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Abstract

Health expenditure data almost always include extreme values, implying that the underlying

distribution has heavy tails. This may result in infinite variances as well as higher-order moments

and bias the commonly used least squares methods. To accommodate extreme values, we propose

an estimation method that recovers the right tail of health expenditure distributions. It extends

the popular two-part model to develop a novel three-part model. We apply the proposed method

to claims data from one of the biggest German private health insurers. Our findings show that the

estimated age gradient in health care spending differs substantially from the standard least squares

method.
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1 Introduction

Around the world, it is a stylized fact that roughly 50% of total population health care spending falls

on 5% of the sickest individuals in society (French and Kelly, 2016; Karlsson, Klein, and Ziebarth,

2016; Finkelstein, 2020). Large proportions of extreme values imply that the underlying expenditure

distributions feature a heavy right tail (Handel, Kolstad, and Spinnewijn, 2019). With such heavy

tails, the population variance and higher-order moments, such as population skewness and kurtosis,

could be very large and even infinite, thus violating the assumptions of ordinary least squares (OLS)

estimation. Such distributional features may lead to poor finite sample performance.

If a distribution has a heavy tail, generally, random samples drawn from this distribution likely

also include very large values. These are often treated as outliers. A simple and very popular approach

is to treat extreme health expenditure values as outliers and trim them or top code them. However,

these extreme values are neither classical outliers nor measurement errors. Hence, simply deleting or

ignoring them implies potentially ignoring valuable information. What’s more, the researcher then

ignores precisely those individuals who are responsible for the lion’s share of per capita health care

spending. Further, for decades, “how to contain health care costs?” has been a major recurring theme

for health economists and policymakers around the world. Therefore, credible empirical analyses of

the right tail of health expenditure distributions harbor great potential to answer some of the most

pressing policy questions.

As an alternative to trimming, the existing literature has developed various methods to accom-

modate extreme values, such as taking the logarithm or modeling higher-order moments. In the next

section, our literature review provides more details and discusses our proposed method in the context

of existing estimation approaches. All existing methods combine extreme values with the remaining

data and focus on the mid-sample features of the underlying distribution, such as the mean, median,

and mid-sample quantiles. These mid-sample features are indeed of high relevance in applied research,

and extreme values are usually a nuisance for estimating them. As stated in Mullahy (2009),

“[...] heavy upper tails may influence the ‘robustness’ with which some parameters are

estimated. Indeed, in worlds described by heavy-tailed Pareto or Burr-Singh-Maddala
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distributions some traditionally interesting parameters (means, variances) may not even

be finite, a situation never encountered in, e.g., a normal or log-normal world.”

Our paper follows this lead. We study situations where the (population) variance and other

higher-order moments of health expenditure distributions are potentially infinite. On the other hand,

researchers may care about the tail features themselves, such as extreme quantiles and marginal effects

for individuals whose spending is in the right tail. Hence, we propose separating the right tail of the

data and explicitly studing extreme values. We do so by using both simulations and a high quality

claims dataset, which contains a total of 620 thousand policyholders from one of the biggest German

private health insurers. Note that large insurance pools are essential when the focus is on the top

percentiles of spenders.

This paper studies heavy tail features as follows. In the first step, using log-rank-log-size plots, we

show that the tails of our claims data exhibit clear features of a Pareto distribution. This implies a

highly nonlinear relationship between individual i’s predictors Xi and her medical spending Yi. More-

over, we estimate the Pareto exponent, which characterizes the heaviness of the tail of the underlying

distribution. We find that the Pareto exponent is around 2 in our dataset, implying that the finite

second moment condition of OLS is very likely violated, leading to poor performance of OLS and

t-tests. Using simulations, we then study the behavior of OLS under the Pareto heavy tail. Moreover,

we show that the Pareto and heavy tail features lead to biases in OLS estimates as well as rejection

errors when conducting inference.

In the next step, we propose an alternative method that leads to unbiased estimation and asymp-

totically correct statistical inference. To do so, we exploit the Pareto tail feature and introduce

a maximum likelihood estimator (MLE) for the pseudo-true parameter and, more importantly, the

marginal effects. This method was initially proposed and studied by Wang and Tsai (2009) and Wang

and Li (2013) in the statistics literature. We tailor their approach to the health expenditure context

and benchmark it against a simple linear specification. Further, we incorporate our method into the

widely used two-part model (e.g., Manning, 1998; Mullahy, 1998), which employs a binary outcome

model along with a conditional model for positive spending. We propose a novel three-part model by

incorporating our tail MLE as the third part. We also provide empirical users with a cookbook recipe

2



of the various steps to implement our method.

After that, using German claims data, we estimate marginal effects and calculate standard errors

for exogenous spending predictors such as age and gender, both for the standard OLS estimator and

for our proposed approach. We provide explicit evidence on the relevance of extreme expenditures

for the robustness of OLS estimation. In line with the literature, we confirm that OLS is sensitive to

extreme values. Further, consistent with our simulation results, we find that the OLS point estimates

of the age-spending nexus lie below the marginal effects of our proposed method. In other words, the

estimates differ along the entire age distribution from age 35 to 75.

The paper is organized as follows. Section 2 reviews the existing literature and summarizes our

contribution. Section 3 first previews the heavy tail features in our data; then introduces our proposed

method that explicitly accommodates the heavy tail; and finally extends the two-part model to develop

a novel three-part model. Section 4 introduces our claims dataset and presents descriptive statistics.

Section 5 contains empirical results. In particular, using Monte Carlo simulations, we first show that

the commonly used least squares method performs poorly when data exhibit heavy tails. Second, we

apply the proposed method and present the empirical findings. The mathematical details, additional

simulation results, and robustness tests are in the Appendix.

2 Literature and Contribution

This paper speaks to a large literature in health economics. It complements the existing toolbox for

studying heavy tail features of health expenditure data. For a clear comparison, we briefly categorize

the existing methods into distinct groups and discuss them individually. More comprehensive overviews

can be found in Jones (2011), Manning (2012), and Mihaylova, Briggs, O’Hagan, and Thompson

(2011).

The first group of approaches modifies the data by taking the logarithm of Yi so that its extreme

values no longer dominate the estimation result. The generalized linear model (GLM) with a log-link

function is a widely used approach (Mullahy, 1998; Manning and Mullahy, 2001; Manning, Basu, and

Mullahy, 2005; Deb, Norton, and Manning, 2017). Indeed, GLM captures particularities of health care

3



spending distributions – including their long right tails and large mass points at zero spending, and it

is more efficient than the transformed log model (Manning and Mullahy, 2001; Buntin and Zaslavsky,

2004). However, modeling the logarithm of Yi as a (linear) function of Xi could introduce additional

bias, the magnitude of which depends on the unknown distribution of Yi. In comparison, we show

below that once the data exhibit a linear feature in a log-log plot,1 the Pareto tail feature is reasonably

satisfied. Hence, modeling the Pareto exponent as a function of Xi becomes a natural choice. We

present extensive simulation exercises which suggest that taking the logarithm of Yi instead could lead

to a significant bias in this scenario.

Instead of modifying the data, a second group of approaches assumes some parametric density of

Yi that accommodates heavy tails. For example, Manning et al. (2005) propose using the generalized

gamma distribution, and Jones, Lomas, and Rice (2014) propose to use the generalized beta of the

second kind (GB2) distribution, which covers Pareto distribution and Burr-Singh-Maddala distribution

as special cases. Using Monte Carlo simulations, Jones, Lomas, and Rice (2015) and Jones, Lomas,

Moore, and Rice (2016) evaluate the empirical performance of a range of different empirical techniques

for modeling the distribution of health care expenditures. One of their performance indicators is how

accurately they represent the right tail. While all these methods model the whole distribution, we only

model the tail part of health expenditures. As our method is based on the Pareto tail approximation,

which does not necessarily hold for the whole distribution, it entails more robustness to misspecification

originating in the non-tail part. In addition, exploiting the Pareto approximation safeguards against

misspecification of the distribution within the right tail.

