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Appendix G Other solutions to the ZLB 
G.1 Equilibrium selection with perpetuities 

The modified inflation target real rate rules of Section 4 of the main text 
delivered uniqueness conditional on a terminal condition ruling out inflation 

explosions or permanent ZLB episodes. In this subappendix, we examine how 
these two classes of undesirable equilibria may be avoided. This will enable us 

to answer Cochrane’s (2011) argument that there is nothing to rule out non-
stationary equilibria under monetary rules satisfying the Taylor-principle, and 

Benhabib, Schmitt-Grohé & Uribe’s (2001) argument that there is nothing to 
rule out permanent ZLB spells under such rules. 

We suppose that perpetuities (also called “consols”) are traded in the 
economy. While actual perpetuities are rare, households may be able to 

approximate the flow of coupons from a perpetuity via holding a portfolio of 
government debt of different maturities. Additionally, there are many regular 

transfers from government to households or firms, such as unemployment 
benefits. While it is hard for households to capitalize and trade their flow of 

unemployment benefits, long-term government contracts (in defence, 
aerospace, etc.) certainly can be capitalized and traded. As long as such 

contracts enable a flow of nominal firm profits, their value will have a 
perpetuity-like component. 

Perpetuity prices are functions of the entire expected future path of nominal 
rates, and hence they embed information on the economy’s selected 

equilibrium. Crucially, if the economy is stuck at the ZLB, then perpetuity 
prices will be extremely high, or even infinite. For the sake of exposition, we 

will derive results for the more general class of geometric coupon bonds, and 
later specialise to the perpetuity case. 

We assume that one unit of the period 𝑡𝑡 geometric coupon bond bought at 𝑡𝑡 
returns $1 at 𝑡𝑡 + 1, along with 𝜔𝜔 ∈ (0,1] units of the period 𝑡𝑡 + 1 geometric 
coupon bond. The 𝜔𝜔 = 1 case corresponds to a perpetuity. The geometric 
coupon bond trades at a price of 𝑄𝑄𝑡𝑡 at 𝑡𝑡. Thus, if Ξ𝑡𝑡+1 is the real SDF between 

periods 𝑡𝑡 and 𝑡𝑡 + 1, and Π𝑡𝑡+1 ≔ exp 𝜋𝜋𝑡𝑡+1 is gross inflation between these 
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periods, then the price of the bond must satisfy: 

𝑄𝑄𝑡𝑡 = 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

�𝜔𝜔𝑄𝑄𝑡𝑡+1 + 1�. 

We assume that the government and central bank are the only institutions 

trusted enough to issue geometric coupon bonds, since private companies 
generally have shorter lives than nations. Thus, the total stock of such bonds, 

𝐵𝐵𝑡𝑡, is in the government and/or central bank’s control. We assume there is some 
𝐵𝐵 > 0 such that in all states of the world 𝐵𝐵𝑡𝑡 ≥ 𝐵𝐵𝜔𝜔𝑡𝑡. For this it is enough that the 

government issued geometric coupon bonds at some point in the past, with the 
commitment to never buy all of them back. Since it is optimal for governments 

to fund themselves with perpetuities (Debortoli, Nunes & Yared 2017; 2022), 
this does not seem an unreasonable commitment. Then, the household’s period 

𝑡𝑡 transversality condition on geometric coupon bond holdings states that: 

0 = lim𝑠𝑠→∞ 𝔼𝔼𝑡𝑡 ��
Ξ𝑡𝑡+𝑘𝑘
Π𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=1
� 𝑄𝑄𝑡𝑡+𝑠𝑠𝐵𝐵𝑡𝑡+𝑠𝑠 ≥ 𝐵𝐵 lim𝑠𝑠→∞ 𝔼𝔼𝑡𝑡 ��

Ξ𝑡𝑡+𝑘𝑘
Π𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=1
� 𝑄𝑄𝑡𝑡+𝑠𝑠𝜔𝜔𝑡𝑡+𝑠𝑠 ≥ 0, 

and hence lim𝑠𝑠→∞ 𝔼𝔼𝑡𝑡�∏ Ξ𝑡𝑡+𝑘𝑘
Π𝑡𝑡+𝑘𝑘

𝑠𝑠
𝑘𝑘=1 �𝜔𝜔𝑠𝑠𝑄𝑄𝑡𝑡+𝑠𝑠 = 0. Thus, for all 𝑡𝑡: 

𝑄𝑄𝑡𝑡 = 𝔼𝔼𝑡𝑡 � ��
Ξ𝑡𝑡+𝑘𝑘
Π𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=1
� 𝜔𝜔𝑠𝑠−1

∞

𝑠𝑠=1
= 𝔼𝔼𝑡𝑡 � ��

1
𝐼𝐼𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=0
� 𝜔𝜔𝑠𝑠

∞

𝑠𝑠=0
, 

where, as usual, 𝐼𝐼𝑡𝑡 is the gross interest rate on a one period nominal bond (so 

𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

= 1). 
Now suppose that 𝐼𝐼𝑡𝑡+𝑘𝑘 = 1 (with probability one, conditional on period 𝑡𝑡 

information) for all sufficiently high 𝑘𝑘. Then 𝑄𝑄𝑡𝑡+𝑠𝑠 = 1
1−𝜔𝜔 (with conditional 

probability one) for all sufficiently high 𝑠𝑠. So, the transversality condition holds 

if and only if: 

0 = lim𝑠𝑠→∞ 𝔼𝔼𝑡𝑡 ��
Ξ𝑡𝑡+𝑘𝑘
Π𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=1
�

𝜔𝜔𝑠𝑠

1 − 𝜔𝜔 = lim𝑠𝑠→∞
𝜔𝜔𝑠𝑠

1 − 𝜔𝜔, 

i.e., if and only if |𝜔𝜔| < 1. In particular, it is violated if the bond is a perpetuity, 
meaning 𝜔𝜔 = 1. 1 

In other words, permanent stays at the ZLB do in fact violate a transversality 
constraint when the stock of perpetuities is positive. Intuitively, with 

 
1 The necessity of the transversality constraint is non-obvious in the 𝜔𝜔 = 1 case. However, in Appendix 
J.12 below we show that the problem with perpetuities can be transformed into a “cake eating” type 
problem with one period bonds, for which the transversality constraint is trivially necessary, even when 

𝜔𝜔 = 1. 
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households having infinite nominal wealth, they wish to spend some of that 
wealth today on real goods, which ends up violating (real) goods market 

clearing. The only way goods market clearing could be restored is if inflation is 
infinite when nominal wealth is. We show this carefully in Appendix J.12 below. 

However, under standard assumptions on money demand, infinite inflation is 
only possible with infinite money supply growth, which is likely to be 

physically impossible for a central bank. Infinite inflation is also ruled out by 
arbitrarily small degrees of price stickiness. Thus, as long as infinite inflation is 

ruled out by these considerations or some other, there is no equilibrium with a 
permanent ZLB stay.2 

We now use this fact to construct a monetary rule with both global 
uniqueness and local determinacy, the latter helping ensure learnability. We 

assume that the central bank sets nominal interest rates via a tweaked non-
linear version of the modified inflation target real rate rule of Section 4 of the 

main text. Our first tweak is that for simplicity, we assume that the inflation 
target is set one period in advance. Our second tweak is to introduce 

“punishment” in the form of a switch to the ZLB following large deviations. To 
define a large deviation, we will introduce an upper bound 𝐼𝐼 > 1 on gross 

nominal interest rates, and we will construct the modified inflation target to 
ensure gross nominal interest rates are strictly inside �1, 𝐼𝐼� in equilibrium. 

We suppose that the central bank sets: 

𝐼𝐼𝑡𝑡 =
⎩�
�⎨
��
⎧

max
⎩�⎨
�⎧1, 𝑅𝑅𝑡𝑡Π�𝑡𝑡+1|𝑡𝑡

∗

⎝
⎜⎛ Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗ ⎠

⎟⎞
𝜙𝜙

⎭�⎬
�⎫ , if 𝐼𝐼𝑡𝑡−1 ∈ �1, 𝐼𝐼�

1, otherwise
, 

where: 

Π�𝑡𝑡+1|𝑡𝑡
∗ ≔ max �

ℰ
𝑅𝑅𝑡𝑡

, min �
𝐼𝐼

ℰ𝑅𝑅𝑡𝑡
, Π𝑡𝑡+1|𝑡𝑡

∗ ��, 

with 𝜙𝜙 > 1 and ℰ ≔ exp 𝜖𝜖 ∈ �1, �𝐼𝐼�. It is easy to see that Π𝑡𝑡 = Π�𝑡𝑡|𝑡𝑡−1
∗  for all 𝑡𝑡 is 

consistent with this rule and the standard nominal and real bond pricing 
 

2 Government debt leading to a violation of the household transversality constraint at the ZLB may remind 
the reader of Benhabib, Schmitt‐Grohé & Uribe (2002). However, the current proposal preserves fully-
Ricardian fiscal policy (see Appendix J.12 below), and does not require the government to commit to take 

actions that are ex post undesirable (like increasing primary deficits in the face of exploding debt). 
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equations: 

𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

= 1, 𝑅𝑅𝑡𝑡𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1 = 1. 

In the local vicinity of this equilibrium path, we have 𝐼𝐼𝑡𝑡 = 𝑅𝑅𝑡𝑡Π�𝑡𝑡+1|𝑡𝑡
∗ � Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗ �

𝜙𝜙
, 

which implies: 

𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1

𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1

Π�𝑡𝑡+1|𝑡𝑡
∗

Π𝑡𝑡+1
=

⎝
⎜⎛

Π�𝑡𝑡|𝑡𝑡−1
∗

Π𝑡𝑡 ⎠
⎟⎞

𝜙𝜙

. 

This has a unique stationary solution under mild conditions by the results of 

Online Appendix D. 
To analyse potential deviations from this equilibrium, we switch to an 

economy without uncertainty for simplicity. This is in line with Cochrane 
(2011) which is also primarily concerned with deterministic economies. 

First, suppose that for some reason, for some 𝑡𝑡 = 𝑡𝑡0, Π𝑡𝑡 > Π�𝑡𝑡|𝑡𝑡−1
∗ , but 𝐼𝐼𝑡𝑡−1 ∈

�1, 𝐼𝐼�. Then: 
Π𝑡𝑡+1

Π�𝑡𝑡+1|𝑡𝑡
∗ = max

⎩�
⎨
�⎧ 1

𝑅𝑅𝑡𝑡Π�𝑡𝑡+1|𝑡𝑡
∗ ,

⎝
⎜⎛ Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗ ⎠

⎟⎞
𝜙𝜙

⎭�
⎬
�⎫ ≥

⎝
⎜⎛ Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗ ⎠

⎟⎞
𝜙𝜙

, 

and so Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗  explodes upwards as 𝑡𝑡 → ∞. Now for all 𝑡𝑡, Π�𝑡𝑡+1|𝑡𝑡

∗ ≥ ℰ
𝑅𝑅𝑡𝑡

, hence Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗ ≤

𝑅𝑅𝑡𝑡−1Π𝑡𝑡
ℰ < 𝐼𝐼𝑡𝑡−1. Thus, 𝐼𝐼𝑡𝑡 must also (start to) explode upwards as 𝑡𝑡 → ∞. So, 

eventually, for some 𝑡𝑡1 ≥ 𝑡𝑡0, 𝐼𝐼𝑡𝑡1
> 𝐼𝐼. Thus 𝐼𝐼𝑡𝑡1+1 = 𝐼𝐼𝑡𝑡1+2 = ⋯ = 1 according to the 

monetary rule. But this is only consistent with household optimality if Π𝑡𝑡 is 

infinite at least once in [𝑡𝑡0, … , 𝑡𝑡1], which in turn is physically impossible. Hence, 
there is no equilibrium with such a deviation. 

Now, suppose that for some reason, for some 𝑡𝑡 = 𝑡𝑡0, Π𝑡𝑡 < Π�𝑡𝑡|𝑡𝑡−1
∗ , but 𝐼𝐼𝑡𝑡−1 ∈

�1, 𝐼𝐼�. Then: 
Π𝑡𝑡+1

Π�𝑡𝑡+1|𝑡𝑡
∗ = max

⎩�⎨
�⎧ 1

𝑅𝑅𝑡𝑡Π�𝑡𝑡+1|𝑡𝑡
∗ ,

⎝
⎜⎛ Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗ ⎠

⎟⎞
𝜙𝜙

⎭�⎬
�⎫, 

and so Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗  either explodes downwards towards zero forever as 𝑡𝑡 → ∞ or hits 

𝐼𝐼𝑡𝑡1
= 1 at some 𝑡𝑡1 ≥ 𝑡𝑡0. Now for all 𝑡𝑡, Π�𝑡𝑡+1|𝑡𝑡

∗ ≤ 𝐼𝐼
ℰ𝑅𝑅𝑡𝑡

, hence Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗ ≥ ℰ𝑅𝑅𝑡𝑡−1Π𝑡𝑡

𝐼𝐼
= ℰ

𝐼𝐼
𝐼𝐼𝑡𝑡−1. 

Thus, in fact 𝐼𝐼𝑡𝑡 must hit 𝐼𝐼𝑡𝑡1
= 1 at some 𝑡𝑡1 ≥ 𝑡𝑡0. Thus, just as before, 𝐼𝐼𝑡𝑡1+1 =

𝐼𝐼𝑡𝑡1+2 = ⋯ = 1, which is inconsistent with equilibrium, ruling out the initial 

deviation. 

Therefore, if households hold perpetuities, this tweaked real rate rules 
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succeeds in producing global uniqueness. Admittedly, the punishment reduces 
its robustness, but for moderately high ℰ  and 𝐼𝐼, and high 𝜙𝜙, accidentally falling 

into the punishment regime would be very unlikely, even with additional 
uncertainty coming from wedges in the Fisher equation. 

Of course, if there is something else in the economy ruling out explosive 
paths for inflation, then the punishment regime is unnecessary, and the central 

bank could just use the rule: 

𝐼𝐼𝑡𝑡 = max
⎩�
⎨
�⎧1, 𝑅𝑅𝑡𝑡Π�𝑡𝑡+1|𝑡𝑡

∗

⎝
⎜⎛ Π𝑡𝑡

Π�𝑡𝑡|𝑡𝑡−1
∗ ⎠

⎟⎞
𝜙𝜙

⎭�
⎬
�⎫ , Π�𝑡𝑡+1|𝑡𝑡

∗ ≔ max �
ℰ
𝑅𝑅𝑡𝑡

, Π𝑡𝑡+1|𝑡𝑡
∗ �. 

With households holding perpetuities, this still has no equilibria that are 
permanently stuck at the ZLB. Sticky prices are sufficient to rule out explosive 

equilibria, both as inflation is bounded above under standard price stickiness 
specifications (see Online Appendix D.1), and because under sticky prices, 

exploding inflation implies exploding real costs of this inflation. While prices 
may become more flexible at high inflation rates, there are practical limits on 

how often prices can change even under extreme hyperinflation. The price must 
at least remain constant for the time between picking an item off the shelf and 

arriving with it at the check-out. If this is correct, then even without a 
punishment regime, trade in perpetuities is sufficient to ensure a unique long-

run equilibrium with inflation at target. 

G.2 Price level real rate rules 
One way to improve the performance of real rate rules near the ZLB is to 

replace the response to inflation with a response to the price level. Holden 

(2021) shows that responding to the price level is a robust way to ensure the 
existence of a unique solution with the ZLB, at least given that inflation does 

not converge to the deflationary steady state. We discussed how to rule out 
convergence to the deflationary steady state in the previous subappendix. 

Price level rules rule out self-fulfilling temporary jumps to the ZLB as under 
a price level rule, the deflation during the bound period must be made up for 
by high inflation after exiting the bound. Thus, expected inflation is high in the 
last period at the bound, which via the Fisher equation, implies nominal interest 
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rates should be high that period as well, unless real rates are still very low. This 
unwinds non-fundamental ZLB spells, as in a non-fundamental jump to the 

bound, real rates are unlikely to move enough to drive the economy to the ZLB 
on their own. 

Incorporating the ideas from the Subsection 4.2, a variable target price level 
real rate rule takes the form: 

𝑖𝑖𝑡𝑡 = max�0, 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝑝𝑝�̌�𝑡+1
∗ − 𝑝𝑝�̌�𝑡

∗ + 𝜃𝜃�𝑝𝑝𝑡𝑡 − 𝑝𝑝�̌�𝑡
∗��, 

with: 

𝑝𝑝�̌�𝑡
∗ = 𝑝𝑝�̌�𝑡−1

∗ + max��1 − 𝜚𝜚��𝑝𝑝𝑡𝑡
∗ − 𝑝𝑝�̌�𝑡−1

∗ � + 𝜚𝜚�𝑝𝑝𝑡𝑡
∗ − 𝑝𝑝𝑡𝑡−1

∗ �, 𝜖𝜖 − 𝑟𝑟𝑡𝑡−1�, 
where 𝑝𝑝𝑡𝑡 is the logarithm of the price level (so 𝜋𝜋𝑡𝑡 = 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1),3 𝑝𝑝𝑡𝑡

∗ is the price 

level target, 𝜃𝜃 > 0 controls the response to price deviations, 𝜖𝜖 > 0 is a small 
constant and 𝜚𝜚 ∈ [0,1) controls the speed with which 𝑝𝑝�̌�𝑡

∗ returns to 𝑝𝑝𝑡𝑡
∗ following 

a constrained spell. (Some of our results will require 𝜚𝜚 to be sufficiently close to 
1, so price level gaps are not closed too quickly.) This has a solution in which 

𝑝𝑝𝑡𝑡 = 𝑝𝑝�̌�𝑡
∗ for all 𝑡𝑡, since if this holds, then from the monetary rule: 

𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = max�−𝑟𝑟𝑡𝑡, 𝔼𝔼𝑡𝑡𝑝𝑝�̌�𝑡+1
∗ − 𝑝𝑝�̌�𝑡

∗� = 𝔼𝔼𝑡𝑡𝑝𝑝�̌�𝑡+1
∗ − 𝑝𝑝�̌�𝑡

∗ = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, 
as 𝔼𝔼𝑡𝑡𝑝𝑝�̌�𝑡+1

∗ − 𝑝𝑝�̌�𝑡
∗ ≥ 𝜖𝜖 − 𝑟𝑟𝑡𝑡 > −𝑟𝑟𝑡𝑡 by the definition of 𝑝𝑝�̌�𝑡+1

∗ , so the Fisher equation 
holds as required. 

Note that 𝜃𝜃 > 0 is sufficient for determinacy in the absence of the ZLB, since 
then the monetary rule and Fisher equation imply that:4 

𝔼𝔼𝑡𝑡�𝑝𝑝𝑡𝑡+1 − 𝑝𝑝�̌�𝑡+1
∗ � = (1 + 𝜃𝜃)�𝑝𝑝𝑡𝑡 − 𝑝𝑝�̌�𝑡

∗�. 
Thus, price level rules have the same advantage of smoothed rules in not 

requiring 𝜙𝜙 > 1. Convincing agents that 𝜃𝜃 > 0 is likely easier than convincing 
them that 𝜙𝜙 > 1, as argued in Subsection 2.1. Furthermore, just like standard 

 
3 Note that there is no reason linearised NK models expressed in terms of the price level should be less 
accurate than linearised NK models expressed in terms of inflation. First, note that the equation 𝜋𝜋𝑡𝑡 = 𝑝𝑝𝑡𝑡 −
𝑝𝑝𝑡𝑡−1 holds exactly, as it results from taking logarithms of the equation Π𝑡𝑡 = 𝑃𝑃𝑡𝑡

𝑃𝑃𝑡𝑡−1
, where Π𝑡𝑡 is gross inflation 

and 𝑃𝑃𝑡𝑡 is the price level. Secondly, note that as long as the model’s equations can be expressed in terms of 
inflation, not the price level, prior to linearisation (something which is true in virtually all NK models), 
then they will be accurate as long as inflation is near steady state, even if the price level is far from its path 
in the absence of shocks. We do not impose that prices should be stationary, only that inflation is. 
4 Note that explosions of 𝑝𝑝𝑡𝑡 − 𝑝𝑝�̌�𝑡

∗ imply explosions of �𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡� − �𝑝𝑝�̌�𝑡+1
∗ − 𝑝𝑝�̌�𝑡

∗�, which are ruled out by our 
boundedness assumptions. For example, if 𝑝𝑝𝑡𝑡 − 𝑝𝑝�̌�𝑡

∗ = (1 + 𝜃𝜃)𝑡𝑡�𝑝𝑝0 − 𝑝𝑝0̌
∗�, then �𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡� − �𝑝𝑝�̌�𝑡+1

∗ − 𝑝𝑝�̌�𝑡
∗� =

𝜃𝜃(1 + 𝜃𝜃)𝑡𝑡�𝑝𝑝0 − 𝑝𝑝0̌
∗�. 
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(inflation) real rate rules, price level real rate rules are robust, since away from 
the bounds, price level determination is completely independent of the real 

interest rate or the rest of the model. Their chief advantage over standard real 
rate rules is in avoiding the multiplicity of transition paths highlighted by 

Holden (2021). In fact, Holden (2021) shows that in standard models they 
would avoid perfect foresight multiplicity and non-existence problems even 

had we set 𝑝𝑝�̌�𝑡
∗ ≔ 𝑝𝑝𝑡𝑡

∗. Nonetheless, our definition of 𝑝𝑝�̌�𝑡
∗ gives additional 

robustness, as we will now show by replicating the arguments and conclusions 

of Subsection 4.3 of the paper and Appendix J.9 below, with the price level real 
rate rule in place of the smoothed real rate rule. 

Uniqueness conditional on the modified target. Closely following 
Appendix J.9 below, we want to prove uniqueness of equilibrium under our 

price level real rate rule (introduced in period 1), without uncertainty, and 
assuming that 𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡 and 𝑝𝑝�̌�𝑡+1

∗ − 𝑝𝑝�̌�𝑡
∗ are bounded in 𝑡𝑡, and that the economy 

eventually escapes the ZLB for good. The latter assumption implies there must 
exist a smallest possible 𝑠𝑠 ≥ 1 such that for all 𝑡𝑡 ≥ 𝑠𝑠, the ZLB does not bind. We 

assume for a contradiction that 𝑠𝑠 > 1, hence for all 𝑡𝑡 ≥ 𝑠𝑠, by the monetary rule 
and Fisher equation:5  

𝑟𝑟𝑡𝑡 + 𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡 = 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝑝𝑝�̌�𝑡+1
∗ − 𝑝𝑝�̌�𝑡

∗ + 𝜃𝜃�𝑝𝑝𝑡𝑡 − 𝑝𝑝�̌�𝑡
∗�, 

meaning: 

�𝑝𝑝𝑡𝑡+1 − 𝑝𝑝�̌�𝑡+1
∗ � = (1 + 𝜃𝜃)�𝑝𝑝𝑡𝑡 − 𝑝𝑝�̌�𝑡

∗�, 
so for 𝑡𝑡 ≥ 𝑠𝑠, 𝑝𝑝𝑡𝑡 − 𝑝𝑝�̌�𝑡

∗ = (1 + 𝜃𝜃)𝑡𝑡−𝑠𝑠�𝑝𝑝𝑠𝑠 − 𝑝𝑝�̌�𝑠
∗�, and hence �𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡� − �𝑝𝑝�̌�𝑡+1

∗ − 𝑝𝑝�̌�𝑡
∗� =

𝜃𝜃(1 + 𝜃𝜃)𝑡𝑡−𝑠𝑠�𝑝𝑝𝑠𝑠 − 𝑝𝑝�̌�𝑠
∗�. Since (1 + 𝜃𝜃)𝑡𝑡−𝑠𝑠 → ∞ as 𝑡𝑡 → ∞, this in turn implies that 

𝑝𝑝𝑠𝑠 = 𝑝𝑝�̌�𝑠
∗, by our boundedness assumptions. But as the economy is at the ZLB in 

period 𝑠𝑠 − 1, 0 = 𝑖𝑖𝑠𝑠−1 = 𝑟𝑟𝑠𝑠−1 + 𝑝𝑝𝑠𝑠 − 𝑝𝑝𝑠𝑠−1 = 𝑟𝑟𝑠𝑠−1 + �𝑝𝑝�̌�𝑠
∗ − 𝑝𝑝�̌�𝑠−1� − �𝑝𝑝𝑠𝑠−1 − 𝑝𝑝�̌�𝑠−1� ≥

𝑟𝑟𝑠𝑠−1 + 𝜖𝜖 − 𝑟𝑟𝑠𝑠−1 − �𝑝𝑝𝑠𝑠−1 − 𝑝𝑝�̌�𝑠−1� > −�𝑝𝑝𝑠𝑠−1 − 𝑝𝑝�̌�𝑠−1�, meaning that 𝑝𝑝𝑠𝑠−1 − 𝑝𝑝�̌�𝑠−1 > 0. 

Now, by the period 𝑠𝑠 − 1 monetary rule, 0 ≥ 𝑟𝑟𝑠𝑠−1 + 𝔼𝔼𝑠𝑠−1𝑝𝑝�̌�𝑠
∗ − 𝑝𝑝�̌�𝑠−1

∗ + 𝜃𝜃�𝑝𝑝𝑠𝑠−1 −
𝑝𝑝�̌�𝑠−1

∗ � > 𝑟𝑟𝑠𝑠−1 + 𝔼𝔼𝑠𝑠−1𝑝𝑝�̌�𝑠
∗ − 𝑝𝑝�̌�𝑠−1

∗ ≥ 𝑟𝑟𝑠𝑠−1 + 𝜖𝜖 − 𝑟𝑟𝑠𝑠−1 = 𝜖𝜖 > 0, giving the required 

contradiction. Thus 𝑠𝑠 = 1, meaning the economy never hits the ZLB. Combined 
with the determinacy in the absence of the ZLB previously proven, this 

 
5 Note that we can drop expectations as there is no uncertainty. 
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establishes the uniqueness of the 𝑝𝑝𝑡𝑡 = 𝑝𝑝�̌�𝑡
∗ solution conditional on the path of 𝑝𝑝�̌�𝑡

∗. 
Uniqueness of the modified target. Again closely following Appendix J.9 

below, we also want to prove that in the model given by equations (10) and 
(11), from Subsection 4.1, there is a unique perfect foresight solution for 𝑝𝑝�̌�𝑡

∗. We 

assume that all exogenous processes are constant at their steady-state level, that 
𝑝𝑝𝑡𝑡

∗ = 𝜋𝜋∗(𝑡𝑡 − 1), and that all variables are at steady-state in period 0 (relative to 

trend in the case of prices), since none of these assumptions have any impact 
on uniqueness, by the results of Holden (2021). (This also means that our 

results are robust to adding any shocks to the model.) We also impose that the 
ZLB never binds, since we have already established this under our retained 

assumptions. Given this, we replace the notation 𝑝𝑝�̌�𝑡+1
∗  with 𝑝𝑝�̌�𝑡+1|𝑡𝑡

∗ , since 𝑝𝑝�̌�𝑡+1
∗  is 

known in period 𝑡𝑡 given that 𝑝𝑝𝑡𝑡
∗ is now deterministic. Likewise, we replace 𝑝𝑝𝑡𝑡+1 

with 𝑝𝑝𝑡𝑡+1|𝑡𝑡, as 𝑝𝑝𝑡𝑡+1 = 𝑝𝑝�̌�𝑡+1
∗ = 𝑝𝑝�̌�𝑡+1|𝑡𝑡

∗ , known at 𝑡𝑡. Note that 𝑝𝑝1|0 = 𝑝𝑝1̌|0
∗ = 𝑝𝑝1

∗ = 0. 
Finally, we define 𝑝𝑝�̂�𝑡+1|𝑡𝑡 ≔ 𝑝𝑝𝑡𝑡+1|𝑡𝑡 − 𝜋𝜋∗𝑡𝑡 and 𝑝𝑝̌�̂�𝑡+1|𝑡𝑡

∗ ≔ 𝑝𝑝�̌�𝑡+1|𝑡𝑡
∗ − 𝜋𝜋∗𝑡𝑡. This gives the 

following equations for 𝑡𝑡 ≥ 1: 

𝛽𝛽�𝑝𝑝�̂�𝑡+1|𝑡𝑡 − 𝑝𝑝�̂�𝑡|𝑡𝑡−1� + 𝜅𝜅𝑥𝑥𝑡𝑡 = � 0, if 𝑡𝑡 = 1
𝑝𝑝�̂�𝑡|𝑡𝑡−1 − 𝑝𝑝�̂�𝑡−1|𝑡𝑡−2, if 𝑡𝑡 > 1 

𝑖𝑖𝑡𝑡 =
⎩�⎨
�⎧ 𝑟𝑟𝑡𝑡 + 𝜋𝜋∗ + 𝑝𝑝̌�̂�𝑡+1|𝑡𝑡

∗ , if 𝑡𝑡 = 1
𝑟𝑟𝑡𝑡 + 𝜋𝜋∗ + 𝑝𝑝̌�̂�𝑡+1|𝑡𝑡

∗ − 𝑝𝑝̌�̂�𝑡|𝑡𝑡−1
∗ + 𝜃𝜃�𝑝𝑝�̂�𝑡|𝑡𝑡−1 − 𝑝𝑝̌�̂�𝑡|𝑡𝑡−1

∗ �, if 𝑡𝑡 > 1
, 

𝑥𝑥𝑡𝑡 = 𝛿𝛿𝑥𝑥𝑡𝑡+1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛), 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋∗ + 𝑝𝑝�̂�𝑡+1|𝑡𝑡 − 𝑝𝑝�̂�𝑡|𝑡𝑡−1, 
𝑝𝑝̌�̂�𝑡+1|𝑡𝑡

∗ = max�𝜚𝜚𝑝𝑝̌�̂�𝑡|𝑡𝑡−1
∗ , 𝑝𝑝̌�̂�𝑡|𝑡𝑡−1

∗ + 𝜖𝜖 − 𝑟𝑟𝑡𝑡 − 𝜋𝜋∗�, 
where we assume 𝜅𝜅𝜍𝜍 ≠ 0, 𝜃𝜃 > 0 and 𝑛𝑛 + 𝜋𝜋∗ > 𝜖𝜖 > 0. The latter assumption 
ensures that 𝑝𝑝̌�̂�𝑡+1|𝑡𝑡

∗ = 0 in steady state. 

