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Abstract

We develop a method that identifies the effects of nationwide policy, i.e., policy imple-
mented across all regions at the same time. The core idea is to track outcome paths in
terms of stages rather than time, where a stage of a regional outcome at time t is its
location on the support of a reference path. The method proceeds in two steps. First, a
normalization maps the time paths of regional outcomes onto the reference path—using
only pre-policy data. This uncovers cross-regional heterogeneity of the stage at which
policy is implemented. Second, this stage variation identifies policy effects inside a win-
dow of stages where a stage-leading region provides the no-policy counterfactual path for
non-leading regions that are subject to policy inside that window. We assess our method’s
performance with Monte-Carlo experiments, illustrate it with empirical applications, and
show that it captures heterogeneous policy effects across stages.
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1 Introduction

Motivation. The empirical assessment of a policy requires a credible counterfactual. Standard
empirical strategies critically rely on cross-regional heterogeneity of the time of policy imple-
mentation as source of identification—e.g., the existence of one untreated region or a staggered
rollout.1 The counterfactual is then based on the untreated region, typically assuming that the
regional paths of the outcome of interest are similar with differences not exceeding a constant
gap over time—the so-called parallel trends assumption.2 However, many relevant policy con-
texts violate these conditions. First, many policies are implemented nationwide, carried out in
all regions at the same time, which eliminates the source of identification for standard empirical
strategies. Second, the pre-policy outcome paths can differ across regions—e.g., in their starting
date, speed, or magnitude—in a way that violates the parallel trends assumption. In panel (a)
of Figure 1, we illustrate one such scenario. Our goal in this paper is to provide an identification
strategy for such policy contexts.

Idea. We develop the idea of tracking a regional outcome over stages rather than time. Specif-
ically, we define a stage of a regional outcome at time t as its location on the support of a
reference outcome path. Panel (b) of Figure 1 illustrates this concept by showing a reference
outcome path evolving through stages. At any given time, the outcome of one region may be at
a different stage compared to another region. In the figure, at time t region C has progressed to
a more advanced stage than region T . This implies that cross-regional heterogeneity in stages
may be present at the time of policy implementation, tp. The core of our method is tracing out
and exploiting this heterogeneity of stages for the identification of policy effects; hence the label
Stage-Based Identification (SBI).

The Method. Our method comprises two steps: normalization and identification. First, we
normalize the pre-policy outcome time paths of regions to a reference path. This normalization
step affects, simultaneously, the transformation of time into normalized time (i.e., stages) and the
transformation of the outcome level into a normalized level.3 We conduct these transformations
using low degree polynomials (one for the stage-to-time transformation and one for the level-to-
normalized-level conversion) and refer to the set of associated coefficients as the normalization
coefficients. In particular, in our theoretical derivations and empirical applications, we focus
on monotonic (linear) transformations. For a given region, the normalization coefficients are

1E.g., Blundell and Macurdy (1999), Angrist and Krueger (1999), Athey and Imbens (2017) and Card (2022).
2The assumption of parallel trends is relaxed in Abadie (2005). Indeed, there is a growing and exciting body

of research work regarding more flexible forms of parallel trends (e.g., Callaway and Sant’Anna, 2021; Rambachan
and Roth, 2023; Roth and Sant’Anna, 2023).

3This transformation of time and level coordinates relates to earlier work in Iorio and Santaeulàlia-Llopis (2016).
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Figure 1: A Stage-Based Identification of the Effects of Nationwide Policy: An Illustration

(a) Two Regions (b) A Reference Path (c) Two Regions, Normalized

Notes: Panel (a) shows the time paths of an outcome variable for two regions, C and T ; policy is implemented in both regions at the
same time tp; dashed sections indicate post-policy paths. Panel (b) shows a reference path, where at some t, region C is at a more
advanced stage than region T . Panel (c) shows the result of mapping yT onto yC , resulting in the normalized path ỹT ; the pink
shaded area indicates the identification window.

determined as the ones that minimize the distance between the normalized pre-policy outcome
path and the reference path. As a result, up to a minimization error, the regional pre-policy
paths are identical in the stage domain before the stage at which policy is implemented first
across regions.4 Panel (c) of Figure 1 shows this for an example where we use the outcome
time path of region C as the reference path and normalize the path of region T to this reference
path. When selecting one regional path as reference path, we refer to the corresponding region
as reference region, and to the other region(s) as non-reference region(s). This normalization
procedure uncovers cross-regional heterogeneity of the stages at which policy is implemented.

Second, we base identification on this cross-regional heterogeneity. For example, in the illus-
tration, policy is implemented at an earlier stage in region T than in region C. Then, applying the
normalization coefficients—resulting from pre-policy data—on post-policy data opens a window
of stages, in which a stage-leading region (in the example, region C) is not subject to policy
whereas the other region (in the example, region T ) is; see pink shaded area in panel (c) of
Figure 1. Our identification assumption is that the normalization coefficients that minimize the
distance between the pre-policy outcome paths across regions in the stage domain are unaffected
by policy. That is, we assume that the normalization would make the post-policy paths line up
as well in the absence of policy. Thus, under our identification assumption, the stage-leading
region serves as control region, and provides the no-policy counterfactual for the other region
(the treatment region).5 The difference between the outcomes of the control region and the
treatment region inside the identification window captures the effects of policy.

4We show analytical examples where the normalization coefficients can be uniquely identified in Section 2.3.
These closed-form solutions provide an interpretation for the normalization coefficients as those that reshape the
structural parameters of the non-reference region into those of the reference region before the policy takes place.

5Note that since the stage at which each region receives the policy is a result of our normalization, SBI does
not require an ex-ante assignment of control or treatment across regions, see Section 2.2.
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Method Performance. We use a range of illustrative economic models for different nationwide
policy scenarios, in which we simulate the effect of some policy on an outcome variable of interest.
Within the model framework, we know the true counterfactual path that would occur if policy
were absent throughout. Using the (simulated) data that would be available to a policy evaluator,
we find that SBI can successfully identify the true (model-generated) effect of the policy.

We further assess whether and when our normalization procedure comes to its limits and
plausible identification is not feasible using SBI. Precisely, we perform a Monte Carlo study
that numerically characterizes the bounds within which SBI is able to recover the true (model-
generated) effects of policy. We consider one benchmark region which we pair up with a large set
of regions (drawing from a large set of structural parameters) one-by-one. Applying SBI to these
pairs, we find that the error in the SBI policy effect relative to the true policy effect systematically
increases when moving farther away from the benchmark region in the space of the normalization
coefficients. Under the interpretation that the normalization reshapes the structural parameters
that determine the outcome paths, SBI requires—for successful identification of policy effects—
the structural parameters to not be too dissimilar across regions in the absence of policy. In
addition, we assess how SBI fares in contexts where there are potential confounding factors such
as time-varying latent heterogeneity and confounding policy. Using model-generated data, we
find that SBI is able to identify the true policy effects in these contexts as long as the confound-
ing factors keep the regional outcome paths sufficiently close in the space of the normalization
coefficients. We further establish in a set of Placebo diagnoses that SBI successfully identifies a
zero policy effect when there is none. We also show how to conduct inference on our identified
policy effects with data that incorporates a stochastic component.

Three Applications. We apply SBI to study the effects of nationwide policy in three empirical
applications. First, we assess the effectiveness of the stay-home policy implemented nationwide
in response to the first wave of the Covid-19 pandemic in Spain. SBI assigns Madrid as the
stage-leading (hence, control) region at the time of policy implementation. We find that the
stay-home policy significantly reduces the amount of deaths by 24.71% in the rest of Spain inside
an identification window of seven days. In other words, had the stay-home policy not been
implemented, there would have been 1,734 more deaths over the course of one week. Second, we
assess the effects of the Food and Drugs Administration (FDA) approval of oral contraceptives
(the pill) in the United States (U.S.) in 1960. SBI assigns West Virginia as stage-leading at the
time of the policy. We find that the pill reduced the crude fertility rate (number of births per
10,000) by 9.38% in rest of the U.S. in an identification window of about one decade. We also
consider the effect of the pill on female education. For this outcome of interest, the proportion
of college women, SBI assigns Washington DC as the stage-leading region. We find that the pill
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increased the proportion of college women by 21.73% in the rest of the U.S. in an identification
window of a bit over one decade that followed the FDA approval. Third, we study the effects of
the German reunification in 1990 on GDP per capita in West Germany where SBI assigns Hessen
as the stage-leading region rest of West Germany. Using the path of GDP per capita of Hessen
as no-policy counterfactual, we find that the German reunification significantly reduced GPD per
capita in the rest of West Germany by 3.51% in a window of approximately seven years.

Heterogeneous Effects. We also map the outcome paths of the non-leading regions one-by-
one onto the path of the leading region. This uncovers regional heterogeneity of the stage at
policy implementation and allows us to assess how the policy effects potentially differ by stage.
Focusing on the Covid-19 application, we find that the policy effects systematically vary across
stages. The earlier (in stages) the policy is implemented, the larger are the effects: the amount
of prevented deaths is 65% in Murcia where the policy is implemented two weeks earlier in the
stage domain than in the leading region, Madrid, and 12% in the Basque Country where policy
arrives two days earlier in the stage domain than Madrid. Both the size of the identification
window (policy implemented at earlier stages implies a larger window) and the interim policy
effects (i.e., effects for the same horizon inside the identification window) contribute to generate
the heterogeneous effects. We reach similar insights using a set of artificial regions from the
power set of regions.6

Non-Nationwide Policy. Our identification method can also be applied to assess the effects of
non-nationwide policy, as it is typically done in other standard empirical strategies. Importantly,
in the case of non-nationwide policy our identification is still based on the stage (not the time)
at which the policy is implemented. When there are regions that are treated and regions that are
not, SBI delivers a right-open identification window bounded from below with the stage at which
the policy is implemented in the treated region and unbounded from above. We exemplify this
approach using the empirical application of the German reunification where we use alternative
potential controls for West Germany built from other OECD countries as in Abadie et al. (2014),
assuming, as in their work, that the German reunification had no effect on GDP per capita in
these countries.

Related Literature. Our method is directly related to the empirical strategies designed for
settings that resemble natural experiments. These strategies rely on a difference-in-differences
approach in order to generate the counterfactual path (or potential outcome as in Imbens and

6In the same vein, we also use regional heterogeneity in the stage of policy implementation to conduct further
analysis: for some regions there are several possible control regions—namely, all regions that receive the policy at
a later stage.
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Rubin, 2015) that serves as control for a treated region—i.e., the region subject to policy. We
emphasize two main differences of SBI. First, a critical common factor in previous strategies is
that the source of identification is the heterogeneity in the time of policy implementation across
regions with the existence of either one untreated region (e.g., Card, 1990; Card and Krueger,
2000) or a staggered policy adoption (e.g., Athey and Imbens, 2021; Borusyak et al., 2021;
Goodman-Bacon, 2021). This is not the case in SBI. Precisely, our main point of departure with
respect to previous work is that SBI is able to deliver identification of policy effects for contexts
where the cross-regional heterogeneity of the time of policy implementation is absent.

Second, one concern when identifying policy effects is that cross-regional differences in the
pre-policy determinants of the outcome of interest may influence post-policy outcomes. One
typical approach is to argue for the plausibility of the parallel trends assumption based on the
presence of “parallel” pre-policy outcome time paths across regions (e.g., Bertrand et al., 2004).
In contrast, our approach does not resort to parallel pre-policy outcome time paths to support
the identification assumption. Instead, through a normalization of time and level, we minimize
the distance of pre-policy outcome paths across regions in the stage domain. By doing so, our
method aims to control for cross-regional differences in the pre-policy determinants of outcomes,
regardless of their observability. Our identification assumption is that, in the absence of policy, the
normalization coefficients obtained from pre-policy data would also map to the post-policy paths
of non-reference regions onto the reference path. By applying these coefficients to post-policy
data, we create a counterfactual path to identify policy effects. This also makes our approach
complementary to a growing literature that invokes a less strict notion of parallel trends and
explores identification when parallel trends do not exactly hold. Abadie (2005) conditions the
parallel trends to a set of observables using propensity scores (Heckman et al., 1998). This idea
is extended to staggered policy in Callaway and Sant’Anna (2021). Rambachan and Roth (2023)
provide confidence sets for the identified effects building on how much the pre-policy trends
potentially differ from the trends after policy. Roth and Sant’Anna (2023) characterize how the
parallel trends assumption survives strictly monotonic transformations under a stronger condition
on the cumulative distribution of the no-policy counterfactual.

Our work also relates to other policy evaluation approaches like the original synthetic control
methods (SCM) (Abadie and Gardeazabal, 2003; Abadie et al., 2010).7 The SCM approach
essentially constructs a counterfactual time path based on a weighted average across untreated
(control) regions. Two main differences stand out. First, analogous to other empirical strategies,
SCM requires the existence of a set of untreated regions to construct the synthetic control
group for identification. In contrast, SBI relies on cross-regional heterogeneity in the stage—not

7Arkhangelsky et al. (2021) propose a SCM-like weighting scheme for more flexibility regarding parallel trends.
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time—at which the policy is implemented. For this reason, we can apply SBI to a nationwide
policy occurring at the same time across all regions, unlike with SCM—or other methods for
that matter. We illustrate this aspect in the context of the German reunification application in
Section 5.2. Second, our method does not require the use of observable determinants of cross-
regional outcome differences in order to generate the counterfactual. Instead, the counterfactual
in our method is constructed using solely the time paths of the outcome of interest. Also,
similar to SBI, the changes-in-changes method in Athey and Imbens (2006) features a mapping
of outcomes across regions. Their focus lies on capturing heterogeneity of the policy effect over
the cross-sectional distribution of an individual level outcome. To this end, they map pre-policy
cumulative cross-sectional distributions across regions and use this to construct the counterfactual
distribution in the treated region.8,9 Instead of cross-sectional distributions, we map pre-policy
regional outcome time paths. Further, the main difference described above remains, namely that
the identification in changes-in-changes is also based on regional heterogeneity of the time of
policy implementation, whereas SBI does not require that heterogeneity.

