ECONSTOR

A Service of 2Bய

Gbadebo, Adedeji Daniel; Olorunfemi, Akande Joseph; Oluwatobi, Adekunle Ahmed

Article
 Price prediction for bitcoin: Does periodicity matter?

International Journal of Business and Economic Sciences Applied Research (IJBESAR)

Provided in Cooperation with:

International Hellenic University (IHU), Kavala

Abstract

Suggested Citation: Gbadebo, Adedeji Daniel; Olorunfemi, Akande Joseph; Oluwatobi, Adekunle Ahmed (2023) : Price prediction for bitcoin: Does periodicity matter?, International Journal of Business and Economic Sciences Applied Research (IJBESAR), ISSN 2408-0101, International Hellenic University (IHU), Kavala, Vol. 15, Iss. 3, pp. 69-92, https://doi.org/10.25103/jibesar. 153.06

This Version is available at:
https://hdl.handle.net/10419/280264

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Price Prediction for Bitcoin: Does Periodicity Matter?

Gbadebo Adedeji Daniel ${ }^{+1}$, Akande Joseph Olorunfemi ${ }^{2}$, Adekunle Ahmed Oluwatobi ${ }^{3}$
${ }^{1}$ Department of Accounting Science, Walter Sisulu University, Mthatha, Eastern Cape, South Africa, https://orcid.org/0000-0002-1929-3291
${ }^{2}$ Department of Accounting Science, Walter Sisulu University, Mthatha, Eastern Cape, South Africa, https://orcid.org/0000-0001-8445-8905
${ }^{3}$ Department of Accounting Science, Walter Sisulu University, Mthatha, Eastern Cape, South Africa, https://orcid.org 0000-0003-1603-6705

ARTICLE INFO

Article History

Received 18 June 2022 Accepted 1 November 2022
JEL Classifications
C10; G15, G17

Keywords:

Bitcoin, Diebold-Mariano test, Univariate forecast models, Forecast accuracy

ABSTRACT

Purpose:
A major challenge traders, speculators and investors are grappling with is how to accurately forecast Bitcoin price in the cryptocurrency market. This study is aimed to uncover the best model for the forecasts of Bitcoin price as well as to verify the price series that offers the best predictions performance under different periodicity of datasets.

Design/methodology/approach:

The study adopts three different data periods to verify whether frequency matters in forecasting Bitcoin price. The Bitcoin price, from 01/01/15 to 11/01/2021, is trained and validated on selected forecast models, including the Naïve, Linear, Exponential Smoothing Model, ARIMA, Neural Network, STL and Holt-Winters filters. Five forecast accuracy measures (RSME, MAE, MPE, MAPE and MASE) are applied to confirm the best performing model. The Diebold-Mariano test is used to compare the forecasts based on the daily price with those based on the weekly and monthly.

Findings:

Based on the accuracy measures, the results indicate that the Naïve model provides more accurate performance for the daily series, while the linear model outperforms others for the weekly and monthly series. Using the Diebold-Mariano statistics, there is evidence that forecasting Bitcoin price is not sensitive to the data periodicity.

Research limitations/implications:

The study has a major limitation, which is the shared sentiment to apply actual Bitcoin price series, and not the returns or log transformation for the forecast models. Notably, actual data may sometimes be loud, hence increasing the possibility of over predictions.

Originality/value:

In forecasting, different approaches have been used, this paper compares outputs of both statistical and machine learning methods in order to arrive at the best option for the Bitcoin price forecasts. Hence, we investigate whether the machine learning tools offer better forecasts in terms of lower error and higher model's accuracy relative to the traditional models.

1. Introduction

There is increasing research on Bitcoin (BTC) in the fields of theoretical and empirical finance. Bitcoin is a cryptocurrency that relies on anonymous peer-to-peer trades via online and social networks interfaces. Its transactions are organised on the Blockchain, an open-source algorithm that uses sophisticated protocol to generate and verify records. Bitcoin shares known attributes with typical financial assets (Baur et al., 2018; Mikhaylov, 2020), and has been exploited as medium of payments as well as accepted in exchange for alternative cryptocurrencies and different national currencies. Bitcoin stands as a speculative asset in times of economic upheavals (Baur et al., 2018), and sometimes perceived as a safe haven and substitute for traditional financial assets (Kliber et al., 2019). During the wave of COVID-19, the price of Bitcoin soared higher relative to conventional assets and commodities (Hung et al., 2020). Bitcoin remains unregulated by any coordinated monetary policy of central banks (Barontini \& Holden, 2020).

[^0]However, there are reports on the plan to create Central Bank Digital Currency to regulate Bitcoin and Digital Ledgers (Bofinger \& Haas, 2021; IMF, 2020; Auer et al., 2020).

The price of Bitcoin is associated with consistent short- and long- term volatility. The fluctuations in the price is mostly attributed to the limited supply, demand increase, activities of trend chasers and speculations in the bitcoin market. The excessive swings have immersed pressure on users, investors and regulators, leading to increasing interests to forecast its price (Aalborg et al., 2018; Kliber et al., 2019). Studies that focus on forecasting the price of bitcoin use either intraday, daily, weekly or/and monthly series (Bouri et al., 2021; Sitzimis, 2021; Uras et al., 2020). Bouri et al. (2021) employ the functional forecasting approach to examine the intraday trading under the efficient market hypothesis. They provide evidence of profitable trades based on the trading strategies. The bitcoin cumulative intraday return is observed to be heteroscedastic, stationary, non-normal and uncorrelated. Uras et al. (2020) forecast the daily price of bitcoin using different statistical techniques. The authors note that the price appears to be indistinguishable from a random walk process. When the dataset is partitioned into shorter sequences, the evidence confirms the regime hypothesis.

Forecasting the price of Bitcoin has implications for the financial markets. Suitable forecast models offer traders the realistic direction of price, including information on whether to transact on the spot or future markets. The models serve as tools that help investors to circumvent massive losses from sporadic volatility. An accurate forecast model provides the opportunity to increase returns and trading (Munim et al., 2019), since the asset managers would avoid risk by employing the model with least possible error (Kliber et al., 2019). The choice of a forecast model is challenging due to asymmetric information, uncertainties and dynamic behaviours of miners. This study intends to find the best forecast model for Bitcoin price, and on the basis of the different periodicity of datasets, verifies the series that offers the best forecast performance.

We contribute to existing literature in two ways. First, we compare outputs of statistical and machine learning methods in order to arrive at the best option for the Bitcoin price forecast. Forecasting with these approaches have been used in different fields of research (Basher \& Sadorsky, 2022; Ye et al., 2022; Chen et al., 2020; Rizwan et al., 2019), including specific application to passenger traffic in coastal shipping (Sitzimis, 2021). We examine whether the machine learning tools offer better forecasts than the traditional models, in terms of lower error and higher accuracy of the model. This becomes necessary in the light of the continuous applications of machine learning approaches which outputs often depict distinct forecast patterns. We train and validate the Bitcoin price series on selected forecasting models as well as compute alternative forecast accuracy to decide the best suitable model. Second, we consider the issue of data frequencies using daily, weekly and monthly series. We check whether the forecast models of Bitcoin price are sensitive to data frequency. The need to test the resilience of periodicity becomes important as the result would offer lead on best choice of dataset to evaluate bitcoin price forecasts, and by extension other alternative cryptocurrencies.

The result shows that for the daily time-series the Naïve model outperforms the others. The evidence based on the Diebold-Mariano statistics indicates that forecasting the Bitcoin price is not sensitive to the data frequency. The rest of the paper is organised as follows. Section two presents a brief trend movement of Bitcoin price. Section three is the material and methodology, where the study summarises the various forecast models and present some measures of forecast accuracy. Section four presents the results including the summary statistics, stationarity tests, forecast models, and the forecast accuracy. Section five is the conclusions.

2. Materials

2.1 Bitcoin Price Trends

Although Bitcoin was reportedly invented in 2009, it first featured on a cryptocurrency exchange on February 6, 2010. Since then, it has witnessed unprecedented and continuous price movements. On March 18, 2013, the US Financial Crimes Enforcement Network issued regulations on virtual currency and legal recognition of bitcoin, and this was believed to motivate the significant increase in bitcoin price from USD149.08 on October 15 to about USD 1,242 on November 29. In 2014, there was massive price decline caused by the hacking of the then biggest Bitcoin exchange (Mt. Gox), making the price to rally around USD340.00-USD531.05. The price decline continued and stood at USD434.25 at 2015 end. The Bitcoin splits (hard forks) on August 1, 2017, marks monumental strides in BTC price rallies, with massive run up (buy orders), pressuring the price to reach an all-time high of USD 19,783.06 on December 17, 2017.

The increase could not be sustained, therefore the price dropped to USD13,412.44 by January 1, 2018. Figure 1 shows the daily price from July 1, 2018, to June 30, 2021 . The price experience massive run-up, resistance, reversals, different supports and consolidations. The price dropped to USD6,300 on October 31, 2018, and dipped further below USD3,300 by December 7, 2018. The price started above USD3,700 in 2019, and stood at USD7,200 by year end. In November 2020, the price rallied above USD18,000, regaining its losses from 2017 peak. The price later surpassed its previous peaks, crossed above USD40,000 and landed on a remarkable daily average all-time high of about USD $64,863.31$ on April 14, 202 1. The price has fallen about 40% to USD40,044.54 in June 2021.

Figure 1: Daily Price of BTC in USD
Source: (Author's construct, 2023)

2.2 Empirical Highlights

Time-series literature recommends model-based and univariate-based methods for forecasting volatile assets. The first approach predicts bitcoin price as dependent on some factors (Gbadebo et al., 202 1; Jaquart et al., 202 1; Koutmos \& Payne, 2020; Liang et al., 2020). Gbadebo et al. (2021) employ the Autoregressive Distributed Lag (ARDL) to verify how Bitcoin price volatility responds to cryptocurrency capitalisation, equity index, trading volume and Google search. The study confirms the existence of long run cointegration and conclude that market fundamentals drive the volatility of price than information demand. Jaquart et al. (2021) use artificial neural network (ANN), random forests (RF) and long short-term memory (LSTM) to analyse how blockchain, technical, sentiment and asset returns explain Bitcoin price forecast. The quantile result shows the long-short trading strategy creates about 39% returns. Liang et al. (2020) apply the GARCH-MIDAS model to investigate competing index predictors. They provide that the Chicago Board Options Exchange (CBOE)'s gold volatility index exhibits strongest predictability for the BTC price volatility relative to the CBOE volatility index, google trends, global economic policy uncertainty and geopolitical risk. Koutmos (2020) uses a Markov regime-switching model to show that asset pricing factors such as stock price, interest rate and exchange rates are the main determinants of Bitcoin price.

