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Abstract. A random variable is difference-form decomposable (DFD) if it may be

written as the difference of two i.i.d. random terms. We show that densities of such

variables exhibit a remarkable degree of structure. Specifically, a DFD density can

be neither approximately uniform, nor quasiconvex, nor strictly concave. On the

other hand, a DFD density need, in general, be neither unimodal nor logconcave.

Regarding smoothness, we show that a compactly supported DFD density cannot

be analytic and will often exhibit a kink even if its components are smooth. The

analysis highlights the risks for model consistency resulting from the strategy widely

adopted in the economics literature of imposing assumptions directly on a difference

of noise terms rather than on its components.
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1. Preliminaries

1.1 Introduction

In a large variety of economic models, uncertainty enters the framework in the form

of the difference of two i.i.d. random variables, say ε1 and ε2. For instance, in a rank-

order tournament á la Lazear and Rosen (1981), individual performance is the sum

of input and some randomness, and the winner is determined by comparing levels

of individual performance across contestants. The economic prediction (or power

of statistical test) may then crucially depend on the distribution of the difference

of the noise terms, ε1 − ε2. This is similarly the case in a variety of other settings,

including contests (Hirshleifer, 1989; Che and Gale, 2000), models of location choice

(Rosen, 1979; Roback, 1982; Moretti, 2010), vertical differentiation (Lin, 1988),

probabilistic voting (Lindbeck and Weibull, 1987; Glaeser et al., 2005), random

utility (Becker et al., 1963; Goeree et al., 2005), and paired comparisons (Thurstone,

1927; Bradley and Terry, 1952). For the applied economist entrusted with the

analysis of such models, it may appear natural and convenient to impose assumptions

directly on the distribution of the difference rather than on the distribution of the

components ε1 and ε2. This approach, however, is not entirely innocuous. Indeed,

as will be discussed, certain familiar probability distributions, such as the uniform

distribution, simply cannot be represented as the difference of two i.i.d. random

variables. However, this fact is rarely mentioned and sometimes even neglected in

economic modeling. Thus, there is the risk of ending up with an inconsistent set of

assumptions. At the same time, there does not seem to be a single reference that

offers help on this issue.1

The present paper aims at providing an initial, systematic, and accessible study

of the class of random variables that correspond to the difference of two i.i.d. ran-

dom variables. We refer to such random variables as difference-form decomposable

(DFD). It turns out that density functions of DFD random variables exhibit a re-

1The related literature will be reviewed later in this section.
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markable degree of structure. Starting from the important special case of the uniform

distribution, the analysis identifies several broad classes of distributions that have

the property of not being DFD. We show that random variables with an approxi-

mately uniform, quasiconvex, or strictly concave density function cannot be DFD.

The observation that a strictly concave density never corresponds to a DFD random

variable may be of particular interest. To prove this necessary condition, we recycle

the argument underlying Pólya’s (1949) suffi cient condition for a function to be the

characteristic function of a real-valued random variable. To illustrate the applica-

bility of this result, we note that the strictly concave beta density is never DFD. We

also show that other properties that may be expected from a DFD density, such as

unimodality or logconcavity, need not hold in general (but do so if the components

possess these properties).

To study the smoothness properties of DFD densities, we analyze the limit be-

havior of characteristic functions using a theorem of Erdélyi (1955). Results are

obtained for compactly supported densities. Specifically, it turns out that any con-

tinuously differentiable DFD density necessarily vanishes at the lower and upper

boundaries of its support interval. A similar relationship holds for the higher deriv-

atives. Going to the limit, we find that a compactly supported DFD density is never

analytic, i.e., there must be at least one point in its support interval where the den-

sity cannot be approximated arbitrarily well by its Taylor series. This necessary

condition is easy to apply. E.g., we use it to show that neither the beta distrib-

ution with integer parameter nor the raised cosine distribution can be DFD. We

also point out that a DFD density will often exhibit kinks even if its difference-form

components are smooth.

We go on and explore suffi cient conditions for difference-form decomposability.

We note that any random variable with the property that the square root of its

characteristic function is a positive definite function is DFD. An example are in-

finitely divisible distributions. This suffi cient condition is strong enough to allow
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the computation of the (identical) densities of the components ε1 and ε2 from a

given distribution of the difference ε1 − ε2. Several extensions are offered as well.

Specifically, we discuss distributions with finite support, functional inequalities (i.e.,

inequalities that restrict the values of DFD densities), ratio-form decomposability,

and correlated noise terms. The extension regarding ratio-form decomposability

sheds light, in particular, on Jia’s (2008) characterization of the Tullock contest

technology.

For the reader’s convenience, the results previewed above will be formulated

without reference to the complex numbers. In particular, the characteristic function

is generally expressed as a cosine transform, which is an ordinary integral of a

real-valued integrand. As we believe, this helps intuition but also simplifies the

application of our results.

1.2 Economic motivation

Despite Lazear and Rosen (1981) having noted the impossibility of an i.i.d. difference

being uniform,2 this fact is rarely discussed in the literature. In fact, screening the

economics literature on the before-mentioned applications where difference-form de-

composability emerges quite naturally, we found numerous papers assuming uniform

differences. Very few of those papers, however, are explicit about the problem.

Working with an inconsistent set of assumptions is risky not only because the

conclusions may become shaky but also because the intuitive interpretation of the

model may become diffi cult. In a standard tournament, for instance, assuming that

ε1 − ε2 is uniform would render the marginal probability of winning independent of

the opponent’s effort, and therefore blur the borderline between relative performance

evaluation and individual contracts.3 Similarly, in a model of location choice or in a

random utility model, assuming a non-DFD stochastic difference of the utility of two

2Lazear and Rosen (1981, p. 860) wrote “Since g is symmetric and nonuniform [...]”, where g is
the distribution of the difference between the two (worker-idiosyncratic) i.i.d. random components.
See also Drugov and Ryvkin (2022, fn. 3).

3Several recent contributions have stressed the salience of the shape of noise for economic
predictions (e.g., Morgan et al., 2018; Drugov and Ryvkin, 2020, 2022; Morgan et al., 2022).
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options would be at odds with the usual understanding that individual choices have

a well-defined utility level after the resolution of uncertainty. Finally, a statistical

test might be biased if the difference of two noise terms is assumed to follow a

distribution that is not DFD.

In those and other economic models, the question of whether a density is DFD

naturally emerges. It thus seems important to understand which random variables

can be represented as the difference of two i.i.d. terms, and how stochastic properties

of the components relate to properties of the difference term.

1.3 Related literature

We are not aware of any work that tried characterizing the set of DFD distributions.

Notwithstanding, almost any treatment of the topic of characteristic functions, our

main tool of investigation, touches upon the matter (see, e.g., Linnik, 1964, or

Lukacs, 1970). Feller (1970) explains how symmetrization helps avoiding messy

arguments in probability theory, e.g., because the tails of the distribution functions

of a random variable and its symmetrization are of comparable magnitude. The

celebrated 123 Theorem by Alon and Yuster (1995) offers inequalities satisfied by

DFD distribution functions and is, therefore, complementary to our investigation of

DFD densities.

The indecomposability of the continuous uniform distribution dates back to M.

Puri and Sen (1968, p. 970), who thank Basu and P. Puri for the short proof. We

have not seen attempts to generalize this result, however. Our criterion that strict

concavity of the density is incompatible with being DFD is related to Pólya’s (1949)

suffi cient condition for being a characteristic function (see also Tuck, 2006).