Turning to our notion of stages, in the analyses of structural transformation (e.g., Galor and
Weil, 2000; Herrendorf et al., 2014; Cervellati and Sunde, 2015) or of the demographic transition
(e.g., Greenwood et al., 2005), the level of income per capita typically summarizes the “stage”
of development for an outcome of interest (e.g., agricultural share of output, urbanization rates,
population growth rates, etc.) in cross-country comparisons. In contrast, rather than replacing
time for an observable such as income per capita, SBI provides a normalization of the time path
of the outcome of interest (possibly income per capita itself: see our evaluation of the effect of
the German reunification on income per capita in West Germany). This implies that the level of
the outcome of interest (e.g., income per capita) is not a sufficient statistic to define the stage
of a region in our approach. This same argument is discussed in the earlier work of Iorio and
Santaeulàlia-Llopis (2010, 2016) that also conducts a normalization mapping country-specific
time paths of HIV prevalence onto a reference path in order to define stages of the HIV epidemic.
We depart from that work in that we use our normalization to a reference path as base for
identifying the effects of policies that aim to alter the path of the outcome of interest. For this
reason, our normalization coefficients are obtained by strictly using pre-policy outcome paths.

Finally, note that we consider scenarios which have been studied in the literature typically
using macroeconomic models, that is, where a policy is implemented nationwide, i.e. across all
regions at the same time. In terms of our first application, recent econ-epi frameworks highlight
the link between aggregate economic activity and a pandemic in order to study related policy

8This analysis is related to Altonji and Blank (1999), who consider a decomposition of relative wage changes
across groups into changes of the distribution of skills and the payoff for those skills.

9Recently, Gunsilius (2023) presents a synthetic control variant of the changes-in-changes estimator.
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trade-offs (e.g., in Eichenbaum et al., 2021; Farboodi et al., 2021; Glover et al., 2020; Kaplan
et al., 2020). Turning to our second application of birth-control technology, the general trade-offs
faced by women are discussed in Doepke et al. (2023). Examples for macroeconomic frameworks
in which the introduction of contraceptives has an effect on fertility can be found in Fernández-
Villaverde et al. (2014), who study the change of societal norms, or in Cavalcanti et al. (2021),
who focus on the context of an developing economy. The same holds for our third application on
the effects of the German reunification. For example, model-based analyses of policy effects in
the context of structural transformation can be found in Rogerson (2008), who explores the role
of tax increases for hours supply in the service sector, or in Duval-Hernández et al. (2022), who
look at female labor supply. While the mentioned macroeconomic frameworks rely on calibrated
versions of their models and focus on the effects at the aggregate level, SBI provides an empirical
identification of the policy effect at the regional level using cross-regional heterogeneity at the
stage at which the national policy is implemented.

2 A Stage-Based Method to Identify Policy Effects

To contextualize our contribution, we first briefly discuss how standard empirical strategies iden-
tify policy effects. Consider a scenario in which, absent any policy intervention, the time path
of an outcome yr(t) is identical across two regions r ∈ {C, T }.10 Now assume that a policy is
implemented only in region T at some date tp which affects the outcome path in that region
thereafter. Illustratively, we plot an outcome path of a treated region yT (t) before policy imple-
mentation (solid red) and after policy implementation (dashed red) in panel (a) of Figure 2. We
also show an outcome path for a region where the policy is not implemented, yC(t) (solid blue).
This scenario is ideal for the estimation of policy effects because the pre-policy outcome paths
are identical across regions warranting the use of region C as control for region T . That is, the
outcome path yC(t) provides a useful no-policy counterfactual to assess the effects of policy on
yT (t) after tp. The effects of policy are captured by the difference between yC(t) and yT (t) in
the interval (tp,∞). We can further add the implementation of the same policy to region C at
some later date tp+∆ with ∆ > 0; see panel (b) of Figure 2. Under this staggered rollout of the
policy, the effects of policy on region T are identified using region C as counterfactual within the
interval (tp, tp + ∆]. In that interval, region T is subject to the policy whereas region C is not.

The standard identification strategies just described fundamentally rely on two principles.
First, there must be variation in the time of policy implementation across regions, which serves as
source of identification. Second, the behavior of the outcome path before policy implementation
must credibly support the parallel trends assumption. However, many policy contexts violate

10Region can be interchanged with group or unit throughout. Our empirical applications focus on regions.
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Figure 2: Ideal Policy Scenarios with Two Regions: Standard Identification Strategies

(a) One Untreated (b) Staggered Rollout

Notes: Let yC(t) and yT (t) be the outcome paths of, respectively, region C and T before policy (solid lines) and after policy (dashed
lines). The identified policy effects are

∫ h

tp
(yC(t) − yT (t)) dt/

∫ h

tp
yT (t)dt with h = ∞ for the one-untreated case and h = tp + ∆

for the staggered.

these conditions: First, a large set of policies are implemented nationwide—i.e., carried out in all
regions at the same time, which eliminates the source of identification used in standard strategies.
Second, the regional paths of the outcome variable before policy is implemented often differ across
regions. For example, outcome paths can differ by starting date, evolve at different speed and
have different magnitude. We illustrate these two challenges in panel (a) of Figure 3 where a
nationwide policy is implemented in a context where the outcome path in region C starts earlier,
evolves at a faster speed and reaches a larger magnitude than in region T .

Our strategy addresses these challenges in two steps. First, a normalization of regional
outcome paths, and second, an identification based on the normalized paths.

2.1 Normalization Procedure

Again, consider two regional outcome paths yr(t) with r ∈ {C, T }. We select one region as the
reference region. For this region, the stage is defined as time. For the non-reference region, the
stage is the result of a normalization that maps its outcome time path onto the reference time
path using only pre-policy data. We now describe our normalization of the time and level of an
outcome of interest—i.e., a transformation of coordinates—and provide a formal definition of
stages afterwards.

The normalization starts with postulating the existence of the composite function,

ỹr(s) = (fr ◦ yr ◦ tr) (s) = fr (yr (tr (s))) , (1)

where tr(s) : S → T is a stage-to-time transformation mapping stages s ∈ S = R into time
t ∈ T = R; yr(t) : T → Y maps time into outcomes y ∈ Y = R; and fr(y) : Y → Ỹ maps
outcomes into normalized outcomes ỹr ∈ Ỹ = R. Thus, the composite function ỹr(s) : S → Ỹ

defined in (1) maps stages s—i.e., normalized time—into normalized outcomes ỹ for region r.
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Figure 3: Stage-Based Identification of Policy Effects: A Nationwide Policy

(a) Before Normalization (b) After Normalization

(c) Identification Window (Zoom) (d) Policy Effects (%)

Notes: In panel (d), we report the policy effects γ (black marker) together with the interim cumulative effects of policy, γ(s), as
defined in Section 2.2.

Without loss of generality, we treat the outcome path of region T as the reference path
and that of region C as the non-reference path.11 For the reference region, we set s to be a
fixed point of tT (.) for all s (i.e., t = tT (s) = s) and y to be a fixed point of fT (.) for all y
(i.e., ỹ = fT (y) = y) which implies that ỹT (s) = yT (s) = yT (t = s) always. Instead, for the
non-reference region, we approximate tC(.) and fC(.) with tC(.) ≈ t(.;ψ) = ∑K

k=0 ψkB
t
k(.) and

fC(.) ≈ f (.;ω) = ∑M
m=0 ωmB

f
m(.), respectively. {Bf (.), Bt(.)} ∈ B2 are known basis functions

in the space of continuous and differentiable functions. We denote the set of M + K + 2
unknown normalization coefficients by ϕ = {ψ,ω}. This gives the composite function ỹC(s;ϕ) =
(fC(.;ω) ◦ yC ◦ tC(.;ψ)) (s) = fC (yC (tC (s;ψ)) ;ω) by which we approximate ỹC(s):

ỹC(s) ≈ ỹC(s;ϕ) =
M∑
m=0

ωmB
f
m

((
yC

(
K∑
k=0

ψkB
t
k(s)

)))
. (2)

We choose monomials as benchmark for the basis functions Bf (.) and Bt(.) in (2). Further,
throughout our theoretical derivations and applications we restrict our analysis to monomial basis
functions of degree one, i.e., K = M = 1. This implies that the level and time transformation
functions, respectively fr and tr, are linear, hence monotonic and invertible. Then, conversely to

11The choice of the reference region is innocuous, see our discussion in Section 2.2.
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the stage-to-time transformation, the stages in each region are defined as,

s = sr(t;ψ) =

 t if r = T
t−1
C (t;ψ) if r = C,

(3)

where for the reference region (here, r = T ), the stage at time t is the time itself (i.e., sT (t;ψ∗) =
t = s), whereas for the non-reference region (here, r = C) the stage is the time at which region C is
at the same stage as region r = T is at time t (i.e., sC(t;ψ∗) = t−1

C (sT (t;ψ∗);ψ∗) = t−1
C (t;ψ∗)).

Hence, the approximated normalized path of the non-reference region is

ỹC(s;ϕ) = ω0 + ω1yC(ψ0 + ψ1s). (4)

A nice feature of the monomial basis is that it delivers a straightforward interpretation of the
normalization coefficients. The parameter ψ0 shifts the entire outcome path of region C forward
(with ψ0 > 0) or backwards (with ψ0 < 0) in time, adjusting for different start dates. The
parameter ψ1 adjusts the speed in a constant way across periods. If ψ1 < 1, then the outcome
time-path of region C (in time) expands, whereas with ψ1 > 1 it contracts. That is, if ψ1 < 1,
then region C is permanently faster (in time) than region T —in one time-period region C advances
by more than one stage—and vice versa for ψ1 > 1.12

Given observed time paths for all regions, i.e., yr(t) for r ∈ {C, T }, we determine the unknown
coefficients ϕ = {ψ,ω} by minimizing the difference between the normalized path of the non-
reference region, ỹC(s;ϕ), and the outcome path of the reference region, yT (s), that is:

min
{ϕ}

∥ỹC(s;ϕ) − yT (s)∥C(s) , (5)

where ∥ · ∥ is the squared Euclidean distance defined on the interval of stages,

C(s) =
[
sr(t0;ψ), sr(tp;ψ)

]
(6)

where sr(t0;ψ) = max {sr(t0;ψ)} and sr(tp;ψ) = min {sr(tp;ψ)} for r ∈ {C, T }. That is, the
interval C(s) ensures that the minimization (5) only uses the outcome paths up to the stage s in
which the policy is implemented first across regions, i.e., sr(tp;ψ). Note that the interval C(s)
is determined endogenously during the minimization procedure. Now, we can define the stages.

12More generally, allowing for the stage-to-time transformation to be quadratic (i.e., ψ2 ̸= 0) would capture
the notion that the relative speed across the regions can change over time: for example, the outcome path of
region C might initially be slower than region T , then catch up, and eventually move faster. Although not in the
main text, we show an example with such scenario in Online Appendix O.A.

10

Electronic copy available at: https://ssrn.com/abstract=4612442



Definition 1. The stage of an outcome yr(t) of region r at time t is sr(t;ψ∗) where ϕ∗ ⊃ ψ∗

is the solution to the minimization of (5) subject to (4) and (6).

In this way, stages formally emerge as the result of our normalization procedure. To gain some
intuition, we exemplify our method using a nationwide policy that affects the outcome paths of
two regions, yC(t) and yT (t), in Figure 3. Before policy implementation at time tp, the outcome
path of region C (solid red) differs from region T (solid blue) in that it starts earlier, grows faster
and is larger; see panel (a), which also shows the outcome paths after policy implementation for
the two regions (dashed lines).

The normalization procedure—i.e., the minimization of (5) subject to (4) and (6)—achieves
two goals. First, it generates a normalized outcome path for the non-reference region in the
stage domain, ỹC(s;ϕ∗) (cross-dashed blue), that maps—up to minimization error—onto the
outcome path of the reference region before the earliest stage in which policy is implemented
across regions, sr(tp;ψ∗); see panel (b) of Figure 3.13 Second, since sr(tp;ψ∗) is endogenous
to ψ∗, the normalization uncovers heterogeneity in the stage of policy implementation across
regions.14 For example, in our illustration, policy is implemented earlier—in stages—in region T
than in region C, i.e., sr(tp;ψ) = sT (tp;ψ) < sC(tp;ψ) = s−r(tp;ψ∗) with r = T . Also, since
we picked T to be the reference region, we obtain sr(tp;ψ) = tp.

We further decompose the effects of each of the normalization coefficients {ϕi} ∈ ϕ∗ on
the path of the non-reference region in Figure 4. Since these coefficients are jointly determined
in our minimization, we provide a non-orthogonal decomposition where we sequentially add the
effects of each parameter. Note that in our illustration yC(t0) = yT (t0) = 0 and limt→∞ yC(t) =
limt→∞ yT (t) = 0 and thus we focus on the role of the proportional level shifter ω1 together
with the stage-to-time transformation parameters ψ0 and ψ1—setting the constant level shifter
to zero, ω0 = 0. In panel (a), we show that the coefficient ω∗

1 < 1 proportionally shifts down
the entire outcome path of the non-reference region C throughout its support. In panel (b), the
additional time shifter, ψ∗

0 > 0, moves the outcome path to the right delaying the outcome’s take
off. In panel (c), adding the speed adjustment, ψ∗

1 < 1, decreases the pace of the normalized
outcome. See further illustrations by use of an example of a policy after the peak in Online
Appendix O.A.