We are interested in the constraint in the definition of 𝑝𝑝̌�̂�𝑡+1|𝑡𝑡
∗ , which we note 

can be rewritten as the pair of equations: 
𝑧𝑧𝑡𝑡 = 𝑝𝑝̌�̂�𝑡+1|𝑡𝑡

∗ − 𝑝𝑝̌�̂�𝑡|𝑡𝑡−1
∗ + 𝑟𝑟𝑡𝑡 + 𝜋𝜋∗ − 𝜖𝜖, 

𝑧𝑧𝑡𝑡 = max�0, −�1 − 𝜚𝜚�𝑝𝑝̌�̂�𝑡|𝑡𝑡−1
∗ + 𝑟𝑟𝑡𝑡 + 𝜋𝜋∗ − 𝜖𝜖�, 

where 𝑧𝑧𝑡𝑡 is an auxiliary variable. The results of Holden (2021) imply that in 
order to prove uniqueness under perfect foresight (conditional on 𝑧𝑧𝑡𝑡 eventually 

converging to its positive steady state value), we should first replace the second 
equation for 𝑧𝑧𝑡𝑡 just given with 𝑧𝑧𝑡𝑡 = −�1 − 𝜚𝜚�𝑝𝑝̌�̂�𝑡|𝑡𝑡−1

∗ + 𝑟𝑟𝑡𝑡 + 𝜋𝜋∗ − 𝜖𝜖 + 𝑦𝑦𝑡𝑡, where 𝑦𝑦𝑡𝑡 is 

an exogenous forcing process. For convenience, we define 𝑦𝑦𝑡𝑡 ≔ 0 for 𝑡𝑡 ≤ 0. Then, 
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for 𝑡𝑡 ≥ 1: 

𝑝𝑝�̂�𝑡+1|𝑡𝑡 = 𝑝𝑝̌�̂�𝑡+1|𝑡𝑡
∗ = 𝜚𝜚𝑝𝑝̌�̂�𝑡|𝑡𝑡−1

∗ + 𝑦𝑦𝑡𝑡 = � 𝜚𝜚𝑗𝑗𝑦𝑦𝑡𝑡−𝑘𝑘

∞

𝑗𝑗=0
, 

𝑥𝑥𝑡𝑡 =
1
𝜅𝜅 ⎣

⎢⎡−𝛽𝛽𝑦𝑦𝑡𝑡 + �1 + �1 − 𝜚𝜚�𝛽𝛽�𝑦𝑦𝑡𝑡−1 + ���1 + �1 − 𝜚𝜚�𝛽𝛽�𝜚𝜚 − 1�𝜚𝜚𝑗𝑗−2𝑦𝑦𝑡𝑡−𝑗𝑗

∞

𝑗𝑗=2 ⎦
⎥⎤, 

𝑟𝑟𝑡𝑡 = 𝑛𝑛 +
1
𝜅𝜅𝜍𝜍 ⎣

⎢⎡−𝛽𝛽𝛿𝛿𝑦𝑦𝑡𝑡+1 + �𝛽𝛽 + 𝛿𝛿�1 + �1 − 𝜚𝜚�𝛽𝛽��𝑦𝑦𝑡𝑡

− �𝛿𝛿 + �1 − 𝛿𝛿𝜚𝜚��1 + �1 − 𝜚𝜚�𝛽𝛽��𝑦𝑦𝑡𝑡−1

− ��1 − 𝛿𝛿𝜚𝜚���1 + �1 − 𝜚𝜚�𝛽𝛽�𝜚𝜚 − 1�𝜚𝜚𝑗𝑗−2𝑦𝑦𝑡𝑡−𝑗𝑗

∞

𝑗𝑗=2 ⎦
⎥⎤, 

𝑧𝑧𝑡𝑡 = 𝑛𝑛 + 𝜋𝜋∗ − 𝜖𝜖 + 𝑦𝑦𝑡𝑡 − �1 − 𝜚𝜚�𝑦𝑦𝑡𝑡−1 − � 𝜚𝜚�1 − 𝜚𝜚�𝜚𝜚𝑗𝑗−2𝑦𝑦𝑡𝑡−𝑗𝑗

∞

𝑗𝑗=2
 

+
1
𝜅𝜅𝜍𝜍 ⎣

⎢⎡−𝛽𝛽𝛿𝛿𝑦𝑦𝑡𝑡+1 + �𝛽𝛽 + 𝛿𝛿�1 + �1 − 𝜚𝜚�𝛽𝛽��𝑦𝑦𝑡𝑡 − �𝛿𝛿 + �1 − 𝛿𝛿𝜚𝜚��1 + �1 − 𝜚𝜚�𝛽𝛽��𝑦𝑦𝑡𝑡−1

− ��1 − 𝛿𝛿𝜚𝜚���1 + �1 − 𝜚𝜚�𝛽𝛽�𝜚𝜚 − 1�𝜚𝜚𝑗𝑗−2𝑦𝑦𝑡𝑡−𝑗𝑗

∞

𝑗𝑗=2 ⎦
⎥⎤, 

from, respectively, the monetary rule and Fisher equation, the equations for 𝑧𝑧𝑡𝑡, 
the Phillips curve, the Euler equation, and the first equation for 𝑧𝑧𝑡𝑡. 

Holden (2021) shows that uniqueness is determined by the determinants of 
the principal sub-matrices of the “𝑀𝑀” matrix for the model, which, here, 

contains the partial derivatives of 𝑧𝑧𝑡𝑡 (𝑡𝑡 in rows) with respect to 𝑦𝑦𝑠𝑠 (𝑠𝑠 in 
columns). We take 𝑀𝑀 to have infinitely many rows and columns in the 

following. By our solution for 𝑧𝑧𝑡𝑡, 𝑀𝑀 is a Toeplitz, lower Hessenberg matrix. The 
values on each of the diagonals of 𝑀𝑀 may be read off from the solution for 𝑧𝑧𝑡𝑡. 

We assume for simplicity that 𝛽𝛽 > 0, 𝛿𝛿 > 0 and 𝜅𝜅𝜍𝜍 > 0, which implies that 
1

𝜅𝜅𝜅𝜅 �𝛽𝛽 + 𝛿𝛿�1 + �1 − 𝜚𝜚�𝛽𝛽�� > 0, so the diagonal elements are greater than one. We 

also assume that �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍 < 0, as in Appendix J.8, for example, and 
that 1 − 𝛽𝛽𝛿𝛿 > �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍, for which it is sufficient (but not necessary) 
that 1 − 𝛽𝛽𝛿𝛿 ≥ 0. Note for future reference that if 𝜚𝜚 = 1, then the 𝑀𝑀 matrix is 
identical to the one in Appendix J.9. 

Now consider a finite size principal sub-matrix of 𝑀𝑀. Since 𝑀𝑀 is lower 
Hessenberg and Toeplitz, this sub-matrix must be block lower triangular, where 
each block on the diagonal is either lower triangular (with 1 + 1

𝜅𝜅𝜅𝜅 �𝛽𝛽 +
𝛿𝛿�1 + �1 − 𝜚𝜚�𝛽𝛽�� on the diagonal), or Hessenberg and Toeplitz, being a 
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contiguous principal sub-matrix of 𝑀𝑀. Recall that the determinant of a block 
triangular matrix is the product of the determinants of the blocks on the 

diagonal. Thus, the sub-matrix will have determinant greater than one if each 
of the sub-matrix’s blocks has determinant greater that one. Since 1

𝜅𝜅𝜅𝜅 �𝛽𝛽 +
𝛿𝛿�1 + �1 − 𝜚𝜚�𝛽𝛽�� > 0, a triangular block of size 𝑆𝑆 × 𝑆𝑆 has determinant of 

�1 + 1
𝜅𝜅𝜅𝜅 �𝛽𝛽 + 𝛿𝛿�1 + �1 − 𝜚𝜚�𝛽𝛽���

𝑆𝑆
> 1. Thus, we just need to check the 

determinants of the Hessenberg and Toeplitz blocks, which are contiguous 
principal sub-matrices of 𝑀𝑀. 

By the results of Cahill et al. (2002) (which were also used in Online 
Appendix H.3 of Holden (2021)), the determinant of any 𝑆𝑆 × 𝑆𝑆 Hessenberg and 

Toeplitz block is given by 𝑚𝑚𝑆𝑆, where: 

𝑚𝑚−1 ≔ 𝑚𝑚−2 ≔ ⋯ = 0, 𝑚𝑚0 ≔ 1, 

𝑚𝑚𝑆𝑆 =
⎣
⎢⎡1 +

1
𝜅𝜅𝜍𝜍 �𝛽𝛽 + 𝛿𝛿�1 + �1 − 𝜚𝜚�𝛽𝛽��

⎦
⎥⎤ 𝑚𝑚𝑆𝑆−1 

−
𝛽𝛽𝛿𝛿
𝜅𝜅𝜍𝜍 ⎣

⎢⎡�1 − 𝜚𝜚� +
1
𝜅𝜅𝜍𝜍 �𝛿𝛿 + �1 − 𝛿𝛿𝜚𝜚��1 + �1 − 𝜚𝜚�𝛽𝛽��

⎦
⎥⎤ 𝑚𝑚𝑆𝑆−2 

−
⎣
⎢⎡𝜚𝜚�1 − 𝜚𝜚� +

1
𝜅𝜅𝜍𝜍 �1 − 𝛿𝛿𝜚𝜚���1 + �1 − 𝜚𝜚�𝛽𝛽�𝜚𝜚 − 1�

⎦
⎥⎤ � �

𝛽𝛽𝛿𝛿
𝜅𝜅𝜍𝜍�

𝑘𝑘
𝜚𝜚𝑘𝑘−2𝑚𝑚𝑆𝑆−𝑘𝑘−1

∞

𝑘𝑘=2
. 

Multiplying this last equation by the lag polynomial 𝐼𝐼 − 𝛽𝛽𝛽𝛽
𝜅𝜅𝜅𝜅 𝜚𝜚𝜚𝜚, then gives the 

simpler expression: 

𝑚𝑚𝑆𝑆 = �1 +
𝛽𝛽 + 𝛿𝛿 + 𝛽𝛽𝛿𝛿

𝜅𝜅𝜍𝜍 � 𝑚𝑚𝑆𝑆−1 −
𝛽𝛽𝛿𝛿
𝜅𝜅𝜍𝜍 �1 +

𝛽𝛽 + 𝛿𝛿 + 1
𝜅𝜅𝜍𝜍 � 𝑚𝑚𝑆𝑆−2 +

1
𝜅𝜅𝜍𝜍 �

𝛽𝛽𝛿𝛿
𝜅𝜅𝜍𝜍�

2
𝑚𝑚𝑆𝑆−3, 

which does not directly depend on 𝜚𝜚 (though 𝜚𝜚 will impact the initial 
conditions). As in Appendix J.9, let: 

𝑑𝑑 ≔ �1 +
𝛽𝛽 + 𝛿𝛿

𝜅𝜅𝜍𝜍 �
2

− 4
𝛽𝛽𝛿𝛿

(𝜅𝜅𝜍𝜍)2 = 1 + 2
𝛽𝛽 + 𝛿𝛿

𝜅𝜅𝜍𝜍 +
�𝛽𝛽 − 𝛿𝛿�2

(𝜅𝜅𝜍𝜍)2 > 1, 

as 𝛽𝛽+𝛽𝛽
𝜅𝜅𝜅𝜅 > 0 by assumption. Additionally, from the fact that 𝛽𝛽𝛿𝛿 > 0, we have that 

1 < 𝑑𝑑 < �1 + 𝛽𝛽+𝛽𝛽
𝜅𝜅𝜅𝜅 �

2
, so 1 < �𝑑𝑑 < 1 + 𝛽𝛽+𝛽𝛽

𝜅𝜅𝜅𝜅 . Given the solution for 𝑚𝑚𝑆𝑆 we found for 
the 𝜚𝜚 = 1 case in Appendix J.9, the recurrence for 𝑚𝑚𝑆𝑆 just derived implies that 

for some constants 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶: 

𝑚𝑚𝑆𝑆 = 𝐴𝐴 �
𝛽𝛽𝛿𝛿
𝜅𝜅𝜍𝜍�

𝑆𝑆
+

𝐵𝐵
2𝑆𝑆 �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜍𝜍 + �𝑑𝑑�

𝑆𝑆
+

𝐶𝐶
2𝑆𝑆 �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜍𝜍 − �𝑑𝑑�

𝑆𝑆
 

= 𝐴𝐴 �
𝛽𝛽𝛿𝛿
𝜅𝜅𝜍𝜍�

𝑆𝑆
+

1
2𝑆𝑆 � �𝑆𝑆

𝑘𝑘� �1 +
𝛽𝛽 + 𝛿𝛿

𝜅𝜅𝜍𝜍 �
𝑘𝑘

�𝑑𝑑
𝑆𝑆−𝑘𝑘

�𝐵𝐵 + 𝐶𝐶(−1)𝑆𝑆−𝑘𝑘�
𝑆𝑆

𝑘𝑘=0
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= 𝐴𝐴 �
𝛽𝛽𝛿𝛿
𝜅𝜅𝜍𝜍�

𝑆𝑆
+

𝐵𝐵 + 𝐶𝐶
2𝑆𝑆 �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜍𝜍 �

𝑆𝑆

+
1
2𝑆𝑆 � �𝑆𝑆

𝑘𝑘
� �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜍𝜍 �

𝑘𝑘
�𝑑𝑑

𝑆𝑆−𝑘𝑘
�𝐵𝐵 + 𝐶𝐶(−1)𝑆𝑆−𝑘𝑘�

𝑆𝑆−1

𝑘𝑘=0
. 

Furthermore, the initial conditions imply that: 

𝐴𝐴 =
�1 − 𝜚𝜚�𝛽𝛽𝛿𝛿

�1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍, 

𝐵𝐵 =
1

�𝑑𝑑
�

𝐴𝐴
𝜅𝜅𝜍𝜍 + (1 − 𝐴𝐴)

1
2 �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜍𝜍 + �𝑑𝑑��, 

𝐶𝐶 = 1 − 𝐴𝐴 − 𝐵𝐵 = −
1

�𝑑𝑑
�

𝐴𝐴
𝜅𝜅𝜍𝜍 + (1 − 𝐴𝐴)

1
2 �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜍𝜍 − �𝑑𝑑��. 

Note, that since �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍 < 0 and 𝛽𝛽𝛿𝛿 > 0, 𝛽𝛽𝛽𝛽
�1−𝛽𝛽�(1−𝛽𝛽)−𝜅𝜅𝜅𝜅 < 0, and so 

𝐴𝐴 < 0 as 𝜚𝜚 ∈ [0,1). Thus, 𝐵𝐵 + 𝐶𝐶 = 1 − 𝐴𝐴 > 1. Furthermore: 

𝐵𝐵 − 𝐶𝐶 =
1

�𝑑𝑑
�
2𝐴𝐴
𝜅𝜅𝜍𝜍 + (1 − 𝐴𝐴) �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜍𝜍 �� 

=
1

�𝑑𝑑
�1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜍𝜍 + 𝐴𝐴

�1 − 𝛽𝛽� + (1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍
𝜅𝜅𝜍𝜍 � , 

so if 𝐴𝐴 = 0, then 𝐵𝐵 − 𝐶𝐶 = 1
�𝑑𝑑

�1 + 𝛽𝛽+𝛽𝛽
𝜅𝜅𝜅𝜅 � > 1, as we already established that �𝑑𝑑 <

1 + 𝛽𝛽+𝛽𝛽
𝜅𝜅𝜅𝜅 . Hence, for all 𝜚𝜚 sufficiently close to 1, 𝐵𝐵 − 𝐶𝐶 > 1. Therefore: 

𝑚𝑚𝑆𝑆 > 𝐴𝐴 �
𝛽𝛽𝛿𝛿
𝜅𝜅𝜍𝜍�

𝑆𝑆
+

1
2𝑆𝑆 �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜍𝜍 �

𝑆𝑆
+

1
2𝑆𝑆 � �𝑆𝑆

𝑘𝑘� �1 +
𝛽𝛽 + 𝛿𝛿

𝜅𝜅𝜍𝜍 �
𝑘𝑘

�𝑑𝑑
𝑆𝑆−𝑘𝑘𝑆𝑆−1

𝑘𝑘=0
 

> 𝐴𝐴 �
𝛽𝛽𝛿𝛿
𝜅𝜅𝜍𝜍�

𝑆𝑆
+

1
2𝑆𝑆 �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜍𝜍 �

𝑆𝑆
+

�𝑑𝑑
𝑆𝑆

2𝑆𝑆 � �𝑆𝑆
𝑘𝑘�

𝑆𝑆−1

𝑘𝑘=0
 

= 𝐴𝐴 �
𝛽𝛽𝛿𝛿
𝜅𝜅𝜍𝜍�

𝑆𝑆
+ �

1
2 +

𝛽𝛽 + 𝛿𝛿
2𝜅𝜅𝜍𝜍 �

𝑆𝑆
+

2𝑆𝑆 − 1
2𝑆𝑆

�𝑑𝑑
𝑆𝑆
. 

When 𝐴𝐴 = 0, this implies that 𝑚𝑚𝑆𝑆 > 1. Now, we are assuming that 1 − 𝛽𝛽𝛿𝛿 >
�1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍, so 𝜅𝜅𝜍𝜍 + 𝛽𝛽 + 𝛿𝛿 > 2𝛽𝛽𝛿𝛿, and hence 1

2 + 𝛽𝛽+𝛽𝛽
2𝜅𝜅𝜅𝜅 > 𝛽𝛽𝛽𝛽

𝜅𝜅𝜅𝜅 as 𝜅𝜅𝜍𝜍 > 0. 

Thus, the positive �1
2 + 𝛽𝛽+𝛽𝛽

2𝜅𝜅𝜅𝜅�
𝑆𝑆
 term asymptotically dominates the negative 

𝐴𝐴�𝛽𝛽𝛽𝛽
𝜅𝜅𝜅𝜅�

𝑆𝑆
 term. Consequently, for all 𝜚𝜚 sufficiently close to 1, and all 𝑆𝑆 ≥ 1, 𝑚𝑚𝑆𝑆 >

1, as required. I.e., as long as 𝜚𝜚 ∈ [0,1) is large enough, then the sub-matrix we 
started with will have determinant greater than one, no-matter how large it 

was. In this case, all principal minors of 𝑀𝑀 are greater or equal to one, meaning 
that the 𝑀𝑀 matrix is a “P-matrix” (Holden 2021), and moreover that no 
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sufficiently small changes to the model could change this result.6 (Being a P-
matrix only requires positive principal minors, not ones greater than one.) 

Thus, with 𝑝𝑝𝑡𝑡
∗ exogenous, the solution is robustly unique conditional on the 

terminal conditions (bounded inflation, eventual escapes from both bounds). 

Ruling out sunspot equilibria. As a final check of the performance of 
price level real rate rules, we examine whether they rule out persistent sunspot 

equilibria, following Subsection 4.3 of the main paper. We assume the model is 
given by equations (10) and (11), much as before, with the price level real rate 

rule introduced in this appendix. We assume that 𝑝𝑝𝑡𝑡
∗ = 𝜋𝜋∗(𝑡𝑡 − 1) and that 𝑛𝑛 +

𝜋𝜋∗ > 𝜖𝜖 > 0, 𝜃𝜃 > 0, 𝜅𝜅𝜍𝜍 > 0 and �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍 < 0, again following 

Subsection 4.3. Suppose then that in period 𝑡𝑡 for all 𝑡𝑡 ≤ 0, the economy was 
away from the ZLB, and was expected to stay there with probability one. Thus, 

by period 0, the impact of initial conditions must have dissipated, and so 𝑝𝑝0 =
𝑝𝑝0̌

∗ = 𝑝𝑝0
∗.7 Thus, 𝑖𝑖0 − 𝑟𝑟0 = 𝔼𝔼0𝑝𝑝1 − 𝑝𝑝0 = 𝔼𝔼0𝑝𝑝1̌

∗ − 𝑝𝑝0 = 𝑝𝑝1̌
∗ − 𝑝𝑝0̌

∗ = 𝜋𝜋∗. However, in 

period 1, a “zero probability sunspot shock” hits, so that with probability one, 
for all 𝑡𝑡 ≥ 1, 0 = 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1. (The expectation drops out of the Fisher 

equation as there is no other uncertainty.) Thus for 𝑡𝑡 ≥ 1, the Phillips curve and 
Euler equation imply that 𝜋𝜋𝑡𝑡 = 𝜋𝜋Z and 𝑥𝑥𝑡𝑡 = 𝑥𝑥Z where: 

�1 − 𝛽𝛽�(𝜋𝜋Z − 𝜋𝜋∗) = 𝜅𝜅𝑥𝑥𝑡𝑡, (1 − 𝛿𝛿)𝑥𝑥Z = 𝜍𝜍(𝜋𝜋Z + 𝑛𝑛), 
so,  

𝜋𝜋Z − 𝜋𝜋∗ =
𝜅𝜅𝜍𝜍(𝑛𝑛 + 𝜋𝜋∗)

�1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍 < 0. 

This is consistent with equilibrium if and only if the interest rate would be non-

positive for 𝑡𝑡 ≥ 1 were it not for the ZLB. In period 1, this requires: 
0 ≥ 𝑟𝑟1 + 𝔼𝔼1𝑝𝑝2̌

∗ − 𝑝𝑝1̌
∗ + 𝜃𝜃�𝑝𝑝0

∗ + 𝜋𝜋Z − 𝑝𝑝1̌
∗� 

= max{0, 𝜖𝜖 + 𝜋𝜋Z − 𝜋𝜋∗} + (𝜃𝜃 − 1)(𝜋𝜋Z − 𝜋𝜋∗). 
However, if 𝜃𝜃 < 1, then (𝜃𝜃 − 1)(𝜋𝜋Z − 𝜋𝜋∗) > 0, so the condition cannot 

 
6 As in Online Appendix J.9, this robustness holds for any fixed size 𝑀𝑀 matrix. I.e., fix 𝑇𝑇 > 0 (potentially 
extremely large) and suppose the bound ceases to apply more than 𝑇𝑇 periods in the future. Then following 
a sufficiently small change to the model, there will be a unique solution that satisfies the bound for 𝑇𝑇 
periods, but which may violate it after 𝑇𝑇 periods. 
7 Slightly more formally, we could suppose that the rule was introduced in period −𝑘𝑘, and take the limit 

as 𝑘𝑘 → ∞, giving the same conclusion.  
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possibly hold. Thus, as long as the central bank does not respond too 
aggressively to the price level, there cannot be sunspot solutions of the kind 

previously described. Furthermore, it follows that as long as the economy is 
currently sufficiently close to the “good” steady-state, there is no way for the 

economy to ever jump to the ZLB. Thus, the price level real rate rule delivers 
robust uniqueness, even in the presence of the ZLB. 

G.3 Perpetuity real rate rules 
An even more robust solution to the problems caused by the ZLB is for the 

central bank to intervene in a market which does not have an equivalent to the 
ZLB. Perpetuities (also called “consols”) are one such asset. For suppose that 

nominal interest rates were expected to be at 𝑖𝑖 for all time. Then the price of a 
perpetuity would be 1𝑖𝑖 .

8 Thus, any finite, positive, perpetuity price is consistent 

with at least one path for future nominal interest rates. In other words, there is 
no upper or lower bound on the price of a perpetuity. 

Note that the central bank does not strictly need the treasury to issue 
perpetuities in order to implement a perpetuity real rate rule. Since central 

banks in developed nations are generally believed to be extremely long-lived 
institutions, the central bank can issue perpetuities itself. As central banks can 

always print money to pay the coupon, central banks may be one of the only 
institutions that could be trusted to pay coupons for ever. Central banks may 

also decide to trust the perpetuities issued by some selected private banks, even 
if these will always carry some default risk. If the central bank views default as 

very unlikely in the short to medium term, then such default risk may not 
substantially distort pricing. 

In the below, we will call standard perpetuities “nominal perpetuities”. To 
implement a real rate rule on perpetuities, we will also need there to be a 

corresponding “real perpetuity” traded in the economy. In particular, we 
suppose that one unit of the period 𝑡𝑡 nominal perpetuity bought at 𝑡𝑡 returns $1 
at 𝑡𝑡 + 1, along with one unit of the period 𝑡𝑡 + 1 nominal perpetuity. On the other 

 
8 This is correct under continuous time with a continuous flow of coupons, and approximately correct 

under discrete time, as we will see below. 
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hand, one unit of the period 𝑡𝑡 real perpetuity bought at 𝑡𝑡 returns $ 𝑃𝑃𝑡𝑡+1

Π∗𝑡𝑡+1 at 𝑡𝑡 + 1, 
along with one of the period 𝑡𝑡 + 1 real perpetuity, where 𝑃𝑃𝑡𝑡+1 is the price level 

in period 𝑡𝑡 + 1 and Π∗ ≥ 1 is the target for the gross inflation rate. The nominal 
perpetuity trades at a price of 𝑄𝑄𝐼𝐼,𝑡𝑡 at 𝑡𝑡, whereas the real perpetuity trades at a 

price of 𝑄𝑄𝑅𝑅,𝑡𝑡 at 𝑡𝑡. 
If we write Ξ𝑡𝑡+1 for the real SDF between periods 𝑡𝑡 and 𝑡𝑡 + 1, and Π𝑡𝑡+1 =

𝑃𝑃𝑡𝑡+1
𝑃𝑃𝑡𝑡

 for gross inflation between these periods, then the price of these two 
perpetuities must satisfy: 

𝑄𝑄𝐼𝐼,𝑡𝑡 = 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

�𝑄𝑄𝐼𝐼,𝑡𝑡+1 + 1�, 𝑄𝑄𝑅𝑅,𝑡𝑡 = 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

�𝑄𝑄𝑅𝑅,𝑡𝑡+1 +
𝑃𝑃𝑡𝑡+1

Π∗𝑡𝑡+1�. 

The real perpetuity price could be non-stationary due to the potential unit root 
in the logarithm of the price level, so it is helpful to define a detrended version. 

In particular, let: 

�̂�𝑄𝑅𝑅,𝑡𝑡 ≔ 𝑄𝑄𝑅𝑅,𝑡𝑡
Π∗𝑡𝑡

𝑃𝑃𝑡𝑡
= 𝔼𝔼𝑡𝑡

Ξ𝑡𝑡+1
Π∗ ��̂�𝑄𝑅𝑅,𝑡𝑡+1 + 1�. 

Rewritten in this way, the analogy between the pricing of nominal and real 

perpetuities is clear. If Π𝑡𝑡 = Π∗ for all 𝑡𝑡, then 𝑄𝑄𝐼𝐼,𝑡𝑡 = �̂�𝑄𝑅𝑅,𝑡𝑡 for all 𝑡𝑡 as well. If 
inflation and the SDF are stationary, then �̂�𝑄𝑅𝑅,𝑡𝑡 and 𝑄𝑄𝐼𝐼,𝑡𝑡 will admit a stationary 

solution. 
We also assume that one period nominal bonds are traded in the economy, 

with gross return 𝐼𝐼𝑡𝑡. As in Subsection 7.1 of the main text, the pricing for these 
bonds must satisfy: 

𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

= 1. 

We can now redo the argument of this subappendix’s initial paragraph, 

slightly more formally. So, suppose that the gross nominal interest rate 𝐼𝐼𝑡𝑡 is 
pegged at the constant level 𝐼𝐼 (which may be inconsistent with the inflation 

target of Π∗). Then, the pricing equation for nominal perpetuities has a solution 
in which 𝑄𝑄𝐼𝐼,𝑡𝑡 = 𝑄𝑄𝐼𝐼 for all 𝑡𝑡, with 𝑄𝑄𝐼𝐼 = 𝐼𝐼−1[𝑄𝑄𝐼𝐼 + 1], since 𝔼𝔼𝑡𝑡

Ξ𝑡𝑡+1
Π𝑡𝑡+1

= 𝐼𝐼−1, for all 𝑡𝑡. 
Thus, 𝑄𝑄𝐼𝐼 = 1

𝐼𝐼−1. As 𝐼𝐼 → 1 (the ZLB), 𝑄𝑄𝐼𝐼 → ∞, while as 𝐼𝐼 → ∞, 𝑄𝑄𝐼𝐼 → 0. Thus, in 
line with our initial argument, any finite, positive, nominal perpetuity price is 

consistent with at least one possible path for nominal rates, no matter the 
dynamics of the real SDF. This ensures that the central bank can set the nominal 
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perpetuity price to an arbitrary level, without any constraints. We do not need 
the real perpetuity price to be unbounded in this manner, as the central bank 

will not intervene in real perpetuity markets. 
The reader might worry that a bound on nominal perpetuity prices could 

enter another way. Suppose that nominal perpetuity prices were known at least 
one period in advance (e.g., because there is no uncertainty), and that money 

is available to trade. Then it would be the case that 𝑄𝑄𝐼𝐼,𝑡𝑡+1 + 1 ≥ 𝑄𝑄𝐼𝐼,𝑡𝑡, else 
nominal perpetuities would have return strictly dominated by that of cash. This 

inequality is an immediate consequence of 𝐼𝐼𝑡𝑡 ≥ 1 though, when 𝑄𝑄𝐼𝐼,𝑡𝑡+1 is known 
at 𝑡𝑡. 𝐼𝐼𝑡𝑡 ≥ 1 implies 𝑄𝑄𝐼𝐼,𝑡𝑡

𝐼𝐼𝑡𝑡
≤ 𝑄𝑄𝐼𝐼,𝑡𝑡, so: 

𝑄𝑄𝐼𝐼,𝑡𝑡𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

=
𝑄𝑄𝐼𝐼,𝑡𝑡
𝐼𝐼𝑡𝑡

≤ 𝑄𝑄𝐼𝐼,𝑡𝑡 = 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

�𝑄𝑄𝐼𝐼,𝑡𝑡+1 + 1�, 

which implies 𝑄𝑄𝐼𝐼,𝑡𝑡+1 + 1 ≥ 𝑄𝑄𝐼𝐼,𝑡𝑡 if 𝑄𝑄𝐼𝐼,𝑡𝑡+1 is known at 𝑡𝑡. Thus, the bound on one 

period nominal rates is all that really matters, and we have already showed that 
this bound does not imply a bound on 𝑄𝑄𝐼𝐼,𝑡𝑡. Intuitively, 𝑄𝑄𝐼𝐼,𝑡𝑡+1 + 1 ≥ 𝑄𝑄𝐼𝐼,𝑡𝑡 is not a 

constraint on 𝑄𝑄𝐼𝐼,𝑡𝑡 as 𝑄𝑄𝐼𝐼,𝑡𝑡+1 is endogenous. 
We can now introduce our perpetuity real rate rule. We suppose that the 

central bank intervenes in nominal perpetuity markets to ensure: 

𝑄𝑄𝐼𝐼,𝑡𝑡 = �̂�𝑄𝑅𝑅,𝑡𝑡 �
Π𝑡𝑡
Π∗�

−𝜓𝜓
, 

for some exponent 𝜓𝜓 ∈ ℝ. While 𝜓𝜓 > 0 may seem natural (so that high inflation 
results in low bond prices and thus high interest rates), we do not impose this. 

We analyse the resulting dynamics via log-linearizing around the steady-
state with inflation at Π∗.9 In particular, suppose that: 

𝑄𝑄𝐼𝐼,𝑡𝑡 = 𝑄𝑄 exp 𝑞𝑞𝐼𝐼,𝑡𝑡 , �̂�𝑄𝑅𝑅,𝑡𝑡 = 𝑄𝑄 exp 𝑞𝑞𝑅𝑅,𝑡𝑡, 
Ξ𝑡𝑡 = Ξ exp 𝜉𝜉𝑡𝑡 , Π𝑡𝑡 = Π∗ exp 𝜋𝜋𝑡𝑡, 

where 𝑄𝑄 ≔ 1
𝐼𝐼∗−1, with 𝐼𝐼∗ ≔ Π∗

Ξ . We assume Ξ < 1, so 𝐼𝐼∗ > 1. Then to a first order 
approximation around 𝑞𝑞𝐼𝐼,𝑡𝑡 = 𝑞𝑞𝑅𝑅,𝑡𝑡 = 𝜉𝜉𝑡𝑡 = 𝜋𝜋𝑡𝑡 = 0: 

𝑞𝑞𝐼𝐼,𝑡𝑡 = 𝔼𝔼𝑡𝑡 �𝜉𝜉𝑡𝑡+1 − 𝜋𝜋𝑡𝑡+1 +
Ξ

Π∗ 𝑞𝑞𝐼𝐼,𝑡𝑡+1� , 𝑞𝑞𝑅𝑅,𝑡𝑡 = 𝔼𝔼𝑡𝑡 �𝜉𝜉𝑡𝑡+1 +
Ξ

Π∗ 𝑞𝑞𝑅𝑅,𝑡𝑡+1�, 

 
9 While it would ideally be better to examine these determinacy questions in a fully non-linear model, this 
is not tractable. We take comfort from the fact that even Cochrane (2011) primarily relies on linearized 

models. 
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𝑞𝑞𝐼𝐼,𝑡𝑡 = 𝑞𝑞𝑅𝑅,𝑡𝑡 − 𝜓𝜓𝜋𝜋𝑡𝑡. 
Thus: 

𝜓𝜓𝜋𝜋𝑡𝑡 = 𝑞𝑞𝑅𝑅,𝑡𝑡 − 𝑞𝑞𝐼𝐼,𝑡𝑡 = 𝔼𝔼𝑡𝑡 �𝜋𝜋𝑡𝑡+1 +
Ξ

Π∗ �𝑞𝑞𝑅𝑅,𝑡𝑡+1 − 𝑞𝑞𝐼𝐼,𝑡𝑡+1�� = 𝔼𝔼𝑡𝑡 �𝜋𝜋𝑡𝑡+1 +
Ξ

Π∗ 𝜓𝜓𝜋𝜋𝑡𝑡+1�. 

Hence, if we define 𝜙𝜙 ≔ 𝜓𝜓�1 + Ξ
Π∗ 𝜓𝜓�

−1
, we then have that 𝜙𝜙𝜋𝜋𝑡𝑡 = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, just as 

when one period bonds are used. With 𝜙𝜙 > 1, this has the unique stationary 

solution 𝜋𝜋𝑡𝑡 = 0 (so Π𝑡𝑡 = Π∗), as usual. The crucial difference is that with the 
perpetuity real rate rule, this is achieved without violating the ZLB. 

As a final observation, note that our definition of 𝜙𝜙 implies that 𝜓𝜓 =
−𝜙𝜙� Ξ

Π∗ 𝜙𝜙 − 1�
−1

, so, for sufficiently large 𝜙𝜙 (𝜙𝜙 > 𝐼𝐼∗ = Π∗

Ξ ) 𝜓𝜓 < − Π∗

Ξ < 0. Thus, 

under a perpetuity real rate rule with sufficiently large 𝜙𝜙, the central bank will 
raise nominal perpetuity prices in response to high inflation. This sign becomes 

more intuitive once money flows are considered. While if the central bank buys 
perpetuities, they are raising the money supply in the period of purchase, in 

every subsequent period they are reducing the money supply, as the private 
sector must pay coupons back to the central bank. Given the forward-looking 

nature of inflation determination, it is this long-run reduction which is crucial. 