A third group of approaches nonparametrically estimates the density and moments of expendi-

tures conditional on covariates. In addition to the standard kernel and sieves methods, Gilleskie and

Mroz (2004) propose a flexible estimator of the conditional density of expenditures within a number of

set intervals. These nonparametric estimators typically require a large sample size; hence their perfor-

mance in the tail might not be satisfactory. In comparison, our proposed method takes advantage of

the Pareto tail approximation and hence can be considered semiparametric. Monte Carlo simulations

show that our estimator performs well in finite samples.

1A log-log plot displays the natural logarithm of an observation’s rank as a function of the natural logarithm of its
value; cf. Figure 1 below.
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Another typical feature of expenditure data that has received a lot of attention in the literature is

the large proportion of individuals with zero expenditures. This feature has typically been captured

in a two-part model which employs a binary outcome model for the extensive margin along with

a conditional model for positive spending (Newhouse and Phelps, 1976; Manning, Newhouse, Duan,

Keeler, and Leibowitz, 1987; Mullahy, 1998). We extend the canonical two-part model and propose

a three-part model. Accordingly, our three-part model essentially divides the positive spending part

into extreme values (Yi > ymin for some tail cutoff ymin) and non-extreme (but still positive) values

(Yi ∈ (0, ymin)). For the extreme values, we propose using the Pareto tail approximation and the tail

index regression (Wang and Tsai, 2009). For the non-extreme values, use linear regressions since Yi

now has compact support. Then, we combine all three pieces, i.e. Yi = 0, Yi ∈ (0, ymin), and Yi > ymin

to estimate the overall mean conditional on Xi. Note that our three-part model is different from

the four-part model proposed by Duan, Manning, Morris, and Newhouse (1982). We focus on the

distribution of Yi itself and divide it based on cutoffs of Yi. In stark contrast, Duan et al. (1982) define

the parts based on the type of utilization an individual has, distinguishing nonusers, ambulatory-only

users, and inpatient users. Therefore their four parts are based on additional covariates.

3 Modeling Pareto Tails

3.1 Preview of the Pareto Tail

We start by presenting the Pareto tail feature in our health care claims data. Let Yi denote health

care expenditures of individual i for i = 1, . . . , n, where n denotes the total sample size. Also, let

Y(1) ≥ Y(2) ≥ . . . ≥ Y(n) be the descending and ordered expenditure values whose ranks are accordingly

1, 2, ..., n. Figure 1 plots the natural logarithms of the rank i against lnY(i) for the largest 5% of all

values. We separately show the plots for females (left) and males (right).

Both Figure 1a (Females) and b (Males) clearly suggest a linear fit in the rank-size plots. As

has been extensively shown (e.g., Gabaix, 2009), this pattern implies that the underlying distribution

exhibits a Pareto tail, or equivalently, the power law. More specifically, if Yi has a Pareto distribution

beyond some cutoff value ymin, we have that
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Figure 1: Rank-Size Plots of Natural Logarithms of Rank against Expenditures

Notes: The left graph shows plots for females and the right graph shows plots for males. See Section 4 for
more details about the German health care claims data.

P (Yi > y|Yi ≥ ymin) =

(
y

ymin

)−α

, (3.1)

where α is called the Pareto exponent, a positive parameter that uniquely characterizes the heaviness

of the tail. Given the Pareto tail assumption, the slope of the linear fit in the rank-size plot is equal

to −α. Furthermore, the parameter ymin determines the cutoff location of the tail, above which the

Pareto distribution serves as a good approximation of the underlying distribution. We discuss such

Pareto tails from two perspectives.

First, from a theoretical perspective, it has been established in the statistics literature (e.g., Smith,

1987) that many commonly used distributions can be well approximated by Pareto distributions as

long as one focuses on a sufficiently far tail region, that is, by considering a sufficiently large ymin.

Examples include the Student-t, the F, and the Cauchy distributions, among many others.2

Accordingly, we can treat ymin as a tuning parameter that determines the precision of the Pareto

tail approximation. Note that this concept is close in spirit to the choice of the bandwidth parameter in

nonparametric kernel estimations. In practice, we set ymin as the 95% quantile and present robustness

2In particular, the Pareto exponent α is equal to the degree of freedom when the underlying distribution is Student-t.
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checks with alternative cutoffs in Appendix A1.

Second, from an empirical perspective, the Pareto tail has been widely documented in many other

datasets in economics and finance, such as stock returns, city size, firm size, and income, see Gabaix

(2009, 2016) for reviews of other datasets that exhibit Pareto tails.

Note that the Pareto distribution (and many other distributions) implies that the upper bound of

the support is infinite. However, one may argue that actual total expenditures not gigantic. Hence,

in an alternative framework, there may be a finite upper bound in expenditures, but no one reaches

that bound. This framework substantially differs from our Pareto assumption.

If the upper bound is finite, the largest observations should all be close to the upper bound and

the spaces between them small. Consider the example of the Uniform distribution on [0,1]. Given a

random sample, we would expect to see the largest numbers are all close to one, and their differences

are close to zero. If this is the case, treating the upper bound as infinity and using the Pareto

distribution (or any other distribution with infinite support, such as the Gaussian) leads to a poor

approximation. On the other hand, if the upper bound of the underlying distribution is infinite, we

would expect to see a sample maximum significantly larger than the second-largest order statistic (and

so on) with large spaces between the large order statistics. In this scenario, treating the upper bound

as finite would lead to poor performance of the estimator and inference. These two frameworks lead

to different distributional approximations for our statistical inference, and we believe that use of a

distribution with infinite support leads to much better finite sample performance.

The presence of a Pareto tail causes two problems for the standard OLS method: One is a bias

due to the strong non-linearity implied by the Pareto distribution. The other is a potentially infinite

variance due to the heavy tail.

Regarding non-linearity, let Xi denote a vector of exogenous individual expenditure predictors

such as age and gender. As the Pareto distribution (3.1) is uniquely characterized by the exponent α,

α = α(Xi) captures the effect of Xi on Yi in the tail. The power function yα(Xi) naturally generates a

nonlinear effect of Xi on the expected value of Yi. Conversely, a model based on a linear specification,

such as a simple OLS, could produce substantially biased results. We present such bias in a simple

simulation study in Section 5.1 below.
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Regarding infinite variances, the slope in Figure 1 is around −2, implying that the underlying

distribution of expenditures has a very heavy tail. In particular, the tail of the Pareto distribution

(3.1) is heavier with a smaller α. Moreover, the Pareto distribution implies that for any r > 0

(Mikosch, 1999):

E[Y r
i ] < ∞ if r < α and E[Y r

i ] = ∞ if r > α.

Accordingly, when α is less than two, the tail is so heavy that E
[
Y 2
i

]
becomes infinite! Recall that

the asymptotic normality of the OLS estimator and the t-statistic require that the second moment of

Yi is finite, that is, E
[
Y 2
i

]
< ∞. The heavy tail feature in the data then compromises this population

moment condition, even though the sample variance is always defined. Hence the OLS estimator, the

standard t-test, and estimates of any other higher-order moments such as skewness and kurtosis may

perform poorly. To evaluate such effect in finite samples, we run simulation studies in Section 5.1.

3.2 The Proposed Maximum Likelihood Estimator

Given the failure of OLS under a Pareto tail, we move forward to construct a valid alternative that

explicitly accommodates extreme values. For illustrative purposes, we preview the new approach in

this subsection by assuming an exact Pareto tail. In fact, the econometric derivation only requires

an approximate Pareto tail, which holds for many commonly used distributions such as Student-t,

F, Gamma, et cetera. For reasons of readability, we relegate the technical details and the primitive

assumptions to Appendix A3.

Our method is based on the tail index regression proposed by Wang and Tsai (2009). First,

assuming Yi has an exact Pareto tail above ymin, we obtain

P (Yi > y|Yi > ymin, Xi = x) =

(
y

ymin

)−α(x)

, (3.2)

where α (x) is the Pareto exponent that depends on the characteristics Xi = x. We adopt the
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model α = exp (X ′
iβ0), where β0 again denotes the pseudo-true coefficient. The exponential function

guarantees that the Pareto exponent is always positive, and the linear index form is adopted mainly

for computational simplicity. Using only the observations above ymin, we then obtain the following

negative log-likelihood function:

L (β) = n−1
n∑

i=1

{
exp(X ′

iβ) log (Yi/ymin)−X ′
iβ
}
1 [Yi > ymin] , (3.3)

where 1 [·] denotes the indicator function. Then, the maximum likelihood estimator (MLE) of β0 is

β̂ = argmax
β

L (β) .

