 0.976** 0.042 0.983 0.345 
FreezeTemp   0.991 0.129 0.995 0.347 0.994 0.432 
HrsOfLight   0.593** 0.013 0.579** 0.013 0.597 0.103 
Pickup     0.660* 0.078   
Minivan     0.642 0.636   
SUV     0.821 0.171   
Luxury     0.758 0.231   
Sporty     0.731 0.254   
Van     0.945 0.772   
Average cell 
phone IRR 1.567  1.122  1.163  1.943  

χ2 statistic (dof) 95.6 (57) 0.001 224.3 (71) 0.000 224.8 (77) 0.000 14035 (71)   0.000 
Log likelihood -1854.93 -1806.54 -1705.15 -725.49 
N 26,572 26,572 25,251 11,618 

*, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.  
Notes:  Dependent variable is the quarterly traffic accident count for an individual.  All specifications include 
quarter and state fixed effects.  Sample covers Q4 2001—Q3 2002.  P-values based on standard errors robust to 
heteroskedasticity and clustering on individuals.  Average cell phone IRR is the average IRR from the cell phone and 
hands free device variables, weighted by the number of drivers in each phone/hands-free device category.  RF5 uses 
the gender-balanced sample; see text for details.  See notes to Table 5 on IRR. 

 



 

 

Table 7:   Accidents, Hands-free Device Usage, and Vehicle Safety:  
Three Equation MLE 

Panel a:  Combined sample (both genders) 
  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    ML1 ML2 
  

  
Small set of 
instruments 

Large set of 
instruments 

Coefficient and Variable IRR P-value IRR P-value 
β1 NoPhone 1.082 0.766 1.078 0.777 
β1 CellMinsLow 0.983 0.953 0.969 0.908 
β1 CellMinsMed 0.875 0.709 0.860 0.636 
β1 CellMinsHi 1.268 0.557 1.236 0.559 
β1 CellMinsVHi 0.751 0.632 0.718 0.546 
γ1 HFreeSome 1.886 0.263 2.025 0.111 
γ2 HFreeAlwys 1.923 0.464 2.174 0.249 
δ CarWgtLn 0.092 0.201 0.286 0.267 
 Other controls as in 

RF3 yes  yes  
 Average cell phone 

usage IRR 1.377  1.436  
    
  parameter  parameter  
σ1

2  0.695* 0.078 0.633** 0.046 
ρ12  -0.709 0.191 -0.880*** 0.007 
ρ13  0.515 0.246 0.179 0.626 

 LR statistic 5.2E04 0.000 5.2E04 0.000 
 Log likelihood 24,109.0 24,289.3 
 # individuals 6,877 6,877 
  # observations 24,897 24,897 



 

 

Table 7:   Accidents, Hands-free Device Usage, and Vehicle Safety:  Three Equation MLE 
Panel b:  Single gender sample 

 
    Small set of instruments Large set of instruments 
    ML3 ML4 ML5 ML6
      Men Women Men Women
Coefficient and Variable IRR P-value IRR P-value     
β1 NoPhone      0.813 1.350 1.350 0.418 0.812 0.627 1.360 0.405
β1 CellMinsLow       

       
      

       
      
       

      
  

  

   
   

    

0.658 1.356 1.356 0.452 0.675 0.352 1.407 0.381
β1 CellMinsMed 0.405 1.505 1.505 0.389 0.419 0.106 1.581 0.308
β1 CellMinsHi 0.505 2.356 2.356 0.103 0.531 0.313 2.527* 0.061
β1 CellMinsVHi 0.102* 2.008 2.008 0.398 0.108* 0.061 2.210 0.316
γ1 HFreeSome 1.949 1.670 1.670 0.522 1.900 0.210 1.456 0.573
γ2 HFreeAlwys 2.583 1.246 1.246 0.862 2.455 0.216 1.001 0.999
δ CarWgtLn 0.044 0.278 0.278 0.622 0.061 0.169 0.753 0.833
 Other controls as in RF3 yes  yes yes yes  
 Average cell phone 

usage IRR 1.315 1.278

       
  parameter parameter  parameter  parameter 

 
 

σ1
2 0.759 0.255† 0.666* 0.071† 0.684 0.173† 0.630* 0.061†

ρ12      
     

     
     
      

-0.544*** 0.002 -0.658 0.408 -0.587*** 0.000 -0.540 0.471
ρ13 0.774*** 0.000 0.140 0.857 0.766*** 0.000 -0.192 0.650

  LR statistic 1.68E04 0.000 
 

3.61E04 0.000 1.66E04 0.000 3.54E04 0.000
Log likelihood 7,516.5 16,597.8 7,557.6 16,752.0
# individuals 2,256 4,612 2,256 4,612