Appendix H The empirical performance of the Fisher 
equation 
For real rate rules to work, the Fisher equation must hold at least 

approximately with whatever assets the central bank considers using. There 
may be time-varying wedges in the Fisher equation from liquidity and risk 

premia, and there could even be a non-unit coefficient on expected inflation,10 
but there must be at least some relationship between 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 and expected 

inflation. 
Since our main empirical exercise will use five-year TIPS and treasuries, we 

will be most interested in whether the Fisher equation holds for these assets. 
We will perform our tests using monthly data on five-year breakeven inflation 

rates constructed from five-year treasuries and five-year TIPS. Breakeven 

 
10 If 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = 𝜅𝜅𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 and the central bank uses the simple rule 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = 𝜙𝜙𝜋𝜋𝑡𝑡, then 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙

𝜅𝜅 𝜋𝜋𝑡𝑡, so �𝜙𝜙𝜅𝜅� > 1 

is necessary and sufficient for determinacy. If 𝜅𝜅 ∈ (0,1), then 𝜙𝜙 > 1 is sufficient. 
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inflation rates give us a measure of 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 for these assets.11 
Unsurprisingly, there is much prior work testing the Fisher equation. 

Balfoussia & Wickens (2006) find evidence in favour of the Fisher equation 
when real rates are inferred from ex-post real returns. Zeng (2013) finds that 

breakeven inflation rates tend to underestimate inflation expectations, due to 
liquidity premia. However, static wedges in the Fisher equation are removed by 

differencing, and so pose no challenge to the use of real rate rules. Abrahams et 
al. (2016) find that beyond the five-year horizon, breakeven rates are mostly 

driven by changes in risk premia, which justifies our focus on five-year 
breakeven rates. Bennett & Owyang (2023) survey the literature on the 

substantial role of inflation and liquidity premia in driving breakeven inflation 
rates. They go on to test the forecasting performance of five-year TIPS 

breakeven rates, and find them to be more accurate than VARs or breakeven 
rates from inflation swaps. They also find that TIPS breakeven rates are 

unbiased, unlike breakeven rates from inflation swaps. Using UK data, Scholtes 
(2002) finds that UK two-year breakeven rates outperform professional 

forecasters in forecasting RPI inflation. 
In the rest of this appendix, we perform two additional tests of the Fisher 

equation. We first check that professional forecasts predict breakeven rates, and 
then we check that breakeven rates predict realised inflation. Throughout 

Appendix H we convert all rates into continuously compounded ones, which 
are 100 times the difference in logarithms of the price levels. 

H.1 Do professional forecasts of inflation predict breakeven rates? 
We first examine the association between breakeven inflation and 

professional forecasts from the Survey of Professional Forecasters (SPF). SPF 
forecasts are produced quarterly. We use the median across respondents given 
that surveys tend to have fat tails.12 

Each survey contains a prediction for five-year CPI inflation over the period 
 

11 We obtain breakeven inflation from https://fred.stlouisfed.org/series/T5YIEM, and converted to a 
continuously compounded rate.  
12 Taken from https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/median-

forecasts.  
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starting from quarter four of the year before the survey year, where quarterly 
CPI levels are averages of monthly CPI levels. For simplicity, we approximate 

this by assuming instead that logarithms of quarterly levels are averages of 
logarithms of monthly levels. This approximation implies that once converted 

into a continuously compounded rate, the reported quantity is 1
180 times the 

annualized continuously compounded (ACC) inflation rate in November the 

year before, plus 1
90 times the ACC inflation rate in December the year before, 

plus 1
60 times the ACC inflation rate in January of the survey year, …, plus 1

60 

times the ACC inflation rate in October of the year four years after the survey 
year, plus 1

90 times the ACC inflation rate in November of the year four years 

after the survey year, plus 1
180 times the ACC inflation rate in December of the 

year four years after the survey year. 
Surveys have a deadline in the second week of month two of the quarter, 

which is usually before the release of CPI inflation for the first month of that 

quarter. For simplicity, we assume this is always the case, as in any case, many 
surveyed will submit their answers before the deadline. Thus, we treat the final 

month of the previous quarter as the last month observed by survey 
participants. Given this, it is natural to compare forecasts to breakeven rates 

from the first month of the survey quarter, as these are based on bonds priced 
with the same information set. Given the indexation lag in breakeven inflation, 

this means that in quarter one, breakeven rates cover inflation from October of 
the year before; in quarter two, breakeven rates cover inflation from January; in 

quarter three, breakeven rates cover inflation from April; and, in quarter four, 
breakeven rates cover inflation from July. However, forecasts always cover 

inflation from November of the year before. We construct modified breakeven 
and SPF forecasts which start from the later of these two dates. This is the 
forecast date for quarter one, but the breakeven date for all other quarters. 

In quarter one of each year, we need to construct a modified breakeven 

forecast starting from one month later (November, not October). We do this by 
subtracting 1

60 times realized ACC inflation rate for October from the forecast, 

and then adding back 1
60 times the five-year, five-year forward breakeven rate 
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derived from five and ten-year TIPS and treasuries.13 This treats the five-year, 
five-year forward breakeven rate as a measure of market long-run inflation 

expectations. 
In the other quarters of the year, we need to construct a modified survey 

forecast starting from either two months later (in quarter two), five months 
later (in quarter three) or eight months later (in quarter four). We do this by 

subtracting realized ACC inflation rates for the future months (from the 
perspective of the forecast), multiplied by the appropriate weights 

( 1
180 , 1

90 , 1
60 , 1

60 , …), and then adding back the forecast of five-year, five-year 
forward inflation, multiplied by the sum of the same weights. This treats the 

five-year, five-year forward forecast as a measure of forecasters’ long-run 
inflation expectations. 

Having done all this, we then have a consistent set of breakeven and SPF 
inflation forecasts.14 We plot the relationship between the two over the full 

period of available data (2005 quarter 3 to 2023 quarter 2) in Figure 1.15 The 
figure also shows the result of a regression of five-year breakeven inflation on 

five-year SPF inflation expectations and a constant. The estimated slope is 1.11, 
with a heteroskedasticity and autocorrelation robust standard error of 0.26. 

This gives a p-value for the null hypothesis of zero slope below 0.0001, and a p-
value for the null hypothesis of a unit slope of 0.42. Thus, we cannot reject the 

null that breakeven inflation responds one-for-one to movements in inflation 
expectations, in line with the Fisher equation. This provides strong support for 

the Fisher equation, as long as we allow for it to contain a stochastic wedge. 

 
13 Taken from https://fred.stlouisfed.org/series/T5YIFRM, and converted to a continuously compounded 
rate.  
14 See the Excel spreadsheet “BreakevenInflationVsSurveyOfProfessionalForecasters.xlsx” provided in 
this paper’s replication materials. 
15 This figure and the accompanying regression can be generated by running the MATLAB script 

“RunMe.m” provided in this paper’s replication materials. 
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Figure 1: The relationship between five-year SPF inflation expectations and five-year breakeven 

inflation rates, over matched horizons. 

H.2 Do breakeven rates forecast inflation? 
We now examine whether five-year breakeven rates contain information 

useful for forecasting inflation. For each month’s observation of breakeven 

inflation, we construct the five-year average of realised CPI inflation over the 
same horizon as used by the TIPS, taking account of the three-month 

indexation lag.16 Under rational expectations: 
1
60 � 𝜋𝜋𝑡𝑡+𝑘𝑘

59

𝑘𝑘=0
= 𝔼𝔼𝑡𝑡

1
60 � 𝜋𝜋𝑡𝑡+𝑘𝑘

59

𝑘𝑘=0
+ an unexpected shock, 

(where 𝑡𝑡 is monthly), so if the Fisher equation holds, then realized inflation 

( 1
60 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘

59
𝑘𝑘=0 ) equals breakeven inflation plus an unexpected shock. 

Regressing average realized inflation on breakeven inflation and a constant 

gives an estimated slope of 0.28, but the standard errors are unreliable as the 
error is near 𝐼𝐼(1). However, since our preferred “practical” real rate rule 

specification is in terms of changes in 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡, it makes more sense to instead 
examine whether changes in breakeven inflation forecast changes in average 

realized inflation. Differencing ensures the errors are stationary and removes 
the slow-moving component of the Fisher equation wedge. Regressing changes 
in realized inflation on changes in breakeven inflation (without a constant) 

 
16 See the Excel spreadsheet “BreakevenInflationVsReality.xlsx” in this paper’s replication materials. 
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gives an estimated slope of 0.09, with a heteroskedasticity and auto-correlation 
robust standard error of 0.02 (and corresponding P-value below 10−4).17 Thus, 

breakeven inflation contains statistically significant information about future 
inflation. We plot this relationship in Figure 2.18 Note that since the coefficient 

is likely to be heavily biased towards zero due to the noise in breakeven rates 
coming from fluctuating risk premia, we cannot infer from this that the slope is 

necessarily different than one. 

Figure 2: The relationship between changes in five-year breakeven inflation rates, and five-year 

realised inflation over the same horizon. 

Appendix I Details of the empirical exercise 
I.1 Background on the Summary of Economic Projections (SEP) 

The United States Federal Open Market Committee releases a “Summary of 
Economic Projections” (SEP) approximately once every three months. This 

contains statistics summarising the projections of the seven Federal Reserve 
board members and the twelve Federal Reserve bank presidents. Crucially, 
these projections are conditional on the Fed following what the individual 

 
17 This result and the previous one may be generated by running the MATLAB script “RunMe.m” 
provided in this paper’s replication materials. 
18 This figure can also be generated by running the MATLAB script “RunMe.m” provided in this paper’s 

replication materials. 
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believes to be “appropriate monetary policy”:19 

“Each participant’s projections [are] based on information 
available at the time of the meeting, together with her or his 

assessment of appropriate monetary policy—including a path for the 
federal funds rate and its longer-run value—and assumptions about 

other factors likely to affect economic outcomes. The longer-run 
projections represent each participant’s assessment of the value to 

which each variable would be expected to converge, over time, under 
appropriate monetary policy and in the absence of further shocks to 

the economy. ‘Appropriate monetary policy’ is defined as the future 
path of policy that each participant deems most likely to foster 

outcomes for economic activity and inflation that best satisfy his or 
her individual interpretation of the statutory mandate to promote 

maximum employment and price stability.” 
We will use the projections for the PCE inflation rate, both for the next few 

years, and for the long-run. Since these are projections for what inflation ought 
to be if monetary policy is set optimally, we take them as capturing 𝜋𝜋𝑡𝑡

∗ from our 

model of a time-varying short-run inflation target.20 
While recent releases of the SEP contain information on the median forecast 

across participants, this is not available for the full sample (from November 
2007). Instead, we have to rely on the mid-point of the central tendency. This is 

the average of the fourth largest forecast, and the fourth smallest forecast. 
(Recall that at most 19 individuals give projections each round.) 

To give an indication of the reliability of the mid-point of the central 
tendency as a measure of a distribution’s location, Table 1 gives the raw 
moments (from a sample of size 108) of the absolute value of the mean, median 
and central-tendency mid-point of samples of size 19 from a standard T-

distribution with degrees of freedom parameter 5, and Table 2 repeats this for 

 
19 https://www.federalreserve.gov/monetarypolicy/fomcprojtabl20230322.htm  
20 See Kocherlakota (2023) for more background on the Summary of Economic Projections. 
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draws from a standard normal distribution.21 While the central tendency mid-
point is less efficient than either the mean or the median in the T-distribution 

case, the difference is not massive (below 30% for all moments). In the Gaussian 
case, the mid-point of central tendency is more efficient than the median, but 

its efficiency loss relative to the mean is larger (about 61% for the fourth 
moment). Overall, these results suggest that the mid-point of the central 

tendency is a reasonable measure of the mean or median projection. 
 

Raw moment Mean Median Central tendency mid-point 

1 0.2342 0.2403 0.2503 

2 0.0877 0.0917 0.1002 

3 0.0428 0.0450 0.0521 

4 0.0255 0.0263 0.0326 
Table 1: Raw moments of the absolute value of the mean, median and central-tendency mid-

point of samples of size 19 from a standard T-distribution with degrees of freedom parameter 5. 

 

Raw moment Mean Median Central tendency mid-point 

1 0.1831 0.2267 0.2058 

2 0.0526 0.0808 0.0666 

3 0.0193 0.0367 0.0274 

4 0.0083 0.0197 0.0133 
Table 2: Raw moments of the absolute value of the mean, median and central-tendency mid-

point of samples of size 19 from a standard normal distribution. 

I.2 From PCE inflation expectations to CPI inflation expectations 
In the Summary of Economic Projections, participants give forecasts for PCE 

inflation, in line with the Fed’s target being stated in terms of PCE inflation. 

However, the pay-off of TIPS is a function of CPI inflation. Thus, we need to 
convert projections from PCE inflation to CPI inflation. 

In order to avoid contaminating the projections with information not 
available at the time, we work with the first released estimates of the seasonally 

 
21 These tables may be generated by running the MATLAB script “DistributionOfCentralTendency.m” 

provided in this paper’s replication materials. 
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adjusted values of monthly, continuously compounded, CPI inflation and PCE 
inflation.22 Throughout Appendix I, continuously compounded inflation rates 

are 100 times the difference in logarithms of the price levels. The estimate of 
CPI inflation for a month is usually released less than a month after the end of 

the month in question, while for PCE inflation it can sometimes take a little over 
a month. For simplicity, we treat both series as having a one-month release lag 

though. 
Let 𝜋𝜋𝑡𝑡

CPI and 𝜋𝜋𝑡𝑡
PCE be the estimates of continuously compounded CPI and 

PCE inflation for month 𝑡𝑡, (released in month 𝑡𝑡 + 1). We estimate the following 
time-varying linear regression on data from January 2002 to March 2023:23 

𝜋𝜋𝑡𝑡
CPI = 𝛼𝛼𝑡𝑡 + 𝛽𝛽𝑡𝑡𝜋𝜋𝑡𝑡

PCE + 𝜎𝜎𝜀𝜀𝜀𝜀𝑡𝑡, 𝜀𝜀𝑡𝑡 ∼ N(0,1), 
𝛼𝛼𝑡𝑡 = 𝛼𝛼𝑡𝑡−1 + 𝜎𝜎𝛼𝛼𝜈𝜈𝛼𝛼,𝑡𝑡, 𝛼𝛼0 ∼ N(0,1), 𝜈𝜈𝛼𝛼,𝑡𝑡 ∼ N(0,1), 

𝛽𝛽𝑡𝑡 = 𝛽𝛽𝑡𝑡−1 + 𝜎𝜎𝛽𝛽𝜈𝜈𝛽𝛽,𝑡𝑡, 𝛽𝛽0 ∼ N(0,36), 𝜈𝜈𝛽𝛽,𝑡𝑡 ∼ N(0,1). 
We take 𝛽𝛽0 ∼ N(0,36) as we expect the mean of 𝜋𝜋𝑡𝑡

PCE to be about two (percent 

annual inflation target) divided by twelve (months in a year), so this choice 
ensures 𝛽𝛽0𝜋𝜋𝑡𝑡

PCE|𝜋𝜋𝑡𝑡
PCE is roughly distributed as N(0,1), just like 𝛼𝛼0. 

We estimate (sandwich (robust/QMLE) standard errors in brackets) 𝜎𝜎𝛼𝛼 ≈
0.0042 (0.0019), 𝜎𝜎𝛽𝛽 ≈ 0.0083 (0.0077), 𝜎𝜎𝜀𝜀 ≈ 0.0078 (0.0045), via maximum 

likelihood. We plot the estimated (smoothed) paths of 𝛼𝛼𝑡𝑡 and 𝛽𝛽𝑡𝑡 in Figure 3 and 
Figure 4.24 We also plot the implied correlation between PCE and CPI inflation 

in Figure 5. We will convert forecasts made in month 𝑡𝑡 from PCE inflation to 
CPI inflation using the smoothed estimates of 𝛼𝛼𝑡𝑡−1 and 𝛽𝛽𝑡𝑡−1.25 For simplicity, we 

ignore the uncertainty associated with these estimates in all of the following 
exercises. 

 
22 Obtained from ALFRED from https://alfred.stlouisfed.org/series?seid=CPIAUCSL and 
https://alfred.stlouisfed.org/series?seid=PCEPI respectively. 
23 We start in 2002 rather than say 2007 (when the Summary of Economic Projections data starts) in order 
to have a sufficient run-in for the impact of initial conditions to dissipate. 
24 These estimates and figures may be produced by running the MATLAB script “RunMe.m” provided in 
this paper’s replication materials. 
25 This conversion is made in the sheet “MappedToCPI” of the Excel document “EstimatingTheta.xlsx” 
provided in this paper’s replication materials, as well as in the MATLAB script “RunMe.m”, also in the 

replication materials. 
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Figure 3: Estimated (smoothed) value of 𝜶𝜶𝒕𝒕 . 

Figure 4: Estimated (smoothed) value of 𝜷𝜷𝒕𝒕 . 
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Figure 5: Implied correlation between PCE and CPI inflation. 

I.3 A simple annual exercise 
The Summary of Economic Projections contains forecasts for inflation over 

particular calendar years.26,27 Averaging all forecasts made in a year gives us an 

annual forecast “made” in that year. Thus, if we work with an annual frequency 
model, then we have the relevant forecasts to estimate the monetary rule, 

without doing anything very sophisticated. It is simple enough that the entire 
exercise can be performed using spreadsheets. 

In particular, we want to estimate 𝜃𝜃 in the following smoothed real rate rule, 
where now 𝑡𝑡 is measured in years, and where we have substituted in the Fisher 

equation for five year bonds to remove 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 and 𝑖𝑖𝑡𝑡−1 − 𝑟𝑟𝑡𝑡−1: 

𝔼𝔼𝑡𝑡
1
5 ��𝜋𝜋𝑡𝑡+𝑘𝑘 − 𝜋𝜋𝑡𝑡+𝑘𝑘

∗ �
5

𝑘𝑘=1
− 𝔼𝔼𝑡𝑡−1

1
5 ��𝜋𝜋𝑡𝑡−1+𝑘𝑘 − 𝜋𝜋𝑡𝑡−1+𝑘𝑘

∗ �
5

𝑘𝑘=1
= 𝜃𝜃(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗). 

We do not worry about observation or indexation lags, as these are small 

relative to the length of a time period (a year). 
The only data missing is forecasts at longer horizons, as each SEP release 

only contains forecasts for three or four years, including the current year, but 
we need forecasts for six years, including the current one. We estimate an AR(1) 

model by OLS on annual PCE inflation 2007-2022, relative to the long-run PCE 
 

26 Technically, they are Q4 to Q4 forecasts, but this will not matter for the annual exercise here. 
27 The SEP inflation forecast data is taken from https://alfred.stlouisfed.org/series?seid=PCECTPICTM. 
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inflation forecast from the SEP (averaged over all observations in each year),28 
and obtain a persistence of 0.47.29 We then forecast projections beyond the three 

year horizon using this estimated AR(1) model, and the relevant SEP long-run 
PCE inflation forecast.30 Mapping these PCE forecasts to CPI using the 

estimates of the previous subappendix gives us 𝔼𝔼𝑡𝑡
1
5 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘

∗5
𝑘𝑘=1  and 𝜋𝜋𝑡𝑡

∗. 
We just need data on 𝔼𝔼𝑡𝑡

1
5 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘

5
𝑘𝑘=1  and 𝜋𝜋𝑡𝑡. For the former, we use breakeven 

inflation constructed from five-year treasuries and five-year TIPS, as discussed 
in Appendix H.31 Since we need an end of year value, as all terms in 

𝔼𝔼𝑡𝑡
1
5 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘

5
𝑘𝑘=1  are future dated, we use the average of the December and 

following January observations. Likewise, we use the average of the December 

and following January observations of annual CPI inflation to obtain 𝜋𝜋𝑡𝑡.32 
Figure 6 plots the data, and an estimated slope line with zero intercept. The 

first observation is 2009, as there is a lag in the model (consuming the 2008 data 
point), and there is too little SEP data in 2007 to use that year. There is a clear 

positive association, as would be expected were the Fed close to following a real 
rate rule. The 𝑅𝑅2 value is 0.48 meaning that this simple linear model is capturing 

around half of the variance in the data. 𝜃𝜃 is estimated at 0.51, with a 
heteroskedasticity and autocorrelation robust p-value of 0.006.33 Of course, 

endogeneity is a concern here. We address this in the quarterly estimates that 
follow. 

 
28 The long-run SEP inflation forecasts are taken from https://fred.stlouisfed.org/series/PCECTPICTMLR 
and are extrapolated backwards with their first observation. 
29 See the sheet “AnnualPCE” in the Excel document “EstimatingTheta.xlsx” provided in this paper’s 
replication materials. The data is taken from https://fred.stlouisfed.org/series/DPCERG3A086NBEA. 
30 See the sheet “ProjectingForward” in the Excel document “EstimatingTheta.xlsx” provided in this 

paper’s replication materials. 
31 We obtain breakeven inflation from https://fred.stlouisfed.org/series/T5YIEM.  
32 We take CPI data from https://fred.stlouisfed.org/series/CPIAUCSL.  
33 These estimates are produced both in the Excel document “EstimatingTheta.xlsx” (see the tab labelled 
“Chart”), and in the MATLAB script “RunMe.m”. Only the HAC p-value requires MATLAB for its 
computation. Both the Excel document and the MATLAB script are provided in this paper’s replication 

materials. 
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Figure 6: Annual real rate rule data and estimated slope. 

I.4 Inferring monthly or quarterly short-run inflation targets from 
the SEP 
In averaging to annual, we threw away a lot of data, and thus ended up with 

less precise estimates. The difficulty with using quarterly or monthly data 
though, is that we only observe forecasts for inflation over particular calendar 

years, not for specific quarters. Furthermore, the month in which the forecasts 
are made changes over the sample. Thus, we need a model to infer consistent 

monthly or quarterly observations of 𝜋𝜋𝑡𝑡
∗ from what we do observe. Given the 

changing observation months, it makes sense to work with a monthly model. 

Writing 𝜚𝜚 for the lag operator and 𝐼𝐼 for the identity operator, and with 𝑡𝑡 now 
being measured in months, we assume that: 

𝜋𝜋∞,𝑡𝑡
∗ = (𝐼𝐼 − 0.9999𝜚𝜚)−1𝜎𝜎∞𝜀𝜀∞,𝑡𝑡, 

𝜋𝜋1,𝑡𝑡
∗ = �𝐼𝐼 − 𝜌𝜌1∗𝜚𝜚�−1�𝐼𝐼 + 𝜓𝜓1∗𝜚𝜚�𝜎𝜎1∗𝜀𝜀1∗,𝑡𝑡, 
𝜋𝜋1,𝑡𝑡 = �𝐼𝐼 − 𝜌𝜌1𝜚𝜚�−1�𝐼𝐼 + 𝜓𝜓1𝜚𝜚�𝜎𝜎1𝜀𝜀1,𝑡𝑡, 

𝜋𝜋2,𝑡𝑡
∗ = �

1
1 + 𝑘𝑘 exp �

𝑘𝑘
1 + 𝑘𝑘� �𝐼𝐼 − exp �−

1
1 + 𝑘𝑘� 𝜚𝜚�

−2
𝜎𝜎2𝜀𝜀2,𝑘𝑘,𝑡𝑡

𝑘𝑘∈{0,12,24,36}
, 

𝜋𝜋𝑡𝑡
∗ = 𝜋𝜋∞,𝑡𝑡

∗ + 𝜋𝜋1,𝑡𝑡
∗ + 𝜋𝜋2,𝑡𝑡

∗ , 
𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡

∗ + 𝜋𝜋1,𝑡𝑡, 
where 𝜀𝜀∞,𝑡𝑡, 𝜀𝜀1∗,𝑡𝑡, 𝜀𝜀2,0,𝑡𝑡, 𝜀𝜀2,12,𝑡𝑡, 𝜀𝜀2,24,𝑡𝑡, 𝜀𝜀2,36,𝑡𝑡, 𝜀𝜀1,𝑡𝑡 ∼ N(0,1). 
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We unpick this term by term. 𝜋𝜋∞,𝑡𝑡
∗  gives a near unit root AR(1) component 

to 𝜋𝜋𝑡𝑡
∗ (and hence 𝜋𝜋𝑡𝑡) that will capture the changing long-run inflation target. 

𝜋𝜋1,𝑡𝑡
∗  gives an ARMA(1,1) component to 𝜋𝜋𝑡𝑡

∗, and 𝜋𝜋1,𝑡𝑡 gives an ARMA(1,1) 
component to 𝜋𝜋𝑡𝑡. These are reasonable as ARMA(1,1) models tend to perform 

well for forecasting inflation, and it is not obvious a priori whether this is best 
captured by ARMA(1,1) fluctuations in 𝜋𝜋𝑡𝑡 or 𝜋𝜋𝑡𝑡

∗. 

Finally, for any 𝑘𝑘: 
1

1 + 𝑘𝑘 exp �
𝑘𝑘

1 + 𝑘𝑘� �𝐼𝐼 − exp �−
1

1 + 𝑘𝑘� 𝜚𝜚�
−2

𝜎𝜎2𝜀𝜀2,𝑘𝑘,𝑡𝑡 

gives a repeated root AR(2) component with the following key properties. 

Firstly, the IRF to a unit shock to 𝜀𝜀2,𝑘𝑘,𝑡𝑡 in period 0 peaks in period 𝑘𝑘 (the IRF is 
hump-shaped for 𝑘𝑘 > 0). Secondly, the peak value of this IRF is 𝜎𝜎2, which is 

common across 𝑘𝑘 to avoid over-parameterization. In particular, this IRF is given 
by: 

𝜎𝜎2
1 + 𝑡𝑡
1 + 𝑘𝑘 exp �

𝑘𝑘 − 𝑡𝑡
1 + 𝑘𝑘�. 

This has a broadly similar shape to the Nelson & Siegel (1987) curvature 

factor, used for modelling inflation expectations by Aruoba (2020).34 In our 
specific context, our approach has the advantage of enabling us to use the 

information in realised inflation, which helps make-up for the sparsity of the 
SEP data set. 

We include these repeated root AR(2) terms for 𝑘𝑘 ∈ {0,12,24,36} as the SEP 
contains inflation forecasts at horizons of about zero, one, two and possibly 

three years. The 𝑘𝑘 = 0 term will capture movements in the zero-year horizon 
projections, the 𝑘𝑘 = 12 term will capture movements in the one-year horizon 

projections, and so on. Thus, we will not need to include any measurement 
error terms. 

We estimate the model using monthly data from the same sources as in the 
previous subappendices, with data from January 2007 to April 2023.35 The first 

 
34 The slope and curvature factors are Ο�𝑡𝑡−1� as 𝑡𝑡 → ∞, which implies greater persistence than any 
stationary finite-order ARMA process. We instead capture a near permanent component with the 

(𝐼𝐼 − 0.9999𝜚𝜚)−1𝜎𝜎∞𝜀𝜀∞,𝑡𝑡 term. 
35 This is contained in the sheet “Data” of the Excel document “EstimatingTheta.xlsx”. The code for 
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SEP release is in November 2007, and the last is in March of 2023. The initial 
months of 2007 allow the smoother to infer something about the higher 

frequency state variables, before the SEP data starts. 
In line with the SEP, we construct Q4 on Q4 annual inflation measures as 

December observations of 1
3 ∑ ∑ 𝜋𝜋𝑡𝑡−𝑙𝑙−𝑘𝑘

11
𝑘𝑘=0

2
𝑙𝑙=0 . Expectations of such measures 

are constructed by iterating on the state space model’s transition matrix. We 

include every available SEP inflation forecast, with each linked to the month in 
which it was released. Our observed measure of CPI inflation is the real time 

one detailed in I.2. We take the observed SEP long-run inflation forecasts as 
being observations of the 𝜋𝜋∞,𝑡𝑡

∗  term. We assume that the initial state is drawn 

from the model’s stationary distribution, but with the level modified so that 
any state that contains 𝜋𝜋∞,𝑡𝑡

∗  has mean two (percent annual inflation target) over 

twelve (months in a year). In order to avoid favouring 𝜋𝜋1,𝑡𝑡
∗  over 𝜋𝜋1,𝑡𝑡, we start 

the optimization with identical parameters for these two ARMA(1,1) processes, 

taken from an initial estimate of an ARMA(1,1) on CPI. 
We estimate (sandwich (robust/QMLE) standard errors in brackets) 𝜌𝜌1 ≈

−0.01 (0.15), 𝜓𝜓1 ≈ 0.26 (0.03), 𝜎𝜎1 ≈ 0.12 (0.03), 𝜌𝜌1∗ ≈ 0.65 (0.05), 𝜓𝜓1∗ ≈ 0.02 
(0.04), 𝜎𝜎1∗ ≈ 0.19 (0.04), 𝜎𝜎∞ ≈ 0.0021 (0.0007), 𝜎𝜎2 ≈ 0.0099 (0.0010), via 

maximum likelihood. Thus, 𝜋𝜋1,𝑡𝑡 is essentially an MA(1) process, while 𝜋𝜋1,𝑡𝑡
∗  is 

essentially an AR(1) process. This means that 𝜋𝜋𝑡𝑡 does not deviate persistently 

from 𝜋𝜋𝑡𝑡
∗, so the projections are tracking inflation well. It also means that 

movements in 𝜋𝜋𝑡𝑡
∗ explains much of the variance in 𝜋𝜋𝑡𝑡 except at the highest 

frequencies. This is also clear from Figure 7 which plots the smoothed estimates 
of 𝜋𝜋𝑡𝑡

∗ and 𝜋𝜋𝑡𝑡, aggregated to quarterly frequency. 

We use quarterly frequency aggregates here and in our estimation exercise 
for two reasons. Firstly, since most macroeconomic models are calibrated or 
estimated on quarterly frequency data. Secondly, because the SEP is only 
released about once every three months. Thus, the monthly estimates of 𝜋𝜋𝑡𝑡

∗ do 

not really contain any more information than quarterly aggregates of this series. 
In effect, the additional variation in the monthly series is likely to be pure 

 
performing the estimation is contained in the MATLAB script “RunMe.m”. Both the Excel document and 

the MATLAB script are provided in this paper’s replication materials. 
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measurement error. By aggregating to quarterly, we reduce this measurement 
error, lessening the impact of “errors in variables” bias. 

In our estimation exercise, for simplicity we ignore the uncertainty 
associated with these quarterly estimates of 𝜋𝜋𝑡𝑡

∗. We drop the observations 

before the first SEP release in 2007 Q4 as these are unlikely to be uninformative, 
and we drop a further year of observations as the multi-year horizons of the 

SEP forecasts mean that early inferences about 𝜋𝜋𝑡𝑡
∗ will be less reliable than later 

ones. Thus, the first observation we use will be 2008 Q4 (except where a lag 

enters in which case we also use the 2008 Q3 observation for the lag). 

Figure 7: Estimated (smoothed) value of 𝝅𝝅𝒕𝒕
∗ (solid line, 90% confidence band in grey) and 𝝅𝝅𝒕𝒕 

(dashed line). Quarterly aggregates. Annualized continuously compounded rates. 

Two data points in Figure 7 warrant further discussion. The implied Q3 and 
Q4 2021 values of 𝜋𝜋𝑡𝑡

∗ are above the realised values of 𝜋𝜋𝑡𝑡. This may be surprising! 
But this does come directly from the underlying SEP data. Mapped to CPI, the 
December 2021 SEP forecast for inflation over 2021 was 6.70%. Realised CPI 

inflation for 2021 came in at 6.62% (calculated with the formula 
1
3 ∑ ∑ 𝜋𝜋𝑡𝑡−𝑙𝑙−𝑘𝑘

11
𝑘𝑘=0

2
𝑙𝑙=0  mentioned previously). So, realised CPI inflation for 2021 

was below the Fed’s SEP “target”. Given that the SEP was below realised 
inflation for the first two quarters of 2021, the model needs a fairly sizeable 

overshoot in the final two quarters to hit the December 2021 SEP forecast. (In 
March and June of 2021, the SEP forecast for 2021 inflation (mapped to CPI) 
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were 2.70% and 4.03% respectively, while Q1 and Q2 CPI inflation were 4.91% 
and 9.24%, annualized, respectively.) 

The only remaining question is why the Q4 2021 SEP forecast should be so 
high. Perhaps policy makers believe that by the time of the Q4 SEP, there is 

nothing they can do to influence that year’s inflation. (But note that the 
December 2021 SEP release was prepared for the December 2021 FOMC 

meeting, and that the estimates of Miranda-Agrippino & Ricco (2021) imply 
monetary shocks have a same month impact on CPI.) Perhaps our estimated 

mapping from PCE to CPI is not accurate enough. Or perhaps it reflects a desire 
to make up for past low inflation during the ZLB period, given the Fed’s average 

inflation targeting. Or to follow through on past “lower for longer” 
commitments. Perhaps it reflects a belief in the costliness of unanticipated 

interest rises. Or a desire to shrink the output gap. Given the Fed did not begin 
raising rates until March 2022, it does not seem outrageous that the model 

views monetary policy as dovish in 2021. 

