
Arias, Jonas E.; Rubio-Ramírez, Juan Francisco; Waggoner, Daniel F.

Working Paper

Uniform priors for impulse responses

Working Paper, No. 2023-13

Provided in Cooperation with:
Federal Reserve Bank of Atlanta

Suggested Citation: Arias, Jonas E.; Rubio-Ramírez, Juan Francisco; Waggoner, Daniel F. (2023) :
Uniform priors for impulse responses, Working Paper, No. 2023-13, Federal Reserve Bank of
Atlanta, Atlanta, GA,
https://doi.org/10.29338/wp2023-13

This Version is available at:
https://hdl.handle.net/10419/279468

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.29338/wp2023-13%0A
https://hdl.handle.net/10419/279468
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 
 
The authors thank Jim Hamilton, Lutz Kilian, Mikkel Plagborg-Moller, Mark Watson, and Christian Wolf for helpful comments. The 
views expressed here are those of the authors and not necessarily those of the Federal Reserve Bank of Atlanta or the Federal Reserve 
System. Any remaining errors are the authors’ responsibility.  
 
Please address questions regarding content to: Juan F. Rubio-Ramírez, Federal Reserve Bank of Atlanta and Economics Department, 
Emory University, Atlanta, GA 30322, jrubior@emory.edu; Jonas E. Arias, Federal Reserve Bank of Philadelphia; or Daniel F. 
Waggoner, Economics Department, Emory University, Atlanta, GA 30322.  
 
Federal Reserve Bank of Atlanta working papers, including revised versions, are available on the Atlanta Fed’s website at 
www.frbatlanta.org. Click “Publications” and then “Working Papers.” To receive e-mail notifications about new papers, use 
frbatlanta.org/forms/subscribe. 

FEDERAL RESERVE BANK of ATLANTA WORKING PAPER SERIES 

Uniform Priors for Impulse Responses 
 
Jonas E. Arias, Juan F. Rubio-Ramírez, and Daniel F. Waggoner 
 
Working Paper 2023-13 
September 2023 
 
Abstract: There has been a call for caution when using the conventional method for Bayesian inference in set-
identified structural vector autoregressions on the grounds that the uniform prior over the set of orthogonal 
matrices could be nonuniform for individual impulse responses or other quantity of interest. This paper 
challenges this call by formally showing that, when the focus is on joint inference, the uniform prior over the 
set of orthogonal matrices is not only sufficient but also necessary for inference based on a uniform joint prior 
distribution over the identified set for the vector of impulse responses. In addition, we show how to use the 
conventional method to conduct inference based on a uniform joint prior distribution for the vector of impulse 
responses. We generalize our results to vectors of objects of interest beyond impulse responses. 
 
JEL classification: C11, C33, E47 
 
Key words: Bayesian, SVARs, uniform prior, sign restrictions 
 
https://doi.org/10.29338/wp2023-13 



Submitted to Econometrica

UNIFORM PRIORS FOR IMPULSE RESPONSES1

Jonas E. Ariasa, Juan F. Rubio-Raḿırezb and Daniel F. Waggonerc

There has been a call for caution when using the conventional method for Bayesian infer-

ence in set-identified structural vector autoregressions on the grounds that the uniform prior

over the set of orthogonal matrices could be nonuniform for individual impulse responses or

other quantity of interest. This paper challenges this call by formally showing that when the

focus is on joint inference the uniform prior over the set of orthogonal matrices is not only

sufficient but also necessary for inference based on a uniform joint prior distribution over

the identified set for the vector of impulse responses. In addition, we show how to use the

conventional method to conduct inference based on a uniform joint prior distribution for

the vector of impulse responses. We generalize our results to vectors of objects of interest

beyond impulse responses.

1. INTRODUCTION

Structural vector autoregressions (SVARs) identified with sign restrictions are a

popular approach for estimating dynamic causal effects in macroeconomics. Many

researchers use variants of the methods proposed by Uhlig (2005) and extended by

Rubio-Ramı́rez, Waggoner, and Zha (2010) to conduct Bayesian inference.1 This con-

ventional method can be used to independently draw from any posterior distribution

over the parameterization of interest subject to the identifying restrictions. Typically,

the parameterization of interest consists of the impulse responses and the posterior

is conjugate.

When working within this typical framework, the conventional method boils down

to independently drawing from a conjugate uniform-normal-inverse-Wishart poste-

rior distribution over the orthogonal reduced-form parameters and transforming the

draws into the objects of interest. A central ingredient underlying such an approach

1Corresponding author: Juan F. Rubio-Ramı́rez <jrubior@emory.edu>, Economics Department,

Emory University, Atlanta, GA 30322. We thank Jim Hamilton, Lutz Kilian, Mikkel Plagborg-

Møller, Mark Watson, and Christian Wolf for helpful comments. The views expressed in this paper

are solely those of the authors and do not necessarily reflect the views of the Federal Reserve Bank

of Atlanta, the Federal Reserve Bank of Philadelphia, or the Federal Reserve System. Any errors or

omissions are the responsibility of the authors.
aFederal Reserve Bank of Philadelphia.
bEmory University and Federal Reserve Bank of Atlanta.
cEmory University.
1See also Faust (1998), Uhlig (1998), Canova and De Nicoló (2002) for earlier work in this litera-

ture.
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is the uniform prior distribution over the set of orthogonal matrices with respect

to the Haar measure. The normal-inverse-Wishart part of this prior is viewed as

uncontroversial—the Minnesota prior and the “weak” prior defined in Uhlig (2005)

are the most popular choices. Some researchers have criticized this conventional ap-

proach (see e.g., Baumeister and Hamilton, 2015; Watson, 2020) and strongly caution

against using it in applied work.

This paper accomplishes three main objectives. First, Baumeister and Hamilton

(2015) and Watson (2020) express concern about the fact that the conventional ap-

proach induces nonuniform prior distributions over the identified sets of individual

impulse responses because the prior and posterior coincide over identified sets.2 While

this fact could be an issue in the hypothetical case when the number of observations

is large enough that reduced-form parameter uncertainty can be disregarded, Inoue

and Kilian (2022b) demonstrate that this concern may be ignored when working

with tightly identified models based on many sign restrictions and possibly narrative

restrictions, as is often the case in applied work. We further ease this concern by

formally showing that the conventional method induces uniform joint prior and pos-

terior distributions over the identified set for the vector of impulse responses. There

is a growing literature making the case that only joint distributions capture the shape

and co-movement of the responses, which is generally the ultimate interest of studies

(e.g., Bruder and Wolf, 2018; Fry and Pagan, 2011; Inoue and Kilian, 2013, 2016,

2019, 2022a,b; Kilian and Lütkepohl, 2017; Lütkepohl et al., 2015a,b, 2018; Mon-

tiel Olea and Plagborg-Møller, 2019; Sims and Zha, 1999, among others). Thus, it is

essential that we take a joint approach, rather than the more traditional marginal one

employed by Baumeister and Hamilton (2015) and Watson (2020). Importantly, our

theoretical result on the prior employed by the conventional method is an “if and only

if” statement that holds for any prior distribution for the reduced-form parameters, as

long as the prior distribution over the set of orthogonal matrices is uniform. Any other

choice of prior over the set of orthogonal matrices will imply nonuniform joint prior

and posterior distributions over the identified set for the vector of impulse responses.

While having uniform joint prior and posterior distributions over the identified set

for the vector of impulse responses is not a required feature, it is a desirable one. By

construction, the likelihood is uniform over the identified sets. As a result, having

2By individual impulse response we mean the response of a single variable to a single shock at a
single horizon.



3

uniform joint prior and posterior distributions over the identified set for the vector

of impulse responses assures the researcher that only the identifying restrictions will

set apart observationally equivalent vectors of impulse responses.

Second, we show how to construct a uniform joint prior distribution for the vector of

impulse responses for models identified with sign restrictions and how to conduct joint

posterior inference based on this prior using the conventional approach. In particular,

we show that a uniform joint prior distribution for the vector of impulse responses

induces a particular (model dependent) prior distribution for the reduced-form pa-

rameters and a uniform prior distribution over the set of orthogonal matrices. This

theoretical result is also an “if and only if” statement. Any other choice of prior over

the set of orthogonal matrices will imply a nonuniform joint prior distribution for the

vector of impulse responses. Interestingly, the prior distribution for the reduced-form

parameters required for this result differs from the standard Minnesota prior. It is

similar in spirit to (although also different than) the “weak” prior described in Uhlig

(2005). We show that the induced prior for the orthogonal reduced-form parameters

defines a uniform-normal-inverse-Wishart posterior distribution over the orthogonal

reduced-form parameters. This allows us to use the conventional approach to draw

from the joint posterior distribution for the vector of impulse responses implied by

a uniform joint prior distribution for the vector of impulse responses. Obviously,

because of the uniform prior distribution over the set of orthogonal matrices, the con-

ventional approach also induces uniform joint prior and posterior distributions over

the identified set for the vector of impulse responses.

