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Unit Root Testing

By Jürgen Wolters and Uwe Hassler ∗

Summary: The occurrence of unit roots in economic time series has far reaching conse-
quences for univariate as well as multivariate econometric modelling. Therefore, unit root
tests are nowadays the starting point of most empirical time series studies. The oldest
and most widely used test is due to Dickey and Fuller (1979). Reviewing this test and
variants thereof we focus on the importance of modelling the deterministic component.
In particular, we survey the growing literature on tests accounting for structural shifts.
Finally, further applied aspects are addressed how to get the size correct and obtain good
power at the same time.

Keywords: Dickey-Fuller, size and power, deterministic components, structural breaks.
JEL C22.

1. Introduction

A wide variety of economic time series is characterized by trending be-
haviour.This raises the important question how to statistically model the
long-run component. In the literature, two different approaches have been
used. The so-called trend stationary (TS) model assumes that the long-run
component follows a time polynomial, which is often assumed to be lin-
ear, and added to an otherwise stationary autoregressive moving average
(ARMA) process. The difference stationary (DS) model assumes that dif-
ferencing is required to obtain stationarity, i.e. that the first difference of a
time series follows a stationary and invertible ARMA process1. This implies
that the level of the time series has a unit root in its autoregressive (AR)
part. Unit root processes are also called integrated of order 1, I(1).

Since the seminal paper by Nelson and Plosser (1982) economists know
that modelling the long-run behaviour by TS or DS models has far-reaching
consequences for the economic interpretation. In a TS model the effects of
shocks are only temporary implying that the level of the variable is not
influenced in the long run. In contrast a shock has permanent effects in a
DS model, meaning that the level of the variable will be shifted permanently
after the shock has occurred.

Traditional econometrics assumes stationary variables (constant means
and time-independent autocorrelations). This is one of the reasons why
applied economists very often transform non-stationary variables into sta-
tionary time series. According to the two above-mentioned models this can
be done by eliminating deterministic trends in the case of a TS model or
by taking first differences in the case of a DS model. But what happens if
the wrong transformation is applied? The papers by Chan, Hayya and Ord
(1977), Nelson and Kang (1981) and Durlauf and Phillips (1988) investigate
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∗ We thank Mu-Chun Wang for producing the figures.
1 For ARMA processes see e.g. Box and Jenkins (1976).
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this problem. Eliminating the non-stationarity in a TS model by taking first
differences has two effects: one gets rid of the linear trend, but the stationary
stochastic part is overdifferenced, implying spurious short-run cycles. If, on
the other hand, it is tried to eliminate the non-stationarity in a DS model
by taking the residuals of a regression on a constant and on time as ex-
planatory variables, spurious long-run cycles are introduced. These depend
on the number of observations used in the regression. In this case artificial
business cycles are produced that lead to wrong economic interpretations.

Moreover, regressing independent DS processes on each other leads to
the problem of spurious regressions as Granger and Newbold (1974) have
demonstrated in a simulation study. Later on Phillips (1986) gave the the-
oretical reasoning for this phenomenon: The usual t-statistics diverge to
infinity in absolute value, while the R2 does not converge to zero, hence
indicating spurious correlation between independent DS processes. Granger
(1981) and Engle and Granger (1987) offered a solution to the spurious
regression problem by introducing the concept of cointegration.

The above discussion clearly indicates that the analysis of non-stationary
time series requires a serious investigation of the trending behaviour. There-
fore, formal tests are needed which allow to distinguish between trend sta-
tionary and difference stationary behaviour of time series. Such tests have
first been developed by Fuller (1976) and Dickey and Fuller (1979, 1981)
(DF test, or augmented DF test, ADF). In the meantime a lot of extensions
and generalizations have been published which also are presented in different
surveys such as Dickey, Bell and Miller (1986), Diebold and Nerlove (1990),
Campbell and Perron (1991), Hassler (1994), Stock (1994) and Phillips and
Xiao (1998).

