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Abstract 
Using survey data from 20 European countries, we construct novel worker-level 
indices of routine, abstract, social, and physical tasks, which we combine with 
industry-level robotization exposure. Our conceptual framework builds on the insight 
that robotization simultaneously replaces, creates, and modifies workers’ tasks and 
studies how these forces impact workers’ job content. We rely on instrumental variable 
techniques and show that robotization reduces physically demanding activities. Yet, 
this reduction in manual work does not coincide with a shift to more challenging and 
interesting tasks. Instead, robotization makes workers’ tasks more routine, while 
diminishing the opportunities for cognitively challenging work and human contact. 
The adverse impact of robotization on social tasks is particularly pronounced for 
highly skilled and educated workers. Our study offers a unique worker-centric 
viewpoint on the interplay between technology and tasks, highlighting nuances that 
macro-level indicators overlook. As such, it sheds light on the mechanisms 
underpinning the impact of robotization on labor markets.  
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1. Introduction  

 Over the past few decades, significant technological advancements, including the 
rise of robots, have profoundly impacted overall labor demand and brought about 
increased labor and total factor productivity (Graetz & Michaels, 2018), as well as a 
decline in the aggregate share of routine manual jobs across many industrialized 
economies (de Vries, Gentile, Miroudot, & Wacker, 2020).  

 Economic models describing the implications of recent technological 
advancements in the labor market suggest that robots can replace humans in specific 
tasks, particularly those that are manual and/or routine-intensive, such as repetitive 
physical activities that can be standardized into a set of procedures. Robots and 
computers are relatively less able to handle tasks that demand “tacit knowledge, 
flexibility, judgment, and common sense,” as emphasized by Autor (2014). This is 
rapidly changing with the adoption of robots that have Artificial Intelligence (AI) 
capabilities, but our analysis period and data precede these most recent developments.  

In addition to its displacement effects, robotization creates new work or 
modifies existing tasks (Acemoglu & Restrepo, 2019; Autor, Chin, Salomons, & 
Seegmiller, 2022). Yet, until recently, the public discourse, and much of academic 
scholarship, focused on exploring whether automation has labor-saving aspects or not 
in terms of total employment (i.e., displacement effect) (e.g., Acemoglu & Restrepo, 
2020; Jestl, 2022; Dinlersoz & Wolf, 2023; Dixon, Hong, & Wu, 2021; Mann & 
Püttmann, 2021).  The evidence in terms of massive job loss due to automation has 
been less than clear-cut, especially looking at the European context (see Acemoglu, 
Koster, & Ozgen, 2023, for an overview).  

At the same time, the consequences of automation at the individual level, and 
especially those related to the tasks and activities workers do, are less well-understood. 
Studies in the European context find that the modest employment declines in 
manufacturing are (partially) offset by job creation in other sectors (e.g., Dauth et al., 
2021; Jestl, 2022). What is less understood is how these changes happen at the 
individual level and how they affect the job content of individual workers. As robots 
are integrated into workplaces, they take over tasks previously executed by humans, 
leading to potential displacement for some workers. Other workers may find 
continued employment within the same company or industry or switch jobs. In the 
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context of Europe, which has robust employment protection schemes,  the threat of 
job loss due to the adoption of robots is limited but workers may see their task set 
altered, as suggested by the results in Germany of Dauth et al., 2021. Therefore, the 
central question of this paper is the direction in which workers’ tasks change following 
robotization. Does their work become more interesting or more mundane?  

  The research examining how technological change affects individual-level tasks 
is hindered by a scarcity of datasets with detailed individual-level information on the 
job content and activities that workers do. Much of the robotization literature relies on 
task content measures based on coarse occupational classifications (e.g., ISCO) or 
occupational dictionaries, such as the Dictionary of Occupational Titles (DOT) and the 
Occupational Information Network (O*NET). Despite their widespread use, these 
approaches overlook the nuanced distinctions in job tasks within a specific occupation, 
both over time and across different countries. The modification and creation of new 
tasks within occupations are easy to overlook with this approach. Consequently, 
studies using occupations as indicators for job tasks can only present average shifts in 
the occupational distribution due to technological advancements, without capturing 
precisely how the daily tasks of workers within these occupations evolve with increased 
exposure to technology. This detailed examination of activities within occupations is 
particularly crucial for understanding the effects of technological progress on the 
individual work experiences of workers. This is the research gap that the present paper 
addresses. 

Our theoretical framework centers on the impact of robotization on job content 
provided that workers retain their positions.  
The key predictions stem from two distinct scenarios: i) robots having full autonomy 
in executing routine or physical tasks, allowing humans to specialize in other tasks 
(i.e., human advantage effect), and ii) robots only partially automating tasks and the 
process (i.e., Polanyi effect). 

Given that robotization has primarily impacted routine tasks, it is reasonable to 
conjecture that there has been a reduction in routine tasks at the individual level. 
Moreover, individuals exposed to robotization may experience a decrease in 
monotonous and physical tasks, allowing them to allocate more time to focus on 
abstract and socially-oriented tasks.  
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Nevertheless, workers might also face a decline in the overall task load as a 
result of robotization, potentially leading to reduced task variety and heightened 
feelings of monotony or repetitiveness. Additionally, the activities facilitated by new 
technologies are not inherently more abstract or intricate and may result in an 
alienating experience. Ultimately, the overall impact of robotization on job tasks at the 
worker level remains ambiguous and is likely to vary at a granular level. 

The main contribution of this paper is to examine how robotization impacts 
workers’ tasks by capturing important dynamics that macro-level task data often 
overlook. To do so, we use the European Working Conditions Survey (EWCS) for 2010 
and 2015 containing information on workers’ descriptions of multiple aspects of their 
work to build four individual-level task indices: routine, abstract, social, and physical. 
Furthermore, our measure of robot exposure is based on information from the 
International Federation of Robotics (IFR) and the EUKLEMS and reflects changes in 
robot adoption per 10,000 workers in 14 industries and 20 countries between 2005 
and 2009 and 2015-2019.1 We combine this robotization measure with the individual-
level tasks and worker information by using the industry of employment of each 
worker in the EWCS data. We address endogeneity issues using an instrumental 
variable approach based on the adoption of robots in the same industries in other 
countries (as in Acemoglu & Restrepo, 2020; Adachi et al., 2020; Aksoy et al., 2021; 
Anelli, Colantone, & Stanig, 2021; Dauth et al., 2021; de Vries et al., 2020; Graetz & 
Michaels, 2018; Nikolova, Cnossen & Nikolaev, 2022).  

We show that robotization makes workers’ tasks less physically demanding, 
which is in line with previous work on the health consequences of robotization and 
reduction in manual tasks (e.g., Gihleb et al., 2022; Gunadi & Ryu, 2021). At the same 
time, we find that robotization increases the routineness and decreases the cognitively 
challenging and human contact activities of workers. Our results are in line with the 
Polanyi effect, whereby automation leaves some aspects of the production process for 
humans, but those aspects are more mundane and routine. Our OLS and 2SLS results 
are qualitatively similar and survive a battery of sensitivity checks.  

 
1 In this paper, we use the terms ‘industrial robotization’, ‘robotization’, and ‘automation’ 
interchangeably. 
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Moreover, we demonstrate that the impact of robotization varies among 
different skill and education groups, with the most notable difference being for 
abstract tasks. Specifically, robotization amplifies the negative effect of robotization 
on tasks for high-skilled and highly educated workers, thus making their jobs even 
more devoid of human interaction and supervision activities.  

Our results directly contribute to two literature strands. First, they complement 
the extant evidence about the impact of robotization on the labor market. Unlike much 
of the existing literature focusing on macro-level data, shifts between occupations and 
aggregate job task definitions (Autor, Levy & Murnane, 2003; Autor & Dorn, 2013; 
Cortes et al., 2017; Goos, Manning & Salomons, 2014), our study concentrates on 
individual-level data and focuses on workers experiencing changes at their workplace 
due to robotization. This approach unveils changes in job tasks that aggregate task 
measures at the occupation or industry level miss. We also build upon and extend the 
growing literature relying on worker-level survey data to measure tasks (Autor and 
Handel, 2013; Cassidy, 2017; Akçomak, Kok and Rojas-Romagosa, 2016; Sebastian 
and Biagi, 2018; De La Rica, Gortazar and Lewandowski, 2020; Lewandowski, Park, 
Hardy, Du, and Wu, 2022; Cnossen, 2022; Arntz, Gregory & Zierahn, 2017). While 
worker-based task indices are increasingly common, we validate our measure by 
comparing it with other widely used task measures. On average, our indices strongly 
align with standard occupation-based task indices (Acemoglu and Autor, 2011), with 
the added advantage of tapping into within-occupation variation. 

Second, our study adds to the literature examining the effects of robotization 
on job quality, which remains relatively limited (see Nikolova et al., 2022 and 
Rohenkohl & Clarke, 2023, for comprehensive reviews). Our results may help us 
understand why some studies reveal an adverse effect of automation on job 
satisfaction (Schwabe & Castellacci, 2020) and diminished perceived work 
meaningfulness and autonomy (Nikolova et al., 2022). 

2. Conceptual framework: The implications of robotization on the 
tasks performed by workers 

Macro-level evidence suggests that technological change leads to i) a decline in 
the proportion of routine occupations in favor of more abstract ones (Autor et al., 
2003; Dustmann, Ludsteck, & Schönberg, 2009; Goos & Manning, 2007; Goos, 
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Manning, & Salomons, 2014; Acemoglu & Autor, 2011; Autor, 2014; Böhm, 2020) and 
ii) an overall decrease in the routine-intensity of jobs within occupations (Spitz-Oener, 
2006). As routine occupations are disappearing at the aggregate level, cognitive and 
interactive ones are emerging. However, examining these patterns at an aggregate 
level potentially overlooks the worker-level experience of those remaining in 
employment: does one’s job become more or less routine following robotization?  

