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Purpose:

A major challenge traders, speculators and investors are grappling with is how to accurately
forecast Bitcoin price in the cryptocurrency market. This study is aimed to uncover the best
model for the forecasts of Bitcoin price as well as to verify the price series that offers the
best predictions performance under different periodicity of datasets.
Design/methodology/approach:

The study adopts three different data periods to verify whether frequency matters in
forecasting Bitcoin price. The Bitcoin price, from 01/01/15 to 11/01/2021, is trained and
validated on selected forecast models, including the Naive, Linear, Exponential Smoothing
Model, ARIMA, Neural Network, STL and Holt-Winters filters. Five forecast accuracy
measures (RSME, MAE, MPE, MAPE and MASE) are applied to confirm the best
performing model. The Diebold-Mariano test is used to compare the forecasts based on the
daily price with those based on the weekly and monthly.

Findings:

Based on the accuracy measures, the results indicate that the Naive model provides more
accurate performance for the daily series, while the linear model outperforms others for the
weekly and monthly series. Using the Diebold-Mariano statistics, there is evidence that
forecasting Bitcoin price is not sensitive to the data periodicity.

Research limitations/implications:

The study has a major limitation, which is the shared sentiment to apply actual Bitcoin price
series, and not the returns or log transformation for the forecast models. Notably, actual
data may sometimes be loud, hence increasing the possibility of over predictions.
Originality/value:

In forecasting, different approaches have been used, this paper compares outputs of both
statistical and machine learning methods in order to arrive at the best option for the Bitcoin
price forecasts. Hence, we investigate whether the machine learning tools offer better
forecasts in terms of lower error and higher model’s accuracy relative to the traditional
models.

1. Introduction

There is increasing research on Bitcoin (BTC) in the fields of theoretical and empirical finance. Bitcoin is a
cryptocurrency that relies on anonymous peer-to-peer trades via online and social networks interfaces. Its
transactions are organised on the Blockchain, an open-source algorithm that uses sophisticated protocol to generate
and verify records. Bitcoin shares known attributes with typical financial assets (Baur et al., 2018; Mikhaylov, 2020),
and has been exploited as medium of payments as well as accepted in exchange for alternative cryptocurrencies and
different national currencies. Bitcoin stands as a speculative asset in times of economic upheavals (Baur et al., 2018),
and sometimes perceived as a safe haven and substitute for traditional financial assets (Kliber et al., 2019). During the
wave of COVID-19, the price of Bitcoin soared higher relative to conventional assets and commodities (Hung et al.,
2020). Bitcoin remains unregulated by any coordinated monetary policy of central banks (Barontini & Holden, 2020).
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However, there are reports on the plan to create Central Bank Digital Currency to regulate Bitcoin and Digital
Ledgers (Bofinger & Haas, 2021; IMF, 2020; Auer et al., 2020).

The price of Bitcoin is associated with consistent short- and long- term volatility. The fluctuations in the price is
mostly attributed to the limited supply, demand increase, activities of trend chasers and speculations in the bitcoin
market. The excessive swings have immersed pressure on users, investors and regulators, leading to increasing
interests to forecast its price (Aalborg et al., 2018; Kliber et al., 2019). Studies that focus on forecasting the price of
bitcoin use either intraday, daily, weekly or/and monthly series (Bouri et al., 2021; Sitzimis, 2021; Uras et al., 2020).
Bouri et al. (2021) employ the functional forecasting approach to examine the intraday trading under the efficient
market hypothesis. They provide evidence of profitable trades based on the trading strategies. The bitcoin cumulative
intraday return is observed to be heteroscedastic, stationary, non-normal and uncorrelated. Uras et al. (2020) forecast
the daily price of bitcoin using different statistical techniques. The authors note that the price appears to be
indistinguishable from a random walk process. When the dataset is partitioned into shorter sequences, the evidence
confirms the regime hypothesis.

Forecasting the price of Bitcoin has implications for the financial markets. Suitable forecast models offer traders the
realistic direction of price, including information on whether to transact on the spot or future markets. The models
serve as tools that help investors to circumvent massive losses from sporadic volatility. An accurate forecast model
provides the opportunity to increase returns and trading (Munim et al., 2019), since the asset managers would avoid
risk by employing the model with least possible error (Kliber et al., 2019). The choice of a forecast model is
challenging due to asymmetric information, uncertainties and dynamic behaviours of miners. This study intends to
find the best forecast model for Bitcoin price, and on the basis of the different periodicity of datasets, verifies the series
that offers the best forecast performance.

We contribute to existing literature in two ways. First, we compare outputs of statistical and machine learning
methods in order to arrive at the best option for the Bitcoin price forecast. Forecasting with these approaches have
been used in different fields of research (Basher & Sadorsky, 2022; Ye et al., 2022; Chen et al., 2020; Rizwan et al.,
2019), including specific application to passenger traffic in coastal shipping (Sitzimis, 2021). We examine whether the
machine learning tools offer better forecasts than the traditional models, in terms of lower error and higher accuracy
of the model. This becomes necessary in the light of the continuous applications of machine learning approaches
which outputs often depict distinct forecast patterns. We train and validate the Bitcoin price series on selected
forecasting models as well as compute alternative forecast accuracy to decide the best suitable model. Second, we
consider the issue of data frequencies using daily, weekly and monthly series. We check whether the forecast models
of Bitcoin price are sensitive to data frequency. The need to test the resilience of periodicity becomes important as the
result would offer lead on best choice of dataset to evaluate bitcoin price forecasts, and by extension other alternative
cryptocurrencies.

The result shows that for the daily time-series the Naive model outperforms the others. The evidence based on the
Diebold-Mariano statistics indicates that forecasting the Bitcoin price is not sensitive to the data frequency. The rest
of the paper is organised as follows. Section two presents a brief trend movement of Bitcoin price. Section three is the
material and methodology, where the study summarises the various forecast models and present some measures of
forecast accuracy. Section four presents the results including the summary statistics, stationarity tests, forecast
models, and the forecast accuracy. Section five is the conclusions.