The application of the model-based approach has notable limitations, including depending on prior assumptions made about the series' distribution. As noted, (Aalborg et al., 2018), predicting Bitcoin price on the basis of these fundamental indicators is still ambiguous. Hence, the second approach based on univariate times-series would be more suitable for forecasting the Bitcoin price. Caporale et al. (2018) establish the existence of correlation amongst past and present values of the BTC price. Many studies (Basher \& Sadorsky, 2022; Ye et al., 2022; Aygün \& Günay Kabakçı, 2021; Chen et al., 2020; Munim et al., 2019; Adcock \& Gradojevic, 2019; Mallqui \& Fernandes, 2019; Rizwan et al., 2019; McNally et al., 2018) confirm the robustness of the univariate approach. Ye et al. (2022) apply an ensemble machine learning model to forecast Bitcoin's next prices. They combine both the LSTM and Gated Recurrent Unit (GRU) with stacking ensemble system and use sentiment indexes, technical indicators to forecast Bitcoin prices, during September 2017 to January 2021. The results indicate that the near-real time forecast exhibit better performance MAE of 88.74%. Basher and Sadorsky (2022) use random forests and bagging classifiers and the logit models to predict Bitcoin prices. The accuracy for the random forests and the bagging classifiers range above 85% for 10 to 20 days prediction and between 75% and 80% for the 5 -day forecasts. They conclude that the random forests predict the Bitcoin price with much accuracy than the logit models. Aygün and Günay Kabakçı (2021) explore the MA, ARIMA as well as machine learnings (ANN, RNN) and convolutional neural network (CNN) of Bitcoin price predictions. The RNN offers better performance relative to other methods. Hamayel and Owda (2021) employ three machine learning methods (LSTM, bi-LSTM and GRU to predict Bitcoin, Litecoin, and Ethereum. The GRU model show the smallest MAPE and RMSE, outperforming other algorithms.

Chen et al. (2020) compare support vector machine (SVM) and long short-term memory (LSTM) and showed that, for the next day BTC price, the SVM provides a higher accuracy of 65.3% classification. Demir et al. (2019) predict the price of Bitcoin using methods such as long LSTM, NB, as well as the nearest neighbour technique. These methods achieved prediction accuracy between 81.2% and 97.2%. Mallqui and Fernandes (2019) employ artificial neural network (ANN) and support vector machines (SVM) algorithms in regression models to forecast the maximum, minimum and closing Bitcoin prices. He concludes that SVM algorithm outperformed the ANN with lowest mean absolute percentage error (MAPE) of 1.58%. McNally et al. (2018) employ the Bayesian recurrent neural network (RNN) and LSTM to forecast the daily movement in the price of Bitcoin. The LSTM achieve a high performance with the classification accuracy of 52% and a root mean squared error (RMSE) of 8%. Munim et al.
(2019) employ an autoregressive integrated moving average (ARIMA) and a neural network autoregression (NNAR). They split the data into two training-sets, and for the first training-set, the NNAR outperforms the ARIMA, while for the second, the ARIMA outperforms the NNAR. Velankar et al. (2018) use the generalized linear (GLM) model and Bayesian regression to forecast the daily average price change signals and uncover a prediction accuracy rates of 51% with the GLM. Adcock and Gradojevic (2019) use the feed-forward neural networks (FNN), GARCH-M, ARIMAX, random walk and multiple regression to predict prices. They examine how 50-200 days moving averages (MA) of bitcoin volume and VIX affect its prices, which shows little significance on its forecasts. The FNN indicates the highest accurate density and point forecast relative to other models.

3. Methodology

3.1 Forecast models and predictive accuracy

Organizational the study employs univariate-based forecast models. Each model is evaluated based on the accuracy of its predictions vis-à-vis actual data. We adopt five methods (RMSE, MAE, MPE, MAPE and MASE) to assess the accuracy of the forecast methods. To avoid the over-fitting problem, we trim the time-series into two sets: Training and validation (test) sets. We scrutinise the data behaviour as well as consider the data frequency and forecast horizon in deciding the length for the validation periods (Hyndman \& Athanasopoulos, 2021). We select a forecast horizon which does not exceed the validation periods to arrive at training-set ($01 \backslash 01 \backslash 15-30 \backslash 06 \backslash 19$) and validation-set ($01 \backslash 07 \backslash 19-11 \backslash 01 \backslash 2021$) for the daily time series. The weekly has training ($01 \backslash 01 \backslash 15-27 \backslash 06 \backslash 19$) and validation ($28 \backslash 06 \backslash 19-11 \backslash 01 \backslash 2021$), while the monthly is trained on ($01 \backslash 01 \backslash 15-01 \backslash 07 \backslash 19$) and validated on ($01 \backslash 08 \backslash 19-$ $11 \backslash 01 \backslash 2021$). The forecast errors of the models in Table 1a are used to compute the accuracy measures. Table 1b presents the various measures of forecast accuracy.

3.2. The Data

We employ Bitcoin price from the Finance.yahoo's official website. The database stores historical data on Bitcoin price from the real time price on the CoinMarketCap Exchange. The daily data obtained, spanning $01 \backslash 01 \backslash 15$ to $11 \backslash 01 \backslash 21$, reports the opening, lowest, highest and closing prices. We apply the closing price in line with previous studies (Uras et al., 2020; Chen et al., 2020; Munim et al., 2019). Previous studies apply daily data (Uras et al., 2020; Chen et al., 2020), while some others employ weekly (Othman et al., 2020) and/or monthly (Ramadhani et al., 2018) series for forecasting bitcoin price. Because we aim to verify whether periodicity matters in the performance of the forecast, we use three different datasets.

In this paper, we do not apply log transformation for the different series used. We share the sentiments to verify the Bitcoin price forecasts in its original form because there are downside to forecasting security prices or returns in logarithm (Hudson \& Gregoriou, 2010) or other transformation forms (Meucci \& Quant, 2010). As noted, (Hudson \& Gregoriou, 2010), the mean of a set of random variables computed using logarithmic is often less than the mean computed from the simple set, specifically by an amount dependent on the variance of the set. In effects, when the log series are applied, ceteris paribus, higher variance will inevitably reduce the mean price or returns.

Table 1a: Summary forecast models

Model	Explanation	Model Algorithms (Equations)	References
Naïve Model (NAÏVE)	Naïve model uses observations of the previous period to forecast the next. The method takes the last observation as the forecast. Let $y_{t}(t=1,2 \cdots, T)$ denotes Bitcoin price, y_{T} as actual value of the last observation. Divide y_{t} to: training set $(t=1,2, \ldots, n)$ and validation set $\left[t=n+1, n+2, \ldots, n+v(=\mathrm{T}) \rrbracket ; e_{t}\right.$ is forecast error.	$\begin{aligned} & \hline \hat{y}_{T+h \mid T}=y_{T} \\ & e_{t}=y_{T}-\hat{y}_{T+h \mid T} \\ & \left(\hat{y}_{T+h \mid T}\right)=h \text {-step forecast. } \end{aligned}$	$\begin{aligned} & \hline \hline \text { Stenqvist \& } \\ & \text { Lonno (2017) } \end{aligned}$
Linear Trend (LINEAR)	Linear trend creates forecasts values been a generalisation of y_{t} as a time-trends. The trend-line approach is used if the y_{t} series exhibits steady increase or decrease overtime and an error term $\left(\varepsilon_{t}\right)$. A polynomial function for y_{t} depends on Trend (T), trend square $\left(T^{2}\right)$ and a drift $\left(\psi_{0}\right)$.	$\begin{aligned} & y_{t}=\psi_{0}+\psi_{1} T+\psi_{1} T^{2}+\varepsilon_{t} ; \\ & \hat{y}_{T+h \mid T}=y_{t}+e_{t} ; \\ & \varepsilon_{t}=\hat{y}_{T+h \mid T}-y_{t} \end{aligned}$	$\begin{aligned} & \hline \text { Bisht \& Agarwa } \\ & \text { (2017) } \\ & \text { Ostertagová } \\ & (2012) \end{aligned}$
Exponential	The ETS creates forecast weighted	$y_{t}=\mu_{t}+\beta_{t} t+S_{t, p}+\varepsilon_{t}$	

Smooth Model (ETS)	averages with the recent observations more weighted than distant ones when determining the forecasts. The weights $\left(\emptyset_{j}\right)$ diminish exponentially $\left[\emptyset_{j}=\emptyset^{j} ;-1<\emptyset^{j}<1\right.$ ($j=$ $1,2, \cdots m)]$. The 3 (time-varying) components: mean $\left(\mu_{t}\right)$, slope $\left(\beta_{t}\right)$ and seasonality, $S_{t, p}(p=1,2, \cdots, P)$ for p seasons, $\forall t, \beta_{t}=0 \& \forall p$, $S_{t, p}=0$. The smoothing starts by computing at $t=1$. T_{t} is smoothed slope that estimates β_{t}, L_{t} is smoothed level that estimates $\mu_{t} ; S_{t}$ is smoothed seasonality that estimates $S_{t, p}$. Initial estimates smoothing-states: $t=0: L_{0}, T_{0}$, and $S_{0,1}, \cdots, S_{0, P}$ use for the Smoothing equations $\left(L_{t}, S_{t}\right.$ and $\left.T_{t}\right)$.	$\begin{aligned} & L_{t}=\alpha\left(y_{t}-S_{t-P}\right)+(1-\alpha) L_{t-1} \\ & S_{t}=\delta\left(y_{t}-L_{t}\right)+(1-\delta) S_{t-P} \\ & \hat{y}_{T+h \mid T}=L_{t}+S_{t-P+h} \end{aligned}$ Invertible region: $\max (-P \alpha, O)<\delta(1-\alpha)<2-$ $\alpha .$	Agusti (2020) Huerta- Manzanilla (2019)
ARIMA Model	ARIMA $[\operatorname{hR}(p)]$, $[\operatorname{an}(q)]$ and autoregressive an and order of integration components, where d is the number (\#) of differencing required to attain a stationary [ARMA $(p, q)]$ model and q is the order of the MA component. μ is the intercept (drift time-series, which is often zero), $y_{t-i}(i=1, \ldots p)$ is previous time series periods until lag p, θ_{i} is the parameter for y_{t-i} ,ε_{t} is the error term in time t, ε_{t-j} is the error term of all previous periods until lag q and $\delta_{j}(j=1$, $. . q)$ is the parameter for ε_{t-j}.	General ARIMA (p, d, q) model is: $\begin{aligned} & \Delta y_{t}=\mu+\sum_{i=1}^{p} \theta_{i} \Delta y_{t-i}+ \\ & \sum_{j=1}^{q} \delta_{j} \varepsilon_{t-j}+\varepsilon_{t} \\ & \Delta y_{t}=y_{t}-y_{t-i} \end{aligned}$	Munim et al. (2019) McNally et al. (2018) Bakar \& Rosbi (2017)
NNAR Model	NNAR is a sophisticated neuronelike elements assembled in layers. While simple NNAR is analogues to linear regression model with inputs (predictors) and output (dependent variable), the complex NNAR is nonlinear. y_{j} is actual state of output unit j in the input-output; X_{j} is the input - vector; α_{j} constant for node $j, W_{i, j}$ is weightvector from input node i to output node j, and m is $\#$ of inputs. The parameters $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n} \& W_{1,1}$, $\ldots W_{4,3}$, are 'learned' from training data. Before training, we restrict $W_{i, j} \&$ set as 0.1. If y_{j} is transformed via sigmoid squashing, we get $s(y)$, where $\beta, \mathrm{k}, \mathrm{c}$ and τ are constants. The learning is reduced to a minimum error with repeated changing of $W_{i, j}$ by an amount $\left(\delta_{j}\right)$ proportional o $\partial E / \partial W_{i, j} \hat{y}_{j}$ is	NNAR error back-propagation algorithms: $\begin{aligned} & y_{j}=\alpha_{j}+\sum_{i}^{m} W_{i j} X_{j} \\ & s(y)=\beta+\frac{k}{1+e^{\tau y}} \\ & E=\frac{1}{2} \sum_{J}^{n}\left(y_{J}-\hat{y}_{j}\right) \\ & \Delta W_{j}(t+1)=\lambda \delta_{j} y_{j} \\ & \delta_{j}=\left(\hat{y}_{j}-y_{j}\right) f^{\prime}\left(y_{j}\right) \\ & \left(y_{t-1}, \ldots, y_{t-p}, y_{t-m}, \ldots y_{t-P m}\right) \end{aligned}$	Chen et al.(2020)Munim et al. (2019) Fernandes (2019) McNally (2018) et al.