To illustrate our theoretical findings, we examineWatson’s (2020) empirical example

using a uniform joint prior distribution for the vector of impulse responses. Based

on the methods in Inoue and Kilian (2022a), we find that the joint credible sets

for the vector of impulse responses obtained under this prior are similar but wider

than those obtained under the uniform-normal-inverse-Wishart prior distribution for

orthogonal reduced-form parameters associated with the standard Minnesota prior. In

line with the findings in Inoue and Kilian (2022b), our results suggest that imposing

tighter identifying restrictions helps when evaluating joint posteriors. This message

gets stronger when considering a uniform joint prior distribution for the vector of

impulse responses.

Third, we generalize our results to a broader class of objects of interest.3 Specifi-

3See Section 6 for a formal definition of the class of objects of interest.
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cally, for any objects of interest within this class, we show how to implement a uniform

joint prior distribution for the vector of objects of interest using the conventional ap-

proach. For example, imagine a two-variable (price and quantity) stylized model of

demand and supply with a uniform joint prior distribution for the impact impulse

responses of price and quantity to demand and supply shocks, the short-term prices

elasticities of demand and supply, and some lag structural coefficients. In this case,

the vector of objects of interest consists of the coefficients associated with the two im-

pact impulse responses, the two short-term price elasticities, and the lag parameters.

Each particular vector of objects of interest induces a particular prior distribution

for the orthogonal reduced-form parameters. This induced prior is also model depen-

dent but need not be uniform over the set of orthogonal matrices conditional on the

reduced-form parameters. In the latter case, it is necessary to add an importance

sampling step to draw from the induced joint posterior distribution for the vector of

objects of interest. Using a simplified version of the labor market model described in

Baumeister and Hamilton (2015), we compare the joint credible sets for the vector

of objects of interest to those induced by the conventional uniform-normal-inverse-

Wishart prior for orthogonal reduced-form parameters associated with a standard

Minnesota prior.4 Although the posterior credible sets are similar regardless of the

priors under analysis, our results reinforce the earlier conclusion that imposing tighter

identifying restrictions helps reduce joint posterior uncertainty.

The structure of the paper is as follows. Section 2 describes the conventional method.

Section 3 proves that the conventional approach implies a uniform joint prior distri-

bution over the identified set for the vector of impulse responses. Section 4 shows

how to define a uniform joint prior distribution for the vector of impulse responses

and how to adapt the conventional method to implement it. Section 5 illustrates our

methods using the model in Watson (2020). Section 6 generalizes this result to other

vectors of objects of interest and finally, Section 7 concludes.

2. THE CONVENTIONAL APPROACH

Consider a reduced-form VAR of the form:

(2.1) y′
t = x′

tB+ u′
t, for 1 ≤ t ≤ T,

4See Section 5 in Baumeister and Hamilton (2015) for the description of the full model.
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where yt is an n× 1 vector of endogenous variables, ut is an n× 1 vector of reduced-

form shocks, x′
t =

[
y′
t−1 · · · y′

t−p 1
]
, B =

[
B′

1 · · · B′
p d′]′ is an m × n matrix with

m = np+1, Bℓ is an n× n matrix of parameters for 1 ≤ ℓ ≤ p, d is a 1× n vector of

parameters, p is the lag length, and T is the sample size. The vector ut, conditional

on past information and the initial conditions y0, . . . ,y1−p, is Gaussian with mean

zero and covariance matrix Σ. We call (B,Σ) the reduced-form parameters.

Let ut = L0 εt for 1 ≤ t ≤ T where εt ∼ N(0, In) are structural shocks, L0 is an

n×n invertible matrix that represents impulse responses at horizon zero, and In is the

n× n identity matrix. Given L0 and B, it is possible to obtain the impulse responses

beyond horizon zero recursively, as:

(2.2) Lℓ =

min{ℓ,p}∑
k=1

B′
kLℓ−k, for ℓ > 0.

We combine the impulse responses from horizons one through p and the constant term

c = d
(
L−1

0

)′
into a single matrix L+ =

[
L′

1 · · · L′
p c′

]′
, where the maximum horizon

of the impulse response in L+ is exactly the same as the lag length in Equation (2.1).

We call (L0,L+) the IR parameters. Importantly, when referring to these parameters

in vector form we will use the term vector of impulse responses.

The discussion above implicitly defines a mapping from the IR parameters to the

reduced-form parameters. In particular, we have that Σ = L0 L
′
0,

(2.3) Bℓ =
(
LℓL

−1
0

)′ − ℓ−1∑
k=1

(
Lℓ−kL

−1
0

)′
Bk, for 1 ≤ ℓ ≤ p, and d = cL′

0 .

In the class of linear Gaussian models under analysis, it is well known that (L0,L+)

and (L̃0, L̃+) are observationally equivalent if and only if L0 = L̃0Q and L+ = L̃+Q

for some Q ∈ O(n), which is the set of all n × n orthogonal matrices, see Rubio-

Ramı́rez, Waggoner, and Zha (2010). Hence, the IR parameters are not identified.

This suggests that given any decomposition of the covariance matrix Σ satisfying

h (Σ)′ h(Σ) = Σ, we can define a mapping from (B,Σ,Q) to (L0,L+). We will take h

to be the upper triangular Cholesky decomposition normalized so that the diagonal
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is positive. Thus:

(2.4) ϕ(B,Σ,Q) =
(
h(Σ)′ Q︸ ︷︷ ︸

L0

,
[
L1(B,Σ,Q)′ · · · Lp(B,Σ,Q)′ Q′(h(Σ)−1)′d′]′︸ ︷︷ ︸

L+

)
,

where Lℓ(B,Σ,Q) for 1 ≤ ℓ ≤ p is implicitly defined in Equation (2.2). The function

ϕ is invertible and both ϕ and its inverse are differentiable. Hence, there exists a dif-

feomorphism between the IR parameters and the orthogonal reduced-form parameters

that we will exploit in the rest of the paper.

2.1. The Priors, Posteriors, and the Algorithm

The conventional method uses a normal-inverse-Wishart (NIW) distribution prior

for (B,Σ). Denote the prior by NIW (ν̄, Φ̄, Ψ̄, Ω̄). As shown in Uhlig (1994, 2005),

this prior is conjugate and the posterior distribution over the reduced-form parameters

is NIW (ν̃, Φ̃, Ψ̃, Ω̃), where ν̃ = T + ν̄, Ω̃ = (X′ X+Ω̄−1)−1, Ψ̃ = Ω̃(X′ Y + Ω̄−1Ψ̄),

Φ̃ = Y′Y+ Φ̄+ Ψ̄′Ω̄−1Ψ̄− Ψ̃′Ω̃−1Ψ̃, for Y = [y1 · · · yT ]
′ and X = [x1 · · · xT ]

′.

If we use a uniform prior distribution over the set of orthogonal matrices, then the

resulting prior distribution for (B,Σ,Q) is uniform-normal-inverse-Wishart (UNIW)

and we denote it by UNIW (ν̄, Φ̄, Ψ̄, Ω̄). This prior is also conjugate and the poste-

rior distribution is UNIW (ν̃, Φ̃, Ψ̃, Ω̃). Because the UNIW family of distributions is

conjugate over (B,Σ,Q), it implies a family of distributions over (L0,L+) that it is

conjugate. This is because if the prior and posterior densities have the same functional

form over (B,Σ,Q), then, because the volume element associated with ϕ will be the

same for the prior and posterior densities, the induced prior and posterior densities

for (L0,L+) will also have the same functional form.5

There are several routines for making independent draws from any NIW distribution

over (B,Σ). Independent draws from the uniform distribution over O(n) are based

on Theorem 3.2 of Stewart (1980), summarized by Proposition 1.

Proposition 1 Let X be an n × n random matrix with each element having an

independent standard normal distribution. Let X = QR be the QR decomposition of

X with the diagonal of R normalized to be positive. The matrix Q is orthogonal and

drawn from the uniform distribution over O(n).

5For a formal definition of volume element, see Chapter 5 in Spivak (1965).
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This discussion justifies Algorithm 1 to draw from the conjugate posterior distribu-

tion over (L0,L+) conditional on the sign restrictions. This algorithm can be found

in Uhlig (2005) for a single shock and extended to a set of shocks in Rubio-Ramı́rez

et al. (2010).

Algorithm 1 The following algorithm independently draws from the conjugate pos-

terior distribution over (L0,L+) conditional on the sign restrictions.

1. Draw (B,Σ) independently from NIW (ν̃, Φ̃, Ψ̃, Ω̃).

2. Draw Q independently from the uniform distribution over O(n).

3. Keep (L0,L+) = ϕ(B,Σ,Q) if the sign restrictions are satisfied.

4. Return to Step 1 until the required number of draws has been obtained.

Importantly, throughout the rest of the paper all densities will be with respect to the

volume measure, even though sometimes we will not explicitly state it. When working

with impulse responses or B, the volume measure will be equal to the Lebesgue mea-

sure. However, when we are working with symmetric and positive definite matrices,

or orthogonal matrices the volume measure will not be Lebesgue. In particular, the

volume measure over orthogonal matrices is a Haar measure.

3. CONDITIONAL JOINT PRIOR FOR IMPULSE RESPONSES

A central ingredient underlying the conventional approach summarized in Section 2

is the uniform prior distribution over the set of orthogonal matrices with respect

to the Haar measure. This prior distribution has been criticised by Baumeister and

Hamilton (2015) and Watson (2020) on the grounds that: (1) it implies that some

marginal prior distributions over the identified sets are nonuniform and (2) posterior

inference is routinely dominated by such nonuniform prior. Several studies such as

Wolf (2020) and Giacomini and Kitagawa (2021) have echoed this critique and as a

consequence there is a growing call for caution for any of the results obtained by the

conventional method.