In optics and crystallography, the task of recovering a measure from its sym-

metrization or, equivalently, from the modulus of its characteristic function, is known

as phase retrieval. This problem arises in optics because the measurement of a dif-

fracted wavefront (e.g., resulting from a beam of laser light sent through a gap) gives

only the intensity of the wave form rather than its complex amplitude (Patterson,
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1935; Walther, 1963; Rosenblatt, 1984). In related work, Giraud and Peschanski

(2006) and Gori (2017) studied nonnegative functions whose Fourier transform is

likewise nonnegative.4

1.4 Overview of the paper

The remainder of this paper is structured as follows. In Section 2, we introduce

the notion of difference-form decomposability. Section 3 deals with conditions on

the shape of DFD densities. Section 4 discusses smoothness conditions. Section

5 derives suffi cient conditions for difference-form decomposability and a formula

for the construction of the difference-form component. Section 6 offers extensions.

Section 7 concludes. Technical proofs have been relegated to an Appendix.

2. Difference-form decomposability

In this section, we introduce the class of DFD distributions. We will provide ba-

sic definitions in Subsection 2.1, review the necessary background on characteristic

functions in Subsection 2.2, survey examples of DFD distributions in Subsection 2.3,

and similarly survey examples of distributions that are not DFD in Subsection 2.4.

2.1 Basic definitions

All random variables considered in this paper are assumed to be real-valued. The

following concept is central to our analysis.

Definition 1. Let Z be a random variable. We will say that Z is difference-form

decomposable (DFD) if there are two i.i.d. random variables X and Y such that

Z
d
= X − Y .

The equation Z d
= X − Y says that Z and X − Y follow the same probability law.

When a random variable Z is DFD as specified in Definition 1, then the random

4Our suffi cient conditions loosely relate to the Wiener-Khintchine-Kolmogorov criterion and
convolution roots studied by Boas and Kac (1945). See also Ehm et al. (2004) and Akopyan and
Efimov (2017). However, while that literature admits such roots to be complex-valued, we are
seeking convolution roots that are probability densities, i.e., that are real-valued and nonnegative.
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variable X is referred to as a difference-form component of Z.5

To understand the specific nature of the analysis pursued in the present paper,

it is important to acknowledge that the components X and Y are required be iden-

tically distributed. Indeed, dropping that requirement would lead to an entirely

different research question, easily seen to be equivalent to the problem of additive

decomposability. That problem, however, has been well-studied (e.g., Linnik, 1964;

Linnik et al., 1977). Similarly important is the requirement that X and Y are in-

dependent (see also Section 6). For example, if X and Y are uniform and perfectly

negatively correlated, then Z is again uniform (Meyer, 1991; Bagnoli et al., 2001).

Thus, the i.i.d. requirement is crucial to all what follows.6

Definition 2. A random variable Z is called symmetric (about zero) if Z d
= −Z.

The following observation is simple but important.

Lemma 1. Any DFD random variable Z is symmetric.

Proof. Suppose that Z is DFD. Then, there exist i.i.d. random variables X and Y

such that Z d
= X − Y . But then, −Z d

= Y −X, which proves the claim. �

In view of Lemma 1, a DFD random-variable Z with component X is commonly

known as the symmetrization of X.

Suppose that X is a difference-form component of Z. Then the distribution

functions of Z and X will be denoted by G = G(z) and F = F (x), respectively. In

view of our applications, we will mostly focus on continuous distributions, i.e., on

distributions that admit a density. If densities exist, these will correspondingly be

5Note that we do not take the absolute value of the difference. Puri and Rubin (1970) and
Stadje (1994) studied distributions with the property that the absolute difference Z = |X − Y |
is identically distributed as its two i.i.d. components X and Y . Interestingly, if the distribution
admits a density, then this property characterizes the exponential distribution.

6It is immediate to see that if X is a difference-form component of Z, then so is —X. In
fact, this is even the case for c + X and c —X, for any constant c ∈ R. Thus, any difference-form
decomposition, provided it exists, can be unique at most up to reflection at the origin and arbitrary
translations.
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denoted by g = g(z) and f = f(x). Moreover, the convolution relationship

g(z) =

∫ ∞
−∞

f(x+ z)f(x)dx (1)

admits an interpretation as an autocorrelation function. To avoid clumsy language,

the concepts introduced above, i.e., DFD, difference-form component, and symme-

try, will be informally extended to distributions and density functions.

2.2 Characteristic functions

In general, the characteristic function of a random variable Z is defined as ϕZ(t) =

E[eitZ ] ≡
∫∞
—∞ e

itzdG(z), where i =
√
−1, and the parameter t is real (e.g., Lukacs,

1970). The relevance of the characteristic function for the problem at hand is the

following important observation.

Lemma 2. Suppose that Z is DFD with component X. Then, ϕZ(t) = |ϕX(t)|2 ≥ 0

for all t ∈ R, where ϕX(t) denotes the characteristic function of X.

Proof. The characteristic function of —X is given by ϕ—X(t) = E[e—itX ]. Since t ∈ R

and X is real-valued, this implies ϕ—X(t) = ϕX(t), where the upper bar denotes

complex conjugation. Hence, by the multiplication theorem for characteristic func-

tions, ϕZ(t) = ϕX(t)ϕ—X(t) = ϕX(t)ϕX(t) = |ϕX(t)|2. In particular, ϕZ(t) ≥ 0 for

any t ∈ R. The claim follows. �

Thus, a necessary condition for Z to be DFD is that its characteristic function is

real-valued and nonnegative. Using Lemma 2 as a first numerical check of decom-

posability of a given density is feasible. However, the reader is cautioned that the

computation of Fourier transforms is not trivial (e.g., Ahmed et al., 1974). More-

over, the nonnegativity condition on the integral transform is not suffi cient for Z

to be DFD. A counterexample due to Lukacs (1970) is replicated in Table II be-

low. In fact, we will exhibit a more elementary counterexample in our discussion of

distributions with finite support.
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While the characteristic function is, in general, complex-valued, there is an in-

tuitive representation of ϕZ(t) as a cosine transform if Z is symmetric (e.g., DFD).

Lemma 3. If Z is symmetric, then ϕZ(t) =
∫∞
—∞ cos(tz)dG(z), for any t ∈ R.

Proof. Since Z is symmetric, E[eitZ ] = 1
2
E[eitZ + e—itZ ] = E[cos(tZ)]. �

The advantage of expressing the characteristic function as a cosine transform is

that no reference to complex numbers is needed. In addition, there is an intuitive

interpretation now that is not so immediate otherwise. Specifically, the cosine fac-

tor works like an amplitude modulation (AM). Amplitude modulation is used in

electronic communication, radio transmission, computer modems, etc. to transmit a

low-frequency audio signal via a high-frequency radio signal (see, e.g., Carson, 1915).

Similarly, the density of Z may be understood to modulate the cosine signal of a

given frequency t, so that some information about the distribution of Z is captured

in ϕZ(t).7

Table I. Examples of difference-form decomposable distributions.

7The moment-generating function E[etZ ] has the same advantage of being real-valued, but its
use would obscure the idea of the frequency analysis conducted below. In addition, the moment-
generating function does not exist for all distributions of interest (e.g., for the Cauchy distribution).
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2.3 Examples of distributions that are DFD

Table I provides details on the difference-form decomposability of several standard

families of probability distributions. See also Figure 1 for an illustration of the

corresponding density functions. The list starts with the examples of the normal

and Cauchy distributions, both of which are infinitely divisible. As these examples

suggest, any infinitely divisible distribution that is symmetric about zero is DFD.

