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Purpose: 
The main goal of this study is to exact an optimal forecasting method by answering the 
research question: which is the best model for capturing short-term seasonal components of 
passenger traffic in Greek coastal shipping? 
Design/methodology/approach: 
There are not a lot of scientific efforts in forecasting passenger traffic in Greece. In order to 
fill this gap, we tried to find an optimal forecasting method, by comparing Box-Jenkins 
ARIMA, smoothing and decomposition methods. As Greek coastal shipping consists of 
several concentrated submarkets (lines) we remained in fourteen popular itineraries 
(including total passenger traffic). Taking into consideration the high seasonality and no 
stationarity that characterizes those routes we limited our analysis to Winter’s triple 
exponential smoothing, to time series decomposition method, to simple seasonal model and 
to seasonal ARIMA models. 
Findings: 
The analysis results show that in fourteen popular coastal routes Winters’ multiplicative 
method, simple seasonal model and decomposition multiplicative trend and seasonal model 
have the best integration to the time series data. No coastal line led to better results by 
seasonal Box-Jenkins ARIMA models.  
Research limitations/implications: 
The results should be treated with caution since COVID-19 pandemic does not allow safe 
conclusions for the forecasting period 2020-2022 in GCS. However, the forecasting results 
of the first quarter of 2020, when pandemic had not fully prevailed, gave encouraging results 
with little deviations between predicted and actual values.  
Originality/value: 
Greek coastal shipping is one of the biggest in Europe serving a large number of passengers 
and having a large part of the total shipping fleet. It plays an important role for Greek 
economy and society, as it connects the majority of inhabited islands to mainland. The 
finding of an optimal forecasting method of passenger traffic is very significant for both 
business and government policy. Decisions on the number of routes served by shipping 
companies, on ships by coastal line (number and size), on companies' pricing policy, on 
public service obligations, on state port infrastructure policy and on the amount of state 
funding for barren lines are typical examples.  
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1. Introduction 

GCS is one of the biggest in Europe and performs an important role connecting mainland to Greek islands1. Its 

contribution to GDP is € 13.6 billion or 7.4% of total GDP (2019). It employs approximately 332,000 people and 
contributes to public revenues with approximately € 3 billion (IOBE, 2020). It carries over 35 million Greeks and 
foreigners annually (including ferry lines), with its fleet accounting for about 7% of the global passenger shipping fleet. It 
covers about 17% of total passenger shipping in Europe, with more coastal lines than other countries (due to the plethora 
of islands). The sector is characterized by high seasonality with almost half of the transport traffic taking place in the 
period June-August (IOBE, 2014).  

In 2019, the listed shipping companies, employed 2,449 employees, launched 43 ships and served passenger traffic of 
7,543,460 people. Respectively, they transported 1,041,574 cars and 555,241 trucks. They served about 36% of total 
passenger traffic2 and 46% of total vehicle traffic. The average age of their fleet is high, with 60% being over 22 years old 
and 25% of the total being over 30 years old (XRTC, 2004-2020).  

All the above show that GCS is of great importance for Greek economy and society. The volume of passenger traffic it 
serves is very high and its forecast is very significant for both business and government policy. Decisions on the number 
of routes served by shipping companies, on ships by coastal line (number and size), on companies' pricing policy, on public 
service obligations3, on state port infrastructure policy and on the amount of state funding for barren lines4 are typical 
examples. Indicatively, according to Official Government Gazette B,15/04/20,1426 (article 2), the state funding for the 
financial support of coastal companies, on barren lines, has a basic precondition. The reduction of average passenger traffic 
by 80% in relation to the previous year’s data. Also, the indisputable existence of scale economies in GCS (because of high 
fixed costs), is related to economic necessity of achieving high occupancy rates (by using larger ships and reducing routes) 
(Sitzimis 2021a; 2021b). In any case, both the private and public sector need to know the future passenger traffic in GCS. 
Forecast is essential to decision making. 

The main goal of this study is to exact an optimal forecasting method by answering the research question: which is the 
best model for capturing short-term seasonal components of passenger traffic in Greek coastal shipping? In particular, it 
aims to find an optimal forecasting method of passenger traffic in GCS by comparing Box-Jenkins ARIMA, smoothing 
and decomposition methods (Wardono, et al., 2016; Ahmad & Ahmad, 2013; Trull, et al., 2020). The first methods seem to 
be effective in predicting passenger traffic in transport and the other two have not been preferred for research (Aivazidou, 
2015). The basic assumption in all three of the above methods is that the available observations will continue to behave in 
the future as in the past (Shim & Siegel, 2001). 

In the period 2020-2021, due to covid-19 pandemic, this did not happen and there was a sharp drop in passenger 
traffic. This is why our forecast will start from 2020, ignoring this decrease so as not to create a problem in time series 
forecasting for the coming years (and especially for the year 2022 when the situation is expected to return to normalcy). 
 
2. Related work 
In relation to transport forecasting efforts in the transport sector, about 60% of publications concern forecasts for 
passenger transport (Aivazidou, 2015). These mainly concern air, road and urban transport. Similar scientific research on 
maritime passenger transport is absent from international literature. The main reason is that in a few countries coastal 
shipping is a means of transport. Remarkable is only the research of Ortuzar and Gonzalez (2002), on the coastal line 
between the Canary Islands and Tenerife. 

In GCS, because it largely connects mainland to Greek islands, the research is more extensive. Attempts in this 
direction have been made by various authors, such as Psaraftis (1994) who made an attempt to systematically analyze 
possible scenarios for passenger demand after deregulation of the market. Spathi (2005), attempted to find the function of 
passenger demand using the dynamic model with the error correction model mechanism (Ramanathan, 2001). A similar 
study was carried out by Tsekeri (2008) who presented an aggregate analysis of substitution and complementary 
relationship among all available transport modes for domestic travel in Greece. He proposed a model based on consumer 
demand theory. 