13Note that outcome variables are typically observed on discrete dates. Since the mapping can generate dates
tC(s;ψ∗) that are non-integer values—i.e., non-discrete dates—we interpolate between yC(fl(tC(s;ψ∗));ω∗) and
yC(cl(tC(s;ψ∗));ω∗), where fl(·) and cl(·) denote the integer floor or integer ceiling, respectively.

14More generally, with more than two regions, −r refers to the complement set of r, i.e., −r = rC
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Figure 4: Decomposition by Normalization Coefficient

(a) Proportional Scaling (b) + Time Shift (c) + Speed Adjustment
{ω∗

1} {ω∗
1, ψ

∗
0} {ω∗

1, ψ
∗
0, ψ

∗
1}

Notes: We sequentially add the normalization parameters {ϕ} to the non-reference path yC(t) one-by-one.

2.2 Identifying the Policy Effects

In order to identify the policy effects, we exploit the fact that our normalization uncovers het-
erogeneity of the stage at the time of policy implementation, i.e., sr(tp;ψ∗) < s−r(tp;ψ∗). In
particular, inside a window (interval) of stages,

W(s;ψ∗) =
[
sr(tp;ψ∗), s−r(tp;ψ∗)

]
, (7)

region r, i.e., the region where the policy is implemented first in stages, is subject to policy
whereas region −r is not. In this context, we make the following assumption:

Identification Assumption 1. The normalization parameters ϕ∗ that solve the minimization of
(5) subject to (4) and (6) are unaffected by policy.

The assumption implies that, absent policy in region r, the normalized path of the non-reference
region obtained using ϕ∗ and evaluated on stages s > sr(tp;ψ∗) would yield a path identical to
that of the reference region for all s ∈ W(s;ψ∗).

Here, note that there is no ex-ante assignment to treatment or control for either reference or
non-reference regions. Instead, the assignment of regions to treatment or control is determined
endogenously (with ψ∗) by the fact that policy arrives to the regions at different stages. We refer
to the region that is at a more advanced (later) stage at the policy date as the stage-leading
region. This region is then endogenously assigned to be the control region. In the illustra-
tion, the stage-leading (control) region is −r = C, which is untreated inside the identification
window W(s;ψ∗) = [tp, sC(tp;ψ∗)] and, hence, provides the no-policy counterfactual for the
stage-lagging (treated) region r = T inside that window; see panel (b) in Figure 4. In the
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example, the opposite roles (of reference and non-reference regions) would emerge if we picked
r = C as reference region.15

Policy effect. Following our illustration, where the control region is −r = C and the treated
region is r = T , we measure the policy effect for the treated region as,

γ =
∫
W(s;ψ∗) (yT (s) − ỹC(s;ϕ∗)) ds∫

W(s;ψ∗) ỹC(s;ϕ∗)ds , (8)

which measures the cumulative effect of policy relative to the scenario without policy in the
treated region inside W(s;ψ∗); see panel (c), Figure 3. The numerator is the area between the
actual outcome path subject to policy of the treated region, i.e., yT (s) (dashed red), and the
no-policy counterfactual path for the treated region, i.e., ỹC(s;ϕ∗) (cross-dashed blue). The
denominator captures the entire area below the no-policy counterfactual path for the treated
region. In panel (d) of Figure 3, we zoom in on the identification window to show the policy
effect γ together with the interim cumulative effects, γ(s). Precisely, ∀s ∈ W(s;ψ∗), we define

γ(s) =
∫ s

sr(tp;ψ∗)(yT (s)−ỹC(s;ϕ∗))ds∫ s

sr(tp;ψ∗) ỹC(s;ϕ∗)ds where γ(s) = γ for s = s−r(tp;ψ∗), the stage of the leading

region at the policy date (the end of the identification window).

Irrelevance of reference region. So far, we have used region T as reference. Therefore, the
policy effect (8) measures the impact of policy on region T using as no-policy counterfactual the
normalized path of region C. Now consider reversing the reference region to C. This implies that
we redefine stages as time for region C, and use the modified (to region T ) expressions in (2)
and (3) to obtain the normalization for region T . Of course, region C (while now the reference
region) is still the leading region, and we now obtain a policy effect by relating the normalized
path of region T (which is treated) to the observed path of region C (which is untreated). The
interpretation of the policy effect is different now, as it measures the impact that the policy would
have had on region C had it been treated at an earlier stage. We formally establish equivalence
between the two mappings in the following

Theorem 1. For K = M = 1, the policy effect (8) is invariant to the choice of the reference
region.

Proof. See Appendix A.
15We assess our identification assumption in the context of an analytical examples with exact identification in

Section 2.3 and also through a placebo test with model-generated data without exact identification in Section 3.3.
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2.3 Analytical Examples with Exact Identification of Policy Effects

We now discuss a setting in which we can explicitly express the normalization of the non-reference
region in terms of the structural parameters of the data generating process. Note that this serves
to illustrate the method, and to provide some guidance for the interpretation of the normalization
coefficients. Indeed, if the data generating process were actually known, there would be no need
to apply SBI; or any other identification method for that matter.

Our method operates under the proposition that if there exists a composite function (1) such
that

ỹC(s) = yT (s), (9)

then our normalization procedure—the minimization of (5) subject to (2) and (6)—recovers the
coefficients ϕ = {ψ,ω} up to a minimization error by approximating the functions tC(.) ≈
tC(.;ψ), fC(.) ≈ fC(.;ω) and, hence, ỹC(.) ≈ ỹC(.;ϕ) for all s ∈ C(s). Thus, under our
identification assumption, we can identify the policy effects for all s ∈ W(s;ψ∗).

In this context, here, we are interested in cases where (9) holds and (2) holds with equality and,
hence, analytical solutions for the normalization coefficients ϕ potentially exist for all s ∈ C(s).
In that pursuit, consider a scenario in which the outcome path of a region r ∈ {C, T } is,

yr(t) =
(
1 + γr,t1t≥tp

)
g(t; Θr), for t ∈ {t0, . . . , tp, . . . , T} (10)

where Θr is a set of region-specific structural parameters that determine regional outcome paths
and γr,t captures the effect of policy that emerges after its nationwide implementation at tp.

To identify the effects of the implemented policy by SBI, we pick a region (e.g., T ) for the
reference outcome path, yT (t), and postulate a composite function (1) for the outcome path
of the non-reference region, ỹC(s;ϕ). Here, we are interested in cases where (9) holds and
(2) holds with equality because then ỹC(s;ϕ) and yT (s) share exactly the same functional form
before policy is implemented first in the stage domain, i.e., for all s ∈ C(s) and, hence, we can
uncover—by the method of undetermined coefficients—the normalization coefficients ϕ in,

ΘT = Θ̃C (ϕ; ΘC) ∀s ∈ C(s), (11)

which is a (potentially nonlinear) system with n equations—where n is the number of structural
parameters—and with p unknowns—where p = M +K + 2 is the number of normalization coef-
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ficients in ϕ.16 An interpretation of system (11)—and, hence, of our normalization procedure—is
that the normalization coefficients ϕ reshape the structural parameters of the non-reference, ΘC,
region into those of the reference region, i.e., ΘT = Θ̃C before policy implementation.

Theorem 2. If there exists a composite function (1) such that (9) holds and (2) holds with
equality for the regional outcome paths, yr(t), in (10)—i.e., if there exists a solution ϕ∗ for the
system (11)—then stage-based identification (SBI) exactly and uniquely identifies the true policy
effects γ(s) for all s ∈ W(s;ψ∗).

Proof. If the system (11) holds, then the normalized outcome path of the non-reference region,
ỹC(s;ϕ∗), is exactly identical to the reference path, yT (s) for all s ∈ C(s) = [sr(t0,ψ∗), sr(t;ψ∗)].
Since the outcome paths follow (10)—i.e., policy affects the path yr(t ≥ tp) but not g(t; Θr),
then ϕ∗ is also a solution for the complement stage domain, i.e., for all s /∈ C(s), in particular for
W(s;ψ∗) = [sr(tp;ψ∗), s−r(tp;ψ∗)]. This implies that ỹC(s;ϕ∗) is exactly identical to g(s; ΘT ),
that is, the true no-policy counterfactual of the reference region for all s ∈ W(s). Hence, SBI
exactly and uniquely identifies the true policy effects, γ(s), for all s ∈ W(s;ψ∗).

Remark 1. Note that uniqueness of the normalization coefficients ϕ∗ is not necessary to recover
unique policy effects.17 To see this, note that although the presence of multiple solutions of ϕ
implies that there are multiple shapes for f(.;ω) and t(.;ψ) that satisfy (9), the implied solution
ỹC(s;ϕ) for (9) is unique and, hence, so is the identified policy effect, γ(s). At the same time,
the overall policy effect, γ, is determined by the interim policy effects, γ(s), and the size of the
identification window, W (s;ψ∗), which can differ by ϕ∗; see Online Appendix O.B.2.2.

We now discuss some functional forms for the outcome paths, yr(t), for which SBI yields
analytical solutions for ϕ using the approach just described. We start with logistic functions.
Assume that the regional outcome paths yr(t) are determined by (10) and that, absent policy,
these paths are determined by,

g(t; Θr) = θ1,r − θ0,r

1 + exp (−θ3t+ θ2,r)
+ θ0,r (12)

16That is, here, the minimization step in the normalization (in Section 2.1) is the solution to the system (11)
emerging from the undetermined coefficients approach.

17Note that if (9) holds, (2) holds with equality and the inverse function ϕ = Θ̃−1
C (ΘT ; ΘC) exists, then there

exists a unique solution ϕ∗ for the system (11). This sufficiency for existence and uniqueness of ϕ∗ coincides
with the Rouché–Frobenius Theorem in the cases where the system (11) is linear.
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Figure 5: Three Examples with Exact Analytical Identification

(a) Logistic Function (b) Trigonometric Function (c) Cubic Polynomial

Notes: These panels show the SBI effects in examples with closed-form solutions for ϕ∗ when the data generating process is assumed
to be known. In each panel, we assume that the outcome time path g(t; Θr) in (10) follows: (a) the logistic function in (12); (b) a
trigonometric function θ0,r + θ1,rsin(θ2,r + θ3,rt); and (c) a cubic polynomial

∑3
j=0 θj,rt

j , respectively. The analytical derivations
are in Online Appendix O.B.

with Θr = {θ0,r, θ1,r, θ2,r, θ3,r}. We show an illustration of these paths for region C and T
in panel (a) of Figure 5.18 To identify the policy effects, we apply SBI picking a region (e.g.,
T ) for the reference path and postulating a composite for the non-reference region, ỹC(s;ϕ) =
ω1yC(ψ0 + ψ1s) + ω0. Then, we solve for the normalization coefficients ϕ = {ψ0, ψ1, ω0, ω1} in
(9) holding (2) with equality for all s ∈ C(s), that is,

ỹC(s;ϕ) = ω1yC(ψ0 + ψ1s) + ω0 =

θ1,T −θ0,T︷ ︸︸ ︷
ω1 (θ1,C − θ0,C)

1 + exp(− θ3,Cψ1︸ ︷︷ ︸
θ3,T

s+ (θ2,C − θ3,Cψ0))︸ ︷︷ ︸
θ2,T

+ ω1θ0,C + ω0︸ ︷︷ ︸
θ0,T

= yT (s)

and, thus, by the method of undetermined coefficients we find ϕ = {ψ0, ψ1, ω0, ω1} from a linear
system of four equations. It is straightforward to see that the inverse ϕ = Θ̃−1

C (ΘT ; ΘC) exists
and, hence, there exists a unique analytical solution for ϕ∗,

ω∗
1 = θ0,T − θ1,T

θ0,C − θ1,C
, ω∗

0 = θ0,T − θ0,C

(
θ0,T − θ1,T

θ0,C − θ1,C

)

ψ∗
1 = θ3,T

θ3,C
, ψ∗

0 = θ2,C − θ2,T

θ3,C
.

The normalization uncovers cross-regional stage heterogeneity at the time of policy implementa-
tion: in our illustration, the non-reference region is at a more advanced stage than the reference
region at tp, i.e., sr(tp;ψ∗) = tp. This opens a window in the stage domain in which region T
is subject to policy whereas region C is not, i.e., W(s;ψ∗) =

[
tp, sC(tp,ψ∗) = θ2T −θ2C

θ3T
+ θ3,C

θ3,T
tp
]
.

Then, under our identification assumption, the normalized outcome path of the non-reference
18We assume that region C takes off earlier, − θ2,C

θ3,C
< − θ2,T

θ3,T
, grows faster θ3,C > θ3,T , starts at level θ0,C =

θ0,T = 0 (left asymptote) and shows a larger magnitude with θ1,C > θ1,T (right asymptote) than region T .
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region, ỹC(s;ϕ∗), serves as no-policy counterfactual for the reference region for all s ∈ W(s;ψ∗).
Indeed, since the outcome paths follow (10), ϕ∗ is also an analytical solution for the complement
stage domain, i.e., for all s /∈ C(s). That is, for all s ∈ W(s;ψ∗), the normalized outcome
path of the non-reference region, i.e., ỹC(s;ϕ∗), is identical to the reference path in the no-policy
scenario, i.e., g (t = s; ΘT ) (solid magenta line); see panel (a), Figure 5. Thus, the identified
policy effect is unique and identical to the true policy effect.

We repeat this analysis for outcome paths that follow trigonometric functions (panel (b),
Figure 5), cubic polynomials (panel (c), Figure 5) and generalized logistic functions (Online
Appendix O.B.3). In all these cases, we find a closed-form solution for ϕ∗ and the identified
policy effect is unique and identical to the true effect; see the derivations in Online Appendix
O.B.