Building on Autor et al. (2003) and Acemoglu and Restrepo (2019), we propose 
a framework in which each worker’s bundle of tasks consists of a combination of social, 
abstract, routine, and physical tasks. Social and abstract tasks are activities in which 
humans have a significant comparative advantage over robots (i.e., human advantage 
tasks). Routine and physical activities are susceptible to various types of automation. 
Of these two, physical tasks are most likely to be automated by robots, as shown by 
empirical evidence by Webb (2019) based on the overlap between robot-patent data 
and occupational tasks. Evidence from the United States also suggests that 
robotization reduced the physical tasks of low-skilled US and German workers (Gihleb 
et al., 2022; Gunadi & Ryu, 2020).  

Our theoretical framework focuses on how robotization affects job content, 
conditional on workers keeping their jobs. The main predicted effects stem from two 
scenarios: i) robots having full autonomy in executing routine or physical tasks, 
allowing humans to specialize in other tasks (i.e., human advantage effect), and ii) 
robots only partially automating tasks and the process (i.e., Polanyi effect). 

First, if robots can autonomously complete a set of routine or physically 
demanding tasks, humans can shift towards tasks that play to human strengths. By 
reducing the routine and physical strength tasks for workers, robotization may leave 
workers with more scope and time to engage with their customers or colleagues and 
focus on tasks that the machines cannot yet do – such as problem-solving and complex 
tasks and actions requiring “common sense” judgment. For instance, pharmacists 
might emphasize social interaction, and warehouse workers may concentrate on 
enhancing workflow optimization through problem-solving. Consequently, workers 
transition to tasks where humans have a comparative advantage. These new 
responsibilities can prove more engaging, as the routine and physical aspects of jobs 
have been automated. For instance, a case study illustrates how the introduction of a 
drug-dispensing robot enabled pharmacists to dedicate more attention to client 
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interaction (Barrett, Oborn, Orlikowski & Yates, 2011). Similar patterns have been 
observed in other case studies, particularly among workers with higher education 
(Smids, Nyholm & Berkers, 2020; Berkers, Rispens & Le Blanc, 2023). There is some 
aggregate evidence for this mechanism in German manufacturing industries (Dauth et 
al., 2021). Specifically, based on aggregate analyses, within manufacturing, 
robotization increases the share of abstract and manual and decreases the share of 
routine tasks (relative to all other tasks in manufacturing in the local labor market). 
According to Dauth et al. (2021), most workers who keep their jobs following 
automation shift into tasks that are less routine and more abstract. 

Second, the change in tasks can take an entirely different trajectory due to task 
replacement and task creation. Due to robotization’s task replacement aspects, 
workers might find themselves performing only segments of the task bundles they 
were previously responsible for, or they may be required to accompany a robot and 
take over tasks when the robot is unable to execute them. Some tasks or processes may 
not be entirely reducible to a set of procedures at the outset. The remaining 
components of routine activities may demand actions or judgments that are 
challenging to systematize. This explanation closely aligns with the so-called Polanyi 
paradox, which implies that because humans generally do not know how much they 
can do, engineers may also not be able to design a robot that replaces the complete set 
of tasks involved in a production process (Autor, 2014). For instance, although robots 
mount windshields onto cars in automobile factories, it is human technicians who 
must replace the windshields if they are damaged. This is due to the complexity of the 
task, which involves removing a defective or shattered windshield and installing a new 
one, a process too intricate for a robot to perform (Autor, 2014). However, from the 
worker’s perspective, who previously dealt with a range of tasks associated with 
installing and replacing windshields, the introduction of robots may result in a 
reduction of task variety, leading them to perceive their work as more routine. A 
pertinent illustration of this is evident in the proliferation of robots in warehouses, 
where certain robots diminish the variety of tasks, leaving workers to handle small, 
mundane tasks that the robots cannot yet undertake. Consequently, workers may lose 
an overarching understanding of the complete work process, reminiscent of the 
principles of Taylorism, a method of scientific management emphasizing efficiency 
where each worker is accountable for their designated segment (Berkers et al., 2023; 
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Li & Liu, 2016). The robot may be installed, but the worker still needs to be present 
while it operates, thereby being dependent on the machine’s work pace and activities 
– rendering their work more routine-intensive, less challenging, and less interactive. 
Despite the robot installation, the worker must still be present during its operation, 
thus depending on the machine's work pace and activities. This situation makes their 
work more focused on routine tasks, less challenging, and less interactive. 

Automation’s task-creation aspects can also increase the routine and decrease 
the social and abstract activities of workers, giving rise to a different version of the 
Polanyi effect. Within occupations, technology creates new tasks – for example, by 
having machines check in passengers at airports, gate agents can focus on dealing with 
rebooking flights or issuing new tickets (Autor, 2013). When machines create novel 
tasks through new production modes or demand for new products and services,  these 
new tasks are first assigned to humans. As some of these tasks can be further codified, 
they are then susceptible to automation, leaving more mundane tasks for humans 
(Autor, 2013). Humans are flexible and adaptable, and because of that, they can 
initially perform the new tasks that technology generates in the economy. With the 
mastery of the tasks, however, comes the ability to codify tasks and potentially turn 
these tasks over to machines. In other words, in the medium and long run, even the 
task-creating aspects of technology can leave humans with more mundane and less 
interesting tasks. Workers performing these new tasks may not necessarily experience 
declines in wages, at least in the short or medium run, as the overall productivity goes 
up, but they may lose the comparative advantage in the tasks that they were previously 
doing.  

The relative importance of the human advantage vs. the Polanyi effect 
determines the direction the worker-level impact of robots on the task content of jobs 
goes into, conditional upon workers keeping their jobs. The first, the human 
advantage effect, leads to the hypothesis that the human-advantage tasks will increase 
following robotization: incumbent workers will perform fewer physical tasks due to 
task replacement and instead perform more abstract and social tasks, and their tasks 
may also become less routine.  

The Polanyi effect gives rise to the hypotheses that abstract and social tasks will 
decrease and routine tasks will increase as the work becomes more focused on 
working with the machine or performing the last few tasks that cannot yet be 
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automated. This reduces the freedom people experience at work and the variety of 
tasks and directly affects the task content of their jobs.  

Ex ante, it is unclear which of these two channels dominates and in which 
circumstances. Therefore, we conduct an empirical exercise to test whether 
robotization leads to more mundane jobs – if the Polanyi effect is dominant - or more 
interesting ones – if the human advantage effect is dominant.  

3. Measuring tasks 

The extant literature offers three main approaches to measuring the content of 
workers’ tasks (Autor, 2013). First, researchers have relied on higher-level 
occupational groupings from available occupational classifications such as ISCO as 
proxies of job tasks. Occupations are grouped into broad categories, such as 
“managerial,” “production,” or “service,” based on which the task content of jobs is 
inferred. This approach is rather crude as it fails to account for similarities between 
routine and non-routine tasks across different occupations (Autor, 2013). For 
example, both office clerks and supermarket cashiers perform functions that can be 
easily codifiable and replaced with software and machines, and both teachers and 
nurses perform activities that require flexibility and judgment to adapt to changing 
circumstances, empathy, and interactive skills, which are difficult to codify.   

A second approach includes categorizing tasks based on grouping occupational 
descriptions detailed in occupational dictionaries, such as the Dictionary of 
Occupational Titles (DOT) and the Occupational Information Network (O*NET) in the 
US (Handel, 2016). This approach closely maps the existing job descriptions of the 
occupations in O*NET with the framework in Autor et al. (2003) related to the 
intensity of non-routine analytic, non-routine interactive, routine cognitive, routine 
manual, and non-routine manual activities.  

The main advantage of this method is the ability to rely on descriptions of the 
job activities provided by statistical agencies (Autor, 2013). These measures also cover 
all occupations and at a high level of detail (Fernández-Macías and Bisello, 2022). Yet, 
the method does not allow for heterogeneity in job tasks within an occupation. For 
example, two general managers can have a very different set of activities. However, the 
researcher assigning the tasks to the occupation only sees the fixed definition in 
O*NET rather than the actual tasks performed by the worker. As Autor (2013, p. 190) 
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notes, “[…] at best, occupation level task measures provide a rough approximation to 
the microeconomic assignment process.” In addition, the task assignments based on 
O*NET definitions ignore the dynamics related to task reshuffling and optimization 
resulting from automation.  

The third approach to measuring tasks, which we adopt in this paper, collects 
job and task descriptions from surveys that also elicit information on demographics, 
job characteristics, and job quality (Fernández-Macías & Bisello, 2022). The main 
advantage of this approach is that it offers information at the level of workers rather 
than occupations and allows studying nuances in the task content within and between 
occupations and over time. Despite the limitations of self-reported data, worker-level 
measures have proved relevant for research in the literature on task-biased 
technological change. In a seminal paper based on the German Qualification and 
Career Survey, Spitz-Oener (2006) documents that German occupations in 1999 
required more complex tasks than in 1979 and that these changes were due to changes 
within occupations rather than between occupations.2  

4. Data and key variables 

We use three main data sources: i) information on the adoption of industrial 
robots from the International Federation of Robotics (IFR); ii) data on the number of 
employees per industry and information on fixed capital stock in computing, 
communications, computer software, and databases (i.e., ICT) from the EU KLEMS 
database; and iii) worker-level data from 2010 and 2015 from 20 European countries 
working in 14 industries from the European Working Conditions Surveys (EWCS).  