Simplistic efforts were made to forecast the financial statements and passenger traffic of coastal companies, with 
polynomial and hyperbolic functions having the best application (higher R squared) (Sitzimis, 2012). An important 
research took place in 2014 (IOBE), which used the regression method for the estimation of demand elasticity for coastal 

                                                 

1 It connects about 115 inhabited islands to mainland in Greece. 
2 The remaining 64% for passengers and 54% for vehicles are serviced by smaller companies. In 2019, these companies launched 15 
conventional and 21 high-speed vessels on all GCS routes. 
3  Although the market is liberalized and a simple declaration to the Ministry of Maritime Affairs and Insular Policy is required to enter 
and exit, there are also obligations for shipping companies such as obligatory period of ten-month shipping, prohibition of interruption 
and change of routes without approval, mandatory crew compositions of ships. 
4 According to Law 2923/2001, the State characterizes as "barren" those lines for which there is no expression of interest for their 
operation from coastal companies. 
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shipping services with respect to ticket prices and household disposable income. Various other forecasting approaches are 
performed by XRTC on annual basis (2004-2020). 

However, according to Aivazidou (2015) the basic forecasting methods used for other passenger transport are mainly 
time series analysis models and less combined time series and regression analysis models or pure regression analysis 
models. In fact, the most widely used models are those based on the Box-Jenkins ARIMA methodology, while very few 
are based on methods of smoothing and time series decomposition. In other words, there is a gap in the relevant literature 
that we are going to fill with this research. 
 
3. Passenger traffic analysis in GCS 
Air, road and urban transport offer useful conclusions about passengers’ demand forecasting to a transportation industry 
(Sitzimis, 2012; Sabry, et al., 2007; Tamber, et al., 2021; Dingari, et al., 2019). We could be based on them and reach to the 
congruent conclusions about GCS. However, market conditions differ between those industries. In GCS these assumptions 
cannot be unified and undivided (Goulielmos & Sambrakos, 2002). This market consists of several concentrated 
submarkets-coastal routes, which should be analysed individually (Sitzimis, 2012; Goulielmos & Sitzimis, 2014; 
Goulielmos & Sitzimis, 2012). There are many studies that make the mistake of dealing the market GCS as a total 
(Tsekeris, 2008). We preferred the assiduous review of the real conditions of GCS, by analysing it per coastal route. 

Coastal lines in Greece are characterized by intense seasonality with the largest percentage of passenger traffic (about 
45%) taking place in the third quarter of each year. The months from April to September accounting for about 70% of the 
total annual number of passengers (Sitzimis, 2012; XRTC, 2004-2020). This fact reflects the strong tourist demand for 
island destinations (IOBE, 2014). August, is the month with the greatest traffic, leaving behind July, September and June. 
The lowest traffic of passengers traveling within their national borders, mostly appears during February, January and 
November (XRTC, 2004-2020). 

In order to analyse the passenger traffic in shipping itineraries of Greece, we remained in 13 itineraries, which 
represented the biggest average percentage of total passenger traffic (diagram 2). Those of Argosaronikos (A), Piraeus-
Peloponnese (PP), Piraeus-Creta (PC), Piraeus-Creta-Dodecanese (PCD), Piraeus-Dodecanese (PD), Piraeus-West 
Cyclades (PWC), Piraeus-East Cyclades (PEC), Piraeus-Mykonos-Tinos-Samos (PMTS), Piraeus-Chios-Mytilene (PCM), 
Patra-Akarnania-Ionian islands (PAII), Rafina-Euboea-Andros-Tinos (REAT), Volos-North Sporades-Kymi (VNSK) and 
the rest (L).  

The average number of passenger traffic on these lines, between 1970-2000, increased at an impressive rate. Overall, 
an average increase of 4.2% was observed (Sitzimis, 2012). This was due to: (a) the growth of tourism in insular Greece, 
(b) the increase in GDP per capita of island inhabitants, (c) the general increase of permanent population in Greece and (d) 
the greater dependence of islands from the mainland (due to the modern tendency for astyphilia) (Spathi, 2005). The lines 
with the highest traffic were "A", "PEC" and "PC", while the highest growth rate appeared in line "PEC" (7.2%), followed 
by lines "PC" (7.1%) and "PWC" (6.5%) (Sitzimis, 2012). It is obvious that "PWC" and "PEC" lines gathered the largest 
shipping traffic in GCS between 1970-2000. This was mainly due to the great growth of tourist arrivals that occurred in 
these islands after 1970. 

Comparing the years 2001 to 2019 (table 1 and figure 1) it is obvious a very large increase of passenger traffic between 
the years 2001-2007 (35%), mainly due to liberalization of the market (lifting of cabotage privilege), partly in 2002 and 
fully in 2006 (Law 2932/01, EU regulation 789/04, Presidential Decree 124/06) (Sitzimis, 2012; Goulielmos & Sitzimis, 
2014). Also, in this increase contributed both the Olympic Games in Athens (2004) and the increase of tourist flows to the 
country. Between 2006-2007 there is stabilization and a small percentage decrease. In the period 2008-2013, passenger 
transport is significantly reduced due to global financial crisis, with the percentage reduction reaching 25%. The decrease 
was caused by the descending course of income per capita of Greeks and by the overdraft of Greek households. After 2014 
and until 2019 the market is recovering but continues to be at lower levels than it was before the crisis. Despite the sharp 
increase in tourist traffic5, Greek coastal shipping does not benefit enough as most foreign tourist arrivals took place by 
air. Overall, for the years 2001-2019 the average increase was about 10% (table 1). 

For 2020, the impact of Covid-19 pandemic was clear. Greek coastal shipping was subjected to a restriction on 
passengers’ transportation from March to May 2020 followed by state ceilings for transported passengers thereafter. If we 
consider the big drop in tourism, the passenger reduction was significant (about 55%) (IOBE, 2020). 

The most popular destination and the greatest average traffic (2001-2019) (Figure 2) is presented in shipping route 
"A" (having a part of 16.3% of passengers), followed by Piraeus-Cyclades ("PEC" and "PWC", having a part of 15,5% of 
passengers), "PC" (a part of 13,7%) and "REAT" with 12.9%. This is normal because they constitute very popular touristic 
destinations. Especially after the deregulation of the market took place «cream skimming». This means that most shipping 
companies preferred the most lucrative coastal markets, mainly in the summer months. At the same time left non 

                                                 

5 In 2004 there were 13 million tourist arrivals, whereas in 2019 the number was 34 million. 
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profitable markets in winter (Sitzimis, 2012; 2021a; 2021b; Goulielmos & Sambrakos, 2002). Also, the high levels of traffic 
are interpreted by the fact that these itineraries are based on the part of demand with the least seasonality. So, the higher 
levels of occupancy rates and exploitation of ships are achieved. 
 