I.5 Estimating a real rate rule on quarterly data 
Armed with data on 𝜋𝜋𝑡𝑡

∗, we can now estimate the real rate rule of Subsection 
5.2 form the main text, over the period Q4 2008 to Q4 2022. We work with five-

year US treasuries and TIPS, so 𝑇𝑇 = 20. Since annual yields on five-year US 
treasuries never dropped below 0.19 over our sample,36 we ignore the ZLB. As 

suggested in the main text for the US, we take 𝜚𝜚 = 1 (i.e., three months). We 
take 𝑆𝑆 = 0, since the true CPI release delay of below one month is less than half 

of the length of a period (three months) and so for simplicity we write (e.g.) 𝜈𝜈𝑡𝑡 
rather than 𝜈𝜈𝑡𝑡|𝑡𝑡. Thus, we wish to estimate: 

𝑦𝑦𝑡𝑡 ≔ 𝔼𝔼𝑡𝑡
1
𝑇𝑇 ��𝜋𝜋𝑡𝑡+𝑘𝑘 − 𝜋𝜋𝑡𝑡+𝑘𝑘

∗ �
𝑇𝑇−1

𝑘𝑘=0
− 𝔼𝔼𝑡𝑡−1

1
𝑇𝑇 ��𝜋𝜋𝑡𝑡−1+𝑘𝑘 − 𝜋𝜋𝑡𝑡−1+𝑘𝑘

∗ �
𝑇𝑇−1

𝑘𝑘=0
+ 𝜈𝜈𝑡𝑡 − 𝜈𝜈𝑡𝑡−1

−
1
𝑇𝑇 �(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗) − �𝜋𝜋𝑡𝑡−1 − 𝜋𝜋𝑡𝑡−1
∗ �� = 𝜃𝜃𝑥𝑥𝑡𝑡 + 𝜀𝜀𝜈𝜈̅,𝑡𝑡, 

where 𝑥𝑥𝑡𝑡 ≔ 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗ and 𝜀𝜀𝜈𝜈̅,𝑡𝑡 ≔ 𝜈𝜈�̅�𝑡 − 𝜈𝜈�̅�𝑡−1. We also estimate this equation without 

the 1
𝑇𝑇 �(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗) − �𝜋𝜋𝑡𝑡−1 − 𝜋𝜋𝑡𝑡−1
∗ �� term on the left-hand side. 

For consistency with the information set used to price TIPS, we proxy 

 
36 Data from https://fred.stlouisfed.org/series/DGS5.  
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𝔼𝔼𝑡𝑡
1
𝑇𝑇 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘

∗𝑇𝑇−1
𝑘𝑘=0  with 𝑡𝑡 measured in quarters by the final month of quarter 𝑡𝑡 value 

of 𝔼𝔼𝑡𝑡−1
1

3𝑇𝑇 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘−3
∗3𝑇𝑇

𝑘𝑘=1  with 𝑡𝑡 measured in months, derived from the state space 

model. And we use final month of quarter 𝑡𝑡 values of breakeven inflation as 
estimates of 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = 𝔼𝔼𝑡𝑡

1
𝑇𝑇 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘

𝑇𝑇−1
𝑘𝑘=0 + 𝜈𝜈𝑡𝑡 (𝑡𝑡 quarterly). These proxies for the 

components of the left-hand side variable will not bias our estimates as, for 
example, 𝔼𝔼𝑡𝑡−1

1
3𝑇𝑇 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘−3

∗3𝑇𝑇
𝑘𝑘=1 = 𝔼𝔼𝑡𝑡

1
3𝑇𝑇 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘−3

∗3𝑇𝑇
𝑘𝑘=1 + an unexpected shock (𝑡𝑡 

monthly). 
Figure 8 plots our estimate of 𝔼𝔼𝑡𝑡

4
𝑇𝑇 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘

𝑇𝑇−1
𝑘𝑘=0 + 4𝜈𝜈𝑡𝑡 (from observed 

breakeven inflation from five-year TIPS and treasuries) versus our estimate of 
𝔼𝔼𝑡𝑡

4
𝑇𝑇 ∑ 𝜋𝜋𝑡𝑡+𝑘𝑘

∗𝑇𝑇−1
𝑘𝑘=0  (from the state space model). The targeted five-year inflation 

rate was above the breakeven one for most of the sample, perhaps reflecting an 
intention to make-up for the low inflation of the ZLB period, or perhaps 

reflecting liquidity premia on nominal bonds pushing down breakeven rates. 
However, since we time difference both quantities, any static wedge between 

the two will drop out. 

See the main text for the results of estimating 𝜃𝜃.37 
 

37 These estimates and the subsequent ones may be obtained by running the MATLAB script “RunMe.m” 
in this paper’s replication materials. The code describes these regressions as the “modified” ones, and the 
 

Figure 8: Estimated (smoothed) value of 𝔼𝔼𝒕𝒕
𝟒𝟒
𝑻𝑻 ∑ 𝝅𝝅𝒕𝒕+𝒌𝒌

∗𝑻𝑻−𝟏𝟏
𝒌𝒌=𝟎𝟎  from the state space model (solid line) 

and 𝔼𝔼𝒕𝒕
𝟒𝟒
𝑻𝑻 ∑ 𝝅𝝅𝒕𝒕+𝒌𝒌

𝑻𝑻−𝟏𝟏
𝒌𝒌=𝟎𝟎 + 𝟒𝟒𝝂𝝂𝒕𝒕 from observed breakeven inflation (dashed line). Annualized continuously 

compounded rates. 
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Appendix J Proofs and additional results 
J.1 Responding to other endogenous variables in a general model 

Suppose the central bank uses the rule: 
𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜄𝜄𝜙𝜙𝑧𝑧

⊤𝑧𝑧𝑡𝑡 + 𝜙𝜙𝜈𝜈
⊤𝜈𝜈𝑡𝑡. 

Here, 𝑧𝑧𝑡𝑡 is a vector of other endogenous variables, with 𝑧𝑧𝑡𝑡,1 = 𝑟𝑟𝑡𝑡, 𝜄𝜄 > 0 is a scalar 
governing the strength of response to all of them, and 𝜈𝜈𝑡𝑡 is an arbitrary 

exogenous stochastic process (potentially vector valued). As usual, we assume 
𝜙𝜙𝜋𝜋 > 1. We also assume without loss of generality that the elements of 𝑧𝑧𝑡𝑡 are all 

zero in steady state. 
Without loss of generality, we suppose that the other endogenous variables 

satisfy the general linear expectational difference equation: 
0 = 𝐴𝐴𝔼𝔼𝑡𝑡𝑧𝑧𝑡𝑡+1 + 𝐵𝐵𝑧𝑧𝑡𝑡 + 𝐶𝐶𝑧𝑧𝑡𝑡−1 + 𝑑𝑑𝜋𝜋𝑡𝑡 + 𝐸𝐸𝜈𝜈𝑡𝑡, 

where the coefficient matrices are such that there is a unique matrix 𝐹𝐹 with 
eigenvalues in the unit circle such that 𝐹𝐹 = −(𝐴𝐴𝐹𝐹 + 𝐵𝐵)−1𝐶𝐶.38 This condition on 

𝐹𝐹 just states that there is no real indeterminacy in the model. Once inflation is 
determined, so too is 𝑧𝑧𝑡𝑡. Having the same shock process entering both the 

monetary rule and the model’s other equations is without loss of generality as 
it is multiplied by 𝜙𝜙𝜈𝜈

⊤ and 𝐸𝐸 respectively. 

Now define: 
𝐺𝐺 ≔ −𝐴𝐴(𝐴𝐴𝐹𝐹 + 𝐵𝐵)−1. 

Let 𝜚𝜚 be the lag operator, then note that: 
�𝐼𝐼 − 𝐺𝐺𝜚𝜚−1�(𝐴𝐴𝐹𝐹 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝜚𝜚) = 𝐴𝐴𝜚𝜚−1 + 𝐵𝐵 + 𝐶𝐶𝜚𝜚. 

Thus, by the model’s real determinacy, all of 𝐺𝐺’s eigenvalues must also be inside 
the unit circle. 

In terms of the lag operator, the model to be solved is then: 
𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋

−1𝜚𝜚−1�𝜋𝜋𝑡𝑡 = −𝜄𝜄𝜙𝜙𝜋𝜋
−1𝜙𝜙𝑧𝑧

⊤𝑧𝑧𝑡𝑡 − 𝜙𝜙𝜋𝜋
−1𝜙𝜙𝜈𝜈

⊤𝜈𝜈𝑡𝑡, 
𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝜚𝜚−1�(𝐴𝐴𝐹𝐹 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝜚𝜚)𝑧𝑧𝑡𝑡 = −𝑑𝑑𝜋𝜋𝑡𝑡 − 𝐸𝐸𝜈𝜈𝑡𝑡. 

Note for future reference that since 𝜙𝜙𝜋𝜋
−1, 𝐺𝐺 and 𝐹𝐹 all have all their eigenvalues 

in the unit circle, �1 − 𝜙𝜙𝜋𝜋
−1𝜚𝜚−1�, �𝐼𝐼 − 𝐺𝐺𝜚𝜚−1� and (𝐼𝐼 − 𝐹𝐹𝜚𝜚) are all invertible. 

 
ones without the 1

𝑇𝑇 ��𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗� − �𝜋𝜋𝑡𝑡−1 − 𝜋𝜋𝑡𝑡−1

∗ �� term on the left hand side as the unmodified ones. 
38 The lack of terms in 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 and 𝜋𝜋𝑡𝑡−1 is without loss of generality, as such responses can be included by 

adding an auxiliary variable 𝑧𝑧𝑡𝑡,𝑗𝑗 with an equation of the form 𝑧𝑧𝑡𝑡,𝑗𝑗 = 𝜋𝜋𝑡𝑡. 
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We conjecture a series solution of the form: 

𝜋𝜋𝑡𝑡 = � 𝜄𝜄𝑘𝑘
∞

𝑘𝑘=0
𝜋𝜋𝑡𝑡

(𝑘𝑘), 𝑧𝑧𝑡𝑡 = � 𝜄𝜄𝑘𝑘
∞

𝑘𝑘=0
𝑧𝑧𝑡𝑡

(𝑘𝑘). 

Matching terms gives that 𝜋𝜋𝑡𝑡
(0) solves: 

𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋
−1𝜚𝜚−1�𝜋𝜋𝑡𝑡

(0) = −𝜙𝜙𝜋𝜋
−1𝜙𝜙𝜈𝜈

⊤𝜈𝜈𝑡𝑡, 
implying that 𝜋𝜋𝑡𝑡

(0) is determinate with: 

𝜋𝜋𝑡𝑡
(0) = −𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋

−1𝜚𝜚−1�−1𝜙𝜙𝜋𝜋
−1𝜙𝜙𝜈𝜈

⊤𝜈𝜈𝑡𝑡. 
Similarly, from matching terms in the law of motion for 𝑧𝑧𝑡𝑡, we have that: 

𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝜚𝜚−1�(𝐴𝐴𝐹𝐹 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝜚𝜚)𝑧𝑧𝑡𝑡
(0) = −𝑑𝑑𝜋𝜋𝑡𝑡

(0) − 𝐸𝐸𝜈𝜈𝑡𝑡 
so 𝑧𝑧𝑡𝑡

(0) is also determinate (by our assumption on 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶) with: 

𝑧𝑧𝑡𝑡
(0) = −(𝐼𝐼 − 𝐹𝐹𝜚𝜚)−1(𝐴𝐴𝐹𝐹 + 𝐵𝐵)−1𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝜚𝜚−1�−1�𝑑𝑑𝜋𝜋𝑡𝑡

(0) − 𝐸𝐸𝜈𝜈𝑡𝑡�. 
Note that 𝜋𝜋𝑡𝑡

(0) can be treated as exogenous for solving for 𝑧𝑧𝑡𝑡
(0), as the causation 

only runs one way, from 𝜋𝜋𝑡𝑡
(0) to 𝑧𝑧𝑡𝑡

(0). 
Now suppose that we have established that 𝜋𝜋𝑡𝑡

(𝑘𝑘) and 𝑧𝑧𝑡𝑡
(𝑘𝑘) are determinate for 

some 𝑘𝑘 ∈ ℕ, with a determined solution not a function of higher order terms. 
(We have already proven the base case of 𝑘𝑘 = 0.) We seek to prove that 𝜋𝜋𝑡𝑡

(𝑘𝑘+1) 

and 𝑧𝑧𝑡𝑡
(𝑘𝑘+1) are also determinate. Matching terms again gives that: 

𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋
−1𝜚𝜚−1�𝜋𝜋𝑡𝑡

(𝑘𝑘+1) = −𝜙𝜙𝜋𝜋
−1𝜙𝜙𝑧𝑧

⊤𝑧𝑧𝑡𝑡
(𝑘𝑘), 

so 𝜋𝜋𝑡𝑡
(𝑘𝑘+1) is also determinate, with: 

𝜋𝜋𝑡𝑡
(𝑘𝑘+1) = −𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋

−1𝜚𝜚−1�−1𝜙𝜙𝜋𝜋
−1𝜙𝜙𝑧𝑧

⊤𝑧𝑧𝑡𝑡
(𝑘𝑘), 

where we used the inductive hypothesis that 𝑧𝑧𝑡𝑡
(𝑘𝑘) is already determined, and so 

it is effectively exogenous for the purpose of determining 𝜋𝜋𝑡𝑡
(𝑘𝑘+1). Then from 

matching terms in the law of motion for 𝑧𝑧𝑡𝑡: 
𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝜚𝜚−1�(𝐴𝐴𝐹𝐹 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝜚𝜚)𝑧𝑧𝑡𝑡

(𝑘𝑘+1) = −𝑑𝑑𝜋𝜋𝑡𝑡
(𝑘𝑘+1), 

so 𝑧𝑧𝑡𝑡
(𝑘𝑘+1) is also determinate, with: 

𝑧𝑧𝑡𝑡
(𝑘𝑘+1) = −(𝐼𝐼 − 𝐹𝐹𝜚𝜚)−1(𝐴𝐴𝐹𝐹 + 𝐵𝐵)−1𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝜚𝜚−1�−1𝑑𝑑𝜋𝜋𝑡𝑡

(𝑘𝑘+1), 
much as before. This completes our proof by induction, establishing that there 
is a series solution of the given form. 

The only remaining thing to check is that the series does indeed converge 
for sufficiently small 𝜄𝜄. This follows immediately from the product structure of 

the solution above, which means that the variances of 𝑧𝑧𝑡𝑡
(𝑘𝑘) and 𝜋𝜋𝑡𝑡

(𝑘𝑘) must be 
𝑂𝑂�ℎ𝑘𝑘� for some ℎ ≥ 1. Hence for sufficiently small 𝜄𝜄, the model is determinate. 
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I.e., given the Taylor principle is satisfied, a sufficiently small response to other 
endogenous variables will not break determinacy. 

J.2 Phillips curve based forecasting with ARMA(1,1) policy shocks 
As before, we have the monetary rule 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡, which combined 

with the Fisher equation gives 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡. Suppose 𝜁𝜁𝑡𝑡 follows the 
ARMA(1,1) process: 

𝜁𝜁𝑡𝑡 = 𝜌𝜌𝜁𝜁𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡−1, 𝜀𝜀𝜁𝜁,𝑡𝑡 ∼ 𝑁𝑁�0, 𝜎𝜎𝜁𝜁
2� 

with 𝜌𝜌, 𝜃𝜃 ∈ (−1,1). Then from matching coefficients, with 𝜙𝜙 > 1 we have the 

unique solution: 

𝜋𝜋𝑡𝑡 = −
1

𝜙𝜙 − 𝜌𝜌 �𝜁𝜁𝑡𝑡 +
𝜃𝜃
𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡�. 

Thus: 

𝜋𝜋𝑡𝑡 − 𝜌𝜌𝜋𝜋𝑡𝑡−1 = −
1

𝜙𝜙 − 𝜌𝜌 �1 +
𝜃𝜃
𝜙𝜙� �𝜀𝜀𝜁𝜁,𝑡𝑡 +

𝜙𝜙 − 𝜌𝜌
𝜙𝜙 + 𝜃𝜃 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡−1�, 

so 𝜋𝜋𝑡𝑡 also follows an ARMA(1,1) process. Suppose for now that −𝜌𝜌 ≤ 𝜃𝜃, which 
is likely to be satisfied in reality as we expect 𝜌𝜌 to be large and positive, while 𝜃𝜃 

should be close to zero. (For example, Dotsey, Fujita & Stark (2018) find that an 
IMA(1,1) model fits inflation well, in which case −𝜌𝜌 = −1 < 𝜃𝜃 as required.) 

Then 0 < 𝜙𝜙−𝜌𝜌
𝜙𝜙+𝜃𝜃 < 1, so �𝜙𝜙−𝜌𝜌

𝜙𝜙+𝜃𝜃 𝜃𝜃� < 1 meaning the process for inflation is invertible. 
With inflation following an invertible linear process, the full-information 

optimal forecast of 𝜋𝜋𝑡𝑡+1 is a linear combination of 𝜋𝜋𝑡𝑡, 𝜋𝜋𝑡𝑡−1, …. In particular, as 
before 𝑥𝑥𝑡𝑡 is not useful. 

In the unlikely case in which −𝜌𝜌 > 𝜃𝜃, of if the forecaster’s information set ℐ𝑡𝑡 
is smaller than {𝜋𝜋𝑡𝑡, 𝑥𝑥𝑡𝑡, 𝜋𝜋𝑡𝑡−1, 𝑥𝑥𝑡𝑡−1, … },39 then 𝑥𝑥𝑡𝑡 may contain some useful 
information. Combining the solution for inflation with the Phillips curve: 

𝜋𝜋𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡,  

gives: 

𝑥𝑥𝑡𝑡 = −
1
𝜅𝜅 �

1 − 𝛽𝛽𝜌𝜌
𝜙𝜙 − 𝜌𝜌 �𝜁𝜁𝑡𝑡 +

𝜃𝜃
𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡� − 𝛽𝛽

𝜃𝜃
𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡� − 𝜔𝜔𝑡𝑡 

=
1
𝜅𝜅 ��1 − 𝛽𝛽𝜌𝜌�𝜋𝜋𝑡𝑡 + 𝛽𝛽

𝜃𝜃
𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡� − 𝜔𝜔𝑡𝑡. 

In this case, it is possible that 𝔼𝔼�𝜋𝜋𝑡𝑡+1�ℐ𝑡𝑡� ≠ 𝔼𝔼�𝜋𝜋𝑡𝑡+1�ℐ𝑡𝑡−1, 𝜋𝜋𝑡𝑡� as 𝑥𝑥𝑡𝑡 provides an 

 
39 We nonetheless assume that 𝜋𝜋𝑡𝑡 and 𝑥𝑥𝑡𝑡 are in ℐ𝑡𝑡. 
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independent signal about 𝜀𝜀𝜁𝜁,𝑡𝑡. 
There are two important special cases. If 𝜔𝜔𝑡𝑡 = 0, and the forecaster knows 

this, then: 

𝜀𝜀𝜁𝜁,𝑡𝑡 =
𝜙𝜙
𝛽𝛽𝜃𝜃 �𝜅𝜅𝑥𝑥𝑡𝑡 − �1 − 𝛽𝛽𝜌𝜌�𝜋𝜋𝑡𝑡�, 

so: 

𝜁𝜁𝑡𝑡 = − �𝜙𝜙 −
1
𝛽𝛽� 𝜋𝜋𝑡𝑡 −

𝜅𝜅
𝛽𝛽 𝑥𝑥𝑡𝑡, 

which enables the forecaster to form the full-information optimal forecast: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = −
1

𝜙𝜙 − 𝜌𝜌 �𝜌𝜌𝜁𝜁𝑡𝑡 + 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡� =
1
𝛽𝛽 (𝜋𝜋𝑡𝑡 − 𝜅𝜅𝑥𝑥𝑡𝑡). 

(This formula also follows immediately from the Phillips curve.) Note that the 
output gap has what Dotsey, Fujita & Stark (2018) call the “wrong” sign, 

meaning Phillips curve based forecasting regressions may have surprising 
results. However, in the general case in which 𝜔𝜔𝑡𝑡 has positive variance, then 

output’s signal about 𝜀𝜀𝜁𝜁,𝑡𝑡 will be polluted by the noise from 𝜔𝜔𝑡𝑡, making it much 
less informative. Indeed, with 𝜙𝜙 large, as we expect, then 𝜃𝜃

𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡 will have low 

variance, making it more likely that it is drowned out by the noise from 𝜔𝜔𝑡𝑡.  
The second important special case is when 𝜀𝜀𝜁𝜁,𝑡𝑡 = 0, and again the forecaster 

knows this. In this case, much as in the main text: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜌𝜌𝜋𝜋𝑡𝑡 −
1

𝜙𝜙 − 𝜌𝜌 �1 +
𝜃𝜃
𝜙𝜙� �𝔼𝔼𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡+1 +

𝜙𝜙 − 𝜌𝜌
𝜙𝜙 + 𝜃𝜃 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡� = 𝜌𝜌𝜋𝜋𝑡𝑡, 

so 𝑥𝑥𝑡𝑡 is unhelpful. 

The general case will inherit aspects of these two special cases, as well as the 
case in which 𝜋𝜋𝑡𝑡’s stochastic process was invertible. Inflation and its lags will 

certainly help forecast inflation, but the output gap may also provide a little 
extra information, possibly with the “wrong” sign. 

J.3 Determinacy under traditional price level rules 
We are interested in the properties of standard Taylor-type monetary rules 

when augmented with a response to the price level. Suppose the model is given 
by equations (4) and (8), from the main text, without shocks, and with the 

simple monetary rule: 
𝑖𝑖𝑡𝑡 = 𝑛𝑛𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜃𝜃𝑝𝑝𝑡𝑡 + 𝜓𝜓𝑥𝑥𝑡𝑡, 
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where 𝑝𝑝𝑡𝑡 is the logarithm of the price level, so 𝜋𝜋𝑡𝑡 = 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1.40 Thus, we have 
the three equations: 

𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 + 𝛿𝛿−1𝜍𝜍𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝛿𝛿−1𝜍𝜍𝜃𝜃𝑝𝑝𝑡𝑡 = 𝛿𝛿−1�1 + 𝜍𝜍𝜓𝜓�𝑥𝑥𝑡𝑡 + 𝛿𝛿−1𝜍𝜍𝜙𝜙𝜋𝜋𝑡𝑡, 
𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = −𝛽𝛽−1𝜅𝜅𝑥𝑥𝑡𝑡 + 𝛽𝛽−1𝜋𝜋𝑡𝑡, 

𝑝𝑝𝑡𝑡 = 𝜋𝜋𝑡𝑡 + 𝑝𝑝𝑡𝑡−1. 
If we subtract 𝛿𝛿−1𝜍𝜍 times the second equation from the first equation, and then 

add on 𝛿𝛿−1𝜍𝜍𝜃𝜃 times the third, we are left with the system: 

𝔼𝔼𝑡𝑡
⎣
⎢⎡

𝑥𝑥𝑡𝑡+1
𝜋𝜋𝑡𝑡+1

𝑝𝑝𝑡𝑡 ⎦
⎥⎤ =

⎣
⎢⎢
⎡𝛿𝛿−1�1 + 𝜍𝜍𝜓𝜓 + 𝛽𝛽−1𝜅𝜅𝜍𝜍� 𝛿𝛿−1𝜍𝜍�𝜙𝜙 + 𝜃𝜃 − 𝛽𝛽−1� 𝛿𝛿−1𝜍𝜍𝜃𝜃

−𝛽𝛽−1𝜅𝜅 𝛽𝛽−1 0
0 1 1 ⎦

⎥⎥
⎤

⎣
⎢⎡

𝑥𝑥𝑡𝑡
𝜋𝜋𝑡𝑡

𝑝𝑝𝑡𝑡−1⎦
⎥⎤. 

Determinacy requires that the matrix has one eigenvalue with modulus in 

[0,1] (1 is included as prices need not be stationary), and two eigenvalues with 
modulus in (1, ∞). The eigenvalues of the matrix are solutions for 𝜆𝜆 of: 

0 = 𝛽𝛽𝛿𝛿𝜆𝜆3 − �𝜅𝜅𝜍𝜍 + 𝛿𝛿 + 𝛽𝛽�1 + 𝛿𝛿 + 𝜍𝜍𝜓𝜓��𝜆𝜆2

+ �1 + 𝛽𝛽 + 𝛿𝛿 + 𝜅𝜅𝜍𝜍�1 + 𝜙𝜙 + 𝜃𝜃� + 𝜍𝜍𝜓𝜓�1 + 𝛽𝛽��𝜆𝜆 − �1 + 𝜅𝜅𝜍𝜍𝜙𝜙 + 𝜍𝜍𝜓𝜓�. 
We will analyse determinacy under two alternate sets of assumptions. The first 
will assume that 𝜙𝜙, 𝜃𝜃 and 𝜓𝜓 are all small; the second will instead assume that 

𝜙𝜙 − 1, 𝜃𝜃 and 𝜓𝜓 are small. 
Determinacy with small 𝝓𝝓, 𝜽𝜽 and 𝝍𝝍. For the former, fix 𝜙𝜙,̂ 𝜃𝜃,̂ 𝜓𝜓̂ ∈ [0, ∞), 

with 𝜃𝜃 ̂ > 0, and suppose that 𝜙𝜙 = 𝜖𝜖𝜙𝜙,̂ 𝜃𝜃 = 𝜖𝜖𝜃𝜃  ̂ and 𝜓𝜓 = 𝜖𝜖𝜓𝜓,̂ where 𝜖𝜖 > 0 is a 
perturbation parameter. We will work in the limit as 𝜖𝜖 → 0 to assess whether an 

arbitrarily small positive response to prices is sufficient for determinacy, as it is 
under a real rate rule (see Appendix G.2 in this document). Note that since we 

are assuming 𝜃𝜃 ̂ > 0 and 𝜖𝜖 > 0, we always have 𝜃𝜃 > 0, so there is a response to 
the price level. We make the following very mild assumptions in our 
determinacy analysis: 

𝜅𝜅𝜍𝜍 ≠ 0, 
�1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍 ≠ 0, 
�1 + 𝛽𝛽�(1 + 𝛿𝛿) + 𝜅𝜅𝜍𝜍 > 0. 

Given these assumptions, as 𝜖𝜖 → 0, we have the following solution for 𝜆𝜆: 

𝜆𝜆 ∈ �𝜆𝜆1(𝜖𝜖) + Ο�𝜖𝜖2�, 𝜆𝜆2 + Ο(𝜖𝜖), 𝜆𝜆3 + Ο(𝜖𝜖)�, 

 
40 See Footnote 3 for discussion of the validity of including the price level in this way. 
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where for all 𝜖𝜖: 
𝜆𝜆1(𝜖𝜖) = 1 −

𝜅𝜅𝜍𝜍
�1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍 𝜃𝜃�̂�𝜖, 

and where 𝜆𝜆2 and 𝜆𝜆3 solve 0 = 𝑓𝑓 (𝜆𝜆2) = 𝑓𝑓 (𝜆𝜆3), where the function 𝑓𝑓  is defined 
by: 

𝑓𝑓 (𝜆𝜆) = 𝛽𝛽𝛿𝛿𝜆𝜆2 − �𝜅𝜅𝜍𝜍 + 𝛽𝛽 + 𝛿𝛿�𝜆𝜆 + 1, 
for all 𝜆𝜆. Without loss of generality, we assume �𝜆𝜆3� ≥ |𝜆𝜆2|. 

We now distinguish two cases. 
Case 1: Firstly, suppose that: 

�1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍
𝜅𝜅𝜍𝜍 < 0. 

Then for all 𝜖𝜖 > 0, 𝜆𝜆1(𝜖𝜖) > 1, so we must have that �𝜆𝜆3� > 1 and |𝜆𝜆2| ≤ 1. Note 

also that 𝜆𝜆2 and 𝜆𝜆3 must be real, else they would be complex conjugates and 
hence have equal modulus, contradicting �𝜆𝜆3� > 1 ≥ |𝜆𝜆2|. 

Now, note that 𝑓𝑓 (0) = 1 > 0, and 𝑓𝑓 (−1) = �1 + 𝛽𝛽�(1 + 𝛿𝛿) + 𝜅𝜅𝜍𝜍 > 0 (by our 
assumption), so there cannot be a single root in the interval (−1,0). Since there 

cannot be two, in fact there must be zero. Thus, it must be the case that 𝑓𝑓 (1) ≤
0, else there would be zero or two roots in (0,1]. So, 𝑓𝑓 (1) = �1 − 𝛽𝛽�(1 − 𝛿𝛿) −
𝜅𝜅𝜍𝜍 ≤ 0. But �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍 ≠ 0, so in fact �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍 < 0. Hence, 
𝜅𝜅𝜍𝜍 > 0, as �1−𝛽𝛽�(1−𝛽𝛽)−𝜅𝜅𝜅𝜅

𝜅𝜅𝜅𝜅 < 0 in the currently considered case. Given 𝜅𝜅𝜍𝜍 > 0, we 

are then guaranteed that 𝜆𝜆2 ∈ (0,1) and 𝜆𝜆3 ∈ (1, ∞), as required for 
determinacy. 

Case 2: Now suppose instead that: 
�1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍

𝜅𝜅𝜍𝜍 > 0. 

(Note that we do not have to consider the equality case as �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍 ≠
0 by assumption.) Then, 𝜆𝜆1 < 1 so we must have that 1 < |𝜆𝜆2| ≤ �𝜆𝜆3�. 

Much as before, 𝑓𝑓 (0) = 1 > 0, and 𝑓𝑓 (−1) = �1 + 𝛽𝛽�(1 + 𝛿𝛿) + 𝜅𝜅𝜍𝜍 > 0 (by 
assumption), so we must have that 𝑓𝑓 (1) = �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍 > 0, else there 

would be a root in the unit circle. This implies that 𝜅𝜅𝜍𝜍 > 0 as �1−𝛽𝛽�(1−𝛽𝛽)−𝜅𝜅𝜅𝜅
𝜅𝜅𝜅𝜅 > 0 in 

the currently considered case. 
Therefore, in either case, 𝜅𝜅𝜍𝜍 > 0 is necessary for determinacy. 
Determinacy with small 𝝓𝝓 − 𝟏𝟏, 𝜽𝜽 and 𝝍𝝍.  We now consider the 
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case in which rather than 𝜙𝜙 being small and non-negative, instead 𝜙𝜙 − 1 is small 
and non-negative, so there is at least a unit response to inflation. Some 

researchers include at least a unit response to inflation in price level rules (for 
example, Bernanke, Kiley & Roberts (2019)). 

Then, as before, we fix 𝜙𝜙,̂ 𝜃𝜃,̂ 𝜓𝜓̂ ∈ [0, ∞), with 𝜃𝜃 ̂ > 0, and suppose that 𝜙𝜙 =
1 + 𝜖𝜖𝜙𝜙,̂ 𝜃𝜃 = 𝜖𝜖𝜃𝜃 ̂and 𝜓𝜓 = 𝜖𝜖𝜓𝜓,̂ where 𝜖𝜖 > 0 is a perturbation parameter. We will 

again work in the limit as 𝜖𝜖 → 0 to assess whether an arbitrarily small positive 
response to prices is sufficient for determinacy, as it is under a real rate rule (see 

Appendix G.2 in this document). Note that since we are assuming 𝜃𝜃 ̂ > 0 and 
𝜖𝜖 > 0, we always have 𝜃𝜃 > 0, so there is a response to the price level. We make 

the following quite mild assumptions in our determinacy analysis: 
𝜅𝜅𝜍𝜍 ≠ 0, 

�1 − 𝛽𝛽�(1 − 𝛿𝛿) ≠ 0, 
1 + 𝜅𝜅𝜍𝜍 > 0, 

�1 + 𝛽𝛽�(1 + 𝛿𝛿) + 2𝜅𝜅𝜍𝜍 > 0. 
(Note that �1 − 𝛽𝛽�(1 − 𝛿𝛿) ≠ 0 does rule out the classical NK model with 𝛿𝛿 = 1, 

but only an arbitrarily small departure from this benchmark is needed for our 
results to go through.) 