4.1. IFR data and robotization 

We source robot stock data from the IFR, which is an association of major robot 
producers. Data are available at the industry level within countries, and no company 
data are available. Our measure of robotization is similar to that of Aksoy et al. (2021) 
and Nikolova et al. (2022). Like Aksoy et al. (2021), we do not make an adjustment 
related to the depreciation rate and use the original IFR data, which assumes a service 
life of 12 years and no operation of the robot after that. By a robot, we mean an 

 
2 For example, shift-share analyses in Spitz-Oener (2006) demonstrate that about 15% of the total 
changes in the analytical task measure can be attributed to between-occupational shifts, while 85% - to 
within-occupational ones.  
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“automatically controlled, reprogrammable, multipurpose manipulator that is 
programmable in at least three axes, and either fixed in place or mobile and intended 
for and typically used in industrial automation applications” (IFR, 2021a, p. 30). A 
robot, therefore, is fully autonomous and, does not require a human worker to operate 
it and can be re-programmed to perform different tasks (Jurkat, Klump, & Schneider, 
2022). The dataset excludes industrial robots, such as automated storage and retrieval 
systems controlled by machines. A detailed overview of the dataset and its limitations 
is available in Jurkat et al. (2022).  

 The IFR data are available in principle starting in 1995 for certain countries and 
industries. Nevertheless, there are many missing entries in the early years. We, 
therefore, use the IFR data post-2005 due to the gaps in data availability prior to that 
year that would have required many imputations. Furthermore, our EWCS data also 
have a NACE classification code that we can only use starting in 2005 due to the 
revision of the codes, which makes 2005 an opportune starting year for investigation. 
Note that, like other papers in the literature (e.g., Graetz & Michaels, 2018), we still 
needed to impute the data for 2005 for Bulgaria, Greece, and Lithuania. 

Our measure of robotization is expressed in terms of changes and is specified 
like in Nikolova et al. (2022). For each industry j in country c and year t:  

𝑅𝑜𝑏𝑜𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛!,#,$ = 	𝐼𝐻𝑆 . %&'()*		*,(,$-!,#,$%&
./,///	)'01,2))-	!,#,'(((

− %&'()*		*,(,$-!,#,$%)
./,///	)'01,2))-!,#,'(((

	0               (1) 

where 𝑅𝑜𝑏𝑜𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛!,#,$ is the change in robotization between t-1 and t-5 in industry j 

in country c. We use a 4-year gap to compute the changes and lag it one year to reflect 
the interval between consecutive EWCS survey waves. Lagging the variable helps with 
reverse causality issues in the OLS specifications and also allows us to better match 
the timing of the survey responses with the reference period for robot stocks. Finally, 
the denominator contains the number of workers in the year 2000, sourced from the 
EUKLEMS -INTANProd data, rather than current employee numbers to ensure that 
changes in robotization are not influenced by changes in the number of employees in 
that particular industry.  

Additionally, we address the challenge posed by the highly skewed distribution 
of changes in robotization (Bekhtiar, Bittschi, & Sellner, 2021) by applying an inverse 
hyperbolic sine (IHS) transformation to these changes (Bellemare & Wichman, 2020). 
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Like Aksoy et al. (2021), we choose the IHS method over alternative transformations, 
such as taking the logarithm or using percentile rankings for changes in robotization. 
The latter over-emphasizes minor differences between changes in robotization at the 
top of the distribution and under-emphasizes significant differences at the bottom. 
The IHS method resembles logarithmic transformation but retains accuracy for zeros 
and negative values. However, it does come with the drawback that coefficients are not 
immediately interpretable without conversion into elasticities. We provide elasticity 
values where possible.  

4.2. Worker-level information on tasks 

We rely on the 2010 and 2015 EWCS from the European Working Conditions 
Survey Integrated File 1991-2015 (Eurofound, 2023a). The EWCS offers rich, 
nationally representative information collected via face-to-face interviews with 
workers in European countries. Respondents aged 16 and older who work at least one 
hour per week are eligible to answer the questionnaires. Each survey wave polls unique 
workers, and the dataset is cross-sectional.  

The EWCS dataset is the best available source for our analyses for several 
reasons. In Appendix B, we detail the other extant datasets and explain their 
advantages and disadvantages. First, the EWCS asked individuals a plethora of 
questions about their daily activities and experiences at work. Second, the survey 
provides information about the industry of employment (NACE Rev 2, two-digit), 
which allows us to merge the data from the IFR and EUKLEMS with the EWCS. The 
NACE Rev 2 information is only available from 2010 onwards (a different 
classification was used in earlier years). This is the reason why our analysis does not 
make use of pre-2010 EWCS survey waves. Finally, the richness of the dataset allows 
us to include a range of control variables, such as age, gender, occupation, work hours, 
education, and firm size. 

 EWCS respondents are asked to precisely describe the tasks they are doing in 
their job. To reduce the dimensionality of the type of tasks performed by workers, we 
take inspiration from O*NET-based task indices and construct four indices related to 
routine, abstract, client interaction (social), and physical tasks. We create all indices 
using the first polychoric principal component (Olsson, 1979) and standardize the 
indices to have a standard deviation of 1 and a mean of 0. We also standardized all 
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variables comprising the indices before including them in the index. Table 1 details the 
items used in constructing the indices and how these relate to the O*NET-based task 
indices. 

 Our routine measure is based on the following seven items: i) whether the job 
involves repetitive arm movements, ii) whether it involves monotonous tasks, iii) 
whether the work pace is dependent on the automatic speed of a machine, iv) the 
performance of short repetitive tasks of less than 1 minute and v) less than 10 minutes, 
vi) whether the respondent is able to change or choose the order of tasks and vii) the 
speed or rate of work. The Cronbach’s alpha is 0.66, and the Kaiser-Meyer-Olkin 
measure of sampling accuracy is 0.70. The first principal component accounts for 37% 
of the variation. For comparison, the survey-based routine index in Autor in Handel 
(2013), which is based on the Princeton Data Improvement Initiative (PIID) survey 
dataset described in Section 3 in their paper, accounts for 56% of the variation in the 
variables they include.    

 The abstract index is based on three items capturing i) whether the 
respondent’s main paid job involves solving unforeseen problems on their own, ii) 
complex tasks, and iii) learning new things. The Cronbach’s alpha is 0.63, the KMO 
measure is 0.68, and the first principal component accounts for 58% of the total 
variance. In Autor and Handel’s abstract index, it is 41%.  

 Our social index is based on variables capturing whether i) the respondent’s 
work pace is dependent on people, such as customers, passengers, students, patients; 
ii) whether the respondent’s main paid job involves handling angry clients, customers, 
patients, pupils, iii) whether the respondent deals directly with people who are not 
employees at the workplace, such as customers, passengers, pupils, and patients, and 
iv) whether the respondent supervises others. In this sense, our index comprises both 
tasks that fit in the social perceptiveness definition (non-routine manual interpersonal 
tasks) of O*NET, i.e., being aware of how others are reacting and why they are reacting 
the way that they do and also non-routine cognitive functions related to coaching and 
supervising others. The Cronbach’s alpha is 0.57, the KMO measure of sampling 
accuracy is 0.63. The first principal component explains 47% of the total variance. A 
comparison with Autor and Handel is impossible as they have no analogous index.  



 
   
 

14 
 

 Finally, the physical tasks index is based on whether the respondent works in 
tiring and painful positions and carries or moves heavy loads. These variables capture 
physical stamina and the physical labor content of tasks. The Cronbach’s alpha is 0.69, 
and the KMO measure of sampling accuracy is 0.50. The first principal component has 
an eigenvalue of 1.7 and explains 83% of the total variance. The possible analogous 
index in Autor and Handel would be the manual tasks, but it is just a simple item based 
on the “proportion of the workday spent performing physical tasks such as standing, 
operating machinery or vehicles, or making or fixing things by hand” (p. S71).  

 The last column of Table 1 details the correlations (computed by collapsing all 
data at the 2-digit ISCO occupation level) between the indices that we create and those 
that are “off-the-shelf” and most commonly used in the literature (i.e., the O*NET 
indices in Acemoglu and Autor, 2011).3 The correlation coefficients in all cases are 
relatively high, suggesting that our indices are valid representations of the concepts 
we are trying to capture. The correlation coefficients are of similar magnitudes as those 
reported by Sebastian and Biagi (2018), who also use the EWCS to construct indices 
related to abstract, routine, and manual tasks. The correlation coefficients are slightly 
lower when we limit the number of observations to our analysis sample, which 
excludes the “other non-manufacturing industries.”  

Table 2 details the correlation coefficients between the task indices that we 
constructed. The highest correlation is between abstract and social tasks (0.35) and 
routine and physical activities (0.34). Nevertheless, it is clear from the items reported 
in Table 1 that these indices are not tautological but rather capture distinct task aspects 
and activities at work.  

In Table 3, we explore whether the task indices we created plausibly correlate 
with individual monthly earnings (in PPP and log-transformed) and whether the 
correlations remain once we control for the O*NET task indices, in the spirit of Autor 
and Handel (2013). Model (1) only includes the EWCS task indices and country and 
year dummies. Model (2) includes individual controls and occupation and industry 

 
3 The data on task indices are available on Daron Acemoglu’s website, which provides replication files 
and data: https://economics.mit.edu/people/faculty/daron-acemoglu/data-archive. To merge the task 
data from the Acemoglu and Autor’s paper that uses the SOC occupational classification to the EWCS, 
which uses the ISCO classification, we used the correspondence tables prepared by the Institute for 
Structural Research (IBS), provided here: https://ibs.org.pl/en/resources/occupation-classifications-
crosswalks-from-onet-soc-to-isco/. 

https://economics.mit.edu/people/faculty/daron-acemoglu/data-archive
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dummies. As expected, the routine and physical indices are consistently associated 
with lower earnings, while abstract activities are positively contributing to income. The 
association between earnings and the social index is positive and turns statistically 
significant after including the individual-level controls and industry and occupation 
dummies in Model (2).  