  # observations 8,144 16,720 8,144 16,720 
 
†One sided p value. 
*, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.  
Table notes:  LR statistic is the likelihood ratio statistic for test H0: σ1

2 = σ3
2 = 0 vs. HA: (σ1

2,σ3
2) > 0, (ρ12,ρ13,ρ23) ∈ (-1,1)3.  It has a non-standard distribution; 

see Appendix A.4 for details.  Estimated but not reported: the rest of β1 (for the other controls included as in RF3 [including time dummies but with region 
dummies replacing state dummies]) and (β2,δ, κ).  Likelihood is calculated via Gauss-Hermite quadrature (see Appendix A.2), with 16 evaluation points.  The 
standard errors account for the panel structure of the data.  Average cell phone usage IRR is the average IRR from the cell phone and hands free device variables, 
weighted by the number of drivers in each phone/hands-free device category.  See notes to Table 5 on IRR.   
 
 



 

Table 8:  Accidents:  Random Coefficient (RC) for Cell Phone Usage 
 

    RC1 RC2
  Men and Women Combined Women Only 

 Variable IRR P-value IRR P-value 
β1 NoPhone     1.055 0.833 1.342 0.403

1γ  CellMinsLow     1.175 0.501 1.598 0.153
2γ  CellMinsMed     1.123 0.672 1.868* 0.084
3γ  CellMinsHi  1.803* 0.053 3.136*** 0.004
4γ  CellMinsVHi     

     
   

  

    

  

1.150 0.758 3.001** 0.049
β1 HFreeSome 1.051 0.753 0.975 0.897
β1 HFreeAlwys 0.686* 0.056 0.499** 0.012
δ Log Car Weight 0.462*** 0.007 0.431** 

 
0.026 

 Other controls as in RF3 yes yes  
 Average cell phone 

usage IRR 
 

1.160    
 

  parameter  parameter  
σ2 0.000 (fixed)† 0.000 (fixed)†

ω       
     
     

    
  

  

0.489 0.194 0.710*** 0.005
ρ 0.000 (fixed) 0.000 (fixed)
 
LR statistic 0.616 0.216 2.099 0.074
Log likelihood -1670.8 -1069.4
# individuals 6,809    4,609 
# observations 24,645 16,699

 
*, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.  
†Likelihood is maximized at boundary with σ2 = 0. 
Table Notes:   Estimated but not reported: The other elements of β1 (for the other controls included as in RF3 [including time dummies but with region dummies 
replacing state dummies]).  Likelihood is calculated via Gauss-Hermite quadrature, with 32 evaluation points.  LR statistic is the likelihood ratio statistic for test 
H0: τ = 0 vs. HA: τ > 0.  It has a non-standard distribution; see Appendix A.4 for details.  See notes to Table 5 on IRR.  The standard errors account for the panel 
structure of the data.  Average cell phone usage IRR is the average IRR from the cell phone and hands free device variables, weighted by the number of drivers in 
each phone/hands-free device category. 
 
 
 

 

 
 



 

 

Table 9:  Implications of the Random Coefficient Model for RT’s Estimates of Relative Risk 
 

 
Model RC1 

(both genders) 
Model RC2 

(women only) 
Average estimated true IRR in sample 1.2 1.6 
Overstatement of IRR if use accident-only sample 5.6% 13.6% 
Assumed fraction of driving time spent on the phone (f)

 
   

 

  

1.9% 1.9%
RT's estimate of relative risk (RR) 4.3 4.8
Implied overstatement of RR if use accident-only sample 

 
36.3% 36.0% 

Implied corrected RR 3.2 3.5
 
Table notes:  Row one calculated as the weighted average of the IRRs for each cell phone/hands free device usage cell, using the estimated coefficients from the 
model given in the column heading.  Row two is the expected overstatement of IRR if the sample is restricted to drivers who had accidents; see Appendix B.12 
for details.  Row three f is from Cohen and Graham (2003).  Row four RR is from Redelmeier and Tibshirani (1997).  Row five is calculated using equation (9) in 
the text.  Row six is calculated as (row four)/(1 + row five).  See notes to Table 5 on IRR.   