3 Method Performance

More generally, we are interested in assessing policy in contexts where the data generating process
is unknown. Here, we first implement SBI on model-generated data (without using any knowledge
about the theoretical model) and compare the identified effects with the true effects; Section 3.1.
Second, we conduct a Monte Carlo analysis that provides bounds to our method performance;
Section 3.2. There, we assess how our method fares in the presence of confounding factors.
Third, we do a placebo diagnosis in Section 3.3. Fourth, we conduct inference in Section 3.4. As
in the discussion in Section 2.1, we adopt a linear stage-to-time transformation. Further, we set
the level shift parameter ω0 to zero so that the normalization coefficients are ϕ = [ω1, ψ0, ψ1].

3.1 Does SBI Identify the True Policy Effects?

To address this question, we use three alternative policy contexts: a public health policy against
a pandemic using a model where economic activity in the form of hours worked shapes and is
shaped by a pandemic; the effects of the approval of the pill in a model of women career and
fertility choices; and an economic growth policy using a model of structural transformation.

3.1.1 Public Health Policy Against a Pandemic

At the beginning of each period t ∈ {0, 1, . . .}, total population Nt is composed of a stock
of susceptible population St, infected individuals It and recovered individuals Rt, with Nt =
St + It + Rt and the normalization N0 = 1. An epidemic starts with an initial number of
infected I1 > 0 in period t = 1. For pre-pandemic periods t < 1, the population is constant
with N0 = S0 and I0 = R0 = 0. The probability that a susceptible individual meets an infected

17

Electronic copy available at: https://ssrn.com/abstract=4612442



Figure 6: Stage-Based Identification of Model-Generated Policy Effects: A Nationwide Public
Health Policy Against a Pandemic

(a) Hours Worked (b) True Effects (%) (c) Identified Effects (d) Identified vs. True (%)

Notes: We assume that u(cz , hz) = ln(cz) − κ
h

1+ 1
ν

z

1+ 1
ν

+ χ for value of life parameter χ. Some parameters differ across regions:
ΘC = {β = 0.509, ζ = 0.0010, κ = 1.05, ξ = 0.20, I0 = 1} and ΘT = {β = 0.501, ζ = 0.0008, κ = 1.07, ξ = 0.19, I0 = 6}. The
rest of the model parameters are identical across regions, {δ = 0.95, χ = 560400, z = 64, β = 0.501, α = 0.65}. The parameters
associated to the policy are h̄ = 0.4, tp = 38, tf = 250.

individual is given by β It

Nt
, for β ∈ (0, 1). Conditional on meeting there exists an objective

probability λO(ht) of getting infected that depends on the average hours worked ht. Further,
with probability µ infected individuals in a given period t recover or die from the disease where
the conditional probability of death in turn is denoted by ζ. New infections transit to death in
the same period t, i.e., ht has an immediate effect on the survival rate between t and t+ 1.19

In this context, we consider the problem of a social planner, who is constrained by imperfect
knowledge about the infection process. In particular, the planner’s beliefs of the infection proba-
bility are λP(ht), which may differ from the objective probability. Specifically, let λb(ht) = ξbh

α
t ,

ξb > 0 and α ∈ (0, 1), for beliefs b ∈ {O,P}, where O stands for objective and P for perceived.
Thus, if ξP < ξO then the constrained planner underestimates the actual effects of average hours
worked ht on infections and vice versa if ξP > ξO.

At every period t, before making plans for all future periods z ≥ t, the planner receives
an unanticipated knowledge shock that reveals the actual state of the economy GO,t for G =
(S, I, R,D), which potentially differs from the perceived state GP,t. We assume that the planner
updates the perceived survival probability accordingly and before choosing labor supply. Precisely,
lettingXG,b,t = Gb,t+1−Gb,t, the planner’s perceived survival probability is revised at the beginning
of every period t to ϕP(ht) = 1 − XD,P,t

Ñb,t
with Ñb,t = NO,t for t = z and Ñb,t = NP,t if t > z.

Note that although the knowledge shock allows the planner to update the state of the economy at
the beginning of every period t, she is unable to correct future forecast errors, i.e., GO,z −GP,z |t
for periods z > t, because the shocks are unanticipated.20

19This innocuous assumption eases the exposition of the trade-off between economic activity and public health.
20Note that without subjective beliefs, the population evolves essentially as in, for example, Atkeson (2020).

Further, the forecast errors εG,z = (GO,z −GP,z |t ) can be reduced asymptotically with learning (Adam et al.,
2017). For example, there could be learning about the odds of infection as in Aleman et al. (2022).
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After updating the perceived survival probability, the planner maximizes the present-discounted
stream of per period utilities for all periods z ≥ t with discount factor δ times the perceived
unconditional probability to survive from any period t to the future, ∏z

j=t+1 ϕP(hj−1). Importantly,
since the perceived survival probability is revised at the beginning of every period t, the nature of
the discounting process changes each period t and, hence, the planner needs to re-optimize—at
each period t—the decision plans for all periods z ≥ t. The per period utility, u(cz, hz;χ) is
assumed strictly concave in consumption cz ≥ 0 and leisure 1 − hz ∈ [0, 1] for a value of life
parameter χ. Collecting elements, at each period t the constrained social planner solves,

max
{cz≥0,hz∈[0,1]}∞

z=t

∞∑
z=t
δz−t

z∏
j=t+1

ϕP(hj−1)u(cz, hz;χ), (13)

subject to an aggregate resource constraint NP,zcz = whzNP,z where w is the implicit price
(marginal product) of labor using technology Yz = ahzNP,z. The solution is characterized by an
Euler equation, which is a first-order difference equation in hz, and thus we can easily solve for
the optimal labor path during the epidemic using standard techniques.21

True (Model-Generated) Policy Effects. We solve the model for two regions that differ in
the underlying parameter values for Θ = {δ, χ, a, β, µ, ζ, κ, ν, {ξi}i∈{O,P}, α, I1}. In particular,
we assume that the planner in region C underestimates the effect that economic activity has on
infections by less than the planner in region T . Consequently, hours are reduced earlier and also by
a larger amount in region C than region T in response to the epidemic. The equilibrium response
of hours without policy intervention for region C (solid blue) and region T (solid red) are shown
in panel (a) of Figure 6. The earlier and stronger response in terms of hours of region C affects
our outcome of interest, i.e., the epidemic path of deaths, by reducing the peak of deaths and
flattening the curve in region C relative to region T ; see panel (b) in Figure 6. We also assume
that region C has higher odds of encountering infected individuals at work (i.e., higher β) which
advances and increases the peak of deaths for region C relative to region T . Further, we assume
that region C has a lower disutility of work κ which implies a larger pre- and post-pandemic level
of hours worked for region C than region T .

In this scenario, we now introduce a nationwide public health policy that imposes an upper
bound on hours worked, h < h = 0.5, from tp = 38 to tf = 250. Since, without policy,
households in both regions would work more hours than h, the policy is binding in both C and
T —see the respective dashed lines that emerge after tp in panel (a) of Figure 6. The lower
economic activity imposed by the policy has consequences for the flow of deaths. With policy,

21We provide solution algorithms for all the economic models in this paper in Online Appendix O.C.
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the flow of deaths peaks earlier and by a lower magnitude in both C and T —see the respective
dashed lines that emerge after tp in panel (b) of Figure 6. The difference between the flow
of deaths with policy (dashed lines) and the flow of deaths without policy (solid lines) after tp
captures the true effects of policy generated from the model. However, the counterfactual paths
of the flow of deaths without policy after policy implementation (i.e., the solid lines after tp) are
not available outside of the model.

Stage-Based Identified Policy Effects. The policy effects identified using SBI are shown in
panel (c) of Figure 6. In particular, we map the path of the flow of deaths in region C (solid
blue line) onto the path of region T (solid red line) using only pre-policy data; as described in
Section 2. The result of the normalization step is a candidate no-policy counterfactual ỹC(s;ϕ∗)
(blue line with cross markers) for region T in the identification window W(s;ψ∗) = [tp, sC(tp;ψ∗)]
(shaded pink area). In order to assess whether the identified policy effects recover the true policy
effects generated by the model, we zoom in on the identification window in panel (d) of Figure 6
and compare our candidate counterfactual ỹC(s;ϕ∗) with the true counterfactual (solid red line).
The main result is that the identified policy effects are not significantly different from the true
effects. The identified total number of lives saved is

∫
W(s;ψ∗) (ỹC(s,ϕ∗) − yT (s)) ds = 248.545 in

a window of sC(tp;ψ∗)− tp = 8.601 days, whereas the true policy effects are 250.728 lives saved.
Therefore, the policy prevented γ = − 21.496% of the total deaths that would have occurred had
the policy not been implemented, whereas the true effect is γtrue = − 21.644%, which implies a
percent error of ε(γ) =

∣∣∣( γ
γtrue

− 1
)

× 100
∣∣∣ = 0.683%.

3.1.2 Oral Contraceptives and Women’s Choices

Consider a model economy where each cohort t of women derives utility from their choices on
consumption c ≥ 0, children n ≥ 0 and sexual intercourse x ≥ 0 and experiences disutility from
pill usage o—e.g., a social norm. In addition, a woman chooses human capital investment paying
q (tuition fees or job training) per unit of human capital. Earnings feature two components, a
wage level w, and an endogenous human capital wage premium zte(h) with the two components
technology level zt and a complementarity factor e(h) ∈ [0, 1]22 with eh(h) > 0, ehh(h) < 0
so that earnings per unit of time are w(1 + zte(h)). We model skill-biased technical change
(SBTC) with a cohort-t specific growth factor γt so that zt = z0

∏τ=t
τ=1(1+λτ ), where z0 > 0 and

λt > 0. We further assume that raising children bears a time cost of τ(n) ∈ [0, 1] with τn(n) >
0, τnn(n) < 0 so that earnings are (1 − τ(n))w(1 + zte(h)). Sexual intercourse increases the
probability of pregnancy ϕ(x) ∈ [0, 1] where ϕx(x) > 0, ϕxx(x) < 0 and we assume that successful

22The mapping of the outcome variable from h to e(h) is innocuous. In particular, since we model e(h) as a
rate we can interpret it as the fraction of educated women (e.g., college degree completion) in the population.
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Figure 7: Stage-Based Identification of Model-Generated Policy Effects: Introduction of the Pill

(a) True Effects on e(h) (c) Identified Effects on e(h) (e) Identified vs. True

(b) True Effects on n (d) Identified Effects on n (f) Identified vs. True

Notes: We plot outcomes for region C (red) and T (blue) without policy (solid lines) and with policy (dashed lines). The policy is
the introduction of the pill for all periods tp ≥ 25. The parameter values that we choose for region C are ΘC = {ζ = 8, q = 3.2, w =
64, z0 = 1, λT

t=1 = 0.1%, θx = 0.5, θh = 0.4, θo = 0.43, ιt,C , κt,C} and for region T they are ΘT = {ζ = 8, q = 3.3, w = 63, z0 =
1, λT

t=1 = 0.1%, θx = 0.5, θh = 0.4, θo = 0.43, ιt,T , κt,T }.

pregnancies result in children. If women have access to the pill—which we model through policy
dummy 1t≥tp that is equal to zero if a cohort t does not have access to the pill, and equal to one
otherwise—, then the probability of pregnancy is adjusted downward by the pill effectiveness in
preventing pregnancy, g(o) ∈ [0, 1]. We assume that larger use of the pill—e.g., better adherence
to follow protocol—increases the effectiveness of the pill. That is, go(o) > 0 with goo(o) < 0.

Collecting elements, a woman solves

max
{h,o,x}

c+ κn+ ζx− ιto (14)

subject to the budget constraint (15) and the children production technology (16):

c+ qh = (1 − τ(n))w(1 + zte(h)), (15)

n = ϕ(x)[1 − 1t≥tpg(o)] (16)

We derive the first order conditions for h, x and o in Online Appendix O.C.

True (Model-Generated) Policy Effects. In Figure 7, we show the equilibrium path for
women’s schooling choices in panel (a) and fertility choices in panel (b). We show the model-
generated paths by region in a scenario without the pill (solid lines) and in a scenario in which the
government grants women legal access to the pill technology (dashed lines). Regions differ in the
model parameters Θ = {κ, ζ, q, w, z, {λt}Tt=1, {ιt}Tt=1, {κt}Tt=1, θx, θh, θo}. In particular, we allow
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for the returns to human capital to be larger and grow faster in region C than in region T which
explains the higher human capital in region C than in region T . This also explains the lower
fertility in region C than in region T . Further, we exogenously shape the SBTC parameter γ such
that the endogenous human capital path is S-shaped for both regions. We choose an exogenous
path for the relative utility derived from children, κ, in order for endogenous fertility to display
a boom and bust. Here, we assess the effects of legalizing the pill permanently with 1t≥tp = 1
for all cohorts of women t ≥ tp. The policy endogenously reduces births (n) in both regions
(dashed lines panel (b), Figure 7). By reducing fertility, the pill reduces the cost of acquiring
human capital, which increases the share of women entering college (e(h)) (dashed lines in panel
(a), Figure 7).

Stage-Based Identified Policy Effects. We apply SBI using region T as reference, and thus
map the outcome path of region C (solid blue) onto that of region T (solid red) using only
pre-policy data as in Section 2. Again, SBI delivers a candidate counterfactual ỹC(s;ϕ∗) (blue
line with cross markers) for an identification window W(s;ψ∗) = [tp, sC(tp;ψ∗)] (shaded pink
area); see panels (c) and (d) of Figure 7 for human capital and children, respectively. A zoomed
comparison between the identified and true effects is in panel (e) and (f) of Figure 7 for human
capital and children, respectively. We find that the SBI policy effects capture well the true effects.
Access to the pill increases the proportion of women going to college e(h) by γ = 0.122%, whereas
the true policy effects are γtrue = 0.123%. The identified effect on fertility is a reduction by γ =
0.830%, whereas the true effect is γtrue = 0.828%. The error ε(γ) of the identified policy effects
relative to the true policy effects is 0.182% for human capital and of 0.232% for fertility.