Model (3) in Table 3 incorporates the O*NET task indices as supplementary 
controls. The patterns in terms of associations with income of the routine, abstract, 
and physical indices we devised and those from the O*NET are comparable, 
reinforcing the credibility of our indices. However, the estimates related to the social 
indices present a difference, with our EWCS-based social index positively correlating 
with earnings, while that of the O*NET correlates negatively. A closer examination of 
the sub-components of the indices suggests that this discrepancy is because our social 
index puts more weight on tasks associated with greater earnings than the O*NET 
index. This is why Model (4) breaks the social indices into their ingredients – 
“Interactions with non-employees,” “Dealing with angry clients,” “Customer-driven 
work-pace,” and “Employee supervision” in the case of EWCS, and “non-routine 
cognitive interpersonal” and “non-routine manual interpersonal skills” for the O*NET 
index. Essentially, in the O*NET, the manual interpersonal index (social 
perceptiveness, e.g., counseling depressed patients) is negatively correlated with 
earnings, while the cognitive component of the O*NET social index is positively 
correlated. Three items in the EWCS-based social index have positive and statistically 
significant estimates, with the largest coefficient estimate being for “Employee 
supervision,” which reflects a cognitive aspect of the EWCS-based social index. 
Meanwhile, “Interactions with non-employees” only attracts a marginally negative 
coefficient. All in all, our indices plausibly correlate with existing measures in the 
literature and show plausible correlations with income.  

4.3. Analysis sample construction 

We merge information from the EWCS, IFR, and EUKLEMS based on the 
NACE Rev 2 industry information available in all three sources. Consequently, we drop 
from the sample workers with missing information on the industry of employment.  

Our analysis sample has information on individuals working in 14 industries 
and 20 countries in 2010 and 2015. We follow the existing literature (e.g., Aksoy et al., 
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2021; Graetz & Michaels, 2018) and exclude the “all other non-manufacturing” 
industry even though it represents about 63% of the EWCS. We do so because this 
category comprises mainly service industries that do not employ industrial robots. 
Finally, we drop the armed forces’ occupation from the analyses because they only 
comprise a handful of observations. Our final analysis sample contains 16,862 
observations.  

Appendix Table A1 details the construction of all the key variables used in the 
analyses, which are similar to those in Nikolova et al. (2022) and Aksoy et al. (2021). 
Table 4 provides detailed summary statistics of our estimation sample. 

5. Empirical Strategy 

We rely first on OLS estimations and bring causal inference via two-stage least 
squares (2SLS) regressions. Our analyses dovetail with and combine strategies 
explored in the extant literature (Acemoglu & Restrepo, 2020; Adachi et al., 2020; 
Aksoy et al., 2021; Anelli, Giuntella, & Stanig, 2021; Anelli, Colantone & Stanig, 2021; 
Dauth et al., 2021; de Vries et al., 2020; Graetz & Michaels, 2018; Nikolova et al., 
2022). 

5.1. Main Model 

Our main model assumes that the job activities T of individual i, living in country 
c and working in industry j in year t is:   

𝑇3,#,$ =	𝛼/ +	𝛼.𝑅𝑜𝑏𝑜𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛!,#,$ + 𝛼4𝐼𝐶𝑇!,#,$ + 	𝑋3,#,$𝜑 +	𝜋# + 𝜏$ + 𝜀3,!,#,$	                     (2) 

whereby Robotization is the change in robot density in country c and industry j 
between years t-1 and t-5 (see the technical details behind the construction of this 

variable in Section 2.2. – Equation (1)). 𝐼𝐶𝑇!,#,$ is the change in fixed capital stock in 

computing, communications, computer software, and databases per 10,000 workers. 
Like Jestl (2022), we consider ICT a different type of automation technology. The 
“computerization” wave lasted from the 1960s (pre-computer age) to the end of the 
1990s (diffusion of the internet) (Frey & Osborne, 2017; Martin & Hauret, 2022). It 
was followed by Digitalization Wave 3.0, marked by the rise of robotization and 
inducing routine-biased technological change (Martin & Hauret, 2022). Both 

𝑅𝑜𝑏𝑜𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛!,#,$ and 𝐼𝐶𝑇!,#,$ are IHS-transformed to account for their skewed 

distributions.  
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We include standard control variables, denoted by 𝑋3,#,$ and including age group, 

gender, working hours, tenure, company size, education, having other jobs, and ISCO-

08 occupation detailed in Section 2 above, 𝜋# 	and 𝜏$	denote country and time dummies 
(i.e., survey year 2010 or 2015), respectively, and ε i,c,j,t is the error term. The country 
fixed effects take into account any cultural differences in providing answers to survey 
questions and capture institutional factors, such as labor market institutions, to the 
extent that they do not change over time. Time dummies take into account shocks that 
are common across all countries.  

We cluster the standard errors at the country*industry level and weigh all 
regressions using the survey weight. In the Appendix, we also report results using 
weights calculated using the within-country industry employment shares of 
employment hours (Aksoy et al., 2021; Graetz & Michaels, 2018) that provide more 
importance to industries with larger employment shares. Where possible, we report 
the estimates related to the coefficient estimate of the robotization variable in terms of 
elasticities, following the computation formulas from Bellemare and Wichman (2020).   

5.2. Addressing the endogeneity of robotization 

We identify two main threats to causal identification. First, omitted shocks may 
both affect the propensity of specific industries to adopt robots and influence workers’ 
tasks. For instance, a labor shortage in a particular industry may both cause the 
adoption of more robots and the re-shuffling of tasks among existing workers. Second, 
specific workers may non-randomly sort into industries that get more or less 
robotization exposure (e.g., workers who are open to technology may be more likely to 
work in industries with high robotization exposure and perform certain tasks). 

Most existing papers offer credible ways of dealing with the first issue related 
to omitted industry-specific shocks by employing instrumental variable techniques. 
Following those studies, we instrument robotization in a particular country and 
industry with information on the automation in the same industry from all other 
countries in the sample except the respondent’s (as in Anelli et al., 2021; Nikolova et 
al., 2021). The logic of the instrument is that the robotization pace in the same industry 
in all other countries captures the same trends and shocks in technological progress 
and robotization (i.e., the “technological frontier of robots” of Acemoglu & Restrepo, 
2020). This technological frontier of robots in other countries, which is correlated with 
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domestic robot adoption, is exogenous to the tasks that individual workers do in a 
particular country. The instrument would be invalid if robotization in the same 
industry but in other countries is correlated with other shocks, such as import 
competition and rising wages, which affect the robot adoption of the same industries 
across countries at the same time (Acemoglu & Restrepo, 2020). The existing cross-
country research on the effects of automation has mainly relied on two instruments 
developed by Graetz and Michaels (2018) - "replaceable hours" and “robot arms.” 
These instruments capture the percentage of replaceable employment hours and the 
proportion of physical tasks related to reaching and handling in US industries in 1980. 
However, these instruments have some limitations, such as being based on the US 
industrial structure and violating the monotonicity assumption, which affects their 
accuracy and reliability (Bekhtiar et al., 2021). Nonetheless, for completeness, we also 
present the results obtained from using these instruments but warn readers to 
interpret them with caution.  

Addressing self-selection is a more complex endeavor: employing a panel data 
setup would enable the use of individual fixed effects, which, can help alleviate 
concerns by netting out the impact of time-invariant unobserved traits. Our dataset 
comprises pooled cross-sections, with different individuals surveyed across the waves, 
precluding the use of individual fixed effects. Although we cannot entirely rule out the 
issue of self-selection into industry, we adopt a mitigation strategy that includes 
sequentially control variables to document the extent to which robotization is 
orthogonal to individual characteristics. 

6. Results 
6.1. Main results 

Table 5 details our main results. In the first Column, we report the OLS 
coefficient estimates and corresponding elasticities for the change in robot density 
from a regression where we only control for year and country fixed effects. An increase 
in robot density appears to correlate negatively with the abstract index and social index 
but is positively associated with the routine index. When we control for the change in 
ICT stock in Column (2), the coefficient estimates remain virtually the same, 
suggesting that the results do not confound trends related to ICT adoption and 
computerization.  
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Although informative, the estimates in Column (1) and (2) in Table 5 are not 
causal. As mentioned above, one of the two major threats to our identification is the 
endogenous selection of workers into industries. We mitigate this problem by 
augmenting our Model with several control variables that determine the selection 
process. We report the results in Column (3). While the sign of the coefficient estimates 
remains the same, their magnitude is lower, suggesting that some worker-level self-
selection bias is at play. 

Omitted variables could explain both the speed of robot adoption and workers’ 
tasks. For this reason, we appeal to the instrumental variable approach described in 
Subsection 4.2 and report the results in Column (4). The 2SLS estimates suggest first 
that robotization decreases the physical burden on workers – i.e., tasks related to 
carrying heavy loads and working in tiring positions. Second, as already revealed by 
the OLS estimates, the IV results confirm that robotization increases individual-level 
routine work and decreases workers' abstract and social tasks.   

Although the dependent and independent variables are standardized, the 
interpretation of the coefficients in Table 5 is not straightforward due to the IHS 
transformation of the robotization variable, which is why we report the elasticities. For 
example, Column (4) suggests that doubling robotization increases the routineness of 
workers’ tasks by 6%, and reduces the abstract and social tasks by 5% and 7%, 
respectively.  

The fact that robotization decreases the frequency of performing physically 
demanding tasks is in line with existing studies (e.g., Gihleb et al., 2022; Gunadi & 
Ryu, 2021), especially given that robots are most successful in replacing these activities 
(Webb, 2019).  