The marginal prior distributions over the identified sets are obtained by replacing

Step 1 with a fixed value of the reduced-form parameters and then marginalizing

out all but an individual impulse response. We will refer to the prior distributions

obtained this way as the conditional prior distributions for individual impulse re-

sponses to emphasize that they do condition on the reduced-form parameters. Inoue

and Kilian (2022b) draw attention to the fact that the conditional prior distributions



8

for individual impulse responses misrepresent the priors embodied in the conventional

approach. Fixing the value of the reduced-form parameters eliminates any uncertainty

about (B,Σ), whereas the conventional approach postulates a NIW distribution prior.

They also demonstrate that the call for caution may be ignored when working with

tightly identified models, as is often the case in applied work. In particular, they

show that the conventional method does not typically imply that posterior inference

is routinely dominated by the prior. Indeed, how much a given set of sign restric-

tions constrains the identified set also depends on the covariance structure of the

reduced-form errors (see Uhlig, 2017, for details). Finally, Inoue and Kilian (2022a,b)

emphasize the advantages of performing joint inference about the vector of impulse

responses, rather than marginal inference about individual impulse responses: joint

inference captures the shape and co-movement of impulse responses which are the

typical object of interest in applied work. Hence, it is important that we take a joint

approach rather than the marginal one employed by Baumeister and Hamilton (2015)

and Watson (2020).

Because the posterior reproduces the prior over the identified set, a researcher may

want a uniform joint prior distribution over the identified set for the vector of impulse

responses. Oftentimes, we will refer to this prior as the conditional joint prior distri-

bution for the vector of impulse responses because it is obtained by conditioning on

the reduced-form parameters. Taking the joint approach route, we now demonstrate

that, although the conditional prior distributions for individual impulse responses im-

plicit in the conventional method may be nonuniform, it induces a uniform joint prior

distribution over the identified set for the vector of impulse responses. In particular,

we show that the uniform prior distribution over the set of orthogonal matrices with

respect to the Haar measure is both a necessary and sufficient condition for having

a uniform conditional joint prior distribution for the vector of impulse responses. We

will first show an illustrative example and then move to the general results.

3.1. An Illustrative Simple Example

Let us a consider a simple example. To reduce the number of parameters, we assume

there are no lags or constant term. In this case, the only impulse response is L0 and

the only reduced-form parameter is Σ. The support of the joint prior distribution
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over the identified set for the vector of impulse responses is of the form:

(3.1)

[
ℓ11 ℓ12

ℓ21 ℓ22

]
︸ ︷︷ ︸

L0

=

[
ℓ̂11 0

ℓ̂21 ℓ̂22

]
︸ ︷︷ ︸

L̂0

[
cos(θ) sin(θ)

(−1)i sin(θ) (−1)i+1 cos(θ)

]
︸ ︷︷ ︸

Q

,

where i is either zero or one, −π ≤ θ < π, and L̂0L̂
′
0 = Σ with both ℓ̂11 and ℓ̂22

positive. A direct computation shows that for any L0 given by Equation (3.1), its

norm is r̂ =

√
ℓ̂211 + ℓ̂222 + ℓ̂221 and it lies in one of the two two-dimensional subspaces

of R4 with bases

(3.2) L̂
i

cos =

[
ℓ̂11 0

ℓ̂21 (−1)i+1ℓ̂22

]
and L̂

i

sin =

[
0 ℓ̂11

(−1)iℓ̂22 ℓ̂21

]
,

for i = 0, 1. This follows from the fact that L0 = cos(θ)L̂
i

cos + sin(θ)L̂
i

sin. Also, the

vectors L̂
i

cos and L̂
i

sin are perpendicular of length r̂. Thus, the set of all L0 of this form

will be two circles in R4 of radius r̂.

The joint prior distribution over the identified set for the vector of impulse responses

is completely determined by the joint distribution over (θ, i), which can be written as

p(θ, i) = p(θ)p(i|θ). Since ℓ11 = ℓ̂11 cos(θ) and ℓ12 = ℓ̂11 sin(θ), the conditional prior

densities of the individual ℓ11 and ℓ12 are given by:

p(ℓ11) =
p(cos−1(ℓ11/ℓ̂11)) + p(− cos−1(ℓ11/ℓ̂11))

ℓ̂11 sin(cos−1(ℓ11/ℓ̂11))
and(3.3)

p(ℓ12) =
p(sin−1(ℓ12/ℓ̂11)) + p(sgn(ℓ12/ℓ̂11)π − sin−1(ℓ12/ℓ̂11))

ℓ̂11 cos(sin
−1(ℓ12/ℓ̂11)

,(3.4)

where sgn(·) is one if the argument is positive and minus one otherwise. We provide

the derivations of these in Appendix B. We compute and plot the conditional prior

densities of the individual ℓ11 and ℓ12 and the joint prior distribution over the identified

set for the vector of impulse responses in two cases. In Case (1) we set a uniform prior

distribution over the set of orthogonal matrices with respect to the Haar measure. In

this case, the joint prior distribution over the identified set for the vector of impulse

responses is uniform, while the conditional densities of the individual ℓ11 and ℓ12

are not. In Case (2) we choose the prior over the set of orthogonal matrices such
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that the conditional density of the individual ℓ11 is uniform. In this case, neither the

conditional densities of the individual ℓ12 nor the joint prior distribution over the

identified set for the vector of impulse responses are uniform.

Case (1): The conditional joint distribution over L0 is uniform for every Σ.

In this first case we set the distribution over Q to be uniform with respect to the

volume measure, which is arc length in this case. The properly scaled density over

(θ, i) must be p(θ, i) = p(θ)p(i|θ) = (1/(2π))(1/2). By Equations (3.3) and (3.4), the

conditional marginal densities are p(ℓ11) =
1
π
(ℓ̂211− ℓ211)

− 1
2 and p(ℓ12) =

1
π
(ℓ̂211− ℓ212)

− 1
2 .

We provide derivations of these in Appendix B.

Case (2): The conditional distribution of ℓ11 is uniform over [−ℓ̂11, ℓ̂11].

If the conditional distribution of ℓ11 is uniform, then p(ℓ11) = 1/(2ℓ̂11) and, by

Equation (3.3), the distribution of θ must satisfy p(θ) + p(−θ) = sin(θ)/2 for 0 ≤
θ < π. Is there a choice of p(θ) so that the conditional distribution of ℓ21 will be

uniform? Appendix B shows that there is no choice of p(θ) such that the conditional

distribution of ℓ11 and ℓ12 are both uniform. This illustrates a point already made

by Baumeister and Hamilton (2015): One cannot have uniform distributions over the

identified sets of all of the individual impulse responses. We choose p(θ) = | sin(θ)/4|
and p(i|θ) = 1/2, which implies that the conditional distribution of ℓ11 is uniform

and probably does the least violence to the conditional distribution of ℓ12. In this

case p(ℓ12) = |ℓ12|/(2ℓ̂11(ℓ̂211 − ℓ212)
1
2 ), as will be shown in Appendix B.

Figure 1 depicts the joint distribution. The support of the distribution of L0, con-

ditional on Σ, consists of two circles in R4 of radius r̂. We plot the conditional joint

density over one of the two circles. In Case (1), the conditional joint distribution is

uniform. In Case (2), this is not the case and the density goes to zero at certain

points.

Figure 2 plots the conditional densities of ℓ11 and ℓ12 for the two cases. The dotted

lines in Figure 2 are the conditional densities in Case (1) and the solid lines corre-

spond to Case (2). For Case (2), the conditional distribution of ℓ11 is uniform by

construction, but the conditional distribution of ℓ12 is farther from uniform than in

Case (1). Figure 2 illustrates the dangers of analyzing marginal densities. Thus, Case

(1) shows that a uniform prior for Q implies a uniform joint prior distribution over

the identified set for the vector of impulse responses, although a researcher analyz-
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Figure 1.— Conditional joint density for Cases (1) and (2). The solid vector is

L̂cos ∈ R4, the dotted vector is L̂sin ∈ R4, and z = p(L0), with L0 = (xL̂
i

cos+ yL̂
i

sin)/r̂.

ing the conditional prior distributions for individual impulse responses may conclude

otherwise. Case (2) implies that one can choose priors over Q such the conditional

densities of ℓ11 is uniform. This prior over Q is not uniform and will imply nonuniform

conditional densities of ℓ12 and nonuniform joint prior distribution over the identified

set for the vector of impulse responses.

3.2. General Results

Are there distributions over the IR parameters such that the conditional joint prior

distribution for the vector of impulse responses is uniform? The answer is yes, and

results to follow give the conditions required for this to be the case. Interestingly, the

conventional method imply a uniform joint prior distribution over the identified set

for the vector of impulse responses.
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Figure 2.— The dotted lines are the conditional densities of ℓ11 and ℓ12 for Case
(1). The solid lines are the conditional densities of ℓ11 and ℓ12 for Case (2).