4. Methodology 
The main issue in this research was to predict passenger traffic on the main lines of Greek coastal shipping. To do this we 
had to choose between certain quantitative forecasting methods. Qualitative forecasting methods are based more on 
human judgment than on the analysis of existing data (Shim & Siegel, 2001). We had quarterly data on passenger traffic 
between the years 2004-2019, so we chose the quantitative methodology. In each case we processed our data with the 
statistical package SPSS 22. Exception took place for the calculation of time series decomposition where the Minitab 19 
software was used. Also, the calculation of the augmented Dickey-Fuller test was done through EViews 11. The reason 
was that SPSS did not have these features clearly. 

In order to make a prediction for our dependent variable we could use regression analysis (Petropoulos & 
Asimakopoulos, 2013). In this way we would recognize the quantitative and causal relationship between the variables 
involved in the interpretation of our problem. Unfortunately, this method is difficult to apply here as the independent 
variables that affect passenger traffic are not completely clear, it is difficult to find relevant statistic data and time series 
analysis models seem to be better applied in these cases (Sabry, et al., 2007; Wu, et al., 2013; Tsui, et al., 2014; Rashidi & 
Ranjitkar, 2015). 

For these reasons we could rely on known smoothing methods or Box-Jenkins ARIMA models, taking into account 
only the existing observations and not the possible relationship with other variables (Ahmad & Ahmad, 2013; Munarsih & 
Saluza, 2019; Yonar, et al., 2020).  

Starting with smoothing methods, they are easy to apply and have a low degree of computational difficulty. The basic 
logic is that we use time series data, that is, past observations of equal successive time periods. These time series are not 
affected by the small amount of available data and provide satisfactory forecasts in the short term (Petropoulos & 
Asimakopoulos, 2013). As is well known, when we do not have a trend and seasonality (stationary time series) for a short 
forecast range, the simple moving average and simple exponential smoothing models are best applied. Respectively, if 
there is a trend but not seasonality, for a long range of forecasts, the trend analysis or the exponential smoothing with 
adaptation to the trend (Holt's method) are suitable. For a smaller range the double exponential smoothing (Brown's 
method) or the double moving average method (double moving average or linear moving average) are preferable (Chalkos, 
2020).  

The passenger traffic data available at GCS were quarterly and therefore there were indications of seasonality and no 
stationarity. As shown in Figure 5 in all examined lines there is a strong increase in traffic in the 3rd quarter of the year, 
with a slightly decreasing or increasing trend over the years 2004-2019. This means that we could not use prediction 
techniques such as the above. Repeated seasonal fluctuations and quarterly available observations made the Winters 
model (Winter's triple exponential smoothing) (indicated when we have seasonality rather than a short-term forecast), the 
time series decomposition (suitable when we have a trend and seasonality for a long range of forecasts), the simple 
seasonal model (suitable when we do not have a trend, but only a stable seasonal result) and the seasonal ARIMA models 
suitable for our case (Chalkos, 2020; Petropoulos & Asimakopoulos, 2013).  
 

Table 1: Total passenger traffic in GCS (for the 13 main itineraries) (2001-2019). 
 

Year Passengers Average % alteration 

2001 13,852,000 

16,422,862 34.79% 

2002 13,124,000 

2003 14,905,000 

2004 17,306,000 

2005 18,257,159 

2006 18,844,396 

2007 18,671,482 

2008 18,068,255 

15,729,890 -24.72% 

2009 17,442,121 

2010 16,587,040 

2011 15,071,705 

2012 13,608,289 
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2013 13,601,930 

2014 14,463,293 

15,598,306 20.40% 

2015 14,323,032 

2016 14,542,183 

2017 15,938,427 

2018 16,909,512 

2019 17,413,388 

Average (2001-2019) 15,943,643 
 

10.16% 

Source: Hellenic Statistical Authority (2000-2020). Our elaboration. 
 

4.1. Measures of forecasting accuracy 

 
The basic selection criterion we followed is which method best suited our data, that is, it led to the smallest values 

ofdiscrepancies between predicted ( t ) and actual values ( t ) of the time series (forecast error). By studying the time 
behavior of forecast error values, we were able to arrive at both the evaluation of our forecasting methods and the choice 
between alternatives (Agiakloglou & Oikonomou, 2019; Karmaker, et al., 2017).  

We used the following precision measures: 
a) The mean absolute percentage error (MAPE), which expresses the percentage accuracy. Defined as:  

n

x
Yt

tYYt

MAPE

100




  
(1) 

where n is the number of measurements. 
b) The mean squared deviation (MSD or MSE) calculated as: 
 

n

tYYt
MSD

2)( 
  (2) 

Mean squared error expresses the mean value of the squared deviations and is considered statistically more reliable, so 
it is used more often. Because its interpretation is difficult to understand we mainly used the root mean squared error 
(RMSE) (Agiakloglou & Oikonomou, 2019).  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Fluctuations of total passenger traffic in 
GCS (2001-2019) 

Figure 2: Average passenger traffic per route in GCS 
 (2001-2019) 
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Source: Hellenic Statistical Authority (2000-2020). Our elaboration. 

 
 

 
c) The mean absolute error (MAE), which expresses a measure of the accuracy of the forecast against the actual values, 
maintaining the units of measurement of the original time series. It is set as: 

n

FiYi
MAE

|
  (3) 

and its high values show bias of the method. 
 
d) The Bayesian information criterion, developed by Schwarz (1978) (or BIC) selects the model that minimizes: 

r
n

n
BIC

ln
ln

2

   (4) 

where σ2 is the sum of the squares of the residuals, n is the number of observations and r is the total number of parameters 
with the constant term. 

For all forecasting accuracy measures we considered that the lower the price the better the model in terms of 
estimation (Chalkos, 2020). We also accepted that MAPE values below 10% describe an extremely accurate forecast, 
below 20% a relatively good forecast and below 30% a marginally accurate forecast (Dingari, et al., 2019).  
 