3.1.3 Growth Policy and Structural Transformation

Consider a model economy with two sectors denoted by i ∈ {a,m}, for agriculture and manufac-
turing, respectively. A representative firm per sector faces competitive markets. The agricultural
firm produces output ya at relative price pa (manufacturing is the numeraire good) employing
labor na at wage rate wa and land ℓ. We assume inefficient institutions in agriculture captured
by a parameter τ that taxes revenue. Agricultural firms thus solve the problem

max
nat

πt(ℓ) = (1 − τ)patyat − watnat s.t yat = zatn
ϕ
atℓ

1−ϕ,

where ϕ is the labor share in agriculture. Since land is fixed, the agricultural technology exhibits
decreasing returns to scale.23 Manufacturing firms produce output ymt with labor nmt—hired at

23The structural change—from a decreasing returns to scale technology (Malthus) to a constant returns to
scale (Solow) is studied in Hansen and Prescott (2002) in the context of a one-good economy. Below, we also
introduce non-homothetic preferences as an additional mechanism for structural change (e.g., Gollin et al., 2002).
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wage wmt—and capital kt—rented at rate rt—and solve the problem

max
nmt,kt+1

ymt − wmtnmt − rtkt s.t ymt = zmtn
α
mtk

1−α
t ,

where α is the labor share in manufacturing. Further, we assume that total factor productivity
(TFP) differs by sector according to zit = zi,0(1 + λi)t for i = {a,m} with γa < γm.

An infinitely-lived representative agent discounts the future at factor β ∈ (0, 1) and chooses
sectoral allocations of consumption {cat, cmt}∞

t=0, labor {nat, nmt}∞
t=0, and next period capital

{kt+1}∞
t=0. The per period utility function from agricultural goods, u(cat − c̄a), features a non-

homotheticity through a subsistence level, c̄a. Utility from manufacturing goods, v(cm), is ad-
ditively separable. Both u(·) and v(·) are strictly concave. The household is endowed with one
unit of time in each period, i.e., nat + nmt = 1 ∀t, that is allocated to either agriculture or
manufacturing and receives wage rates {wat, wmt}. The household receives the rents π(ℓ) from
inelastically supplying (renting) land to agricultural firms. Thus, the household maximizes,

max
{cat,cmt,nat,nmt,kt+1}∞

t=0

∞∑
t=0

βt (u(cat − c̄a) + κv(cmt)) (17)

where κ > 0 is a relative utility parameter, subject to the budget constraint

patcat + cmt + kt+1 =
∑

i∈{a,m}
witnit + rtkt + (1 − δ)kt + πt(ℓ). (18)

We derive the first order conditions and discuss the solution algorithm in Online Appendix O.C.

True (Model-Generated) Policy Effects. We consider two regions that potentially differ in
model parameters Θ = {β, c̄a, κ, δ, za,0, λa, zm,0, λm, ϕ, α, τ}. In particular, we allow for the total
factor productivity in the manufacturing sector to be larger in region C than in region T . The
larger productivity of manufacturing in region C generates a larger amount of investment, lower
agricultural share of labor and, ultimately, higher income per capita in region C than in region
T at any point in time; see panel (a) in Figure 8. The model is able to generate an agricultural
share that declines over time whereas, at the same time, capital and income per capita increase
asymptotically reaching a balanced growth path with a trifling agricultural share. In this context,
we introduce an unexpected nationwide growth policy that removes the institutional constraint
τ in the agricultural sector in both regions; setting τ = 0 after tp in both regions. Removing
the constraint in the agricultural sector accelerates investment (and capital) and the decline in
agricultural sector. The reallocation to the non-agricultural sector increases income per capita in
the eocnomy, see (dashed lines) in panel (a) of Figure 8.
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Figure 8: Stage-Based Identification of Model-Generated Policy Effects: Growth Policy

(a) True Effects (b) Identified Effects (c) Identified vs. True

Notes: For region T , we choose, na,0 = 0.75, za,0 = 0.068, zm,0 = 0.10, λa = 0.0019, λm = 0.0055. For region C, we
choose, na,0 = 0.55, za,0 = 0.082, zm,0 = 0.13, λa = 0.0025, λm = 0.0062. Common parameters for both regions are
β = 0.98, α = 0.6, ϕ = 0.7, κ = 2, δ = 0.02. Further, we assume that the felicity functions are logs, that is, u(ca − c̄a) = ln(ca − c̄a)
and v(cm) = ln cm.

Stage-Based Identified Policy Effects. We implement SBI by mapping the outcome path in
region C (solid blue line) onto the outcome path in region T (solid red line) using only pre-policy
data. We plot the resulting counterfactual candidate ỹC(s;ϕ∗) (blue line with cross markers) for
the identification window between tp and sC(tp;ψ∗) (shaded pink area); see panel (b), Figure 8.
We zoom in on the identified counterfactual ỹC(s;ϕ∗) and the true effects of policy in panel (c)
of Figure 8. According to SBI, the growth policy increases income per capita by γ = 13.781% in
the identification window whereas the true policy effect is γtrue = 13.537%. That is, the identified
policy effects catch the true policy effects with an error of ε(γ) = 1.797%.

3.2 Bounds to Method Performance

The performance analysis in Section 3.1 shows that our identification strategy can recover the
true policy effects. However, it is intuitive to assume that our strategy faces some boundaries.
Here, we numerically characterize the bounds within which our method is able to recover the
true effects of policy with a Monte Carlo experiment in Section 3.2.1. We further discuss how
we assess the performance of SBI in the presence of confounding factors in Section 3.2.2.

3.2.1 A Monte Carlo Analysis

We focus this analysis on the benchmark economic model with an endogenous pandemic described
in Section 3.1.1. Specifically, we hold fixed the parameters of the non-reference region C and
randomize a subset—(β, ζ, κ, to)—of the structural parameters in that region in order to generate
a large number of reference outcome paths yT (m) for regions m ∈ M = {1, ...,m, ...,M}.24

In panel (a) of Figure 9, we show the epidemic paths of our benchmark regions C and T as
described in Section 3.1.1, together with one of the simulated reference regions that starts later,

24We assume that the randomized parameters—β, ζ, κ and to—are uniformly and independently distributed.
Then, we draw a total of M = 381, 000 simulations (quadruplets).
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Figure 9: Bounds to Method Performance: A Monte Carlo Analysis

(a) A Simulation Example (b) Policy Error: |ϵ(γ)|

Notes: To construct the set {yT (m)(t)}m, we assume that {β, ζ, κ, t0} are uniformly and independently distributed. The simulations
are drawn from the intervals

[
βlb, βub

]
×
[
ζlb, ζub

]
×
[
κlb, κub

]
×
[
tlbo , t

ub
o

]
= [0.5, 0.9]×[0.001, 0.008]×[1.05, 1.89]×[−10, 10] where

the superindices lb and ub denote, respectively, lower and upper bounds. We pick the bounds of the uniform distribution in a manner
that our simulations generate sufficiently different outcome paths of the reference region in order to assess the performance of our
method. We conduct M = 381,000 simulations and, in panel (b), we plot those that fall in a subset of Φo = {ψ0(m)|ψ0(m) > 0.0}×
{ψ1(m)|ψ1(m) > 1.0} × {ω1(m)|ω1(m) < 1.0}. Precisely, the hyperplane (ψ0, ω1) has 3,698 simulations, the hyperplane (ψ1, ω1)
has 17,504 simulations and the hyperplane (ψ0, ψ1) has 3,698 simulations. Panel (b) shows values for an evenly spaced 200 × 200
grid on each hyperplane, approximating the values between grid points through linear interpolation.

grows slower and reaches a lower magnitude than the benchmark reference region, yT (t), and,
therefore, is further away from the non-reference region, yC(t).

In this context, in order to assess the ability of SBI to identify the true policy effect we
study the policy error across all simulations. For each simulation m, we apply SBI by mapping
the non-reference region, yC(t), onto the simulated reference path, yT (m)(t). Per simulation m,
we find a vector of normalization coefficients ϕ∗(m) = (ψ∗

0(m), ψ∗
1(m), ω∗

1(m)) that belongs to
Φ = Ψ0×Ψ1×Ω1 ⊂ R3. Then, for each simulation, we measure the policy error as the (absolute)
value of the policy effect identified by SBI relative to the (model-generated) policy effect; i.e.,
ε(γ)(m) =

∣∣∣( γ(m)
γtrue(m) − 1

)
× 100

∣∣∣. In panel (b) of Figure 9, we plot the policy errors of each
ϕ∗(m) inside Φo = {ψ0(m)|ψ0(m) > 0.0} × {ψ1(m)|ψ1(m) > 1.0} × {ω0(m)|ω1(m) < 1.0},
where Φo ⊂ Φ is an octant with ϕo = (0.000, 1.000, 1.000) as origin. We restrict the plot to a
subset of Φo that includes the policy error associated with the benchmark reference region yT (t).

Now, first, note that if the vector of normalization coefficients is identical to the origin, i.e.,
ϕ∗(m) = ϕo, it implies that the outcome path of the simulated reference region, yT (m)(t), and
that of the non-reference region, yC(t), are identical.25 Second, note that if the outcome path
of a simulated reference region, yT (m)(t), and the outcome path of the non-reference region,
yC(t), are similar—in that SBI delivers a vector of normalization coefficients that is inside the
intersection between some neighborhood of the origin, N (ϕo), and Φo —then the policy error

25If ϕ∗(m) = ϕo, then there is no cross-regional heterogeneity of stages and SBI cannot identify policy effects.
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is small; see panel (b) of Figure 9. Indeed, policy errors with values of ε(γ) ≤ 5% emerge
(approximately) for the normalization coefficients ϕ∗(m) ∈ [0.000, 6.776] × [1.000, 1.210] ×
[0.764, 1.000] = N (ϕo)∩Φo, which we depict as the yellow area. Here, note that our benchmark
reference outcome path yT (t) falls in that area with ϕ∗ = (6.592, 1.041, 0.803) and a policy error
ε(γ) = 0.68% (red marker). Third, moving away from the origin increases the policy error.
For example, the simulated reference outcome path yT (m)(t) in panel (a) of Figure 9 implies
ϕ∗(m) = (5.083, 1.200, 0.436) that falls outside N (ϕo) ∩ Φo with a policy error of 36.04%.
Thus, as long as the regional outcome paths are similar enough before policy, the method can
successfully identify the policy effect.26

3.2.2 Confounding Factors

How does the presence of time-varying latent heterogeneity and confounding policy affect the
ability of SBI to recover the true effects of policy? Before addressing this question, we would like
to emphasize that the goal of our method is not to answer what would have been the effect of
the policy under evaluation had confounding factors not been present. That is, we do not pursue
the identification of a “pure” policy effect that nets out the presence of confounding factors.27

Instead, we acknowledge that the effect of the same policy can naturally be conditioned by the
context—e.g., due to the presence of different confounding factors. SBI is designed to measure
these conditional policy effects.

Thus, we are interested in assessing how well SBI can recover the true policy effects that
emerge given different confounding factors. For this assessment, we use the benchmark econ-
epi model in which there were no confounding factors (Section 3.1.1). Then, we introduce
confounding factors (one by one) into the model in order to show how the true policy effects,
which now explicitly depend on the specific set of confounding factors that are present, change
and assess whether SBI can recover these true policy effects. We first introduce time-varying
latent heterogeneity induced by an exogenous time-path of beliefs,28 and then consider additional
confounding policy. The results are presented in Online Appendix O.E. By and large, our results

26In Online Appendix O.D, we further assess how the performance of SBI is affected by the amount of pre-policy
data that is available to the policy evaluator (Roth, 2022).

27Hence, from the perspective of SBI, the presence of confounding factors does not change neither the aim of
the normalization step, which is to reduce the cross-regional differences in the pre-policy determinants—including
latent structural parameters—of the path of the outcome of interest, nor the identification assumption.

28This is one potential source of structural regional divergence, as in Rambachan and Roth (2023). In Online
Appendix O.F, we separately discuss the bounds under which outcome divergence after policy due to structural
parameters (and not to policy) alters the ability of SBI to capture the true policy effects.
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Figure 10: Stage-Based Identification of Policy Effects: A Placebo Test

(a) True Effects (b) Identified Effects (b) Identified vs. True

Notes: These panels show the Placebo diagnosis described in Section 3.3.

are consistent with the insights presented in Section 3.2.1: as long as the regional outcome paths
maintain reasonable similarity in the presence of confounding factors, SBI can claim success.29

3.3 Placebo Diagnosis

Here, we assess whether SBI identifies policy effects when these are actually non-existent. To
conduct this assessment, we use as benchmark the econ-epi model from Section 3.1.1 with the
relevant difference that we do not impose a policy at time tp. Under such scenario, the paths for
the flow of deaths in region C (solid blue) and region T (solid red) are as depicted in panel (a) of
Figure 10. Then, we apply SBI as if there was a policy at some period tp—when there is actually
none. Since the normalization uses only pre-policy data, we obtain the same identification window
over stages as if there was an actual policy, see panel (b) of Figure 10. Note that the normalized
outcome path ỹC(s,ϕ∗) is practically identical to the outcome path yT (t) on the identification
window: the identified counterfactual matches the actual outcome path—which here is also the
outcome path without policy; see panel (c) of Figure 10. That is, SBI correctly identifies that
the policy effects are non-existent—or quantitatively negligible, γ = 0.188%.

3.4 Inference

In empirical applications, the outcome paths of interest typically incorporate a stochastic com-
ponent (e.g., measurement error). When facing such noisy data, we add a smoothing—or trend-
extraction—step that precedes the normalization step in Section 2. The goal is to purge the
observed pre-policy outcome paths of the stochastic fluctuations—of higher frequency than the
object of interest—and conduct inference with them. Precisely, let the outcome paths be

ŷr(t) = yr(t) + ur(t) with ur(t) ∼
i.i.d.