desired state and the learning rate, λ is kept constant. To forecast with the NNAR, the lagged values of the univariate series is used as inputs. A feed-forward NNAR with one hidden layer is denoted $\operatorname{NNAR}(p, k)$ or $\operatorname{NNAR}(p, P, k)_{m}$, where p is lag-length or p last observations used as inputs, k is the \# of nodes (neurons) in the hidden layer and p is \# of seasonality.

STL Model	STL adopts a non-parametric algorithm that iterates loess smoother to refine y_{t} into 3 components. y_{t} consists of a trend $\left(T_{t}\right)$, a seasonality $\left(S_{t}\right)$ and an irregularity $\left(l_{t}\right)$. The STL assumes S_{t} has the same cycle periodically. The cycle adopts a spectral analysis which shows the characteristics of oscillations of different wavelengths. The spectrum of a process y_{t} with an autocorrelation function $\left(\omega_{\tau}\right)$ where, $\sum_{\tau}^{n}\left\|\omega_{\tau}\right\|<\infty$ is denoted $y\left(\omega_{\tau}\right)$. STL protocol set for T_{t} smoothing parameter is: t.window $\geq\left[\frac{1.5 * \text { frequency }}{1-\frac{15}{\text { s.window }}}\right] \quad$ (must be odd integer ≥ 7).	$\begin{aligned} & y_{t}= T_{t}+S_{t}+l_{t} \\ & \text { (additive split) } \\ & y_{t}= T_{t} * S_{t} * l_{t} \\ & \text { (multiplicative split) } \\ & y\left(\omega_{\tau}\right)=\omega+2 \sum_{\tau=1}^{\infty} \omega_{\tau} \cos (2 \pi \omega \tau) \end{aligned}$	Hyndman \& Athanasopoulos (2021)
Holt- Winters Model (HWM)	HWM is a typical deterministic model with a trend, seasonality and residuals. HWM computes a smooth series $\quad \hat{y}_{T+h \mid t}$ with recursively updating equations that allow for the iterative computation of forecasts based additive or multiplicative protocols. The additive algorithm is criticised not to generate best estimates for timeseries level and seasonality. We	$\begin{aligned} & y_{t}=\mu_{t}+\beta_{t} t+S_{t, p}+\varepsilon_{t} \\ & p_{t}=\alpha \frac{y_{t}}{s_{t-k}}+(1-\alpha)\left(p_{t-1}+b_{t-1}\right) \\ & b_{t}=\beta^{*}\left(p_{t}-p_{t-1}\right)+\left(1-\beta^{*}\right) b_{t-1} \\ & s_{t}=\gamma \frac{y_{t}}{p_{t-1}+b_{t-1}}+(1-\gamma) s_{t-k} \\ & \hat{y}_{T+h \mid t}=\left(p_{t}+h b_{t}\right) s_{t-k+h_{k}^{+}} \end{aligned}$	Brügner (2017) Kuang et al. (2016)

adopted a multiplicative algorithm, which assumes the seasonal effect is proportional to a time change. The level $\left(p_{t}\right)$, trend $\left(b_{t}\right)$, and seasonality $\left(\mathrm{s}_{t}\right)$ which depend on the smoothing parameters $\alpha, \beta, \gamma \in[0,1]$. The forecast h-step at time $T+h$ given data up to time t, and the constant k is the seasonality. The estimation of α, β, and γ is through the minimisation of randomly chosen errors. To estimate $\alpha, \beta, \gamma \in[0,1]$, a robust smoothing process centred on M-estimation uses: $\hat{y}_{T+h \mid t}=$ $\arg \min \sum_{t=1}^{T} e_{t}{ }^{2}$.
We presented forecast for HWM with trend but no seasonal component $\operatorname{HWM}(\gamma[$ False $\rfloor)$.
$y_{t}=\mu_{t}+\beta_{t} t+S_{t, p}+\varepsilon_{t} \quad$ Brügner (2017)
$p_{t}=\alpha \frac{y_{t}}{s_{t-k}}+(1-\alpha)\left(p_{t-1}+b_{t-1}\right) \quad$ Kuang et al. (2016)

Accuracy measure	Accuracy scale/computation
RMSE	$\left(\frac{1}{m} \sum_{t=1}^{m}\left(e_{t}\right)^{2}\right)^{1 / 2}$
MAE	$\frac{1}{m} \sum_{t=1}^{m}\left\|e_{t}\right\|$
MPE	$\frac{100}{m} \sum_{t=1}^{m} \frac{e_{t}}{y_{t}}$
MAPE	$\frac{100}{m} \sum_{t=1}^{m}\left\|\frac{1}{m} \sum_{t}^{n+m}\right\|$
MASE	$\left.\sum_{t=n}^{n+1}\left\|\frac{1}{n-1} \sum_{t}^{n}\right\| y_{t-1}-y_{t} \right\rvert\,$
Mean Absolute Error (MAE) gives the magnitude of the average absolute error in all periods. Root Mean Square Error (RMSE) and Mean Absolute Percent Error (MAPE) provide a percentage score of how forecasts deviate from the actual values. MASE compares predictive model performance to the Naïve forecast on the training set. Source: (Author's construct, 2023)	

3.3. Estimation Process

We adopt a static forecast approach for estimation. The approach ensures the univariate variable's actual value in previous periods is employed to estimate each step forecast. We follow the standard process of time-series forecasting, identifying the time series into training sample (observed datasets) and validation samples (observed datasets). We model the data with training samples and evaluated the forecast performance with validation samples. We combine the series, train the model on the full observed data and use the performance to forecast future prices. The data are trained on all forecast models with training datasets. We select a test period that mimics the predictive horizon for the future forecasts' valuation of performance.

We adopt library (forecast) and library ($f p p 2$) in RStudio. We apply the stl (time series, s.window ="periodic") function to decompose y_{t} by obtaining T_{t} using loess and calculate S_{t} (and I_{t}) as $y_{t}-T_{t}$. By default setting for the s.window parameter, the function $\operatorname{stl}()$ assumes S_{t} follows the same cycle yearly. To ensure equal-spaced data, the study resolves the problem of non-multiple integer periodicity in infra-monthly high-frequency data by following Hyndman and Athanasopoulos (2021). The study periods have two leap-year-days ($29 \backslash 02 \backslash 2016$ and $29 \backslash 02 \backslash 2020$). We set the frequency at 365.25 for daily series with the function $t s($ dataset, $s t a r t=c(2015,1)$, frequency $=365.25)$.

In the computation of the HWM, the study omits the seasonal component then set the function Holt-Winters (dataset, gamma = false) which allows for 365 - long vector of the initial seasonal pattern as its argument. We could not do otherwise since the Holt-Winters function (dataset, gamma = "integer") requires frequency to be multiple of the length of observations for the forecast to be computed in the next cycle. The ets() functions ignore the seasonality for infra monthly data with a frequency greater than 24 during computation. The function auto.arima() library in R selects and returns best ARIMA model through AIC, AICc or BIC 1 values. The order of the ARIMA model was selected through automatic iteration. The nnetar() function fits an $\operatorname{NNAR}(p, P, k)_{m}$ model. If the values of p and P are not defined, the lag is selected automatically according to the AIC for a linear $\operatorname{AR}(p)$ model.

Before we proceed to forecasting, we complete three diagnostic tests - Box-Ljung (BL) autocorrelation test, BoxPierce (BP) x-square residual test and the Jarque-Bera (JB) normality test to determine the validity of the forecast models. The LB test is a portmanteau test for the "overall" randomness based on some lags, with the test null that the residuals from the forecast model (fitted) have no autocorrelation. The BP test with a test statistic ($Q m$) verifies whether the series is pure white noise. The Diebold-Mariano (DM) test compares two forecast models. It determines whether one forecast model is more accurate than the other.

4. The Results

4.1. Data statistics

Table 2 presents the deterministic statistical properties for the price of Bitcoin for each periodicity, including their training-set and validation-set partitions. The table shows that all series are asymmetrically distributed with positive skewness. For the training and validation sets, the daily dataset with 1.299 and 3.038 degree of skewness, respectively appears more skewed compared to other frequencies. The training samples appear to be mesokurtic (moderately peaked), while the others are leptokurtic (high peaked) for all frequencies. The outliers are more on the validation

[^1]samples. We reject the normality null for all the data partitions with a highly significant Jarque-Bera test. The Bitcoin price plot (Figure 1a) supposes the data may not be stationary. The non-stationarity would be confirmed with the unit root test.
Figure 1a - if represent plots for the daily Bitcoin price (full data), the training sets, validation periods, the first difference, \log daily price and the log-difference. The weekly (Figure W1-W6) and monthly (Figure M1-M6) plots are presented in the appendix. The plots replicate same shape with the daily plots, except that the infra-monthly plots show more volatility, outliers, and breaks. The daily series presents multiple, non-integer periodicities associated with high volatility with microstructure effect (Urquhart, 2018), while the monthly series appear smoother with less clustering. All observed series are chaotic with spiky protrusions. The log-transformed series appear with smoother striations.