Due to page limitations we will present here only the (augmented) Dickey-
Fuller approach for testing the null hypothesis of difference stationarity. The
related semi-parametric approach developed by Phillips (1987) and Phillips
and Perron (1988) is not presented. Furthermore, we do not deal with tests
for seasonal unit roots as proposed e.g. by Hylleberg, Engle, Granger and
Yoo (1990), or tests having stationarity in the maintained hypothesis as
Kwiatkowski, Phillips, Schmidt and Shin (1992). We rather focus on mod-
elling the deterministic part of the time series under investigation. This is
very important in case of structural breaks, since neglecting deterministic
shifts may result in misleading conclusions.

The paper is structured as follows. In Section 2, Dickey-Fuller unit root
tests are described and discussed. The third section deals with important
applied aspects around size and power. Section 4 turns to the handling of
structural breaks.

2. Dickey-Fuller unit root tests

2.1. Model. For the rest of the paper we assume the following data gen-
erating process (DGP):

yt = dt + xt , t = 1, . . . , T . (1)
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The observed variable (yt) is composed of a deterministic component dt and
a purely stochastic component xt. The deterministic part may consist of a
constant, seasonal dummy variables, a linear trend or a step dummy. The
stochastic component is assumed to be a zero mean AR(p) process,

xt = α1xt−1 + α2xt−2 + ... + αpxt−p + ut , (2)

with αp 6= 0 and ut being white noise. The AR(p) model in (2) can be
reparameterized as

xt = ρxt−1 +
p−1∑

i=1

ai∆xt−i + ut (3)

with

ρ =
p∑

j=1

αj and ai = −
p∑

j=i+1

αj , i = 1, ..., p− 1.

If the lag polynomial of xt

1− α1z − α2z
2 − ...− αpz

p = 0

has a unit root, then it holds

ρ =
p∑

j=1

αj = 1. (4)

Substituting (3) in (1) we get the following expression for the observable
variable yt:

yt = dt − ρdt−1 −
p−1∑

i=1

ai∆dt−i + ρ yt−1 +
p−1∑

i=1

ai∆yt−i + ut.

Subtracting yt−1 on both sides of this equation, we obtain the Augmented
Dickey-Fuller (ADF) regression:

∆yt = dt − ρdt−1 −
p−1∑

i=1

ai∆dt−i + (ρ− 1) yt−1 +
p−1∑

i=1

ai∆yt−i + ut. (5)

Note that in addition to the (lagged) level of the deterministic part its
lagged changes are included, too.

In the case that dt = c, a constant, the ADF regression is given as

∆yt = a + (ρ− 1)yt−1 +
k∑

i=1

ai∆yt−i + ut , t = k + 2, . . . , T , (6)

with a = (1−ρ)c, meaning that under the null hypothesis the process is I(1)
without drift. When the stochastic component xt follows an AR(p) process
then k = p−1 in (6). More generally, however, xt may be an ARMA process
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with invertible moving average component. In that case, Said and Dickey
(1984) propose to approximate the ARMA stucture by autoregressions of
order k where the lag length k has to grow with the sample size.

In the case of a linear trend, dt = c + mt, we get from (5) as ADF
regression

∆yt = a + bt + (ρ− 1)yt−1 +
k∑

i=1

ai∆yt−i + ut , t = k + 2, . . . , T , (7)

with

a = c(1− ρ) + ρm−m

k∑

i=1

ai and b = m(1− ρ).

Under the null of a unit root (ρ = 1) the trend term in (7) vanishes, while the
constant term contains not only the slope parameter m but also the coeffi-
cients ai of the short run dynamic. Under the null it holds that E(∆yt) 6= 0,
and hence yt displays a stochastic trend, I(1), as well as a deterministic one
because E(yt) grows linearly with t. Such series are called integrated with
drift.

2.2. Distribution. The null hypothesis to be tested is that xt and hence
yt is integrated of order one. Under the null hypothesis there is a unit root
in the AR polynomial and we have because of (4):

H0 : ρ− 1 = 0.