N(0, σ2
u,r), (19)

29In Online Appendix O.D, we further assess how the performance of SBI is affected by the amount of pre-policy
data that is available to the policy evaluator (Roth, 2022).
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Figure 11: Stage-Based Identification of Model-Generated Policy Effects: Inference
(a) Classical Error: (b) Autocorrelated Error:

(a1) Model (a2) Effects (%) (a3) Effects, Pooled Effects (%)

Notes: Panel (a1) shows results with classical error added to the econ-epi model (Section 3.1.1) with {σ2
C , σ

2
T } = {0.008, 0.008}.

Panel (a2) shows the policy effect on bootstrap simulations that deliver roughly the same window length (a confidence set of 10%)
as the benchmark. Panel (a3) shows the unrestricted distribution of policy effects across all bootstrap draws. Panel (b) presents
resultsfor autocorrelated error with {ρC , ρT } = {0.13, 0.13} and {σ2

C , σ
2
T } = {0.008, 0.008}. The purple markers in panels (a2) and

(b) plots the results of conducting SBI without the smoothing step.

for each region r = {C, T }, where ŷr(t) is the outcome path observable to the policy evaluator,
yr(t) is the unobservable true path and ur(t) captures classical measurement error with a normal
distribution with zero mean and variance σ2

u,r.30 In panel (a1) of Figure 11, we show the true pre-
policy outcome paths for the two regions (light solid lines) together with the observed outcome
paths, for one simulation of (19), indicated by the circle markers (region C) and triangle markers
(region T ). Further, we denote by ̂̂yr(t < tp) the estimand of yr(t < tp) obtained by fitting
Chebyshev polynomials of degree 6 to the observed data ŷr(t < tp). Thus, we recover a time-
series of regional errors ur(t) = ŷr(t) − ̂̂yr(t) for t < tp. Then, for each region, we construct
bootstrap draws, ŷr,b(t) with b ∈ B = 1, 000. For each bootstrap draw, we randomly draw a
sequence of errors, ur,b(t < tp), from the region-specific set of errors with replacement, which we
add to the fitted values of the pre-policy path, ̂̂yr(t < tp). In panel (a1) of Figure 11, we show
the median (solid lines) and 90% confidence intervals (dashed lines) of the bootstrap pre-policy
paths ŷr,b(t < tp).

Now, we apply SBI to each bootstrap sample. We first recover an estimand ̂̂yr,b(t < tp),
with which we perform the normalization (picking region T as reference), and then measure the
effect of policy for each bootstrap draw, γb, in the same way as for the original data sample.
The heterogeneity in γb across bootstrap draws arises from both, differences in the policy effect
by stage inside the identification window, γb(s), and differences in the size of the window itself,
Wb(s). For this reason, we focus first on bootstrap simulations of around the mean window size
(with a confidence set of 10%). Two results emerge. First, the normalized outcome paths are
not significantly different from each other—in the stage domain—before policy implementation;

30For this illustration, we use an estimate for σ2
u,r similar to that of our Covid-19 empirical application, cf.

Section 4.1.
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see the non-shaded area in panel (a2), Figure 11.31 Second, the identified policy effects are not
significantly different from the true (model-generated) policy effects defined as the benchmark
without measurement error from Section 3.1.1 (purple line with crossed markers): the mean policy
effect (dashed magenta line) is 20.05%—with a 90 percent confidence interval of [11.60,28.91]—
which is not significantly different from the true effect, 21.60%. The median effect (solid magenta
line) is of similar size, 20.06%. Not restricting the size of the window, we find similar mean policy
effects (20.04%); panel (a3), Figure 11. In Online Appendix O.G we discuss an alternative
approach in which we assume normality of the residuals.

Further, conducting SBI directly on the observed outcome paths, ŷr(t), i.e., without the
smoothing step, implies identified policy effects similar to the true ones, which suggests that
smoothing, which we use in our inference procedure, does not substantially affect the identified
policy effect itself; see purple markers in panel (a2), Figure 11. At the same time, it is important
to acknowledge that, of course, all these results depend on the size of σ2

u,r. Last, we re-conduct
our analysis assuming an stochastic component that is autocorrelated: ur(t) = ρur(t−1)+υr(t)
with ρ ∈ [0, 1] and υr(t) ∼ N(0, σ2

υ,r). To keep the empirical autocorrelation structure of ur(t)—
including potentially temporal differences in the cross-sectional variance, we use a block bootstrap
procedure that increases the sampling weight of preceding error terms in a pre-specified window (5
days) (Carlstein, 1986). Again, SBI can identify policy effects that are not significantly different
from the true ones; cf. panel (b), Figure 11.

4 Applications

We use SBI to assess the effects of nationwide policies on several outcomes: the effects of stay-
home policies on the flow of Covid-19 deaths in Spain (Section 4.1); the effects of the approval
of oral contraceptivies on fertility and women’s college education in the U.S. (Section 4.2); and
the effects of the German reunification on GDP per capita (Section 4.3). Data sources are in
Appendix B. As in the analytical examples of Section 2.3 and the model illustrations of Section 3,
we adopt a linear stage-to-time transformation. Since the level shift parameter ω0 turned out to
be insignificant in all applications, throughout the normalization coefficients are ϕ = [ω1, ψ0, ψ1].

4.1 The Spanish Confinamiento Against Covid-19

In response to the Covid-19 pandemic, on March 14, 2020, the Spanish government announced a
nationwide stay-at-home policy—enacted the following day—which locked down all non-essential

31This is analogous to the “pre-trend” tests typically used—in the time domain—by standard empirical strate-
gies. Arguably, this is a necessary but not sufficient condition as post-policy trends might differ from the pre-policy
trends (Rambachan and Roth, 2023). See our related discussion in Online Appendix O.F.
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workers in all regions of Spain. Indicative of its strictness, the public debate referred to the policy
as confinement. The strictest measures were lifted on May 2 when the first wave of the epidemic
flattened out. Here, we apply SBI to assess the effects of this policy intervention on the daily flow
of deaths attributed to Covid-19. We use two Spanish regions to assess the nationwide policy:
Madrid and an artificially created region Rest of Spain (RoSPA) which is composed of all Spanish
regions without Madrid. We label Madrid as region C and RoSPA as region T .32

We show the daily flow of Covid-19 deaths (per million inhabitants) for Madrid (blue circles)
and RoSPA (red triangles) in panel (a) of Figure 12. In order to mitigate potential measurement
error on the reported deaths, we smooth the pre-policy data using as benchmark Chebyshev
polynomials separately by region as described in Section 3.4. Note that we add a lag parameter
to the policy date, reflecting that a policy that aims at reducing infections will show an effect
on the flow of deaths with a delay. We choose a lag of 12 days, which implies that the policy
is (effectively) implemented on March 27.33 The resulting smoothed daily flow of deaths for
Madrid (solid blue) and RoSPA (solid red) are also in panel (a) of Figure 12. There are clear
differences in the path of the flow of deaths between Madrid and RoSPA. First, one death (per
million inhabitants) is reached in March 08 for Madrid and March 14 for RoSPA. Second, by
March 14 the daily flow of deaths in Madrid is 9.3 deaths (per million inhabitants) whereas this
figure is 1.2 for RoSPA. Furthermore, at the (effective) time of policy implementation, the flow
of deaths is reaching a peak in Madrid at 50 deaths (per million inhabitants), whereas the peak
inRoSPA is smaller at 16 deaths (per million inhabitants) and occurs about a week after that in
Madrid. That is, the flow of deaths starts at an earlier date, it raises more rapidly and reaches a
larger peak in Madrid than in RoSPA.

Normalization. To apply SBI we pick RoSPA as reference region T , and map the (smoothed)
flow of deaths of the region Madrid (yC(t), solid blue circles) onto the flow of deaths of RoSPA
(yT (t), solid red circles) using only pre-policy data. The normalization step delivers a normalized
path for Madrid ỹC(s;ϕ∗) that is not different—up to a minimization error—from that of RoSPA,
yT (t); see panel (b) of Figure 12. We find—with bootstrapped confidence intervals reported in
brackets—ψ0 = -0.14 [-0.24,0.10], ψ1 = 1.21 [1.18,1.26] and ω1 = 0.41 [0.34,0.45] which,
respectively, delays the start, slows down the growth and lowers the peak of daily deaths in
Madrid. A result of our normalization is that Madrid leads the epidemic in Spain. Precisely, the
policy is implemented in Madrid at a later stage than in RoSPA, i.e., sT (tp;ψ∗) = tp < sC(tp;ψ∗).

32The Covid-19 pandemic has generated lots of empirical work assessing public health policies against the
pandemic; see, for example, Fang et al. (2020) for a study of the early mobility restrictions in China and Liu et al.
(2021) for the provision of density forecasts with Bayesian techniques for a panel of countries and regions.

33As reported by the Instituto de Salud Carlos III (ISCIII) it took between twelve to twenty-three days from
infection to death in the first Covid-19 wave in Spain; see isciii.es. Here, we take the lower bound.
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Figure 12: The Effects of the Spanish Confinamiento Against Covid-19

(a) Before Normalization (b) After Normalization (c) Window (Zoom) (d) Effects (%)

Notes: Panel (a) shows the daily Covid-19 deaths for Madrid, region C, and for an artificial region T that
aggregates the rest of Spain (RoSPA). We use a Chebyshev smoother (solid lines) of degree 6. Panel (b) shows
the results of our normalization using region T as reference and mapping the pre-policy outcome paths of region
C onto region T . Panel (c) zooms the identification window. Panel (d) shows the policy effect where γ is defined
in equation (8). We show the mean, median and 90% confidence interval bands from bootstrapped simulations
constructed as described in Section 3.4. We estimate a significant auto-correlation coefficient for the residuals
(ρC = 0.48 ρT = 0.55, respectively) and thus perform block-bootstrap with a block window of 5 days.
Source: Instituto de Salud Carlos III, own calculations.

Hence, the normalization unveils a window in stages W(s;ψ∗) = [tp, sC(tp;ψ∗)] (shaded pink
area) running from March 27 to April 03 in which the stage-leading region, Madrid, is not
yet subject to policy whereas RoSPA is.34 Therefore, under our identification assumption, the
normalized path of Madrid serves as no-policy counterfactual for RoSPA inside W(s;ψ∗).

Policy Effect. The implied policy effects are in panel (d), where we restrict the attention
to the bootstrap simulations within the neighborhood of the median window size (plus/minus
10%). Across these bootstrap draws the (mean) identified total number of lives saved (per
million inhabitants) is

∫
W(s;ψ∗) (ỹC(s;ϕ∗) − yT (s)) ds = 36.92 within approximately one week

after policy implementation, which corresponds to a total amount of lives saved by the policy
in RoSPA of 1,734 during that week. That is, the stay-home policy prevented γ = −24.71%
of the total deaths that would have occurred in RoSPA had the policy not been implemented.
These effects are significant with a 90% confidence interval of [-30.13,-11.70]. The median
effect is similar, -26.79%. Further, considering the policy effect across all bootstrap draws (i.e.,
without restricting the window size) we find similar significant policy effects with mean -22.43%
and median -22.33%. Furthermore, we conduct a placebo diagnosis—assuming implementation
of the policy before its actual implementation—to find that the identified policy effects that
emerge from our method are not significantly different from zero; see Appendix C. Last, redoing
our assessment without the smoothing step implies as point estimate that the policy prevented
25.61% of the deaths in RoSPA during approximately the first week; see Online Appendix O.H.35

34Precisely, the window W(s;ψ∗) runs from the effective policy date in RoSPA (tp = March 27) to the effective
policy date in the stage domain for Madrid, sC(tp;ψ∗) = tp + 7.7 days—exactly, at 6.18pm on April 03.

35For all our applications, we do Placebo tests in Appendix C and robustness to trend-extraction in Online
Appendix O.H.
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Figure 13: The Effects of the 1960 FDA Approval of Oral Contraceptives: Crude Birth Rate

(a) Before Normalization (b) After Normalization (c) Window (Zoom) (d) Effects (%)

Notes: The normalization uncovers that West Virginia leads the rest of the United States (RoUSA) in that it shows the largest cross-
regional stage in terms of crude birth rates at the time of policy implementation. Panel (a) shows the crude birth rate for a region
C which consists of West Virginia (ext.) that also incorporates the next three leading states (Idaho, Nevada and Arkansas). We use
a Chebyshev smoother (solid lines) of degree 5. Panel (b) shows the results of our normalization using region T as reference. Panel
(c) zooms the identification window. Panel (d) shows the policy effect γ(s) as defined in equation (8). We show the mean, median
and 90% confidence interval bands from bootstrapped simulations constructed as described in Section 3.4. We find a non-significant
auto-correlation coefficient for the residuals, ρC = 0.31 ρT = 0.18, respectively.

4.2 The 1960 FDA Approval of Oral Contraceptives in the U.S.

In 1960, the first hormonal birth control pill (oral contraceptive) was approved in the U.S. by
the Food and Drug Administration (FDA) for use by women above the age of majority. In a
seminal paper, Goldin and Katz (2002) use state-level variation in the age of majority in order
to assess schooling and career choices of women in that threshold.36 Here, since SBI does not
require non-nationwide policy for identification, we assess the effects of the nationwide (federal)
approval of the pill on the entire population of adult women. We focus on two outcomes: the
crude birth rate and the share of women with completed college (by age 25). The crude birth
rates shows an inverted-U shape pattern typically labeled as the baby boom and baby bust; cf.
panel (a), Figure 13. The birth rate in the stage-leading region, West Virginia (ext.), peaks in
the second half of the 1940s and in 1960 is already busting and close the 1940 levels. Instead,
the birth rate in the rest of the U.S. (RoUSA) peaks in the second half of the 1950s at a lower
level and has barely started to decline by year 1960. In terms of women’s college education, the
proportion of women of age 25 with completed college has more than tripled from 8% in 1950
to 26% in 1970 in the stage-leading region, Washington DC (ext.); panel (a), Figure 14. In the
RoUSA, this figure shows a larger relative increase from 2% in 1950 to 15% in 1970.