2. Materials

2.1 Bitcoin Price Trends

Although Bitcoin was reportedly invented in 2009, it first featured on a cryptocurrency exchange on February 6,
2010. Since then, it has witnessed unprecedented and continuous price movements. On March 18, 2013, the US
Financial Crimes Enforcement Network issued regulations on virtual currency and legal recognition of bitcoin, and
this was believed to motivate the significant increase in bitcoin price from USD149.08 on October 15 to about
USD1,242 on November 29. In 2014, there was massive price decline caused by the hacking of the then biggest
Bitcoin exchange (Mt. Gox), making the price to rally around USD340.00-USD531.05. The price decline continued
and stood at USD434.25 at 2015 end. The Bitcoin splits (hard forks) on August 1, 2017, marks monumental strides in
BTC price rallies, with massive run up (buy orders), pressuring the price to reach an all-time high of USD19,783.06
on December 17, 2017.

The increase could not be sustained, therefore the price dropped to USD13,412.44 by January 1, 2018. Figure 1
shows the daily price from July 1, 2018, to June 80, 2021. The price experience massive run-up, resistance, reversals,
different supports and consolidations. The price dropped to USD6,300 on October 31, 2018, and dipped further below
USD3,300 by December 7, 2018. The price started above USD3,700 in 2019, and stood at USD7,200 by year end. In
November 2020, the price rallied above USD18,000, regaining its losses from 2017 peak. The price later surpassed its
previous peaks, crossed above USD40,000 and landed on a remarkable daily average all-time high of about USD
64,863.31 on April 14, 2021. The price has fallen about 40% to USD40,044.54 in June 2021.
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Figure 1: Daily Price of BTC in USD
Source: (Author’s construct, 2023)

2.2 Empirical Highlights

Time-series literature recommends model-based and univariate-based methods for forecasting volatile assets. The
first approach predicts bitcoin price as dependent on some factors (Gbadebo et al., 2021; Jaquart et al., 2021; Koutmos
& Payne, 2020; Liang et al., 2020). Gbadebo et al. (2021) employ the Autoregressive Distributed Lag (ARDL) to
verify how Bitcoin price volatility responds to cryptocurrency capitalisation, equity index, trading volume and Google
search. The study confirms the existence of long run cointegration and conclude that market fundamentals drive the
volatility of price than information demand. Jaquart et al. (2021) use artificial neural network (ANN), random forests
(RF) and long short-term memory (LSTM) to analyse how blockchain, technical, sentiment and asset returns explain
Bitcoin price forecast. The quantile result shows the long-short trading strategy creates about 89% returns. Liang et
al. (2020) apply the GARCH-MIDAS model to investigate competing index predictors. They provide that the Chicago
Board Options Exchange (CBOE)'s gold volatility index exhibits strongest predictability for the BTC price volatility
relative to the CBOE volatility index, google trends, global economic policy uncertainty and geopolitical risk.
Koutmos (2020) uses a Markov regime-switching model to show that asset pricing factors such as stock price, interest
rate and exchange rates are the main determinants of Bitcoin price.

The application of the model-based approach has notable limitations, including depending on prior assumptions
made about the series’ distribution. As noted, (Aalborg et al., 2018), predicting Bitcoin price on the basis of these
fundamental indicators is still ambiguous. Hence, the second approach based on univariate times-series would be more
suitable for forecasting the Bitcoin price. Caporale et al. (2018) establish the existence of correlation amongst past and
present values of the BTC price. Many studies (Basher & Sadorsky, 2022; Ye et al., 2022; Aygiin & Giinay Kabakg,
2021; Chen et al., 2020; Munim et al., 2019; Adcock & Gradojevic, 2019; Mallqui & Fernandes, 2019; Rizwan et al.,
2019; McNally et al., 2018) confirm the robustness of the univariate approach. Ye et al. (2022) apply an ensemble
machine learning model to forecast Bitcoin’s next prices. They combine both the LSTM and Gated Recurrent Unit
(GRU) with stacking ensemble system and use sentiment indexes, technical indicators to forecast Bitcoin prices,
during September 2017 to January 2021. The results indicate that the near-real time forecast exhibit better
performance MAE of 88.74%. Basher and Sadorsky (2022) use random forests and bagging classifiers and the logit
models to predict Bitcoin prices. The accuracy for the random forests and the bagging classifiers range above 85% for
10 to 20 days prediction and between 75% and 80% for the 5-day forecasts. They conclude that the random forests
predict the Bitcoin price with much accuracy than the logit models. Aygiin and Giinay Kabakg1 (2021) explore the
MA, ARIMA as well as machine learnings (ANN, RNN) and convolutional neural network (CNN) of Bitcoin price
predictions. The RNN offers better performance relative to other methods. Hamayel and Owda (2021) employ three
machine learning methods (LSTM, bi-LSTM and GRU to predict Bitcoin, Litecoin, and Ethereum. The GRU model
show the smallest MAPE and RMSE, outperforming other algorithms.

Chen et al. (2020) compare support vector machine (SVM) and long short-term memory (LSTM) and showed that,
for the next day BTC price, the SVM provides a higher accuracy of 65.3% classification. Demir et al. (2019) predict
the price of Bitcoin using methods such as long LSTM, NB, as well as the nearest neighbour technique. These
methods achieved prediction accuracy between 81.2% and 97.2%. Mallqui and Fernandes (2019) employ artificial
neural network (ANN) and support vector machines (SVM) algorithms in regression models to forecast the
maximum, minimum and closing Bitcoin prices. He concludes that SVM algorithm outperformed the ANN with
lowest mean absolute percentage error (MAPE) of 1.58%. McNally et al. (2018) employ the Bayesian recurrent neural
network (RNN) and LSTM to forecast the daily movement in the price of Bitcoin. The LSTM achieve a high
performance with the classification accuracy of 52% and a root mean squared error (RMSE) of 8%. Munim et al.
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(2019) employ an autoregressive integrated moving average (ARIMA) and a neural network autoregression (NNAR).
They split the data into two training-sets, and for the first training-set, the NNAR outperforms the ARIMA, while for
the second, the ARIMA outperforms the NNAR. Velankar et al. (2018) use the generalized linear (GLM) model and
Bayesian regression to forecast the daily average price change signals and uncover a prediction accuracy rates of 51%
with the GLM. Adcock and Gradojevic (2019) use the feed-forward neural networks (FNN), GARCH-M, ARIMAX,
random walk and multiple regression to predict prices. They examine how 50-200 days moving averages (MA) of
bitcoin volume and VIX affect its prices, which shows little significance on its forecasts. The FNN indicates the
highest accurate density and point forecast relative to other models.