We can estimate its asymptotic variance as

Σ̂β =

(
n−1
0

n∑
i=1

XiX
′
i1 [Yi > ymin]

)−1

, (3.4)

where n0 =
∑n

i=1 1 [Yi > ymin] denotes the total number of tail observations.

We provide two remarks about the proposed MLE. First, the Pareto tail assumption (3.2) implies

that the conditional expectation of health expenditures beyond ymin is

E [Yi|Yi > ymin, Xi = x] = ymin
α (x′β0)

α (x′β0)− 1
. (3.5)

Again, the tail cutoff ymin is a tuning parameter chosen by the econometrician. In our subsequent

analysis, we use the 95% quantile as ymin. Appendix A3 provides more details about the choice of this

parameter.
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Given the Pareto tail (3.2), the marginal effect of Xi on tail expenditures is

M (x;β0) ≡ ∂E [Yi|Yi > ymin, Xi = x]

∂x

= −ymin
exp (x′β0)

(exp (x′β0)− 1)2
β0

= −E [Yi|Yi > ymin, Xi = x]

(exp (x′β0)− 1)
β0, (3.6)

which we estimate by replacing β0 with our MLE β̂ in (3.3).

As seen, the marginal effect is a function of Xi. Hence the proposed estimator allows for a

nonlinear impact of individual characteristics, such as age, on expected health care expenditures in

the tail. This may be a desirable feature as average health care spending increases with age at a faster

rate for seniors. In contrast, an OLS specification assumes that the marginal effect is constant, unless

higher-order polynomials are included in the regression equation. We emphasize that the non-linearity

is not generic but specifically due to the Pareto tail. One could include higher-order and interaction

terms in α(x) for more flexibility. It should also be noted that whenever the model includes several

independent variables, the assumption is that their interaction effects are non-zero (apart from the

special case where the marginal effect is zero).

Using the Delta method, we can construct the standard errors for the marginal effects. In partic-

ular, for the marginal effect of the jth component of Xi, we have that

∇jM (x, β0) ≡ ∂M (x;β)

∂βj

∣∣∣∣
β=β0

= −ymin

[
ej

exp (x′β0)

(exp (x′β0)− 1)2

−2x
exp (2x′β0)

(exp (x′β0)− 1)3
β0j + x

exp (x′β0)

(exp (x′β0)− 1)2
β0j

]
,

where ej denotes the jth standard unit vector. The estimate of the standard error is then

Σ̂Mj = ∇jM
(
x, β̂

)′
Σ̂β∇jM

(
x, β̂

)
. (3.7)
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In summary, we propose the following steps:

1. Given ymin, say the 95% quantile of Yi, select all Yi’s that are larger than ymin.

2. Construct the MLE by numerically solving (3.3) and estimating the standard error using (3.4).

3. Estimate the marginal effect (3.6) and the standard error (3.7).

4. Perform robustness check by using different ymin.

5. Generate the counterfactual of the conditional tail expectation using (3.5).

3.3 Extension to a Three-Part Model

So far, we have focused on the tail solely using observations Yi > ymin. In this subsection, we generalize

the previous analysis to model the whole distribution and extend the existing two-part model (cf.,

Mullahy, 1998) to a three-part model.3

In particular, the widely used two-part model is designed to capture that many observations of Yi

are zero. To model this, consider

E[Yi|Xi = x] = P(Yi > 0|Xi = x)× E[Yi|Yi > 0, Xi = x], (3.8)

provided that Yi ≥ 0 almost surely.

In the first part, we fit the binary outcome 1[Yi = 0] with a standard logit or probit model. Then

we estimate the partial effect on P(Yi > 0|Xi = x) of Xi. In the second part, we run regressions of Yi

(or lnYi) on Xi. We obtain the overall marginal effect ∂E[Yi|Xi = x]/∂x by combining the estimates

from both parts.

Given the Pareto tail, we can extend (3.8) and propose the following three-part model:

E[Yi|Xi = x] = E[Yi|0 < Yi ≤ ymin, Xi = x]× P[0 < Yi ≤ ymin|Xi = x]

+E[Yi|Yi > ymin, Xi = x]× P[Yi > ymin|Xi = x]. (3.9)
3We thank Anirban Basu and Edward Norton for proposing this extension.
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Three-Part Model. In the first part, we estimate the conditional probabilities P[0 < Yi ≤ ymin|Xi =

x] and P[Yi > ymin|Xi = x] by running a multinomial logistic regression. More specifically, denote

Y ∗ = 0, 1, 2 if Yi = 0, Yi ∈ (0, ymin), Yi > ymin, respectively. Then, the multinomial logistic regression

fits

P(Y ∗
i = j|Xi = x) =

exp (x′θj)

1 +
∑2

j=0 exp (x
′θj)

, (3.10)

for j = 1, 2 and θ0 is understood as zero for normalization. Denote the estimated coefficient θ̂j . In

the second part, we run a linear regression of Yi on Xi with observations Yi ∈ (0, ymin). Denote the

regression coefficient as γ̂. Given the upper bound ymin, we do not have to consider lnYi. In the third

part, we implement the MLE method as described in the previous subsection.

Combining all three parts, we then estimate the conditional expectation by

Ê[Yi|Xi = x] = x′γ̂ × exp (x′θ̂1)

1 +
∑2

j=0 exp (x
′θ̂1)

+ ymin
exp (x′β̂)

exp (x′β̂)− 1
× exp (x′θ̂2)

1 +
∑2

j=0 exp (x
′θ̂2)

.

Finally, we obtain the partial effect ∂E[Y |X = x]/∂x by taking the derivative, and obtain the

standard error by bootstrapping.

Limitations. In the existing two-part model (3.8), we assume that P(Yi > 0|Xi = x) is characterized

by a parametric binary probability model like logit or probit. And that E[Yi|Yi > 0, Xi = x] is a linear

or log-linear function of x. See, for example, Mullahy (1998) and Manning (1998).

In a similar fashion, our three-part model assumes that (i) P(Yi ∈ (0, ymin)|Xi = x) and P(Yi >

ymin)|Xi = x) are governed by a parametric multinomial logit model, (ii) that E[Yi|Yi > ymin, Xi = x]

is governed by the Pareto tail as in (3.5), and (iii) that E[Yi|Yi ∈ (0, ymin), Xi = x] is linear in x.

Obviously, these assumptions are stronger than those for the two-part model. They possibly lead to

more bias in estimating the marginal effects.
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Again following Mullahy (1998), one could relax these assumptions by considering alternative

models in all three parts. In particular, one could consider the Heckman selection model or the

modified two-part model for estimating the conditional probabilities P(Yi > 0|Xi = x). Then, for

observations Yi > 0, one could further decompose the data based on Yi > ymin or not. However, as is

commonly known, the Heckman model requires a valid exclusion restriction.

In this sense, we consider our proposed three-part model as one of the potential extensions to

the popular two-part model, one that is specifically designed to accommodate the heavy tail feature

of health care expenditure data. An extensive study of other extensions is beyond the scope of this

paper, though it is an important topic for future research.

4 Data

This section describes the claims data used in this paper. The main working sample focuses on

the privately insured in the German health care system. Note that the policyholders do not have

supplemental private insurance, but comprehensive long-term health insurance over their lifecycles

until death. For more details on the German two-tier health care system and German private health

insurance, please see Atal, Fang, Karlsson, and Ziebarth (2023).

The claims data are administrative records on the universe of insurance plans and claims between

2005 and 2011 from one of the largest private health insurers in Germany. In total, our dataset

includes more than 2.6 million enrollee-year observations from 620 thousand unique policyholders

along with detailed information on plan parameters such as premiums, claims, and diagnoses. Atal,

Fang, Karlsson, and Ziebarth (2019) provide more details about the dataset. The data also contain

the age and gender of all policyholders as well as their occupational group. We convert all monetary

values to 2016 U.S. dollars (USD).