4.2.  Winter’s triple exponential smoothing 

Winter’s triple exponential smoothing has three smoothing parameters. The parameter α for the smoothing of time series 

values (level), the parameter β for the smoothing of trend (slope) and the parameter γ for seasonality smoothing. These 
components are either additive or multiplicative. The multiplication model is selected when the seasonal pattern in the 
data depends on the size of the data. In other words, the size of the seasonal pattern increases as the series goes up and 
decreases as the series goes down. The additive one is selected when the seasonal pattern in the data does not depend on 
the size of the data. In other words, the size of the seasonal pattern does not change as the time series goes up or down 
(Hansun, et al., 2019; Dingari, et al., 2019).  

The smoothing of the time series values in the additive model is done through the function: 

                               (5) 
whereas in the multiplicative through the function: 

    
  

    

                  (6) 

where α is the smoothing constant (0≤α≤1), Αt the smoothed values of time series, St is the seasonal factor of the period t 
and L is the periodicity of the seasonality.  

In the additive model the smoothing of the trend follows the equation: 

                        (7) 

12.000.000.00

13.000.000.00
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15.000.000.00

16.000.000.00
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0.00

500.000.00
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3.000.000.00 16.31% 

0.59% 

13.71% 

1.16% 

5.62% 

3.85% 

11.67% 
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4.93% 
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where β is the trend smoothing constant (0≤β≤1) and Τt the smoothed values of trend. The equation in multiplicative 
model is transformed as: 

                        (8) 
The seasonality smoothing in additive model follows the equation: 

    [     ]            (9) 
and in multiplicative the equation: 

    
  

  

           (10) 

where γ is the smoothing constant of seasonality (0≤γ≤1).  
The forecast is: 

 ̅                   (11) 
where h=1,2,3…L is the future periods of first year and 

 ̅                    (12) 
where h=L+1,L+2,L+3…2L is the future periods of second year etc.  

Initialization of the method according to Chatfield (2003) is required. For t=1,2,..,L-1 the values At are not 
determined, while for t=L the AL is defined as: 

   
          

 
 (13) 

For t=1,2,…,L-1 the values Τt are not determined, for t=L we set ΤL=0 and for t=1,2,…,L the values of the seasonal 
coefficients St are calculated as: 

   
  
  

 (14) 

The optimal values of α, β and γ were calculated automatically by minimizing the RMSE criterion in SPSS and for all 
possible combinations of parameter values in the time series data (Chalkos, 2020; Dhali, et al., 2019; Ravinder, 2013; 
Tamber, et al., 2021).  
 

4.3.  Τime series decomposition and Simple seasonal exponential smoothing 
 
The objective of time series decomposition is to identify the mechanism by which time series values are formed. The 
decomposition method is used to separate a time series into the trend component, the seasonality component, the cyclical 
component and the irregular component to make predictions (Chalkos, 2020).  

It is necessary to choose whether the seasonality works addictively or multiplicatively to the trend. If it works 
addictively, the model has the form: 

Υt = Tt+St+Ct+It (15) 

where Υt is the real observation in time t, Τt is the trend, St is the seasonality, Ct is the circularity and It is the 
randomness. This model is more difficult for further computational analysis and assumes independence between the 
factors. This assumption applies to natural phenomena, but not to business or economic applications, where the trend also 
affects seasonal fluctuations (Agiakloglou & Oikonomou, 2019). In the case of the multiplicative model the above relation 
is transformed as: 

Υt = Tt·St⋅Ct⋅It (16) 
It works well when the fluctuations depend on the level of values, which is usually the case (Kyriakidis, 2018).  

The simple seasonal exponential smoothing is suggested for series with no trend and a seasonal effect that is constant 

over time. It has two smoothing parameters, level (α) and season (δ). It is very similar to an ARIMA model with zero 
orders of autoregression, one order of differencing, one order of seasonal differencing, and orders 1, p, and p + 1 of 
moving average, where p is the number of periods in a seasonal interval (for quarterly data, p = 4) (IBM, 2021). The 
model equation is: 

              (17) 

and the smoothing equations are: 

                         (18) 

                      (19) 
The h-stem-ahead equation is: 

 ̅              (20) 

h=1.2…, where μt is the mean of the observed time series at period t, St-P+h is the seasonal component, p is the seasonality 
periodicity, h is the number of periods in forecasting and at is the forecast error at period t. 
 
4.4.  ARIMA: Auto-Regressive Integrated Moving Average  
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In relation to the Box-Jenkins ARIMA models, we would say again that in all coastal lines appear seasonal data that have 
a distinct pattern which is repeated every year (Figure 5). Our data are quarterly, so the length of the seasonal period is S 
= 4. This means that there are observations that are correlated both within the year and between different years. In these 
cases, seasonal ARIMA (SARIMA) models that contain non-seasonal and seasonal autoregressive and moving average 
terms are applied (Wardono, et al., 2016; Ma, et al., 2018; Sim, et al., 2019). In fact, in non-stationary series, a seasonal 
difference is usually used to completely determine the model. (Wardono, et al., 2016; Ma, et al., 2018; Sim, et al., 2019).  

These models are denoted as ARIMA (p,d,q)(P,D,Q)s where: p are non-seasonal autoregressive terms, d are regular 
differences, q are non-seasonal moving average terms, P are seasonal autoregressive terms, D are seasonal differences, Q 
are the seasonal terms of moving average and s is seasonality. Indicatively a SARIMA model is written: 

         
                           

     (21) 

where φ and θ, are parameters of autoregressive (AR) and moving average (MA), while Φ and Θ, are parameters of 

seasonal autoregressive (SAR) and seasonal moving average (SMA) respectively. Β is lag operator which defined as 
BKYt=YT-K (18) (Wang, et al., 2013; Suhartono, 2011). 

In particular, to implement SARIMA modeling and forecasting in GCS we followed 4 basic steps (table 2). The first 
stage was the "recognition" of the model whenever we initially ascertained the existence or not of stationarity in the time 
series data. When the series were not stationary (in the sequence chart the values were not around zero) we applied the 

method of differences. In some cases, both first regular differences (ΔΥt = Yt-Yt-1) and seasonal quarterly differences (ΔΥt 
= Yt-Yt-4), that is of order S = 4, were needed. After the differences if the autocorrelation function of the time series were 
declining rapidly and were zero, we considered this to be a sign of stationarity. In order to determine whether the time 
series actually became stationary we applied the augmented Dickey-Fuller test, which had as null hypothesis that the data 
are not stationary (p-value <5% in order to reject the null hypothesis) (Hasudungan & Pulungan, 2021; Makatjane & 
Moroke, 2016). We used EViews software for this unit root test.  