Given these assumptions, as 𝜖𝜖 → 0, we have the following solution for 𝜆𝜆: 

𝜆𝜆 ∈ �𝜆𝜆1(𝜖𝜖) + Ο�𝜖𝜖2�, 𝜆𝜆2 + Ο(𝜖𝜖), 𝜆𝜆3 + Ο(𝜖𝜖)�, 
where for all 𝜖𝜖: 

𝜆𝜆1(𝜖𝜖) = 1 −
𝜅𝜅𝜍𝜍

�1 − 𝛽𝛽�(1 − 𝛿𝛿) 𝜃𝜃�̂�𝜖, 

and where 𝜆𝜆2 and 𝜆𝜆3 solve 0 = 𝑓𝑓 (𝜆𝜆2) = 𝑓𝑓 (𝜆𝜆3), where the function 𝑓𝑓  is defined 
by: 

𝑓𝑓 (𝜆𝜆) = 𝛽𝛽𝛿𝛿𝜆𝜆2 − �𝜅𝜅𝜍𝜍 + 𝛽𝛽 + 𝛿𝛿�𝜆𝜆 + 1 + 𝜅𝜅𝜍𝜍, 
for all 𝜆𝜆. Without loss of generality, we assume �𝜆𝜆3� ≥ |𝜆𝜆2|. 

We now distinguish two cases. 
Case 1: Firstly, suppose that: 

�1 − 𝛽𝛽�(1 − 𝛿𝛿)
𝜅𝜅𝜍𝜍 < 0. 

Then for all 𝜖𝜖 > 0, 𝜆𝜆1(𝜖𝜖) > 1, so we must have that �𝜆𝜆3� > 1 and |𝜆𝜆2| ≤ 1. Note 

also that 𝜆𝜆2 and 𝜆𝜆3 must be real, else they would be complex conjugates and 
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hence have equal modulus, contradicting �𝜆𝜆3� > 1 ≥ |𝜆𝜆2|. 
Now, note that 𝑓𝑓 (0) = 1 + 𝜅𝜅𝜍𝜍 > 0, and 𝑓𝑓 (−1) = �1 + 𝛽𝛽�(1 + 𝛿𝛿) + 2𝜅𝜅𝜍𝜍 > 0 (by 

our assumptions), so there cannot be a single root in the interval (−1,0). Since 
there cannot be two, in fact there must be zero. Thus, it must be the case that 

𝑓𝑓 (1) ≤ 0, else there would be zero or two roots in (0,1]. So, 𝑓𝑓 (1) =
�1 − 𝛽𝛽�(1 − 𝛿𝛿) ≤ 0. But �1 − 𝛽𝛽�(1 − 𝛿𝛿) ≠ 0, so in fact �1 − 𝛽𝛽�(1 − 𝛿𝛿) < 0. Hence, 

𝜅𝜅𝜍𝜍 > 0, as �1−𝛽𝛽�(1−𝛽𝛽)
𝜅𝜅𝜅𝜅 < 0 in the currently considered case. Given 𝜅𝜅𝜍𝜍 > 0, we are 

then guaranteed that 𝜆𝜆2 ∈ (0,1) and 𝜆𝜆3 ∈ (1, ∞), as required for determinacy. 

Case 2: Now suppose instead that: 
�1 − 𝛽𝛽�(1 − 𝛿𝛿)

𝜅𝜅𝜍𝜍 > 0. 

(Note that we do not have to consider the equality case as �1 − 𝛽𝛽�(1 − 𝛿𝛿) ≠ 0 by 

assumption.) Then, 𝜆𝜆1 < 1 so we must have that 1 < |𝜆𝜆2| ≤ �𝜆𝜆3�. 
Much as before, 𝑓𝑓 (0) = 1 + 𝜅𝜅𝜍𝜍 > 0, and 𝑓𝑓 (−1) = �1 + 𝛽𝛽�(1 + 𝛿𝛿) + 2𝜅𝜅𝜍𝜍 > 0 

(by assumption), so we must have that 𝑓𝑓 (1) = �1 − 𝛽𝛽�(1 − 𝛿𝛿) > 0, else there 
would be a root in the unit circle. This implies that 𝜅𝜅𝜍𝜍 > 0 as �1−𝛽𝛽�(1−𝛽𝛽)−𝜅𝜅𝜅𝜅

𝜅𝜅𝜅𝜅 > 0 in 

the currently considered case. 
Therefore, again, in either case, 𝜅𝜅𝜍𝜍 > 0 is necessary for determinacy. 

J.4 Robustness to non-unit responses to real interest rates 
Suppose that the central bank is unable to respond with a precise unit 

coefficient to real interest rates, so instead follows the monetary rule: 
𝑖𝑖𝑡𝑡 = (1 + 𝛾𝛾)𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡, 

where 𝛾𝛾 ∈ ℝ is some small value giving the departure from unit responses. 
For simplicity, suppose the rest of the model takes the same form as in 

Subsection 3.2, with: 
𝑥𝑥𝑡𝑡 = 𝛿𝛿𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛𝑡𝑡), 

𝜋𝜋𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡, 
𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 

We suppose 𝜙𝜙 > 1, but do not make any assumptions on the signs of 𝛿𝛿, 𝛽𝛽, 𝜅𝜅, 𝜍𝜍, 𝛾𝛾, 
beyond assuming that 𝜍𝜍 ≠ 0 (so monetary policy has some effect on the output 
gap) and 𝜅𝜅 ≠ 0 (so monetary policy has some effect on inflation, via the output 
gap). 
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Combining the monetary rule with the Fisher equation gives: 
𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝛾𝛾𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡, 

so 𝑟𝑟𝑡𝑡 = 1
𝛾𝛾 �𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝜙𝜙𝜋𝜋𝑡𝑡 − 𝜁𝜁𝑡𝑡�, meaning: 

𝑥𝑥𝑡𝑡 = 𝛿𝛿𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 −
𝜍𝜍
𝛾𝛾 �𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝜙𝜙𝜋𝜋𝑡𝑡� + 𝜍𝜍𝑛𝑛𝑡𝑡 +

𝜍𝜍
𝛾𝛾 𝜁𝜁𝑡𝑡. 

Then, since: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 =
1
𝛽𝛽 𝜋𝜋𝑡𝑡 −

𝜅𝜅
𝛽𝛽 𝑥𝑥𝑡𝑡 −

𝜅𝜅
𝛽𝛽 𝜔𝜔𝑡𝑡, 

we have that: 

𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 = �
1
𝛿𝛿 −

𝜍𝜍𝜅𝜅
𝛾𝛾𝛽𝛽𝛿𝛿� 𝑥𝑥𝑡𝑡 −

𝜍𝜍
𝛿𝛿𝛾𝛾 �𝜙𝜙 −

1
𝛽𝛽� 𝜋𝜋𝑡𝑡 −

𝜍𝜍
𝛿𝛿𝛾𝛾 �𝛾𝛾𝑛𝑛𝑡𝑡 + 𝜁𝜁𝑡𝑡 +

𝜅𝜅
𝛽𝛽 𝜔𝜔𝑡𝑡�. 

Woodford (2003) (Addendum to Chapter 4, Proposition C.1) proves that this 

model is determinate if and only if both eigenvalues of the matrix: 

𝑀𝑀 ≔

⎣
⎢
⎢
⎢
⎡

1
𝛿𝛿 −

𝜍𝜍𝜅𝜅
𝛾𝛾𝛽𝛽𝛿𝛿 −

𝜍𝜍
𝛿𝛿𝛾𝛾 �𝜙𝜙 −

1
𝛽𝛽�

−
𝜅𝜅
𝛽𝛽

1
𝛽𝛽 ⎦

⎥
⎥
⎥
⎤

 

are outside of the unit circle, which in turn is proven to hold if and only if 
EITHER: Case I: 1 < det 𝑀𝑀, 0 < 1 + det 𝑀𝑀 − tr 𝑀𝑀, and 0 < 1 + det 𝑀𝑀 + tr 𝑀𝑀, OR 

Case II: 0 > 1 + det 𝑀𝑀 − tr 𝑀𝑀, and 0 > 1 + det 𝑀𝑀 + tr 𝑀𝑀. Note: 

det 𝑀𝑀 =
1

𝛽𝛽𝛿𝛿 −
𝜍𝜍𝜅𝜅

𝛾𝛾𝛽𝛽𝛿𝛿 𝜙𝜙, 

tr 𝑀𝑀 =
1
𝛿𝛿 −

𝜍𝜍𝜅𝜅
𝛾𝛾𝛽𝛽𝛿𝛿 +

1
𝛽𝛽. 

Thus, Case I requires: 

1 < det 𝑀𝑀 =
1

𝛽𝛽𝛿𝛿 −
𝜍𝜍𝜅𝜅

𝛾𝛾𝛽𝛽𝛿𝛿 𝜙𝜙, 

0 < 1 + det 𝑀𝑀 − tr 𝑀𝑀 =
�1 − 𝛽𝛽�(1 − 𝛿𝛿)

𝛽𝛽𝛿𝛿 −
𝜍𝜍𝜅𝜅

𝛾𝛾𝛽𝛽𝛿𝛿 �𝜙𝜙 − 1�, 

and 0 < 1 + det 𝑀𝑀 + tr 𝑀𝑀 =
�1 + 𝛽𝛽�(1 + 𝛿𝛿)

𝛽𝛽𝛿𝛿 −
𝜍𝜍𝜅𝜅

𝛾𝛾𝛽𝛽𝛿𝛿 �1 + 𝜙𝜙�. 

And Case II requires: 

0 > 1 + det 𝑀𝑀 − tr 𝑀𝑀 =
�1 − 𝛽𝛽�(1 − 𝛿𝛿)

𝛽𝛽𝛿𝛿 −
𝜍𝜍𝜅𝜅

𝛾𝛾𝛽𝛽𝛿𝛿 �𝜙𝜙 − 1�, 

and 0 > 1 + det 𝑀𝑀 + tr 𝑀𝑀 =
�1 + 𝛽𝛽�(1 + 𝛿𝛿)

𝛽𝛽𝛿𝛿 −
𝜍𝜍𝜅𝜅

𝛾𝛾𝛽𝛽𝛿𝛿 �1 + 𝜙𝜙�. 

To see when these conditions are satisfied, first suppose that 𝜅𝜅𝜅𝜅
𝛾𝛾𝛽𝛽𝛽𝛽 < 0, so 𝜅𝜅𝜅𝜅

𝛾𝛾𝛽𝛽𝛽𝛽 =
− |𝜅𝜅𝜅𝜅|

|𝛾𝛾|�𝛽𝛽𝛽𝛽�. Then if 𝛾𝛾 is sufficiently small in magnitude, it is immediately clear that 
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all three conditions of Case I are satisfied, since 𝜙𝜙 > 0, 𝜙𝜙 − 1 > 0 and 1 + 𝜙𝜙 > 0. 
In particular, in this case we need: 

|𝛾𝛾| < |𝜍𝜍𝜅𝜅| min

⎩�
��
��
⎨
��
��
�⎧

𝜙𝜙
max�0, −�sign�𝛽𝛽𝛿𝛿� − �𝛽𝛽𝛿𝛿��� ,

𝜙𝜙 − 1
max�0, −�sign�𝛽𝛽𝛿𝛿���1 − 𝛽𝛽�(1 − 𝛿𝛿)� ,

1 + 𝜙𝜙
max�0, −�sign�𝛽𝛽𝛿𝛿���1 + 𝛽𝛽�(1 + 𝛿𝛿)� ⎭�

��
��
⎬
��
��
�⎫

. 

Alternatively, suppose that 𝜅𝜅𝜅𝜅
𝛾𝛾𝛽𝛽𝛽𝛽 > 0, so 𝜅𝜅𝜅𝜅

𝛾𝛾𝛽𝛽𝛽𝛽 = |𝜅𝜅𝜅𝜅|
|𝛾𝛾|�𝛽𝛽𝛽𝛽�. Then, similarly, if 𝛾𝛾 is 

sufficiently small in magnitude, both conditions of Case II are satisfied, since 

𝜙𝜙 − 1 > 0 and 1 + 𝜙𝜙 > 0. In particular, in this case we need: 

|𝛾𝛾| < |𝜍𝜍𝜅𝜅| min

⎩�
��
⎨
���
⎧ 𝜙𝜙 − 1

max�0, �sign�𝛽𝛽𝛿𝛿���1 − 𝛽𝛽�(1 − 𝛿𝛿)� ,

1 + 𝜙𝜙
max�0, �sign�𝛽𝛽𝛿𝛿���1 + 𝛽𝛽�(1 + 𝛿𝛿)� ⎭�

��
⎬
���
⎫

. 

Thus, it is always sufficient for determinacy that: 

|𝛾𝛾| < |𝜍𝜍𝜅𝜅| min

⎩�
��
��
⎨
��
��
�⎧

𝜙𝜙
max�0, −�sign�𝛽𝛽𝛿𝛿� − �𝛽𝛽𝛿𝛿��� ,

𝜙𝜙 − 1
��1 − 𝛽𝛽�(1 − 𝛿𝛿)� ,

1 + 𝜙𝜙
��1 + 𝛽𝛽�(1 + 𝛿𝛿)� ⎭�

��
��
⎬
��
��
�⎫

. 

Since the right-hand side is strictly positive, there is a positive measure of 𝛾𝛾 for 
which we have determinacy. 

J.5 Real-time learning of Phillips curve coefficients 
We start by assuming that the central bank knows the Phillips curve 

coefficients. A close examination of this case will lead to a natural learning 
scheme for when the central bank does not know these coefficients. 

As in the main text, suppose the central bank is using the rule: 
𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙𝑥𝑥�𝑥𝑥𝑡𝑡 − 𝜅𝜅−1�𝜋𝜋𝑡𝑡 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝛽𝛽�̃�𝜚𝜋𝜋𝜋𝜋𝑡𝑡−1�� + 𝜁𝜁𝑡𝑡, 

and that the model also contains the Phillips curve: 
𝜋𝜋𝑡𝑡 = 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝛽𝛽�̃�𝜚𝜋𝜋𝜋𝜋𝑡𝑡−1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡, 

and the Fisher equation, 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 
We suppose that 𝜁𝜁𝑡𝑡 follows the ARMA(1,1) process: 

𝜁𝜁𝑡𝑡 = 𝜌𝜌𝜁𝜁𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡−1, 𝜀𝜀𝜁𝜁,𝑡𝑡 ∼ 𝑁𝑁�0, 𝜎𝜎𝜁𝜁
2�, 
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with 𝜌𝜌, 𝜃𝜃 ∈ (−1,1), and for simplicity, we suppose that 𝜔𝜔𝑡𝑡 = 𝜀𝜀𝜔𝜔,𝑡𝑡, where 𝜀𝜀𝜔𝜔,𝑡𝑡 ∼
𝑁𝑁�0, 𝜎𝜎𝜔𝜔

2 �. 
From combining all the above equations, we have that if 𝜙𝜙𝜋𝜋 > 1, there is a 

unique solution with: 

𝜋𝜋𝑡𝑡 = −
1

𝜙𝜙𝜋𝜋 − 𝜌𝜌 �𝜁𝜁𝑡𝑡 +
𝜃𝜃

𝜙𝜙𝜋𝜋
𝜀𝜀𝜁𝜁,𝑡𝑡� +

𝜙𝜙𝑥𝑥
𝜙𝜙𝜋𝜋

𝜀𝜀𝜔𝜔,𝑡𝑡. 

Thus, if we define: 

𝑚𝑚0 ≔
𝜎𝜎𝜁𝜁

2

𝜅𝜅�𝜙𝜙𝜋𝜋 − 𝜌𝜌� �𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝜌𝜌 + 𝜃𝜃� − �1 +
𝜃𝜃

𝜙𝜙𝜋𝜋
��, 

𝑚𝑚1 ≔
𝜎𝜎𝜁𝜁

2

𝜅𝜅�𝜙𝜙𝜋𝜋 − 𝜌𝜌� ⎣
⎢⎡�𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝜌𝜌 − 1��𝜌𝜌 + 𝜃𝜃� + 𝛽𝛽�̃�𝜚𝜋𝜋 �1 +

𝜃𝜃
𝜙𝜙𝜋𝜋

�
⎦
⎥⎤, 

𝑚𝑚2 ≔
𝜎𝜎𝜁𝜁

2

𝜅𝜅�𝜙𝜙𝜋𝜋 − 𝜌𝜌� ��𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝜌𝜌 − 1�𝜌𝜌 + 𝛽𝛽�̃�𝜚𝜋𝜋��𝜌𝜌 + 𝜃𝜃�, 

then by the Phillips curve 𝑚𝑚0 = 𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡, 𝑚𝑚1 = 𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−1 and 𝑚𝑚2 = 𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−2. Also 
note that: 

𝜅𝜅 =
𝜎𝜎𝜁𝜁

2

𝜙𝜙𝜋𝜋−𝜌𝜌
�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃

𝜙𝜙𝜋𝜋
�𝜌𝜌�

2

𝜌𝜌�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�𝑚𝑚0−��𝜌𝜌+𝜃𝜃�𝑚𝑚1−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝑚𝑚2�
,  

𝛽𝛽 =
�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃

𝜙𝜙𝜋𝜋
�𝜌𝜌��𝑚𝑚0−�𝜌𝜌𝑚𝑚1−𝑚𝑚2��− 𝜙𝜙𝜋𝜋+𝜃𝜃

�𝜌𝜌+𝜃𝜃�𝜙𝜙𝜋𝜋
��𝜌𝜌+𝜃𝜃�𝑚𝑚1−�1+ 𝜃𝜃

𝜙𝜙𝜋𝜋
�𝑚𝑚2�

𝜌𝜌�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�𝑚𝑚0−��𝜌𝜌+𝜃𝜃�𝑚𝑚1−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝑚𝑚2�
,  

𝜚𝜚𝜋𝜋 = −
�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃

𝜙𝜙𝜋𝜋
�𝜌𝜌��𝜌𝜌𝑚𝑚1−𝑚𝑚2�

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌��𝑚𝑚0−�𝜌𝜌𝑚𝑚1−𝑚𝑚2��− 𝜙𝜙𝜋𝜋+𝜃𝜃
�𝜌𝜌+𝜃𝜃�𝜙𝜙𝜋𝜋

��𝜌𝜌+𝜃𝜃�𝑚𝑚1−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝑚𝑚2�
.  

In other words, once the central bank knows 𝑚𝑚0, 𝑚𝑚1 and 𝑚𝑚2 they can infer the 

parameters of the Phillips curve from the known properties of their monetary 
rule and monetary shock. This is essentially an instrumental variables 

regression. We are using 𝜀𝜀𝜁𝜁,𝑡𝑡, 𝜀𝜀𝜁𝜁,𝑡𝑡−1 and 𝜀𝜀𝜁𝜁,𝑡𝑡−2 as instruments for 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, 𝜋𝜋𝑡𝑡 and 
𝜋𝜋𝑡𝑡−1 in a regression of the output gap on those variables. This works as long as 
𝜃𝜃 ≠ 0, else 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 and 𝜋𝜋𝑡𝑡 are colinear. 

If the central bank does not know the true values of 𝜅𝜅, 𝛽𝛽 ̃and 𝜚𝜚𝜋𝜋, we suppose 

they dynamically update estimates of 𝑚𝑚0, 𝑚𝑚1 and 𝑚𝑚2 using the following 
decreasing gain learning rules (for 𝑡𝑡 > 0): 

𝑚𝑚0,𝑡𝑡 = 𝑚𝑚0,𝑡𝑡−1 + 𝑡𝑡−1�𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡 − 𝑚𝑚0,𝑡𝑡−1�, 
𝑚𝑚1,𝑡𝑡 = 𝑚𝑚1,𝑡𝑡−1 + 𝑡𝑡−1�𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−1 − 𝑚𝑚1,𝑡𝑡−1�, 
𝑚𝑚2,𝑡𝑡 = 𝑚𝑚2,𝑡𝑡−1 + 𝑡𝑡−1�𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−2 − 𝑚𝑚2,𝑡𝑡−1�, 
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where 𝜄𝜄 ∈ (0,1] is a gain parameter. Then they can use the monetary rule: 
𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙𝑥𝑥�𝑥𝑥𝑡𝑡 + 𝑞𝑞1,𝑡𝑡−1𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝑞𝑞0,𝑡𝑡−1𝜋𝜋𝑡𝑡 + 𝑞𝑞−1,𝑡𝑡−1𝜋𝜋𝑡𝑡−1� + 𝜁𝜁𝑡𝑡, 

where: 

𝑞𝑞1,𝑡𝑡 ≔ 𝜙𝜙𝜋𝜋−𝜌𝜌
𝜎𝜎𝜁𝜁

2

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�𝑚𝑚0,𝑡𝑡− 𝜙𝜙𝜋𝜋+𝜃𝜃
�𝜌𝜌+𝜃𝜃�𝜙𝜙𝜋𝜋

��𝜌𝜌+𝜃𝜃�𝑚𝑚1,𝑡𝑡−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝑚𝑚2,𝑡𝑡�

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�
2 ,  

𝑞𝑞0,𝑡𝑡 ≔ − 𝜙𝜙𝜋𝜋−𝜌𝜌
𝜎𝜎𝜁𝜁

2

𝜌𝜌�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�𝑚𝑚0,𝑡𝑡−��𝜌𝜌+𝜃𝜃�𝑚𝑚1,𝑡𝑡−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝑚𝑚2,𝑡𝑡�

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�
2 ,  

𝑞𝑞−1,𝑡𝑡 ≔ − 𝜙𝜙𝜋𝜋−𝜌𝜌
𝜎𝜎𝜁𝜁

2

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌��𝜌𝜌𝑚𝑚1,𝑡𝑡−𝑚𝑚2,𝑡𝑡�

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�
2 .  

This is reasonable, as if 𝑚𝑚0,𝑡𝑡−1 ≈ 𝑚𝑚0, 𝑚𝑚1,𝑡𝑡−1 ≈ 𝑚𝑚1 and 𝑚𝑚2,𝑡𝑡−1 ≈ 𝑚𝑚2 then 𝑞𝑞1,𝑡𝑡−1 ≈
𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�, 𝑞𝑞0,𝑡𝑡−1 ≈ −𝜅𝜅−1 and 𝑞𝑞−1,𝑡𝑡−1 ≈ 𝜅𝜅−1𝛽𝛽�̃�𝜚𝜋𝜋, so this monetary rule is 

approximately the same as the full information one previously considered. 
Using lagged estimates (𝑞𝑞1,𝑡𝑡−1 not 𝑞𝑞1,𝑡𝑡 etc.) in the monetary rule reflects central 

bank information (processing) delays and simplifies the model’s solution. It is 
also a common assumption in the reduced form learning literature (Evans & 

Honkapohja 2001). 
With the new monetary rule, the model is no-longer linear. As a result, the 

exact solution is analytically intractable. However, we are only really interested 
in asymptotic dynamics. If 𝑚𝑚0,𝑡𝑡 → 𝑚𝑚0, 𝑚𝑚1,𝑡𝑡 → 𝑚𝑚1 and 𝑚𝑚2,𝑡𝑡 → 𝑚𝑚2 as 𝑡𝑡 → ∞ then 

we know the asymptotic solution will be the stable full information one we 
found previously. We will analyse the system’s behaviour with help from the 

stochastic approximation tools frequently used in the reduced form learning 
literature (Evans & Honkapohja 2001). These tools only require a zeroth order 

approximation in 𝑡𝑡−1 to the dynamics of 𝑥𝑥𝑡𝑡 and 𝜋𝜋𝑡𝑡.41 Intuitively, this is because 
𝑥𝑥𝑡𝑡 (hence 𝜋𝜋𝑡𝑡) enters the law of motion for 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡 and 𝑚𝑚2,𝑡𝑡 multiplied by 𝑡𝑡−1, 
so a zeroth order approximation to the dynamics of 𝑥𝑥𝑡𝑡 and 𝜋𝜋𝑡𝑡 in 𝑡𝑡−1 delivers a 
first order approximation to the dynamics of 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡 and 𝑚𝑚2,𝑡𝑡 in 𝑡𝑡−1. 

We conjecture a time-varying coefficients solution with: 
𝜋𝜋𝑡𝑡 = 𝐴𝐴𝑡𝑡−1𝜁𝜁𝑡𝑡 + 𝐵𝐵𝑡𝑡−1𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝐶𝐶𝑡𝑡−1𝜀𝜀𝜔𝜔,𝑡𝑡 + 𝐷𝐷𝑡𝑡−1𝜋𝜋𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 

 
41 Given certain regularity conditions on the higher order terms. These conditions will be satisfied here, 
at least providing we restrict 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡 and 𝑚𝑚2,𝑡𝑡 to a small enough open set around 𝑚𝑚0, 𝑚𝑚1 and 𝑚𝑚2, using 

a so called projection facility. 
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where we conjecture 𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝐵𝐵𝑡𝑡 = 𝐵𝐵𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝐶𝐶𝑡𝑡 = 𝐶𝐶𝑡𝑡−1 +
𝑂𝑂�𝑡𝑡−1� and 𝐷𝐷𝑡𝑡 = 𝐷𝐷𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�. Substituting this into the monetary rule, Fisher 

equation and Phillips curve implies: 

�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡−1�𝐴𝐴𝑡𝑡�𝜌𝜌𝜁𝜁𝑡𝑡 + 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡�
= �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡−1

− �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡−1�𝐷𝐷𝑡𝑡��𝐴𝐴𝑡𝑡−1𝜁𝜁𝑡𝑡 + 𝐵𝐵𝑡𝑡−1𝜀𝜀𝜁𝜁,𝑡𝑡

+ 𝐶𝐶𝑡𝑡−1𝜀𝜀𝜔𝜔,𝑡𝑡 + 𝐷𝐷𝑡𝑡−1𝜋𝜋𝑡𝑡−1� + 𝜙𝜙𝑥𝑥�𝑞𝑞−1,𝑡𝑡−1 − 𝜅𝜅−1𝛽𝛽�̃�𝜚𝜋𝜋�𝜋𝜋𝑡𝑡−1 − 𝜙𝜙𝑥𝑥𝜀𝜀𝜔𝜔,𝑡𝑡 + 𝜁𝜁𝑡𝑡

+ 𝑂𝑂�𝑡𝑡−1�. 
Matching terms and using 𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1� and 𝐷𝐷𝑡𝑡 = 𝐷𝐷𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1� then 
gives that: 

�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐴𝐴𝑡𝑡𝜌𝜌
= �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡�𝐴𝐴𝑡𝑡

+ 1 + 𝑂𝑂�𝑡𝑡−1�, 
�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐴𝐴𝑡𝑡𝜃𝜃

= �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡�𝐵𝐵𝑡𝑡

+ 𝑂𝑂�𝑡𝑡−1�, 
0 = �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡−1�𝐷𝐷𝑡𝑡�𝐶𝐶𝑡𝑡 − 𝜙𝜙𝑥𝑥

+ 𝑂𝑂�𝑡𝑡−1�, 
0 = �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡�𝐷𝐷𝑡𝑡

+ 𝜙𝜙𝑥𝑥�𝑞𝑞−1,𝑡𝑡 − 𝜅𝜅−1𝛽𝛽�̃�𝜚𝜋𝜋� + 𝑂𝑂�𝑡𝑡−1�. 
The final equation has two roots, but we know we need to pick the one that 
gives 𝐷𝐷𝑡𝑡 → 0 as 𝜙𝜙𝑥𝑥 → 0. Now if 𝑞𝑞0,𝑡𝑡 is sufficiently close to 𝑞𝑞0, then 𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 +
𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 > 0, so: 

𝐷𝐷𝑡𝑡 =
�𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡� − �

�𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡�2 ⋯
+4𝜙𝜙𝑥𝑥�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡��𝑞𝑞−1,𝑡𝑡 − 𝜅𝜅−1𝛽𝛽�̃�𝜚𝜋𝜋�

2�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�

+ 𝑂𝑂�𝑡𝑡−1�, 
and: 

𝐴𝐴𝑡𝑡 = ��1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡��𝐷𝐷𝑡𝑡 + 𝜌𝜌� − �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡��
−1

+ 𝑂𝑂�𝑡𝑡−1�, 

𝐵𝐵𝑡𝑡 =
𝜃𝜃�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐴𝐴𝑡𝑡

𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡
+ 𝑂𝑂�𝑡𝑡−1�, 
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𝐶𝐶𝑡𝑡 =
𝜙𝜙𝑥𝑥

𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡
+ 𝑂𝑂�𝑡𝑡−1�. 

Since 𝑞𝑞1,𝑡𝑡 = 𝑞𝑞1,𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝑞𝑞0,𝑡𝑡 = 𝑞𝑞0,𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1� and 𝑞𝑞−1,𝑡𝑡 = 𝑞𝑞−1,𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 

as required we have that 𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝐵𝐵𝑡𝑡 = 𝐵𝐵𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝐶𝐶𝑡𝑡 = 𝐶𝐶𝑡𝑡−1 +
𝑂𝑂�𝑡𝑡−1� and 𝐷𝐷𝑡𝑡 = 𝐷𝐷𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�. 

Using this result again, we then have that: 
𝑥𝑥𝑡𝑡 = 𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷𝑡𝑡−1 + 𝜌𝜌��𝐴𝐴𝑡𝑡−1𝜁𝜁𝑡𝑡

+ �𝐵𝐵𝑡𝑡−1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�(𝐴𝐴𝑡𝑡−1𝜃𝜃 + 𝐵𝐵𝑡𝑡−1𝐷𝐷𝑡𝑡−1)�𝜀𝜀𝜁𝜁,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷𝑡𝑡−1�𝐶𝐶𝑡𝑡−1 − 𝜅𝜅�𝜀𝜀𝜔𝜔,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷𝑡𝑡−1�𝐷𝐷𝑡𝑡−1 − 𝛽𝛽�̃�𝜚𝜋𝜋�𝜋𝜋𝑡𝑡−1� + 𝑂𝑂�𝑡𝑡−1�. 
Plugging this into the law of motion for 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡 and 𝑚𝑚2,𝑡𝑡 gives a purely 

backward looking non-linear system in the endogenous states 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡, 𝑚𝑚2,𝑡𝑡 
and 𝜋𝜋𝑡𝑡. This system is of the correct form to be analysed by the stochastic 

approximation results given in Evans & Honkapohja (2001). 
To apply these results, first suppose that for all 𝑡𝑡, 𝑚𝑚0,𝑡𝑡 = 𝑚𝑚�0, 𝑚𝑚1,𝑡𝑡 = 𝑚𝑚�1 and 

𝑚𝑚2,𝑡𝑡 = 𝑚𝑚�2, for some values 𝑚𝑚�0, 𝑚𝑚�1 and 𝑚𝑚�2. Then 𝑞𝑞1,𝑡𝑡 = 𝑞𝑞1̂, 𝑞𝑞0,𝑡𝑡 = 𝑞𝑞0̂ and 𝑞𝑞−1,𝑡𝑡 =
𝑞𝑞−̂1 for all 𝑡𝑡, where: 

𝑞𝑞1̂ ≔ 𝜙𝜙𝜋𝜋−𝜌𝜌
𝜎𝜎𝜁𝜁

2

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�𝑚𝑚�0− 𝜙𝜙𝜋𝜋+𝜃𝜃
�𝜌𝜌+𝜃𝜃�𝜙𝜙𝜋𝜋

��𝜌𝜌+𝜃𝜃�𝑚𝑚�1−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝑚𝑚�2�

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�
2 ,  

𝑞𝑞0̂ ≔ − 𝜙𝜙𝜋𝜋−𝜌𝜌
𝜎𝜎𝜁𝜁

2

𝜌𝜌�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�𝑚𝑚�0−��𝜌𝜌+𝜃𝜃�𝑚𝑚�1−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝑚𝑚�2�

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�
2 ,  

𝑞𝑞−̂1 ≔ − 𝜙𝜙𝜋𝜋−𝜌𝜌
𝜎𝜎𝜁𝜁

2

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌��𝜌𝜌𝑚𝑚�1−𝑚𝑚�2�

�𝜌𝜌+𝜃𝜃−�1+ 𝜃𝜃
𝜙𝜙𝜋𝜋

�𝜌𝜌�
2 .  