Our results indicate that the Polanyi paradox effects dominate, considering the 
result that robotization makes tasks more routine.  The fact that robotization also leads 
to fewer social and abstract tasks suggests that all job content becomes more mundane 
and less interesting. In other words, our results indicate that the increase in routine 
work is not compensated by an increase in abstract or social work.   

We offer several robustness checks that increase confidence in the validity of 
our results. First, we check whether the results we report depend on the weights we 
use for the analyses. Instead of the survey weights, in Appendix Table A2, we use 
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industry employment shares as weights – giving more importance to larger industries. 
The results are in line with our main specifications in Table 6. We also check whether 
the results are robust to using the Graetz and Michaels (2018) instruments commonly 
used in the literature, even though these instruments have several limitations we 
described earlier in the paper. The F-statistics related to the first-stage regressions are 
much smaller than those in the main analyses. The results are consistent with those in 
the main analyses (Table 6), though the magnitudes are higher.  

Appendix Tables A4 to A7 detail how robotization affects each of the 
components of the indices using our 2SLS approach. We conduct this analysis to 
ensure that our indices do not hide nuanced changes within the variables comprising 
the indices. Our results suggest this is not the case for most indices. The coefficient 
estimates for robotization as related to all components of the routine index are 
positive, suggesting that greater exposure to robots does increase all aspects of 
routines reported in EWCS. The same applies to Appendix Table A5 and Table A7, 
where all the components of the abstract and physical index decrease with 
robotization. Appendix Table A6 displays the effect of robotization on the components 
of the social index, and the results are somewhat more nuanced. Robotization strongly 
decreases the frequency of interactions with non-employees but does not change the 
probability of employee supervision. These two components already behaved in 
opposite ways in Table 3. Combining our results in Appendix Table A6 and Table 3, it 
seems that robotization mostly reduces tasks that could be affiliated with the non-
routine manual interpersonal O*NET classification of social tasks. 

6.2. Heterogeneity Analysis 

Our introduction highlighted two examples demonstrating the dynamic 
relationship between robotization and workers’ tasks. The first example focused on a 
robotic drug dispensing device, showcasing the positive aspect of robotization. In this 
scenario, the robot assumes the most repetitive and physically demanding tasks, 
enabling pharmacists to dedicate their time and energy to cognitively and socially 
challenging responsibilities. Simultaneously, some pharmacy workers saw a decrease 
in the complexity and an increase in the routine intensity of their work (Barrett et al., 
2011). Similarly, the second example of robots in a logistic warehouse highlighted that 
a novel addition of a robot to an originally physical-task-intensive industry may 
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contribute to an environment of alienation for workers who are already engaged in 
tasks alongside various other machines (Berlers et al., 2023). 

The main findings of our study align with a more pessimistic view of 
robotization on average. However, it is important to acknowledge that these 
conclusions are based on average results, and the impact of robotization may vary 
among workers. To explore this further, we examine whether the effects of increased 
exposure to robotization are consistent across different worker circumstances and 
socio-demographic groups. To this end, we use our 2SLS Model and introduce an 
interaction term between robot exposure and i) education levels (Table 6), ii) 
occupation levels (Table 7), and job tenure (Table 8).  

First, Table 6 details that having a higher education degree does not seem to 
moderate the relationship between physical and routine tasks. Nevertheless, it 
significantly cushions the negative effect of robotization on abstract tasks and 
amplifies the negative effect of robotization on social tasks. In other words, the highly 
educated working in industries hit by robotization seem to be doing even fewer social 
tasks as a result. This could be due to the task modification aspects of technology - 
Industrial robots are capable of taking over tasks that include aspects of customer and 
client interaction. For example, in the automotive industry, robots not only assemble 
parts but can also perform quality checks that would have required skilled human 
oversight, thereby reducing the need for interaction between workers and clients. 
Alternatively, with robots taking over more tasks, there might be less need for 
collaboration among workers, which traditionally involves a high degree of social 
interaction. 

Next, in Table 7, we include a binary variable representing high-skilled 
occupations (i.e., occupations falling within the first three one-digit ISCO occupational 
categories – managers, professionals, technicians, and associate professionals). 
Specifically, the impact on routine tasks is mitigated for workers in high-skilled 
occupations. Conversely, like with education, robotization appears to make tasks even 
less interactive for those with high-skilled occupations. We detect no significant 
moderation effects of working in a high-skilled occupation for physical or abstract 
tasks.  
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Finally, in Table 8, we show that robotization affects the tasks of both 
newcomers (i.e., those with less than one year on the job) and more established 
workers in the same way. This finding seems to point to the conclusion that worker 
self-selection into industries that would end up being automated does not seem to be 
the main driver of our findings. What we cannot fully rule out with this analysis is the 
potential for job switching between industries and the extent to which it drives our 
results. The potential for job switching across industries is arguably limited due to 
industry-specific human capital. For example, in a sample of about 9000 individuals 
in German worker-level data, Heß et al. (2023), find that 390 individuals switch out of 
high-automation potential occupations and 301 switch into high-automation potential 

occupations.  Nevertheless, we acknowledge this possibility and we hope that future 
work can address it with access to finer-grained data.  

7. Conclusion and discussion 

This paper represents the first attempt to offer a worker-focused viewpoint on 
the impact of robotization on tasks, utilizing detailed information on workers' job 
content in conjunction with industry-level robotization data. Our findings indicate 
that robotization shifts workers’ activities, making their jobs more routine and less 
abstract and social, but less physically demanding. Our results align with the so-called 
Polanyi effect, whereby robots partially replace workers’ tasks, leaving the last bit of 
routine tasks to humans and making their jobs even more mundane. Taking a worker-
level perspective provides more nuance and leads to a different conclusion about the 
implications of automation for tasks than looking at aggregate-level analyses (e.g., de 
Vries et al., 2021). 

Specifically, while robots reduce the share of routine jobs in the economy as a 
whole and in the long run, for individual workers who keep their jobs, the tasks that 
remain to be done following robotization are less interesting and challenging, more 
routine, and less meaningful. Our findings complement recent work that suggests that 
robotization has decreased the physical burden of jobs (Gihleb et al., 2022; Gunadi & 
Ruy, 2021). At the same time, robotization has made work more intense (Antón, 
Fernández-Macías, & Winter-Ebmer, 2023) and less meaningful and autonomous 
(Nikolova et al., 2022), despite economy-wide increases in productivity (Graetz & 
Michaels, 2018; Gregory, Salomons & Zierahn, 2021). In addition, recent research 
suggests that robotization leads to a decline in training and lower acquisition of IT and 
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soft business skills (Heß et al.,2023). Taken together, this evidence suggests that 
robotization negatively impacts job content, job quality, and training opportunities for 
workers, which paints a rather glum picture of the future of work. At the same time, 
our results and those of related papers show the immediate to medium-run 
consequences of automation on the task content of workers’ jobs, while the long-run 
effects may differ. In other words, our results likely capture better the task 
displacement effects of technology while task creation aspects of technology and full 
worker adaptation have not yet taken place.   

These results have important implications for labor market arrangements and 
the future of work, given the rise of new technologies related to Artificial Intelligence 
and Machine Learning, which have the potential to automate high-skilled jobs (Webb, 
2019). As machines become more sophisticated, they will likely be able to perform 
tasks that were once considered highly skilled. This means that even high-skilled 
workers may be at risk of being displaced by automation, and the tasks that remain for 
workers may become even more routine and less fulfilling. 

By using worker-level data, our empirical analysis enables a nuanced analysis 
of how robotization transforms the workplace, avoiding the limitations of broad task 
classifications based on occupational dictionaries. Our approach not only captures the 
granular heterogeneity in task content within occupations over time but emphasizes 
the significance of adopting a worker-centered viewpoint to gain a more 
comprehensive understanding of the labor market implications of automation, 
surpassing the constraints of occupational dictionaries. 

At the same time, our paper leaves several opportune avenues for future 
research. Panel data tracking the same workers over time, documenting their tasks 
and employment history, would improve understanding of how workers adjust to 
technological shocks through job/industry switching or retraining/reskilling, and the 
subsequent adaptations in their tasks. In addition, employer-employee datasets that 
could also contribute information on company and management practices could 
further help shed light on the mechanisms underpinning our findings. Future analyses 
should also prioritize the incorporation and analysis of new technologies, such as AI. 
Our dataset has detailed information on tasks only until 2015, at which point AI was 
not a prominent technology. Furthermore, our dataset offers a limited time frame for 
studying the consequences of robotization. Alternative datasets, discussed in 



 
   
 

24 
 

Appendix B also have multiple limitations, related to the time span, country coverage, 
and task measures. Future data collection efforts are urgently needed to facilitate 
future explorations of how technology affects workers’ tasks and how these 
experiences relate to the overall effects of technology in the economy.  
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Table 1: Task indices – comparison between our measures and Autor and Dorn (O*NET) 

 Nikolova, Lepinteur and Cnossen, EWCS Acemoglu and Autor (2011), O*NET Correlation coefficients   
Physical 1. Working in tiring or painful positions 

2. Carrying or moving heavy loads 
Non-routine manual physical  

1. Operating vehicles, mechanized devices, or 
equipment  

2. Spend time using hands to handle, control or 
feel objects, tools or controls  

3. Manual dexterity  
4. Spatial orientation 

Full sample: 0.81 
Analysis sample: 0.84 
 

Routine 1. Frequency of repetitive hand or arm movements   
2. Monotonous tasks 
3. Work pace dependence on the automatic speed of 

a machine or movement of a product  
4. Short repetitive tasks of less than 1 minute 
5. short repetitive tasks of less than 10 minutes 
6. Inability to choose or change the order of tasks 
7. Inability to choose or change the speed or rate of 

work 

Routine cognitive  
1. Importance of repeating the same tasks  
2. Importance of being exact or accurate  
3. Structured v. Unstructured work (reverse)  

 
Routine manual  

1. Pace determined by the speed of equipment 
2. Controlling machines and processes  
3. Spend time making repetitive motions 

Full sample: 0.72 
Analysis sample: 0.61 
 

Abstract 1. Solving unforeseen problems  
2. Complex tasks 
3. Learning new things 
4. Frequency of applying own ideas at work 

Non-routine cognitive: Analytical  
1. Analyzing data/information  
2. Thinking creatively  
3. Interpreting information for others 

Full sample: 0.76 
Analysis sample: 0.81 

Social  1. Frequency of dealing directly with non-
employees, such as customers, pupils, passengers, 
patients, etc.  