This hypothesis can be tested directly by estimating (5) with least squares
and using the t-statistic of ρ̂− 1. It is a one-sided test that rejects in favour
of stationarity if ρ̂ − 1 is significantly negative. The limiting distribution
was discovered by Fuller (1976) and Dickey and Fuller (1979). It turned out
that it is not centered around zero (but rather shifted to the left) and not
symmetrical. In particular, limiting standard normal theory is invalid for
ρ = 1, while it does apply in case of stationarity (|ρ| < 1). Similarly, the
t-distribution is not a valid guideline for unit root testing in finite samples.
The limiting distribution is very sensitive to the specification of dt. Fuller
(1976) and Dickey and Fuller (1979) consider three cases: No deterministics
(dt = 0), just a constant, and a constant and a linear trend2. Critical val-
ues for those cases have first been provided by simulation in Fuller (1976,
Table 8.5.2, p.373). Nowadays, somewhat more precise critical values are
widely employed, which have been derived using more intensive simulations
by MacKinnon (1991, p.275). For a test with T = 100 at the 5 % level the
critical values are -2.89 and -3.46, respectively, if dt contains only a constant

2 Critical values for polynomials in t up to order 5 are derived in Ouliaris, Park and
Phillips (1989). Further, Kim and Schmidt (1993) established experimentally that con-
ditionally heteroskedastic errors have little effect on DF tests as long as there is only
moderate heteroskedasticity.
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Figure 1. Estimated density functions (T = 100) and standard normal.

and if dt includes a constant and a linear trend. These values are larger in
absolute terms than the corresponding critical value of the t-distribution
which is -1.65. Using the incorrect t-distribution the null hypothesis would
be rejected much too often. The decision would wrongly be in favour of sta-
tionarity or trendstationarity despite the fact that the time series contains
an I(1) component.

Theoretically, ρ = 1 is a singularity in the parameter space in that for any
|ρ| < 1 limiting normality holds true, while ρ = 1 results in the non-normal
Dickey-Fuller distributions. Some economists blame this as being artificial
and claim that the true ρ equals 1 with probability zero. According to this,
the normal approximation should be applied throughout. In pratice how-
ever, and that means in finite samples, the distinction between stationarity
and I(1) is not so clear-cut3. Evans and Savin (1981, p.763) observed that
for ρ “near but below unity this distribution function is very poorly approx-
imated by the limiting normal even for large values of T”. Similar evidence
has been collected by Evans and Savin (1984) and Nankervis and Savin
(1985). Evans and Savin (1981, 1984) considered a normalization different
from the t-statistic, while Nankervis and Savin (1985) considered the usual

3 In fact, Phillips (1987a) presented a unifying local-to-unity theory bridging the gap
from stationarity to I(1) by introducing a time dependent ρ, ρT = exp

(
c
T

)
.
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studentization but did not provide graphs for the t-statistics. Therefore, we
want to add the results of a small Monte Carlo study here4. The true DGP
is (with y0 = 0)

yt = ρyt−1 + ut, ut ∼ N (0, 1),

for t = 1, ..., T = 100. Relying on

∆yt = â + (ρ̂− 1)yt−1 + ût,

the usual t-statistic is computed. Figure 1 displays density estimates that
are constructed from 10000 replications by smoothing with a normal kernel.
From those results we learn that even for ρ considerably smaller than 1
the standard normal approximation may be a very bad guideline in finite
samples.

3. Size and power considerations

Since the work by Schwert (1989) it has been documented in several papers
that the DF test may be over-sized in situations of practical importance.
Hence, proposals how to control for the probability of a type I error have
attracted a lot of attention in the last decade. At the same time DF tests are
blamed for poor power5, and many papers tackled the problem to increase
power. Several aspects related to those topics are addressed next.