In the resulting stationary time series, through Minitab 19 we checked the importance of the time series 
autocorrelation coefficients per lag. We used the t-student distribution, with n-1 degrees of freedom, 95% confidence 
interval for one-tailed test and null hypothesis that the coefficients are not autocorrelated (Gujarati & Porter, 2018). The 
autocorrelation of the coefficients is desirable, so our goal was to accept the alternative hypothesis (that is approximately 
for values t <2). At the same time, we checked the autocorrelation for all Lags, where we used the Ljung - Box Q statistics 
through the chi-square distribution, with the same degrees of freedom as the lags, 95% confidence level, one-tailed test 
and null hypothesis that the data is random and without apparent trend (LBQ>chi-squared). That is, not all 
autocorrelation coefficients are statistically different from zero (Gujarati & Porter, 2018). The same test was performed 
through SPSS where the p-value <5% for the Box-Ljung statistic criterion was required. 

The final identification of the appropriate model per coastal line was made by comparing the ACF and PACF 
calculated from the data with the theoretical ACF and PACF for the various ARIMA models. The general logic was that if 
the sample autocorrelations exponentially drop to zero and some are interrupted, the model will require autoregressive 
terms. If the sample autocorrelations are interrupted and some of them decrease the model will also require moving 
average terms (Kyriakidis, 2018). By counting the number of significant sample autocorrelations and the partial 
autocorrelations we determined the classes of MA and AR terms. 

For instance, in itinerary "A" we got a regular and a seasonal difference, because through the sequence chart and the 
ACF diagram of the original series we found no stationarity in the data. After the differences, the autocorrelations of the 
time series decreased rapidly and were zero, which was a sign of stationarity for us. The Augmented Dickey-Fuller test 
statistic gave a p-value<5%, which means that the null hypothesis is rejected and indeed the time series was stationary. 
Because we wanted our data to have the desired autocorrelation, using the t-statistic for a significance level of 5%, one-
tailed test, and n-1 degrees of freedom, we found that the autocorrelation coefficients were statistically different from zero. 
The same conclusions were emerged by the chi-squared statistic (zero hypothesis rejection), showing that the time series 
data as a whole were not random. 

So, we decided to proceed with the modeling of the seasonal ARIMA model. We definitely had 1 nonseasonal 
difference (d) and 1 seasonal difference (D). In nonseasonal AR (p) we tested values 1 and 2 because we had lags which are 
significantly correlated and in seasonal AR (P) the value 1 as it is sufficient for most seasonal patterns (IBM, 2021). 
Considering that sample autocorrelation ceases after the 1st lag and partial autocorrelation decreases, we used values 1 
and 2 as nonseasonal MA (q) and obtained value 1 as seasonal MA (Q) as it is sufficient for most seasonal patterns (IBM, 
2021).  

The second stage concerned the "assessment" of the model and specifically its parameters. Based on the previous 
analysis for line "A" we checked several models, keeping the differences constant. The model with the lowest RMSE, 
MAE, MAPE and normalized BIC was the SARIMA (0,1,1) (1,1,0)4. 

In the third stage and before using the models for prediction, we checked them for their "adequacy". Adequate is the 
model whose residuals are random and independent (Gujarati & Porter, 2018). Through Minitab 19 we relied on a chi-
square test, based on Ljung-Box statistics with number of lags minus number of parameters degrees of freedom. If p-
value>5% for all individual values (lags), the residual autocorrelations were considered to express consistent and random 
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errors (white noise). At the same we performed a comprehensive check of the adequacy of the model, through the chi-
square test based on Ljung-Box statistics (SPSS). For line "A" it appeared that the errors had white noise behavior. Then, 
the statistical significance of the parameters of the selected model was checked. In line "A" because p-value<5% the 
coefficients were statistically significant and were maintained in the model. Finally, the interpretive power of the model 
was investigated through stationary R squared. Given the adequacy of the models, we adhered to the principle of 
parsimony and on every case, we chose the simplest model that provided an adequate description of the main 
characteristics of the data (Kyriakidis, 2018). 
 

Table 2: Basic steps for SARIMA forecasting in GCS (2004-2019). 

STEP 1:  
Model recognition 

STEP 2:  
Model estimation 

STEP 3:  
Model adequacy 

STEP 4:  
Model forecasting 
and feedback 

1. Are data 
stationary? 

2. Now the data are 
stationary: 

1. Which is the best 
fitted model per route? 

1. Is the best fitted model 
statistically adequate? 

1. Which are the 
quarterly forecasts of 
passenger traffic for 
years 2020-2022? 

a. Check 
sequence chart 

a. Αre the 
autocorrelation 
coefficients 
statistically 
different from zero?  

a. Check which model 
has the lowest result in 
MAPE, RMSE, MAE 
and normalized BIC 

a. Check the residuals whether 
are random and independent. 

a. We must forecast 
passenger traffic 
only for year 2022 
cause COVID-19.  

b. Check ACF, 
PACF 
diagrams 

b. Are time series 
data as a whole 
random?  

 
b. Check model interpretive 
power 

b. Compare the 
predictive values to 
the actuals 

c. If there is no 
stationarity 
take a normal 
or both a 
normal and a 
seasonal 
difference 

c. Which are the 
possible values of 
SARIMA trend and 
seasonal 
components? 

   

d. Check again 
sequence chart 

    

e. Check again 
ACF, PACF 
diagrams 

    

f. Use 
augmented 
Dickey-Fuller 
test 

    

Source: (Researcher, 2020) 
 
In the last stage and after determining the adequacy of the models, we made forecasts for the years 2020,2021,2022 per 
quarter and we compared the predictive values to the actuals. 
 