Sample Selection. We focus on primary policyholders. In other words, we disregard insured chil-

dren and those who are younger than 25 years (555,690 enrollee-year observations).4 Moreover, due

4Children obtain their own individual risk-rated policies. However, if parents purchase the policy within two months
of birth, no risk rating applies. Under the age of 21, insurers do not have to budget and charge for old-age provisions.
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to a 2009 portability reform (Atal et al., 2019), we disregard inflows after 2008 (253,325 enrollee-

year observations). The final sample consists of 1,867,465 enrollee-year observations from 362,783

individuals.

Descriptive Statistics. Table 1 presents the descriptive statistics. The mean age of the sample is

45.5 years. The oldest policyholder is 99 years old. 34% of the sample are high-income employees,

49% are self-employed and 13% are civil servants. The majority of policyholders (72 percent) are male

because women are underpresented among the self-employed and high-income earners in Germany.

On average, policyholders have been clients of the insurer for 13 years and have been enrolled in their

current health plan for 7 years.5 The majority of individuals join private insurance around the age of

30, when most Germans have fully entered the labor market but are still healthy and thus charged

moderate premiums in this risk-rated market (risk rating is only imposed at contract inception and

all subsequent premium increases are community rated).

Table 1 shows that the average annual premium is $4,749 and slightly lower than the average

premium for a single plan in the U.S. group market at the time (Kaiser Family Foundation, 2019).

Note that the annual premium is the total premium—including employer contributions for privately

insured high-income earners.6 The average deductible is $675 per year.

In terms of benefits covered, we simplify the rich data and focus on a plan generosity indicator

provided by the insurer. It classifies plans into three coverage tiers: TOP, PLUS, and ECO plans.

ECO plans are the lowest coverage tier; they lack coverage for services such as single rooms in hospitals

and treatments by a leading senior M.D. For ECO and PLUS plans, a 20% coinsurance rate applies

if enrollees see a specialist without a referral from their primary care physician. About 38% of all

policyholders have a TOP plan, 34% a PLUS plan, and 29% an ECO plan. Because these plan

characteristics have mechanical effects on claim sizes and correlate with policyholders’ age, we control

for them in our estimation of health care costs.

5Our insurer doubled the number of clients between the 1980s and 1990s and thus has a relatively young enrollee
population, compared to all privately insured in Germany. Gotthold and Gräber (2015) report that a quarter of all
privately insured are either retirees or pensioners.

6Employers cover roughly one-half of the total premium and the self-employed pay the full premium.
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Table 1: Summary Statistics: German Claims Panel Data

Mean SD Min Max N

Health Plan Parameters
Total Claims (USD) 3,289 8,577 0 2,345,126 1,867,465

Annual premium (USD) 4,749 2,157 0 33,037 1,867,318
Deductible (USD) 675 659 0 3,224 1,867,465
Annual risk penalty (USD) 157 453 0 21,752 1,867,465
TOP Plan 0.377 0.485 0.0 1.0 1,867,465
PLUS Plan 0.338 0.473 0.0 1.0 1,867,465
ECO Plan 0.285 0.451 0.0 1.0 1,867,465

Socio-Demographics
Age (in years) 45.5 11.4 25.0 99.0 1,867,465
Female 0.276 0.447 0.0 1.0 1,867,465
Policyholder since (years) 6.5 5.0 1.0 40.0 1,867,465
Client since (years) 12.8 11.0 1.0 86.0 1,867,465
Employee 0.336 0.473 0.0 1.0 1,867,465
Self-Employed 0.486 0.500 0.0 1.0 1,867,465
Civil Servant 0.132 0.338 0.0 1.0 1,867,465
Health Risk Penalty 0.358 0.480 0.0 1.0 1,867,465
Pre-Existing Condition Exempt 0.016 0.126 0.0 1.0 1,867,465

Source: German Claims Panel Data. Policyholder since is the number of years since the
policyholder has enrolled in her current plan; Client since is the number of years since the
client joined the insurer. Employee and Self-Employed are dummies for the policyholders’
current occupation. Health Risk Penalty is a dummy that is one if the initial underwriting
led to a health-related risk penalty on top of the factors age, gender, and type of plan;
Pre-Existing Conditions Exempt is a dummy that is one if the initial underwriting led to
exclusions of pre-existing conditions. The mutually exclusive dummies TOP Plan, PLUS
Plan and ECO Plan capture the generosity of the plan. Annual premium is the annual
premium, and Annual Risk Penalty is the amount of the health risk penalty charged.
Deductible is the deductible and Total Claims the sum of all claims in a calendar year.
See Section 4 for further details.
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5 Results

This section presents empirical results. Section 5.1 conducts Monte Carlo studies to evaluate the

performance of OLS and GLS when data have heavy tails. Section 5.2 examines the claims data

applying our proposed method and the standard OLS method.

5.1 Monte Carlo Simulation Studies

5.1.1 Ordinary Least Squares

The Effect of Pareto Tails on Coefficient Bias. We now perform a simple simulation study to

illustrate the effect of the Pareto tail. First, we focus on the potential bias of the OLS estimator due

to the nonlinearity. To this end, we generate Yi from the standard Pareto distribution (3.1) such that

P(Yi > y|Yi > ymin, Xi = x) =

(
y

ymin

)α(x)

,

where Xi is an independent draw from the absolute value of the standard normal distribution. We set

α(x) = exp(1 + xβ0) with β0 = 1 as the pseudo-true parameter. This setup guarantees that α(Xi) is

always positive. Since the Pareto tail is invariant to scale, we set ymin = 1 without loss of generality

in this simulation.7 Moreover, the minimum value of α(x) is exp(1) = 2.718 > 2, implying that the

variance of Yi, given Xi, is always finite. Therefore, the potential bias of the OLS method could only

originate from misspecification due to nonlinearities in the tail, as we will see in Figures 2 and 3 below.

The Pareto distribution implies that E[Yi|Xi = x] = α(x)/(α(x)− 1). Then the marginal effect of

Xi on the average of Yi is

∂E[Yi|Xi = x]

∂x
= − α(x)

(α(x)− 1)2
β0,

This is the main object of interest. When β0 is positive, a larger x leads to a larger α(x) and hence

a thinner tail. Then, accordingly, the expectation of Yi conditional on being in the tail is smaller.

7Conversely, the tail is not invariant to an additive transformation like, e.g., the amount of spending above a uniform
deductible. However, such transformations are of limited relevance when studying the right tail of health expenditures.
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To estimate the marginal effect, we implement three methods. First, we use the standard OLS

estimator, regressing Yi on Xi (and a constant). The OLS coefficient estimates the marginal effect.

By construction, such an estimated marginal effect is constant regardless of which value of Xi we

condition on (red in Figures 2 and 3). Second, we regress lnYi on Xi (and a constant) to obtain the

coefficients (β̂0, β̂1). Given the logarithm, the marginal effect of Xi on Yi evaluated at Xi = x0 is then

estimated as exp(β̂0 + x0β̂1)β̂1exp(û), where exp(û) is the average of the exponential of the residuals

(cf. Duan, 1983); hence, the estimated marginal effect (yellow in Figures 2 and 3) varies with Xi even

though β does not. Third, we implement our proposed MLE method (green in Figures 2 and 3).

Figure 2 depicts the histograms of the OLS estimators—the true marginal effect subtracted from β̂1

where 0 indicates no bias. The figure shows the results of the first method using Yi (red color) as well

as the second method using lnYi (yellow color) and our proposed MLE (green color). The histograms

are based on 500 observations in each simulation and 10000 simulation draws. The top/middle/bottom

panel corresponds to the marginal effect evaluated at x0 = 0.5/1/1.5 and β0 = 2.

We find the following: It is evident that the OLS estimator is substantially biased—regardless of

whether we use Yi or lnYi; moreover, none of these misspecified estimators dominates the other. By

contrast, our proposed MLE estimator is unbiased. Here, the bias is due to the fact that the marginal

effect is highly nonlinear in Xi, while the OLS method specifies a linear model. We emphasize that

such a bias exists only in the tail but not necessarily below ymin where a linear model is more reasonable

and OLS could still perform well. Therefore, we consider our proposed method as a useful complement

for studying tail features of heavily skewed distributions such as medical spending.