3.1. Lag length selection. The lag length k in (6) and (7) has to be
chosen to ensure that the residuals empirically follow a white noise process.
Said and Dickey (1984) prove that the ADF test in (5) is valid if the true
DGP is an ARMA process of unknown order, provided that the lag length
k in the autoregression increases with the sample size but at a lower rate. A
proof under more general conditions was recently provided by Chang and
Park (2002). In practice, the choice of k is a crucial and difficult exercise.
On the one hand, a growing number of lags reduces the effective sample
while the number of estimated parameters is increased, and this reduction
in degrees of freedom will result in a loss of power. On the other hand, k
has to be large enough for the residuals to be approximately uncorrelated in
order for the limiting theory to be valid. Empirical researchers often start
with a maximum lag length kmax and follow a sequential general-to-specific
strategy, i.e. reduce lags until reaching significance at a prespecified level.
Here, significance testing builds on a limiting standard normal distribution.
Alternatively, k may be determined relying on information criteria. The
performance of the two strategies in finite samples has been investigated by
Ng and Perron (1995). In particular, information criteria tend to choose k

4 All programming was done by Mu-Chun Wang in MATLAB.
5 Gonzalo and Lee (1996), however, illustrated by means of Monte Carlo experiments

that testing for ρ = 1 results in rejection frequencies very similar to those available if
|ρ| < 1.
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too small to get the size correct. Therefore, Ng and Perron (2001) proposed
adequately modified criteria.

The AR approximation is particularly poor in case of moving average
roots close to one. Consider as DGP

∆yt = a + ut − θut−1, |θ| < 1.

With θ close to one the polynomial 1− θL almost cancels with ∆ = 1− L,
and the true null of integration will be rejected frequently, resulting in a
test where the empirical size is above the nominal one, cf. Schwert (1989).
In such a situation one may use the procedure proposed by Said and Dickey
(1985) that explicitly takes into account the MA component of a series.

3.2. Deterministic components. When performing unit root tests an
appropriate specification of the deterministics in (5) is of crucial impor-
tance. First, consider the case where the true DGP is trend stationary. If the
ADF regression (6) without detrending is applied, then the test has asymp-
totically no power, which was shown by West (1987) and Perron (1988).
In finite samples the null hypothesis of a unit root is rarely rejected, and
is never rejected in the limit. Hence, we propose to include a linear trend
as in (7) whenever a series is suspicious of a linear trend upon visual in-
spection6. Notice that the decision about time as regressor may not build
on the standard t-statistic of the estimate b̂. Second, assume the other way
round that a detrended test is performed from (7) while the data does not
contain a linear trend. In this situation a test from (6) without detrending
would be more powerful. The effect of ignoring eventual mean shifts in the
DGP when specifying dt will be discussed in the following section, while the
effect of neglected seasonal deterministics will be touched upon in the next
subsection.

The treatment of the deterministic component plays a major role when it
comes to power of unit root tests. Elliott, Rothenberg and Stock (1996) and
Hwang and Schmidt (1996) proposed point optimal unit root tests with
maximum power against a given local alternative ρT = 1 − c

T for some
specified constant c > 0. Power gains are obtained by efficiently removing
the deterministic component under the alternative (using Generalized Least
Squares, GLS). Use of GLS, however, amounts to the following procedure,
see also Xiao and Phillips (1998). First, compute quasi-differences of the
observed variable and the deterministic regressors,

∆cyt = yt −
(
1− c

T

)
yt−1 , ∆czt = zt −

(
1− c

T

)
zt−1 ,

where zt is a deterministic vector such that dt from (1) is parameterized as
dt = γ′zt. Second, estimate the vector γ by simply regressing ∆cyt on ∆czt.
Third, apply the ADF test without deterministics to the residuals from the

6 Ayat and Burridge (2000) investigated a more rigorous sequential procedure to de-
termine the appropriate deterministics when testing for unit roots.
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second step. The distribution and hence critical values depend on the choice
of c. Yet another approach to obtain more powerful unit root tests has been
advocated by Shin and So (2001). They proposed to estimate γ by γ̂t with
information only up to t, and remove the deterministic component from yt

as follows: ỹt = yt−γ̂′t−1zt−1. Applying an ADF type regression to ỹt results
in a limiting distribution again different from Dickey-Fuller. Critical values
have been provided by Shin and So (2001, Table II) for the simplest case of
a constant where zt = 1.