2. Handling angry clients, customers, patients, 
pupils, etc. 

3. Work pace dependence on the demands of 
customers, pupils, patients, etc. 

4. Supervising other employees 

Non-routine cognitive: Interpersonal  
1. Establishing and maintaining personal 

relationships  
2. Guiding, directing, and motivating subordinates 
3. Coaching/developing others 

Non-routine manual: Interpersonal 
1. Social perceptiveness (aware of others’ reactions 
and understanding why they react as they do) 

Full sample: 0.79 
Analysis sample: 0.73 

Notes: The table presents the variables used for creating the task indices in this paper (based on the EWCS) and those based on the O*NET in Acemoglu and Autor’s 
replication files (2011). Data from the replication files from Autor and Dorn (2013), merged with correspondence tables between O*NET SOC occupation codes and ISCO-
08, was used to compute the correlations between the indices in this paper and those in Acemoglu and Autor (2011). The IBS (Institute for Structural Research) prepared 
the correspondence tables. The correlations were computed at the 2-digit ISCO-08 level (i.e., the data was collapsed at the ISCO-08 level, and then the correlations were 
computed). The routine, abstract, social, and physical task indices in this paper are standardized at the European level prior to collapsing the data. 
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Table 2: Correlation matrix between the task indices for the analysis sample 
 Physical Routine Abstract Social  
Physical 1.000    
Routine 0.343 1.000   
Abstract -0.092 -0.177 1.000  
Social -0.103 -0.191 0.347 1.000 

Notes: N=16,862. The correlations are based on the individual analysis sample and 
using the sample weights  
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Table 3: OLS Wage Regressions of Log Monthly Earnings and Task Measures from 
EWCS and O*NET, at the worker level 

  Log Monthly Earnings  
  (1) (2) (3) (4) 
Physical index EWCS -0.032*** -0.016*** -0.015*** -0.014*** 
  (0.007) (0.004) (0.004) (0.004) 
Routine index EWCS -0.036*** -0.018*** -0.017*** -0.017*** 
  (0.006) (0.004) (0.004) (0.004) 
Abstract index EWCS 0.157*** 0.046*** 0.045*** 0.041*** 
  (0.010) (0.004) (0.004) (0.004) 
Social index EWCS 0.007 0.012*** 0.016***   
  (0.008) (0.004) (0.004)   
Interactions with non-employees       -0.008* 
        (0.004) 
Dealing with angry clients       0.008* 
        (0.004) 
Customer-driven work-pace       0.006* 
        (0.004) 
Employee supervision       0.059*** 
        (0.004) 
Physical index O*NET     -0.005 -0.020 
      (0.015) (0.016) 
Routine index O*NET     -0.025* -0.010 
      (0.013) (0.015) 
Abstract index O*NET     0.120*** 0.077*** 
      (0.018) (0.021) 
Social index O*NET     -0.039***   
      (0.012)   
Non-routine cognitive interpersonal 
O*NET 

 
    0.059** 

        (0.024) 
Non-routine manual interpersonal O*NET       -0.055*** 
    (0.014) 
Individual controls N Y Y Y 
Industry and occupation FE N Y Y Y 
Country and year FE Y Y Y Y 
Observations 35,769 35,769 35,769 35,769 
Adj. R-squared 0.879 0.918 0.918 0.918 
Notes: Standard errors in parentheses are clustered on the country*occupation level (200 
categories). The monthly earnings are PPP-adjusted and log-transformed. All models include a 
constant and are weighted using the sampling weights. Models (2) and (3) include individual 
controls for age, gender, working hours, job tenure, company size, education, and industry and 
occupation fixed effects. See Tables 1-2 for variable definitions. All indices are standardized to have 
a mean of 0 and standard deviation of 1. *** p<0.01, ** p<0.05, * p<0.1 

 



 
   
 

31 
 

 
Table 4: Summary statistics, analysis sample 

Variable Mean Std. Dev Min Max 
Physical index -0.002 1.002 -1.081 1.301 
Social index 0.013 1.000 -1.229 3.259 
Abstract index 0.003 0.997 -2.395 1.015 
Routine index -0.009 0.997 -1.941 2.696 
Robotization (IHS-transformed) 0.714 1.680 -5.836 6.727 
ICT (IHS-transformed) 1.713 2.132 -7.310 8.919 
Age group     

15-35 0.259 0.438 0 1 
36-45 0.270 0.444 0 1 
45-60 0.390 0.488 0 1 
Over 60 0.076 0.265 0 1 
Missing 0.004 0.064 0 1 

Biological sex     
Female 0.405 0.491 0 1 
Male 0.595 0.491 0 1 

Quartile of hours worked     
Lowest 0.425 0.494 0 1 
Q2 0.211 0.408 0 1 
Q3 0.137 0.344 0 1 
Q4 0.199 0.399 0 1 
Missing  0.027 0.163 0 1 

Education     
Primary or less 0.060 0.238 0 1 
Secondary 0.547 0.498 0 1 
Post-secondary/tertiary 0.355 0.478 0 1 
Missing 0.038 0.191 0 1 

Occupation     
Managers 0.055 0.228 0 1 
Professional 0.215 0.411 0 1 
Technicians and associate 
professionals 0.081 0.273 0 1 

Clerical support workers 0.055 0.228 0 1 
Service and sales workers 0.052 0.221 0 1 
Skilled agricultural, forestry, 
and fishery workers 0.074 0.262 0 1 

Craft related trades workers 0.267 0.442 0 1 
Plant and machine operators 
and assemblers 0.102 0.303 0 1 

Elementary occupations 0.095 0.293 0 1 
Missing 0.003 0.053 0 1 
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Company size     
Less than 250 employees 0.633 0.482 0 1 
250 or more employees 0.092 0.289 0 1 
Missing 0.276 0.447 0 1 

Job tenure     
1 year or less 0.138 0.345 0 1 
2-5 years 0.254 0.435 0 1 
6-10 years 0.192 0.394 0 1 
11 or more years 0.395 0.489 0 1 
Missing 0.021 0.143 0 1 

Other jobs     
No 0.922 0.269 0 1 
Yes 0.076 0.265 0 1 
Missing 0.002 0.050 0 1 

Notes: The table provides summary statistics for the variables used in the 
analyses. N=16,862. See Tables 1 and 2 for variable definitions. 
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Table 5: The effect of robotization on individual job tasks 
 Physical Index 
 (1) (2) (3) (4) 
Change in Robot Density (per 10000 workers - IHS) 0.011 0.014 -0.006 -0.029** 
 (0.012) (0.012) (0.005) (0.014) 
Change in ICT stock (per 10,000 workers) . Yes Yes Yes 
Individual controls . . Yes Yes 
KP Wald F-statistics . . . 94.132 
Elasticity 0.010 0.013 -0.006 -0.026 
Observations 16,862 16,862 16,862 16,862 
 Routine Index 
 (1) (2) (3) (4) 
Change in Robot Density (per 10000 workers - IHS) 0.083*** 0.084*** 0.042*** 0.114*** 
 (0.013) (0.013) (0.008) (0.015) 
Change in ICT stock (per 10,000 workers) . Yes Yes Yes 
Individual controls . . Yes Yes 
KP Wald F-statistics . . . 94.132 
Elasticity  0.042 0.042 0.021 0.057 
Observations 16,862 16,862 16,862 16,862 
 Abstract Index 
 (1) (2) (3) (4) 
Change in Robot Density (per 10000 workers - IHS) -0.038*** -0.039*** -0.020*** -0.052*** 
 (0.009) (0.009) (0.007) (0.014) 
Change in ICT stock (per 10,000 workers) . Yes Yes Yes 
Individual controls . . Yes Yes 
KP Wald F-statistics . . . 94.132 
Elasticity -0.015 -0.016 -0.008 -0.021 
Observations 16,862 16,862 16,862 16,862 
 Social Index 
 (1) (2) (3) (4) 
Change in Robot Density (per 10000 workers - IHS) -0.059*** -0.060*** -0.028*** -0.094*** 
 (0.013) (0.013) (0.008) (0.019) 
Change in ICT stock (per 10,000 workers) . Yes Yes Yes 
Individual controls . . Yes Yes 
KP Wald F-statistics . . . 94.132 
Elasticity -0.046 -0.047 -0.022 -0.074 
Observations 16,862 16,862 16,862 16,862 
Notes: Standard errors in parentheses are clustered at the industry*country level. All dependent variables are standardized, 
with a mean of 0 and a standard deviation of 1. Columns (1) to (3) are OLS regressions, and Column (4) is a 2SLS regression 
where the instrument is the change in robot density in the same industry in all other countries except respondent’s. All 
regressions include year and country FE. Individual controls are gender, age groups, education dummies, company size, 
working hours, having other jobs, occupation dummies, and tenure. The elasticity is computed based on the non-
standardized dependent variables. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 6: The effect of robotization on individual job tasks, by skill level 
 Physical Routine Abstract Social 
 (1) (2) (3) (4) 
Change in Robot Density (per 10000 workers - IHS) -0.050*** 0.159*** -0.069*** -0.070*** 
 (0.019) (0.021) (0.020) (0.023) 
     
High-skilled Occupation* Change in Robot density 0.006 -0.061** 0.039 -0.064** 
 (0.025) (0.029) (0.024) (0.028) 
     
High-skilled Occupation -0.632*** -0.444*** 0.461*** 0.589*** 
 (0.042) (0.037) (0.039) (0.043) 
Change in ICT stock (per 10,000 workers) Yes Yes Yes Yes 
Individual controls Yes Yes Yes Yes 
Observations 16,862 16,862 16,862 16,862 

Notes: Standard errors in parentheses are clustered at the industry*country level. All regressions are based on a 2SLS 
estimation. All dependent variables are standardized, with a mean of 0 and a standard deviation of 1. All regressions include 
year and country FE. Individual controls are gender, age groups, education dummies, company size, working hours, having 
other jobs, and tenure. High-skilled occupations are Managers, Professional, and Technicians, and associate professionals. 
All other ISCO-08 occupations are coded as non-high-skilled. *** p<0.01, ** p<0.05, * p<0.1. 