Particularly strong implications are feasible for normal distributions. Indeed, by

Cramér’s (1936) theorem, any non-degenerate component of a normal distribution

is normal. Thus, the difference-form decomposition shown in Table I is essentially

unique in the normal case. Conversely, as shown by Carnal and Dozzi (1989), this

uniqueness property regarding difference-form decomposability is shared by no other

infinitely divisible distribution.

Figure 1. Examples of difference-form decomposable distributions. Shown are densities
of the normal (solid), Cauchy (dashed), logistic (crossed), Laplace (thin), and triangular
(dotted) distributions.

In the general case (i.e., if the distribution is not necessarily infinitely divisible),

one can still show that any representation of a random variable as the difference

9



of two symmetric i.i.d. noise terms is essentially unique. However, the difference-

form decomposition is not unique in general if one allows for components that are

not symmetric. For instance, the Laplace distribution may be represented either

as the difference of two symmetric Bessel distributions or as the difference of two

exponential distributions (which are not symmetric).

An example of a DFD distribution with compact support is the triangular dis-

tribution. Apart from this example, we do not know of any DFD distribution with

compact support that has been (correctly) used in applications.8

Table II. Examples of distributions that are not difference-form decomposable. Only distributions
that are symmetric with respect to the origin are listed (cf. Lemma 1).

2.4 Examples of distributions that are not DFD

Table II lists a number of distributions that are not DFD. Particularly prominent

is the example of the uniform distribution. But as will be shown below, the beta

8The fact that the difference of two i.i.d. uniform random terms follows a triangular density has
found numerous applications. See, e.g., Bull et al. (1987), Schotter and Weigelt (1992), Prendergast
(2002), Altmann et al. (2012), Moldovanu et al. (2012), and Ewerhart (2016).
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distribution (under parameter constraints) and the raised cosine distribution like-

wise fall in this class. All these examples have compact support. Dugué (1957)

constructed a distribution with full support that is not DFD. While that example

is still covered by Lemma 2 above, the more complicated example of Lukacs (1970)

even has a nonnegative characteristic function, and therefore illustrates the fact that

the conclusion of Lemma 2 is only necessary, but not suffi cient for a random variable

to be DFD. In fact, both distributions are entirely indecomposable (i.e., even allow-

ing for nontrivial heterogeneous factors). The density functions of these examples

are illustrated in Figure 2.

Figure 2. Examples of distributions that are not difference-form decomposable. Shown
are the densities of the uniform (solid), raised cosine (dashed), concave beta (diamonds),
convex beta (thin), Dugué (bold), and Lukacs (crosses) distributions.

3. Shape conditions

This section starts the formal analysis by deriving a variety of necessary conditions

on the shape of DFD distributions. We will discuss uniform and approximately

uniform distributions (see Subsection 3.1), quasiconvex densities (see Subsection

3.2), and strictly concave densities (see Subsection 3.3). The section concludes with

a discussion of unimodal and logconcave densities (see Subsection 3.4).
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3.1 Uniform and approximately uniform distributions

The following classic result sets the stage for our analysis.

Example 1. Z ∼ U [−1, 1] is not DFD.

This observation, a formal proof of which is included in the Appendix, is stated in

Puri and Sen (1968, p. 970), for instance.9 Example 1 also shows that symmetry is

not suffi cient for a random variable to be DFD. To understand how this observation

follows from Lemma 2 (the nonnegativity of the cosine transform), see Figure 3. The

point to note is that the signed area between the plotted graph and the horizontal

axis is negative. Intuitively, the uniform density declines too slowly, so that the

integral ϕZ(t) turns negative for a suitably chosen value of t, which is inconsistent

with difference-form decomposability. For t = 3π
2
, for instance, one obtains

ϕZ(t) =
1

2

∫ 1

−1
cos(

3πz

2
)dz = − 2

3π
< 0. (2)

This, however, is in conflict with Lemma 2.10

Figure 3. Plot of the function z 7→ cos( 32πz) over the interval [0, 1].

Below, we will see that broad classes of distributions that either contain the uniform

distribution as a special case or feature it as a limit case are likewise not DFD. This
9Lewis (1967) characterized the complete set of decompositions of the uniform distribution into

arbitrarily many independent, but not necessarily identically distributed, components. See also
Tortrat (1969), cited by Rusza (1982-1983), and Topolyan (2014).
10Further intuition may be gained from considering a discrete setting (see also Section 6). Sup-

pose that the components X and Y independently realize as x = 0 with probability q0 and as
x = 1 with probability q1. Then, Z = X − Y realizes as z = 0 with probability p0 = q20 + q21 , and
as z = 1 with probability p1 = q0q1. Hence, p0 − 2p1 ≥ 0 if Z is DFD. Thus, p0 ≥ 1

2 and p1 ≤
1
4 ,

i.e., the uniform distribution on {−1, 0, 1} is not DFD.
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will be interpreted as evidence showing that the lack of decomposability of the

uniform distribution, which is particularly relevant for economic applications, is a

robust phenomenon rather than a knife-edge pathology of limited relevance.

To start with, one might ask if, despite a uniform distribution not being DFD,

there exist two i.i.d. random variables whose difference can at least approximate a

uniform distribution. The answer is negative.

Proposition 1. Any density function on the interval [−1, 1] that has values in the

interval (1
2
− δ, 1

2
+ δ), where δ > 0 is small, is not DFD.

Proof. See the Appendix. �

The proof shows that δ = 1
6
' 0.166. To understand why Proposition 1 holds true,

one takes another look at Figure 3 and notes that the area with the negative weight,

where g(z) > 1
2
− 1

6
= 1

3
, is precisely twice as large as the area with the positive

weight, where g(z) < 1
2

+ 1
6

= 2
3
. Thus, again, the cosine transform has a negative

sign.

3.2 Quasiconvex densities

While Proposition 1 is useful, it cannot deal with the following example.

Example 2. The density of the symmetric beta distribution is given as

g(z) =
Γ(α + 1

2
)√

πΓ(α)
(1− z2)α−1 (z ∈ [−1, 1]), (3)

where α > 0 is a shape parameter.11 For α ∈ (0, 1], this density is convex, where

the boundary case α = 1 corresponds to the uniform distribution. For α ∈ (1, 2],

the density is strictly concave. For α > 2, however, g is neither convex nor concave.

In the example, the conditions of Proposition 1 are not satisfied (unless α = 1).

However, the intuition underlying the uniform case admits another generalization,

11See Figure 2 for illustration. Details on this example can be found in the Appendix.
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viz. to the class of quasiconvex density functions. We say that a density function g of

a symmetric distribution with compact support [−c, c], where c > 0, is quasiconvex

if and only if g is weakly decreasing on (−c, 0] and weakly increasing on [0, c) (i.e.,

we disregard the boundary points of the support for convenience).

Proposition 2. A quasiconvex density cannot be DFD.

Proof. See the Appendix. �

Like Proposition 1 above, this result is derived by extending the graphical proof

of the uniform case. If the symmetric density is weakly increasing on [0, 1), then

the signed integral outlined in Figure 3 is weakly smaller than for the uniform

distribution, which is already negative.