3.3. Span vs. frequency. In practice, it often happens that data are
available only for a fixed time span due to some structural breaks or insti-
tutional changes. In such a situation it is often recommended to use data
with higher frequency to increase the number of observations and hence the
power of tests. To that end people often work with monthly data instead of
quarterly or annual observations. Perron (1989) has analyzed the power of
some unit root tests when the sampling interval is varied but the time span
is hold fixed. A general outcome of his computer experiments is that tests
over short time span have low power, which is not significantly enhanced
by choosing a shorter sampling interval. For related results see also Shiller
and Perron (1985).

Moreover, in many cases higher frequency of observations comes at the
price of additional seasonal dynamics that have to be modelled. In case
of deterministic seasonal pattern it is important to remove the seasonality
by including seasonal dummies in the regression. Dickey, Bell and Miller
(1986) prove that the inclusion of seasonal dummies instead of a constant
does not affect the limiting distribution of DF tests, while Demetrescu and
Hassler (2004) demonstrate that neglecting seasonal deterministic results
in tests with low power and bad size properties at the same time. Another
way of removing seasonal deterministics is simply to work with seasonal
differences, which, however, can not be recommended in general. Hassler and
Demetrescu (2005) argue that seasonal differencing may introduce artificial
persistence into a time series and may hence create spurious unit roots.

Given a fixed time span of data the purpose of unit root testing is not
to investigate the true nature of some abstract economic process but to
describe the degree of persistence in a given sample. Even if difference sta-
tionarity is not a plausible theoretical model as T →∞ for economic series
such as inflation rates, interest rates or unemployment rates, the unit root
hypothesis may still provide an empirically valid description. In that sense
the significance against H0 : ρ = 1 may be understood as strength of mean-
reversion in a given sample. Similarly, Juselius (1999, pp.264) argues that
“the order of integration of a variable is not in general a property of an
economic variable but a convenient statistical approximation to distinguish
between the short-run, medium-run and long-run variation in the data.”
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4. Structural breaks

4.1. Ignoring breaks. Consider for the moment the regression with a
constant only,

∆yt = â + (ρ̂− 1)yt−1 + ût . (8)

It is now assumed that the regression (8) is misspecified: The true process
is I(0), but it displays a break in the mean at time λT ,

yt =

{
xt , t < λT

xt + µ , t ≥ λT
, xt ∼ I(0), (9)

where λ ∈ (0, 1), and µ 6= 0. Given (9), neither the null nor the alternative
hypothesis of the DF test holds true. Perron (1990) proves that ρ̂ converges
to a value that approaches 1 as the break |µ| > 0 is growing. A corresponding
result is found in Perron (1989a) in case of the detrended version of the DF
test,

∆yt = â + b̂ t + (ρ̂− 1)yt−1 + ût. (10)

This means that for a considerable break µ 6= 0 the wrong null of a unit
root is hardly rejected. A high probability of a type II error arises because
the DF regression is misspecified in that it does not account for the struc-
tural break in the data. See also the intuitive discussion in Rappoport and
Reichlin (1989). Moreover, Perron (1989a) investigates the situation of trend
stationary series with a break:

yt =

{
xt + δ t , t < λ T

xt (+ µ ) + (δ + τ) t , t ≥ λT
, xt ∼ I(0).

For τ 6= 0 we have a break in the slope of the trend, while there may be an
additional shift in the level (µ 6= 0) or not. With this assumption Perron
(1989a) investigates ρ̂ from the detrended DF test (10). His asymptotic for-
mulae were corrected by Montañés and Reyes (1998), but without changing
the empirically relevant fact: Given a trend stationary series with a break
in the linear trend there is little chance to reject the false null hypothesis
of integration. Those results opened a new research avenue aiming at the
discrimination between unit roots and structural shifts as potential causes
of economic persistence.