3. Methodology

3.1 Forecast models and predictive accuracy

Organizational the study employs univariate-based forecast models. Each model is evaluated based on the accuracy of
its predictions vzs-d-vis actual data. We adopt five methods (RMSE, MAE, MPE, MAPE and MASE) to assess the
accuracy of the forecast methods. To avoid the over-fitting problem, we trim the time-series into two sets: Training
and validation (test) sets. We scrutinise the data behaviour as well as consider the data frequency and forecast horizon
in deciding the length for the validation periods (Hyndman & Athanasopoulos, 2021). We select a forecast horizon
which does not exceed the validation periods to arrive at training-set (01\01\15-80\06\19) and validation-set
(01\07\19-11\01\2021) for the daily time series. The weekly has training (01\01\15 — 27\06\19) and validation
(28\06\19 — 11\01\2021), while the monthly is trained on (01\01\15 — 01\07\19) and validated on (01\08\19 —
11\01\2021). The forecast errors of the models in Table 1a are used to compute the accuracy measures. Table 1b
presents the various measures of forecast accuracy.

3.2. The Data

We employ Bitcoin price from the Finance.yahoo’s official website. The database stores historical data on Bitcoin price
from the real time price on the CoinMarketCap Exchange. The daily data obtained, spanning 01\01\15 to 11\01\21,
reports the opening, lowest, highest and closing prices. We apply the closing price in line with previous studies (Uras
et al., 2020; Chen et al., 2020; Munim et al.,, 2019). Previous studies apply daily data (Uras et al., 2020; Chen et al.,
2020), while some others employ weekly (Othman et al., 2020) and/or monthly (Ramadhani et al., 2018) series for
forecasting bitcoin price. Because we aim to verify whether periodicity matters in the performance of the forecast, we
use three different datasets.

In this paper, we do not apply log transformation for the different series used. We share the sentiments to verify the
Bitcoin price forecasts in its original form because there are downside to forecasting security prices or returns in
logarithm (Hudson & Gregoriou, 2010) or other transformation forms (Meucci & Quant, 2010). As noted, (Hudson &
Gregoriou, 2010), the mean of a set of random variables computed using logarithmic is often less than the mean
computed from the simple set, specifically by an amount dependent on the variance of the set. In effects, when the log
series are applied, ceteris paribus, higher variance will inevitably reduce the mean price or returns.

Table 1a: Summary forecast models

Model Explanation Model Algorithms (Equations) References
Naive Model ~ Naive model uses observations of Vrenr = Vr Stenqvist &
(NAIVE) the previous period to forecast the e =Yr — Vrenpr Lonno (2017)

next. The method takes the last
observation as the forecast. Let
y: (t =1,2---,T) denotes Bitcoin
price, yr as actual value of the last
observation. Divide y; to: training
set (¢ = 1, 2,...,n) and validation set
[t=n+1,n+2,..,n+v(=T)]; e
is forecast error.

(Yr+nj) = h-step forecast.

Linear Linear trend creates forecasts values Y=o + Y. T + ¢1T2+5t; Bisht & Agarwa
Trend been a generalisation of y, as a renr = Ve + €s (2017)
(LINEAR) time-trends. The trend-line g =9 -y Ostertagova
; . ) t = Yr+nr ¢

approach is used if the y, series (2012)

exhibits steady increase or decrease

overtime and an error term (&). A

polynomial function for y, depends

on Trend (7), trend square (T?) and

a drift ().

Exponential The ETS creates forecast weighted Ve = e + Bet + St‘p + & Liantoni &
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Smooth
Model
(ETS)

averages with the recent
observations more weighted than
distant ones when determining the
forecasts. The weights
((Dj) diminish exponentially
[0 =0/—1<¢/ <1 4=
1,2,---m)]. The 38 (time-varying)
components: mean (i;), slope (B¢)
and seasonality, S, (p = 1,2,---, P)
for pseasons, V f, B, =0 & Vp,
S¢p = 0. The smoothing starts by
computing at t = 1. Ty is smoothed
slope that estimates f;, L; is
smoothed level that estimates pg; S;
is  smoothed seasonality that
estimates S;,. [Initial estimates
smoothing-states: ¢ = 0: Ly, Ty, and
So0.1,°*»Sop use for the Smoothing
equations (L, S and Ty).

Li=a:—Se—p) + (1 — )L
Se =060 — L)+ (A —08)S—p
Vranr = Le + St—pin

Invertible region:

max (—Pa,0) <6(1—a) <2-—
a.

Agusti (2020)

Olvera-Juarez &
Huerta-
Manzanilla
(2019)

ARIMA
Model

ARIMA has an autoregressive
[AR(p)], a moving average
[MA(¢)] and an order of
integration components, where d is
the number (#) of differencing
required to attain a stationary
CARMA (p, ¢)] model and ¢ is the
order of the MA component. y is the
intercept (drift time-series, which is
often zero), Y;—; (i = 1, ... p) is
previous time series periods until
lag p, 8; is the parameter for y;_;
, & 1s the error term in time ¢, &_;
is the error term of all previous
periods until lag q and &; (j = 1,
...q) s the parameter for &_;.