Proposition 2 indeed allows dealing with additional parameter values in the ex-

ample of the beta distribution. Specifically, if the density is convex (i.e., if α ∈ (0, 1]),

then the beta distribution cannot be DFD.

Further below, we will obtain a variant of Proposition 2 saying that a random

variable represented by a continuous density function g on [−1, 1] does not admit a

difference-form component with continuously differentiable density unless g assumes

its maximum at the origin.

3.3 Strictly concave densities

For α ∈ (1, 2], the density of the beta distribution is strictly concave. Hence, our

previous criteria do not apply. This case is, however, covered by the following result,

which for us was the least expected finding of the present analysis.

Proposition 3. A density that is strictly concave on its support cannot be DFD.

Proof. See the Appendix. �

The proof of Proposition 3 is inspired by Pólya’s (1949) suffi cient condition for
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characteristic functions.12 The first point to note is that a strictly concave density

must be compactly supported, say on [−1, 1]. Next, one notes that the evaluation

of the cosine transform at the special value t = 2π decomposes the interval [0, 1]

into four subintervals of length 1
4
. Moreover, one may easily check that cos(2πz) =

− cos(2π(1
2
−z)) = − cos(2π(1

2
+z)) = cos(2π(1−z)), for any z ∈ [0, 1

4
). See Figure 4

for an illustration of this relationship. Hence, the integrand of the cosine transform

satisfies

g(z) cos(2πz) + g(1
2
− z) cos(2π(1

2
− z))

+ g(1
2

+ z) cos(2π(1
2

+ z)) + g(1− z) cos(2π(1− z))

=
(
g(z)− g(1

2
− z)− g(1

2
+ z) + g(1− z)

)︸ ︷︷ ︸
<0

cos(2πz)︸ ︷︷ ︸
>0

< 0, (4)

as a consequence of strict concavity of g. Integrating over [0, 1
4
), the cosine transform

is seen to be negative, i.e., ϕZ(2π) < 0, in conflict with Lemma 2. The proof given in

the Appendix works with partial integration like Pólya’s original proof but captures

the very same intuition.

Figure 4. Intuition underlying the proof of Proposition 3.

12Pólya’s suffi cient criterion says that a function φ is a characteristic function if φ is continuous,
convex on the positive real line, and satisfies φ(0) = 1. For an account of Pólya’s suffi cient condition
and other suffi cient conditions, we refer the reader to Lukacs’(1972) survey.
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3.4 Unimodal and logconcave densities

Unimodal densities are widely used in economics. It is known that the difference (but

not necessarily the sum, see Chung, 1953) of two i.i.d. unimodal random variables is

necessarily unimodal (Hodges and Lehmann, 1954; Vogt, 1983; see also Barlevy and

Neal, 2012, for application). The same is true for strongly unimodal (i.e., logconcave)

densities (Ibragimov, 1956; An, 1998). As mentioned before, we will later show that

any DFD density with well-behaved components necessarily assumes its maximum

at the origin. However, even though unimodality with mode at zero seems to be

a common feature of many DFD densities, neither unimodality nor logconcavity is

necessary for a density to be DFD. E.g., let f(x) = 3
2
if x ∈ [0, 1

3
] ∪ [2

3
, 1], and

f(x) = 0 otherwise. Clearly, f is a density. Let X, Y be i.i.d. according to f . Then,

the random variable Z = X−Y does not admit a unimodal density g. Unimodality

and, similarly, logconcavity are neither suffi cient for, say, a symmetric density to be

DFD, as follows immediately from Proposition 3.

4. Smoothness conditions

In this section, we will derive necessary conditions that rely on smoothness properties

of the DFD density. We first discuss boundary conditions (see Subsection 4.1), then

analyticity (see Subsection 4.2), and finally kinks (see Subsection 4.3).

4.1 Boundary conditions

So far, we have evaluated the characteristic function ϕZ = ϕZ(t) at specific values

for t. Additional necessary conditions can be deduced by considering the asymptotic

behavior of the characteristic function ϕZ(t) for t→∞. Intuitively, large values for

t correspond to the case where the cosine term is changing sign very frequently, so

that the integral approaches zero over intervals where g is smooth. And indeed, as

discussed in Erdélyi (1955), the asymptotics of ϕZ depend entirely on the behavior

of the integrand in the neighborhood of certain distinguished points, called critical

points. These critical points are either the endpoints of the interval of integration
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or the points at which the integrand (or some derivative thereof) exhibits a discon-

tinuity. Given this intuition, it should not be too surprising that one may obtain

the following auxiliary result for compactly supported DFD densities.

Lemma 4. Suppose that g : [−1, 1]→ R+ is N-times continuously differentiable as

well as DFD. Then, g(M)(1) = g(M)(−1) = 0 for any M ∈ {0, . . . , N − 1}.13

Proof. See the Appendix. �

4.2 Analyticity

A function is analytic if it admits derivatives of any finite order and can be ex-

tended into a Taylor series at each point of its domain of definition. Examples for

analytic functions are polynomials and the exponential function. Sums, differences,

and products of analytic functions are likewise analytic. On the other hand, the an-

alyticity condition is violated, e.g., when higher-order differentiability fails or when,

even though derivatives of all orders exist, the Taylor series does not locally converge

to the density function.

Letting N → ∞ in Lemma 4 and subsequently exploiting the fact that an an-

alytic function is identified by its derivatives at any single point of its domain of

definition, we arrive at the following useful observation.

Proposition 4. Suppose that g is the density of a compactly supported DFD dis-

tribution. Then, g is not equal on its support to some analytic function.

Proof. See the Appendix. �

Proposition 4 may be used to extend our earlier observations regarding the beta

distribution. Indeed, the beta density with integer parameter α ∈ N = {1, 2, . . .}

is a polynomial on [−1, 1], hence analytic. Therefore, the beta density is not DFD

for any integer value α > 0. In particular, this includes cases (viz., for α = 3, 4, . . .)

13As usual, g(M)(z) denotes the M -th derivative of g at z, provided it exists. In particular,
g(0)(z) = g(z).
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where the density is neither convex nor concave. A similar example is the raised

cosine, which likewise admits an analytic density and consequently is not DFD.

4.3 Kinks

As illustrated by the examples of the triangular and the Laplace distribution, DFD

densities may exhibit a kink at the origin (cf. Figure 2). In fact, the triangular

density, if considered as a function on the real line, has two additional kinks, viz. at

the boundary of its support. The following result shows that such kinks are, under

smoothness conditions on the component densities, a quite typical feature of a DFD

density with bounded support.

Proposition 5. Let X and Y be i.i.d. random variables admitting a continuously

differentiable density f on [0, 1].

(i) If max{f(0), f(1)} > 0, then g has a kink at the origin.

(ii) If min{f(0), f(1)} > 0, then g has kinks also at ±1.

Proof. See the Appendix. �

Thus, if the component density is positive at at least one boundary point of its

support interval, then the density g of the DFD distribution necessarily exhibits a

kink at the center of its support. If the component density is positive even at both

boundary points of its support interval (as in the case of the uniform density), then

g exhibits additional kinks at the boundary points of its own support interval.

5. Suffi cient conditions and the construction of components

This section explores conditions suffi cient for a density to be DFD and derives a for-

mula for the construction of the difference-form component under those conditions.