Quite surprisingly, the opposite feature to that discovered by Perron
(1989a, 1990) has been established by Leybourne, Mills and Newbold (1998):
If a unit root process is subject to a mean shift, then the probability of
rejecting the null of a unit root is not equal to the level of the test7. The

7 This, however, is only true in finite samples or if the break is growing with the
number of observations. If in contrast the break is finite, then the level of the DF test
is not affected asymptotically, see Amsler and Lee (1995). Still, power considerations
suggest a correction for potential breaks.
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authors assume

yt =

{
xt , t < λ T

xt + µ , t ≥ λT
, xt ∼ I(1),

with µ 6= 0. Leybourne, Mills and Newbold (1998) prove that the limiting
distribution of the DF statistic depends on λ if µ is growing with T . Exper-
imentally, they establish that the empirical level is well above the nominal
one in case of an early break, λ ≤ 0.1; if, however, the break occurs in the
second half of the sample, then the DF test is conservative in the sense that
the rejection frequency is below the nominal level. More generally, Kim,
Leybourne, and Newbold (2004) have shown that the results of the ADF
test (6) including only a constant term is highly unpredictable, if the true
deterministic is a broken trend.

4.2. Correcting for breaks. To avoid spurious unit roots due to struc-
tural breaks, Perron (1989a, 1990) suggested to test for integration after
removing structural breaks8. Unfortunately, this changes the limiting dis-
tributions depending on the break fraction λ ∈ (0, 1). To correct for a break
in the level we need the step dummy

st(λ) =

{
0 , t < λT

1 , t ≥ λT
.

Now, all the deterministic components are removed from the observed series
in a first step by an OLS regression9,

yt = ã + µ̃ st(λ) (+ b̃ t ) + x̃t. (11)

Next, the zero mean residuals x̃t are tested for a unit root. However, the
validity of the asymptotic percentiles requires the inclusion of the impulse
dummy

∆st(λ) = st(λ)− st−1(λ).

The necessity to include (lagged values of) ∆st(λ) has been recognized only
by Perron and Vogelsang (1992, 1993) although it is well motivated by (5):

∆x̃t = (ρ̂− 1)x̃t−1 +
k∑

i=1

âi∆x̃t−i +
k∑

i=0

α̂i∆st−i(λ) + ût. (12)

8 Perron (1994) provides a very accessible survey.
9 Lütkepohl, Müller and Saikkonen (2001) and Saikkonen and Lütkepohl (2001) sug-

gested to remove the deterministic components efficiently in the sense of Elliott, Rothen-
berg and Stock (1996). This approach of working with quasi-differences has the advantage
of yielding limiting distributions independent of λ. The same property has the test by
Park and Sung (1994).
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Critical values when testing for ρ = 1 in (12) are found in Perron (1989a,
1990). They depend on the break fraction λ that is assumed to be known.
Similarly, Perron (1989a) considered modifications of the detrended DF test
allowing for a shift in the slope of the linear time trend.

If λ is not known the break point can be estimated from the data. Zivot
and Andrews (1992) e.g. suggested to vary λ and to compute the test statis-
tic ADF (λ) for each regression. Then the potential break point can be de-
termined as λ̂ = arg minλ ADF (λ). Confer also Banerjee, Lumsdaine and
Stock (1992) and Christiano (1992).

4.3. Smooth transitions and several breaks. When defining the step
dummy st(λ) we assumed a sudden change at t = λT . But even if the cause
of a change occurs instantaneously, its effect most likely evolves gradu-
ally over a period of transition. To account for that effect Perron (1989a)
proposed the so-called innovational outlier model, which assumes that “the
economy responds to a shock to the trend function the same way as it reacts
to any other shock”, Perron (1989a, p.1380). This amounts to adding a step
dummy variable to the augmented Dickey-Fuller regression instead of ap-
plying the ADF test after removing all deterministics. Leybourne, Newbold
and Vougas (1998) considered unit root testing in the presence of more gen-
eral deterministic smooth transition functions, see also Lin and Teräsvirta
(1994), however without providing asymptotic theory. Limiting results un-
der smooth transitions have been established in Saikkonen and Lütkepohl
(2001) for known breakpoint, and in Saikkonen and Lütkepohl (2002) in
case the date of the break is not known a priori. For a comparison of related
tests see also Lanne, Lütkepohl and Saikkonen (2002).