Next, we repeat the previous analysis with data generated from the same process as in Figure 2.

We maintain that x0 = 2, but now vary β0 = 0, 0.5, 1. The histograms of the OLS estimators with Yi

and lnYi and our proposed MLE are in Figure 3. In the top panel, where β0 = 0, we know that—by

construction—Xi does not have any effect on Yi. Therefore E[Yi|Xi] is linear in Xi. In this scenario,

the OLS method does not suffer from any misspecification due to nonlinearity. Hence, the histograms

are basically identical, as expected. As β0 increases from zero to one when moving to the bottom panel

in Figure 3, the nonlinearity becomes more significant. Hence the bias of the OLS method becomes

more severe.
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Figure 2: Histograms of OLS with Linear or Natural Logarithms of Y and the proposed MLE
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-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

Notes: This figure depicts the histograms of the OLS estimator with Yi (red color) or lnYi (yellow color) and
the MLE (green color) for a marginal effect evaluated at x0 = 0.5, 1, 1.5 and β0 = 2. The vertical line depicts
the averages of the estimators. Results are based on 10,000 simulation draws. See the main text for more
details about the data generating process.

In summary, we know from Figure 1 that Yi exhibits a Pareto tail. This implies that E[Yi|Yi >

ymin] = yminα/(α − 1). Considering that α = α(Xi) is a function of Xi, the Pareto tail imposes a

nonlinear effect ofXi on the tail expectation of Yi. Such a nonlinear effect cannot be well approximated

by the linear regression model, except in some special cases. This observation is the first motivation

for our proposed MLE that explicitly takes advantage of the Pareto tail regardless of its heaviness.

18



Figure 3: Histograms of OLS with Linear or Natural Logarithms of Y and the proposed MLE
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Notes: This figure depicts the histograms of the OLS estimator with Yi (red color) or lnYi (yellow color) and
the MLE (green color) for the marginal effect with β0 = 0, 0.5, 1. The vertical line depicts the averages of the
estimators. Results are based on 10,000 simulation draws. See the main text for more details about the data
generating process.

The Effect of Heavy Tails on Variance. After having examined the bias, we now evaluate the

effect of a heavy tail on the variance of the OLS estimation. To rule out that the effect stems from

nonlinearities, we generate data from the standard linear regression model that

Yi = β0 + β1Xi + ui,
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with (β0, β1) = (1, 0) and Xi being i.i.d. standard normal. To characterize the potential heavy

tail, we independently generate ui from a two-sided generalized Pareto distribution that satisfies

P (ui ≥ u) = P (ui ≤ −u) = 0.5 (1 + ξu)−1/ξ for u > 0.

The parameter ξ is called the tail index and equals the reciprocal of the Pareto exponent α. Using

the standard OLS, we estimate the coefficients β0 and β1 and construct the standard t-statistic and

the 95% confidence interval based on heteroskedasticity robust standard errors. We implement our

simulations with a wide range of sample sizes n ∈ {500, 1000, 5000, 104, 105, 106}. Let β̂1 (s) denote

the OLS estimator for β1 in the sth simulated draw. Further, let σ̂ (s) denote the estimated robust

standard error of the OLS estimator β̂1 (s). Accordingly, let t (s) = β̂1 (s) /σ̂ (s) denote the t-statistic.

Panel A of Table 2 depicts the mean absolute deviation (MAD): S−1
∑S

s=1 |β̂1 (s)−β1| across S =

10, 000 simulation draws. Panel B depicts the root mean squared error (RMSE): (S−1
∑S

s=1 |β̂1 (s)−

β1|2)1/2 of the OLS estimator. Panel C depicts the average rejection rate for the null that β1 = 0,

that is S−1
∑S

s=1 1 [|t (s)| > 1.96]. Finally, Panel D of Table 2 depicts the average length of the 95%

confidence intervals, that is, S−1
∑S

s=1 2× 1.96σ̂ (s).

Table 2 shows the following. First, note that the error term ui has finite variance when ξ < 0.5

(α > 2). Thus, in the first five rows of Panels A and B, the MAD and the RMSE are reasonably small.

In comparison, they become substantially larger in the bottom five rows where ξ > 0.5.

Second, when the variance of ui is finite, we expect the t-statistic to be approximately normally

distributed, as implied by the central limit theorem. Therefore, we would expect that the rejection

probability is around 5%, as seen in the first five rows of Panel C. However, when ξ > 0.5, the rejection

probability becomes substantially smaller than 5%.

Third, following the previous point, the underrejection results from large standard errors, as re-

flected in the long confidence intervals in Panel D. Remember that the confidence interval is expected

to shrink at the root-n rate when ξ < 0.5. However, when ξ > 0.5, the standard error is not well-

defined and hence the confidence interval becomes too wide to be informative. More specifically, since

the variance of ui is infinite, we may alternatively consider its inter-quantile range as a benchmark.

In our data generating process, the inter-quantile range of ui is one when ξ = 1 and the standard

deviation of Xi is always one. So the average length of the confidence interval should be of the order
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Table 2: OLS Simulation Results with Generalized Pareto Distribution

n 500 1000 5000 104 105 106 500 1000 5000 104 105 106

ξ(1/α) Panel A: MAD Panel B: RMSE
0.09 0.06 0.04 0.02 0.01 0.00 0.00 0.07 0.05 0.02 0.02 0.01 0.00
0.19 0.07 0.05 0.02 0.02 0.01 0.00 0.09 0.06 0.03 0.02 0.01 0.00
0.29 0.09 0.06 0.03 0.02 0.01 0.00 0.12 0.08 0.04 0.03 0.01 0.00
0.39 0.13 0.09 0.04 0.03 0.01 0.00 0.18 0.12 0.05 0.04 0.01 0.00
0.49 0.18 0.14 0.07 0.05 0.02 0.01 0.27 0.25 0.12 0.09 0.02 0.01

0.59 0.32 0.24 0.13 0.10 0.05 0.02 1.31 0.68 0.25 0.16 0.08 0.03
0.69 0.63 0.50 0.28 0.23 0.12 0.06 5.09 3.36 0.89 0.79 0.47 0.49
0.79 1.14 0.94 0.74 0.64 0.38 0.24 4.47 3.98 5.43 4.63 1.84 1.40
0.89 2.87 5.19 5.02 3.43 1.88 1.19 46.9 260 291 147 30.0 13.5
0.99 5.61 6.69 5.49 5.68 5.00 7.75 44.5 87.7 44.1 38.7 37.1 156

ξ(1/α) Panel C: Rejection Prob. Panel D: Length of 95% CI
0.09 0.05 0.05 0.05 0.05 0.05 0.05 0.28 0.20 0.09 0.06 0.02 0.01
0.19 0.05 0.05 0.05 0.05 0.05 0.05 0.34 0.25 0.11 0.08 0.02 0.01
0.29 0.05 0.05 0.05 0.05 0.05 0.05 0.44 0.31 0.14 0.10 0.03 0.01
0.39 0.05 0.05 0.05 0.05 0.05 0.05 0.59 0.43 0.20 0.14 0.05 0.01
0.49 0.04 0.04 0.05 0.05 0.05 0.05 0.85 0.65 0.32 0.24 0.08 0.03

0.59 0.04 0.03 0.04 0.04 0.04 0.04 1.43 1.08 0.58 0.44 0.18 0.07
0.69 0.03 0.03 0.04 0.04 0.03 0.04 2.75 2.17 1.23 1.01 0.51 0.27
0.79 0.03 0.03 0.03 0.03 0.03 0.03 4.81 3.97 3.14 2.73 1.62 1.03
0.89 0.03 0.03 0.03 0.02 0.03 0.03 11.8 20.8 20.1 13.8 7.70 4.92
0.99 0.02 0.02 0.02 0.02 0.02 0.02 22.9 27.2 22.3 23.1 20.4 31.1

Notes: The table depicts the average mean absolute deviation (MAD), average root mean squared
error (RMSE), average rejection probability of the standard t-test, and the average length of the
standard 95% confidence intervals. The results are based on 10,000 simulation draws. See the main
text for details about the data generating process.

of magnitude n−1/2 if the central limit theorem provides a good approximation. However, the average

length of the standard CI is substantially larger than n−1/2. In the last row of Table 2, where ξ (and

α) is approximately one, the average length of the confidence interval is even above 20. Therefore, the

standard OLS-based inference is not performing satisfactorily under the heavy tail distribution.