Proposition 6. Suppose that ϕZ ≥ 0 and that
√
ϕZ is positive definite. Then, Z

is DFD, and a difference-form component of Z is given by the density function

f(x) =
1

2π

∫ ∞
−∞

√
ϕZ(t) cos(tx)dt. (5)
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Proof. See the Appendix. �

Positive definiteness of the square root of
√
ϕZ intuitively imposes restrictions on

the shape of ϕZ . We will discuss the positive definiteness condition in more detail

further below. In principle, any of the suffi cient conditions known for character-

istic functions may be used to check the conditions of Proposition 6. E.g., in a

straightforward application of Pólya’s condition, if
√
ϕZ is convex on R≥0, then Z

is DFD. In applications, however, the often most convenient way to verify positive

definiteness of a function is by checking that the inverse Fourier transform (5) is

globally nonnegative. For illustration of this approach, we reconstruct the uniform

component from the triangular distribution.

Example 3. The characteristic function of the triangular density on [−1, 1] is given

as ϕZ(t) = 4 sin2(t/2)
t2

≥ 0. To find a difference-form component, we apply formula

(5). This yields

f(x) =
1

π

∫ ∞
−∞

sin
(
t
2

)
cos(tx)

dt

t
(6)

=
1

2π

∫ ∞
−∞

{
sin
(
t
(
1
2

+ x
))

+ sin
(
t
(
1
2
− x
))} dt

t
(7)

=
1

π

∫ ∞
0

sin t

t
dt (8)

= 1. (9)

Thus,
√
ϕZ(t) is positive definite, and by Proposition 6, the uniform distribution on

the unit interval has been retrieved as a difference-form component of the triangular

distribution.14

Analogous calculations are feasible, for instance, for the normal, Cauchy, and Laplace

distributions. See Table I for details.

The proof of Proposition 6 is not deep but abstract. Technically, the assumptions

of Proposition 6 ensure that g admits a convolution root that is a symmetric density.

14In fact, this decomposition is unique (cf. O’Neill and Walther, 1963).
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This automatically leads to a condition suffi cient for difference-form decomposability,

since any sum of two symmetric i.i.d. random variables is obviously DFD.15

Finally, recall that a characteristic function ϕ is called infinitely divisible if, for

every positive integer n, there is a characteristic function φ such that ϕ = φn. A

probability distribution is called infinitely divisible if its characteristic function is

infinitely divisible (e.g., Lukacs, 1972, p. 19).

Corollary 1. Any symmetric infinitely divisible distribution is DFD.

Proof. See the Appendix. �

For instance, the generalized normal distribution where g(z)/g(0) = exp(− |z|
p

2
) with

shape parameter p > 0 (example kindly suggested by Felix Várdy) is DFD for

0 < p ≤ 1 and p = 2 because it is infinitely divisible (see Dytso et al., 2018, Thm.

5). However, it is not DFD for p > 2 because its characteristic function changes

sign at least once in that case (see Dytso et al., 2018, Thm. 3). For 1 < p < 2, it is

not known if this distribution is DFD.

6. Extensions

6.1 Distributions with finite support

One might wonder if a consideration of distributions with finite support might help

to shed light on the class of DFD distributions. The insights from such exercise are

limited, however. To understand why, consider the simplest case of an equidistant

grid. Suppose given a vector of probabilities (p0, p1, . . . , pN), for N ≥ 1, such that

p0 + 2
∑N

n=1
pn = 1. The interpretation is that pn corresponds to the probability

that the symmetric random variable Z realizes as n ∈ {0, . . . , N}, and for any n > 0,

likewise to the probability that Z realizes as −n. A difference-form component X, if
15Notably, the converse statement is not generally true. I.e., there are DFD densities that do

not admit a symmetric difference-form component. E.g., the component X given by the density
f(x) = 2x on [0, 1] cannot be replaced by any symmetric component (Carnal and Dozzi, 1989,
p. 168). In fact, the same is true for any strictly monotone component density (Gushchin and
Küchler, 2005).
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it exists, may then be represented by a vector of probabilities (q0, . . . , qN), where qn

denotes the probability that X realizes as n ∈ {0, . . . , N}. The system of equations

to be solved is the following (cf. Hodges and Lehmann, 1954):

p0 = q20 + . . .+ q2N (10)

p1 = q0q1 + . . .+ qN−1qN (11)

...

pN−1 = q0qN−1 + q1qN (12)

pN = q0qN (13)

The set of vectors (p0, p1, . . . , pN) for which a solution (q0, . . . , qN) exists may, in

principle, be characterized in explicit terms.

Proposition 7. For any fixed N ≥ 2, the set of DFD discrete distributions forms a

semi-algebraic set, i.e., it may be described by a finite number of algebraic identities

and inequalities in the variables (p0, p1, . . . , pN).

Proof. See the Appendix. �

We illustrate this general result with the help of a tractable example, the details of

which may be found in the Appendix.

Example 4. For N = 2, a distribution given by (p0, p1, p2) is DFD if and only if

p1 ≤ 1
4
and p2 ≤

(1+
√
1−4p1)

2

16
. In this case, the set of difference-form components

may be described in explicit terms.

Figure 5 illustrates the set of DFD distributions for N = 2 as the area below the

thick curve. The straight lines correspond to three nonnegativity constraints of

the discrete cosine transform (defined in analogy to the continuous case), which

are p1 ≤ 1
4
, p1 + p2 ≤ 1

3
, and p1 + 2p2 ≤ 1

2
. As can be seen, the set of DFD

distributions is a strict subset of the distributions with nonnegative cosine transform.
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E.g., (p0, p1, p2) = (1
3
, 1
6
, 1
6
), satisfies the nonnegativity constraints but is not DFD.

This observation is in line with the corresponding fact for the continuous case, i.e.,

that a nonnegative cosine transform is a necessary, but not a suffi cient condition for

difference-form decomposability.

Figure 5. Illustration of the set of DFD distributions.

For N ≥ 3, however, running the Tarski-Seidenberg algorithm that leads to a char-

acterization of the set of DFD distributions through a finite number of algebraic

identities and inequalities, while theoretically feasible, becomes substantially more

involved. Moreover, determining a difference-form component in explicit form ceases

to be tractable for N ≥ 4.16

6.2 Functional inequalities

Additional necessary conditions on the shape of a DFD density may be derived if the

corresponding characteristic function is integrable. The following lemma provides a

simple condition suffi cient for this to be the case.

Lemma 5. Suppose that the difference-form component X of some random variable

Z is distributed according to some continuously differentiable density function fX

with compact support. Then, ϕZ is integrable.

Proof. See the Appendix. �
16However, in analogy to Proposition 6, a symmetric difference-form component (i.e., satisfying

qn = qN−n for n ∈ {0, . . . ,
⌈
N
2

⌉
−1}), can always be computed (provided it exists) from the system

(10)-(13).
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We are now all set to state our result regarding functional inequalities.

Proposition 8. Suppose that a DFD random variable Z is distributed according

to some density function g. Assume also that ϕZ is integrable. Then, g is positive

definite. In particular, the following inequalities hold:

(i) g(z) ≤ g(0) for any z ∈ R;

(ii) if g(z) = 0 outside of [−1, 1], then g(z) ≤ g(0) cos( π
1+b1/zc) for any z ∈ (0, 1

2
].17

Proof. See the Appendix. �

Thus, a DFD density with integrable characteristic function is positive definite,

which is a fairly strong property. E.g., it follows that any continuous DFD density

assumes its maximum at the origin (even if the component is not unimodal). This

observation is intuitively in line with the interpretation of g as an autocorrelation

function (cf. Section 2) and admits a simple direct proof.18 The less obvious in-

equality in part (ii) says that g(z)/g(0) remains weakly below the staircase function

displayed in Figure 6. This inequality was shown to be an implication of positive

definiteness by Boas and Kac (1945). It should be noted that Proposition 8 is in a

sense equivalent to Lemma 2 and, hence, equally strong in its implications. Thus, the

two results may be seen as complementary methods for testing for difference-form

decomposability.