Normalization. In terms of crude birth rates, picking RoUSA as reference region T , we apply
the normalization by mapping the pre-policy birth rates of West Virginia (ext.) (yC(t), solid
blue circles) onto the pre-policy crude births rates of the RoUSA (yT (t), solid red circles). This
results in a normalized path for West Virginia (ext.) ỹC(s;ϕ∗); see panel (b), Figure 13. The
normalization coefficients are ψ0=1.80 [1.79,1.83], ψ1=1.21 [1.20,1.56] and ω1=0.91 [0.90,0.93]

36Further, Bailey (2006) uses state-level variation in the age of majority to assess the effects of the pill on the
timing of first births and women’s labor force participation. Greenwood and Guner (2010) use an equilibrium
matching model to assess the effects of oral contraceptives on premarital sex and how it is perceived in society.
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Figure 14: The Effects of the 1960 FDA Approval of Oral Contraceptives: Women College

(a) Before Normalization (b) After Normalization (c) Window (Zoom) (d) Effects (%)

Notes: Our normalization uncovers that Washington D.C. leads the rest of the United States (RoUSA) in that it shows the largest
cross-regional stage in terms of women’s college completion at the time of policy implementation. Panel (a) shows the crude birth
rate for a region C which consists of Washington D.C.(ext.) that also incorporates the next three leading states (Massachusetts,
Colorado and Connecticut). We use a Chebyshev smoother (solid lines) of degree 5. Panel (b) shows the results of our normalization
using region T as reference. Panel (c) zooms the identification window. Panel (d) shows the policy effect γ(s) as defined in equation
(8). We show the mean, median and 90% confidence interval bands from bootstrapped simulations constructed as described in
Section 3.4. We find a non-significant auto-correlation coefficient for the residuals, ρC = 0.21 ρT = 0.64, respectively.

which, respectively, delays, slows down the growth, and lowers the peak of the baby boom for
the leading region. The normalization unveils a window of stages W(s;ψ∗) = [tp, sC(tp;ψ∗)]
(shaded pink area) in which West Virginia (ext.) is not subject to policy whereas RoUSA is.
Analogously, for the case of women’s college education, we choose RoUSA as reference region
T and map the pre-policy path of Washington DC (ext.) (yC(t), solid blue circles) onto that
of RoUSA (yT (t), solid red circles); panel (b), Figure 14. The normalization coefficients are
ψ0=-5.65 [-12.22,0.32], ψ1=1.62 [1.28,1.79] and ω1=0.85 [0.75,0.87] which generates a window
of stages in which Washington D.C. (ext.) is not subject to policy, whereas RoUSA is.

Policy Effect. We zoom the identification window for curde birth rates and women’s college
education in panel (c) of, respectively, Figure 13 and Figure 14. We find that access to the pill
significantly reduced by γ = -9.38% the number of births (per 10,000 inhabitants) that would
have otherwise occurred without the pill; panel (d), Figure 13. The median effects are similar:
a -9.39% reduction. Analogously, we find that access to pill significantly increased the share of
women with completed college at age 25 by γ = 21.73% during the decade that followed the
policy compared to what would have occurred without the pill; panel (c) and (d), Figure 14. The
median effects are almost identical, γ = 20.69%.

4.3 The German Reunification

In 1990, after the fall of the Berlin wall in 1989, the German Democratic Republic was abolished
and integrated fully into the Federal Republic of Germany. Given large differences between the
West German states and the East German states, the political and economic reunification came at
some cost—the size of which is subject to debate. Abadie et al. (2014) studies the consequences
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Figure 15: The Effects of the German Reunification on GDP per capita

(a) Before Normalization (b) After Normalization (c) Window (zoomed) (d) Effects (%)

Notes: Panel (a) shows the GDP per capita of region C, Hessen, that leads West Germany and a region T that aggregates the rest
of West Germany. We use a Chebyshev smoother (solid lines) of degree 3. Our normalization using region T as reference is in panel
(b). Panel (c) zooms the identification window. Panel (d) shows the policy effect γ(s) as defined in equation (8), with mean, median
and 90% confidence interval bands from bootstrapped simulations, see Section 3.4. We find significant auto-correlation coefficients
for the residuals (ρC = 0.78 and ρT = 0.74, respectively) and thus perform block-bootstrap with block windows of 3 years.

for West Germany forming a counterfactual path for GDP per capita using Synthetic Control
Methods (SCM). Here, we apply SBI to the same context, and construct a counterfactual for the
evolution of GDP per capita in West Germany had it not been for the reunification. In contrast
with Abadie et al. (2014), our counterfactual is constructed using the GDP per capita paths
of West German regions only. We focus on Hessen—which our normalization uncovers as the
stage-leading region—and an artificially created region for Rest of West Germany (RoGER) which
is composed of all West Germany regions excluding Hessen; see panel (a), Figure 15.

Normalization. Picking RoGER as reference region, we apply the normalization by mapping the
pre-policy GDP per capita of Hessen (yC(t), solid blue circles) onto that of RoGER (yT (t), solid
red circles). This results in a normalized path for Hessen ỹC(s;ϕ∗); see panel (b) of Figure 13. The
normalizing parameters are ψ0 =1.95 [1.94,1.95], ψ1 =1.24 [1.21,1.41] and ω1 =1.00 [1.00,1.01].
The normalization opens a window in stages, W(s;ψ∗) = [tp, sC(tp;ψ∗)] (shaded pink area), of
approximately seven years in which Hessen is not subject to the German reunification but RoGER
is. Therefore, under the identification assumption, the normalized path for Hessen provides a
no-policy counterfactual for RoGER inside that window.

Policy Effect. We zoom in on the identification window for GDP per capita in panel (c) and
the associated policy effects in panel (d) of Figure 13. We find that the German reunification
significantly reduced the GDP per capita of RoGER by γ = 3.51% compared to what it would
have been without the reunification. The median policy effects are similar, γ = 3.79%. In the
previous effects, the window size is restricted to be in the neighborhood of the median window
size (plus/minus 10%, comprising a total of 541 bootstrap samples). Again, not restricting the
window size, we also find significant effects of similar size γ = 3.37%. Further, without the
smoothing step, the German reunification generates a reduction of 4.82% in the GDP per capita
of RoGER, which is not significantly different from our mean bootstrapped effects.
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5 Further Discussion

We discuss heterogeneity of policy effects in Section 5.1 and non-nationwide policy in Section 5.2.

5.1 Heterogeneous Policy Effects

To study heterogeneous policy effects, we focus on the nationwide confinamiento against Covid-
19 in Spain (Section 4.1). The idea is to use the regional paths of Covid-19 deaths—which
might differ by stage at the time of policy implementation—in order to measure policy effects
by stage. Since Madrid leads all other regions, we pick Madrid as reference. In panel (a) of
Figure 16, we show the stage at which policy implementation occurs for each region emerging
from separately mapping the pre-policy time path of each region onto that of Madrid. We find
substantial heterogeneity in stages at the time of policy implementation. For example, policy
arrives to the region of Murcia (MUR) approximately twelve days earlier than the stage at which
Madrid received the policy whereas the Basque Country (PVC) precedes Madrid for two days. In
addition to the “one-control-many-treatments” approach that we discuss in this Section, we also
present an alternative “many-controls-one-treatment” approach in Online Appendix O.I where we
exploit the fact that for non-stage leading regions multiple candidate control regions potentially
exist.

Our main result is that there are heterogeneous effects by stage—hence, by region. We plot
these effects (yellow markers) in panel (b) of Figure 16.37 The policy effects are larger for regions
that are at less advanced stages at the time of policy implementation. For example, in MUR, the
policy prevented 65% of the deaths that would have otherwise occurred in MUR in a scenario
without policy. In contrast, in PVC, which is closest to Madrid in terms of stages at the time
of policy implementation, the policy prevented 12% of the deaths that would have otherwise
occurred in PVC in a scenario without policy. We reach similar insights from hybrid regions
constructed from the power set of all regions excluding Madrid, i.e., a total of 216 − 1 = 65, 535
hybrid regions,38 that we separately map to Madrid. We report the policy effects (tiny purple
markers) associated with each of these hybrid regions in panel (b) of Figure 16. Again, the
policy effects are systematically larger for regions that are at less advanced stages at policy
implementation. Further, note that many hybrid regions enter policy implementation at the same
stage and, hence, there is potential heterogeneity in policy effects by stage. Next, we explore
this cross-regional heterogeneity by stage as means to perform additional statistical inference.

37As per our Theorem 1, note that we can interpret the reported policy effects as those that would occur to
the control (stage-leading) region had the policy been implemented at an earlier stage in that region or as those
that actually occur to the treated region at the time of policy implementation.

38A hybrid path between regions A and B is the population weighted sum of the flow of deaths per capita.
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Figure 16: Heterogeneous Policy Effects by Stage, Confinamiento against Covid-19 in Spain

(a) Normalization to Control (b) Policy Effect, γ (c) Policy Effects (d) Interim Policy Effect, γ(s)
(regional stage at tp) (by stage) (stage: March 20th) (by day after tp)

Notes: Panel (a) shows the stage at which policy implementation occurs after separately mapping the pre-policy time path of each
region onto that of Madrid. We have a total of 17 region (comunidad autonoma) names: Andalucia (AND), Aragon (ARA), Asturias
(AST), Baleares (BAL),Canarias (CAN), Cantabria (CNT), Castilla-La Mancha (CLM), Castilla y Leon (CLL), Catalunya (CAT),
Ceuta(CEU), Valencia (VAL), Extremadura (EXT), Galicia (GAL), Madrid (MAD), Melilla (MEL), Murcia (MUR), Navarra (NAV),
Pais Vasco (PVC), La Rioja (RIO), in addition to artificial region Rest of Spain (RoSPA). In panel (b), we report the policy effects γ
(see Section 2.2) by region where the (yellow) marker size is the flow of deaths at the time of policy implementation. We also report
the policy effects for each (hybrid) region constructed for each element in the the power set 216 −1 of regions (tiny purple markers) in
panel (b). The reported 90% CI’s by stage s are constructed from the distribution of identified policy effects for all regions, including
hybrids, where policy implementation occurs at the same stage s defined in rolling windows of 2 stages (or days in the stage domain
of Madrid). We exclude the top 5% and bottom 5%. In panel (c) we plot the distribution of policy effects dated March 20th showing
that the identified policy effect for RoSPA, -24.17%, falls within the 95% confidence interval [-34.65,-19.73] generated from all regions
that enter policy at the same stage as RoSPA. In panel (d) we show the interim effect γ(s) (see Section 2.2) by stage for day 1, day
5 and day 10 after policy implementation.

In particular, in panel (c), we plot the distribution of the identified policy effects for all regions
(and hybrids) that enter policy at the stage in which Madrid is on March 20th (plus/minus one
day), which purposefully includes RoSPA, i.e., our benchmark treatment in Section 4.1. We find
reassuring that the identified policy effect of RoSPA is within 95% confidence interval [-34.65,-
19.73] generated from all regions that enter policy at the same stage as RoSPA.

Finally, what drives the heterogeneous effects across stages? In addition to the size of the
identification window, differences in policy effects can emerge within the same horizon into the
policy. Indeed, the policy effects one day into the policy (i.e inside the identification window)
vary in a U-shaped fashion across stages; see the magenta markers in panel (d), Figure 16. There
is also cross-stage heterogeneity in effects after five (blue markers) or ten days (yellow markers)
into the policy. Within panel (d) one can track the policy effect changes by region and stage.
For example, consider the region of Canary Islands; the effect grows considerably from 2.5% in
day 1 after policy implementation, to 6.0% in day 5, and 7.9% in day 10. The effect does not
grow as much for RoSPA; from 1.9% in day 1 after policy implementation, to 2.5% in day 5.

5.2 Non-Nationwide Policy

Consider a scenario with two regions where one region, e.g., T , receives the policy intervention at
period tp and the other region, e.g., C, is never treated. In order to identify the policy effects, we
need to modify the set on which the normalization is conducted. Picking region T as reference,
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Figure 17: The Effects of the German reunification: Stage-Based Identification (SBI) and Syn-
thetic Control Methods (SCM)

(a) Cumulative Effect γ(s) (b) Instantaneous Effect γ′(s)

Notes: The outcome variable is real GDP per capita in 2002 USD. To ease the comparison with Abadie et al. (2014), in panel (b),

we report the instantaneous policy effects (abusing some notation), γ′(s) = yT (s)−ỹC(s)
ỹC(s)

. The 90% CIs correspond to the U.S.

we minimize (5) subject to (3) and

C(s) =

 [t0, tp] if r = T
[sC(t0;ψ∗), sC(tf ;ψ∗)] if r = C

(20)

for r = {C, T } where t0 denotes the first period of observed data and tf the last. Note that
since only region T is treated, the identification window is,

W(s;ψ∗) =

 [tp, sC(tf ;ψ∗)] if sC(tf ;ψ∗) > tp

∅ if sC(tf ;ψ∗) < tp
(21)

Hence, the policy effect can be estimated if the stage of normalized series evaluated at the last
period of observed data with, sC(tf ;ψ∗), falls beyond the stage in which the treated region
enters policy. Otherwise, the treated region leads throughout—i.e., the identification window is
empty. In Online Appendix O.J we illustrate such a scenario in the context of the econ-epi model
framework.