4.2. Time-series decomposition

Figure $2 \mathrm{a}-2 \mathrm{c}$ present the decomposition of daily, weekly and monthly. We apply the $\operatorname{stl}()$ function to decompose the observed data (topmost graph) into key time-series components. The function segregates the deterministic ('trend' and 'seasonal') and stochastic ('random') components of the Bitcoin price series. We apply the daily, weekly and monthly seasonal window. The trend component reflects the long-term progression (upward movement) of the series over-time, while the remainder (residual) is convergence with mean reversing. The seasonality is oscillatory with repetitive pattern over-time. In the daily series, the trend appeared unchanged and stable around January 2015 to February 2017. After these periods, the frequency and amplitude of the cycle upsurge over time. With the Loess framework, Bitcoin price shows exponential trends upward with additive seasonality. The residuals are quite random, particularly exhibiting high variability around late 2017 during the first remarkable price peak. Table 3 presents the summary statistics of the STL decomposition.

Table 2: Data deterministic statistics

Statistics	Daily Training	Validation	Full	Weekly Training	Validation	Full	Monthly Training	Validation	Full
Mean	3365.8	10923.4	5290.4	3368.0	11299.3	5401.1	3346.8	12797.2	5901.0
Median	1184.6	9641.5	4141.9	1166.0	9607.2	4255.5	1140.8	9696.3	4411.3
Maximum	19513.0	40402.0	40402.0	17517.1	38255.1	38255.1	13742.3	34662.5	34662.5
Minimum	194.3	4987.6	194.3	194.3	5791.6	194.3	231.5	7285.0	231.5
Std. Dev.	3726.3	4978.3	5243.7	3713.6	5779.0	5545.8	3667.2	7983.7	6649.0
Skewness	1.3	3.0	1.6	1.2	2.9	1.9	1.1	2.0	2.2
Kurtosis	4.4	14.2	8.3	4.1	12.0	9.8	3.3	5.7	9.6
JB(Stat)	595.8	3787.8	3568.8	73.4	384.9	795.1	11.0	19.2	195.9
JB (p-value)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0041	0.0001	0.0000
\# of Obs.	1642	561	2203	235	81	316	54	20	74

Note: JB: Jarque-Bera, \# of Obs.: Number of Observations
Source: (Author's construct, 2023)

Figure 1a: Daily Bitcoin Price in USD (01-15-2 1 to 11-01-2 1)

Figure 1b: Bitcoin Price (01-01-15 to 30-06-

Figure 1c: Bitcoin Price (01-07-19 to 11-01-2 1)

Figure 1d: Bitcoin Price Difference (01-15-2 1 to 11-01-21)

Figure 1e: Bitcoin Price (Log)

Figure 1f: Bitcoin Price (Log difference)

4.3. Stationarity test

The stationarity result (Table 4) shows that the ADF test accepts the null of non-stationarity, with $\tau_{\mu}>A D F_{\alpha}$ in all the test equations. The ERS statistics for the validation-set (daily) and training-set (weekly) appear stationary but this was refuted when we add the linear trend, hence the ERS nulls are accepted at 1%. The KPSS rejects the test's null of stationarity at 1%. The results confirm non-stationarity for the training, validation and combined data, for all series. The first difference tests are all stationary and significant at 1%, except for the validation-set for monthly series at 5% (no trend) and 10% (linear trend). Bitcoin price for each periodicity is clearly, $l(1)$, and indistinguishable from a random walk.

4.4. Training the Bitcoin price data

We train the daily series for 1642 days ($01 \backslash 01 \backslash 15-30 \backslash 06 \backslash 19$) and evaluate the models for a validation period of 561 days ($01 \backslash 07 \backslash 19-11 \backslash 01 \backslash 2021$). The weekly data was trained for 235 weeks ($01 \backslash 01 \backslash 15-27 \backslash 06 \backslash 19$) and validated for 81 weeks ($28 \backslash 06 \backslash 19-11 \backslash 01 \backslash 2021$). The monthly series was trained for 54 months ($01 \backslash 01 \backslash 15-01 \backslash 07 \backslash 19$) and validated for 20 months ($01 \backslash 08 \backslash 19-11 \backslash 01 \backslash 2021$). For the daily series, the Naïve forecast produces a residual
standard error of 220.38. The linear model and its trend coefficients are significant with the model p-value of approximately zero. The ETS $(M, A d, N)$ parameters reported are $[\alpha(0.9999), \beta(0.1887), \Psi(0.8)]$, with Initial states $[(a=308.66, b=-3.43)]$, and $\sigma($ sigma $)=0.03$. The ARIMA (auto) uses the lowest AIC to select an ARIMA (2, $1,0)$ while considering the specification's stationarity test. There was an average of about 20 different network specifications in the neural network.

Figure 2a: STL decomposition of Bitcoin price

Figure 2c: STL decomposition of Bitcoin price (monthly)

Table 3: STL decomposition statistics

	Daily			Weekly			Monthly		
	Seasonal	Trend	Random	Seasonal	Trend	Random	Seasonal	Trend	Random
Min.	-1340.10	278.04	-6274.98	-278.75	32.08	-6207.36	-1007.97	-266.34	-5626.28
1st Qu.	-544.17	630.86	-1389.27	-92.46	637.03	-2789.17	-428.82	676.24	-1265.32
Median	-116.95	5863.26	-112.48	113.96	5886.31	-1371.57	-210.77	5980.26	24.66
Mean	102.54	5370.82	-182.97	1034.65	5483.00	-1116.60	46.12	6019.32	-164.46
3rd Qu.	138.14	8493.48	711.59	2435.79	8471.77	142.39	724.53	8505.58	613.74
Max.	3777.14	18402.07	19826.54	3153.41	20124.91	16912.48	2022.29	26240.30	7031.75
IQR	682.30	7862.60	2100.90	2528.00	7835.00	2932.00	1153.00	7829.00	1879.00
IQR\%	8.40	97.00	25.90	31.20	96.60	36.10	13.80	93.70	22.50

Qu.: Quartile. IQR: Interquartile range IQR\%: Percentage IQR.
Source: (Author's construct, 2023)

Table 4: Stationarity test

	Level $\left(y_{t}\right)$						Difference $\left(\Delta y_{t}\right)$						
	τ_{μ}	$\mathrm{ADF} \mathrm{F}_{\alpha}$	τ_{τ}	$E R S_{\alpha}$	τ_{η}	KPSS_{α}	τ_{μ}	$A D F_{\alpha}$	Prob.	τ_{τ}	$E R S_{\alpha}$	τ_{η}	KPSS_{α}
Daily													
Training	-0.84	-3.43	-0.05	-2.57	3.14	0.74	-26.5	-3.43	0.00	-26.50	-2.57	0.11	0.74
Validation	3.19	-3.34	3.45	-2.57	1.39	0.74	-7.78	-3.44	0.00	-2.13	-1.94	1.18	0.74
Full	-1.43	-3.97	-2.57	3.11	4.27	0.74	-28.3	-3.43	0.00	-11.41	-2.57	0.52	0.74
Training ${ }^{\text {a }}$	2.18	3.31	-1.86	-3.48	0.34	0.22	-26.5	-3.96	0.00	-8.32	-3.48	0.07	0.22
Validation ${ }^{\text {a }}$	2.97	-3.97	0.42	-3.48	0.53	0.22	-8.47	-3.97	0.00	-3.48	-0.12	0.19	0.22
Fulla	1.16	-3.96	-0.77	-3.48	0.19	0.22	-28.4	-3.96	0.00	-9.09	-3.48	0.52	0.74
Weekly													
Training	-0.73	-3.46	3.25	-2.58	0.97	0.74	-7.67	-3.46	0.00	-7.61	-2.58	0.10	0.74
Validation	1.92	-3.51	1.30	-2.59	0.66	0.74	-5.99	-3.51	0.00	-5.98	-2.59	0.68	0.74
Full	0.99	-3.45	1.53	-2.57	1.70	0.74	-5.94	-3.45	0.00	-5.35	-2.57	0.41	0.74
Training ${ }^{\text {a }}$	-2.36	-4.00	-0.42	-3.50	0.30	0.22	-7.70	-4.00	0.00	-5.48	-3.46	0.06	0.22
Validation ${ }^{\text {a }}$	1.13	-4.08	-1.01	-3.65	0.25	0.22	-6.72	-4.08	0.00	-5.53	-3.65	0.14	0.22
Fulla	-0.75	-3.99	-1.22	-3.47	0.19	0.22	-6.18	-3.99	0.00	-4.14	-3.47	0.15	0.22
Monthly													
Training	-1.24	-3.56	1.38	-2.64	0.57	0.74	-4.68	-3.56	0.00	-4.74	-2.61	0.11	0.74
Validation	2.29	-3.81	-0.63	-2.69	0.48	0.74	-4.53	-3.81	0.00	-2.58	-2.69	0.45	0.74
Full	0.34	-3.52	1.46	-2.60	1.01	0.74	-4.99	-3.52	0.00	-4.97	-2.60	0.35	0.74
Training ${ }^{\text {a }}$	-2.59	-4.14	2.23	-3.77	0.19	0.22	-4.66	-4.14	0.00	-4.70	-3.76	0.08	0.22
Validation ${ }^{\text {a }}$	0.76	-4.50	-2.08	-3.77	0.18	0.22	-3.49	-4.50	0.07 ***	-3.27	-3.77	0.14	0.22
Full ${ }^{\text {a }}$	-1.60	-4.09	-1.16	-3.67	0.09	0.22	-5.27	-4.09	0.00	-5.33	-3.69	0.13	0.22

$A D F_{\alpha}$: MacKinnon one-sided p-values; Elliott-Rothenberg-Stock $\left(E R S_{\alpha}\right)$; Kwiatkowski-Phillips-Schmidt-Shin $\left(K P S S_{\alpha}\right)$.
ADF Null $\left(H_{0}\right)$: Nonstationary; DF-GLS Null $\left(H_{0}\right)$: Non-stationary; KPSS, Null $\left(H_{0}\right)$: Stationary
${ }^{a}$ Test has intercept with linear trend, others are with no (time) trend; the Critical Value(C.V.) reported are at 1%;
** stationarity at 5%; *** Stationary at 10%.
Source: (Author's construct, 2023)
The NNAR $(4,1,3)$ with σ^{2} estimated as 49270 was selected based on test-sample. We estimate Holt-Winters model with trend and without seasonal component, which accommodates for non-multiple of the number of observations. The smoothing parameters and coefficients obtained are $[\alpha(1), \beta(0.022), \gamma($ False $)]$ and $[a(11636.46)$ and b (87.49) $]$, respectively. We estimate the weekly and monthly sets and compared the forecast performance with our daily counterparts. Next, we apply these models to predict the price of BTC for the validations periods to shed light on performance. Figure $3 \mathrm{a}-3 \mathrm{~g}$ shows the time-series plots of actual and predicted values during training and validation periods for the daily series, while Figure $4 \mathrm{a}-4 \mathrm{~g}$ and Figure $5 \mathrm{a}-5 \mathrm{~g}$ (appendix) show same for weekly and monthly datasets. Table D. 1 (appendix) presents a 40-day ($01 / 07 / 19-09 / 08 / 19$) summary of predictions, as well as forecast errors (absolute and percentage) in the validation periods for the daily price of Bitcoin. The table presents the average point forecast, 80%, and 95% intervals for each forecasting method. A cursory look at the table indicates the result favours the Naïve forecast performance - which presents data-frame of lower errors - relative to other predictive measures. The forecast accuracy measures are employed to make appropriate judgment on the best forecast model.