General ARIMA (p, d, g) model is:
P

Aye =p+ Z 6; Ay, +

i=1

q
Z 61 gt—j + &t
j=1

Ay =Y = Ve—i

Munim et al.
(2019)

McNally et al.
(2018)

Bakar & Rosbi
(2017)

NNAR
Model

NNAR is a sophisticated neurone-
like elements assembled in layers.
‘While simple NNAR is analogues to
linear regression model with inputs
(predictors) and output (dependent
variable), the complex NNAR is
nonlinear. y; is actual state of
output unit j in the input-output;
Xj is the input — vector; a; is
constant for node j, W; ; is weight-
vector from input node i to output
node j, and m is # of inputs. The
parameters dq, @y, @3, ..., Ay & W, 4,
.. Wy 3, are 'learned' from training
data. Before training, we restrict
W;; & set as 0.1. If y; is
transformed via sigmoid squashing,
we get s(y), where B, k, ¢ and T are
constants. The learning is reduced
to a minimum error with repeated
changing of W ; by an amount (§;)

proportional

NNAR error
algorithms:
yi = a; + X" WiX;
_ k
5(}’) 1_ B + 1+e™y
E =33} -9
5j = (371' - Yj)f'()’j)
Ve-1> » Ye—pr Yeemo = Ye—pPm)

back-propagation

Chen et al.
(2020)

Munim et al
(2019)

Mallqui &
Fernandes (2019)

McNally et al
(2018)
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desired state and the learning rate,
A is kept constant. To forecast with
the NNAR, the lagged values of the
univariate series is used as inputs. A
feed-forward NNAR with one
hidden layer 18 denoted
NNAR(p, k) or NNAR(p,P, k),
where p is lag-length or p last
observations used as inputs, k is the
# of nodes (neurons) in the hidden
layer and p is # of seasonality.

STL
Model

STL adopts a non-parametric
algorithm  that iterates loess
smoother to refine y;into 3
components. Y, consists of a trend
(Ty), a seasonality (S;) and an
irregularity (l;). The STL assumes
S; has the same cycle periodically.
The cycle adopts a spectral analysis
which shows the characteristics of
oscillations of different
wavelengths. The spectrum of a
process Y, with an autocorrelation
function (w;) where, X7 | w;| < o is
denoted y(w;). STL protocol set for

T; smoothing parameter is: Lwindow

> [R2TEREY) ust be  odd

swindow

integer = 7).

e =T, + S +1,
(additive split)

Ve =T *Sex 1y
(multiplicative split)

y(w,) =w+ 2 Z w; cos(2mwT)

=1

Hyndman &
Athanasopoulos
(2021)

Holt-
Winters
Model
(HWM)

HWM 1is a typical deterministic
model with a trend, seasonality and
residuals. HWM computes a smooth
series  Yrype With  recursively
updating equations that allow for
the iterative  computation of
forecasts  based  additive  or
multiplicative protocols. The
additive algorithm is criticised not
to generate best estimates for time-
series level and seasonality. We
adopted a multiplicative algorithm,
which assumes the seasonal effect is
proportional to a time change. The
level (p;), trend(b;), and seasonality
(s¢) which depend on the smoothing
parameters « , B, ¥ € [0, 17]. The
forecast h-step at time T + h given
data up to time t, and the constant k
is the seasonality. The estimation of
a , B, and y is through the
minimisation of randomly chosen
errors. To estimate a, 8,y € [0, 17,
a robust smoothing process centred
on M-estimation uses: Jrip =
arg min YI_; e,2.

We presented forecast for HWM
with trend but no seasonal
component HWM(y[False]).

Ve = U+ Bet + Sep + &

Ytk + (1 = a)(Pe-y + be_q)

= a—
Dt St

by = B*(Pe — Pe-1) + (1 — f)be_4

Yt

—— + (1 —y)s,
L o Lk

St =Y

5;T+h|t =(p: + hbt)st_k_'_h?z

Briigner (2017)

Ruang et al.
(2016)

Table 1b: Predictive accuracy measures
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Accuracy measure Accuracy scale/computation

1 m 1/2
RMSE _ 2
—> (e
t=1
m
1
MAE — ) letl
m
t=1
m
100 e,
MPE —_ —
m t=13’t
m
100 e,
MAPE — ) =]
m P YVt
n+m n
1 1
MASE — > led /=== 1y =l
t=n+1 t

Mean Absolute Error (MAE) gives the magnitude of the average absolute error in all periods. Root Mean Square Error (RMSE) and Mean
Absolute Percent Error (MAPE) provide a percentage score of how forecasts deviate from the actual values. MASE compares predictive model
performance to the Naive forecast on the training set.

Source: (Author’s construct, 2023)

3.3. Estimation Process

We adopt a static forecast approach for estimation. The approach ensures the univariate variable's actual value in
previous periods is employed to estimate each step forecast. We follow the standard process of time-series forecasting,
identifying the time series into training sample (observed datasets) and validation samples (observed datasets). We
model the data with training samples and evaluated the forecast performance with validation samples. We combine
the series, train the model on the full observed data and use the performance to forecast future prices. The data are
trained on all forecast models with training datasets. We select a test period that mimics the predictive horizon for the
future forecasts' valuation of performance.

We adopt library (forecast) and library (fpp2) in RStudio. We apply the stl (time series, s.window ="periodic")
function to decompose y, by obtaining T; using loess and calculate S; (and I;) as y, — T;. By default setting for the
s.window parameter, the function stl() assumes S, follows the same cycle yearly. To ensure equal-spaced data, the
study resolves the problem of non-multiple integer periodicity in infra-monthly high-frequency data by following
Hyndman and Athanasopoulos (2021). The study periods have two leap-year-days (29\02\2016 and 29\02\2020). We
set the frequency at 365.25 for daily series with the function ts(dataset, start = ¢(2015, 1), frequency = 365.25).

In the computation of the HWM, the study omits the seasonal component then set the function Holt-Winters
(dataset, gamma = false) which allows for 865 - long vector of the initial seasonal pattern as its argument. We could
not do otherwise since the Holt-Winters function (dataset, gamma = "integer") requires frequency to be multiple of
the length of observations for the forecast to be computed in the next cycle. The ets() functions ignore the seasonality
for infra monthly data with a frequency greater than 24 during computation. The function aufo.arima() library in R
selects and returns best ARIMA model through AIC, AICc or BIC! values. The order of the ARIMA model was
selected through automatic iteration. The nnetar() function fits an NNAR(p, P, k),,, model. If the values of p and P are
not defined, the lag is selected automatically according to the AIC for a linear AR(p) model.