Here, we exemplify how to use SBI in such a case by re-conducting our assessment of the
German reunification. We pair West Germany with the United States and an aggregate consisting
of the sample of OECD countries (that excludes Germany) studied in Abadie et al. (2014). Hence,
this exercise also serves as means for comparison between SBI and SCM. We pick West Germany
as reference region to conduct SBI. Our main finding is that the effects that emerge from using
SBI either with the U.S. or the OECD aggregate are not significantly different from those obtained
using SCM. In particular, the instantaneous policy effects imply a loss of income per capita for
West Germany due to the reunification of 10.51% when compared to the United States and
of 14.13% when compared to the OECD in 2003, which are not significantly different from the
10.04% reported in Abadie et al. (2014) for the same year.
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6 Conclusion

We provide a new identification method for policy analysis, Stage-Based Identification (SBI). By
uncovering heterogeneity in the stage at which policy is implemented across regions, our method
allows for the analysis of nationwide policy, which expands the range of policies that can be
empirically evaluated. We show the ability of SBI to accurately identify policy effects in various
model simulations where the true effect is known, while also acknowledging limitations to our
method’s performance. Further, we show how SBI can identify heterogeneous effects of policy
across stages and be applied to the assessment of non-nationwide policy.

References

Abadie, A. (2005). Semiparametric Difference-in-Differences Estimators. Review of Economic Studies,
72(1):1–19.

Abadie, A., Diamond, A., and Hainmueller, J. (2010). Synthetic Control Methods for Comparative Case
Studies: Estimating the Effect of California’s Tobacco Control Program. Journal of the American
Statistical Association, 105(490):493–505.

Abadie, A., Diamond, A., and Hainmueller, J. (2014). Comparative Politics and the Synthetic Control
Method. American Journal of Political Science, 59(2):495–510.

Abadie, A. and Gardeazabal, J. (2003). The Economic Costs of Conflict: A Case Study of the Basque
Country. American Economic Review, 93(1):113–132.

Adam, K., Marcet, A., and Beutel, J. (2017). Stock price booms and expected capital gains. American
Economic Review, 107(8):2352–2408.
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A Proof of Theorem 1

We first formalize the alternative mapping and discuss the equivalence intuitively. Stages for region C are now
redefined as s = tC(s) = t. Stages for region T are obtained by mapping the outcome path yT (t) onto yC(t)
using pre-policy data, using the modified (to region T ) expressions in (2) and (3). The corresponding outcome
path for region C is ỹC(s) = yC(t = s). The normalized path of T is denoted by ỹT (s, ϕ̄).

Region C (while now the reference region) is still the leading region, and we obtain the identification window
W(s; ψ̄∗) =

[
sT (tp; ψ̄∗), tp

]
, where ψ̄∗ ( ̸= ψ∗) is the coefficient vector that is obtained when choosing C as

reference region. Inside this window, the policy effect is obtained by relating the normalized path ỹT (s, ψ̄∗)
(which is treated) to the observed path of region C (which is untreated).

Going back to our example, we show the relationship between the two alternative mappings in panel (a) of
Figure A.1. Using region T as reference yields the identification window W(s;ψ∗) = [tp, sC(tp;ψ∗)] (pink shaded
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area), whereas using region C as reference yields the identification window W(s; ψ̄∗) =
[
sT (tp; ψ̄∗), tp

]
, which

corresponds to
[
s−1

C (tp;ψ∗), tp
]

(purple shaded area). The associated policy effects are shown in panel (b) of
Figure A.1.

Figure A.1: Policy Effects with Alternative Reference Region

(a) After Normalization (b) Policy Effects (%)

Notes: In panel (b), we report the policy effects γ(black markers) together with the interim cumulative effects of policy, γ(s), as
defined in Section 2.2.

In the context of the example, the policy effects obtained under the two alternative mappings are identical,
assuming that the normalization holds exactly39, because there are no level differences across regions at t0, i.e.,
ω0 = 0. As this insight holds generally, we summarize it in the following

Lemma 1. If ω⋆
0 = 0, then the choice of the reference region is irrelevant for the policy effect, i.e.,

γ =

∫
W(s;ψ∗) (yT (s) − ỹC(s;ϕ∗)) ds∫

W(s;ψ∗) ỹC(s;ϕ∗)ds
=

∫
W(s;ψ̄∗)

(
ỹT (s; ϕ̄∗) − yC(s)

)
ds∫

W(s;ψ̄∗) yC(s)ds
. (A.1)

Proof. We start with the expression on the RHS of (A.1), i.e., the policy effect expressed with region C as the
reference region, and go on to show that it is equal to the LHS, i.e., the policy effect expressed with region T as
reference region.

For the following exposition, we write it as if the normalization holds exactly. If the minimization does not
give exact normalization, then the expressions hold approximately. Thus, when choosing T as reference we obtain

yT (s) = ỹC(s,ϕ∗) = ω∗
1yC(tC(s,ψ∗)), (A.2)

where s is region T -time. Likewise, when choosing C as reference we obtain

yC(s) = ỹT (s, ϕ̄∗) = ω̄∗
1yT (tT (s, ψ̄∗)), (A.3)

where s is region C-time.

With the above we can thus replace ỹT (s; ϕ̄∗) and yC(s) in the RHS expression of (A.1). In particular, note
that ỹT (s; ϕ̄∗) = ω̄∗

1yT (tT (s, ψ̄∗)) using the definition of the normalization. Then, note that

yC(s) = ω̄∗
1yT (tT (s, ψ̄∗)) = ω̄∗

1 ỹC(tT (s, ψ̄∗),ϕ∗).

39Otherwise, the two alternative mappings yield the same policy effect up to a minimization error.
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Plugging in those two expressions into the RHS of (A.1), we thus obtain

∫
W(s;ψ̄∗)

(
ỹT (s; ϕ̄∗) − yC(s)

)
ds∫

W(s;ψ̄∗) yC(s)ds
=

∫
W(s;ψ̄∗)

(
ω̄∗

1yT (tT (s, ψ̄∗)) − ω̄∗
1 ỹC(tT (s, ψ̄∗),ϕ∗)

)
ds∫

W(s;ψ̄∗) ω̄
∗
1 ỹC(tT (s, ψ̄∗),ϕ∗)ds

=

∫
W(s;ψ̄∗)

(
yT (tT (s, ψ̄∗)) − ỹC(tT (s, ψ̄∗),ϕ∗)

)
ds∫

W(s;ψ̄∗) ỹC(tT (s, ψ̄∗),ϕ∗)ds

=

∫
W(s;ψ∗) (yT (s) − ỹC(s,ϕ∗)) ds∫

W(s;ψ∗) ỹC(s,ϕ∗)ds
, (A.4)

which is equal to the LHS of (A.1). The last step above follows from writing the integral that is taken over
s in terms of s = tT (s, ψ̄∗) directly, taking into account that the two mappings are explicitly linked because
s−1

C (t;ψ∗) = sT (t; ψ̄∗) for any t ∈ T (e.g., t = tp)—that is, the mapping T to C undoes the mapping C to T ,
and vice versa.40

More generally, if ω∗
0 ̸= 0, i.e., if there is a non-zero level difference between the regional outcome paths, then

we can establish equivalence of the identified policy effects after taking into account the change of the reference
unit. Given the interpretation as measuring the effect on the treated region, our preferred way to measure policy
effects is in units of the treated region T . Therefore, we adjust the numerator in the RHS of (A.1) by subtracting
the level shifter ω0 in the denominator to obtain

Lemma 2. If ω⋆
0 ̸= 0, then the choice of the reference region is irrelevant for the policy effect after expressing

the policy effect in an adjusted form when using region C as the reference unit, i.e.,

γ =

∫
W(s;ψ∗) (yT (s) − ỹC(s;ϕ∗)) ds∫

W(s;ψ∗) ỹC(s;ϕ∗)ds
=

∫
W(s;ψ̄∗)

(
ỹT (s; ϕ̄∗) − yC(s)

)
ds∫

W(s;ψ̄∗) yC(s)ds − ω̄∗
0

. (A.5)

Proof. Analogous to above, note that

yT (s) = ỹC(s,ϕ∗) = ω∗
0 + ω∗

1yC(tC(s,ψ∗)),

where s is region T -time. Likewise, when choosing C as reference we obtain

yC(s) = ỹT (s, ϕ̄∗) = ω̄∗
0 + ω̄∗

1yT (tT (s, ψ̄∗)),

where s is region C-time.

With the above we can thus replace ỹT (s; ϕ̄∗) and yC(s) in the RHS expression of (A.5). In particular, note
that ỹT (s; ϕ̄∗) = ω̄∗

0 + ω̄∗
1yT (tT (s, ψ̄∗)). Then, note that

yC(s) = ω̄∗
0 + ω̄∗

1yT (tT (s, ψ̄∗)) = ω̄∗
0 + ω̄∗

1 ỹC(tT (s, ψ̄∗),ϕ∗).

40To see this, note that for any t ∈ T (e.g., t = tp), the stage function in the mapping C to T , sC(t;ψ∗) = s = t,
injects t into t whereas in the mapping T to C the function sT (t; ψ̄∗) = s = t injects t into t.
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Plugging in those two expressions into the RHS of (A.5), we thus obtain∫
W(s;ψ̄∗)

(
ỹT (s; ϕ̄∗) − yC(s)

)
ds∫

W(s;ψ̄∗) yC(s)ds − ω̄∗
0

=

∫
W(s;ψ̄∗)

(
ω̄∗

1yT (tT (s, ψ̄∗)) − ω̄∗
1 ỹC(tT (s, ψ̄∗),ϕ∗)

)
ds∫

W(s;ψ̄∗) ω̄
∗
1 ỹC(tT (s, ψ̄∗),ϕ∗)ds

=

∫
W(s;ψ∗) (yT (s) − ỹC(s,ϕ∗)) ds∫

W(s;ψ∗) ỹC(s,ϕ∗)ds
.

Lemmas 1–2 thus prove Theorem 1. □□

In Online Appendix O.K, we show an alternative Lemma for the case of ω∗
0 ̸= 0, which does not resort to the

level shifter ω0. In this Lemma 3, we establish equivalence of the identified policy effects for a slightly modified
policy effect that works with adjusted regional time paths paths, where each path is expressed relative to its value
at the policy date tp in region T -time.

B Data

In this Appendix, we discuss the data construction and sources of our empirical applications conducted in Section 4.

Covid-19 Application. For the assessment of the national lockdown against the first wave of Covid-19 in
Spain in Section 4.1, we use Covid-19 deaths regional series provided by the Ministerio de Sanidad. Data from
the Ministerio de Sanidad can be found under the following link: www.mscbs.gob.es. All values in figure 12
are expressed per million inhabitants of each region, with Spain having 47 million inhabitants and Madrid 6.6
million.41

Oral Contraceptives Application. For our assessment of the effects of the 1960 FDA approval of oral con-
traceptives on fertility and women college education in Section 4.2, we use state-level data on crude brith rates
and the share of women with completed college of age 25. First, To construct the crude birth rate (by state),
we divide total number of births in a given year by the respective population. Birth counts by state from 1939
to 2007 are provided by IPUMS NHGIS, Vital Statistics: Natality and Mortality Data. We use population data
provided by the U.S. Census Bureau annual estimates. Second, to measure the share of women of a certain
age with college attainment we use decennial CENSUS data from IPUMS starting in 1940 up to 1980. In the
absence of information on the year of graduation, we construct the historical series by using cohort information
by CENSUS year. For example, when using CENSUS data for 1960, the share of college women of age 25 in 1959
will be the share of a woman age 26 who reported (already) having attained college by 1960.42 After computing
the historical series per CENSUS year we compute the average across CENSUS series.

German Reunification Application. To assess the effects of the German reunification on the income per capita
of West Germany in Section 4.3, we retrieve 1970-2007 GDP data for West Germany and the respective price index
from the Destatis portal of the Statistisches Bundesamt. Our GDP measure of West Germany does not include

41We exclude Galicia due to the fact that we find positive (yet, non-significant) effects of the policy on the flow of deaths.
42Later completion and death could hinder the precision of our measure, however after comparing the historical series from various

census years, the measure does not seem to be suffering from these problems
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West Berlin, and our results do not change significantly when including West Berlin. GDP data, inflation, PPP
deflators and population for OECD countries for 1970-2007 is taken from the OECD data portal OECD.STAT.
The list of countries that comprises our hybrid Rest of OECD (RoOECD) is the same as the one chosen in
Abadie et al. (2014), namely Australia, Austria, Belgium, Denmark, France, Greece, Italy, Japan, Netherlands,
New Zealand, Norway, Portugal, Spain, Switzerland, United Kingdom and the United States.

C Placebo Diagnosis for our Applications

Here, we conduct further inference using a placebo diagnosis in each of the applications of Section 4. That is, we
show the policy effects that emerge from our method if we conduct the normalization at a some period before the
actual policy took place. Precisely, for the placebo, we assume that the stay-home policy was imposed on March
10 2020, i.e., about two weeks earlier than its actual implementation; the pill was introduced 5 years before its
actual market release; and the German reunification occurred 5 years before the actual reunification date. SBI
will survive this test if it identifies policy effects that are not significantly different from zero. We find that this
is the case for each application; see Figure C.2.

Figure C.2: Stage-Based Identification of Policy Effects: Placebo Diagnosis

(a) Spanish Confinamiento: Daily Deaths (b) Effects of the Pill: Crude Birth Rate
(a1) Window (Zoomed) (a2) Policy Effects (%) (b1) Window (Zoomed) (b2) Policy Effects (%)

(c) Effects of the Pill: Women’s College (d) German reunification: GDP p.c.
(c1) Window (Zoomed) (c2) Policy Effects (%) (d1) Window (Zoomed) (d2) Policy Effects (%)

Notes: In panel (a), we assume that the stay-home policy was imposed two weeks earlier than its actual effective date, March 10
2020; in panels (b) and (c), we assume that the the pill was introduced 5 years before its actual market release; in panel (d), we
assume that the German reunification occurred 5 years before the actual reunification date.
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