4.5. Forecast accuracy

Table 5 presents the training sample and validation sample forecast performance evaluated with the forecast accuracy measures. When we trained the daily series on each forecast model except for the MPE, four of the accuracy measures [RMSE, MAE, MASE and MAPE] showed that the Naïve model performed better than other predictive models. The Naïve model has the least values for the various measures as indicated [with asterisk *] in Table 5. With the weekly series and using the RMSE, MAE and MAPE as evaluation benchmarks, the Naïve method still outperformed other models. However, the MPE support that the linear model is best and the MAPE indicates that the Exponential
smoothing model outperformed others. The monthly series also confirmed the superiority of the Naïve method over others as three of the accuracy measures when we trained with the monthly data shows Naïve method has the lowest forecast error. Turning to the validation samples evaluation, the results supported the HWM's superiority over others for the daily sample, except for the MAPE and MASE measures.

Table 6 presents the result of the DM tests. We compare the accuracy of the forecast performance from two different models under same data frequency. The result is similar to reports in Table 5. Comparing the Naïve model $\left(F_{1}\right)$ to another forecast models $\left(F_{2}\right)$ for each of the data frequency, we confirm that the Naïve model is more accurate in forecasting the test sample price ($p<5 \%$), which is not surprising since a better forecast for BTC price is its last previous price. For all the data frequency, the DM tests confirm the ARIMA superiority over the NNAR in the testsample periods (Munim et al., 2019). We complete some residuals diagnostic tests to verify the validity of the forecast models (see Table D. 2 in the appendix). The Lbox $\left(Q^{*}\right)$ statistics suggest the presence of autocorrelation, while the $Q \mathrm{~m}\left(x^{2}\right)$ test indicates the occurrence of conditional heteroscedasticity, except for the Naïve model.

Figure 3a: Prediction in the validation period (Naïve model)

Figure 3c: Prediction in the validation period (ETS model)

Figure 3e: Prediction in the validation period (NNAR model)

Figure 3b: Prediction in the validation period (Linear model)

Figure 3d: Prediction in the validation period (ARIMA model)

Figure 3f: Prediction in the validation period: (Holt-Winters model)

Figure 3g: Prediction in the validation period (STL-trend)

4.6. Future forecasts for Bitcoin price

We predict the out-of-sample forecasts of the price for the daily periodicity. We combine the training and validation periods and estimate the forecast models on the full data. A total of 2203,316 and 75 observations are applied for the daily, weekly and monthly series, respectively. The forecast periods follow directly behind the closing of validation periods starting January 12, 2021. The forecast horizon does not exceed the validation periods. We compare the prediction intervals for different models with different levels and decreasing certainty for varying future depicted by the prediction cone (Figure $6 \mathrm{a}-6 \mathrm{~g}$). The figures show the future forecasts for daily Bitcoin price. Table 7 shows 40days forecasts and future returns (percentage) for the daily price. The value of the last observed day Bitcoin price $(\$ 34,662.48)$ was used to calculate the static percent increase for the 40 days (12-01-2021-20-02-2021).

4.7. Is the Bitcoin price forecast sensitive to the choice of data frequency?

We check whether forecasting the price is sensitive to the data choice. The forecast accuracy result obtained is presented in Table 5. For the weekly series, the linear is superior except for the MPE measures, indicating that the HWM outperforms others. In contrast, for the monthly series, the Naïve method outperforms others except for the MPE that shows the ETS is superior. Comparing with daily series, we conclude that frequency matters in forecasting the Bitcoin price series. Overall, the results of the model comparison tests (Table 6) establish that irrespective of the data frequency, the Naïve model is superior and more accurately predicts the price than others. The DM test is sufficient to submit that forecasting the price is not sensitive to the periodicity.

Table 5: Training-sample and validation-sample forecast performance

Forecast Methods	Training					Validation				
	RMSE (\$)	MAE (\$)	MPE (\%)	$\begin{aligned} & \text { MAPE } \\ & (\%) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MASE } \\ & \text { (I) } \\ & \hline \end{aligned}$	RMSE $(\$)$	MAE (\$)	MPE (\%)	$\begin{aligned} & \text { MAPE } \\ & (\%) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MASE } \\ & (\mathrm{I}) \\ & \hline \end{aligned}$
Daily										
NAIVE	204.83*	87.451^{*}	0.145	1.990*	0.03*	4993.43	3184.47	-16.70	28.75	0.94*
LINEAR	2591.4	1767.5	$-16.96{ }^{*}$	144.0	0.52	4900.70	2540.04	6.593	18.46*	0.95
ESM	215.07	91.292	0.112	2.050	0.03	5011.04	3276.57	-18.42	29.98	0.96
ARIMA	281.55	133.23	0.071	2.790	0.04	5032.21	3607.43	-23.14	32.08	1.06
NNAR	221.97	108.72	0.432	2.230	0.03	5769.21	4492.51	-33.83	44.52	1.32
STL	228.75	107.80	0.280	5.430	0.03	5069.70	3424.49	-19.72	31.56	1.01
HWM	220.31	92.241	0.121	2.060	0.03	28056.3**	25298.4**	-250.8**	250.8	7.44
Weekly										
NAIVE	479.74*	242.38*	0.752	6.610	0.07*	6049.76	4670.00	-33.58	44.00	1.38
LINEAR	2552.6	1748.6	$-16.43^{* *}$	142.0	0.52	$5643.41^{* *}$	2786.10**	6.512	18.48**	0.83**
ESM	589.89	270.74	0.310	6.280*	0.08	25218.2	22953.2	-225.5	225.5	6.80
ARIMA	695.08	368.39	0.472	8.350	0.11	6246.72	4975.46	-39.21	45.76	1.48
NNAR	532.01	302.70	-1.68	6.660	0.09	8335.71	6578.63	-28.16	58.98	1.95
STL	615.87	328.21	1.701	19.90	0.10	7649.24	6951.81	-65.75	72.24	2.06
HWM	591.38	267.27	0.940	6.240	0.08	36425.1	32865.4	-316.4*	316.4	9.74
Monthly										
NAIVE	1210.5	636.69*	4.061	13.54*	0.19*	8010.76	4502.49	-4.320	27.71	1.32
					81					

LINEAR	2464.3	1784.5	-16.28^{*}	141.6	0.52	$7991.66^{* *}$	$4103.34^{* *}$	12.17	21.19^{*}
ESM	1316.8	657.19	2.703	14.00	0.20	19550.7	17722.8	$-167.3^{* * *}$	167.3
ARIMA	1764.3	965.43	1.971	18.32	0.28	7451.33	4754.54	-13.73	31.21
NNAR	1083.7^{*}	694.43	-6.571	20.85	0.20	9501.09	5416.06	28.82	29.33
STL	1218.9	787.38	10.33	61.87	0.23	8411.28	4519.36	10.44	24.68
HWM	1305.3	648.19	9.363	16.52	0.19	7822.63	4268.52	-1.334	25.29

MASE is an index (I) which compares a chosen model predictive performance (for instance, the MPE) to the naive forecast on the training set.
The index value less than 1 indicates that the compared model has a lower average error than naïve forecasts (in the training period). If the index
value is higher than 1 , it indicates poor performance relative to (training period) naive forecasts.

* Naïve method better.
** Other model outperformed naïve.
Source: (Author's construct, 2023)
Table 6: The Diebold-Mariano (DM) test for test-sample

DM test compares two forecast models $\left[F_{1}, F_{2}\right]$. It shows whether $\left(F_{1}\right)$ is more accurate than model $\left(F_{2}\right)$. The test is based on the loss differentials, $d_{t}=L\left(e_{1, t}\right)-L\left(e_{2, t}\right) . \quad H_{0}: E\left[d_{t}\right]=0 \quad\left(F_{1}\right.$ is same as $\left.F_{2}\right)$ and $H_{1}: E\left[d_{t}\right] \neq 0$. Assume $e_{j, t}=\hat{y}_{T+h \mid T}-y_{t}$, sample mean loss differential $\bar{d}=T^{-1} \sum_{t=1}^{T}\left[L\left(e_{1, t}\right)-L\left(e_{2, t}\right)\right.$ and DM statistic $\left(D M_{\alpha}\right)=\bar{d} / \sqrt{T^{-1}[2 \pi \hat{f}(0)]} \rightarrow d \sim n(0,1)$, where $2 \pi \hat{f}(0)$ is a consistent estimator of the asymptotic variance, $\sqrt{T d}$. Since $D M_{\alpha}$ converge to a normal distribution, H_{0} is rejected at 5% if $\left|D M_{\tau}\right|>1.96$, but cannot be rejected, if $\left|D M_{\tau}\right| \leq 1.96$. Probability (p) <0.05 indicates that F_{1} is better. Figure in the parenthesis indicate p-value, others are $D M_{\tau}$. Source: (Author's construct, 2023)