Before we proceed to forecasting, we complete three diagnostic tests - Box-Ljung (BL) autocorrelation test, Box-
Pierce (BP) x-square residual test and the Jarque-Bera (JB) normality test to determine the validity of the forecast
models. The LB test is a portmanteau test for the "overall" randomness based on some lags, with the test null that the
residuals from the forecast model (fitted) have no autocorrelation. The BP test with a test statistic (Qm) verifies
whether the series is pure white noise. The Diebold-Mariano (DM) test compares two forecast models. It determines
whether one forecast model is more accurate than the other.

4. The Results

4.1. Data statistics

Table 2 presents the deterministic statistical properties for the price of Bitcoin for each periodicity, including their
training-set and validation-set partitions. The table shows that all series are asymmetrically distributed with positive
skewness. For the training and validation sets, the daily dataset with 1.299 and 3.038 degree of skewness, respectively
appears more skewed compared to other frequencies. The training samples appear to be mesokurtic (moderately
peaked), while the others are leptokurtic (high peaked) for all frequencies. The outliers are more on the validation

1 Autocorrelation Function (ACF); Partial Autocorrelation Function (PACF); Akaike Information Criterion (AIC); corrected Akaike
Information Criterion (AICc); Bayesian information criterion (BIC).

75
DOI: 10.25108/ijbesar.153.06



samples. We reject the normality null for all the data partitions with a highly significant Jarque-Bera test. The Bitcoin
price plot (Figure 1a) supposes the data may not be stationary. The non-stationarity would be confirmed with the unit
root test.

Figure 1a —1f represent plots for the daily Bitcoin price (full data), the training sets, validation periods, the first
difference, log daily price and the log-difference. The weekly (Figure W1 — W6) and monthly (Figure M1 — M6) plots
are presented in the appendix. The plots replicate same shape with the daily plots, except that the infra-monthly plots
show more volatility, outliers, and breaks. The daily series presents multiple, non-integer periodicities associated with
high volatility with microstructure effect (Urquhart, 2018), while the monthly series appear smoother with less
clustering. All observed series are chaotic with spiky protrusions. The log-transformed series appear with smoother
striations.

4.2. Time-series decomposition

Figure 2a — 2c present the decomposition of daily, weekly and monthly. We apply the stl() function to decompose the
observed data (topmost graph) into key time-series components. The function segregates the deterministic (‘trend'
and 'seasonal') and stochastic ('random') components of the Bitcoin price series. We apply the daily, weekly and
monthly seasonal window. The trend component reflects the long-term progression (upward movement) of the series
over-time, while the remainder (residual) is convergence with mean reversing. The seasonality is oscillatory with
repetitive pattern over-time. In the daily series, the trend appeared unchanged and stable around January 2015 to
February 2017. After these periods, the frequency and amplitude of the cycle upsurge over time. With the Loess
framework, Bitcoin price shows exponential trends upward with additive seasonality. The residuals are quite random,
particularly exhibiting high variability around late 2017 during the first remarkable price peak. Table 3 presents the
summary statistics of the STL decomposition.

Table 2: Data deterministic statistics

Daily Weekly Monthly

Statistics Training  Validation  Full Training  Validation  Full Training Validation  Full

Mean 3365.8 10923.4 5290.4 3368.0 11299.3 5401.1 3346.8 12797.2 5901.0
Median 1184.6 9641.5 4141.9 1166.0 9607.2 4255.5 1140.8 9696.3 4411.8
Maximum 19518.0 40402.0  40402.0 17517.1 38255.1  38255.1 18742.3 34662.5  34662.5
Minimum 194.3 4987.6 194.3 194.3 5791.6 194.3 231.5 7285.0 2381.5
Std. Dev. 3726.3 4978.3 5248.7 3718.6 5779.0 5545.8 3667.2 7988.7 6649.0
Skewness 1.8 3.0 1.6 1.2 2.9 1.9 1.1 2.0 2.2
Kurtosis 4.4 14.2 8.3 4.1 12.0 9.8 3.3 5.7 9.6
JB(Stat) 595.8 3787.8 3568.8 78.4 384.9 795.1 11.0 19.2 195.9
JB (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0041 0.0001 0.0000
# of Obs. 1642 561 22038 235 81 316 54 20 74

Note: JB: Jarque-Bera, # of Obs.: Number of Observations
Source: (Author’s construct, 2023)
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Figure 1a: Daily Bitcoin Price in USD (01-15-21 to 11-01-21)
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4.3. Stationarity test

The stationarity result (Table 4) shows that the ADF test accepts the null of non-stationarity, with 7, > ADF, in all
the test equations. The ERS statistics for the validation-set (daily) and training-set (weekly) appear stationary but this
was refuted when we add the linear trend, hence the ERS nulls are accepted at 1%. The KPSS rejects the test’s null of
stationarity at 1%. The results confirm non-stationarity for the training, validation and combined data, for all series.
The first difference tests are all stationary and significant at 1%, except for the validation-set for monthly series at 5%
(no trend) and 10% (linear trend). Bitcoin price for each periodicity is clearly, / (1), and indistinguishable from a
random walk.

4.4. Training the Bitcoin price data

We train the daily series for 1642 days (01\01\15 — 30\06\19) and evaluate the models for a validation period of 561
days (01\07\19 — 11\01\2021). The weekly data was trained for 235 weeks (01\01\15 — 27\06\19) and validated for
81 weeks (28\06\19 — 11\01\2021). The monthly series was trained for 54 months (01\01\15 — 01\07\19) and
validated for 20 months (01\08\19 — 11\01\2021). For the daily series, the Naive forecast produces a residual
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standard error of 220.38. The linear model and its trend coefficients are significant with the model p-value of
approximately zero. The ETS (M,4d,N) parameters reported are [ (0.9999), (0.1887), W(0.8)], with Initial states
[(a = 308.66,b = —3.43)7, and o (sigma) = 0.08. The ARIMA (auto) uses the lowest AIC to select an ARIMA (2,
1, 0) while considering the specification's stationarity test. There was an average of about 20 different network
specifications in the neural network.
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Figure 2c: STL decomposition of Bitcoin price (monthly)
Table 3: STL decomposition statistics
8 Daily Weekly Monthly
%
£
& Seasonal  Trend Random Seasonal  Trend Random Seasonal  Trend Random
Min. -1340.10 278.04 -6274.98 -278.75 32.08 -6207.36 -1007.97 -266.34 -5626.28
1st Qu. -544.17 630.86 -1389.27 -92.46 637.03 -2789.17 -428.82 676.24 -1265.32
Median -116.95 5863.26 -112.48 113.96 5886.31 -1871.57 -210.77 5980.26 24.66
Mean 102.54 5370.82 -182.97 1084.65 5483.00 -1116.60 46.12 6019.32 -164.46
srd Qu. 138.14 8493.48 711.59 2435.79 8471.77 142.39 724.53 8505.58 613.74
Max. 377714 18402.07 19826.54 3153.41 20124.91 16912.48 2022.29 26240.30 7031.75
IQR 682.30 7862.60 2100.90 2528.00 7835.00 2932.00 1153.00 7829.00 1879.00
IQR% 8.40 97.00 25.90 31.20 96.60 36.10 13.80 93.70 22.50