 
 
 
Table 7: The effect of robotization on individual job tasks, by education levels 

 Physical Routine Abstract Social 
 (1) (2) (3) (4) 
Change in Robot Density (per 10000 workers - IHS) 0.115*** 0.115*** -0.062*** -0.077*** 
 (0.015) (0.016) (0.016) (0.018) 
     
Post-secondary/Tertiary education* Change in  -0.010 -0.010 0.048** -0.082** 
Robot density (0.026) (0.026) (0.023) (0.040) 
     
Post-secondary/Tertiary education -0.300*** -0.217*** 0.166*** 0.221*** 
 (0.034) (0.027) (0.031) (0.040) 
Change in ICT stock (per 10,000 workers) Yes Yes Yes Yes 
Individual controls Yes Yes Yes Yes 
Observations 16,862 16,862 16,862 16,862 

Notes: Standard errors in parentheses are clustered at the industry*country level. All regressions are based on a 2SLS 
estimation. All dependent variables are standardized, with a mean of 0 and a standard deviation of 1. All regressions 
include year and country FE. Individual controls are gender, age groups, company size, working hours, having other 
jobs, occupation, and tenure. *** p<0.01, ** p<0.05, * p<0.1. 

 
 
 
 
 
 
Table 8: The effect of robotization on individual job tasks, by the number of years in 
the same job 

 Physical Routine Abstract Social 
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 (1) (2) (3) (4) 
Change in Robot Density (per 10000 workers - IHS) -0.033** 0.114*** -0.096*** -0.048*** 
 (0.014) (0.016) (0.021) (0.015) 
     
More than 1 year on the job* Change in  0.030 0.008 0.018 -0.017 
Robot density (0.021) (0.030) (0.023) (0.025) 
     
More than one year on the job -0.068** 0.033 -0.140*** -0.147*** 
 (0.028) (0.031) (0.030) (0.031) 
Change in ICT stock (per 10,000 workers) Yes Yes Yes Yes 
Individual controls Yes Yes Yes Yes 
Observations 16,511 16,511 16,511 16,511 

Notes: Standard errors in parentheses are clustered at the industry*country level. All regressions are based on a 2SLS 
estimation. All dependent variables are standardized, with a mean of 0 and a standard deviation of 1. All regressions 
include year and country FE. Individual controls are gender, age groups, company size, working hours, having other 
jobs, occupation, and education. Observations with missing information on the tenure in the company are excluded from 
the analysis. *** p<0.01, ** p<0.05, * p<0.1. 
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APPENDIX A 
 

Table A1: Variable definitions of the main variables in the analysis 
Variable Explanation and coding 
Dependent variables 
Routine tasks index Index based on extracting the first component of a polychoric principal component analysis (PCA) using 7 items. The index is 

standardized to have a mean of 0 and a standard deviation of 1. Before the polychoric PCA analysis, all items were first 
standardized to have a mean of 0 and a standard deviation of 1. Specifically, the following 7 items were included  (1) respondent’s 
main paid job includes “Repetitive hand or arm movements”, measured on a recoded response scale of 1= Never; 2 = Almost 
Never; 3 = Around 1/4 of the time; 4 = Around half of the time; 5 = Around 3/4 of the time; 6 = Almost all of the time; 7 = All of 
the time; (2) main paid job involving “monotonous tasks,” measured as 0 = No and 1 = Yes; (3) respondent’s pace of work 
dependent on the automatic speed of a machine or movement of a product, measured as 0 = No and 1 = Yes; (4) respondent’s job 
involves short repetitive tasks of less than 1 minute, with 0 = No and 1 = Yes; (5) respondent’s job involves short repetitive tasks 
of less than 10 minutes, measured as 0 = No and 1 = Yes; (6) respondent unable to choose or change order of tasks, whereby 0 = 
No (respondent is able to change those) and 1 = Yes (respondent unable to choose those); and (7) respondent unable to choose 
or change speed or rate of work, whereby 0 = No (respondent is able to change those) and 1 = Yes (respondent unable to choose 
those);   

Abstract tasks index Index based on extracting the first component of a polychoric principal component analysis (PCA) using 4 items. The index is 
standardized to have a mean of 0 and a standard deviation of 1. Before the polychoric PCA analysis, all items were first 
standardized to have a mean of 0 and a standard deviation of 1. The following items were included and related to whether the 
respondent’s main paid job involves (1) solving unforeseen problems on their own, (2) complex tasks, (3) learning new things, 
and (4) the frequency of applying their own ideas at work. All variables are coded such that 0=No, 1=Yes.  

Social tasks index Index based on extracting the first component of a polychoric principal component analysis (PCA) using 4 items. The index is 
standardized to have a mean of 0 and a standard deviation of 1. Before the polychoric PCA analysis, all items were first 
standardized to have a mean of 0 and a standard deviation of 1. Specifically, the following 4 items were included  (1) respondent’s 
main paid job includes “Dealing directly with people who are not employees at your workplace, such as customers, passengers, 
pupils, patients, etc.” measured on a recoded response scale of 1= Never; 2 = Almost Never; 3 = Around 1/4 of the time; 4 = 
Around half of the time; 5 = Around 3/4 of the time; 6 = Almost all of the time; 7 = All of the time; (2) main paid job involving 
“handling angry clients, customers, patients, pupils, etc.” measured on a recoded response scale of 1= Never; 2 = Almost Never; 
3 = Around 1/4 of the time; 4 = Around half of the time; 5 = Around 3/4 of the time; 6 = Almost all of the time; 7 = All of the time; 
(3) work pace dependent on the direct demands from people such as customers, pupils, patients, etc., whereby 0 = No and 1 = 
Yes and  (4) whether the respondent supervises other employees.  

Physical tasks index Index based on extracting the first component of a polychoric principal component analysis (PCA) using 2 items. The index is 
standardized to have a mean of 0 and a standard deviation of 1. Before the polychoric PCA analysis, all items were first 
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standardized to have a mean of 0 and a standard deviation of 1. Specifically, the following 2 items were included: (1) respondent’s 
main paid job includes tiring or painful positions and (2) carrying or moving heavy loads, measured on a recoded response scale 
of 1= Never; 2 = Almost Never; 3 = Around 1/4 of the time; 4 = Around half of the time; 5 = Around 3/4 of the time; 6 = Almost 
all of the time; 7 = All of the time;  

Key independent variable 

Robotization The inverse hyperbolic sine transformation of the change in robot stocks between year t-5 and year t-1 in each industry and 
country, divided by the number of workers (in 10,000s) in 2005 in that industry and country.  

Control variables 
ICT  The inverse hyperbolic sine transformation of the change in ICT capital stocks (in computing, communications, computer 

software, and databases) between year t-5 and year t-1 in each industry and country, normalized by the number of workers (in 
10,000s) in 2005 in that industry and country. Missing values are based on imputations from neighboring countries.  

Other control variables Age (in years) split into age groups - 1 = 15-35; 2=36 - 45; 3 =45 - 60; 4 - over 60; 5 = missing); male (1 = female; 2 = male; 3= = 
missing information); household size (number of people in household); weekly working hours transformed into a categorical 
variable denoting the within-country and by year hours quartile to which the respondent belongs. 1=lowest quartile, 2=second 
lowest quartile, 3=third quartile, 4=fourth quartile; 5=missing information.  education ( 1= primary education or less (no 
education, early childhood education, and primary education); 2= secondary (lower secondary education and upper secondary 
education); 3=tertiary (post-secondary non-tertiary education, short cycle tertiary education, bachelor or equivalent, master or 
equivalent, and doctorate or equivalent); 4=missing information);  company size indicator (1=less than 250 employees, 2=more 
than 250 employees, 3=missing information); respondent has other jobs (1=no, 2 = yes, 3 = missing information); occupation 
dummies (ISCO 08 one-digit categories, including a missing category);  year dummies; country dummies.  
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Table A2: The effect of robotization on individual job tasks, with employment shares 
as weights 