Figure 6. Illustration of the inequality in Proposition 8(ii).

17Here, b1/zc denotes the largest integer weakly smaller than the ratio 1/z.
18Specifically, it suffi ces to note that g(0)− g(z) = 1

2

∫∞
−∞ (f(x+ z)− f(x))

2
dx ≥ 0.

23



To prove that g is positive definite under the conditions of Proposition 8, one com-

bines two powerful theorems in the literature on characteristic functions, Bochner’s

theorem, and the Fourier Inversion Theorem. Bochner’s theorem says that a func-

tion φ is a characteristic function if and only if φ is continuous, positive definite,

and satisfies φ(0) = 1.19 The proof then proceeds as follows. By the Fourier In-

version Theorem, we may reconstruct a density from its characteristic function. In

the case of a symmetric density, however, the cosine transform of the characteristic

function coincides (up to a constant factor) with the transform that generates the

characteristic function from the density. We may therefore interpret ϕZ , provided

it is integrable, as a density ĝ (after suitable normalization) of some “dual”random

variable Ẑ and apply Bochner’s theorem to Ẑ to derive necessary properties of its

characteristic function ϕ̂ that happens to coincide with g (again, up to a constant

factor).

Proposition 8 may be used to obtain another partial result for the beta distrib-

ution in the left-over case where α > 2 (and α not an integer). Indeed,

∂2

∂z2
cos(

π

1 + 1/z
)

∣∣∣∣
z=0

= −π2, (14)

∂2

∂z2
(1− z2)α−1

∣∣∣∣
z=0

= −2 (α− 1) . (15)

Thus, for α < α∗, where α∗ = π2

2
+ 1 ' 5.93, making use of Lemma 5, the density

of the beta distribution cannot be represented as the difference-form convolution of

two i.i.d. continuously differentiable densities.20

6.3 Ratio-form decomposability

In analogy to the analysis of DFD random variables, one may ask which random vari-

ables may be represented as the ratio Z = X/Y of two i.i.d. random variablesX and

19A real-valued function φ is positive definite if, for every n ∈ {1, 2, . . .} and x1, . . . , xn ∈ R, the
matrix [φ(xi − xj)]ni,j=1 is positive semidefinite.
20The 123 Theorem (Alon and Yuster, 1995), suitably reformulated, says that if G is the distri-

bution function of a DFD random variable, then G(b)−G(a) ≤ 2(db/ae− 1)(G(a)−G(0)), for any
b > a > 0, where db/ae denotes the lowest integer weakly larger than the ratio b/a. That result,
however, cannot be used to easily derive Proposition 8 or any other result of the present paper.
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Y , following Huntington (1939) and Curtiss (1941). Given our focus on applications

in economic theory, we restrict attention to the case where the components assume

positive values only. Then, however, it is always feasible to transform the argument

of the distribution function using the logarithm. E.g., any lognormal distribution

may be expressed as the ratio of two i.i.d. lognormal distributions, etc. This general

observation also has implications for contest success functions of the ratio-form, such

as Tullock’s (1980). Specifically, if idiosyncratic multiplicative noise is distributed

according to the inverse exponential distribution (Jia, 2008; Fu and Lu, 2012), then

the density is given as f(x) = αmx−(m+1) exp(−αx−m) on [0,∞), where α > 0

and m > 0 are parameters. Transforming the corresponding distribution function

F (x) = exp(−αx−m) via the exponential transform x = exp(x) leads to the dis-

tribution function of the additive noise term, which is F (x) = exp(−α exp(−mx)),

i.e., a Gumbel distribution (cf. Table I). Therefore, the stochastic foundation of the

Tullock contest is a direct consequence of the fact, familiar from McFadden (1974),

that the logistic distribution is the symmetrization of the Gumbel distribution.

More generally, the isomorphism between DFD random variables and ratio-

form decomposable (RFD) random variables means that all the formulas and results

above have a corresponding version in the theory of RFD densities. For instance,

corresponding to Definition 2, the transformed symmetry condition on a positive

random variable Z reads Z d
= 1/Z, where the distribution function G satisfies

G(z) = 1−G(1/z). Consequently, a simple suffi cient condition for a positive ran-

dom variable Z to be RFD is the existence of a density function g that satisfies

g(z) = g(1/z)/z2. For example, the ratio of two independent uniformly distributed

random variables admits the density g(z) = 1/(2 max{1, z2}), which is ratio-form

symmetric. However, the integral transform changes, with the Fourier transform (or

characteristic function) being replaced by the Mellin transform (Epstein, 1948).21

21As a result, the density function g of a RFD random variable may be expressed as

g(z) =
1

z2

∫ ∞
0

xf(x)f(x/z)dx, (16)
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Further, the crucial Lemma 2 above translates into a necessary condition for ratio-

form decomposability, given by

∫ ∞
0

g(z)
√
z cos(t ln z)dz ≥ 0 (t ∈ R). (17)

Thus, even though the conditions for RFD distributions may look different from

those for DFD distributions, the transformation of each and every individual defi-

nition and result is ultimately mechanical. In fact, some necessary conditions are

even invariant with respect to a log transformation of the argument, such as quasi-

convexity, kinkedness, and analyticity of the density. However, other conditions such

as concavity of the density are not invariant and may therefore lead to less intuitive

characterizations. Similarly, we are not aware of a simple method that could be used

to decompose a RFD probability distribution given by data on an equidistant grid.

6.4 Correlated noise terms

Throughout the analysis, we have assumed that idiosyncratic noise terms are in-

dependently distributed. Indeed, the i.i.d. setting remains a common and natural

benchmark that allows economists to study important first-order effects rather than

having to worry about more intricate implications of correlation. However, it may

be hard to find an application in which one can not argue that some degree of

correlation may exist. For instance, because of macroeconomic fluctuations, rev-

enue figures are likely to be positively correlated across sales representatives, as

are key performance indicators across asset managers. On the other hand, if noise

reflects shifts in preferences, as it may be the case for vertical differentiation, loca-

tion choice, probabilistic voting, random utility, or paired comparisons, correlation

across individual noise terms may be negative. Thus, the independence assumption

is probably hardly ever necessarily satisfied, and some correlation seems to be the

natural assumption in many applications.

However, departing from the independence assumption, the correspondence be-

where f denotes the density of the ratio-form component.
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tween the convolution operator on the one hand and the multiplication of charac-

teristic functions on the other would break down. Given that this correspondence

plays a crucial role in the derivation of most of our results, we actually have very

little to say about the case with correlation. In fact, it is not clear how a theory

with the possibility of correlation between noise terms could be developed in the

first place. Relatedly, with correlation, decomposability would become a gradual

concept, where constraints on the degree of correlation (measured in some way or

other) would determine if a decomposition is feasible or not. Thus, dropping the

independence assumption would affect the very nature of the analysis. For such rea-

sons, an analysis of DFD densities with correlation must be left to future research.