Qu.: Quartile. IQR: Interquartile range IQR%: Percentage IQR.
Source: (Author’s construct, 2023)
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Table 4: Stationarity test

Level (y;) Difference (Ay,)
t, ADF, t, ERS, T, KPSS, T, ADF, Prob. t, ERS, T, KPSS,

Daily

Training o84 -343 -005 -2.57 3.14 0.74 -26.5 -3.43  0.00 -26.50 -2.57 0.11 0.74
Validation 519 334 345 -257 139 0.74 778 =344  0.00 -2.1%  -1.94 1.18 0.74
Full -L4s =897 957 311 427 0.74 -28.3 -3.43  0.00 -11.41 -2.57 0.52 0.74
Training* 218 831  _1 g6 _348 0.34 022 -26.5 -3.96  0.00 -8.32  -3.48 007 0.22
Validation® g g7 -3.97 042 -3.48 0.58 0.22 -8.47 -8.97 0.00 -348  -0.12 0.19 0.22
Full* 116 396 077 348 0.19 0.22 -284 -3.96  0.00 -9.09  -3.48 0.52 0.74
Weekly

Training 73 _346 326 258 097 0.74 -7.67 -3.46  0.00 -7.61  -2.58 0.10 0.74
Validation 199 _351 130 -2.59 0.66 0.74 -599 -851 000 -5.98  -2.59 0.68 0.74
Full 099 -845 198 257 170 0.7% -5.94 -3.45  0.00 -5.835 =257 041 0.74
Training* 936 400 -042 -3.50 030 0.22 -770  -4.00  0.00 -5.48  -346 006 0.22
Validation® |15 408 -1.01 -3.65 025 022 -6.72  -4.08 000 -5.58  -3.65 0.14 0.22
Full* 075 -3.99 122 -347 0.9 022 -6.18  -3.99  0.00 414 -347 0.15 0.2
Monthly

Training  _j94 356 1:38 -264 057 0.74 -4.68 -3.56  0.00 474 -2.61  0.11 0.74
Validation 4 99 -3.81 -0.63 -2.69 048 0.74 -4.58 -3.81 0.00 -2.58 -2.69 045 0.74
Full 0.34 -3.52 146 -2.60 101 0.74 -4.99 -3.52  0.00 -4.97  -2.60 0.5 0.74
Training* 559 414 223 -377 019 022 -4.66 -4.14  0.00 -470  -3.76  0.08 0.22
Validation® 76 _4.50 -2.08 -8.77 0.18 0.22 -8.49 -4.50 0.07¥*  _397  -377 0.14 0.22
Full: -1.60 -409 -1.16 -3.67 009 0.22 -5.27 -4.09  0.00 -5.33  -3.69 0.13 0.22

ADF,: MacKinnon one-sided p-values; Elliott-Rothenberg-Stock (ERS,); Kwiatkowski-Phillips-Schmid¢t-Shin (KPSS,).
ADF Null (Hy): Nonstationary; DF-GLS Null (H): Non-stationary; KPSS, Null (Hy): Stationary

“Test has intercept with linear trend, others are with no (time) trend; the Critical Value(C.V.) reported are at 1%;

** stationarity at 5%; *¥** Stationary at 10%.

Source: (Author’s construct, 2023)

The NNAR (4, 1, 8) with 02 estimated as 49270 was selected based on test-sample. We estimate Holt-Winters model
with trend and without seasonal component, which accommodates for non-multiple of the number of observations.
The smoothing parameters and coefficients obtained are [a (1), £(0.022), y(False)] and [a (11636.46) and b (87.49)7,
respectively. We estimate the weekly and monthly sets and compared the forecast performance with our daily
counterparts. Next, we apply these models to predict the price of BTC for the validations periods to shed light on
performance. Figure 3a—3g shows the time-series plots of actual and predicted values during training and validation
periods for the daily series, while Figure 4a—4g and Figure 5a—5g (appendix) show same for weekly and monthly
datasets. Table D.1 (appendix) presents a 40-day (01/07/19—09/08/19) summary of predictions, as well as forecast
errors (absolute and percentage) in the validation periods for the daily price of Bitcoin. The table presents the average
point forecast, 80%, and 95% intervals for each forecasting method. A cursory look at the table indicates the result
favours the Naive forecast performance — which presents data-frame of lower errors — relative to other predictive
measures. The forecast accuracy measures are employed to make appropriate judgment on the best forecast model.

4.5. Forecast accuracy

Table 5 presents the training sample and validation sample forecast performance evaluated with the forecast accuracy
measures. When we trained the daily series on each forecast model except for the MPE, four of the accuracy measures
[RMSE, MAE, MASE and MAPET] showed that the Naive model performed better than other predictive models. The
Naive model has the least values for the various measures as indicated [with asterisk *7 in Table 5. With the weekly
series and using the RMSE, MAE and MAPE as evaluation benchmarks, the Naive method still outperformed other
models. However, the MPE support that the linear model is best and the MAPE indicates that the Exponential
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smoothing model outperformed others. The monthly series also confirmed the superiority of the Naive method over
others as three of the accuracy measures when we trained with the monthly data shows Naive method has the lowest
forecast error. Turning to the validation samples evaluation, the results supported the HWM'’s superiority over others
for the daily sample, except for the MAPE and MASE measures.