Thus, for all 𝑡𝑡, 𝐴𝐴𝑡𝑡 = 𝐴𝐴,̂ 𝐵𝐵𝑡𝑡 = �̂�𝐵, 𝐶𝐶𝑡𝑡 = 𝐶𝐶 ̂and 𝐷𝐷𝑡𝑡 = 𝐷𝐷� , where: 

𝐷𝐷� =
�𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂� − �

�𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂�2 ⋯
+4𝜙𝜙𝑥𝑥�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂��𝑞𝑞−̂1 − 𝜅𝜅−1𝛽𝛽�̃�𝜚𝜋𝜋�

2�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂�
, 

and: 

𝐴𝐴̂ = ��1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂��𝐷𝐷� + 𝜌𝜌� − �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂��
−1

, 

�̂�𝐵 =
𝜃𝜃�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂�𝐴𝐴̂

𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂ − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂�𝐷𝐷�
, 

𝐶𝐶̂ =
𝜙𝜙𝑥𝑥

𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂ − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂�𝐷𝐷�
. 
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So: 
𝜋𝜋𝑡𝑡 = 𝐴𝐴�̂�𝜁𝑡𝑡 + �̂�𝐵𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝐶𝐶�̂�𝜀𝜔𝜔,𝑡𝑡 + 𝐷𝐷� 𝜋𝜋𝑡𝑡−1, 

and: 
𝑥𝑥𝑡𝑡 = 𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌��𝐴𝐴�̂�𝜁𝑡𝑡 + ��̂�𝐵 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐴𝐴�̂�𝜃 + �̂�𝐵𝐷𝐷� ��𝜀𝜀𝜁𝜁,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐶𝐶̂ − 𝜅𝜅�𝜀𝜀𝜔𝜔,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐷𝐷� − 𝛽𝛽�̃�𝜚𝜋𝜋�𝜋𝜋𝑡𝑡−1� 
= 𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌��𝐴𝐴�̂𝜌𝜌�𝜌𝜌𝜁𝜁𝑡𝑡−2 + 𝜀𝜀𝜁𝜁,𝑡𝑡−1 + 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡−2� + 𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡−1�

+ ��̂�𝐵 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐴𝐴�̂�𝜃 + �̂�𝐵𝐷𝐷� ��𝜀𝜀𝜁𝜁,𝑡𝑡 + ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐶𝐶̂ − 𝜅𝜅�𝜀𝜀𝜔𝜔,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐷𝐷� − 𝛽𝛽�̃�𝜚𝜋𝜋��𝐴𝐴�̂𝜌𝜌𝜁𝜁𝑡𝑡−2 + 𝜀𝜀𝜁𝜁,𝑡𝑡−1 + 𝜃𝜃𝜀𝜀𝜁𝜁,𝑡𝑡−2�
+ �̂�𝐵𝜀𝜀𝜁𝜁,𝑡𝑡−1 + 𝐶𝐶�̂�𝜀𝜔𝜔,𝑡𝑡−1 + 𝐷𝐷� �𝐴𝐴�̂�𝜁𝑡𝑡−2 + �̂�𝐵𝜀𝜀𝜁𝜁,𝑡𝑡−2 + 𝐶𝐶�̂�𝜀𝜔𝜔,𝑡𝑡−2 + 𝐷𝐷� 𝜋𝜋𝑡𝑡−3���. 

Hence: 
𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡 = 𝜎𝜎𝜁𝜁

2𝜅𝜅−1��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌 + 𝜃𝜃��𝐴𝐴̂ + �1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� ��̂�𝐵�, 
𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−1 = 𝜎𝜎𝜁𝜁

2𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌��𝐴𝐴�̂𝜌𝜌 + 𝜃𝜃�
+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐷𝐷� − 𝛽𝛽�̃�𝜚𝜋𝜋��𝐴𝐴̂ + �̂�𝐵��, 

𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−2 = 𝜎𝜎𝜁𝜁
2𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌��𝐴𝐴�̂�𝜌�𝜌𝜌 + 𝜃𝜃�
+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐷𝐷� − 𝛽𝛽�̃�𝜚𝜋𝜋��𝐴𝐴�̂𝜌𝜌 + 𝜃𝜃� + 𝐷𝐷� �𝐴𝐴̂ + �̂�𝐵���. 

Now denote by 𝒯𝒯  the map taking the vector: 

𝑚𝑚�: =
⎣
⎢
⎡

𝑚𝑚�0
𝑚𝑚�1
𝑚𝑚�2⎦

⎥
⎤ 

to the vector: 

𝒯𝒯 (𝑚𝑚�): =
⎣
⎢⎢
⎡

𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡
𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−1
𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−2⎦

⎥⎥
⎤

. 

Stochastic approximation theory relates the stability of our nonlinear difference 

equation to the stability of the ODE: 
𝑑𝑑𝑚𝑚�(𝜏𝜏)

𝑑𝑑𝜏𝜏 = 𝒯𝒯 �𝑚𝑚�(𝜏𝜏)� − 𝑚𝑚�(𝜏𝜏). 
The 𝒯𝒯  map here plays the role usually played by the mapping from the 
perceived law of motion to the actual law of motion in the reduced form 

learning literature (Evans & Honkapohja 2001). 
We conjecture that: 

𝑚𝑚 ≔
⎣
⎢⎡

𝑚𝑚0
𝑚𝑚1
𝑚𝑚2⎦

⎥⎤ 
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is a locally asymptotically stable point of this ODE. To check this, note that 
tedious algebra gives that: 

𝜕𝜕𝒯𝒯 (𝑚𝑚�)
𝜕𝜕𝑚𝑚� �

𝑚𝑚�=𝑚𝑚

=
𝜙𝜙𝑥𝑥

𝜅𝜅𝜙𝜙𝜋𝜋

⎣
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎡ 1 𝜙𝜙𝜋𝜋

−1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�
𝜙𝜙𝜋𝜋

−1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�
𝜙𝜙𝜋𝜋 − 𝜌𝜌

−𝛽𝛽�̃�𝜚𝜋𝜋 1 − 𝜙𝜙𝜋𝜋
−1𝛽𝛽�̃�𝜚𝜋𝜋

𝜙𝜙𝜋𝜋�𝜙𝜙𝜋𝜋
−1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�� − 𝜙𝜙𝜋𝜋

−1𝛽𝛽�̃�𝜚𝜋𝜋
𝜙𝜙𝜋𝜋 − 𝜌𝜌

0 −𝛽𝛽�̃�𝜚𝜋𝜋
𝜙𝜙𝜋𝜋�1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝜌𝜌� − 𝛽𝛽�̃�𝜚𝜋𝜋

𝜙𝜙𝜋𝜋 − 𝜌𝜌 ⎦
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎤

. 

For simplicity, we assume 𝜙𝜙𝑥𝑥 ≥ 0, 𝜙𝜙𝜋𝜋 ≥ 0, 𝜅𝜅 ≥ 0, 𝛽𝛽̃ ≥ 0, 𝜚𝜚𝜋𝜋 ∈ [0,1), 𝜌𝜌 ∈ [0,1) 

and 𝜙𝜙𝜋𝜋 ≥ �𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��−1. Under these assumptions, the off-diagonal elements 
of this matrix are all non-positive. Other cases may also go through, but for the 

sake of brevity we concentrate on this most relevant case. Given these 
assumptions, applying the Gershgorin circle theorem to the columns of this 

matrix gives the following upper bound on the real part of the eigenvalues of 
𝜕𝜕𝒯𝒯 (𝑚𝑚�)

𝜕𝜕𝑚𝑚� �
𝑚𝑚�=𝑚𝑚

: 

𝜙𝜙𝑥𝑥
𝜅𝜅𝜙𝜙𝜋𝜋

max
⎩�
�⎨
��
⎧ 1 + 𝛽𝛽�̃�𝜚𝜋𝜋, 𝜙𝜙𝜋𝜋

−1�𝛽𝛽�̃𝜙𝜙𝜋𝜋 − 𝜚𝜚𝜋𝜋� + 𝜙𝜙𝜋𝜋 − 1�,
�1 − 𝜙𝜙𝜋𝜋

−1��𝜙𝜙𝜋𝜋 − 𝛽𝛽�̃�𝜚𝜋𝜋� + 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��1 + 𝜙𝜙𝜋𝜋�1 − 𝜌𝜌�� − 𝜙𝜙𝜋𝜋
−1

𝜙𝜙𝜋𝜋 − 𝜌𝜌 ⎭�
�⎬
��
⎫

. 

The first and second arguments in curly brackets here are both less than 1 + 𝛽𝛽.̃ 
Taking the derivative of the third argument in curly brackets with respect to 𝜌𝜌 

produces an expression whose sign is not a function of 𝜌𝜌. Thus, the third 
argument in curly brackets is maximized at either 𝜌𝜌 = 0 or 𝜌𝜌 = 1. In the former 

case, the argument is less or equal to 1 + 𝛽𝛽 ̃providing 𝛽𝛽̃ ≤ 1. In the latter case, 
the argument is less or equal to 1 + 𝛽𝛽 ̃providing that 2�1 − 𝜚𝜚𝜋𝜋� ≤ 𝜙𝜙𝜋𝜋. Therefore, 

if 𝜙𝜙𝑥𝑥 ≥ 0, 𝜙𝜙𝜋𝜋 ≥ 0, 𝜅𝜅 ≥ 0, 𝛽𝛽̃ ∈ [0,1], 𝜚𝜚𝜋𝜋 ∈ [0,1), 𝜌𝜌 ∈ [0,1) and: 

𝜙𝜙𝜋𝜋 > max
⎩�⎨
�⎧ 1

𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�
, 2�1 − 𝜚𝜚𝜋𝜋�,

𝜙𝜙𝑥𝑥�1 + 𝛽𝛽�̃
𝜅𝜅 ⎭�⎬

�⎫, 

then all of the eigenvalues of 𝜕𝜕𝒯𝒯 (𝑚𝑚�)
𝜕𝜕𝑚𝑚� �

𝑚𝑚�=𝑚𝑚
 are less than one. Consequently, in this 

case the ODE is locally asymptotically stable, so the stochastic approximation 

results of Evans & Honkapohja (2001) apply. In particular, if we suppose that 
𝑚𝑚�0, 𝑚𝑚�1 and 𝑚𝑚�2 are constrained to remain within a sufficiently small ball around 
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𝑚𝑚0, 𝑚𝑚1 and 𝑚𝑚2, then the central bank’s estimates of the Phillips curve 
parameters will converge to their true values, and the model’s dynamics will 

converge to the determinate ones under rational expectations. 

J.6 Real rate rules with exogenous targets 
We want to prove that even with an exogenous 𝜋𝜋𝑡𝑡

∗, rules in the form of (7) 
can still mimic the outcomes of any other monetary policy regime. 

Suppose that the central bank were to set interest rates in a different (though 
time invariant) way, for example by using another rule, or by adopting optimal 

policy under either commitment or discretion, given some objective. For 
simplicity, suppose further that the economy’s equilibrium conditions are 

linear, e.g., because we are working under a first order approximation. Let 
�𝜀𝜀1,𝑡𝑡, … , 𝜀𝜀𝑁𝑁,𝑡𝑡�𝑡𝑡∈ℤ be the set of structural shocks in the economy,42 all of which 

are assumed mean zero and independent both of each other, and over time. 
Finally, assume that the central bank’s behaviour produces stationary inflation, 

�̃�𝜋𝑡𝑡, with the � denoting that this is inflation under the alternative monetary 
regime. Then, by linearity and stationarity, there must exist a constant �̃�𝜋∗ and 

coefficients �𝜃𝜃1,𝑘𝑘, … , 𝜃𝜃𝑁𝑁,𝑘𝑘�𝑘𝑘∈ℕ such that: 

�̃�𝜋𝑡𝑡 = �̃�𝜋∗ + � � 𝜃𝜃𝑛𝑛,𝑘𝑘𝜀𝜀𝑛𝑛,𝑡𝑡−𝑘𝑘

𝑁𝑁

𝑛𝑛=1

∞

𝑘𝑘=0
, 

with ∑ 𝜃𝜃𝑛𝑛,𝑘𝑘
2∞

𝑘𝑘=0 < ∞ for 𝑛𝑛 = 1, … , 𝑁𝑁. So, if the central bank sets: 

𝜋𝜋𝑡𝑡
∗ = �̃�𝜋∗ + � � 𝜃𝜃𝑛𝑛,𝑘𝑘𝜀𝜀𝑛𝑛,𝑡𝑡−𝑘𝑘

𝑁𝑁

𝑛𝑛=1

∞

𝑘𝑘=0
, 

(exogenous!) and uses the rule (7), then for all 𝑡𝑡 and in all states of the 
world, 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡

∗ = �̃�𝜋𝑡𝑡. Moreover, this implies in turn that all the endogenous 

variables in the two economies must be identical in all periods and in all states 
of the world. 

To see this final claim, let 𝑧𝑧𝑡𝑡 and 𝑧𝑧�̃�𝑡 be vectors stacking the endogenous 
variables other than inflation in the economy with our rule and the economy 

with the alternative rule, respectively, with 𝑧𝑧𝑡𝑡,1 = 𝑟𝑟𝑡𝑡 and 𝑧𝑧�̃�𝑡,1 = 𝑟𝑟�̃�𝑡. We assume 
without loss of generality that the elements of 𝑧𝑧𝑡𝑡 and 𝑧𝑧�̃�𝑡 are all zero in steady 

state. 
 

42 This may include sunspot shocks if they are added following Farmer, Khramov & Nicolò (2015). 
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By linearity, without loss of generality, the equations other than the 
monetary rule or monetary policy first order condition must have the form:43 

0 = 𝐴𝐴𝔼𝔼𝑡𝑡𝑧𝑧𝑡𝑡+1 + 𝐵𝐵𝑧𝑧𝑡𝑡 + 𝐶𝐶𝑧𝑧𝑡𝑡−1 + 𝑑𝑑𝜋𝜋𝑡𝑡 + � 𝑓𝑓𝑛𝑛𝜀𝜀𝑛𝑛,𝑡𝑡

𝑁𝑁

𝑛𝑛=1
, (18) 

in the economy with our rule, and they must have the form: 

0 = 𝐴𝐴𝔼𝔼𝑡𝑡𝑧𝑧�̃�𝑡+1 + 𝐵𝐵𝑧𝑧�̃�𝑡 + 𝐶𝐶𝑧𝑧�̃�𝑡−1 + 𝑑𝑑�̃�𝜋𝑡𝑡 + � 𝑓𝑓𝑛𝑛𝜀𝜀𝑛𝑛,𝑡𝑡

𝑁𝑁

𝑛𝑛=1
, 

in the economy with the alternative rule. (Here, 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶 are square matrices, 

while 𝑑𝑑 and 𝑓𝑓1, … , 𝑓𝑓𝑁𝑁 are vectors.) Since 𝜋𝜋𝑡𝑡 = �̃�𝜋𝑡𝑡 for all 𝑡𝑡, 𝑧𝑧𝑡𝑡 = 𝑧𝑧�̃�𝑡 must solve 
equation (18) for all 𝑡𝑡. It will be the unique solution providing the model has 

no source of indeterminacy other than perhaps monetary policy. For example, 
in a three equation NK model, given that 𝜋𝜋𝑡𝑡 ≡ �̃�𝜋𝑡𝑡, the Phillips curve implies 

that the output gap must agree in the two economies, thus the Euler equation 
then implies that the interest rate must also agree. 

To see the uniqueness more formally, suppose that there is a unique matrix 
𝐹𝐹 with eigenvalues in the unit circle such that 𝐹𝐹 = −(𝐴𝐴𝐹𝐹 + 𝐵𝐵)−1𝐶𝐶. This 

condition on 𝐹𝐹 just states that there is no real indeterminacy in the model. 
Now define: 

𝐺𝐺 ≔ −𝐴𝐴(𝐴𝐴𝐹𝐹 + 𝐵𝐵)−1. 
Let 𝜚𝜚 be the lag operator, then note that: 

�𝐼𝐼 − 𝐺𝐺𝜚𝜚−1�(𝐴𝐴𝐹𝐹 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝜚𝜚) = 𝐴𝐴𝜚𝜚−1 + 𝐵𝐵 + 𝐶𝐶𝜚𝜚. 
Thus, by the model’s real determinacy, all of 𝐺𝐺’s eigenvalues must also be inside 

the unit circle. Hence, since 𝐺𝐺 and 𝐹𝐹 all have all their eigenvalues in the unit 
circle, �𝐼𝐼 − 𝐺𝐺𝜚𝜚−1� and (𝐼𝐼 − 𝐹𝐹𝜚𝜚) are both invertible. 

In terms of the lag operator, the equations determining 𝑧𝑧𝑡𝑡 and 𝑧𝑧�̃�𝑡 are: 

𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝜚𝜚−1�(𝐴𝐴𝐹𝐹 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝜚𝜚)𝑧𝑧𝑡𝑡 = −𝑑𝑑𝜋𝜋𝑡𝑡 − � 𝑓𝑓𝑛𝑛𝜀𝜀𝑛𝑛,𝑡𝑡

𝑁𝑁

𝑛𝑛=1
 

= −𝑑𝑑�̃�𝜋𝑡𝑡 − � 𝑓𝑓𝑛𝑛𝜀𝜀𝑛𝑛,𝑡𝑡

𝑁𝑁

𝑛𝑛=1
 

= 𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝜚𝜚−1�(𝐴𝐴𝐹𝐹 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝜚𝜚)𝑧𝑧�̃�𝑡, 
as 𝜋𝜋𝑡𝑡 = �̃�𝜋𝑡𝑡 for all 𝑡𝑡. Consequently: 

 
43 The lack of terms in 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 and 𝜋𝜋𝑡𝑡−1 is without loss of generality, as such responses can be included by 

adding an auxiliary variable 𝑧𝑧𝑡𝑡,𝑗𝑗 with an equation of the form 𝑧𝑧𝑡𝑡,𝑗𝑗 = 𝜋𝜋𝑡𝑡. 
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𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝜚𝜚−1�(𝐴𝐴𝐹𝐹 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝜚𝜚)(𝑧𝑧𝑡𝑡 − 𝑧𝑧�̃�𝑡) = 0. 
Therefore, by the invertibility of �𝐼𝐼 − 𝐺𝐺𝜚𝜚−1�, (𝐴𝐴𝐹𝐹 + 𝐵𝐵) and (𝐼𝐼 − 𝐹𝐹𝜚𝜚), 𝑧𝑧𝑡𝑡 = 𝑧𝑧�̃�𝑡 for 

all 𝑡𝑡, as required. (Expectations drop out as the right-hand side is 
deterministic.) 

The only slight difficulty with setting 𝜋𝜋𝑡𝑡
∗ as a function of structural shocks 

is that the central bank may struggle to observe these shocks. The central bank 

can certainly observe linear combinations of structural shocks, via estimating a 
VAR with sufficiently many lags. For variables that are plausibly 

contemporaneously exogenous, such as commodity prices for a small(ish) 
economy, this is already sufficient to recover the corresponding structural 

shock. To infer other shocks, the central bank needs to know more about the 
structure of the economy. However, we do not need to assume any more than is 

standard in rational expectations models. Forming rational expectations 
requires you to know the structure of the economy; if you know this structure, 

then you know the mapping from the reduced form shocks estimated by a VAR 
to the model’s structural shocks.44 Additionally, it is common to assume that 

the central bank responds to an output gap constructed by comparing outcomes 
to an economy without price rigidity. This already requires the central bank to 

know the values of all parameters and structural shocks. 

J.7 Partially smoothed real rate rules 
Suppose that the central bank sets interest rates according to the partially 

smoothed real rate rule: 

𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = 𝜚𝜚𝑖𝑖(𝑖𝑖𝑡𝑡−1 − 𝑟𝑟𝑡𝑡−1) + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1
∗ − 𝜚𝜚𝑖𝑖𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡

∗ + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗), 

where 𝜙𝜙 > 1, 𝜚𝜚𝑖𝑖 < 1 and where 𝜋𝜋𝑡𝑡
∗ is the inflation target. Then, from the 

standard Fisher equation (without a wedge): 
𝔼𝔼𝑡𝑡�𝜋𝜋𝑡𝑡+1 − 𝜋𝜋𝑡𝑡+1

∗ � = 𝜚𝜚𝑖𝑖𝔼𝔼𝑡𝑡−1(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗). 
Now let �̂�𝜋𝑡𝑡 ≔ 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗ and 𝑒𝑒𝑡𝑡 ≔ 𝔼𝔼𝑡𝑡�𝜋𝜋𝑡𝑡+1 − 𝜋𝜋𝑡𝑡+1
∗ �. Then we have the system: 

𝑒𝑒𝑡𝑡 = 𝔼𝔼𝑡𝑡�̂�𝜋𝑡𝑡+1, 
𝑒𝑒𝑡𝑡 = 𝜚𝜚𝑖𝑖𝑒𝑒𝑡𝑡−1 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙�̂�𝜋𝑡𝑡. 
 

44 This mapping may not be unique valued if there are more shocks than observables. However, since we 
expect a relatively small number of shocks to explain the bulk of business cycle variance, this is unlikely 

to be problematic in practice. 
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Equivalently: 

�1 −1
0 1 � 𝔼𝔼𝑡𝑡 ��̂�𝜋𝑡𝑡+1

𝑒𝑒𝑡𝑡
� = � 0 0

�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 𝜚𝜚𝑖𝑖
� � �̂�𝜋𝑡𝑡

𝑒𝑒𝑡𝑡−1
�, 

so, from pre-multiplying by �1 1
0 1�: 

𝔼𝔼𝑡𝑡 ��̂�𝜋𝑡𝑡+1
𝑒𝑒𝑡𝑡

� = �
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 𝜚𝜚𝑖𝑖
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 𝜚𝜚𝑖𝑖

� � �̂�𝜋𝑡𝑡
𝑒𝑒𝑡𝑡−1

�. 

Now: 

�
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 𝜚𝜚𝑖𝑖
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 𝜚𝜚𝑖𝑖

� =
⎣
⎢⎡

−
𝜚𝜚𝑖𝑖

�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 1

1 1⎦
⎥⎤ �0 0

0 𝜚𝜚𝑖𝑖 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙�
⎣
⎢⎡

−
𝜚𝜚𝑖𝑖

�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 1

1 1⎦
⎥⎤

−1

. 

Thus, if we define: 

�
𝑢𝑢𝑡𝑡
𝑣𝑣𝑡𝑡

� ≔
⎣
⎢⎡

−
𝜚𝜚𝑖𝑖

�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 1

1 1⎦
⎥⎤

−1

� �̂�𝜋𝑡𝑡
𝑒𝑒𝑡𝑡−1

� =
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙

𝜚𝜚𝑖𝑖 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 ⎣
⎢⎡

−1 1
1

𝜚𝜚𝑖𝑖
�1 − 𝜚𝜚𝑖𝑖�𝜙𝜙⎦

⎥⎤ � �̂�𝜋𝑡𝑡
𝑒𝑒𝑡𝑡−1

�, 

then: 

𝔼𝔼𝑡𝑡 �
𝑢𝑢𝑡𝑡+1
𝑣𝑣𝑡𝑡+1

� = �0 0
0 𝜚𝜚𝑖𝑖 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙� �

𝑢𝑢𝑡𝑡
𝑣𝑣𝑡𝑡

�. 

Now, since 𝜙𝜙 > 1 and 𝜚𝜚𝑖𝑖 < 1, 𝜚𝜚𝑖𝑖 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙 = 𝜙𝜙 − 𝜚𝜚𝑖𝑖�𝜙𝜙 − 1� > 1. Thus, the 

unique non-explosive solution for 𝑣𝑣𝑡𝑡 is 𝑣𝑣𝑡𝑡 = 0. (Note that 𝑣𝑣𝑡𝑡 must be stationary 
as �̂�𝜋𝑡𝑡 and 𝑒𝑒𝑡𝑡−1 must be stationary.) Hence, by the definition of 𝑣𝑣𝑡𝑡, �̂�𝜋𝑡𝑡 =
− 𝜚𝜚𝑖𝑖

�1−𝜚𝜚𝑖𝑖�𝜙𝜙 𝑒𝑒𝑡𝑡−1. So as 𝑒𝑒𝑡𝑡 = 𝔼𝔼𝑡𝑡�̂�𝜋𝑡𝑡+1, 𝑒𝑒𝑡𝑡 = − 𝜚𝜚𝑖𝑖
�1−𝜚𝜚𝑖𝑖�𝜙𝜙 𝑒𝑒𝑡𝑡, i.e., �𝜚𝜚𝑖𝑖 + �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙�𝑒𝑒𝑡𝑡 = 0, so 

𝑒𝑒𝑡𝑡 = 0, and hence �̂�𝜋𝑡𝑡 = 0. 

Therefore, with 𝜙𝜙 > 1, 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗ is the unique stationary solution. 

Finally, note that the coefficient on 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗ in the original rule was �1 − 𝜚𝜚𝑖𝑖�𝜙𝜙, 

so for any 𝜃𝜃 > 0 if we set 𝜙𝜙 ≔ 𝜃𝜃
1−𝜚𝜚𝑖𝑖

 then for 𝜚𝜚𝑖𝑖 sufficiently close to 1, 𝜙𝜙 > 1 as 
required. Thus, for 𝜚𝜚𝑖𝑖 sufficiently close to 1 a coefficient of 𝜃𝜃 > 0 on 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗ will 

do. This links the results of this appendix to those of the main text. 

J.8 Sunspot solutions under real rate rules 
We are interested in sunspot solutions to the equations: 

𝜋𝜋𝑡𝑡 − 𝜋𝜋∗ = 𝛽𝛽𝔼𝔼𝑡𝑡�𝜋𝜋𝑡𝑡+1 − 𝜋𝜋∗� + 𝜅𝜅𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡 = 𝛿𝛿𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛), 
max�0, 𝑟𝑟𝑡𝑡 + 𝜋𝜋∗ + 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋∗)� = 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, 

with 𝜅𝜅𝜍𝜍 ≠ 0, 𝜙𝜙 > 1 and 𝑛𝑛 + 𝜋𝜋∗ > 0 which take the following form. While at the 

ZLB, there is a constant probability of 𝑞𝑞Z ∈ [0,1] of remaining there in the next 
period. With probability 1 − 𝑞𝑞Z though, the economy escapes the ZLB. While 

nominal interest rates are positive, there is a constant probability of 𝑞𝑞P ∈ [0,1] 
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of remaining there in the next period. With probability 1 − 𝑞𝑞P though, the 
economy goes to the ZLB. Note that when 𝑞𝑞P = 1, the non-ZLB state is 

absorbing, so this two-state sunspot solution nests the absorbing case discussed 
in the main text. 

We write 𝑟𝑟Z, 𝜋𝜋Z and 𝑥𝑥Z for the values of 𝑟𝑟𝑡𝑡, 𝜋𝜋𝑡𝑡 and 𝑥𝑥𝑡𝑡 while at the ZLB, and 
𝑟𝑟P, 𝜋𝜋P and 𝑥𝑥P for the values of these variables when nominal interest rates are 

positive at 𝑖𝑖P. Then, from the Euler equation and Phillips curve: 

𝑥𝑥Z = −
𝜍𝜍�𝛿𝛿�1 − 𝑞𝑞Z�(𝑟𝑟P − 𝑛𝑛) + �1 − 𝛿𝛿𝑞𝑞P�(𝑟𝑟Z − 𝑛𝑛)�

(1 − 𝛿𝛿)�1 − 𝛿𝛿�𝑞𝑞Z + 𝑞𝑞P − 1�� , 

𝑥𝑥P = −
𝜍𝜍�𝛿𝛿�1 − 𝑞𝑞P�(𝑟𝑟Z − 𝑛𝑛) + �1 − 𝛿𝛿𝑞𝑞Z�(𝑟𝑟P − 𝑛𝑛)�

(1 − 𝛿𝛿)�1 − 𝛿𝛿�𝑞𝑞Z + 𝑞𝑞P − 1�� , 

𝜋𝜋Z − 𝜋𝜋∗ =
𝜅𝜅�𝛽𝛽�1 − 𝑞𝑞Z�𝑥𝑥P + �1 − 𝛽𝛽𝑞𝑞P�𝑥𝑥Z�
�1 − 𝛽𝛽��1 − 𝛽𝛽�𝑞𝑞Z + 𝑞𝑞P − 1��  

= −
𝜅𝜅𝜍𝜍[𝑎𝑎ZZ(𝑟𝑟Z − 𝑛𝑛) + 𝑎𝑎ZP(𝑟𝑟P − 𝑛𝑛)]

�1 − 𝛽𝛽�(1 − 𝛿𝛿)�1 − 𝛽𝛽�𝑞𝑞Z + 𝑞𝑞P − 1���1 − 𝛿𝛿�𝑞𝑞Z + 𝑞𝑞P − 1��, 

𝜋𝜋P − 𝜋𝜋∗ =
𝜅𝜅�𝛽𝛽�1 − 𝑞𝑞P�𝑥𝑥Z + �1 − 𝛽𝛽𝑞𝑞Z�𝑥𝑥P�
�1 − 𝛽𝛽��1 − 𝛽𝛽�𝑞𝑞Z + 𝑞𝑞P − 1��  

= −
𝜅𝜅𝜍𝜍[𝑎𝑎PP(𝑟𝑟P − 𝑛𝑛) + 𝑎𝑎PZ(𝑟𝑟Z − 𝑛𝑛)]

�1 − 𝛽𝛽�(1 − 𝛿𝛿)�1 − 𝛽𝛽�𝑞𝑞Z + 𝑞𝑞P − 1���1 − 𝛿𝛿�𝑞𝑞Z + 𝑞𝑞P − 1��, 

where: 

𝑎𝑎ZZ ≔ 𝛽𝛽𝛿𝛿�1 − 𝑞𝑞Z��1 − 𝑞𝑞P� + �1 − 𝛽𝛽𝑞𝑞P��1 − 𝛿𝛿𝑞𝑞P�, 
𝑎𝑎ZP ≔ �1 − 𝑞𝑞Z��𝛽𝛽 + 𝛿𝛿 − 𝛽𝛽𝛿𝛿�𝑞𝑞Z + 𝑞𝑞P��, 

𝑎𝑎PP ≔ 𝛽𝛽𝛿𝛿�1 − 𝑞𝑞Z��1 − 𝑞𝑞P� + �1 − 𝛽𝛽𝑞𝑞Z��1 − 𝛿𝛿𝑞𝑞Z�, 
𝑎𝑎PZ ≔ �1 − 𝑞𝑞P��𝛽𝛽 + 𝛿𝛿 − 𝛽𝛽𝛿𝛿�𝑞𝑞Z + 𝑞𝑞P��, 

and from the Fisher equation and monetary rule: 
0 = 𝑟𝑟Z + 𝑞𝑞Z𝜋𝜋Z + �1 − 𝑞𝑞Z�𝜋𝜋P = 𝑟𝑟Z + 𝜋𝜋∗ + 𝑞𝑞Z(𝜋𝜋Z − 𝜋𝜋∗) + �1 − 𝑞𝑞Z�(𝜋𝜋P − 𝜋𝜋∗), 

𝜙𝜙(𝜋𝜋P − 𝜋𝜋∗) = 𝑞𝑞P(𝜋𝜋P − 𝜋𝜋∗) + �1 − 𝑞𝑞P�(𝜋𝜋Z − 𝜋𝜋∗). 
So, if we define 𝜓𝜓 ≔ 1−𝑞𝑞P

𝜙𝜙−𝑞𝑞P
∈ [0,1) and 𝑏𝑏 ≔ 𝜅𝜅𝜅𝜅

𝑎𝑎PP−𝜓𝜓𝑎𝑎ZP
, then: 

𝜋𝜋Z − 𝜋𝜋∗ = −𝑏𝑏(𝑟𝑟Z − 𝑛𝑛), 𝜋𝜋P − 𝜋𝜋∗ = 𝜓𝜓(𝜋𝜋Z − 𝜋𝜋∗) = −𝜓𝜓𝑏𝑏(𝑟𝑟Z − 𝑛𝑛), 

𝑟𝑟P − 𝑛𝑛 =
𝜓𝜓𝑎𝑎ZZ − 𝑎𝑎PZ
𝑎𝑎PP − 𝜓𝜓𝑎𝑎ZP

(𝑟𝑟Z − 𝑛𝑛), 

𝑟𝑟Z + 𝜋𝜋∗ = −�𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�(𝜋𝜋Z − 𝜋𝜋∗) = 𝑏𝑏�𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�(𝑟𝑟Z − 𝑛𝑛), 
as: 

𝑎𝑎ZZ𝑎𝑎PP − 𝑎𝑎ZP𝑎𝑎PZ = �1 − 𝛽𝛽�(1 − 𝛿𝛿)�1 − 𝛽𝛽�𝑞𝑞Z + 𝑞𝑞P − 1���1 − 𝛿𝛿�𝑞𝑞Z + 𝑞𝑞P − 1��. 
Thus: 
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𝑟𝑟Z − 𝑛𝑛 = −
𝑛𝑛 + 𝜋𝜋∗

1 − �𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�𝑏𝑏, 

𝑟𝑟P − 𝑛𝑛 = −
𝜓𝜓𝑎𝑎ZZ − 𝑎𝑎PZ
𝑎𝑎PP − 𝜓𝜓𝑎𝑎ZP

𝑛𝑛 + 𝜋𝜋∗

1 − �𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�𝑏𝑏, 

𝜋𝜋Z − 𝜋𝜋∗ =
𝑏𝑏(𝑛𝑛 + 𝜋𝜋∗)

1 − �𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�𝑏𝑏 , 𝜋𝜋P − 𝜋𝜋∗ =
𝜓𝜓𝑏𝑏(𝑛𝑛 + 𝜋𝜋∗)

1 − �𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�𝑏𝑏. 