	Future forecasts for daily price							Percent increase from previous daily price (daily returns)						
Date	NAIVE	ETS	LINEAR	ARIMA	NNAR	STL	HWM	$\begin{aligned} & \text { IVIIV } \\ & \text { F } \end{aligned}$	ETS	LIN.	ATITVT	NNAR	STL	HWM
12/1/21	35228.94	34255.39	31581.96	32919.03	33815.88	34104.02	34994.37	1.63	-1.17	-8.89	-5.03	-2.44	-1.61	0.96
13/1/21	35463.58	33929.33	31604.16	33131.23	35419.89	33656.85	35326.26	0.67	-0.95	0.07	0.64	4.74	-1.31	0.95
14/1/21	35643.62	33668.48	31626.37	33636.11	37077.15	33299.11	35658.15	0.51	-0.77	0.07	1.52	4.68	-1.06	0.94
15/1/21	35795.41	33459.80	31648.59	33477.27	37614.15	33199.07	35990.04	0.43	-0.62	0.07	-0.47	1.45	-0.30	0.93
16/1/21	35929.13	33292.86	31670.81	33507.14	39106.08	32952.50	36321.92	0.37	-0.50	0.07	0.09	3.97	-0.74	0.92
17/1/21	36050.03	33159.30	31693.04	33642.51	37202.53	32769.34	36653.81	0.34	-0.40	0.07	0.40	-4.87	-0.56	0.91
18/1/21	36161.20	33052.45	31715.27	33628.89	35287.09	32622.81	36985.70	0.31	-0.32	0.07	-0.04	-5.15	-0.45	0.91
19/1/21	36264.68	32966.98	31737.51	33390.49	36993.15	32487.96	37317.59	0.29	-0.26	0.07	-0.71	4.83	-0.41	0.90
20/1/21	36361.87	32898.59	31759.77	33373.33	39825.69	32518.07	37649.48	0.27	-0.21	0.07	-0.05	7.66	0.09	0.89
21/1/21	36453.79	32843.89	31782.02	33444.91	40162.88	32443.04	37981.37	0.25	-0.17	0.07	0.21	0.85	-0.23	0.88
22/1/21	36541.22	32800.12	31804.29	33287.60	40610.10	32383.02	38313.26	0.24	-0.13	0.07	-0.47	1.11	-0.18	0.87
23/1/21	36624.76	32765.11	31826.56	33115.95	41528.43	32458.89	38645.15	0.23	-0.11	0.07	-0.52	2.26	0.23	0.87
24/1/21	36704.89	32737.10	31848.84	33118.52	38265.45	32614.55	38977.03	0.22	-0.09	0.07	0.01	-7.86	0.48	0.86
25/1/21	36781.99	32714.69	31871.12	33151.03	38425.51	32583.82	39308.92	0.21	-0.07	0.07	0.10	0.42	-0.09	0.85
26/1/21	36856.38	32696.76	31893.42	33444.37	39854.05	32559.24	39640.81	0.20	-0.05	0.07	0.88	3.72	-0.08	0.84
27/1/21	36928.33	32682.42	31915.72	33780.11	40211.47	32733.64	39972.70	0.20	-0.04	0.07	1.00	0.90	0.54	0.84
28/1/21	36998.07	32670.95	31938.03	34064.71	39049.12	32855.33	40304.59	0.19	-0.04	0.07	0.84	-2.89	0.37	0.83
29/1/21	37065.78	32661.77	31960.34	34086.94	41098.66	32842.75	40636.48	0.18	-0.03	0.07	0.07	5.25	-0.04	0.82
$30 / 1 / 21$	37131.63	32654.43	31982.66	34140.52	41179.34	32832.68	40968.37	0.18	-0.02	0.07	0.16	0.20	-0.03	0.82
31/1/21	37195.78	32648.55	32004.99	34086.56	38673.54	32962.05	41300.25	0.17	-0.02	0.07	-0.16	-6.09	0.39	0.81
01/2/21	37258.34	32643.85	32027.33	34079.07	39086.09	32997.06	41632.14	0.17	-0.01	0.07	-0.02	1.07	0.11	0.80
02/2/21	37319.43	32640.09	32049.67	34098.15	40936.35	32991.91	41964.03	0.16	-0.01	0.07	0.06	4.73	-0.02	0.80
03/2/21	37379.14	32637.09	32072.02	33965.90	40562.40	32987.78	42295.92	0.16	-0.01	0.07	-0.39	-0.91	-0.01	0.79
04/2/21	37437.57	32634.68	32094.38	34069.73	40843.01	33025.94	42627.81	0.16	-0.01	0.07	0.31	0.69	0.12	0.78
05/2/21	37494.79	32632.76	32116.75	34381.01	41788.23	33034.37	42959.70	0.15	-0.01	0.07	0.91	2.31	0.03	0.78
06/2/21	37550.88	32631.22	32139.12	34482.50	40013.55	33032.26	43291.59	0.15	0.00	0.07	0.30	-4.25	-0.01	0.77
07/2/21	37605.91	32629.98	32161.50	34503.17	39536.39	33030.57	43623.47	0.15	0.00	0.07	0.06	-1.19	-0.01	0.77
08/2/21	37659.92	32629.00	32183.89	34668.17	40953.30	33040.29	43955.36	0.14	0.00	0.07	0.48	3.58	0.03	0.76
09/2/21	37712.97	32628.21	32206.28	34742.22	40916.83	32941.29	44287.25	0.14	0.00	0.07	0.21	-0.09	-0.30	0.76
10/2/21	37765.12	32627.58	32228.68	34652.02	39794.47	32940.42	44619.14	0.14	0.00	0.07	-0.26	-2.74	0.00	0.75
11/2/21	37816.41	32627.07	32251.09	34986.39	41303.55	32939.73	44951.03	0.14	0.00	0.07	0.96	3.79	0.00	0.74
12/2/21	37866.88	32626.67	32273.50	35019.51	41776.01	32841.25	45282.92	0.13	0.00	0.07	0.09	1.14	-0.30	0.74
13/2/21	37916.56	32626.35	32295.93	34939.95	40103.16	32445.97	45614.81	0.13	0.00	0.07	-0.23	-4.00	-1.20	0.73
14/2/21	37965.50	32626.09	32318.36	34896.87	41021.09	32445.61	45946.70	0.13	0.00	0.07	-0.12	2.29	0.00	0.73
15/2/21	38013.72	32625.88	32340.79	34608.77	42168.37	32445.33	46278.58	0.13	0.00	0.07	-0.83	2.80	0.00	0.72
16/2/21	38061.26	32625.72	32363.24	34514.60	40757.48	32050.26	46610.47	0.13	0.00	0.07	-0.27	-3.35	-1.22	0.72
17/2/21	38108.14	32625.58	32385.69	34548.77	40939.21	32050.08	46942.36	0.12	0.00	0.07	0.10	0.45	0.00	0.71
18/2/21	38154.39	32625.48	32408.15	34702.49	42078.47	30888.73	47274.25	0.12	0.00	0.07	0.44	2.78	-3.62	0.71
19/2/21	38200.04	32625.39	32430.61	34313.74	40755.05	30888.61	47606.14	0.12	0.00	0.07	-1.12	-3.15	0.00	0.70
20/2/21	38245.10	32625.33	32453.09	34361.77	40330.67	29727.31	47938.03	0.12	0.00	0.07	0.14	-1.04	-3.76	0.70

Figure 6a: Daily Bitcoin future forecasts (Naïve model)

Figure 6c: Daily Bitcoin future forecasts (ETS model)

Figure 6e: Daily Bitcoin future forecasts (NNAR model)

Figure 6f: Daily Bitcoin future forecasts (Holt-Winter model)

Figure 6b: Daily Bitcoin future forecasts (Linear model)

Figure 6d: Daily Bitcoin future forecasts (ARIMA madal

Figure 6f: Daily Bitcoin future forecasts (STL)

5. Conclusions

The study aims to compare the outcome of statistical and machine learning models, and to verify how the different periodicity of the Bitcoin price series, including daily, weekly and monthly, performs in the forecast. We completed forecast models using the Naïve, Linear, Exponential Smoothing, ARIMA, Neural Network, STL and Holt-Winters filters, and apply the standard measures to evaluate the forecast accuracy. The results indicate that the Naïve model provides more accurate performance for the daily series, while the linear model outperforms for both weekly and monthly series. Using the DM statistics to check the forecast equality of the model, the evidence shows that forecasting Bitcoin price is not sensitive to the data periodicity.

The findings have some significant implications. First, because of information asymmetric, increasing economic uncertainties and other markets dynamics, adopting forecast models to predict the directions of Bitcoin price is vital. Second, since Bitcoin has now attracted different stakeholders, including institutional investors, the forecast models of Bitcoin price would serve as guides to make informed decisions in the cryptocurrency markets. Accurate prediction would offer warnings signals to investors, traders and other users in order to circumvent or at least minimize potential-risks due to excessive volatility. Third, the models have implications to drive asset allocations. Asset managers may want to avoid losses by adopting the least error model to predict the likely direction and value of bitcoin price. In periods where volatility is excessive, and the outcome of forecast models becomes sensitive to changes in the training sets, managers may switch funds to invest in financial market assets.

The study has two major limitations: first, for the different periodicity, we apply only the actual price series, and not the returns. Since actual data is usually noisy and may increase the risk of over predictions, we suppose future research can consider other transformation, involving using logarithm or even log-returns. Second, we do not consider the issue of intraday trading. By so doing, we have ignored to convert the models to a trading strategy, which can be compared to possible Monte Carlo of trading strategies where the buy/sell decisions are completely random.

References

Aalborg, H. A., Molnar, P. and Erik de Vries, J., 2018, "What can explain the price, volatility and trading volume of Bitcoin?" Finance Research Letters, 29, pp.255-265. https://doi.org/ 10.1016/j.frl.2018.08.010
Adcock, R. and Gradojevic, N., 2019, "Non-fundamental, non-parametric Bitcoin forecasting", Physica A: Statistical Mechanics and Its Applications, 531, 121727. https://doi.org/10.1016/j.physa.2019.121727
Auer, R., Cornelli, G. and Frost, J., 2020, "Rise of the central bank digital currencies: drivers, approaches and technologies", Bank of Int. Settlement, No. 880. https://www.bis.org/publ/work880.pdf
Aygün, B., and Günay Kabakçı, E., 202 1, "Comparison of statistical and machine learning algorithms for forecasting daily bitcoin returns", European Journal of Science and Technology, 21 , pp. 444-454. https://doi.org/10.31590/ejosat. 822153
Bakar, N. A. and Rosbi, S., 2017. "Autoregressive integrated moving average (ARIMA) model for forecasting cryptocurrency exchange rate in high volatility environment: A new insight of bitcoin", Transaction International Journal of Advanced Engineering Research and Science 4, 11, pp.130-137. https://dx.doi.org/10.22161/ijaers.4.11.20
Barontini, C. and Holden, H., 2020, "Proceeding with caution - a survey on central bank digital currency", Bank of Int. Settlement, 101. https://www.bis.org/publ/bppdf/bispap 101.pdf