5. Analysis and results 
As we said, the quarterly data for most of the coastal lines show a marginally decreasing or increasing trend and a 
relatively stable seasonality (repeated) (Figure 1). Using SPSS statistical software, we calculated Winters ’additive and 
multiplicative model and the additive and multiplicative model of decomposition in every significant route of GCS. Also, 
we analysed SARIMA models and simple seasonal exponential smoothing models per route. Especially for decomposition 
method we calculated both trend and seasonality or only seasonality. So, the results concluded a linear trend and seasonal 
indices per quarter. 

The time series on the coastal lines of Greece were examined for the first time, so we considered it expedient to find 
the optimal parameters for each method used. That is, those values that minimize the RMSE criterion (table 3). With 

SPSS finding the best values of α, β, γ is no longer the problem (Tamber, et al., 2021). An exception was the SARIMA 
method where the approach was done step by step, as described in the methodology. In this case too, however, the 
exported model was compared with the excellent one via SPSS (through SPSS modeler). In case of conflicting results our 
main selection criteria were RMSE and normalized BIC. Moreover, through the stationary R squared we performed the 
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interpretation power of the selected model and with the use of the Ljung - Box test we checked its adequacy. Then we 
made a forecast for the year 2022, which was our final goal, as under positive conditions there will be a return to normalcy 
(after COVID-19 pandemic). 

Most forecasts gave us MAPE below 20%, so the best fitted methods describe relatively good forecasts. Particularly, 
our analysis revealed that surprisingly eight of fourteen itineraries (including total passenger traffic) integrated better to 
Winters ’multiplicative method (figure 6 and table 3). It proved the better model for the short - term quarterly seasonality 
as many researchers have shown (Makatjane & Moroke, 2016; Dingari, et al., 2019). Other itineraries fitted better to SS 
model and only in "PD" the best method was DMTS. No line led to better results through the SARIMA models. The 
choice of SS and WM methods shows that smoothing methods show satisfactory accuracy rates in relation to SARIMA 
models and in general in relation to more complex forecasting methods (Petropoulos & Asimakopoulos, 2013). This is 
because they are not affected by the peculiarities of the data patterns or by occasionally occurring extreme values. 

What we noticed is that in all lines selected by WM method the trend parameter β was almost zero, which means that 
the passenger traffic trend does not change over time. The slope of the trend line was constant during the observation 

period. In some lines the value of the parameter α (level) was quite large (eg "PAII") which shows that in this case more 
weight is given to the most recent observations and very little weight to the most remote ones (Agiakloglou & 

Oikonomou, 2019; Trull, et al., 2020). In lines where the value of α was lower, the smoothing of time series was more 
intense, with the respective forecasting models fluctuating around the initial level and being slow to follow large changes 

in the historical data. The high weighting parameter γ for seasonal components showed for the majority of itineraries that 
seasonal factor has great influence. This is reasonable because of the observed seasonality in GCS. An exception is "PC" 

line where the low value of γ indicates a stable seasonal effect (Vujko, et al., 2018). For all coastal lines the Ljung - Box 
statistical criterion showed that the errors had white noise behavior and the models were adequate. Also, in all lines the 
coefficient of determination R squared was relatively high, which shows the good interpretive power of the models.  

The lines that SPSS showed SS as the best model, the conclusions vary. The rule is that the seasonal factor has a 
significant influence, except for "VNSK" line where there is a constant seasonal effect. The smoothing parameter of level 
differs per route, considering the importance of older or newer data. The resulting models, outside the "VNSK" line, are 
adequate and with relatively high data adaptability. "PD" line was the only one that gave DMTS as the best model. The -
2287 slope of the linear trend equation shows an average decrease of 2287 passengers per quarter. The corresponding 
values of seasonal indices show that passenger traffic is increased in the second and third quarters and decreased in the 
first and fourth. However, the MAPE clarifies a marginally good forecast. 

In conclusion, by comparing predictive values to the actuals, interesting results emerged. For the first quarter of 2020, 
when covid-19 pandemic had not fully prevailed, in eight to fourteen lines the percentage deviation was under 30% (figure 
3 and 4) and the average deviation in all lines was 36.7% (including "T"). Indicatively, in "PDM" line was -0.72%, and in 
"T" (total passenger traffic) was 34.6% (figure 4). Also, in all lines the actual passenger traffic was inside the upper and 
low bound of the forecast. Considering firstly that the forecasting methods gave more positive results than the real ones, 
because of the long-term upward trend of tourist arrivals and secondly that the Greek government took the first 
restrictive decisions for passenger traffic in March of 2020 (a month of the first quarter), we have to do with a relatively 
good forecasting result.  

 
 
 
 
 
 
 
 
 
 
 

Figure 3: Average deviation between real data and 
forecast on 13 coastal lines in GCS (1st quarter of 
2020). 

Figure 4: Deviation between real data and forecast of total passenger 
traffic ("T") in GCS (1st quarter of 2020). 
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Source: Researcher (2020) 
 
6. Conclusions and discussion 
GCS is one of the biggest in Europe and covers about 17% of total passenger shipping. It plays an important role for 
Greek economy and society. There are not a lot of scientific efforts in forecasting passenger traffic in Greece. In order to 
fill this gap, the main goal of this study was to find an optimal forecasting method, by comparing Box-Jenkins ARIMA, 
smoothing and decomposition methods. As GCS consists of several concentrated submarkets (lines) we remained in 
fourteen popular itineraries (including total passenger traffic). Taking into consideration the high seasonality and no 
stationarity that characterizes those routes we limited our analysis to Winter’s triple exponential smoothing, the time 
series decomposition method, the simple seasonal model and the seasonal ARIMA models. 

Even if we followed a careful step by step approach for SARIMA models (“recognition”, “assessment”, “adequacy”, 
“forecasting and feedback”) no coastal line led to better results by this method. In fact, eight of fourteen itineraries 
integrated better to WM, five of fourteen to SS and only one to DTMS. Especially for WM it emerged from the analysis 
that traffic trend did not change over time, in some lines the smoothing of the time series was more intense, and the 
seasonal factor had great influence. The suggested models were adequate with relatively high interpretative power. About 
SS method the smoothing parameter of level differed per route and seasonality was of great significance. The resulting 
models presented high data adaptability. In "PD" line, where DTMS model seemed the best one, the -2287 slope of the 
linear trend equation shew an average decrease of 2,287 passengers per quarter. 
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Figure 5: Sequence charts of passenger traffic of the main coastal itineraries in Greece (2004-2019) (data on quarterly basis).
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Table 3: Best fitted forecasting methods for all lines in GCS (2004-2019). 