 Physical Index 
 (1) (2) (3) (4) 
Change in Robot Density (per 10000 workers - IHS) 0.035* 0.040** -0.010 -0.031*** 
 (0.019) (0.019) (0.006) (0.012) 
Change in ICT stock (per 10,000 workers) . Yes Yes Yes 
Individual controls . . Yes Yes 
KP Wald F-statistics    125.580 
Elasticity 0.032 0.037 -0.009 -0.028 
Observations 15,966 15,966 15,966 15,966 
 Routine Index 
 (1) (2) (3) (4) 
Change in Robot Density (per 10000 workers - IHS) 0.119*** 0.122*** 0.058*** 0.117*** 
 (0.015) (0.015) (0.010) (0.015) 
Change in ICT stock (per 10,000 workers) . Yes Yes Yes 
Individual controls . . Yes Yes 
KP Wald F-statistics    125.580 
Elasticity  0.060 0.061 0.029 0.059 
Observations 15,966 15,966 15,966 15,966 
 Abstract Index 
 (1) (2) (3) (4) 
Change in Robot Density (per 10000 workers - IHS) -0.056*** -0.056*** -0.027*** -0.067*** 
 (0.010) (0.010) (0.008) (0.015) 
Change in ICT stock (per 10,000 workers) . Yes Yes Yes 
Individual controls . . Yes Yes 
KP Wald F-statistics    125.580 
Elasticity -0.023 -0.023 -0.011 -0.027 
Observations 15,966 15,966 15,966 15,966 
 Social Index 
 (1) (2) (3) (4) 
Change in Robot Density (per 10000 workers - IHS) -0.097*** -0.099*** -0.042*** -0.114*** 
 (0.015) (0.015) (0.010) (0.017) 
Change in ICT stock (per 10,000 workers) . Yes Yes Yes 
Individual controls . . Yes Yes 
KP Wald F-statistics    125.580 
Elasticity -0.074 -0.076 -0.032 -.088 
Observations 15,966 15,966 15,966 15,966 
Notes: Standard errors in parentheses are clustered at the industry*country level. All dependent 
variables are standardized, with a mean of 0 and a standard deviation of 1. Columns (1) to (3) are OLS 
regressions, and Column (4) is a 2SLS regression where the instrument is the change in robot density 
in the same industry in all other countries except respondent’s. All regressions include year and country 
FE. Individual controls are gender, age groups, education dummies, company size, working hours, 
having other jobs, occupation dummies, and tenure. The elasticity is computed based on the non-
standardized dependent variables. The weight used is the country-specific employment share of each 
industry. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A3: The effect of robotization on individual job tasks, with instruments from 
Graetz and Michaels (2018) 

 Physical 
(1) 

Routine 
(2) 

Abstract 
(3) 

Social 
(4) 

Change in Robot Density (per 10000 workers - IHS) -0.037* 0.212*** -0.068*** -0.192*** 
 (0.019) (0.031) (0.019) (0.032) 
Change in ICT stock (per 10,000 workers) Yes Yes Yes Yes 
Individual controls Yes Yes Yes Yes 
KP Wald F-statistics 25.874 25.874 25.874 25.874 
Elasticity -0.033 0.107 -0.028 -0.150 
Observations 16,862 16,862 16,862 16,862 
Notes: Standard errors in parentheses are clustered at the industry*country level. All dependent variables are standardized, 
with a mean of 0 and a standard deviation of 1. All results are based on 2SLS regressions, where the instruments are based 
on Graetz and Michaels (2018). All regressions include year and country FE. Individual controls are gender, age groups, 
education dummies, company size, working hours, having other jobs, occupation dummies, and tenure. The elasticity is 
computed based on the non-standardized dependent variables. *** p<0.01, ** p<0.05, * p<0.1. 

 
 
 
 
 
 
 
 



 
   
 

40 
 

 
 
 
 
 
 
 
Table A4: The effect of robotization on individual job tasks for each sub-component of the routine index 

 Repetitive 
Movements 

Monotonous 
Tasks 

Work Pace 
Linked to 

Machine Speed 
Short Repetitive 
Tasks (<1 Min) 

Short Repetitive 
Tasks (<10 Min) 

Lack of Task 
Order Control 

Lack of Work 
Speed Control 

 (1) (2) (3) (4) (5) (6) (7) 
Change in Robot Density  0.018 0.040*** 0.157*** 0.031** 0.035*** 0.056*** 0.069*** 
(per 10000 workers - IHS) (0.011) (0.012) (0.020) (0.014) (0.012) (0.013) (0.013) 
Change in ICT stock 
(per 10000 workers) Yes Yes Yes Yes Yes Yes Yes 
Individual controls Yes Yes Yes Yes Yes Yes Yes 
KP Wald F-statistics 94.132 94.132 94.132 94.132 94.132 94.132 94.132 
Elasticity .010 .041 .263 .052 .041 .010 .041 
Observations 16,862 16862 16,862 16,862 16,862 16862 16,862 
Notes: Standard errors in parentheses are clustered at the industry*country level. All regressions are based on a 2SLS estimation. All dependent variables are standardized, with a mean 
of 0 and a standard deviation of 1. All regressions include year and country FE. Individual controls are gender, age groups, education dummies, company size, working hours, having other 
jobs, occupation, and tenure. See Tables 1 and 2 for variable definitions. *** p<0.01, ** p<0.05, * p<0.1.
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Table A5: The effect of robotization on individual job tasks for each sub-component 
of the abstract index 

 Problem
-solving 

Complex 
tasks 

Learning Applying 
own ideas 

 (1) (2) (3) (4) 
Change in Robot Density  -

0.057*** 
-0.016 -0.016 -0.076*** 

(per 10000 workers - IHS) (0.014) (0.014) (0.012) (0.015) 
Change in ICT stock (per 
10,000 workers) Yes Yes Yes Yes 
Individual controls Yes Yes Yes Yes 
KP Wald F-statistics 94.132 94.132 94.132 94.132 
Elasticity -0.028 -0.012 -0.011 -0.028 
Observations 16,862 16,862 16,862 16,862 

Notes: Standard errors in parentheses are clustered at the industry*country level. All 
regressions are based on a 2SLS estimation. All dependent variables are standardized, with a 
mean of 0 and a standard deviation of 1. All regressions include year and country FE. 
Individual controls are gender, age groups, education dummies, company size, working hours, 
having other jobs, occupation, and tenure. See Tables 1 and 2 for variable definitions. *** 
p<0.01, ** p<0.05, * p<0.1. 

 
 
 
Table A6: The effect of robotization on individual job tasks for each sub-component 
of the social index 
 Interactions 

with non-
employees 

Dealing 
with angry 

clients 

Customer-
driven 

work-pace 

Employee 
supervision 

 (1) (2) (3) (4) 
Change in Robot Density  -0.124*** -0.076*** -0.049*** 0.016 
(per 10000 workers - IHS) (0.020) (0.016) (0.015) (0.012) 
Change in ICT stock 
(per 10000 workers) Yes Yes Yes Yes 
Individual controls Yes Yes Yes Yes 
KP Wald F-statistics 94.132 94.132 94.132 94.132 
Elasticity -0.084 -0.058 -0.043 0.036 
Observations 16,862 16,862 16,862 16,862 

Notes: Standard errors in parentheses are clustered at the industry*country level. All regressions are based 
on a 2SLS estimation. All dependent variables are standardized, with a mean of 0 and a standard deviation 
of 1. All regressions include year and country FE. Individual controls are gender, age groups, education 
dummies, company size, working hours, having other jobs, occupation, and tenure. See Tables 1 and 2 for 
variable definitions. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A7: The effect of robotization on individual job tasks for each sub-component 
of the physical index 

 Tiring/painful 
positions 

Heavy loads 

 (1) (2) 
Change in Robot Density  -0.038*** -0.022 
(per 10000 workers - IHS) (0.012) (0.014) 
Change in ICT stock (per 
10,000 workers) 

Yes Yes 

Individual controls Yes Yes 
KP Wald F-statistics 94.132 94.132 
Elasticity -0.024 -0.015 
Observations 16,862 16,862 

Notes: Standard errors in parentheses are clustered at the industry*country level. All regressions are based 
on a 2SLS estimation. All dependent variables are standardized, with a mean of 0 and a standard deviation 
of 1. All regressions include year and country FE. Individual controls are gender, age groups, education 
dummies, company size, working hours, occupation, and tenure. See Tables 1 and 2 for variable definitions. 
*** p<0.01, ** p<0.05, * p<0.1. 
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APPENDIX B 
 Details about Survey Datasets with Information on Individual Worker 

Skills and Activities 
 
 

We detail the main datasets used in the literature to measure worker-level tasks. 
Interested readers should consult the overviews in Fernández-Macíasas and Bisello 
(2022) and Bisselo et al. (2021). Several surveys elicit information on job tasks and the 
content of work, along with collecting data on demographics, job characteristics, and 
job quality (Bisello et al., 2021). The main advantage of such datasets is that they offer 
information at the level of workers, rather than occupations, and allow to study 
nuances in the task content within and between occupations.  

 
First, the Qualification and Career Survey by IAB/BIBB survey conducted every 6 

years in Germany asks respondents about their main job duties and the tools and 
machines they use (Bisello et al., 2021). One disadvantage of this dataset is that the 
questions changed through the survey waves, thus limiting the comparability. Another 
disadvantage is the single-country focus.   

 
Additional surveys that measure tasks at the worker level include the IAB 2014 

survey implemented as part of the German National Educational Panel (NEPS), which 
is used to operationalize the measurement of analytic, interactive, manual, routine, 
and autonomy-demanding tasks. Another example is the Skills, Technology, and 
Management Practices (STAMP) survey in the US and its revised version as part of the 
Princeton Data Improvement Initiative (PDII) (Autor & Handel, 2013). The two 
surveys have limitations in terms of being only available for a small number of 
observations in the case of STAMP and only in the year 2008 in the case of PDII.  

 
 The PIAAC survey (OECD Survey of Adult Skills) is about respondents’ 
proficiency in literacy, numeracy, and problem-solving in technological environments 
life. The initial survey was conducted in 2011/2012 in 24 economies, then in 9 
economies in 2014/2015, and then in 6 economies in 2016/2017.  
 
 A final source, which is the one we use in this paper, is the European Working 
Conditions Survey (EWCS) conducted by the European Commission Foundation 
(Eurofound). Its main advantage over the only other cross-country dataset - the PIAAC 
-- is that the EWCS is available for more than one time period. Compared with the 
STAMP, PDII, and the BIBB, the EWCS is available for multiple European countries, 
rather than a single country.  
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