Finally, our simulations in Table 2 assume a correctly specified model. Given the poor performance

of the linear model in the presence of heavy tails, an applied researcher might be tempted to follow

the common practice of taking the logarithm of Yi as the dependent variable as in Figure 2. The

performance of such a transformed specification crucially depends on the true data generating process,

which is typically unknown.
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In Appendix A2, we conduct simulations based on a logarithmic specification applied to a linear

data generating process with heavy tails. We find that approximating the linear model with a heavy-

tailed error by the log-linear model could lead to substantial misspecification errors, which also do not

diminish as sample size increases.

5.1.2 Generalized Linear Model

Next, we repeat the previous exercise using the generalized linear model (GLM). The GLM is also

widely used in health economics to model health expenditure distributions; see, for instance, Manning

and Mullahy (2001) and Buntin and Zaslavsky (2004). More specifically, we generate the data from

Yi = exp(β0 + β1Xi) + ui,

with (β0, β1) = (1, 0) and (Xi, ui) following the same distribution as before. This model implies that

the conditional mean E [Yi|Xi = x] = exp(β0 + β1x), which is nonlinear in Xi. To discipline the

estimators, we impose the infeasible bound that the estimators are within [−50, 50].

Table 3 depicts the same performance measures as in Table 2 for the GLM method. The findings

are also similar. In particular, the GLM estimator has a small bias and RMSE when the error term

does not have a heavy tail and ξ < 0.5 in Panels A and B. The confidence interval is short and

shrinking with the sample size. In contrast, in Panel C, the t-test substantially overrejects when the

error term has a heavy tail. Moreover, the confidence interval is ‘exploding’ when ξ exceeds 0.6. Such

wide confidence intervals originate from the poor standard error estimates in the GLM. To see this,

note that we obtain the GLM estimator β̂ by solving the nonlinear least squares problem

(β̂0, β̂1) = argminβ0,β1

n∑
i=1

(Yi − exp(β0 + β1Xi))
2.

Some derivation shows that the asymptotic variance of β̂ becomes
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Table 3: GLM Simulation Results with Generalized Pareto Distribution

n 500 1000 5000 104 105 106 500 1000 5000 104 105 106

ξ(1/α) Panel A: MAD Panel B: RMSE
0.09 0.02 0.02 0.01 0.00 0.00 0.00 0.03 0.02 0.01 0.01 0.00 0.00
0.19 0.03 0.02 0.01 0.01 0.00 0.00 0.03 0.02 0.01 0.01 0.00 0.00
0.29 0.04 0.02 0.01 0.01 0.00 0.00 0.07 0.03 0.01 0.01 0.00 0.00
0.39 0.05 0.03 0.02 0.01 0.00 0.00 0.27 0.05 0.02 0.01 0.00 0.00
0.49 0.07 0.05 0.03 0.02 0.01 0.00 0.30 0.19 0.04 0.03 0.01 0.00

0.59 0.12 0.10 0.05 0.04 0.01 0.01 0.53 0.46 0.11 0.07 0.03 0.01
0.69 0.23 0.16 0.10 0.08 0.04 0.02 0.92 0.46 0.30 0.29 0.09 0.06
0.79 0.39 0.33 0.21 0.18 0.11 0.08 1.27 1.14 0.60 0.40 0.24 0.22
0.89 0.62 0.56 0.42 0.39 0.28 0.23 1.89 1.54 1.03 0.99 0.55 0.45
0.99 0.96 0.89 0.72 0.70 0.61 0.52 2.44 2.12 1.51 1.45 1.12 0.89

ξ(1/α) Panel C: Rejection Prob. Panel D: Length of 95% CI
0.09 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.07 0.03 0.02 0.01 0.00
0.19 0.05 0.05 0.05 0.05 0.05 0.05 0.13 0.09 0.04 0.03 0.01 0.00
0.29 0.05 0.05 0.05 0.05 0.05 0.05 0.16 0.12 0.05 0.04 0.01 0.00
0.39 0.05 0.04 0.05 0.05 0.05 0.05 0.22 0.16 0.07 0.05 0.02 0.01
0.49 0.04 0.04 0.04 0.04 0.05 0.05 0.33 1.03 0.12 0.09 0.03 0.01

0.59 0.05 0.05 0.04 0.04 0.04 0.04 66.6 0.42 0.23 0.16 0.07 0.03
0.69 0.06 0.06 0.05 0.05 0.04 0.04 > 103 > 103 409 > 103 1.94 > 103

0.79 0.08 0.08 0.07 0.07 0.05 0.04 > 103 > 103 > 103 > 103 > 103 > 103

0.89 0.10 0.11 0.11 0.11 0.09 0.08 > 103 > 103 > 103 > 103 > 103 > 103

0.99 0.13 0.13 0.14 0.14 0.13 0.14 > 103 > 103 > 103 > 103 > 103 > 103

Notes: The table depicts the average mean absolute deviation (MAD), average root mean squared error (RMSE),
average rejection probability of the standard t-test, and the average length of the standard 95% confidence
intervals. The results are based on 10,000 simulation draws. See the main text for details about the data
generating process.

E[u2i ]

E[exp(2(β0 + β1Xi))] E[exp(2(β0 + β1Xi))Xi]

E[exp(2(β0 + β1Xi))] E[exp(2(β0 + β1Xi))X
2
i ]


−1

.

When the error has a heavy tail, E[u2i ] becomes extremely large. Furthermore, in this case, the

estimator can be numerically unstable such that the above matrix is not invertible. Both features lead

to large standard errors and hence wide and uninformative confidence intervals. The results become

even worse when we relax the restriction that β̂j ∈ [−50, 50] for j = 0, 1.

In summary, ignoring heavy tails in heavily skewed data, such as health expenditure data, can

lead to substantial estimation biases as well as rejection errors in the statistical inference of unknown
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parameters. As shown, such errors could become even more severe in nonlinear GLM than linear OLS

models, motivating our proposed method that explicitly focuses on the heavy tail.

5.2 Application to Real Data: The Marginal Effect of Age

We now examine the health care expenditure data introduced in Section 4. Figure 4 depicts estimates

of marginal age effects on health care spending. In particular, we implement our MLE as described in

equation (3.6) and set the tail cutoff ymin at the 95% quantile of Yi as the benchmark value. In addition

to age, the specification controls for gender, plan generosity, and also includes six year dummies. We

use the final year 2011 as the reference category.

We summarize the results in Figure 4 as follows: First, the OLS estimate of the marginal age effect

is biased: for all ages, it is outside the 95% confidence interval of the MLE estimate. Second, the bias

is large and meaningful. The smallest marginal effect of the MLE, which is 112 Euro for 29-year-olds,

is more than twice the OLS estimate of 51 Euro.

In Figure 5, we split the sample by gender and compare results for males and females. The OLS

estimates for females in Figure 5a paint a slightly different picture compared to Figure 4 above: over

the entire age range, the OLS estimate is within the confidence interval of the MLE estimate. On the

other hand, the bias is larger in this subsample: for the youngest females, the OLS estimate is 77%

downward biased, compared to 54% in the pooled sample. In Figure 5b for males, the relative bias

is slightly lower at 51%; however, also within this subsample, the OLS estimate lies outside the MLE

confidence interval for all ages.

5.3 Discussion

The previous simulations and empirical results suggest a substantial difference between our proposed

MLE and the classic OLS methods. Both specifications are based on some functional form assump-

tions regarding the relationship between health care spending and age. More specifically, the OLS

assumptions are that expenditures are linear in age, and that the variance is finite, whereas the MLE

estimate allows for a non-linear relationship but requires the Pareto tail, see equation (3.5).
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Figure 4: Comparison of OLS and MLE Estimates of Marginal Age Effects.
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Notes: See Section 4 for more details about the German claims panel data. The graph compares the marginal
age effects on health care spending, along with 95% confidence intervals. The marginal MLE effect is larger
across the whole age domain and the difference to OLS increases in age.