ROUTE 
BEST  

METHOD 

OPTIMAL 
PARAMETERS  

OR FORECASTING 
EQUATIONS 

Decision Criteria 
Stationary 

R2 
 Forecast (2022) 

MAPE MAE RMSE BIC  
Ljung-

Box 
(sig) 

Q1 Q2 Q3 Q4 

T WM 
α (level)=0.306 

β (trend)=0.000 

γ (seasonal)=0.686 

6.039 215260.3 294890.3 25.384 0.482 0.913 1540000 4370000 8710000 2220000 

A WM 
α (level)=0.357 

β (trend)=0.000 

γ (seasonal)=0.686 

6.749 39243.2 53079.5 21.954 0.538 0.748 259080 623203 1020000 324689 

PP SS 
α (level)=0.110 

δ (seasonal)=0.872 
82.142 6054.2 10448.6 18.638 0.403 0.840 5822 13977 30044 6825 

PC WM 
α (level)=0.285 

β (trend)=0.001 

γ (seasonal)=0.020 

8.019 42879.3 61744.5 22.256 0.733 0.412 278050 388919 688388 348976 

PCD SS 
α (level)=0.118 

δ (seasonal)=0.596 
27.673 12782.6 27146.1 20.548 0.493 0.977 34561 146343 62183 65877 

PD DMTS 

☑ Υt=303722-2287t 

☑ Seasonal indices 
per quarter: 
1: 0.60398 
2: 1.08655 
3: 1.63551 
4: 0.67396 

29.765 - 108750.6 - - - 82617 146142 216239 87566 

PWC WM 
α (level)=0.152 

β (trend)=0.000 

γ (seasonal)=0.566 

15.982 19917.6 32556.8 20.976 0.646 0.359 31786 195435 552708 55475 

PEC WM 
α (level)=0.341 

β (trend)=0.000 

γ (seasonal)=0.375 

23.695 80663.3 115526.3 23.509 0.595 0.769 253116 942605 1960000 349748 

PMTS WM 
α (level)=0.228 

β (trend)=0.000 

γ (seasonal)=0.768 

12.544 31153.9 44033.5 21.580 0.568 0.051 111435 205063 478801 121487 

PCM SS 
α (level)=0.800 

δ (seasonal)=0.940 
20.379 34210.7 50724.4 21.798 0.437 0.966 69395 122896 257577 107133 

PAII WM 
α (level)=0.800 

β (trend)=0.001 

γ (seasonal)=0.899 

24.531 21330.1 28319.9 20.698 0.630 0.426 51579 128663 281568 60866 

REAT SS 
α (level)=0.211 

δ (seasonal)=1.000 
10.632 47950.9 70316.0 22.451 0.416 0.972 144073 684704 1340000 297672 

VNSK SS 
α (level)=0.299 

δ (seasonal)=0.000 
12.430 17012.7 26667.9 20.512 0.573 0.008 64477 177411 525451 77157 

L WM 
α (level)=0.209 

β (trend)=0.000 

γ (seasonal)=0.411 

13.749 58622.3 86110.2 22.922 0.702 0.831 95890 588148 1310000 242620 

Source: Research Data (2020) 
 

In general, most forecasts gave as MAPE below 20%, so the best fitted methods described relatively good forecasts. Of 
course, the results should be treated with caution since COVID-19 pandemic does not allow safe conclusions for the 
forecasting period 2020-2022 in GCS. However, the forecasting of the first quarter of 2020, when pandemic had not fully 
prevailed, gave encouraging results with little deviations between predicted and actual values.  

Further research could be done by using and testing time series data of this analysis against different data tools and 
methods. By this way the effectiveness of our forecast could be tested and challenged, and possibly higher levels of 
accuracy achieved.
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Figure 6: Best fitted method and forecasting results for the main coastal itineraries in Greece (2020-2022) (data on quarterly basis).
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Nomenclature  
GCS Greek Coastal Shipping 
WM Winters’ Multiplicative method 
DTMS Decomposition Multiplicative Trend and Seasonal method 
SS Simple Seasonal method 
SARIMA Seasonal ARIMA models 
ACF Autocorrelation 
PACF Partial autocorrelation 
GDP Gross domestic product 
 

References 

 
Agiakloglou, C. N. & Oikonomou, G. S. (2019). Forecasting methods and decision analysis. Athens: Benou. 

Ahmad, W. & Ahmad, S. (2013). Arima model and exponential smoothing method: a comparison. s.l., Department of Mathematics, Faculty of 
Science and technology. 

Aivazidou, E. (2015). Development of time series and regression models for the assessment of the effects of the economic crisis on maritime passenger 
and freight traffic in Greece, Thessaloniki: UTH. 

Chalkos, G. E. (2020). Statistics: Theory and Practice. Thessaloniki: Disigma. 

Chatfield, C. (2003). The analysis of time series: An introduction. New York: Chapman and Hall. 

Dhali, N., Barman, N. & Hasan, B. (2019). Determination of optimal smoothing constants for Holt-Winter's multiplicative method. 
Dhaka Univ. J., July, 2(67), pp. 99-104. 

Dingari, M., Reddy, M. & Sumalatha, V. (2019). Air traffic forecasting using time series models. International journal of recent technology 
and engineering, November, 8(4). 

Goulielmos, A. & Sambrakos, E. (2002). Ferry and short-sea shipping. Piraeus: Stamoulis. 

Goulielmos, A. & Sitzimis, I. (2012). Measuring market concentration in the Aegean Ferry System. Spoudai Journal, 62(1-2), pp. 7-27. 

Goulielmos, A. & Sitzimis, I. (2014). The Liberalization process of the Ferry System in Greece, 2001-2009: What have been the benefits 
to users of Aegean Sea Transportation?. Spoudai Journal, 64(4), pp. 39-66.. 

Gujarati, D. & Porter, D. (2018). Econometrics: Principles and applications. Thessaloniki: Tziolas. 

Hansun, S., Vincent, C. & Subanar, C. (2019). Revitising the Holt-Winters' additive method for better forecasting. International journal of 
enterprise information systems, 2(15), pp. 43-57. 