Before stating the proposition, we need a precise understanding of what it means

to condition on the reduced-form parameters. Given the reduced-form parameters

(B,Σ), the support of the joint distribution of the IR parameters conditional on

(B,Σ) is:

P(B,Σ) = {(L0,L+) = ϕ(B,Σ,Q) | for every Q ∈ O(n)}

which is a smooth manifold because O(n) is a smooth manifold and ϕ is continu-

ously differentiable. The manifold structure induces a natural measure over P(B,Σ),

which is called the volume measure.6 For example, the volume measure over one-

dimensional manifolds is arc length and the volume measure over two-dimensional

manifolds is surface area. If π(L0,L+) is a density over the IR parameters, then the

6See Munkres (1991), Chapter 5, for details of how the volume measure is defined over manifolds.



13

density conditional on (B,Σ) with respect to the volume measure over P(B,Σ) will

be proportional to π(L0,L+). The volume measure is the only measure, up to a scale

factor, that has this property. In this sense the volume measure is the natural one.

Thus, conditional on (B,Σ), the density with respect to the volume measure over

P(B,Σ) will be uniform if and only if π(L0,L+) is constant over P(B,Σ).

The volume and Haar measures over O(n) are related. A Haar measure is any mea-

sure over O(n) that is invariant under right multiplication by an orthogonal matrix

and is unique up to a scale factor. The volume measure over O(n) has this property

and thus is a Haar measure.

Proposition 2 For every density over the IR parameters with respect to Lebesgue

measure, the density with respect to the volume measure over P(B,Σ), conditional on

(B,Σ), is uniform for every (B,Σ) if and only if the induced distributions over the or-

thogonal reduced-form parameters (B,Σ) and Q are independent and the distribution

of Q is uniform with respect to the Haar measure.

Proof: See Appendix A. Q.E.D.

Proposition 2 essentially follows from the fact that the volume element for the map-

ping ϕ does not depend on Q.7 A similar result will hold for any parameterization

such that the volume element of the mapping to the orthogonal reduce-form param-

eters does not depend on Q, for instance, the standard structural parameterization.

One could claim exactly the same in terms of observationally equivalence. Thus, it

is the case that for every density over the IR parameters with respect to Lebesgue

measure, the density with respect to the volume measure over P(B,Σ) is constant

over observationally equivalent vectors of impulse responses if and only if the in-

duced distributions over the orthogonal reduced-form parameters (B,Σ) and Q are

independent and the distribution of Q is uniform with respect to the Haar measure.

The proof in terms of observationally equivalence is also very simple: Two impulse

responses are observationally equivalent if and only if there exists a reduced-form

parameter (B,Σ) such that both of the impulse responses lie in the support of the

distribution conditional on (B,Σ).

Because they are if and only if statements, Proposition 2 bring to the fore the

virtue of joint distributions over the IR parameters that induce a distribution over

7An analytical expression for the volume element will be obtained in Proposition 3 below.
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the orthogonal reduced-form parameters such that the distribution over the set of

orthogonal matrices is uniform.8 Consequently, to have a uniform joint prior distri-

bution over the identified set for the vector of impulse responses one must use a prior

distribution over the set of orthogonal matrices that is uniform. Any other choice of

prior over the set of orthogonal matrices will imply a nonuniform joint prior distri-

bution over the identified set for the vector of impulse responses. This is true for any

prior distribution over the reduced-form parameters: hence, researchers can choose

any prior distribution over the reduced-form parameters that respects their beliefs

about the data. The results in this section are relevant for the robust methodology

developed by Giacomini and Kitagawa (2021). First, only a uniform prior over the set

of orthogonal matrices induces a uniform prior over observationally equivalent vectors

of impulse responses and hence only in this case researchers can claim that the iden-

tification problem is only resolved by means of sign and zero restrictions, preserving

the virtues that made inference based on sign restrictions a useful tool in empirical

macroeconomics. Second, while the analysis in Giacomini and Kitagawa (2021) could

potentially be extended to the case of joint inference, such an extension is challenging

and, hence, our propositions offer useful insights to researchers concerned with the

role of the prior when conducting joint posterior inference.

We have shown that the conventional method does imply a uniform joint prior

distribution over the identified set for the vector of impulse responses. In the next

sections, we will drop the conditionality on the reduced-form parameters and show

that it possible to have a uniform joint prior distribution for the vector of impulse

responses and that can be implemented by the conventional method. Then, we extend

the results to a general class of objects of interest.

4. UNIFORM JOINT PRIOR FOR IMPULSE RESPONSES

In this section, we show how to use the conventional method to conduct poste-

rior inference based on a uniform joint prior distribution for the vector of impulse

responses conditional on the sign restrictions. To do so, we analytically derive the

prior distribution over the orthogonal reduced-form parameters induced by a uniform

prior distribution for the IR parameters. This step is important because the orthogo-

nal reduced-form parameters is convenient for obtaining independent and identically

8If a distribution over the orthogonal reduced-form parameters is such that the distribution over
the set of orthogonal matrices is uniform for all reduced-form parameters, then the reduced-form
parameters and the orthogonal matrices must be independent.
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distributed draws. Then, we derive a closed form expression for the posterior over

the orthogonal reduced-form parameters induced by a uniform prior distribution for

the IR parameters. This posterior has a NIW and we will allow us to use the conven-

tional method to draw from it. We illustrate it using the empirical example in Watson

(2020).

4.1. Prior for the Orthogonal Reduced-Form parameters

If π(L0,L+) is any density over the IR parameters, the induced density over the or-

thogonal reduced-form parameters will be π(B,Σ,Q) = π(ϕ(B,Σ,Q))vϕ((B,Σ,Q)),

where vϕ is the volume element induced by ϕ. The volume element in this case is

defined in Chapter 5 of Munkres (1991) and can be computed using Theorem 21.3

from that text. The volume element can be computed analytically using Proposition

3 below.

Proposition 3 The volume element is vϕ(B,Σ,Q) = 2−
n(n+1)

2 | det(Σ)|m−3
2 .

Proof: See Appendix A. Q.E.D.

The reader should notice that the volume element does not depend on h nor Q.

Using Proposition 3, we have that if π(L0,L+) is any density over the IR parameters,

then the induced density over the orthogonal reduced-form parameters will be:

(4.1) π(ϕ(B,Σ,Q))vϕ((B,Σ,Q)) = π(ϕ(B,Σ,Q))2−
n(n+1)

2 | det(Σ)|
m−3

2 .

This last expression justifies the following proposition:

Proposition 4 The joint prior distribution for the vector of impulse responses is

uniform if and only if the induced prior distribution over the orthogonal reduced-

form parameters (B,Σ) and Q are independent, the distribution of Q is uniform with

respect to the Haar measure, and the distribution over the reduced-form has density

proportional to | det(Σ)|m−3
2 .

Proof: The first two claims follow from Proposition 2 and the last from Equa-

tion (4.1). Q.E.D.

Proposition 4 shows that if one defines a uniform prior distribution for the IR

parameters, then one is irremediably defining a prior for the reduced-form parameters
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whose density is proportional to | det(Σ)|m−3
2 , and a uniform joint prior distribution

over the identified set for the vector of impulse responses. Importantly, if the joint

prior distribution for the vector of impulse responses is uniform, then the prior over

any one-to-one and onto linear transformation of the IR parameters will be uniform

and the marginal prior over any subset of the vector of impulse responses will also be

uniform. At this stage, it is important to highlight that this prior for the orthogonal

reduced-form parameters is similar in spirit to (although also different than) the

“weak” prior described in Uhlig (2005).

4.2. Posterior over the orthogonal reduced-form parameters

The following proposition due to DeJong (1992) shows that a prior for the reduced-

form parameters proportional to | det(Σ)|m−3
2 implies a NIW posterior.

Proposition 5 Let a > 2n + 2 + m − T . If the reduced-form prior density is

proportional to | det(Σ)|−a
2 , then the NIW posterior density over the reduced-form

parameters is defined by NIW(ν̂(a),Ŝ,B̂,(X′ X)−1)(B,Σ), where ν̂(a) = T +a−m−n−1.

With Proposition 5 in hand we have the following corollary characterizing the pos-

terior over the orthogonal reduced-form parameters induced by a uniform prior dis-

tribution for the IR parameters.

Corollary 1 If the prior density over the orthogonal reduced-form parameters is

proportional to | det(Σ)|m−3
2 , the posterior density over the orthogonal reduced-form

parameters is UNIW(ν̂(−(m−3)),Ŝ,B̂,(X′ X)−1)(B,Σ).

Corollary 1 implies that if one wants to conduct inference based on a uniform prior

distribution for the IR parameters, then one must have a particular (model dependent)

posterior over the reduced-form parameters. Specifically, the marginal posterior of

Σ is inverse-Wishart with parameters ν̂(−(m − 3)) and Ŝ and the posterior of B,

conditional on Σ, is normal with mean B̂ and variance Σ⊗ (X′X)
−1
.