Basher, S. A. and Sadorsky, P., 2022, "Forecasting Bitcoin price direction with random forests: How important are interest rates, inflation, and market volatility?" MPRA, 113293. https://mpra.ub.uni-muenchen.de/113293/MPRA
Baur, D. G., Hong, K. and Lee, A. D., 2018, "Bitcoin: Medium of exchange or speculative assets? Journal of International Financial Markets, Institutions and Money", $54(\mathrm{C})$, pp. 177-189. https://doi.org/10.1016/j.intfin.2017.12.004
Bisht, A. and Agarwa, P., 2017), "Analysis of Bitcoin using linear regression and data mining techniques", Int. J. of Advanced Research in Computer and Communication Engineering. 6(11). https://ijarcce.com/upload/2017/november17/IJARCCE\ 7.pdf
Bofinger, P. and Haas, T., 2021 , "Central bank digital currencies risk becoming a gigantic flop", Centre for Economic Policy Research, Voxeu, https://voxeu.org/article/central-bank-digital-currencies-risk-becoming-gigantic-flop
Bouri, E., Lau, C. K. M., Saeed, T., Wang, S. and Zhao, Y., 2021, "On the intraday return curves of Bitcoin: Predictability and trading opportunities", International Review of Financial Analysis, 76, 101784. https://doi.org/10.1016/j.irfa.202 1.101784
Brügner, H., 2017, "Holt-Winters traffic prediction on aggregated flow data: seminars FI / IITM SS 17", Network Architectures and Services. https://doi.org/10.2313/NET-2017-09-1_04
Caporale, G. M., Gil-Alana, L. and Plastun, A., 2018, "Persistence in the cryptocurrency market", Research in International Business and Finance, 46, pp.141-148. https://doi.org/10.1016/j.ribaf.2018.01.002
Chen, Z. Li, C. and Sun, W., 2020, "Bitcoin price prediction using machine learning: an approach to sample dimension" Engineering Journal of Computer Application in Maths, 112, pp.365-395. https://doi.org/10.1016/j.cam.2019.112395
Demir, A., Akılotu, B. N., Kadiroğlu, Z. and Sengür, A., 2019, "Bitcoin price prediction using machine learning methods", Proceedings - 1st International Informatics and Software Engineering Conference, Turkey, 6-7 November 2019. https://doi.org/10.1109/UBMYK48245.2019.8965445
Finance.yahoo.com (202 1), quote/BTC-USD, https://finance.yahoo.com/quote/BTC-USD/
Gbadebo, A. D., Adekunle, A. O., Adedokun, W., Lukman, A. A. and Akande, J., 202 1, "BTC price volatility: Fundamentals versus information", Cogent Business and Management, 8:1, 1984624, https://doi.org/10.1080/23311975.2021.1984624
Hamayel, M. J. and Owda, A. Y., 2021 , "A novel cryptocurrency price prediction model using GRU, LSTM and bi-LSTM Machine Learning Algorithms", Artificial Intelligence, 2, 4, pp.477-496. https://doi.org/10.3390/ai2040030

Hudson, R. and Gregoriou, A., 2010, "Calculating and comparing security returns is harder than you think: a comparison between logarithmic and simple returns", February 7. http://dx.doi.org/10.2 139/ssrn. 1549328
Hung, J., Liu, H. and Yang, J.J., 2020, "Improving the realised GARCH's volatility forecast for Bitcoin with jump-robust estimators", North American Journal of Economics and Finance, 52, pp.10-16. https://doi.org/10.1016/j.najef.2020.101165
Hyndman, R. J. and Athanasopoulos, G., 202 1, "Forecasting: principles and practice", 3rd edition, OTexts: Melbourne, Australia. https://otexts.com/fpp2
IMF, 2020, "Legal aspects of central bank digital currency: central bank and monetary law considerations", IMF Working Papers WP/20/254. https://www.imf.org/-/media/Files/Publications/WP/2020/English/wpiea2020254-print-pdf.ashx
Jaquart, P., Dann, D. and Weinhardt, C., 2021 , "Short-term bitcoin market prediction via machine learning", The Journal of Finance and Data Science, 7, pp.45-66. https://doi.org/10.1016/j.jfds.202 1.03.001
Kliber, A., Marszałek, P., Musiałkowska, I. and Świerczyńska, K., 2019, "Bitcoin: Safe haven, hedge or diversifier? Perception of bitcoin in the context of a country's economic situation-A stochastic volatility approach", Physica A: Statistical Mechanics and Its Applications, 524, pp.246-257. https://doi.org/10.1016/j.physa.2019.04.145
Koutmos, D. and Payne, J. E., 2020, "Inter-temporal asset pricing with bitcoin". Review of Quantitative Finance. https://doi.org/10.1007/s11156-020-00904-x
Koutmos, D., 2020, "Market risk and Bitcoin returns", Annals of Operations Research, Springer, 294, 1, pp.453-477. https://doi.org/10.1007/s 10479-019-03255-6
Kuang, L., Lin, C., Wang W. and Fang, X., 2016, "Prediction to industrial added value based on Holt-Winters model and ARIMA Model", Proceedings - International Conference on Applied Mathematics, Simulation and Modelling. Published by Atlantis Press. https://doi.org/ 10.2991/amsm-16.2016.49
Liang, C., Zhang, Y., Li, X. and Ma, F., 2020, "Which predictor is more predictive for Bitcoin volatility? And why?" International Journal of Finance and Economics, 1-15. https://doi.org/10.1002/ijfe.2252
Liantoni, F. and Agusti, A., 2020, "Forecasting bitcoin using double exponential smoothing method based on mean absolute percentage error", International Journal on Informatics Visualization, 4, 2. http://dx.doi.org/10.30630/joiv.4.2.335
Ling, A. and Zhu, Z., 2019, "Network hype and asset pricing of cryptocurrencies: Evidence based on a google-attention approach", http://dx.doi.org/10.2 139/ssrn. 3424155
Mallqui, D. C. and Fernandes, R. A., 2019, "Predicting the direction, maximum, minimum and closing prices of daily Bitcoin exchange rate using machine learning techniques", Application of Software Comp., 75, pp.596-606. https://doi.org/10.1016/j.asoc.2018.11.038
McNally, S., Roche, J. and Caton, S., 2018, "Predicting the price of Bitcoin using machine learning", Proceedings - 26th Euromicro International Conference on Parallel, Distributed and Network Based Processing, pp.339-343. https://doi.org/10.1109/PDP2018.2018.00060
Meucci, A. and Quant, N., 2010, "Linear vs. Compounded Returns - Common Pitfalls in Portfolio Management", GARP Risk Professional, pp.49-51, https://ssrn.com/abstract $=1586656$
Mikhaylov, A., 2020, "Cryptocurrency market analysis from the open innovation perspective", Journal of Open Innovative Technology Mark. Complex. 6, 4, 197. https://doi.org/10.3390/joitmc6040197
Munim, Z. H., Shakil, M. H. and Alon, I., 2019, "Next-day Bitcoin price forecast", Journal Risk Finance and Management 12, 2, 103. https://doi.org/10.3390/jrfm 12020103

Olvera-Juarez, D. and Huerta-Manzanilla, E., 2019, "Forecasting bitcoin pricing with hybrid models: A review of the literature". International Journal of Advanced Engineering Research and Science, 6, 9. https://dx.doi.org/10.22 161/ijaers.69.18
Ostertagová. E., 2012, "Modelling using polynomial regression", Procedia Engineering, 48, pp.500-506. https://doi.org/10.1016/j.proeng.2012.09.545
Othman, A. H., Kassim, S. and Rosman, R. B., 2020, "Prediction accuracy improvement for Bitcoin market prices based on symmetric volatility information using artificial neural network approach", J. of Revenue Pricing Mgt., 19, pp.314-330. https://doi.org/10.1057/s41272-020-00229-3
Ramadhani, A. M., Rang, K. N., Hun, L. T. and Eui, R. S., 2018, "Bitcoin price forecasting using neural decomposition and deep learning", Journal of the Korea Industrial Information Systems Research, 23, 4, pp.81-92. http://dx.doi.org./ 10.9723/jksiis.2018.23.4.081
Rizwan, M., Narej, S. and Javed, M., 2019, "Bitcoin price prediction using deep learning algorithm", Proceedings - 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics, pp.1-7, https://doi.org/10.1109/MACS48846.2019.9024772
Sitzimis, I., 2021, "An Optimal Forecasting Method of Passenger Traffic in Greek Coastal Shipping", International Journal of Business and Economic Sciences Applied Research, 14, 3. https://doi.org/10.25103/ijbesar.143.05
Stenqvist, E., and Lönnö, J., 2017, "Predicting Bitcoin price fluctuation with Twitter sentiment analysis", KTH Royal Degree Project in Technology, Institute of Technology School of Computer Science and Communication. Sweden Monograph. http://www.diva-portal.org/smash/get/diva2:1110776/FULLTEXTo1.pdf
Uras, N., Lodovica, M., Michele, M. and Roberto, T., 2020, "Forecasting Bitcoin closing price series using linear regression and neural networks models".
https://doi.org/10.48550/arXiv.2001.01127
Urquhart, A., 2018, "What causes the attention of Bitcoin?" Economics Letter, 166, pp.40-44. https://doi.org/10.1016/j.econlet.2018.02.017
Velankar, S., Valecha, S. and Maji, S., 2018, "Bitcoin price prediction using machine learning", In Proceedings - 20th Int. Conference on Advanced Communications Technology Chuncheon-si, Korea, pp.11-14. https://doi.org/10.23919/ICACT.2018.8323676
Ye, Z., Wu, Y., Chen, H., Pan, Y. and Jiang, Q., 2022, "A stacking ensemble deep learning model for bitcoin price prediction using twitter comments on Bitcoin", Mathematics. https://doi.org/10.3390/math 10081307.

Appendix

Figure W1: Weekly BTC Price in USD

Figure W3: BTC Price 04-07-19-11-01-2 1

Figure W5: Log of Weekly BTC Price

Figure W2: BTC Price 01-01-15-27-06-19

Figure W4: Weekly BTC Price (Difference)

Figure W6: Log of Weekly BTC Price (Difference)

[^2]

Figure M1: Monthly BTC Price in USD

Figure M3: Monthly BTC Price 07-19-01-2 1

Figure M5: Log of Monthly BTC Price

Figure M2: BTC Price 01-15-06-19

Figure M4: Monthly BTC Price (Difference)

Figure M6: Log of Monthly BTC Price (Difference)