Table 6 presents the result of the DM tests. We compare the accuracy of the forecast performance from two
different models under same data frequency. The result is similar to reports in Table 5. Comparing the Naive model
(Fy) to another forecast models (F,) for each of the data frequency, we confirm that the Naive model is more accurate
in forecasting the test sample price (p < 5%), which is not surprising since a better forecast for BTC price is its last
previous price. For all the data frequency, the DM tests confirm the ARIMA superiority over the NNAR in the test-
sample periods (Munim et al., 2019). We complete some residuals diagnostic tests to verify the validity of the forecast
models (see Table D.2 in the appendix). The Lbox (Q¥*) statistics suggest the presence of autocorrelation, while the
Om (xz) test indicates the occurrence of conditional heteroscedasticity, except for the Naive model.
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4.6. Future forecasts for Bitcoin price

We predict the out-of-sample forecasts of the price for the daily periodicity. We combine the training and validation
periods and estimate the forecast models on the full data. A total of 2203, 816 and 75 observations are applied for the
daily, weekly and monthly series, respectively. The forecast periods follow directly behind the closing of validation
periods starting January 12, 2021. The forecast horizon does not exceed the validation periods. We compare the
prediction intervals for different models with different levels and decreasing certainty for varying future depicted by
the prediction cone (Figure 6a—6g). The figures show the future forecasts for daily Bitcoin price. Table 7 shows 4.0-
days forecasts and future returns (percentage) for the daily price. The value of the last observed day Bitcoin price
($34,662.48) was used to calculate the static percent increase for the 40 days (12-01-2021— 20-02-2021).

4.7. Is the Bitcoin price forecast sensitive to the choice of data frequency?

We check whether forecasting the price is sensitive to the data choice. The forecast accuracy result obtained is
presented in Table 5. For the weekly series, the linear is superior except for the MPE measures, indicating that the
HWM outperforms others. In contrast, for the monthly series, the Naive method outperforms others except for the
MPE that shows the ETS is superior. Comparing with daily series, we conclude that frequency matters in forecasting
the Bitcoin price series. Overall, the results of the model comparison tests (Table 6) establish that irrespective of the
data frequency, the Naive model is superior and more accurately predicts the price than others. The DM test is
sufficient to submit that forecasting the price is not sensitive to the periodicity.

Table 5: Training-sample and validation-sample forecast performance

Training Validation
Forecast RMSE MAE MPE MAPE MASE RMSE MAE MPE MAPE MASE
Methods %) %) (o) (o) @ $) $) (%) (%) )
Daily
NAIVE 204.83% 87.451% 0.145 1.990% 0.08%* 4993.43 3184.47 -16.70 28.75 0.94%
LINEAR 2591.4 1767.5 -16.96%% 144.0 0.52 4900.70 2540.04 6.593 18.46% 0.95
ESM 215.07 91.292 0.112 2.050 0.038 5011.04 8276.57 -18.42 29.98 0.96
ARIMA 281.55 133.28 0.071 2.790 0.04 5082.21 3607.48 -23.14 32.08 1.06
NNAR 221.97 108.72 0.432 2.230 0.038 5769.21 4492.51 -33.83 44.52 1.32
STL 2928.75 107.80 0.280 5.480 0.08 5069.70 8424.49 -19.72 31.56 1.01
HWM 220.31 92.241 0.121 2.060 0.08 28056.3%* 25298.4%* -250.8%% 250.8 7.44
Weekly
NAIVE 479.74% 242.38% 0.752 6.610 0.07* 6049.76 4670.00 -38.58 44.00 1.38
LINEAR 2552.6 1748.6 -16.4:8%* 142.0 0.52 5643.41%% 2786.10%* 6.512 18.48%* 0.88%*
ESM 589.89 270.74 0.310 6.280% 0.08 25218.2 22958.2 -225.5 225.5 6.80
ARIMA 695.08 368.39 0.472 8.850 0.11 6246.72 4975.46 -39.21 45.76 1.48
NNAR 532.01 302.70 -1.68 6.660 0.09 83385.71 6578.63 -28.16 58.98 1.95
STL 615.87 328.21 1.701 19.90 0.10 7649.24 6951.81 -65.75 72.24 2.06
HWM 591.38 267.27 0.940 6.240 0.08 36425.1 32865.4 -816.4% 316.4 9.74
Monthly
NAIVE 1210.5 636.69% 4.061 18.54% 0.19% 8010.76 4502.49 -4.320 27.71 1.82
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LINEAR 2464.3 1784.5 -16.28% 141.6 0.52 7991.66%* 4108.84%* 12.17 21.19% 1.20%%

ESM 1316.8 657.19 2.703 14.00 0.20 19550.7 17722.8 -167.3%* 167.3 5.20%%
ARIMA 1764.3 965.43 1.971 18.32 0.28 7451.33 475%4.54 -13.73 31.21 1.39
NNAR 1088.7* 694.4:3 -6.571 20.85 0.20 9501.09 5416.06 28.82 29.33 1.59
STL 1218.9 787.38 10.33 61.87 0.23 8411.28 4519.836 10.44 24.68 1.32
HWM 1305.3 648.19 9.363 16.52 0.19 7822.63 4268.52 -1.334 25.29 1.25

MASE is an index (I) which compares a chosen model predictive performance (for instance, the MPE) to the naive forecast on the training set.
The index value less than 1 indicates that the compared model has a lower average error than naive forecasts (in the training period). If the index
value is higher than 1, it indicates poor performance relative to (training period) naive forecasts.

* Naive method better.