4.3. The Conventional Method

The preceding discussion justifies the use of the conventional method for indepen-

dently drawing from the posterior distribution for the IR parameters conditional on

the sign restrictions implied by the uniform prior distribution for the IR parameters.
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Specifically, one can combine Algorithm 1 with the posterior over the orthogonal

reduced-form parameters, as detailed in Corollary 1. To independently draw from the

conjugate posterior distribution over (L0,L+) conditional on the sign restrictions dic-

tated by the uniform prior distribution for the IR parameters, one may refer to Algo-

rithm 1, where Step 1 involves independently drawing fromNIW
(
ν̂(−(m− 3)), Ŝ, B̂, (X′X)

−1
)
.

We regard our approach as a complement to the work of Plagborg-Møller (2019).

While his approach does not facilitate independent draws, it offers the advantage of

not necessitating invertibility.

Should one always impose the uniform prior distribution for the IR parameters? The

answer clearly is not. It implies lack of persistence and one might a priori strongly

believe that macroeconomic time series are reasonably persistent as described in the

Minnesota prior or its variants. In this case, Proposition 2 tell us that the uniform

distribution over the orthogonal matrices implies a uniform conditional joint prior

distribution for the vector of impulse responses. The uniform joint prior distribution

for the vector of impulse responses could be appealing to researchers concerned with

the robustness of their conclusions. It amounts to the “weak” NIW prior for the

reduced-form parameters and it will get easily overthrown by any persistence in the

data. Importantly, we do not suggest that a particular prior should be used generally.

Instead, we highlight that uniform joint priors can be a useful for researchers reluctant

to use informative priors over vector of impulse responses.

5. AN APPLICATION

We use the empirical application in Watson (2020) in order to illustrate how to

conduct inference based on a uniform joint prior distribution for the vector of impulse

responses. We will contrast the results with those obtained using the Minnesota prior

for the reduced-form parameters.

5.1. Data, Model, Identification Restrictions, and Prior

Watson’s (2020) SVAR analysis relies on quarterly data for the U.S. economy

over the period 1984Q1:2007Q4. The variables included in the model are: y′
t =

(∆(yt − nt), nt,∆pt, i
L
t ), where yt denotes the logarithm of real output per capita

in the nonfarm business sector, nt the logarithm of hours worked per capita, pt the
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logarithm of the price level, and iLt the 10-year Treasury bond rate.9 The SVAR is a

constant parameter variant of Debortoli et al. (2020) featuring 4 lags and an inter-

cept. It is assumed that fluctuations in y′
t are driven by technology, demand, supply,

and monetary policy shocks, which are identified with sign and zero restrictions.

The identifying restrictions are as follows. The technology shock is the only struc-

tural shock that can affect labor productivity in the long-run. Four quarters after

a demand shock, the responses of output, the price level, and the 10-year Treasury

bond rate are negative. Four quarters after a monetary policy shock, the response

of output and the price level are negative, while the impulse response of the 10-year

Treasury bond rate is positive. Four quarters after a supply shock, the response of

output is negative while the response of inflation is positive. We also impose stability

of the VAR. The zero restrictions on the long-run impulse responses have a particular

structure that can be exploited to use Algorithm 1.10

The Minnesota prior is as follows. We set ν̄ = n + 2, which is the minimum value

ν̄ can take that guarantees the existence of a prior mean for Σ. The matrix Φ̄ is

diagonal, with Φ̄ = diag (ϕ1, ϕ2, ϕ3, ϕ4). The values for Ψ̄ and Ω̄ are chosen to have a

flat density over the constant term (Var (d | Σ) = 107Σ) and the following first and

second moments over the slope parameters:

E ((Bℓ)ij | Σ) =

1 if i = j = 2 and ℓ = 1

0 otherwise

Cov ((Bℓ)ij, (Br)hm | Σ) =


λ2 1

ℓ2
Σjm(ν̄−n−1)

ϕi
if i = h and ℓ = r

for all i, j, h,m, ℓ, r = 1, . . . 4

0 otherwise.

We will treat λ and Φ̄ as hyperparameters. We follow Giannone et al. (2015) in

choosing the values for these parameters that maximize the marginal likelihood. This

yields λ = 0.3453, and Φ̄ = diag(2.5217, 0.3497, 0.0478, 0.1724).

9We obtained the data from Mark Watson. We replicated it using the FRED database: real
output per hour of all persons in the non-farm business sector (OPHNFB), hours of all persons in
the nonfarm business sector (HOANBS), civilian noninstitutionalized population (CNP16OV), GDP
deuniformor (GDPDEF), and the 10-Year Treasury Constant Maturity Rate (GS10).

10Given the reduced-form parameters, uniformly drawing a four-dimensional orthogonal matrix
conditional on the zero restrictions is equivalent to uniformly drawing a three-dimensional orthogonal
matrix using Proposition 1 and then mapping it to a four-dimensional orthogonal using a Householder
matrix that depends only on the reduced-form parameters. The space of ut’s that do not have
permanent effects on labor productivity is three-dimensional. See Appendix C.
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For completeness, we will begin the analysis comparing the posterior distributions

of individual impulse responses implied by the uniform prior distribution for the IR

parameters with the posterior distributions of individual impulse responses implied

by the prior distribution for the IR parameters induced by the described Minnesota

prior. The results of this comparison, and those in the remainder of the application,

are based on 5,000 draws from the posterior distribution conditional on the identi-

fying restrictions.11 Figure 3 shows the equal-tailed 68 percent point-wise posterior

probability bands of individual impulse responses implied by each of the priors. The

figure shows how the uniform joint prior distribution for the vector of impulse re-

sponses implies more posterior uncertainty. In some cases, such as the responses of

the real rate, the uncertainty (measured as the width of the probability bands) differs

noticeably.

Next, we compare marginal and joint inference when using the uniform prior dis-

tribution for the IR parameters. Figure 4 compares the Bayes estimator of the joint

posterior distribution for the vector of impulse responses (dashed lines) and its 68 per-

cent credible set (solid light gray lines) under the additively separable absolute loss

function following Inoue and Kilian (2022a) with the commonly used equal-tailed 68

percent point-wise posterior probability bands (solid lines with circle (◦) markers).12

In contrast to point-wise probability bands, the joint credible set for the Bayes esti-

mator restricts all of its members to satisfy the dependence structure of the impulse

responses. As a consequence, as shown in the figure, the joint credible sets are wider

than the conventional point-wise probability bands. While most of the 68 point-wise

probability bands for individual impulse responses do not contain zero, the 68 per-

cent joint credible set contain zero at all except the restricted horizons. Hence, when

conducting joint inference it becomes clear that this particular model does not seem

tightly identified by the restrictions. These conclusions are robust to using the sup-t

Bayesian joint credible sets proposed by Montiel Olea and Plagborg-Møller (2019).

We conclude this section by comparing the joint posterior distribution for the vector

of impulse responses implied by the two priors. Figure 5 shows the Bayes estimator

11This is the number of posterior draws used in Inoue and Kilian (2022a). In the case of the joint
inference discussed below, increasing the number of draws will result in a more accurate depiction of
the joint posterior distribution at the cost of losing information regarding the shape of the impulse
responses.

12As remarked by Inoue and Kilian (2022a), other loss functions such as a quadratic loss could be
used.
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Figure 3.— The solid lines with circle (◦) markers depict the equal-tailed 68 percent
marginal posterior probability bands of individual impulse responses implied by the
uniform joint prior distribution for the vector of impulse responses. The solid lines
with cross (×) markers depict the equal-tailed 68 percent marginal posterior proba-
bility bands of individual impulse responses implied by the Minnesota prior.
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Figure 4.— Bayes estimator of the joint posterior distribution for the vector of
impulse responses (dashed lines) and its 68 percent credible set (solid light gray
lines) under the additively separable absolute loss function. The solid lines with circle
(◦) markers depict the equal-tailed 68 percent unconditional prior distributions for
individual impulse responses. Both posteriors are implied by the uniform joint prior
distribution for the vector of impulse responses.
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Figure 5.— Bayes estimator of joint posterior impulse responses (dashed black lines)
and its 68 percent credible set under the additively separable absolute loss function
under uniform joint prior distribution for the vector of impulse responses (solid light
gray lines) and under the Minnesota prior (dashed-dotted lines and solid dark gray
lines for the 68 percent credible set).
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of the joint posterior distribution for the vector of impulse responses and its 68 per-

cent credible set under the additively separable absolute loss function when using

a uniform joint prior distribution for the vector of impulse responses (dashed lines

for the estimator and solid light gray lines for the credible set) and when using the

joint prior distribution for the vector of impulse responses induced by the Minnesota

prior (dashed-dotted lines for the estimator and solid dark gray lines for the credible

set). Focusing on the Bayes estimators, the Minnesota prior and the uniform prior

for impulse responses imply similar estimates. The 68 percent credible sets are much

narrower when using the Minnesota prior, but a visual inspection reveals that in both

cases there is substantial joint uncertainty about the macroeconomic consequences of

the shocks under study. A similar picture emerges when using the sup-t Bayesian

joint credible sets. As mentioned above, this is clearly in line with the conclusions in

Inoue and Kilian (2022a).

6. JOINT PRIORS FOR OBJECTS OF INTEREST

In empirical work, the object of interest need not always be the vector of impulse

responses. This section generalizes Sections 3 and 4 for general objects of interest.