Our solution is consistent with equilibrium if and only if the monetary rule 
implies zero nominal rates in the Z state and positive nominal rates in the P 

state, i.e., if and only if: 

0 ≥ 𝑟𝑟Z + 𝜋𝜋∗ + 𝜙𝜙(𝜋𝜋Z − 𝜋𝜋∗) = 𝜅𝜅𝜍𝜍
𝜙𝜙 − �𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�

𝑎𝑎PP − 𝜓𝜓𝑎𝑎ZP − �𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�𝜅𝜅𝜍𝜍 (𝑛𝑛 + 𝜋𝜋∗), 

and: 

0 ≤ 𝑟𝑟P + 𝜋𝜋∗ + 𝜙𝜙(𝜋𝜋P − 𝜋𝜋∗) 

=
𝜓𝜓�𝜙𝜙 − 1�𝜅𝜅𝜍𝜍 + �1 − 𝜓𝜓��𝑎𝑎PP + 𝑎𝑎PZ − 𝑞𝑞Z𝜅𝜅𝜍𝜍�

𝑎𝑎PP − 𝜓𝜓𝑎𝑎ZP − �𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�𝜅𝜅𝜍𝜍 (𝑛𝑛 + 𝜋𝜋∗), 

as 𝑎𝑎PP + 𝑎𝑎PZ = 𝑎𝑎ZZ + 𝑎𝑎ZP. For simplicity, suppose 𝜅𝜅𝜍𝜍 > 0. Then, since 𝑛𝑛 + 𝜋𝜋∗ > 0 
and 𝜙𝜙 > 1 but 𝑞𝑞Z, 𝜓𝜓 ∈ [0,1], the two conditions hold if and only if 𝑐𝑐1 ≔ 𝑎𝑎PP −
𝜓𝜓𝑎𝑎ZP − �𝑞𝑞Z + �1 − 𝑞𝑞Z�𝜓𝜓�𝜅𝜅𝜍𝜍 ≤ 0 and 𝑐𝑐2 ≔ 𝜓𝜓�𝜙𝜙 − 1�𝜅𝜅𝜍𝜍 + �1 − 𝜓𝜓��𝑎𝑎PP + 𝑎𝑎PZ −
𝑞𝑞Z𝜅𝜅𝜍𝜍� ≤ 0. Now, note that as 𝜙𝜙 → ∞: 

𝑐𝑐1 → 𝑞𝑞Z��1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍� + �1 − 𝑞𝑞Z��1 − 𝛽𝛽𝛿𝛿�𝑞𝑞Z + 𝑞𝑞P − 1��, 
𝑐𝑐2 → �𝑞𝑞Z + 𝑞𝑞P − 1���1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍�

+ �1 − �𝑞𝑞Z + 𝑞𝑞P − 1���1 − 𝛽𝛽𝛿𝛿�𝑞𝑞Z + 𝑞𝑞P − 1��. 
Thus, at least when �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜍𝜍 < 0 and 𝛽𝛽𝛿𝛿 ≥ 0 (so 1 − 𝛽𝛽𝛿𝛿�𝑞𝑞Z + 𝑞𝑞P − 1� 

is decreasing in 𝑞𝑞Z and 𝑞𝑞P), for sufficiently high 𝜙𝜙, the first condition holds if 
and only if 𝑞𝑞Z is sufficiently high, and the second condition holds as well if and 

only if 𝑞𝑞P is also sufficiently high. 
Cleaner results (without assumptions on 𝜅𝜅𝜍𝜍 or 𝛽𝛽𝛿𝛿, and without taking the 

limit as 𝜙𝜙 → ∞) are available in the absorbing case with 𝑞𝑞P = 1, in which case 
we have: 

𝑎𝑎ZZ = �1 − 𝛽𝛽�(1 − 𝛿𝛿), 𝑎𝑎ZP = �1 − 𝑞𝑞Z��𝛽𝛽 + 𝛿𝛿 − 𝛽𝛽𝛿𝛿�𝑞𝑞Z + 1��, 
𝑎𝑎PP = �1 − 𝛽𝛽𝑞𝑞Z��1 − 𝛿𝛿𝑞𝑞Z�, 𝑎𝑎PZ = 0, 𝜓𝜓 = 0, 𝑏𝑏 =

𝜅𝜅𝜍𝜍
�1 − 𝛽𝛽𝑞𝑞Z��1 − 𝛿𝛿𝑞𝑞Z�, 

𝑟𝑟Z − 𝑛𝑛 = −
�1 − 𝛽𝛽𝑞𝑞Z��1 − 𝛿𝛿𝑞𝑞Z�(𝑛𝑛 + 𝜋𝜋∗)
�1 − 𝛽𝛽𝑞𝑞Z��1 − 𝛿𝛿𝑞𝑞Z� − 𝑞𝑞Z𝜅𝜅𝜍𝜍 , 𝑟𝑟P − 𝑛𝑛 = 0, 

𝜋𝜋Z − 𝜋𝜋∗ =
𝜅𝜅𝜍𝜍(𝑛𝑛 + 𝜋𝜋∗)

�1 − 𝛽𝛽𝑞𝑞Z��1 − 𝛿𝛿𝑞𝑞Z� − 𝑞𝑞Z𝜅𝜅𝜍𝜍 , 𝜋𝜋P − 𝜋𝜋∗ = 0, 
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so the conditions become: 
0 ≥ �𝜙𝜙 − 𝑞𝑞Z�

𝜅𝜅𝜍𝜍
�1 − 𝛽𝛽𝑞𝑞Z��1 − 𝛿𝛿𝑞𝑞Z� − 𝑞𝑞Z𝜅𝜅𝜍𝜍 (𝑛𝑛 + 𝜋𝜋∗), 

and 0 ≤ 𝑛𝑛 + 𝜋𝜋∗. Given that 𝜙𝜙 > 1 > 𝑞𝑞Z, 𝜅𝜅𝜍𝜍 ≠ 0 and 𝑛𝑛 + 𝜋𝜋∗ > 0 by assumption, 
these hold if and only if: 

�1 − 𝛽𝛽𝑞𝑞Z��1 − 𝛿𝛿𝑞𝑞Z� − 𝑞𝑞Z𝜅𝜅𝜍𝜍
𝜅𝜅𝜍𝜍 ≤ 0. 

If this equality holds strictly, then by continuity, a sunspot solution must 

also exist for all 𝑞𝑞P ∈ (1 − 𝜖𝜖, 1], for some 𝜖𝜖 > 0. 

J.9 Perfect foresight uniqueness with the modified inflation target 
Uniqueness conditional on the modified target. We want to prove 

uniqueness of equilibrium under the modified inflation target real rate rule of 

equations (12) and (13) of Subsection 4.2 (introduced in period 1), without 
uncertainty, and assuming that 𝜋𝜋𝑡𝑡 and �̌�𝜋𝑡𝑡

∗ are bounded in 𝑡𝑡, and that the 

economy eventually escapes the ZLB for good. The latter assumption implies 
there must exist a smallest possible 𝑠𝑠 ≥ 1 such that for all 𝑡𝑡 ≥ 𝑠𝑠, the ZLB does 

not bind. We assume for a contradiction that 𝑠𝑠 > 1, hence for all 𝑡𝑡 ≥ 𝑠𝑠, by the 
monetary rule and Fisher equation:45  

𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1 = 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡 + ��̌�𝜋𝑡𝑡+1
∗ − �̌�𝜋𝑡𝑡

∗� + 𝜃𝜃(𝜋𝜋𝑡𝑡 − �̌�𝜋𝑡𝑡
∗), 

meaning: 

𝜋𝜋𝑡𝑡+1 − �̌�𝜋𝑡𝑡+1
∗ = (1 + 𝜃𝜃)(𝜋𝜋𝑡𝑡 − �̌�𝜋𝑡𝑡

∗), 
so for 𝑡𝑡 ≥ 𝑠𝑠, 𝜋𝜋𝑡𝑡 − �̌�𝜋𝑡𝑡

∗ = (1 + 𝜃𝜃)𝑡𝑡−𝑠𝑠(𝜋𝜋𝑠𝑠 − �̌�𝜋𝑠𝑠
∗). Since (1 + 𝜃𝜃)𝑡𝑡−𝑠𝑠 → ∞ as 𝑡𝑡 → ∞, this 

in turn implies that 𝜋𝜋𝑠𝑠 = �̌�𝜋𝑠𝑠
∗, by our boundedness assumptions. But as the 

economy is at the ZLB in period 𝑠𝑠 − 1, 0 = 𝑖𝑖𝑠𝑠−1 = 𝑟𝑟𝑠𝑠−1 + 𝜋𝜋𝑠𝑠, so −𝑟𝑟𝑠𝑠−1 = 𝜋𝜋𝑠𝑠 =
�̌�𝜋𝑠𝑠

∗ ≥ 𝜖𝜖 − 𝑟𝑟𝑠𝑠−1 > −𝑟𝑟𝑠𝑠−1, giving the required contradiction. Thus 𝑠𝑠 = 1, meaning 
the economy never hits the ZLB. Combined with the results of Subsection 2.1, 

this establishes the uniqueness of the 𝜋𝜋𝑡𝑡 = �̌�𝜋𝑡𝑡
∗ − 𝜃𝜃−1𝔼𝔼𝑡𝑡−1(𝜋𝜋𝑡𝑡 − �̌�𝜋𝑡𝑡

∗) solution 
conditional on the path of �̌�𝜋𝑡𝑡

∗. 
Uniqueness of the modified target. The only remaining source of 

potential multiplicity is the bound in the definition of �̌�𝜋𝑡𝑡
∗, which may mean 

 
45 Note that we can drop expectations as there is no uncertainty. It is OK to replace the lagged terms 𝑖𝑖𝑡𝑡−1 −
𝑟𝑟𝑡𝑡−1 − 𝔼𝔼𝑡𝑡−1�̌�𝜋𝑡𝑡

∗ with 𝜋𝜋𝑡𝑡 − �̌�𝜋𝑡𝑡
∗ as 𝑡𝑡 ≥ 𝑠𝑠 > 1 so 𝑡𝑡 − 1 ≥ 1. 
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there are multiple possible paths of �̌�𝜋𝑡𝑡
∗. Even if we assume that 𝜋𝜋𝑡𝑡

∗ is exogenous, 
𝑟𝑟𝑡𝑡 is not, so if 𝑟𝑟𝑡𝑡 is sufficiently responsive to 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, in theory there could be one 

solution in which 𝜋𝜋𝑡𝑡+1 = �̌�𝜋𝑡𝑡+1
∗ = 𝜋𝜋𝑡𝑡+1

∗ > −𝑟𝑟𝑡𝑡 + 𝜖𝜖 and one solution in which 
𝜋𝜋𝑡𝑡+1 = �̌�𝜋𝑡𝑡+1

∗ = −𝑟𝑟𝑡𝑡 + 𝜖𝜖 > 𝜋𝜋𝑡𝑡+1
∗ . However, this does not occur for standard 

models. 
We illustrate this in the model given by equations (10) and (11), from 

Subsection 4.1. We assume that all exogenous processes (including 𝜋𝜋𝑡𝑡
∗) are 

constant at their steady-state level, and that all variables are at steady-state in 

period 0, since neither assumption has any impact on uniqueness, by the results 
of Holden (2021). (This also means that our results are robust to adding any 

shocks to the model.) We also impose that the ZLB never binds, since we have 
already established this under our retained assumptions. Given this, we replace 

the notation �̌�𝜋𝑡𝑡+1
∗  with �̌�𝜋𝑡𝑡+1|𝑡𝑡

∗ , since �̌�𝜋𝑡𝑡+1
∗  is known in period 𝑡𝑡 given that 𝜋𝜋𝑡𝑡

∗ is 
now constant. Likewise, we replace 𝜋𝜋𝑡𝑡+1 with 𝜋𝜋𝑡𝑡+1|𝑡𝑡, as 𝜋𝜋𝑡𝑡+1 = �̌�𝜋𝑡𝑡+1

∗ = �̌�𝜋𝑡𝑡+1|𝑡𝑡
∗ , 

known at 𝑡𝑡. This gives the following equations for 𝑡𝑡 ≥ 1: 

𝛽𝛽�𝜋𝜋𝑡𝑡+1|𝑡𝑡 − 𝜋𝜋∗� + 𝜅𝜅𝑥𝑥𝑡𝑡 = � 0, if 𝑡𝑡 = 1
𝜋𝜋𝑡𝑡|𝑡𝑡−1 − 𝜋𝜋∗, if 𝑡𝑡 > 1 

𝑖𝑖𝑡𝑡 = �
𝑟𝑟𝑡𝑡 + �̌�𝜋𝑡𝑡+1|𝑡𝑡

∗ , if 𝑡𝑡 = 1
𝑟𝑟𝑡𝑡 + �̌�𝜋𝑡𝑡+1|𝑡𝑡

∗ + (1 + 𝜃𝜃)�𝜋𝜋𝑡𝑡|𝑡𝑡−1 − �̌�𝜋𝑡𝑡|𝑡𝑡−1
∗ �, if 𝑡𝑡 > 1

, 

𝑥𝑥𝑡𝑡 = 𝛿𝛿𝑥𝑥𝑡𝑡+1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛), 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1|𝑡𝑡, �̌�𝜋𝑡𝑡+1|𝑡𝑡
∗ = max{𝜋𝜋∗, 𝜖𝜖 − 𝑟𝑟𝑡𝑡}, 

where we assume 𝜅𝜅𝜍𝜍 ≠ 0, 𝜃𝜃 > 0 and 𝑛𝑛 + 𝜋𝜋∗ > 𝜖𝜖 > 0. The latter assumption 
ensures that �̌�𝜋𝑡𝑡|𝑡𝑡−1

∗ = 𝜋𝜋∗ in steady state. 

We are interested in the constraint in the definition of �̌�𝜋𝑡𝑡+1|𝑡𝑡
∗ , which we note 

can be rewritten as the pair of equations: 

𝑧𝑧𝑡𝑡 = �̌�𝜋𝑡𝑡+1|𝑡𝑡
∗ + 𝑟𝑟𝑡𝑡 − 𝜖𝜖, 𝑧𝑧𝑡𝑡 = max{0, 𝜋𝜋∗ + 𝑟𝑟𝑡𝑡 − 𝜖𝜖}, 

where 𝑧𝑧𝑡𝑡 is an auxiliary variable. The results of Holden (2021) imply that in 

order to prove uniqueness under perfect foresight (conditional on 𝑧𝑧𝑡𝑡 eventually 
converging to its positive steady state value), we should first replace the second 

equation for 𝑧𝑧𝑡𝑡 just given with 𝑧𝑧𝑡𝑡 = 𝜋𝜋∗ + 𝑟𝑟𝑡𝑡 − 𝜖𝜖 + 𝑦𝑦𝑡𝑡, where 𝑦𝑦𝑡𝑡 is an exogenous 
forcing process. For convenience, we define 𝑦𝑦0 ≔ 0. This implies that for 𝑡𝑡 ≥ 1: 

𝜋𝜋𝑡𝑡+1|𝑡𝑡 = �̌�𝜋𝑡𝑡+1|𝑡𝑡
∗ = 𝜋𝜋∗ + 𝑦𝑦𝑡𝑡, 

𝑥𝑥𝑡𝑡 =
1
𝜅𝜅 �𝑦𝑦𝑡𝑡−1 − 𝛽𝛽𝑦𝑦𝑡𝑡�, 𝑟𝑟𝑡𝑡 = 𝑛𝑛 +

1
𝜅𝜅𝜍𝜍 �−𝑦𝑦𝑡𝑡−1 + �𝛽𝛽 + 𝛿𝛿�𝑦𝑦𝑡𝑡 − 𝛽𝛽𝛿𝛿𝑦𝑦𝑡𝑡+1�, 
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𝑧𝑧𝑡𝑡 = 𝑛𝑛 + 𝜋𝜋∗ − 𝜖𝜖 + 𝑦𝑦𝑡𝑡 +
1
𝜅𝜅𝜍𝜍 �−𝑦𝑦𝑡𝑡−1 + �𝛽𝛽 + 𝛿𝛿�𝑦𝑦𝑡𝑡 − 𝛽𝛽𝛿𝛿𝑦𝑦𝑡𝑡+1�, 

from, respectively, the monetary rule and Fisher equation, the equations for 𝑧𝑧𝑡𝑡, 
the Phillips curve, the Euler equation, and the first equation for 𝑧𝑧𝑡𝑡. 

Holden (2021) shows that uniqueness is determined by the determinants of 
the principal sub-matrices of the “𝑀𝑀” matrix for the model, which, here, 

contains the partial derivatives of 𝑧𝑧𝑡𝑡 (𝑡𝑡 in rows) with respect to 𝑦𝑦𝑠𝑠 (𝑠𝑠 in 
columns). We take 𝑀𝑀 to have infinitely many rows and columns in the 

following. By our solution for 𝑧𝑧𝑡𝑡, 𝑀𝑀 is tridiagonal with − 1
𝜅𝜅𝜅𝜅 , 1 + 𝛽𝛽+𝛽𝛽

𝜅𝜅𝜅𝜅 , − 𝛽𝛽𝛽𝛽
𝜅𝜅𝜅𝜅 on the 

left, main and right diagonals respectively. We assume for now that 𝛽𝛽+𝛽𝛽
𝜅𝜅𝜅𝜅 ≥ 0.  

Now consider a finite size principal sub-matrix of 𝑀𝑀. Since 𝑀𝑀 is tridiagonal 
and Toeplitz, this sub-matrix must be block diagonal, where each block on the 

diagonal is either diagonal (with 1 + 𝛽𝛽+𝛽𝛽
𝜅𝜅𝜅𝜅  on the diagonal), or tridiagonal (with 

− 1
𝜅𝜅𝜅𝜅 , 1 + 𝛽𝛽+𝛽𝛽

𝜅𝜅𝜅𝜅 , − 𝛽𝛽𝛽𝛽
𝜅𝜅𝜅𝜅 on the left, main and right diagonals respectively). Recall that 

the determinant of a block diagonal matrix is the product of the determinants 
of the blocks on the diagonal. Thus, the sub-matrix will have determinant 

greater or equal to one if each of the sub-matrix’s blocks has determinant 
greater or equal to one. Since 𝛽𝛽+𝛽𝛽

𝜅𝜅𝜅𝜅 ≥ 0, a diagonal block of size 𝑆𝑆 × 𝑆𝑆 has 

determinant of �1 + 𝛽𝛽+𝛽𝛽
𝜅𝜅𝜅𝜅 �

𝑆𝑆
≥ 1. Thus, we just need to check the determinants of 

the tridiagonal blocks. 

Let: 

𝑑𝑑 ≔ �1 +
𝛽𝛽 + 𝛿𝛿

𝜅𝜅𝜍𝜍 �
2

− 4
𝛽𝛽𝛿𝛿

(𝜅𝜅𝜍𝜍)2 = 1 + 2
𝛽𝛽 + 𝛿𝛿

𝜅𝜅𝜍𝜍 +
�𝛽𝛽 − 𝛿𝛿�2

(𝜅𝜅𝜍𝜍)2 ≥ 1, 

as we are assuming that 𝛽𝛽+𝛽𝛽
𝜅𝜅𝜅𝜅 ≥ 0. Then, by standard results on determinants of 

tridiagonal matrices,46 the determinant of any 𝑆𝑆 × 𝑆𝑆 tridiagonal block is given 

by: 
1

2𝑆𝑆+1�𝑑𝑑 ⎣
⎢⎡�1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜍𝜍 + �𝑑𝑑�

𝑆𝑆+1
− �1 +

𝛽𝛽 + 𝛿𝛿
𝜅𝜅𝜍𝜍 − �𝑑𝑑�

𝑆𝑆+1

⎦
⎥⎤

=
1
2𝑆𝑆 � �𝑆𝑆 + 1

𝑘𝑘 � �1 +
𝛽𝛽 + 𝛿𝛿

𝜅𝜅𝜍𝜍 �
𝑘𝑘

�𝑑𝑑
𝑆𝑆−𝑘𝑘 �1 − (−1)𝑆𝑆+1−𝑘𝑘�

2

𝑆𝑆+1

𝑘𝑘=0

≥
1
2𝑆𝑆 � �𝑆𝑆 + 1

𝑘𝑘 �
�1 − (−1)𝑆𝑆+1−𝑘𝑘�

2

𝑆𝑆+1

𝑘𝑘=0
= 1. 

 
46 This may be proven by using Laplace expansion twice to derive a recurrence for the determinant. 
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Hence, the sub-matrix has determinant greater or equal to one. Thus, all 
principal minors of 𝑀𝑀 are greater or equal to one, meaning that the 𝑀𝑀 matrix is 

a “P-matrix” (Holden 2021), and moreover that no sufficiently small changes to 
the model could change this result.47 (Being a P-matrix only requires positive 

principal minors, not ones greater or equal to one.) Thus, with 𝜋𝜋𝑡𝑡
∗ exogenous, 

the solution is robustly unique conditional on the terminal conditions 

(bounded inflation, eventual escapes from both bounds). For uniqueness 
without this additional robustness property, it is clearly sufficient that 𝑑𝑑 > 0 and 

1 + 𝛽𝛽+𝛽𝛽
𝜅𝜅𝜅𝜅 > 0, for example it is enough that 𝛽𝛽+𝛽𝛽

𝜅𝜅𝜅𝜅 > − 1
2. 

J.10 Approximate uniqueness with endogenous wedges and 
multi-period bonds 
In the set-up of Section 5, suppose we assume that Δ𝑡𝑡 is stationary, and that 

there exists some 𝜇𝜇����0, 𝜇𝜇����1, 𝜇𝜇����2, 𝛾𝛾����0, 𝛾𝛾����1, 𝛾𝛾����2 ≥ 0 such that for any stationary solution 
for 𝑒𝑒𝑡𝑡, |𝔼𝔼Δ𝑡𝑡| ≤ 𝜇𝜇����0 + 𝜇𝜇����1�𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗)� + 𝜇𝜇����2 Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) and Var Δ𝑡𝑡 ≤ 𝛾𝛾����0 +

𝛾𝛾����1�𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)� + 𝛾𝛾����2 Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗), for all 𝑡𝑡 ∈ ℤ and 𝑗𝑗, 𝑘𝑘 ∈ ℕ. This assumption is 
very mild, as discussed in Subsection 3.3 (and the form here is even milder, 

since it applies to Δ𝑡𝑡, not 𝜈𝜈𝑡𝑡+𝑆𝑆|𝑡𝑡 − 𝜈𝜈�̅�𝑡+𝑆𝑆|𝑡𝑡). Now note that: 

�𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)� =

1
𝜃𝜃 |𝔼𝔼(𝑒𝑒𝑡𝑡 − 𝑒𝑒𝑡𝑡−1 + Δ𝑡𝑡)| ≤

1
𝜃𝜃 [2|𝔼𝔼𝑒𝑒𝑡𝑡| + |𝔼𝔼Δ𝑡𝑡|], 

(by the triangle inequality and stationarity) and: 

Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) =

1
𝜃𝜃2 Var(𝑒𝑒𝑡𝑡 − 𝑒𝑒𝑡𝑡−1 + Δ𝑡𝑡)

≤
1
𝜃𝜃2 �4 Var 𝑒𝑒𝑡𝑡 + 4�(Var 𝑒𝑒𝑡𝑡)(Var Δ𝑡𝑡) + Var Δ𝑡𝑡�

≤
1
𝜃𝜃2 [8 Var 𝑒𝑒𝑡𝑡 + 2 Var Δ𝑡𝑡], 

(by Cauchy-Schwarz, stationarity and the fact that for all 𝑧𝑧 ≥ 0, 4�(Var 𝑒𝑒𝑡𝑡)𝑧𝑧 ≤
4 Var 𝑒𝑒𝑡𝑡 + 𝑧𝑧). Thus, if 𝜃𝜃 is large enough to ensure 𝜃𝜃 > 𝜇𝜇����1, 𝜃𝜃2 > 2𝛾𝛾����2 and 

�𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� > 2𝜇𝜇����2𝛾𝛾����1, then: 

 
47 This robustness holds for any fixed size 𝑀𝑀 matrix. I.e., fix 𝑇𝑇 > 0 (potentially extremely large) and 
suppose the bound ceases to apply more than 𝑇𝑇 periods in the future. Then following a sufficiently small 
change to the model, there will be a unique solution that satisfies the bound for 𝑇𝑇 periods, but which may 

violate it after 𝑇𝑇 periods. 
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|𝔼𝔼Δ𝑡𝑡|

≤
�𝜃𝜃2 − 2𝛾𝛾����2��𝜃𝜃2𝜇𝜇����0 + 2𝜃𝜃𝜇𝜇����1|𝔼𝔼𝑒𝑒𝑡𝑡| + 8𝜇𝜇����2 Var 𝑒𝑒𝑡𝑡� + 2𝜇𝜇����2�𝜃𝜃2𝛾𝛾����0 + 2𝜃𝜃𝛾𝛾����1|𝔼𝔼𝑒𝑒𝑡𝑡| + 8𝛾𝛾����2 Var 𝑒𝑒𝑡𝑡�

𝜃𝜃��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
, 

and: 

Var Δ𝑡𝑡

≤
𝛾𝛾����1�𝜃𝜃2𝜇𝜇����0 + 2𝜃𝜃𝜇𝜇����1|𝔼𝔼𝑒𝑒𝑡𝑡| + 8𝜇𝜇����2 Var 𝑒𝑒𝑡𝑡� + �𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2𝛾𝛾����0 + 2𝜃𝜃𝛾𝛾����1|𝔼𝔼𝑒𝑒𝑡𝑡| + 8𝛾𝛾����2 Var 𝑒𝑒𝑡𝑡�

�𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1
. 

Therefore, as 𝑒𝑒𝑡𝑡 = 𝔼𝔼𝑡𝑡 ∑ (1 + 𝜃𝜃𝑇𝑇)−� 𝑗𝑗
𝑇𝑇−𝐿𝐿+𝑆𝑆�Δ𝑡𝑡+𝑗𝑗

∞
𝑗𝑗=1 : 

|𝔼𝔼𝑒𝑒𝑡𝑡| ≤ �(1 + 𝜃𝜃𝑇𝑇)
−�

𝑗𝑗
𝑇𝑇−𝐿𝐿+𝑆𝑆�∞

𝑗𝑗=1
|𝔼𝔼Δ𝑡𝑡| 

= (𝑇𝑇 − 𝜚𝜚 + 𝑆𝑆) �(1 + 𝜃𝜃𝑇𝑇)−𝑗𝑗
∞

𝑗𝑗=1
|𝔼𝔼Δ𝑡𝑡| =

𝑇𝑇 − 𝜚𝜚 + 𝑆𝑆
𝜃𝜃𝑇𝑇 |𝔼𝔼Δ𝑡𝑡| ≤

|𝔼𝔼Δ𝑡𝑡|
𝜃𝜃  

≤
�𝜃𝜃2 − 2𝛾𝛾����2��𝜃𝜃2𝜇𝜇����0 + 2𝜃𝜃𝜇𝜇����1�𝔼𝔼𝑒𝑒𝑡𝑡� + 8𝜇𝜇����2 Var 𝑒𝑒𝑡𝑡� + 2𝜇𝜇����2�𝜃𝜃2𝛾𝛾����0 + 2𝜃𝜃𝛾𝛾����1�𝔼𝔼𝑒𝑒𝑡𝑡� + 8𝛾𝛾����2 Var 𝑒𝑒𝑡𝑡�

𝜃𝜃2��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
, 

(using the triangle inequality and stationarity), and: 

Var 𝑒𝑒𝑡𝑡 = � �(1 + 𝜃𝜃𝑇𝑇)
−�

𝑗𝑗
𝑇𝑇−𝐿𝐿+𝑆𝑆�

(1 + 𝜃𝜃𝑇𝑇)−� 𝑘𝑘
𝑇𝑇−𝐿𝐿+𝑆𝑆� Cov�𝔼𝔼𝑡𝑡Δ𝑡𝑡+𝑗𝑗, 𝔼𝔼𝑡𝑡Δ𝑡𝑡+𝑘𝑘�

∞

𝑘𝑘=0

∞

𝑗𝑗=0
 

≤ � �(1 + 𝜃𝜃𝑇𝑇)
−�

𝑗𝑗
𝑇𝑇−𝐿𝐿+𝑆𝑆�

(1 + 𝜃𝜃𝑇𝑇)−� 𝑘𝑘
𝑇𝑇−𝐿𝐿+𝑆𝑆�∞

𝑘𝑘=0

∞

𝑗𝑗=0
Var Δ𝑡𝑡 

=
⎣
⎢⎡(𝑇𝑇 − 𝜚𝜚 + 𝑆𝑆) �(1 + 𝜃𝜃𝑇𝑇)−𝑗𝑗

∞

𝑗𝑗=1 ⎦
⎥⎤

2

Var Δ𝑡𝑡 = �
𝑇𝑇 − 𝜚𝜚 + 𝑆𝑆

𝜃𝜃𝑇𝑇 �
2

Var Δ𝑡𝑡 ≤
Var Δ𝑡𝑡

𝜃𝜃2  

≤
𝛾𝛾����1�𝜃𝜃2𝜇𝜇����0 + 2𝜃𝜃𝜇𝜇����1�𝔼𝔼𝑒𝑒𝑡𝑡� + 8𝜇𝜇����2 Var 𝑒𝑒𝑡𝑡� + �𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2𝛾𝛾����0 + 2𝜃𝜃𝛾𝛾����1�𝔼𝔼𝑒𝑒𝑡𝑡� + 8𝛾𝛾����2 Var 𝑒𝑒𝑡𝑡�

𝜃𝜃2��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
 

(by the inequality for covariances of conditional expectations derived in 
Subsection 3.3). Now, define: 

𝜇𝜇0 ≔
𝜃𝜃2�𝜃𝜃2 − 2𝛾𝛾����2�𝜇𝜇����0 + 2𝜃𝜃2𝜇𝜇����2𝛾𝛾����0

𝜃𝜃2��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
= Ο �

1
𝜃𝜃�  as 𝜃𝜃 → ∞, 

𝜇𝜇1 ≔
2𝜃𝜃�𝜃𝜃2 − 2𝛾𝛾����2�𝜇𝜇����1 + 4𝜃𝜃𝜇𝜇����2𝛾𝛾����1

𝜃𝜃2��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
= Ο �

1
𝜃𝜃2�  as 𝜃𝜃 → ∞, 

𝜇𝜇2 ≔
8�𝜃𝜃2 − 2𝛾𝛾����2�𝜇𝜇����2 + 16𝜇𝜇����2𝛾𝛾����2

𝜃𝜃2��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
= Ο �

1
𝜃𝜃3�  as 𝜃𝜃 → ∞, 

𝛾𝛾0 ≔
𝜃𝜃2𝛾𝛾����1𝜇𝜇����0 + 𝜃𝜃2�𝜃𝜃 − 𝜇𝜇����1�𝛾𝛾����0

𝜃𝜃2��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
= Ο �

1
𝜃𝜃2�  as 𝜃𝜃 → ∞, 

𝛾𝛾1 ≔
2𝜃𝜃𝛾𝛾����1𝜇𝜇����1 + 2𝜃𝜃�𝜃𝜃 − 𝜇𝜇����1�𝛾𝛾����1

𝜃𝜃2��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
= Ο �

1
𝜃𝜃3�  as 𝜃𝜃 → ∞, 

𝛾𝛾2 ≔
8𝛾𝛾����1𝜇𝜇����2 + 8�𝜃𝜃 − 𝜇𝜇����1�𝛾𝛾����2

𝜃𝜃2��𝜃𝜃 − 𝜇𝜇����1��𝜃𝜃2 − 2𝛾𝛾����2� − 2𝜇𝜇����2𝛾𝛾����1�
= Ο �

1
𝜃𝜃4�  as 𝜃𝜃 → ∞, 
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then we can rewrite the previous inequalities as: 
|𝔼𝔼Δ𝑡𝑡| ≤ 𝜃𝜃𝜇𝜇0 + 𝜃𝜃𝜇𝜇1|𝔼𝔼𝑒𝑒𝑡𝑡| + 𝜃𝜃𝜇𝜇2 Var 𝑒𝑒𝑡𝑡, 

Var Δ𝑡𝑡 ≤ 𝜃𝜃2𝛾𝛾0 + 𝜃𝜃2𝛾𝛾1|𝔼𝔼𝑒𝑒𝑡𝑡| + 𝜃𝜃2𝛾𝛾2 Var 𝑒𝑒𝑡𝑡, 
|𝔼𝔼𝑒𝑒𝑡𝑡| ≤ 𝜇𝜇0 + 𝜇𝜇1|𝔼𝔼𝑒𝑒𝑡𝑡| + 𝜇𝜇2 Var 𝑒𝑒𝑡𝑡, 

Var 𝑒𝑒𝑡𝑡 ≤ 𝛾𝛾0 + 𝛾𝛾1|𝔼𝔼𝑒𝑒𝑡𝑡| + 𝛾𝛾2 Var 𝑒𝑒𝑡𝑡, 
Now, suppose that 𝜃𝜃 is large enough that additionally 1 > 𝜇𝜇1, 1 > 𝛾𝛾1 and 

�1 − 𝜇𝜇1�(1 − 𝛾𝛾2) > 𝜇𝜇2𝛾𝛾1 (note that these inequalities always hold for 
sufficiently large 𝜃𝜃, by the previously derived big-Ο asymptotics), then: 

|𝔼𝔼𝑒𝑒𝑡𝑡| ≤
(1 − 𝛾𝛾2)𝜇𝜇0 + 𝜇𝜇2𝛾𝛾0

�1 − 𝜇𝜇1�(1 − 𝛾𝛾2) − 𝜇𝜇2𝛾𝛾1
= Ο �

1
𝜃𝜃�  as 𝜃𝜃 → ∞, 

Var 𝑒𝑒𝑡𝑡 ≤
�1 − 𝜇𝜇1�𝛾𝛾0 + 𝛾𝛾1𝜇𝜇0

�1 − 𝜇𝜇1�(1 − 𝛾𝛾2) − 𝜇𝜇2𝛾𝛾1
= Ο �

1
𝜃𝜃2�  as 𝜃𝜃 → ∞, 

by the previously derived big-Ο asymptotics. Hence, as 𝜃𝜃 → ∞, 𝔼𝔼𝑒𝑒𝑡𝑡 → 0 and 
Var 𝑒𝑒𝑡𝑡 → 0, as required. 