 

 

Table 10:  Accidents:  GMM Estimations with Gender-Specific Cell Phone Effects 
 

 Exogeneity Assumed Endogeneity Assumed 

 
GMM1 

No additional instruments 
GMM2 

Small set of instruments 
GMM3 

Large Set of Instruments 
accinqtr   IRR P-value IRR P-value IRR P-value 
NoPhoneM  0.567  0.162  0.870  0.794  0.686  0.549 
CMinsLowM  0.975  0.946  1.242  0.862  1.648  0.653 
CMinsMedM  0.637  0.305 0.211 0.193 0.159* 

       
 

       
       

 

 

 

   

      

  

   

0.079 
CMinsHiM  0.760 0.606 0.436 0.624 0.301 0.341
CMinsVHiM  0.300  0.265 0.436† 0.624 0.301† 0.341 
NoPhoneF  1.454  0.334  1.341  0.578  1.384  0.527 
CMinsLowF  1.762  0.112  0.784  0.686  1.177  0.798 
CMinsMedF  1.832 0.119 1.185 0.890 0.903 0.880
CMinsHiF  2.918** 0.011 6.434 0.837 0.711 0.728
CMinsVHiF  3.528**  0.042 6.434† 0.837 0.711† 0.728 
HFreeSomeM  0.922  0.786  6.232  0.408  2.808  0.311 
HFreeAlwysM  1.571  0.228  6.232† 0.408  2.808†  0.311 
HFreeSomeF  0.935  0.768  4.344 0.386  3.490  0.143 
HFreeAlwysF  0.655  0.203  4.344† 0.386  3.490†  0.143 
Female  0.455*  0.084  0.722  0.651  0.597  0.526 
CarWeightLn  0.335***  0.002  1.260  0.920  1.241  0.866 
Other controls 

as in RF3 
 

yes yes yes

Hausman test 
statistic 1 (dof) 1015.8 (21) 0.000 72.1 (19) 0.000

Hausman test 
statistic 2 (dof)   5.8 (11) 0.889 8.4 (11) 0.679

GMM Criterion 
 

1.55E-30 2.05E-30 3.13E-30 
N 25,251 24,717 24,502
*, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.  
†In GMM2-3, coefficients for the two highest minutes of usage categories for each sex are constrained to be equal.   
Notes:  Dependent variable is the quarterly traffic accident count.  All models use optimal instruments and are just identified.  For GMM1, exogeneity is assumed 
and no additional instruments are used.  For GMM2-3, CMinsLow-VHi (male and female), the hands-free variables, and CarWeightLn are treated as 
endogenous.  For GMM2, the small set of instruments is used (see text) to form optimal instruments; for GMM3, the large set of instrument is used.  Hausman 
test statistics are with reference to pooled Poisson MLE. Hausman test statistic 1 tests all coefficients; Hausman test statistic 2 tests only the coefficients for the 
variables treated as endogenous.  All specifications include all the variables from RF2 in addition to the ones listed in the table.  Sample covers Q4 2001—Q3 
2002.  P-values based on robust standard errors.  Average cell phone usage IRR is the average IRR from the cell phone and hands free device variables, weighted 
by the number of drivers in each phone/hands-free device category.  See notes to Table 5 on IRR.   
 



 

 

Table 11:  Reduction in Accidents from a Ban on Cell Phone Use While Driving 
 
 High Estimate Central Estimate Low Estimate 

Estimation: 
 

Point 
Estimate 95% Conf. Int. 

 

Point 
Estimate 95% Conf. Int. 

 

Point 
Estimate 95% Conf. Int. 

    
ML3 & ML4 (gender-specific cell phone 

effects using small set of instruments 
for hands-free usage) 

4.1%      

      

      

      

   
 

   

   

(-29.5%,37.7%) 3.2% (-22.2%,30.4%) 1.9% (-11.7%,19.8%)

ML5 & ML6 (gender-specific cell phone 
effects using large set of instruments 
for hands-free usage) 

4.5% (-28.6%,37.5%) 3.5% (-21.4%,30.3%) 2.1% (-11.0%,20.0%)

RC2 & RC3 (gender-specific, random 
cell phone effects) 

 

1.9% (-30.5%,34.3%) 1.5% (-23.5%,27.2%) 0.9% (-13.3%,17.1%)

Assumptions: 
  

Percentage of drivers using cell phone 
while driving: 

63.9% 50.0% 30.0%

Source of cell phone use percentage: our survey 
 

range from Table 3 
 

range from Table 3 
  

Table notes:  Confidence intervals are asymptotic approximations calculated from the variance of the underlying estimations via the delta method.  Figures are 
calculated from individual-level mean accident rates using equation (1) in the text.  Compliance is assumed to be 100%, so that the mean accident rate for a 
driver after the ban is given by (1) with all phone usage and hands-free device indicator variables set to zero.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 

Figure 1:  Factors Affecting Collision Risk (Model 1) 
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Figure 2:  Factors Affecting Collision Risk (Model 2) 
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Bonus Figure:  The Aftermath 
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