Section 6.1 characterizes the prior for the orthogonal reduced-form parameters that

leads to a uniform joint prior distribution over the identified set for the vector of

objects of interest. Section 6.2 defines the prior for the orthogonal reduced-form pa-

rameters that induces a uniform joint prior distribution for the vector of objects of

interest. We denote the vector of objects of interest by Υ and the transformation

from (B,Σ,Q) to Υ by ϕo. In our class of objects of interest, we assume that ϕo is a

diffeomorphism and Υ is an open subset of Rn2+nm, and use Lebesgue measure over

Υ. To fix ideas, we will use a two-variable VAR with no lags to first illustrate the type

of objects of interest that our approach can accommodate. Let us define our vector

of objects of interests as Υ = (υ1, υ2, υ3, υ4) ∈ R4 where υ1 = ℓ11/ℓ12, υ2 = ℓ12/ℓ13,

υ3 = ℓ13/ℓ14, and υ4 = ℓ14, with ℓij denoting the (i, j) entry of L0. Accordingly, υ1, υ2,

and υ3 are some elasticities and and υ4 is some other parameters of interest. Clearly,

in this example there is an diffeomorphism between L0 and Υ, therefore, there is an

diffeomorphism between (B,Σ,Q) and Υ.
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6.1. Conditional Joint Prior for Objects of Interest

As mentioned in Section 3, because the posterior reproduces the prior over the

identified set, a researcher may want a uniform joint prior distribution over the iden-

tified set for the vector of objects of interest. Oftentimes, we will refer to this prior

as the conditional joint prior distribution for the vector of objects of interest.13 Next,

we characterize the prior for the orthogonal reduced-form parameters that induces

a uniform joint prior distribution over the identified set for the vector of objects of

interest.

In parallel to the concepts in Section 3, we have that the support of the joint

distribution of the vector of objects of interest conditional on (B,Σ) is the smooth

manifold:

Po(B,Σ) = {Υ = ϕo(B,Σ,Q) | for every Q ∈ O(n)}

where, as in the case of P(B,Σ), the smooth manifold O(n) induces the volume

measure over Po(B,Σ). If π(Υ) is a density over the objects of interest, then the

density conditional on (B,Σ) with respect to the volume measure over Po(B,Σ) will

be proportional to π(Υ). Thus, conditional on (B,Σ), the density with respect to the

volume measure over Po(B,Σ) will be uniform if and only if π(Υ) is constant over

Po(B,Σ).

Proposition 6 For every density over the objects of interest with respect to Lebesgue

measure, the density with respect to the volume measure over Po(B,Σ), conditional

on (B,Σ), is uniform for every (B,Σ) if and only if the induced distribution over

the orthogonal reduced-form parameters is such that π(Q |B,Σ) is proportional to

vϕo(B,Σ,Q), where vϕo is the volume element induced by ϕo.

Proof: See Appendix A. Q.E.D.

Clearly, Proposition 6 is a generalization of Proposition 2 for general objects of

interest. As before, the volume element can be computed using Theorem 21.3 in

Munkres (1991). In general, it is not possible to analytically compute the volume

element and it may be the case that the volume element depends on Q. Importantly,

13The joint prior distribution over the identified set for the vector of objects of interest (or equiv-
alently the conditional joint prior distribution for the vector of objects of interest) is obtained
conditioning on the reduced-form parameters.
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since the volume element vϕo(B,Σ,Q) does depend on Q, the induced prior over the

set of orthogonal matrices will not be not uniform.

6.2. Uniform Joint Priors for Objects of Interest

In this section, we show how to use the conventional method to conduct posterior

inference based on a uniform joint prior distribution for a general vector of objects of

interest conditional on the sign restrictions. If π(Υ) is any density over the vector of

objects of interest, the induced density over the orthogonal reduced-form parameters

is π(ϕo(B,Σ,Q))vϕo(B,Σ,Q). This justifies the following proposition:

Proposition 7 A joint prior distribution for the vector of objects of interest is

uniform if and only if the equivalent prior density over the orthogonal reduced-form

parameters is proportional to vϕo(B,Σ,Q).

Proof: Since π(ϕo(B,Σ,Q)) ∝ 1, we have π(B,Σ,Q) ∝ vϕo(B,Σ,Q). Q.E.D.

Proposition 7 is a generalization of Proposition 4 for general vectors of objects of

interest, where it is important to remember that it may not be possible to analyti-

cally compute the volume element. In general, it is the case that the volume element

vϕo(B,Σ,Q) depends on Q and, hence, the induced prior over the set of orthogonal

matrices may not be not uniform. In addition, an immediate implication of Proposi-

tion 7 is that a uniform joint prior distribution for the vector of objects of interest

implies a uniform joint prior and posterior distributions over the identified set for the

vector of objects of interest.

We now show how to use the conventional methods to independently draw from the

posterior distribution for the objects of interest parameters conditional on the sign re-

strictions for inference based on a uniform prior distribution for the objects of interest

parameters. The algorithm below is a simple adaptation of Algorithm 1 that incorpo-

rates an importance sampling step. In order to justify the weights in the importance

sampling step, note that the likelihood is proportional to NIW(ν̂,Φ̂,Ψ̂,Ω̂)(B,Σ), where

ν̂ = T − m − n − 1, Ω̂ = (X′X)−1, Ψ̂ = Ω̂X′Y, and Φ̂ = Y′Y − Ψ̂′Ω̂−1Ψ̂. If the

prior for the objects of interest is uniform, then the posterior density will also be

proportional to NIW(ν̂,Φ̂,Ψ̂,Ω̂)(B,Σ).
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Algorithm 2 The following algorithm independently draws from the posterior dis-

tribution for the objects of interest parameters conditional on the sign restrictions

implied by a uniform prior distribution for the objects of interest parameters.

1. Draw (B,Σ) independently from the NIW (ν,Φ,Ψ,Ω) distribution.

2. Draw Q independently from the uniform distribution over O(n).

3. If Υ = ϕo(B,Σ,Q) satisfies the sign restrictions, then set its importance weight

to:

NIW(ν̂,Φ̂,Ψ̂,Ω̂)(B,Σ)vϕo(B,Σ,Q)

NIW(ν,Φ,Ψ,Ω)(B,Σ)
.

Otherwise, set its importance weight to zero.

4. Return to Step 1 until the required number of draws has been obtained.

The choice of (ν,Φ,Ψ,Ω) is important. An obvious choice would be (ν,Φ,Ψ,Ω) =(
ν̂, Φ̂, Ψ̂, Ω̂

)
, which would simplify the importance weight. More generally, one could

choose (ν,Φ,Ψ,Ω) to maximize the effective sample size of the importance sampler.

It is also important to highlight that one could use Algorithm 2 to work with any

joint posterior distribution for the vector of objects of interest provided that Step 3

is modified accordingly.

6.3. An Example

To illustrate Algorithm 2, consider a simplified version of the two-variable SVAR

described in Baumeister and Hamilton (2015). In particular, let

∆nt = kd + βd∆wt + bdw∆wt−1 + bdn∆nt−1 + σdεdt ,(6.1)

∆nt = ks + αs∆wt + bsw∆wt−1 + bsn∆nt−1 + σsεst ,(6.2)

∆nt is the growth rate of total U.S. employment and ∆wt is the growth rate of real

compensation per hour, the vector εt =
(
εdt , ε

s
t

)′
, conditional on past information and

the initial conditions, is Gaussian with mean zero and covariance matrix I2. Letting

yt denote the endogenous variables (i.e., yt = (∆wt,∆nt)
′), and ut = (ud

t , u
s
t) =(

σdεdt , σ
sεst
)′
, it should be clear that Equations (6.1) and (6.2) can be written as:

Ayt = Π′xt−1 +Dεt,
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where xt−1 = (yt−1, 1)
′, and:

A =

[
−βd 1

−αs 1

]
,D =

[
σd 0

0 σs

]
, and Π′ =

[
bdw bdn kd

bsw bsn ks

]
.

Our version of Baumeister and Hamilton’s (2015) two-variable SVAR features one

lag and a constant, and we assume that the objects of interest are the short-run wage

elasticity of demand, βd, the short-run wage elasticity of supply, αs, the standard de-

viation of the structural demand and supply shocks, and the lag structural coefficients

plus the constants
(
σd, σs, bdw, b

d
n, k

d, bsw, b
s
n, k

s
)′
.

Let Υ =
(
βd, αs, σd, σs, bdw, b

d
n, k

d, bsw, b
s
n, k

s
)′
denote the vector of objects of interest.

We use Algorithm 2 to obtain draws from the posterior implied by a uniform joint

prior distribution for the vector of objects of interest. When applying Algorithm 2,

we set (ν,Φ,Ψ,Ω) =
(
ν̂, Φ̂, Ψ̂, Ω̂

)
.

Finally, following Baumeister and Hamilton (2015), we impose the following sign

restrictions: βd < 0 and αs > 0. We will compare the results to ones obtained using

Algorithm 1 where the NIW part of the prior is a standard Minnesota prior. In this

case, we set ν̄ = 4, λ = 0.31, and Φ̄ = diag(2.13, 0.06) and we replace (L0,L+) =

ϕ(B,Σ,Q) withΥ = ϕo(B,Σ,Q).14 The results reported in this example are based on

5,000 draws from the posterior distribution conditional on the identifying restrictions.