On an intuitive level, however, independence does not seem crucial for our main

results, in the sense that, even with limited correlation, difference-form decompos-

ability should still lead to a lot of structure on the density function. For instance,

we conjecture that an approximately uniform distribution cannot be represented as

a difference of two identically distributed noise terms even if some limited degree of

correlation is allowed for.

7. Concluding remarks

In numerous economic models, uncertainty enters through a noise term that corre-

sponds to the difference of two i.i.d. random variables. Our results allow to decide

in many cases which distributions admit an i.i.d. difference-form decomposition and

which do not. Thus, the analysis sheds light on the interesting but elusive class of

DFD distributions.

In addition, our analysis shows that imposing distributional assumptions on the

difference term is far from innocuous. Even intuitively plausible assumptions on the

density of the difference term, such as approximate uniformity, quasiconvexity, strict

concavity, or compact support combined with analyticity are always inconsistent,

and therefore entail the risk of ending up with incorrect economic conclusions. We

pointed out, in particular, that the lack of decomposability of the uniform distri-
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bution, which is relevant in a variety of modeling frameworks, is actually a rather

robust phenomenon.

To avoid the numerous pitfalls identified by the present studies, the applied

economist has essentially three choices. First, if a specific distribution with com-

pact support is desired, the triangular distribution, with its uniform components,

seems to be the most natural assumption. If instead the uniform difference must be

chosen (e.g., to ensure tractability), then this would require a rationale (like perfect

negative correlation, see Meyer, 1991, or Bagnoli et al., 2001) as well as a discussion

of how a change in the assumptions about the distribution of noise would likely

affect the results. Second, if a specific distribution with full support is desired, then

any infinitely divisible distribution, with components taken from the same family,

will do the job. Common examples are the normal and the Cauchy distribution

families. Finally, if the researcher aims at keeping distributional assumptions at a

minimum, then properties automatically fulfilled, like symmetry, positive definite-

ness, and functional inequalities should be used. Any additional assumptions, such

as unimodality (Hodges and Lehmann, 1954) or logconcavity (Ibragimov, 1989),

should be imposed on the components, and the fact that such properties are inher-

ited should be used to obtain conclusions on the difference term.

There are several dimensions in which the present study could be extended. Of

interest, for instance, might be the consideration of multivariate distributions, i.e.,

random variables with values in Banach spaces. More interesting, albeit also more

challenging, might be the question of what happens if the number N of i.i.d. indi-

vidual random terms is larger than two. In that case, one would have to study the

joint distribution of
(
N
2

)
correlated difference terms, each of which would be DFD.

Finally, as noted by one of the reviewers, our properties and conditions might

also prove useful in testing whether a given model with i.i.d. noise terms could fit

an observed data, especially for a setting with symmetric players and observable

inputs. In that case, the test would concern the properties of the difference of
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random indicators of different options.22

Appendix. Proofs

This appendix contains technical material omitted from the body of the paper.

Details on Example 1. Suppose that Z ∼ U [−1, 1]. The characteristic function

of Z is

ϕZ(t) =
1

2

∫ 1

−1
cos(tz)dz =

sin t

t
. (18)

It is then clear that ϕZ(t) < 0 for selected values of t, in conflict with Lemma 2. �

Proof of Proposition 1. Evaluating the characteristic function at t = 3π
2
yields

ϕZ(3π
2

) =

∫ 1/3

−1/3
cos(

3π

2
x)︸ ︷︷ ︸

≥0

g(x)dx+ 2

∫ 1

1/3

cos(
3π

2
x)︸ ︷︷ ︸

≤0

g(x)dx (19)

<

∫ 1/3

−1/3
cos(

3π

2
x)

(
1

2
+

1

6

)
dx+ 2

∫ 1

1/3

cos(
3π

2
x)

(
1

2
− 1

6

)
dx (20)

= 0. (21)

This proves the claim. �

Details on Example 2. On the unit interval, the density of the beta distribution

with shape parameters α > 0, β > 0 is commonly defined as

g[0,1](x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (x ∈ [0, 1]). (22)

A stretched variant with support [−1, 1] is given as

g(z) ≡ 1

2
g[0,1]

(
z + 1

2

)
=

Γ(α + β)

2α+β−1Γ(α)Γ(β)
(1 + z)α−1(1− z)β−1. (23)

22A complication is that typically the data is not from a fixed pair of players, for example in
a contest setting, even when we assume for simplicity that all these players are symmetric. Such
questions of interest, like others that remained unanswered in the present study, might however
suggest worthwhile avenues for future research.
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Assuming α = β, and exploiting the duplication rule for the gamma function, i.e.,

Γ(2α) = 22α−1π−1/2Γ(α)Γ(α + 1
2
), leads to the parametric form considered in the

body of the paper. The shape of the beta density is determined by its second

derivative

∂2(1− x2)α−1
∂x2

= 2 (1− α)
(
1− x2

)α−3 (
2x2(2− α) +

(
1− x2

))
. (24)

Hence, the beta density g is convex for α ∈ (0, 1], strictly concave for α ∈ (1, 2], and

neither convex nor concave for α > 2.

Proof of Proposition 2. By contradiction. Suppose that Z is DFD. Then, by

Lemma 2, ϕZ(t) ≥ 0 for any t > 0. However, evaluating ϕZ(t) at t = 2π, we see

that

0 ≤ ϕZ(2π) =

∫ 1

−1
cos(2πz)g(z)dz =

1

2π

∫ 2π

0

cos(ẑ)g

(
ẑ

2π

)
dẑ, (25)

with ẑ = 2πz. Since cos(ẑ + π) = − cos(ẑ), it follows that

ϕZ (2π) =
1

2π

∫ π

0

cos(ẑ)g

(
ẑ

2π

)
dẑ + cos(ẑ + π)g

(
ẑ + π

2π

)
dẑ. (26)

=
1

2π

∫ π

0

cos(ẑ)

{
g

(
ẑ

2π

)
− g

(
ẑ + π

2π

)}
dẑ (27)

< 0, (28)

where the inequality is strict because g is not uniform by Example 1. The contra-

diction proves the claim. �

Proof of Proposition 3. Suppose that g(z) is DFD and strictly concave on its

support. Then, g(z) is symmetric by Lemma 1. Clearly, therefore, Z has compact

support, say [−1, 1]. Moreover, by standard results on concave functions (e.g., Roy-

den and Fitzpatrick, 1988, p. 117), the derivative g′ is well-defined except possibly

at kinks that form a set of measure zero. Moreover, g′ is strictly declining. Hence,
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evaluating the integral transform at t = 2π, integration by parts delivers

ϕ(2π) =

∫ 1

−1
cos(2πz)g(z)dz (29)

=
1

2π
sin(2πz)g(z)

∣∣∣∣1
−1︸ ︷︷ ︸

=0

− 1

π

∫ 1

0

sin(2πz)g′(z)dz (30)

<
1

π

∫ 1/2

0

(
sin(2πz) + sin(2π(z +

1

2
))

)
︸ ︷︷ ︸

=0

g′(z)dz, (31)

but this is in conflict with Lemma 2. �

The following auxiliary result will be used in the proofs of Lemmas 4 and 6. As

usual, o(t−N) denotes a function that goes to zero more quickly than t−N (i.e.,

limt→∞ tNo(t−N) = 0).