In general, both these and any other functional form assumptions may be incorrect. When the

distributional assumptions for OLS are satisfied, we know that OLS represents the best linear ap-

proximation to E [Yi|Xi] (Angrist and Pischke, 2008). However, when the true distribution has an

exact Pareto tail above ymin, the MLE estimator will be the most efficient one among all consistent

estimators.

We close this section with some heuristic discussions about the underlying distributional assump-

tions and provide some empirical guidance. To compare the proposed MLE and the OLS methods,

one needs to address two issues: (1) whether expected health expenditures can be well approximately

by a linear function of age and other controls, and (2) whether the claims data exhibit a sufficiently

heavy tail such that the variance is possibly infinite.

Note that the sample variance is always finite given any data set, while the unknown population

variance could be infinite. In this scenario, the best linear approximation property fails. Then the sam-
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Figure 5: Marginal Age Effects by Sex, OLS versus MLE.
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Notes: Own calculations based on German claims panel data. The graph compares the marginal age
effects on health care spending, along with 95% confidence intervals.

ple variance and any other higher moment, such as sample skewness and kurtosis, are not informative

about their population analogs.

The first issue (1), regarding the functional form, depends on the true data generating process,

which is usually unknown. In order to shed some light on this issue, we return to the log-size-log-rank

plot in Figure 1. If the distribution of expenditures has a Pareto-type tail, we expect to see a linear

fit in the plot. In this scenario, age and other control variables could only affect expenditures through

the Pareto exponent α = α(X) and hence

E[Yi|Yi > ymin, Xi = x] = ymin
α(x)

α(x)− 1
.

Although the functional form of α(x) is unknown, the conditional mean is, in general, nonlinear

in x and thus OLS is biased. Thus, when the data show a clear Pareto pattern in the tail, researchers

should apply the proposed MLE. Moreover, we follow Wang and Tsai (2009) to consider the single-

index form α(X) = exp (X ′β). This additional assumption facilitates the estimation but could be

restrictive.

As a robustness analysis, we relax the functional form assumptions imposed so far. To do so,
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we summarize the age information by five age quintile dummies. We then use the entire sample to

construct point estimates and confidence intervals for the predicted expenditure values at each age

quintile.8 We plot predicted values as the partial effects of age dummies are poorly defined in the

MLE specification. Figure 6 presents the results. For the youngest group, aged 31.6 years on average,

the OLS estimate is close to the MLE estimate of EUR 37,900. For the second youngest group, the

OLS point estimate is just outside the 95% CI of the MLE estimate, and there is still considerable

overlap between the CI’s of the two estimators. For the three oldest groups, however, the two CI’s

are completely disconnected, and the OLS estimates are substantially below their MLE counterparts.

This finding is consistent with our simulation results.

Figure 6: Predicted Health Spending by Age Quintiles.
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Note: Own calculations based on German claims panel data.

As a remark, quantile regression is another commonly adopted method to study nonlinear effects.

However, we argue that it might not be appropriate in our context. To see why, let QY |X=x(τ) denote

the quantile function of Yi conditional on Xi = x for τ ∈ (0, 1). The classical quantile regression model

imposes that

QY |X=x(τ) = x′β(τ)

for some pseudo-true coefficient β(τ). Wang and Li (2013, Proposition 2.1) show that the Pareto

8Thereby it is asserted that the other independent variables representing gender, year, and plan type are constant
across age quintiles.

27



exponent α(x) has to be constant over all values of x for the above quantile regression model to

be appropriate. However, Figure 1 clearly shows different slopes for males and females, suggesting

that the Pareto exponent changes at least across genders. This feature is not coherent with quantile

regression and hence our proposed MLE is more suitable, at least in our data.

Regarding the second issue (2), about the tail heaviness, we can estimate the unconditional Pareto

exponent of Yi using existing estimators. Common choices include Hill (1975) and Gabaix and Ibrag-

imov (2011). The negative slope in Figure 1 is also a consistent estimator of α. As mentioned, the

second moment E[Y 2
i ] is infinite if the true α is less than two. Therefore, Figure 1 raises the concern

of an infinite variance as the slope is merely above two. Sasaki and Wang (2023) provide a formal test

about the finite moment condition.

Finally, our proposed MLE is specially designed for learning about the tail properties of health

care expenditures, but not the whole sample. For the non-tail observations satisfying Yi < ymin, the

support and the variance are naturally bounded, and hence OLS may perform well.

We summarize these discussions in the following guidance for an empirical implementation.

5.4 Guidance for Empirical Analysis

Step 1 Given any data with potentially heavy tails, run the log-size-log-rank plot as in Figure 1. A

linear fit in the tail suggests that the underlying distribution has a Pareto-type tail.

Step 2 If the slope of the linear fit and other estimators of the Pareto exponent such as Hill (1975)

and Gabaix and Ibragimov (2011) are below (or approximately) two, the underlying distribution

might have a heavy tail, and the population variance might be infinite.

Step 3 Select the tail part of the data by Yi > ymin and the associated Xi. Run our proposed MLE as

in Section 3.2 to estimate the conditional expectation E[Yi|Yi > ymin, Xi].

Step 4 For the non-tail part, estimate the three-part model as described in Section 3.3.
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6 Conclusion

Health expenditure data typically involve extreme outliers. They represent heavy tail features in the

underlying distribution of the data. Simple truncation of such extreme values could lead to substantial

bias when estimating any type of effect on health expenditures. In general, extreme values can be a

threat to the commonly adopted least squares methods.

In this paper, using simulation studies, we first show that when the underlying health expenditure

distribution has heavy tails, the commonly used OLS and GLS methods may suffer from large biases.

Further, the corresponding confidence intervals may be too wide to be informative. Second, to accom-

modate extreme values, we propose a new econometric method that allows us to recover information

about the right tail of health expenditure distributions, which is entirely ignored in many standard

approaches such as top coding. Third, we apply the proposed method to high quality claims data

from one of the biggest German private health insurers with 620 thousand policyholders.

We estimate marginal effects of exogenous age predictors that substantially differ from those of

the biased least squares methods. In general, OLS tends to underestimate the age gradient in health

spending. However, both estimators require careful consideration of functional form assumptions.

Then, we extend the standard two-part model and propose a novel three-part model to model health

expenditure distributions. Finally, we provide guidance and a cookbook recipe for applied economists

on how to test for heavy tail features, and how to implement our proposed method.

Our findings underscore the significance of considering extreme values in empirical analysis. They

may have substantial impact on parameter estimates, particularly when the focus is on tail features.

Our method provides a more nuanced understanding of the relationship between individual predictors

and health care spending by effectively capturing the complex tail behavior. High and further rising

health care expenditures remain a pivotal concern for both economists and policymakers. This is

especially true with regard to the 5% of heavy users who produce 50% of all all spending. Thus,

refining methodological approaches to account for heavy tails and extreme values offers a pathway

towards more accurate and insightful policy recommendations.
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Appendix

The Appendix consists of three sections. Appendix A1 contains additional empirical robustness checks.

Appendix A2 contains additional simulation results. Appendix A3 contains econometric details about

the proposed estimator.

A1 Robustness Checks

We first check the robustness of the choice of ymin. In Section 5, we use the top 5% percentile. In this

section, we use the top 3% and 7% percentiles, respectively. Figure A1 depicts the estimates of the

marginal effects based on OLS and our proposed MLE. Figures A2 and A3 repeat the analysis with

female and male subsamples. The findings are similar to those reported in Section 5. In particular,

the OLS estimates are substantially below the MLE regardless of the subsample and the choice of

ymin.

Figure A1: Marginal Age Effects for Different Cutoffs, OLS versus MLE.
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(b) Top 7%
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Notes: Own calculations based on German claims panel data. The graph compares the marginal age
effects on health expenditures, along with 95% confidence intervals.

Second, we repeat the exercise in Section 5.3 by splitting the sample by gender. Recall that age is

replaced with five dummy variables presenting the quintiles. Figure A4 depicts the estimated health

expenditures at different age quintiles based on the proposed MLE and the classic OLS methods.
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Figure A2: Marginal Age Effects for Different Cutoffs – Females. OLS versus MLE.
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(b) Top 7%
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Notes: Own calculations based on German claims panel data. The graph compares the marginal age
effects on health expenditures, along with 95% confidence intervals.