Importantly, the aim of this section is not to argue that using a uniform joint prior

distribution for the vector of objects of interest is preferred to using other priors.

The results discussed below are meant to (1) emphasize that it is possible to conduct

inference about joint posterior distribution for the vector of objects of interest implied

by uniform prior distribution for the objects of interest parameters and (2) highlight

any difference with respect to a more typical choice of priors. As mentioned above,

the algorithm can be used to work with any joint posterior distribution for the vector

of objects of interest. In particular, one could work with the posterior described in

Baumeister and Hamilton (2015).

Panel (a) of Figure 6 compares the 68 percent posterior joint credible sets for βd and

αs obtained using a uniform joint prior distribution for the vector of objects of interest

14In addition, we impose normalization on the standard deviation of the shocks (σd and σs must be
positive) and a bound on their size (σd and σs must be smaller than 4 times the standard deviation
of the more volatile time series in the system) to increase the efficiency of Algorithm 2. Without the
bounds on the size of the shocks, the effective number of draws in Algorithm 2 collapses to one. For
consistency, we use the bounds when using Algorithm 1.
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Figure 6.— Posterior distributions implied by a uniform joint prior distribution for
the vector of objects of interest (dark gray circles) versus Minnesota prior (dark gray
squares). The 68 percent credible sets under the additively separable absolute loss
function using a uniform joint prior distribution for the vector of objects of interest
and a Minnesota prior for the reduced-form parameters.

(light gray circles) with the ones obtained using the Minnesota prior described above

(dark gray squares). As the reader can see, for both priors the posterior is concentrated

around low (absolute) values of either βd or αs. It is also clear from the figure that

the uniform joint prior distribution for the vector of objects of interest implies much

more uncertainty about the estimates. Panel (b) makes the same comparison for σd

and σs obtaining similar results. Consequently, researchers using a uniform joint prior

distribution for the vector of objects of interest are likely to face wider posterior joint

credible sets.

To highlight one of the key advantages of working with joint credible sets, Figure 7

relies on colors (as suggested by Inoue and Kilian, 2022a) to show the relation between

the posterior estimates of elasticities and standard deviations when using a uniform

joint prior distribution for the vector of objects of interest. Dark (light) gray circles

depict elasticities and shock sizes for which the standard deviation of the supply shock

is larger (smaller) than the standard deviation of the demand shock. Figure 8 shows

the same relation when using the Minnesota prior. Clearly, in both cases, large values

for the standard deviation of the demand shock σd are associated with large values for

the demand elasticity βd. A similar conclusion emerges when assessing the relation

between the supply elasticity and the standard deviation of the supply shock.
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Figure 7.— The 68 percent credible sets under the additively separable absolute loss
function using a uniform joint prior distribution for the vector of objects of interest.
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Figure 8.— The 68 percent credible sets under the additively separable absolute
loss function using a Minnesota prior.

7. CONCLUSION

Our paper demonstrates that there is nothing fundamentally wrong with the con-

ventional method for Bayesian inference in SVARs identified with sign restrictions.

We show that the uniform prior over the set of orthogonal matrices is not only suffi-

cient but also necessary to have uniform joint prior and posterior distributions over

the identified set for the vector of impulse responses. The key is to consider joint
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instead of marginal distributions. The most popular choice of prior when using the

conventional method induces a uniform joint prior distribution over the identified set

for the vector of impulse responses and straightforward variants of the approach can

be used to conduct joint inference using either a uniform joint prior distribution for

the vector of impulse responses or a joint prior distribution for the vector of objects

of interest within a general class of objects of interest.

Our paper can also be viewed as offering a practical complementary alternative to

Giacomini and Kitagawa (2021) for researchers whose goal is to perform joint posterior

inference without favoring some vector of impulse responses over others a priori. This

is because even though their prior robust numerical methodology is attractive, it does

not consider the case of joint inference and such an extension is challenging.

This paper has focused on SVARs identified with sign restrictions. Nevertheless,

the conventional method can also be used to independently draw from the posterior

distribution for the IR parameters implied by a uniform prior distribution over such

parameterization in SVARs identified with sign and zero restrictions. The same ap-

plies when the objective is to draw from the posterior distribution for the objects of

interest parameters implied by a uniform prior distribution over such parameteriza-

tion conditional on sign and zero restrictions. As described in Arias et al. (2018), in

both cases an importance sampling step could be needed depending on the nature of

the parameterization of interest and the zero restrictions in use.

Last but not least, let us highlight that our results regarding uniform priors do

not imply that a particular prior is appropriate in all cases. For example, Imbens

and Rubin (1997) find that an independent uniform prior distribution over structural

parameters of interest could lead one to obtain misleading conclusions regarding the

effects of vitamin A supplement on children’s survival.

APPENDIX

A. Proofs of Proposition 2, 3, and 6

Proof of Proposition 2: If π is any density of the impulse responses with respect to Lebesgue

measure, then the induced density over orthogonal reduced-form parameters with respect to volume

measure is:

p(B,Σ,Q) =
π(ϕ(B,Σ,Q))

2
n(n+1)

2 |det(Σ)|−np+2
2

.
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So, the density π is constant over the set P(B,Σ) if and only if p(B,Σ,Q) does not not depend on Q.

Since p(B,Σ,Q) = p(B,Σ)p(Q |B,Σ), p(B,Σ,Q) does not depend on Q if and only if p(Q |B,Σ) is

constant. If p(Q |B,Σ) is constant, then the induced distributions of (B,Σ) and Q are independent

and the distribution of Q must be uniform with respect to the Haar measure. Q.E.D.

Proof of Proposition 3: Let A0 =
(
L−1
0

)′
and A+ = BA0. Multiplying Equation (2.1) on the

right by A0 gives y′
t A0 = x′

t A+ +ε′t for 1 ≤ t ≤ T , which is often called the structural form and

(A0,A+) the structural parameters. For 1 ≤ ℓ ≤ p, let Aℓ = Bℓ A0. Multiplying Equation (2.3)

on the right by A0 gives Aℓ = A0 L
′
ℓ A0 −

∑ℓ−1
k=1

(
Lℓ−kL

−1
0

)′
Ak. Since A+ =

[
A′

1 · · · A′
p c′

]′
,

this recursively defines a mapping from the IR parameters to the structural parameters, which

we denote by f . It follows from Proposition 1 of Arias et al. (2018) that the volume element of

f ◦ ϕ is vf◦ϕ(B,Σ,Q)) = 2−
n(n+1)

2 |det(Σ)|− 2n+m+1
2 , which implies that the volume element of ϕ is

vϕ(B,Σ,Q) = 2−
n(n+1)

2 | det(Σ)|−
2n+m+1

2

vf (ϕ(B,Σ,Q)) . Because Ak does not depend on Lj for j > k, the derivative

of f is a block lower triangular (n2(p+ 1) + n)× (n2(p+ 1) + n) matrix of the form:

−Kn,n(L
′
0 ⊗L0)

−1 0 · · · 0 0

× (L0 ⊗L′
0)

−1Kn,n · · · 0 0
...

...
. . .

...
...

× × · · · (L0 ⊗L′
0)

−1Kn,n 0

0 0 · · · 0 In


where Kn,n is the commutation matrix, which is the unique n2 × n2 matrix such that vec(X′) =

Kn,n vec(X) for every n×n matrix X. The volume element of f is the absolute value of the determi-

nant of the above matrix, which is |det(L0)|−2n(p+1). Since det(L0) = det(Σ)
1
2 , the volume element

of ϕ is:

vϕ(B,Σ,Q) = 2−
n(n+1)

2 |det (Σ) |
m−3

2 .

Q.E.D.

Proof of Proposition 6: If π(Υ) is any density over the objects of interest parameterization

with respect to the Lebesgue measure, then the induced density over the orthogonal reduced-form pa-

rameters with respect to volume measure will be π(B,Σ)π(Q |B,Σ) = π(ϕo(B,Σ,Q))vϕo(B,Σ,Q).

If π(Υ) is constant over Po(B,Σ), then π(ϕo(B,Σ,Q)) will not depend on Q and it must be the

case that π(Q |B,Σ) is proportional to vϕo
(B,Σ,Q), though the proportionality constant, which

is equal to π(ϕo(B,Σ,Q))/π(B,Σ), could depend on B and Σ. If π(Q |B,Σ) is proportional to

vϕo
(B,Σ,Q), then π(ϕo(B,Σ,Q)) cannot depend on Q and so is constant over Po(B,Σ). Q.E.D.

B. Proofs of Claims from Section 3.1

B.1. Derivation of Equation (3.3)

The function that maps (θ, i) ∈ [−π, π) × {0, 1} to ℓ11 = ℓ̂11 cos(θ) ∈ [−ℓ̂11, ℓ̂11] is not one-to-

one over its entire domain, but is one-to-one over each of the four subdomains of the form S+,i =
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[0, π)×{i} or S−,i = [−π, 0)×{i}. Let ℓ̃11 = ℓ11/ℓ̂11. We follow the convention that cos−1(·) ∈ [0, π].