Hasudungan, A., Pulungan, A. (2021). An Analysis of the Monetary Transmission Mechanism of M&A, Greenfield FDI, Domestic 
Investment, and GDP Per Capita Growth: The Structural Vector Correction Model in Indonesia. International journal of business and 
economic sciences applied research (IJBESAR), 14(2), pp. 29-42. 

IBM. (2021). IBM SPSS Forecasting: Build expert forecasts in a flash. [Online]  
Available at: https://www.ibm.com/downloads/cas/OP3RLVLR 

IOBE. (2014). The contribution of passenger shipping to the Greek economy: performance and prospects, Athens: Foundation for economical and 
industrial research. 

IOBE. (2020). The Greek coastal shipping during period 2016-2020: Performance, contribution in economy and prospects. Athens: Foundation 
for economic and industrial research. 

Karmaker, C., Halder, P. & Sarker, E. (2017). A study of time series model for predicting Jute Yarn demand: Case study. Hindawi, 
Journal of Industrial Engineering.  

Kyriakidis, M. (2018). Τelecommunications market analysis and forecasting techniques. Athens: National and Kapodistrian university of 
Athens. 

Makatjane, K. & Moroke, N. (2016). Comparative study of Holt-Winters triple exponential smoothing and seasonal ARIMA: 
Forecasting short term seasonal car sales in South Africa. Risk governance: financial markets & institutions, 6(1). 

Ma, L., Hu, C. & Han, Y. (2018). ARIMA model forecast based on eviews software. s.l., IOP conf. series: earth and environmental science 
208. 

Munarsih, E. & Saluza, I. (2019). Comparison of exponential smoothing method and autoregressive integrated moving average (ARIMA) method 
in predicting dengue fever cases in the city of Palembang. s.l., Journal of Physics: conference series. 

Ortuzar, D. & Gonzalez, M. (2002). Inter-island demand response with discrete choice models. Journal of transport economic and policy, 
January, 46(1). 

Petropoulos, F. & Asimakopoulos, V. (2013). Business forecasting. Athens: Symmetria. 
Psaraftis, C., 1994. Greek coastal shipping system: impact of market deregulation and new technologies on modal split. Capri, Italy, s.n. 

Ramanathan, R. (2001). The long-run behavior of transport performance in India: a cointegration approach. Transportation research, 
35(A). 

Rashidi, S. & Ranjitkar, P. (2015). Estimation of bus dwell time using univariate time series models. Journal of advanced transportation, 
Issue 49, pp. 139-152. 

Ravinder, H. (2013). Determing the optimal values of exponential smoothing constants - does solver really work?. American journal of 
business education, May/June, 6(3), pp. 347-360. 

Sabry, M., Abd-El-Latif, H. & Badra, N. (2007). Comparison between regression and arima models in forecasting traffic volume. 
Australian journal of basic and applied sciences, 126-136, 2(1). 



 

87 
DOI: 10.25103/ijbesar.143.05 

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 2(6), pp. 461-464. 

Shim, J. K. & Siegel, J. G. (2001). Managerial economics. Athens: Kleidarithmos. 

Sim, S., Tay, K., Huong, A. & Tiong, W. (2019). Forecasting electricity consumption using SARIMA method in IBM SPSS software. 
Universal journal of electrical and electronic engineering, 6(5B), pp. 103-114. 

Sitzimis, I. (2012). Aegean coastal market: the consequences of cabotage removal by microeconomic tools. Thesis. Peiraus: University of Peiraus. 

Sitzimis, I. (2021a). Economies of scale in Greek coastal shipping. A survivor analysis, Under review in European Transport/Transporti 
Europei journal.  

Sitzimis, I. (2021b). An implementation proposal of innovative pricing in Greek coastal shipping. Oradea journal of business and economics 
(OJBE), 6(2), pp. 69-77. 

Spathi, S. (2005). A comparison between air and coastal services in internal routes: An econometric estimation of demand, Athens: Center of 
programming and economical research. 

Suhartono. (2011). Time series forecasting by using seasonal autoregressive integrated moving average: Subset, multiplicative or 
additive model. Journal of mathematics and statistics, 1(7), pp. 20-27. 

Tamber, Jighjigh, A., Michael, O. & Ojowu, O. (2021). The Holt-Winters multiplicative model of passengers' traffic forecast of the 
Nigeria airports. Internationa journal of engineering in computer science, 3(1), pp. 35-40. 

Trull, O., Garcia-Diaz, J. & Troncoso, A. (2020). Stability of multiple seasonal Holt-Winters models applied to hourly electricity 
demand in Spain. Applied Sciences, February, Volume 10. 

Tsekeris, T. (2008). Consumer demand analysis of complementarity-substitution relationships among passenger transport modes in 
Greece. International journal of transport economics, 35(3), pp. 415-449. 

Tsui, W., Balli, H., Gilbrey, A. & Gow, H. (2014). Forecasting of Hong Kong airport's passenger throughput. Tourism management, Issue 
42, pp. 62-76. 

Vujko, A., Papic-Blagojevic, N. & Gajic, T. (2018). Applying the exponential smoothing model for forecasting tourists' arrivals - 
example of Novisad, Belgrade and Nis. Ekonomika Poljoprivrede, July, pp. 757-473. 

Wang, S., Feng, J. & Liu, G. (2013). Application of seasonal time series model in the precipitation forecast. Mathematical and computer 
modelling, Issue 58, pp. 677-683. 

Wardono, Arief, A. & Siti, R. (2016). Arima method with the software minitab and eviews to forecast inflation in semarang indonesia. 
Journal of theoritical and applied information technology, December, 94(1). 

Wu, J., Zhong, L., Li, L. & Lu, A. (2013). A prediction model bases on time series data in intelligent transportation system. Berlin: Springer. 

XRTC, B. c. (2004-2020). Annual survey on Greek coastal shipping. Athens: s.n. 

Yonar, H., Yonar, A., Tekindal, M. & Tekindal, M. (2020). Modeling forecasting for the number of cases of the COVID-19 pandemic 
with the curve estimation models, the Box-Jenkins and exponential smoothing method. EJMO, 4(2), pp. 160-165. 

 
 
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence 

 
 

https://creativecommons.org/licenses/by-nc/2.0/