	PREDICTIONS								PREDICTION ERROR (\%)						
Date	ACTUAL	NAIVE	LINEAR	ETS	ARIMA	NNAR	STL	HWM	NAIVE	LINEAR	ETS	ARIMA	NNAR	STL	HWM
01/07/19	11636.50	-	7836.60	11615.70	11307.10	11390.80	11590.90	11724.00	-2.29	-32.65	-0.18	-2.83	-2.11	-0.18	0.75
02/07/19	10697.60	11636.50	7841.70	11599.00	11321.70	11394.30	11631.30	11811.40	5.91	-26.70	8.43	5.83	6.51	8.43	10.41
03/07/19	10412.90	10697.60	7846.70	11585.70	11466.90	11429.30	11602.10	11898.90	9.01	-24.64	11.26	10.12	9.76	11.26	14.27
04/07/19	11201.50	10412.90	7851.80	11575.00	11507.30	11468.90	11578.70	11986.40	1.46	-29.90	3.33	2.73	2.39	3.33	7.01
05/07/19	11715.10	11201.50	7856.80	11566.50	11559.80	11518.10	11599.50	12073.90	-2.97	-32.93	-1.27	-1.39	-1.68	-1.27	3.06
06/07/19	11157.90	11715.10	7861.80	11559.60	11544.30	11571.60	11624.00	12161.40	1.87	-29.54	3.60	3.46	3.71	3.60	8.99
07/07/19	11195.40	11157.90	7866.90	11554.20	11622.80	11626.10	11612.10	12248.90	1.52	-29.73	3.21	3.82	3.85	3.21	9.41
08/07/19	11302.70	11195.40	7871.90	11549.80	11749.10	11680.80	11602.50	12336.40	0.95	-30.35	2.19	3.95	3.35	2.19	9.15
09/07/19	11728.60	11302.70	7876.90	11546.30	11697.90	11735.00	11638.00	12423.90	-2.75	-32.84	-1.55	-0.26	0.05	-1.55	5.93
10/07/19	12432.20	11728.60	7882.00	11543.50	11527.80	11787.80	11675.00	12511.40	-8.27	-36.60	-7.15	-7.27	-5.18	-7.15	0.64
11/07/19	12470.70	12432.20	7887.00	11541.30	11287.40	11838.60	11670.10	12598.90	-8.78	-36.76	-7.45	-9.49	-5.07	-7.45	1.03
12/07/19	11814.40	12470.70	7892.00	11539.50	11228.70	11887.90	11666.20	12686.40	-3.71	-33.20	-2.33	-4.96	0.62	-2.33	7.38
13/07/19	11479.60	11814.40	7897.10	11538.00	11164.60	11935.80	11717.90	12773.90	-0.69	-31.21	0.51	-2.74	3.97	0.51	11.27
14/07/19	11521.20	11479.60	7902.10	11536.90	11171.30	11989.80	11770.20	12861.40	-0.98	-31.41	0.14	-3.04	4.01	0.14	11.63
15/07/19	11022.30	11521.20	7907.10	11536.00	11229.50	12029.00	11768.20	12948.80	3.37	-28.26	4.66	1.88	9.13	4.66	17.48
16/07/19	10434.20	11022.30	7912.20	11535.30	11403.90	12075.00	11766.60	13036.30	9.14	-24.17	10.55	9.29	15.73	10.55	24.94
17/07/19	10447.10	10434.20	7917.20	11534.70	11855.60	12121.50	11767.60	13123.80	8.92	-24.22	10.41	13.48	16.03	10.41	25.62
18/07/19	9532.50	10447.10	7922.20	11534.20	12295.50	12168.60	11769.00	13211.30	19.57	-16.89	21.00	28.99	27.65	21.00	38.59
19/07/19	9937.40	9532.50	7927.20	11533.80	12308.00	12215.10	11768.10	13298.80	14.63	-20.23	16.06	23.86	22.92	16.06	33.83
20/07/19	10533.50	9937.40	7932.30	11533.50	12380.40	12260.70	11767.50	13386.30	8.12	-24.69	9.49	17.53	16.40	9.49	27.08
21/07/19	10675.30	10533.50	7937.30	11533.30	12269.50	12305.00	11838.00	13473.80	6.66	-25.65	8.04	14.93	15.27	8.04	26.22
22/07/19	10669.70	10675.30	7942.30	11533.10	12365.10	12348.30	11908.60	13561.30	6.87	-25.56	8.09	15.89	15.73	8.09	27.10
23/07/19	10467.90	10669.70	7947.30	11532.90	12450.40	12390.60	11908.30	13648.80	9.02	-24.08	10.17	18.94	18.37	10.17	30.39
24/07/19	10192.40	10467.90	7952.40	11532.80	12867.40	12432.00	11908.00	13736.30	11.59	-21.98	13.15	26.25	21.97	13.15	34.77
25/07/19	9803.60	10192.40	7957.40	11532.70	13212.90	12472.40	11872.90	13823.80	15.94	-18.83	17.64	34.78	27.22	17.64	41.01
26/07/19	9912.40	9803.60	7962.40	11532.60	13033.90	12511.60	11837.70	13911.30	14.69	-19.67	16.34	31.49	26.22	16.34	40.34
27/07/19	9849.20	9912.40	7967.40	11532.60	12936.20	12549.50	11837.60	13998.80	15.48	-19.11	17.09	31.34	27.42	17.09	42.13
28/07/19	9816.70	9849.20	7972.40	11532.50	13086.20	12586.20	11837.50	14086.20	16.11	-18.79	17.48	33.31	28.21	17.48	43.49
29/07/19	9439.80	9816.70	7977.50	11532.50	13125.00	12621.60	11781.10	14173.70	20.79	-15.49	22.17	39.04	33.71	22.17	50.15
30/07/19	9567.60	9439.80	7982.50	11532.40	13043.50	12655.80	11724.70	14261.20	19.08	-16.57	20.54	36.33	32.28	20.54	49.06
31/07/19	9553.80	9567.60	7987.50	11532.40	12938.50	12688.80	11724.60	14348.70	19.07	-16.39	20.71	35.43	32.81	20.71	50.19
01/08/19	9762.60	9553.80	7992.50	11532.40	12599.60	12790.70	11724.50	14436.20	16.64	-18.13	18.13	29.06	30.30	18.13	47.87
02/08/19	10148.80	9762.60	7997.50	11532.40	12542.10	12751.40	11682.20	14523.70	12.01	-21.20	13.63	23.58	25.64	13.63	43.11
03/08/19	10477.00	10148.80	8002.60	11532.40	12402.90	12781.00	11639.90	14611.20	8.74	-23.62	10.07	18.38	21.99	10.07	39.46
04/08/19	10656.50	10477.00	8007.60	11532.40	12225.40	12809.40	11639.90	14698.70	6.80	-24.86	8.22	14.72	20.20	8.22	37.93
05/08/19	10817.00	10656.50	8012.60	11532.40	11943.50	12836.70	11639.90	14786.20	5.19	-25.93	6.61	10.41	18.67	6.61	36.69
06/08/19	11272.20	10817.00	8017.60	11532.30	11958.60	12862.90	11651.20	14879.70	1.12	-28.87	2.31	6.09	14.11	2.31	31.95
07/08/19	11792.00	11272.20	8022.60	11532.30	11869.70	12888.10	11662.50	14961.20	-3.44	-31.97	-2.20	0.66	9.29	-2.20	26.88
08/08/19	11649.00	11792.00	8027.60	11532.30	11491.90	12912.10	11662.50	15048.70	-2.31	-31.09	-1.00	-1.35	10.84	-1.00	29.18
09/08/19	11829.90	11649.00	8032.60	11532.30	11312.10	12935.00	11662.50	15136.20	-3.50	-32.10	-2.52	-4.38	9.34	-2.52	27.95

Weekly predictions in the validation period

Figure 4a: Weekly predictions in the validation period (Naïve model)

Figure 4c: Weekly predictions in the validation period (ETS model)

Figure 4e: Weekly predictions in the validation period (NNAR model)

Figure 4g: Weekly predictions in the validation period (STL model)

Figure 4b: Weekly predictions in the validation period (Linear model)

Figure 4d: Weekly predictions in the validation period (ARIMA model)

Figure 4f: Weekly predictions in the validation period (HWF model)

Monthly predictions in the validation period

Figure 5a: Monthly predictions in the validation period (Naïve model)

Figure 5c: Monthly predictions in the validation period (ETS model)

Figure 5e: Monthly predictions in the validation period (NNAR model)

Figure 5g: Monthly predictions in the validation period (STL model)

Figure 5b: Monthly predictions in the validation period (Linear model)

Figure 5d: Monthly predictions in the validation period (ARIMA model)

Figure 5f: Monthly predictions in the validation period (HWF model)
Table D.2: Autocorrelation and conditional heteroscedasticity tests

Forecast Methods	Test	Daily		Weekly		Monthly	
		Stat.	p-value	Stat.	p-value	Stat.	p-value
NAIVE	LBox (Q^{*})	885.20	$\left(2.20 \times 10^{-16}\right)$	101.71	$\left(6.06 \times 10^{-06}\right)$	8.2993	$(0.686343)^{* * *}$
ETS	LBox (Q^{*})	552.19	$\left(3.02 \times 10^{-14}\right)$	54.494	$(0.1124)^{* * *}$	4.9994	$(0.623120)^{* * *}$
LINEAR	B-G (LM)	1634.3	$\left(2.20 \times 10^{-16}\right)$	228.13	$\left(2.20 \times 10^{-16}\right)$	44.965	$\left(4.920 \times 10^{-6}\right)$
ARIMA	LBox (Q^{*})	627.96	$\left(2.20 \times 10^{-16}\right)$	115.35	$\left(6.99 \times 10^{-8}\right)$	3.8399	$(0.9543){ }^{* * *}$
NNAR	LBox (Q^{*})	513.31	$\left(6.96 \times 10^{-11}\right)$	63.276	(0.0185)	3.0353	(0.980623)
STL	B-G (LM)	1534.3	$\left(2.30 \times 10^{-15}\right)$	-	-	4.2532	(0.882 145)
HWM	$\operatorname{LBox}\left(\mathrm{Q}^{*}\right)$	563.27	$\left(3.20 \times 10^{-16}\right)$	87.255	$\left(3.470 \times 10^{-5}\right)$	51.483	$\left(1.33 \times 10^{-5}\right)$
NAIVE	$\underset{\sim}{\text { QM }}\left(x^{2}\right)$	0.6483	(0.9996)*	1.7075	(0.9887)	1.6734	(0.991271)
ETS	QM $\left(x^{2}\right)$	15.865	(0.0072)	39.657	$\left(1.75 \times 10^{-7}\right)$	17.745	(0.003284)
LINEAR	$\mathrm{QM}\left(x^{2}\right)$	10.883	(0.0009707)	10.234	(39.657)	7.9473	(0.004816)
ARIMA	QM (x^{2})	9.9624	(0.0016)	9.7093	(0.0018)	8.2571	(0.004059)
NNAR	QM (x^{2})	15.674	$\left(7.53 \times 10^{-5 *}\right)$	15.161	$\left(9.88 \times 10^{-5}\right)$	9.7093	(0.001833)
STL	QM (x^{2})	9.5214	(0.0023)	6.5773	(0.0103)	1.1091	(0.292334)
HWM	QM (x^{2})	9.8933	(0.0017)	9.2731	(0.0023)	7.2250	(0.007190)

Breusch-Godfrey [B-G (LM) $]$; Ljung-Box $\left(Q^{*}\right)$ (x-square:), $\mathrm{Qm}\left(x^{2}\right)$ (p-values <0.05) indicates the presence of conditional heteroscedasticity. *** indicate no autocorrelation

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence.

[^0]: ${ }^{1}$ Corresponding Author: GBADEBO Adedeji Daniel
 Email: gbadebo.adedejidaniel@gmail.com

[^1]: ${ }^{1}$ Autocorrelation Function (ACF); Partial Autocorrelation Function (PACF); Akaike Information Criterion (AIC); corrected Akaike Information Criterion (AICc); Bayesian information criterion (BIC).

[^2]: ${ }^{1}$ Corresponding Author: GBADEBO Adedeji Daniel
 Email: gbadebo.adedejidaniel@gmail.com