Over S+,i, the inverse of the above mapping is (θ, i) = (cos−1(ℓ̃11), i) ∈ S+,i and over S−,i, the

inverse of the above mapping is (θ, i) = (− cos−1(ℓ̃11), i) ∈ S−,i. Since the derivative of cos(θ) is

− sin(θ), by the usual change of variable theorem, the density over ℓ11 ∈ [−ℓ̂11, ℓ̂11] induced by the

density p(θ)p(i|θ) over [−π, π)× {0, 1} is

p(ℓ11) =
p(θ̃)p(0|θ̃)
|ℓ̂11 sin(θ̃)|

+
p(θ̃)p(1|θ̃)
|ℓ̂11 sin(θ̃)|

+
p(θ̂)p(0|θ̂)
|ℓ̂11 sin(θ̂)|

+
p(θ̂)p(1|θ̂)
|ℓ̂11 sin(θ̂)|

=
p(θ̃)

|ℓ̂11 sin(θ̃)|
+

p(θ̂)

|ℓ̂11 sin(θ̂)|
,

where θ̃ = cos−1(ℓ̃11) and θ̂ = −θ̃. Since sin(θ̂) = − sin(θ̃), sin(θ̃) ≥ 0, and ℓ̂11 > 0, we have

(A.1) p(ℓ11) =
p(θ̃) + p(θ̂)

ℓ̂11 sin(θ̃)
=

p(θ̃) + p(θ̂)

(ℓ̂211 − ℓ211)
1
2

,

where the last equality follows from the fact that sin(θ̃) = (1 − cos2(θ̃))
1
2 and will be of use in

Appendix B.4. The first equality is Equation (3.3).

B.2. Derivation of Equation (3.4)

The function that maps (θ, i) ∈ [−π, π) × {0, 1} to ℓ12 = ℓ̂11 sin(θ) ∈ [−ℓ̂11, ℓ̂11] is not one-to-

one over its entire domain, but is one-to-one over each of the four subdomains of the form Sc,i =

[−π/2, π/2)×{i} or Sd,i = ([−π,−π/2)∪ [π/2, π))×{i}. Let ℓ̃12 = ℓ12/ℓ̂11. We follow the convention

that sin−1(·) ∈ [−π/2, π/2]. Over Sc,i, the inverse of the above mapping is (θ, i) = (sin−1(ℓ̃12), i) ∈
Sc,i and over Sd,i, the inverse of the above mapping is (θ, i) = (sgn(ℓ̃12)π − sin−1(ℓ̃12), i) ∈ Sd,i.

Since the derivative of sin(θ) is cos(θ), by the usual change of variable theorem, the density over

ℓ12 ∈ [−ℓ̂11, ℓ̂11] induced by the density p(θ)p(i|θ) over [−π, π)× {0, 1} is

p(ℓ12) =
p(θ̃)p(0|θ̃)
|ℓ̂11 cos(θ̃)|

+
p(θ̃)p(1|θ̃)
|ℓ̂11 cos(θ̃)|

+
p(θ̂)p(0|θ̂)
|ℓ̂11 cos(θ̂)|

+
p(θ̂)p(1|θ̂)
|ℓ̂11 cos(θ̂)|

=
p(θ̃)

|ℓ̂11 cos(θ̃)|
+

p(θ̂)

|ℓ̂11 cos(θ̂)|
,

where θ̃ = sin−1(ℓ̃12) and θ̂ = sgn(ℓ̃12)π − θ̃. Since cos(θ̃) = − cos(θ̂), cos(θ̃) ≥ 0, and ℓ̂11 ≥ 0, we

have

(A.2) p(ℓ12) =
p(θ̃) + p(θ̂)

ℓ̂11 cos(θ̃)
=

p(θ̃) + p(θ̂)

(ℓ̂211 − ℓ212)
1
2

,

where the last equality follows from the fact that cos(θ̃) = (1 − sin2(θ̃))
1
2 and will be of use in

Appendix B.4. The first equality is Equation (3.4).

B.3. Proof that the distributions over ℓ11 and ℓ12 cannot both be uniform

If the conditional distribution of ℓ11 is uniform, then p(ℓ11) = 1/(2ℓ̂11) and the distribution of θ

must satisfy

(A.3) p(θ) + p(−θ) = sin(θ)/2, for 0 ≤ θ < π.
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If the conditional distribution of ℓ12 is uniform, then p(ℓ12) = 1/(2ℓ̂11) and, because sgn(ℓ12/ℓ̂11) =

sgn(sin−1(ℓ12/ℓ̂11)), the distribution of θ must satisfy

(A.4) p(θ) + p(sgn(θ)π − θ) = cos(θ)/2 for − π/2 ≤ θ ≤ π/2.

So, for 0 ≤ θ ≤ π/2, it must be the case that:

cos(θ)/2 = p(θ)+ p(π− θ) = sin(θ)/2− p(−θ)+ sin(π− θ)/2− p(−π+ θ) = sin(θ)− cos(θ)/2.

The first equality follows by substitution using Equation (A.4). The second equality follows by two

substitutions using Equation (A.3). The last equality follows by substitution using Equation (A.4)

and from the fact that sin(θ) = sin(π− θ). This would imply that cos(θ) = sin(θ), which is not true.

B.4. The density of ℓ11 and ℓ12 in Cases (1) and (2)

In Case (1), it had to be the case that p(θ) = 1/(2π) and p(i|θ) = 1/2. Equation (A.1) gives

p(ℓ11) = 1/(π(ℓ̂211 − ℓ211)
1
2 ). Equation (A.2) gives p(ℓ12) = 1/(π(ℓ̂211 − ℓ212)

1
2 ).

In Case (2), we chose p(θ) = | sin(θ)/4| and p(i|θ) = 1/2. Equation (A.1) gives

p(ℓ11) =
| sin(cos−1(ℓ12/ℓ̂11))|+ | sin(− cos−1(ℓ12/ℓ̂11))|

4ℓ̂11 sin(cos−1(ℓ12/ℓ̂11))
=

1

2ℓ̂11
,

because sin(− cos−1(ℓ12/ℓ̂11)) = − sin(cos−1(ℓ12/ℓ̂11)). Equation (A.2) gives

p(ℓ12) =
| sin(sin−1(ℓ12/ℓ̂11))|+ | sin(sgn(ℓ12/ℓ̂11)π − sin−1(ℓ12/ℓ̂11))|

4(ℓ̂211 − ℓ212)
1
2

=
|ℓ12|

2ℓ̂11(ℓ̂211 − ℓ212)
1
2

because sin(sgn(ℓ12/ℓ̂11)π − sin−1(ℓ12/ℓ̂11)) = sin(sin−1(ℓ12/ℓ̂11)) = ℓ12/ℓ̂11.

C. Posterior Simulation of Watson (2020)

The model in Watson (2020) has three zero restrictions on the long-run impulse response of labor

productivity growth. The long-run impulse response is given by:

L∞ =

(
A′

0 −
p∑

i=1

A′
i

)−1

=

(
In −

p∑
i=1

B′
i

)−1

(A−1
0 )′ =

(
In −

p∑
i=1

B′
i

)−1

h(Σ)′ Q,

where Bi = Ai A
−1
0 . If labor productivity is the first variable and the technology shock is ordered

last, then the first three elements in the first row of L∞ must be zero. Given a non-zero n-vector x,

the Householder matrix Hn(x) is given by Hn(x) = In − 2 xx′

x′x . Householder matrices are reflection

matrices, and hence orthogonal. If x and y are two distinct unit vectors, then x′Hn(x−y) = y. Let

x(B,Σ)′ be the first row of
(
In −

∑p
i=1 B

′
i

)−1
h(Σ)′, normalized to be of unit length, and let e4 be

the last column of I4. It is easy to see that
(
In −

∑p
i=1 B

′
i

)−1
h(Σ)′Hn(x(B,Σ)−e4) will satisfy the

zero restrictions, as long as x(B,Σ) ̸= e4. Furthermore, if L∞ =
(
In −

∑p
i=1 B

′
i

)−1
h(Σ)′ Q satisfies
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the zero restrictions, then Q must be of the form Hn(x(B,Σ)− e4)P, where:

(A.5) P =

[
P3 03×1

01×3 ±1

]

and P3 ∈ O(3). Thus, given the reduced-form parameters (B,Σ), aQ can be obtained by (1) drawing

P3 using Proposition 1, (2) drawing ±1 uniformly, (3) forming P, and (4) and finally multiplying

by the Householder matrix Hn(x(B,Σ)− e4) is a uniform draw from O(4) conditional on the zero

restrictions.

In addition, it can be shown that the mapping from P3 and ±1 to the IR parameters conditional

on the zero restrictions does not depend on P3 or ±1. This implies that the ratio of volume elements

associated with the target and the proposals that does not depend on Q. Thus, Algorithm 1 can be

used in this case provided that a simple re-weighing step is implemented.

Notice that Proposition 2 directly apply to the IR parameters identified with sign restrictions. It

can be shown that they also apply to the model in Watson (2020) with other IR parameters defined

as (L0,L1,L2,L3,L∞, c). The mapping from these IR parameters to the orthogonal reduced-form

parameters is one-to-one and onto, although we do have to restrict the parameters so that L∞ is well

defined. Using these IR parameters the zero restrictions define a lower dimensional linear subspace

where the volume measure is Lebesgue.
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