** Other model outperformed naive.

Source: (Author’s construct, 2023)

Table 6: The Diebold-Mariano (DM) test for test-sample

(V)
Fy (=) ETS LINEAR ARIMA NNAR STL HWM
Daily
76 (4.34 (2.20 - (1.75 - (3.97 - (2.20 - (2.52
NAIVE | 2 x 1071%) -1402 x1071%) 642 x1071%) 752 x107%) 897 x10716)  7.38 X 10713)
(2.20 - (2.20 - (2.20 - (6.48 - (2.48
ETS -14.03 X 107%) 994 x107'2) 903 x1071%) 788 x1071%) 738 x 10713)
13.9  (2.20 157 (2.20 - (7.79 - (3.96
LINEAR 5 X 10716) 4 x1071%) 814  x1071%) 552 x 107%)
157 (2.20 - (7.95 - (2,51
ARIMA 4 x10716) 814  x1071%) 7.8 x 10713)
- (2.20 - (2.56
NNAR 896  x1071%) 7.8 X 10713)
- (2.47
STL 7.38 x 10713)
Weekly
42  (3.66 (1.45 - (3.83 -
NAIVE |1 x1071%) -542  x1077) 38.44  (0.0007) 2.59  (0.0052) 4.20 x 107%) 141 (0.1612)
(o2 - - (8.53 (3.83 }
ETS -5.50 X 1077) 38.44  (0.0006) 553  x107%)  4.20 x107%)  3.65  (0.0008)
(1.02 (4.07 (4.67 (3.91 (1.46
LINEAR x1077)  5.21 x1077) 609 x107%)  4.19 x 1075) 5.42 x 1077)
(3.85 (1.46
ARIMA 3.93  (0.0001) 4.20 x1075%) 542 x 1077)
(3.81 -
NNAR 4.20 x 1075) 1.85  (0.0661)
(3.87
STL 4.20 x 107%)
Monthly
07 (7.79% _ ;
NAIVE 7 1075) -2.76  (0.0079) 2.13  (0.0374) 2.05 (0.0453) 2.22  (0.0308) 2.24  (0.0495)
ETS -3.16  (0.0002) 8.25  (0.0020) 3.34  (0.0015) 2.06  (0.0443) 2.37  (0.0214)
LINEAR 1.93  (0.0589) 2.66  (0.0031) 2.08  (0.0429) 241  (0.0194)
ARIMA 2.05  (0.0453) 2.04 (0.0464) 2.35  (0.0150)
NNAR 2.35  (0.0225) 2.26  (0.0281)
STL 2.32  (0.0198)

DM test compares two forecast models [Fy, F,]. It shows whether (F;) is more accurate than model (F,). The test is based on the loss differentials,
dy=L(ey) — L(eye). Ho:E[d;] =0 (F; is same as F,) and Hy:E[d.]# 0. Assume e, =3p,pr — Y, sample mean loss differential

d=T"1 Z{=1[L(e1,t) - L(ez,t) and DM statistic (DM,) = E/ T-1[2nf (0)] = d ~ n(0, 1), where 2mf(0) is a consistent estimator of the asymptotic

variance, VTd. Since DM, converge to a normal distribution, Hy is rejected at 5% if |DM;| > 1.96, but cannot be rejected, if [DM;| < 1.96. Probability
(p) < 0.05 indicates that F; is better. Figure in the parenthesis indicate p —value, others are DM;. Source: (Author’s construct, 2023)
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5. Conclusions

The study aims to compare the outcome of statistical and machine learning models, and to verify how the different
periodicity of the Bitcoin price series, including daily, weekly and monthly, performs in the forecast. We completed
forecast models using the Naive, Linear, Exponential Smoothing, ARIMA, Neural Network, STL and Holt-Winters
filters, and apply the standard measures to evaluate the forecast accuracy. The results indicate that the Naive model
provides more accurate performance for the daily series, while the linear model outperforms for both weekly and
monthly series. Using the DM statistics to check the forecast equality of the model, the evidence shows that
forecasting Bitcoin price is not sensitive to the data periodicity.

The findings have some significant implications. First, because of information asymmetric, increasing economic
uncertainties and other markets dynamics, adopting forecast models to predict the directions of Bitcoin price is vital.
Second, since Bitcoin has now attracted different stakeholders, including institutional investors, the forecast models of
Bitcoin price would serve as guides to make informed decisions in the cryptocurrency markets. Accurate prediction
would offer warnings signals to investors, traders and other users in order to circumvent or at least minimize
potential-risks due to excessive volatility. Third, the models have implications to drive asset allocations. Asset
managers may want to avoid losses by adopting the least error model to predict the likely direction and value of
bitcoin price. In periods where volatility is excessive, and the outcome of forecast models becomes sensitive to changes
in the training sets, managers may switch funds to invest in financial market assets.

The study has two major limitations: first, for the different periodicity, we apply only the actual price series, and not
the returns. Since actual data is usually noisy and may increase the risk of over predictions, we suppose future
research can consider other transformation, involving using logarithm or even log-returns. Second, we do not
consider the issue of intraday trading. By so doing, we have ignored to convert the models to a trading strategy,
which can be compared to possible Monte Carlo of trading strategies where the buy/sell decisions are completely
random.
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Weekly predictions in the validation period
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Figure 4a: Weekly predictions in the validation period Figure 4b: Weekly predictions in the validation period
(Naive model) (Linear model)
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Figure 4c: Weekly predictions in the validation period Figure 4d: Weekly predictions in the validation period
(ETS model) (ARIMA model)
= Traning San(Cteand) 4 = Treneg S& f0osrad s
§ | = Viidation Set 1 0mranch = Vakdadon Sat Jbmaovect J
e AR Nodd [Faed) ] Hob Mk (Fdad) )
— Pradchons {valdeban Perid) § | Prdcioe ki Prec '
g | | )
: R H ;
F £ g .
€ o 3 - ¢
% B8 R ‘
s R o
- 1 i
4 %}M g \_,/i\mrbj
s e 217 8 210 a0 m Coria) iciod 1 an e don s Mt
Trme Wenky Torm. Mok
Figure 4e: Weekly predictions in the validation period Figure 4f: Weekly predictions in the validation period
(NNAR model) (HWF model)
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Figure 4g: Weekly predictions in the validation period
(STL model)
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Monthly predictions in the validation period
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Figure 5a: Monthly predictions in the validation period
(Naive model)
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Figure 5c: Monthly predictions in the validation period
(ETS model)
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Figure 5e: Monthly predictions in the validation period
(NNAR model)
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Figure 5g: Monthly predictions in the validation period
(STL model)
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Figure 5b: Monthly predictions in the validation period
(Linear model)
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Figure 5d: Monthly predictions in the validation period
(ARIMA model)
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Figure 5f: Monthly predictions in the validation period
(HWF model)
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