Finally, note that by the bounds on �𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)� and Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗) derived 
above, we have that: 

�𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)� ≤

1
𝜃𝜃 [2|𝔼𝔼𝑒𝑒𝑡𝑡| + |𝔼𝔼Δ𝑡𝑡|] ≤

2
𝜃𝜃 |𝔼𝔼𝑒𝑒𝑡𝑡| + 𝜇𝜇0 + 𝜇𝜇1|𝔼𝔼𝑒𝑒𝑡𝑡| + 𝜇𝜇2 Var 𝑒𝑒𝑡𝑡 

= Ο �
1
𝜃𝜃�  as 𝜃𝜃 → ∞, 

and: 

Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) ≤

1
𝜃𝜃2 [8 Var 𝑒𝑒𝑡𝑡 + 2 Var Δ𝑡𝑡]

≤ 8
1
𝜃𝜃2 Var 𝑒𝑒𝑡𝑡 + 2𝛾𝛾0 + 2𝛾𝛾1|𝔼𝔼𝑒𝑒𝑡𝑡| + 2𝛾𝛾2 Var 𝑒𝑒𝑡𝑡 = Ο �

1
𝜃𝜃2�  as 𝜃𝜃 → ∞, 

so, as required, 𝔼𝔼(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) → 0 and Var(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗) → 0 as 𝜃𝜃 → ∞. 

J.11 Convergence under least squares learning 
We have that 𝑎𝑎𝑡𝑡 and 𝑏𝑏𝑡𝑡 are updated according to the recursion: 

�
𝑎𝑎𝑡𝑡
𝑏𝑏𝑡𝑡

� = �
𝑎𝑎𝑡𝑡−1
𝑏𝑏𝑡𝑡−1

� +
1

𝑡𝑡 + 𝑤𝑤
1
𝑣𝑣 �

𝑣𝑣
𝜁𝜁𝑡𝑡

� (𝜋𝜋𝑡𝑡 − 𝑎𝑎𝑡𝑡−1 − 𝑏𝑏𝑡𝑡−1𝜁𝜁𝑡𝑡), 

where: 

𝜋𝜋𝑡𝑡 =
1

𝜙𝜙 − 𝑚𝑚𝑡𝑡
�(1 − 𝑚𝑚𝑡𝑡)𝑎𝑎𝑡𝑡−1 + �𝜌𝜌 − 𝑚𝑚𝑡𝑡�𝑏𝑏𝑡𝑡−1𝜁𝜁𝑡𝑡 − 𝜁𝜁𝑡𝑡�, 

and: 

𝑚𝑚𝑡𝑡 =
1

𝑡𝑡 + 𝑤𝑤 �1 + 𝜌𝜌
𝜁𝜁𝑡𝑡

2

𝑣𝑣 �. 
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Note: 

𝜋𝜋𝑡𝑡 =
𝑎𝑎𝑡𝑡−1 + �𝜌𝜌𝑏𝑏𝑡𝑡−1 − 1�𝜁𝜁𝑡𝑡

𝜙𝜙 −
𝑚𝑚𝑡𝑡

𝜙𝜙 − 𝑚𝑚𝑡𝑡

�𝜙𝜙 − 1�𝑎𝑎𝑡𝑡−1 + �𝜙𝜙 − 𝜌𝜌�𝑏𝑏𝑡𝑡−1𝜁𝜁𝑡𝑡 + 𝜁𝜁𝑡𝑡
𝜙𝜙 . 

Now define: 

ℋ��𝑎𝑎
𝑏𝑏�, 𝜁𝜁� = −

1
𝜙𝜙𝑣𝑣 ��𝜙𝜙 − 1�𝑎𝑎 + �𝜙𝜙 − 𝜌𝜌�𝑏𝑏𝜁𝜁 + 𝜁𝜁� �

𝑣𝑣
𝜁𝜁�, 

ℛ𝑡𝑡��𝑎𝑎
𝑏𝑏�, 𝜁𝜁� = −

1 + 𝜌𝜌 𝜁𝜁2

𝑣𝑣

𝜙𝜙 − 1
𝑡𝑡 + 𝑤𝑤 �1 + 𝜌𝜌 𝜁𝜁2

𝑣𝑣 �

1
𝜙𝜙𝑣𝑣 ��𝜙𝜙 − 1�𝑎𝑎 + �𝜙𝜙 − 𝜌𝜌�𝑏𝑏𝜁𝜁 + 𝜁𝜁� �

𝑣𝑣
𝜁𝜁�. 

We now verify each of the parts of assumption D.1 of Subsection 6.7 of Evans 
& Honkapohja (2001). We assume that 𝜙𝜙 > 1. 

Part (i): 
ℋ��𝑎𝑎

𝑏𝑏�, 𝜁𝜁1� − ℋ��𝑎𝑎
𝑏𝑏�, 𝜁𝜁2�

= −
1

𝜙𝜙𝑣𝑣 ��𝜙𝜙 − 1�𝑎𝑎 �0
1� + ��𝜙𝜙 − 𝜌𝜌�𝑏𝑏 + 1� �

𝑣𝑣
𝜁𝜁1 + 𝜁𝜁2

�� (𝜁𝜁1 − 𝜁𝜁2). 

So: 
�ℋ��𝑎𝑎

𝑏𝑏�, 𝜁𝜁1� − ℋ��𝑎𝑎
𝑏𝑏�, 𝜁𝜁2��

2

≤
1

𝜙𝜙𝑣𝑣 ��𝜙𝜙 − 1�|𝑎𝑎| + ��𝜙𝜙 − 𝜌𝜌�|𝑏𝑏| + 1�(𝑣𝑣 + |𝜁𝜁1| + |𝜁𝜁2|)�|𝜁𝜁1 − 𝜁𝜁2|

≤
max{1, 𝑣𝑣}

𝜙𝜙𝑣𝑣 ��𝜙𝜙 − 1�|𝑎𝑎| + �𝜙𝜙 − 𝜌𝜌�|𝑏𝑏| + 1�|𝜁𝜁1 − 𝜁𝜁2|(1 + |𝜁𝜁1| + |𝜁𝜁2|)

≤ �2
�𝜙𝜙 − 𝜌𝜌� max{1, 𝑣𝑣}

𝜙𝜙𝑣𝑣 �1 + ��𝑎𝑎
𝑏𝑏��

2
� |𝜁𝜁1 − 𝜁𝜁2|(1 + |𝜁𝜁1| + |𝜁𝜁2|). 

Part (ii): 

ℋ ��
𝑎𝑎1
𝑏𝑏1

� , 0� − ℋ ��
𝑎𝑎2
𝑏𝑏2

� , 0� = −
𝜙𝜙 − 1

𝜙𝜙𝑣𝑣 (𝑎𝑎1 − 𝑎𝑎2)�𝑣𝑣
0�. 

So: 

�ℋ ��
𝑎𝑎1
𝑏𝑏1

� , 0� − ℋ ��
𝑎𝑎2
𝑏𝑏2

� , 0��
2

=
𝜙𝜙 − 1

𝜙𝜙 |𝑎𝑎1 − 𝑎𝑎2| ≤
𝜙𝜙 − 1

𝜙𝜙 ��
𝑎𝑎1
𝑏𝑏1

� − �
𝑎𝑎2
𝑏𝑏2

��
2
. 

Part (iii): 
𝜕𝜕

𝜕𝜕𝜁𝜁 ℋ ��
𝑎𝑎1
𝑏𝑏1

� , 𝜁𝜁� −
𝜕𝜕

𝜕𝜕𝜁𝜁 ℋ ��
𝑎𝑎2
𝑏𝑏2

� , 𝜁𝜁�

= −
1

𝜙𝜙𝑣𝑣 ��𝜙𝜙 − 1�(𝑎𝑎1 − 𝑎𝑎2) �0
1� + �𝜙𝜙 − 𝜌𝜌�(𝑏𝑏1 − 𝑏𝑏2) �

𝑣𝑣
2𝜁𝜁��. 

So: 
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�
𝜕𝜕

𝜕𝜕𝜁𝜁 ℋ ��
𝑎𝑎1
𝑏𝑏1

� , 𝜁𝜁� −
𝜕𝜕

𝜕𝜕𝜁𝜁 ℋ ��
𝑎𝑎2
𝑏𝑏2

� , 𝜁𝜁��
2

≤
1

𝜙𝜙𝑣𝑣 ��𝜙𝜙 − 1�|𝑎𝑎1 − 𝑎𝑎2| + �𝜙𝜙 − 𝜌𝜌�|𝑏𝑏1 − 𝑏𝑏2|(𝑣𝑣 + 2|𝜁𝜁 |)�

≤
�𝜙𝜙 − 𝜌𝜌� max{2, 𝑣𝑣}

𝜙𝜙𝑣𝑣 [|𝑎𝑎1 − 𝑎𝑎2| + |𝑏𝑏1 − 𝑏𝑏2|](1 + |𝜁𝜁 |)

≤ �2
�𝜙𝜙 − 𝜌𝜌� max{2, 𝑣𝑣}

𝜙𝜙𝑣𝑣 ��
𝑎𝑎1
𝑏𝑏1

� − �
𝑎𝑎2
𝑏𝑏2

��
2

(1 + |𝜁𝜁 |). 

Part (iv): 

Let Φ be the cumulative distribution function of the standard normal 
distribution. Then: 

Pr �
1

𝑡𝑡 + 𝑤𝑤 �1 + �𝜌𝜌�
𝜁𝜁𝑡𝑡

2

𝑣𝑣 � > 1� = 2Φ
⎝
⎜⎛−�𝑡𝑡 + 𝑤𝑤 − 1

�𝜌𝜌� ⎠
⎟⎞. 

Thus: 

� Pr �
1

𝑡𝑡 + 𝑤𝑤 �1 + �𝜌𝜌�
𝜁𝜁𝑡𝑡

2

𝑣𝑣 � > 1�
∞

𝑡𝑡=1
= 2Φ �−�

𝑤𝑤
�𝜌𝜌�� + � 2Φ

⎝
⎜⎛−�𝑡𝑡 + 𝑤𝑤 − 1

�𝜌𝜌� ⎠
⎟⎞

∞

𝑡𝑡=2

≤ 2Φ �−�
𝑤𝑤
�𝜌𝜌�� + � 2Φ

⎝
⎜⎛−�𝑡𝑡 + 𝑤𝑤 − 1

�𝜌𝜌� ⎠
⎟⎞ d𝑡𝑡

∞

1

= �2�𝜌𝜌�𝑤𝑤
𝜋𝜋���� exp �−

𝑤𝑤
2�𝜌𝜌�� + 2�1 − 𝑤𝑤 + �𝜌𝜌��Φ �−�

𝑤𝑤
�𝜌𝜌�� < ∞ 

where 𝜋𝜋���� is the mathematical constant usually denoted by 𝜋𝜋. Hence, by the 

Borel-Cantelli lemma, with probability one 1
𝑡𝑡+𝑤𝑤 �1 + �𝜌𝜌� 𝜁𝜁𝑡𝑡

2

𝑣𝑣 � > 1 for only finitely 
many 𝑡𝑡. 

When 1
𝑡𝑡+𝑤𝑤 �1 + �𝜌𝜌� 𝜁𝜁 2

𝑣𝑣 � ≤ 1, we have that: 

�ℛ𝑡𝑡��𝑎𝑎
𝑏𝑏�, 𝜁𝜁�� ≤

1 + �𝜌𝜌� 𝜁𝜁2

𝑣𝑣
𝜙𝜙 − 1

�𝜙𝜙 − 1�|𝑎𝑎| + �𝜙𝜙 − 𝜌𝜌�|𝑏𝑏||𝜁𝜁 | + |𝜁𝜁 |
𝜙𝜙𝑣𝑣 (𝑣𝑣 + |𝜁𝜁 |) 

≤
max{1, 𝑣𝑣}

𝜙𝜙𝑣𝑣 max �1,
�𝜌𝜌�
𝑣𝑣 �

𝜙𝜙 − 𝜌𝜌
𝜙𝜙 − 1 (1 + |𝑎𝑎| + |𝑏𝑏|)(1 + |𝜁𝜁 |)2�1 + |𝜁𝜁 |2� 

≤ 4�2
max{1, 𝑣𝑣}

𝜙𝜙𝑣𝑣 max �1,
�𝜌𝜌�
𝑣𝑣 �

𝜙𝜙 − 𝜌𝜌
𝜙𝜙 − 1 �1 + ��𝑎𝑎

𝑏𝑏��
2
� �1 + |𝜁𝜁 |4�. 

If this held without assuming 1
𝑡𝑡+𝑤𝑤 �1 + �𝜌𝜌� 𝜁𝜁 2

𝑣𝑣 � ≤ 1, then this would satisfy Part 

(iv) of Assumption D.1 of Section 6.7 of Evans & Honkapohja (2001). However, 
from inspecting the proof of Theorem 6.10 of Evans & Honkapohja (2001), 

contained in the proof of Theorem 17 of Section 1.9 of Benveniste, Métivier & 
Priouret (1990), a weaker assumption is sufficient. In fact, it is enough that there 
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exists 𝐶𝐶2 > 0 and 𝑞𝑞 > 0 such that for all 𝑎𝑎, 𝑏𝑏 ∈ ℝ:48 

Pr �∃𝑇𝑇 s.t. ∀𝑡𝑡 ≥ 𝑇𝑇, �ℛ𝑡𝑡��𝑎𝑎
𝑏𝑏�, 𝜁𝜁𝑡𝑡�� ≤ 𝐶𝐶2 �1 + ��𝑎𝑎

𝑏𝑏��
2
� (1 + |𝜁𝜁𝑡𝑡|𝑞𝑞)� = 1. 

This is satisfied, by our result that with probability one 1
𝑡𝑡+𝑤𝑤 �1 + �𝜌𝜌� 𝜁𝜁𝑡𝑡

2

𝑣𝑣 � > 1 for 

only finitely many 𝑡𝑡. 
This completes the verification of Assumption D.1 of Section 6.7 of Evans & 

Honkapohja (2001). Assumption D.2 trivially holds, as 𝜁𝜁𝑡𝑡 is a stationary AR(1) 
process. Assumption A.1 also clearly holds. 

Now define: 

ℎ��𝑎𝑎
𝑏𝑏�� = lim

𝑡𝑡→∞
𝔼𝔼ℋ��𝑎𝑎

𝑏𝑏�, 𝜁𝜁𝑡𝑡� = −
1

𝜙𝜙𝑣𝑣 𝔼𝔼 �
��𝜙𝜙 − 1�𝑎𝑎 + �𝜙𝜙 − 𝜌𝜌�𝑏𝑏𝜁𝜁𝑡𝑡 + 𝜁𝜁𝑡𝑡�𝑣𝑣
�𝜙𝜙 − 1�𝑎𝑎𝜁𝜁𝑡𝑡 + �𝜙𝜙 − 𝜌𝜌�𝑏𝑏𝜁𝜁𝑡𝑡

2 + 𝜁𝜁𝑡𝑡
2 � 

= −
1
𝜙𝜙 �

�𝜙𝜙 − 1�𝑎𝑎
1 + �𝜙𝜙 − 𝜌𝜌�𝑏𝑏�. 

Then, the ordinary differential equation (ODE): 

d �𝑎𝑎(𝜏𝜏)
𝑏𝑏(𝜏𝜏)�

d𝜏𝜏 = ℎ ��𝑎𝑎(𝜏𝜏)
𝑏𝑏(𝜏𝜏)��, 

has the unique solution 𝑎𝑎(𝜏𝜏) = 𝑎𝑎(0) exp�− 𝜙𝜙−1
𝜙𝜙 𝜏𝜏�, 𝑏𝑏(𝜏𝜏) = − 1

𝜙𝜙−𝜌𝜌 + �𝑏𝑏0 +
1

𝜙𝜙−𝜌𝜌� exp�− 𝜙𝜙−𝜌𝜌
𝜙𝜙 𝜏𝜏�, which converges to the unique equilibrium point 𝑎𝑎 = 0 and 

𝑏𝑏 = − 1
𝜙𝜙−𝜌𝜌 as 𝜏𝜏 → ∞, since 𝜙𝜙 > 1 > 𝜌𝜌. Now define 𝒰𝒰: ℝ2 → ℝ by: 

𝒰𝒰��𝑎𝑎
𝑏𝑏�� = 𝑎𝑎2 + �𝑏𝑏 +

1
𝜙𝜙 − 𝜌𝜌�

2
. 

Clearly 𝒰𝒰  is non-negative and twice continuously differentiable. We now verify 
𝒰𝒰  satisfies the other conditions of Theorem 6.10 of Evans & Honkapohja (2001). 

Part (i): 
𝜕𝜕𝒰𝒰��𝑎𝑎

𝑏𝑏��

𝜕𝜕�𝑎𝑎
𝑏𝑏�

ℎ ��𝑎𝑎(𝜏𝜏)
𝑏𝑏(𝜏𝜏)�� = −2

𝜙𝜙 − 1
𝜙𝜙 𝑎𝑎2 − 2

𝜙𝜙 − 𝜌𝜌
𝜙𝜙 �𝑏𝑏 +

1
𝜙𝜙 − 𝜌𝜌�

2
≤ 0, 

(using numerator layout notation for the derivative), with equality if and only 

if 𝑎𝑎 = 0 and 𝑏𝑏 = − 1
𝜙𝜙−𝜌𝜌. 

Part (ii): 
𝒰𝒰��𝑎𝑎

𝑏𝑏�� = �0
0� if and only if 𝑎𝑎 = 0 and 𝑏𝑏 = − 1

𝜙𝜙−𝜌𝜌. 
Part (iii): 

 
48 Note that the condition in equation (1.9.2) of Benveniste, Métivier & Priouret (1990) is only used in the 

proof of Lemma 18 of Section 1.9. 
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Suppose ��𝑎𝑎
𝑏𝑏��

2
≥ 2

𝜙𝜙−𝜌𝜌. Then 𝑎𝑎2 + 𝑏𝑏2 ≥ 4
�𝜙𝜙−𝜌𝜌�2, so: 

𝒰𝒰��𝑎𝑎
𝑏𝑏�� −

1
4 ��𝑎𝑎

𝑏𝑏��
2

2
=

3
4 �𝑎𝑎2 + 𝑏𝑏2� +

2𝑏𝑏
𝜙𝜙 − 𝜌𝜌 +

1
�𝜙𝜙 − 𝜌𝜌�2 

≥
3
4 �𝑎𝑎2 + 𝑏𝑏2� −

2 � 1
𝜙𝜙 − 𝜌𝜌 + 𝜙𝜙 − 𝜌𝜌

4 �𝑎𝑎2 + 𝑏𝑏2��

𝜙𝜙 − 𝜌𝜌 +
1

�𝜙𝜙 − 𝜌𝜌�2 

=
1
4 �𝑎𝑎2 + 𝑏𝑏2� −

1
�𝜙𝜙 − 𝜌𝜌�2 ≥ 0. 

This completes the verification of the conditions of Theorem 6.10 of Evans 

& Honkapohja (2001). Hence, with probability one, 𝑎𝑎𝑡𝑡 converges to 0 and 𝑏𝑏𝑡𝑡 
converges to − 1

𝜙𝜙−𝜌𝜌. 

J.12 Optimal consumption with perpetuities and a permanent ZLB 
For the sake of illustration, we adopt the simple parametric set-up used in 

Online Appendix F.1. It is clear our results are not specific to this set-up, 
however. 

We suppose the representative household supplies one unit of labour, 
inelastically. Production of the final good is given by 𝑦𝑦𝑡𝑡 = 𝑙𝑙𝑡𝑡(= 1). In period 𝑡𝑡, 
the representative household maximises 𝔼𝔼𝑡𝑡 ∑ 𝛽𝛽𝑘𝑘 log 𝑐𝑐𝑡𝑡+𝑘𝑘

∞
𝑘𝑘=0 , subject to the 

budget constraint: 

𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡 + 𝐴𝐴𝑡𝑡 + 𝑄𝑄𝑡𝑡𝐵𝐵𝑡𝑡 + 𝑃𝑃𝑡𝑡𝜏𝜏𝑡𝑡 = 𝑃𝑃𝑡𝑡𝑦𝑦𝑡𝑡 + 𝐼𝐼𝑡𝑡−1𝐴𝐴𝑡𝑡−1 + 𝐵𝐵𝑡𝑡−1(1 + 𝜔𝜔𝑄𝑄𝑡𝑡), 
where 𝑐𝑐𝑡𝑡 is consumption, 𝜏𝜏𝑡𝑡 are real lump sum taxes, 𝑃𝑃𝑡𝑡 is the price of the final 

good, 𝐴𝐴𝑡𝑡 is the number of one period nominal bonds purchased by the 
household at 𝑡𝑡, which each return 𝐼𝐼𝑡𝑡 in period 𝑡𝑡 + 1, 𝑄𝑄𝑡𝑡 is the price of a long 

(geometric coupon) bond and 𝐵𝐵𝑡𝑡 are the number of units of this long bond 
purchased by the household at 𝑡𝑡. One unit of the period 𝑡𝑡 long bond bought at 

𝑡𝑡 returns $1 at 𝑡𝑡 + 1, along with 𝜔𝜔 ∈ (0,1] units of the period 𝑡𝑡 + 1 bond. 
The household first order conditions imply: 

1 = 𝛽𝛽𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡

𝑃𝑃𝑡𝑡+1𝑐𝑐𝑡𝑡+1
, 𝑄𝑄𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡

𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡
𝑃𝑃𝑡𝑡+1𝑐𝑐𝑡𝑡+1

�1 + 𝜔𝜔𝑄𝑄𝑡𝑡+1�. 

The household transversality conditions are that: 

lim
𝑘𝑘→∞

𝛽𝛽𝑘𝑘𝔼𝔼𝑡𝑡
𝐴𝐴𝑡𝑡+𝑘𝑘

𝑃𝑃𝑡𝑡+𝑘𝑘𝑐𝑐𝑡𝑡+𝑘𝑘
= 0, lim

𝑘𝑘→∞
𝛽𝛽𝑘𝑘𝔼𝔼𝑡𝑡

𝑄𝑄𝑡𝑡+𝑘𝑘𝐵𝐵𝑡𝑡+𝑘𝑘
𝑃𝑃𝑡𝑡+𝑘𝑘𝑐𝑐𝑡𝑡+𝑘𝑘

= 0, 

but we do not assume the second is necessary when 𝜔𝜔 = 1. (The necessity of 
the transversality constraint when 𝜔𝜔 < 1 follows from the following test given 
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in Kamihigashi (2006), and formally proven in Kamihigashi (2003): “Shift the 
entire optimal path [for the state variable] downward by a small fixed 

proportion. Does it reduce the value of the objective function by only a finite 
amount? If so, the transversality condition is necessary.”) 

The government issues no one period bonds, so 𝐴𝐴𝑡𝑡 = 0. The government 
fixes the supply of long-bonds at 𝐵𝐵𝑡𝑡 = 𝐵𝐵𝑡𝑡

∗ ≔ 𝐵𝐵−1𝜔𝜔𝑡𝑡+1. The central bank pegs 

nominal interest rates at the ZLB, meaning 𝐼𝐼𝑡𝑡 = 1. 
The final goods market clears, so 𝑦𝑦𝑡𝑡 = 𝑐𝑐𝑡𝑡 = 1. Thus, from the household 

budget constraint, we have the following government budget constraint: 
𝑄𝑄𝑡𝑡𝐵𝐵𝑡𝑡

∗ + 𝑃𝑃𝑡𝑡𝜏𝜏𝑡𝑡 = 𝐵𝐵𝑡𝑡−1
∗ (1 + 𝜔𝜔𝑄𝑄𝑡𝑡). 

We assume that the government adjusts taxes 𝜏𝜏𝑡𝑡 period by period to ensure this 
always holds (i.e., fiscal policy is passive and Ricardian). Thus, 𝑃𝑃𝑡𝑡𝜏𝜏𝑡𝑡 = 𝐵𝐵−1𝜔𝜔𝑡𝑡. 

Let Π𝑡𝑡 ≔ 𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡−1

, then from market clearing and the Euler equation for nominal 
bonds, 1 = 𝛽𝛽𝔼𝔼𝑡𝑡

1
Π𝑡𝑡+1

. So, from the Euler equation for the long bond: 

𝑄𝑄𝑡𝑡 =
1

1 − 𝜔𝜔 + lim
𝑘𝑘→∞

𝜔𝜔𝑘𝑘𝛽𝛽𝑘𝑘𝔼𝔼𝑡𝑡
⎣
⎢⎡�

1
Π𝑡𝑡+𝑗𝑗

𝑘𝑘

𝑗𝑗=1 ⎦
⎥⎤ 𝑄𝑄𝑡𝑡+𝑘𝑘 ≥

1
1 − 𝜔𝜔, 

with equality when 𝜔𝜔 < 1 as the transversality constraint definitely holds in 

that case. But, when 𝜔𝜔 = 1, this says 𝑄𝑄𝑡𝑡 ≥ ∞, so 𝑄𝑄𝑡𝑡 = ∞, hence 𝑄𝑄𝑡𝑡 = 1
1−𝜔𝜔 for all 

𝜔𝜔 ∈ [0,1]. Now let 𝑏𝑏𝑡𝑡 ≔ 𝑄𝑄𝑡𝑡𝐵𝐵𝑡𝑡
𝑃𝑃𝑡𝑡

, then from the budget constraint: 

𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡 + 𝑃𝑃𝑡𝑡𝑏𝑏𝑡𝑡 + 𝑃𝑃𝑡𝑡𝜏𝜏𝑡𝑡 = 𝑃𝑃𝑡𝑡 +
𝑃𝑃𝑡𝑡−1𝑏𝑏𝑡𝑡−1

𝑄𝑄𝑡𝑡−1
(1 + 𝜔𝜔𝑄𝑄𝑡𝑡) = 𝑃𝑃𝑡𝑡 + 𝑃𝑃𝑡𝑡−1𝑏𝑏𝑡𝑡−1, 

and thus: 

𝑐𝑐𝑡𝑡 + 𝑏𝑏𝑡𝑡 + 𝜏𝜏𝑡𝑡 = 1 +
𝑏𝑏𝑡𝑡−1
Π𝑡𝑡

. 

It is instructive to re-solve the original household problem under this 
rewritten budget constraint. This must have the same solution as the original 

problem. In particular, consider the problem of maximising 𝔼𝔼𝑡𝑡 ∑ 𝛽𝛽𝑘𝑘 log 𝑐𝑐𝑡𝑡+𝑘𝑘
∞
𝑘𝑘=0 , 

subject to: 

𝑐𝑐𝑡𝑡 + 𝑏𝑏𝑡𝑡 + 𝜏𝜏𝑡𝑡 = 1 +
𝑏𝑏𝑡𝑡−1
Π𝑡𝑡

, 

by choosing 𝑐𝑐𝑡𝑡, 𝑐𝑐𝑡𝑡+1, … , 𝑏𝑏𝑡𝑡, 𝑏𝑏𝑡𝑡+1, …. This is the “textbook” cake eating problem 
with exogenous income, 1 − 𝜏𝜏𝑡𝑡, and gross interest rate 1

Π𝑡𝑡
. The Euler equation is 

1
𝑐𝑐𝑡𝑡

= 𝛽𝛽𝔼𝔼𝑡𝑡
1

Π𝑡𝑡+1𝑐𝑐𝑡𝑡+1
, and the (always necessary) transversality constraint states that 
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lim
𝑘𝑘→∞

𝛽𝛽𝑘𝑘𝔼𝔼𝑡𝑡
𝑏𝑏𝑡𝑡+𝑘𝑘
𝑐𝑐𝑡𝑡+𝑘𝑘

= 0. 

Additionally, the government budget constraint can be rewritten as: 

𝜏𝜏𝑡𝑡 = (1 − 𝜔𝜔)𝑏𝑏−1 ��
1

Π𝑠𝑠

𝑡𝑡

𝑠𝑠=0
� 𝜔𝜔𝑡𝑡. 

We know that in equilibrium, market clearing implies 𝑐𝑐𝑡𝑡 = 1, but for now, 

we will “forget” this fact, and merely suppose that 𝑐𝑐𝑡𝑡 = 𝑐𝑐 for all 𝑡𝑡, for some 𝑐𝑐 >
0. This satisfies the Euler equation as: 

1
𝑐𝑐 = 𝛽𝛽𝔼𝔼𝑡𝑡

1
Π𝑡𝑡+1𝑐𝑐 =

1
𝑐𝑐, 

as 1 = 𝛽𝛽𝔼𝔼𝑡𝑡
1

Π𝑡𝑡+1
. Then transversality simplifies to lim

𝑘𝑘→∞
𝛽𝛽𝑘𝑘𝔼𝔼𝑡𝑡𝑏𝑏𝑡𝑡+𝑘𝑘 = 0, and the 

budget constraint gives: 

𝑏𝑏𝑡𝑡 = �
⎣
⎢⎡�

1
Π𝑡𝑡−𝑗𝑗

𝑘𝑘−1

𝑗𝑗=0 ⎦
⎥⎤ (1 − 𝑐𝑐𝑡𝑡−𝑘𝑘 − 𝜏𝜏𝑡𝑡−𝑘𝑘)

𝑡𝑡

𝑘𝑘=0
+

⎣
⎢⎡�

1
Π𝑡𝑡−𝑗𝑗

𝑡𝑡

𝑗𝑗=0 ⎦
⎥⎤ 𝑏𝑏−1 

= (1 − 𝑐𝑐) � �
1

Π𝑠𝑠

𝑡𝑡

𝑠𝑠=𝑡𝑡−𝑘𝑘+1

𝑡𝑡

𝑘𝑘=0
+ 𝜔𝜔𝑡𝑡+1𝑏𝑏−1 �

1
Π𝑠𝑠

𝑡𝑡

𝑠𝑠=0
, 

by the simplified government budget constraint previously derived. Hence, 
since 1 = 𝔼𝔼𝑡𝑡𝛽𝛽 1

Π𝑡𝑡+1
: 

𝛽𝛽𝑡𝑡𝔼𝔼0𝑏𝑏𝑡𝑡 = (1 − 𝑐𝑐)
1 − 𝛽𝛽𝑡𝑡+1

1 − 𝛽𝛽 + 𝜔𝜔𝑡𝑡+1𝑏𝑏−1
1

Π0
, 

so, by the period 0 transversality constraint: 

0 = lim
𝑡𝑡→∞

𝛽𝛽𝑡𝑡𝔼𝔼0𝑏𝑏𝑡𝑡 =
1 − 𝑐𝑐
1 − 𝛽𝛽 + 𝑏𝑏−1

1
Π0

lim
𝑡𝑡→∞

𝜔𝜔𝑡𝑡+1. 

If 𝜔𝜔 ∈ (0,1), then this implies that 𝑐𝑐 = 1 as expected. However, if 𝜔𝜔 = 1, then: 

𝑐𝑐 = 1 + �1 − 𝛽𝛽�
𝑏𝑏−1
Π0

. 

Thus, if Π0 is finite, then 𝑐𝑐 > 1, violating the market clearing condition. The 
only way to restore market clearing is if Π0 is infinite. This is intuitive, as when 
𝜔𝜔 = 1, households have infinite nominal wealth, which cannot fail to push up 
prices. 
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