Lumsdaine and Papell (1997) allowed for two break points where both
break dates are assumed to be unknown. Park and Sung (1994) dealt with
the case of several breaks, however at known time. Kapetanios (2005) com-
bined both features, i.e. more than two breaks occuring at unknown break
points. Our personal opinion, however, is that the data-driven estimation of
m break dates for a given series should not be a recommended strategy un-
less it is possible to reveal an economic event or institutional change behind
each eventual break.
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tionalökonomie und Statistik forthcoming .

Hylleberg, S., Engle, R. F., Granger, C. W. J., Yoo, B. S. (1990). Seasonal
integration and cointegration. Journal of Econometrics 44 215-238.

Juselius, K. (1999). Models and Relations in Economics and Econometrics. Jour-
nal of Economic Methodology 6 259-290.

Kapetanios, G. (2005). Unit-root testing against the alternative hypothesis of
up to m structural breaks. Journal of Time Series Analysis 26 123–133.

Kim, K., P. Schmidt (1993). Unit roots tests with conditional heteroskedasticity.
Journal of Econometrics 59 287-300.

Kim, T.W., Leybourne, S., Newbold, P. (2004). Behaviour of Dickey-Fuller
unit-root tests under trend misspecification. Journal of Time Series Analysis
25 755–764.

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., Shin, Y. (1992). Testing
the null hypothesis of stationarity against the alternative of unit root. Journal
of Econometrics 54 159-178.

Lanne, M., Lütkepohl, H., Saikkonen, P. (2002). Comparison of Unit Root
Tests for Time Series with Level Shifts. Journal of Time Series Analysis 23
667-685.

Leybourne, S.J., T.C. Mills, P. Newbold (1998). Spurious rejections by
Dickey-Fuller tests in the presence of a break under the null. Journal of Econo-
metrics 87 191-203.

Leybourne, S., Newbold, P., Vougas, D. (1998). Unit Roots and Smooth
Transitions. Journal of Time Series Analysis 19 83-97.
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14 JÜRGEN WOLTERS and UWE HASSLER

Saikkonen, P., H. Lütkepohl (2001). Testing for unit roots in time series with
level shifts. Allgemeines Statistisches Archiv 85 1-25.

Saikkonen, P., H. Lütkepohl (2002). Testing for a unit root in a time series
with a level shift at unknown time. Econometric Theory 18 313-348.

Schwert, G. W. (1989). Tests for unit roots: A monte carlo investigation. Journal
of Business & Economic Statistics 7 147-158.

Shiller, R. J., Perron, P (1985). Testing the random walk hypothesis. Eco-
nomics Letters 18 381-386.

Shin, D.W., So, B.S. (2001). Recursive Mean Adjustment for Unit Root Tests.
Journal of Time Series Analysis 22 595-612.

Stock, J. H. (1994). Unit roots, structural breaks and trends. In Handbook of
Econometrics, Volume IV (R. F. Engle, D. L. McFadden, eds.), 2739-2841.
Elsevier, Amsterdam et al..

West, K.D. (1987). A note on the power of least squares tests for a unit root.
Economics Letters 24 249-252.

Xiao, Z., P. C. B, Phillips (1998). An ADF coefficient test for a unit root in
ARMA models of unknown order with empirical applications to US economy.
Econometrics Journal 1 27-44.

Zivot, E., D.W.K. Andrews (1992). Further evidence on the great crash, the
oil-price shock, and the unit-root hypothesis. Journal of Business & Economic
Statistics 10 251-270.

Jürgen Wolters
Fachbereich Wirtschaftswissenschaft
Freie Universität Berlin
Boltzmannstr. 20
14195 Berlin
Deutschland
wolters@wiwiss.fu-berlin.de

Uwe Hassler
Fachbereich Wirtschaftswissenschaften
Goethe-Universität Frankfurt
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