Lemma A.1 (A. Erdélyi) Suppose that g(z) is N-times continuously differentiable

on the interval [α, β], where −∞ < α < β <∞. Then,

∫ β

α

g(z) exp(itz)dz = ΦN(t, β)− ΦN(t, α) + o(t−N), (32)

where i =
√
−1, and

ΦN(t, z) =
N−1∑
M=0

iM−1g(M)(z)
exp(itz)

tM+1
. (33)

Proof. See Erdélyi (1955, Thm. 1). �

Proof of Lemma 4. By induction. (Induction basis) Suppose that g is continu-

ously differentiable on [−1, 1] as well as DFD. Since g is continuously differentiable,

Φ1(t, 1) = g(1) sin(t)
t

= −Φ1(t,−1). Moreover, since g is DFD, Lemma 2 implies

0 ≤ ϕZ(t) =

∫ 1

1

g(z) cos(zt)dz = 2g(1)
sin t

t
+ o(

1

t
). (34)
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For t large, the sin t
t
term dominates, so that necessarily g(1) = g(−1) = 0. (Induction

step) Let N ≥ 1, and assume that the claim has been shown for N . Suppose that

g is (N + 1)-times continuously differentiable. Then, g is N -times continuously

differentiable so that, from the induction hypothesis, g(M)(1) = g(M)(−1) = 0 for

any M ∈ {0, . . . , N − 1}. Now, from the definition of ΦN+1(t, 1) and exp(it) =

cos(t) + i sin(t),

ΦN+1(t, 1) = sin(z)

bN2 c∑
k=0

(−1)k

t2k+1
g(2k)(1)

+ cos(z)

b
N+1
2 c∑

k=1

(−1)k+1

t2k
g(2k−1)(1)

 .
(35)

If N = 2K is even, then

ΦN+1(t, 1) =
(−1)K sin(z)

tN+1
g(N)(1) = −ΦN+1(t,−1), (36)

so that g(N)(1) = g(N)(−1) = 0. If N = 2K − 1 is odd, then

ΦN+1(t, 1) =
(−1)K+1 cos(z)

tN+1
g(N)(1) = −ΦN+1(t,−1), (37)

and we find g(N)(1) = g(N)(−1) = 0, as before. This proves the claim. �

Proof of Proposition 4. Suppose that g is DFD. Since g is analytic at −1 and

at 1, it is infinitely differentiable there, so that all derivatives at −1 and at 1 are

zero by Lemma 4. By the identity theorem for analytic functions, this implies that

g vanishes on [−1, 1], which is impossible. The contradiction shows that g cannot

be DFD. �

Proof of Proposition 5. For z ∈ [0, 1], we have that

g(z) =

∫ 1−z

0

f(z + x)f(x)dx. (38)
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Hence, using Leibniz’rule,

lim
z↘0

g(z)− g(0)

z
= lim

z↘0

1

z

{∫ 1−z

0

f(z + x)f(x)dx−
∫ 1

0

f(z + x)f(x)dx

}
(39)

= − lim
z↘0

1

z

∫ 1

1−z
f(z + x)f(x)dx (40)

= −f(1)2 +

∫ 1

0

f ′(x)f(x)dx (41)

= −f(1)2 +
f(1)2 − f(0)2

2
(42)

= −f(0)2 + f(1)2

2
(43)

< 0. (44)

On the other hand, by symmetry, g(z) = g(−z), so that

lim
z↗0

g(z)− g(0)

z
> 0. (45)

Similarly, one finds

lim
z↗1

g(z)− g(1)

z
= lim

z↗1

1

z

{∫ 1−z

0

f(z + x)f(x)dx

}
= −f(1)f(0), (46)

and a corresponding expression at z = −1. This proves the proposition. �

Proof of Proposition 6. Immediate from Bochner’s theorem and the Fourier

inversion theorem. �

Proof of Corollary 1. Let the distribution of Z be infinitely divisible and sym-

metric. Then, ϕZ ≥ 0 is continuous (by Bochner’s theorem), and does not possess

any real zeros (Lukacs, 1972). Let φ be a characteristic function such that ϕ = φ2.

Then, φ > 0 or φ < 0, but the second alternative is not feasible because φ(0) = 1.

Hence, φ > 0, and ϕ = |φ|2. The claim follows. �

Proof of Proposition 7. Immediate from the Tarski-Seidenberg theorem (e.g.,

Neyman and Sorin, 1999, p. 65). �
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Details on Example 4. Suppose that N = 2 and fix a vector of probabilities

(p0, p1, p2) such that p0 + 2p1 + 2p2 = 1. Taking account of redundancies, a vector

of probabilities (q0, q1, q2) is sought such that

p1 = q0q1 + q1q2 (47)

p2 = q0q2 (48)

1 = q0 + q1 + q2. (49)

Combining (47) and (49), we see that p1 = q1(1 − q1), hence necessarily p1 ≤ 1
4

and q1 ∈ {q+1 , q−1 }, where q+1 = 1
2

+
√

1
4
− p1 and q−1 = 1

2
−
√

1
4
− p1. From (48)

and (49), one notes that q0 + q2 = 1 − q1 and q0q2 = p2. Therefore, a difference-

form component with q1 ∈ {q+1 , q−1 } exists if and only if 4p2 ≤ (1− q1)2, and the

corresponding solution, or pair of solutions, is given by

{q0, q2} =
1− q1

2
±

√
(1− q1)2

4
− p2. (50)

Next, we note that q−1 ≤ q+1 ≤ 1, so that
(
1− q−1

)2 ≥ (1− q+1 )2. Thus, a necessary
and suffi cient condition for a solution to exist is p1 ≤ 1

4
and p2 ≤ 1

16

(
1 +
√

1− 4p1
)2
,

as claimed. Moreover, there are at most four solutions.23

Proof of Lemma 5. Since f is continuous differentiable, Lemma A.1 implies

ϕX(t) =

∫ c

0

f(z) exp(izt)dz =
1

t
(sin(ct) + i(f(0)− cos(ct)f(c))) + o(t−1). (51)

By Lemma 2,

ϕZ(t) = |ϕX(t)|2 =
(sin(ct)f(c))2 + (f(0)− cos(ct)f(c))2

t2
+ o(t−2). (52)

Thus, ϕZ is integrable, as claimed. �
23For the special case N = 2, this confirms a conjecture of Carnal and Dozzi (1989, p. 172),

according to which the number of difference-form decompositions is at most 2N .
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Proof of Proposition 8. Suppose that Z is DFD. Then, by Lemma 2, ϕZ(t) ≥ 0

for all t ∈ R. Moreover, ϕZ is continuous by Bochner’s theorem, with ϕZ(0) =∫∞
−∞ g(z)dz = 1. Hence, using that ϕZ is integrable, we see that

∫∞
−∞ ϕZ(s)ds > 0.

Moreover, the Fourier inversion theorem, g(0) = 1
2π

∫∞
−∞ ϕZ(s)ds. Let

ĝ(z) =
ϕZ(z)∫∞

−∞ ϕZ(s)ds
=

ϕZ(z)

2πg(0)
. (53)

Then, ĝ is a density of some random variable Ẑ. The characteristic function of Ẑ

is, therefore, given by

ϕẐ(t) =
1

g(0)

(
1

2π

∫ ∞
−∞

ϕZ(z) cos(tz)dt

)
=
g(t)

g(0)
, (54)

where we applied again the Fourier inversion theorem. But, by Bochner’s theorem,

the characteristic function of Ẑ is positive definite. Hence, g is positive definite

as well. Inequality (i) is an immediate consequence of the definition of positive

definiteness. Inequality (ii) was shown to follow from positive definiteness by Boas

and Kac (1945). �
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