Figure A3: Marginal Age Effects for Different Cutoffs – Males. OLS versus MLE.
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(b) Top 7%
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Notes: Own calculations based on German claims panel data. The graph compares the marginal age
effects on health expenditures, along with 95% confidence intervals.

The OLS estimates and confidence intervals are again below their MLE counterparts, consistent with

Section 5.3.
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Figure A4: Predicted Health Expenditures by Age Quintiles

(a) Females
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(b) Males
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Notes: Own calculations based on German claims panel data.

A2 Additional Simulations

In this section, we conduct simulation studies of the OLS estimator with log-transformed data. The

data are still generated from

Yi = β0 + β1Xi + ui, (A2.1)

with (β0, β1) = (1, 1). To make sure that Yi is positive, we generate Xi from the absolute value of the

standard normal distribution, and ui from the standard Pareto distribution with exponent 1/ξ, that

is, P (ui ≥ u) = (1 + ξu)−1/ξ for u > 0. The other model specifications are the same as in Tables 2

and 3.

Note that the OLS estimator of β1—when regressing ln(Yi) on Xi (and a constant)—is not mea-

suring the marginal effect of Xi on Yi, given the nonlinear setup. To make a reasonable comparison,

we treat Ȳ β̂1 as the estimator of the marginal effect, where Ȳ denotes the sample average of Yi, and

compare it with the true parameter β1. The standard error of the estimator of the marginal effect

is adjusted accordingly by multiplying Ȳ to that of β̂1. As the marginal effect depends on the value

of Xi, this estimator essentially estimates the average marginal effect over Xi. We also implement
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the estimator for Xi = 1 with β1 = 1 as in Figures 2 and 3. The results are very similar and hence

omitted (but available upon request).

Table A1 depicts the performance of such a marginal effect estimator in terms of MAD, RMSE,

average rejection probability of the standard t-test, and the average length of the standard 95%

confidence intervals.

Table A1: Simulation Results with lnY and Generalized Pareto Distribution

n 500 1000 5000 104 105 106 500 1000 5000 104 105 106

ξ(1/α) Panel A: MAD Panel B: RMSE
0.09 0.07 0.06 0.05 0.05 0.05 0.05 0.09 0.07 0.05 0.05 0.05 0.05
0.19 0.09 0.08 0.08 0.08 0.08 0.08 0.11 0.10 0.08 0.08 0.08 0.08
0.29 0.13 0.12 0.12 0.12 0.12 0.12 0.16 0.14 0.13 0.12 0.12 0.12
0.39 0.19 0.18 0.18 0.18 0.18 0.18 0.22 0.20 0.19 0.19 0.18 0.18
0.49 0.28 0.27 0.27 0.27 0.27 0.27 0.33 0.30 0.28 0.28 0.27 0.27

0.59 0.41 0.41 0.41 0.41 0.41 0.41 0.50 0.46 0.42 0.42 0.41 0.41
0.69 0.66 0.64 0.64 0.66 0.64 0.64 1.57 1.07 0.81 1.88 0.68 0.65
0.79 1.61 1.03 1.23 1.11 1.09 1.10 47.9 2.65 11.2 4.48 1.27 1.29
0.89 1.88 2.05 2.13 2.12 2.07 2.26 8.90 19.7 9.34 11.8 3.48 6.63
0.99 4.43 4.37 6.47 9.83 6.04 6.02 65.5 61.5 129 342 104 37.6

ξ(1/α) Panel C: Rejection Prob. Panel D: Length of 95% CI
0.09 0.10 0.15 0.57 0.86 1.00 1.00 0.27 0.19 0.09 0.06 0.02 0.01
0.19 0.15 0.27 0.87 0.99 1.00 1.00 0.32 0.23 0.10 0.07 0.02 0.01
0.29 0.24 0.44 0.98 1.00 1.00 1.00 0.37 0.27 0.12 0.08 0.03 0.01
0.39 0.35 0.62 1.00 1.00 1.00 1.00 0.45 0.32 0.14 0.10 0.03 0.01
0.49 0.49 0.77 1.00 1.00 1.00 1.00 0.54 0.38 0.17 0.12 0.04 0.01

0.59 0.61 0.89 1.00 1.00 1.00 1.00 0.68 0.48 0.22 0.15 0.05 0.02
0.69 0.73 0.95 1.00 1.00 1.00 1.00 0.91 0.63 0.28 0.20 0.06 0.02
0.79 0.81 0.98 1.00 1.00 1.00 1.00 1.94 0.88 0.43 0.29 0.09 0.03
0.89 0.86 0.99 1.00 1.00 1.00 1.00 2.02 1.51 0.68 0.48 0.15 0.05
0.99 0.90 1.00 1.00 1.00 1.00 1.00 4.63 3.03 1.84 1.94 0.38 0.12

Notes: The table depicts the average mean absolute deviation (MAD), the average root mean squared
error (RMSE), the average rejection probability of the standard t-test, and the average length of the
standard 95% confidence intervals. The results are based on 10,000 simulation draws. See the main
text for details about the data generating process.

We summarize the results as follows. First, the large bias and RMSE indicate that the misspecifi-

cation error of approximating the linear model with a heavy-tailed error term by the log-linear model

can be substantial (Panel A and B). Such misspecification error is small when the tail is thin, i.e, ξ is

close to zero. This is what has been documented in the existing literature. However, when the tail of
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the error term becomes heavy, the misspecification error is amplified substantially.

Second, accordingly, the rejection probability of the t-test becomes much larger than the nominal

5% level (Panel C). When ξ is above 0.5, the variance of the error term is not well-defined and hence

the t-test is hardly informative.

Third, although the confidence interval shrinks with the sample size, the bias and the overrejection

do not (Panel D). This suggests that the estimator substantially deviates from the true value with the

bias strictly dominating the randomness.

A3 More Details about the MLE

Our maximum likelihood estimator is based on the tail index regression proposed by Wang and Tsai

(2009). The key condition is that the conditional distribution of Yi on Xi = x has an approximate

Pareto tail. In particular, we assume that uniformly over x,

1− P (Yi > y|Xi = x) = c (x) y−α(x) (1 + o(1)) as y → ∞, (A3.1)

for some constant c (x) > 0 and α (x) > 0. This condition is mild and satisfied by many commonly

used distributions such as Student-t, Gamma, and F distributions. In particular, if Y is Student-t

distributed conditional on X = x with v (x) degrees of freedom, then α (x) is simply v (x). Chapter 1

in de Haan and Ferreira (2006) provides a complete review of the literature.

Note that condition (A3.1) requires that the right tail of the conditional distribution is well ap-

proximated by a Pareto distribution with component α (x). Such an approximation becomes more

accurate as we move further towards the tail (i.e., y → ∞). In this sense, we consider our method

a semiparametric method that does not hinge on any specific distribution. This is important for

empirical applications as, a priori, researchers do not know the true health expenditure distribution.

Under Condition (A3.1), we can further approximate the conditional probability density of Y

given X and Y > ymin for some large tail threshold ymin by α (x) (y/ymin)
−α(x) y−1. This leads to the

negative likelihood function in Equation (3.3). Under (A3.1) and some additional technical conditions,
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Wang and Tsai (2009) establish that by solving (3.3), the MLE β̂ is consistent and asymptotically

normal. The standard error can be estimated by (3.4).

As a tuning parameter, the econometrician chooses the tail threshold ymin which affects the esti-

mation result, especially when the sample size is only moderate. However, the optimal selection of

ymin is challenging and has stimulated a large literature in statistics and econometrics. On the one

hand, a large ymin ensures that the tail Pareto approximation performs well, and hence the bias is

small. On the other hand, a small ymin ensures enough tail observations for asymptotic normality,

and hence the variance is small.

This bias-variance trade-off indicates a delicate balance in the choice of ymin (and equivalently

the number of tail observations n0). It turns out that a theoretically optimal choice of ymin does not

exist if no other condition is imposed on the true underlying distribution (Müller and Wang, 2017).

Therefore, we recommend to vary ymin for sensitivity analysis. Wang and Tsai (2009) also provide a

data-driven method of choosing ymin, whose theoretical properties need further investigation.
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