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Quantum advantage in Bayesian games, or games with incomplete information, refers to the 

larger set of correlated equilibrium outcomes that can be obtained by using quantum 

mechanisms rather than classical ones. Earlier examples of such advantage go under the title 

of quantum pseudo-telepathy. By using measurements of entangled particles, the players in 

the Mermin–Peres magic square game and similar games can obtain a common payoff that 

is higher than that afforded by any classical mechanism. However, these common-interest 

games are very special. In general games, where payoffs differ across players and player 

types, the implementation of specific correlated equilibrium outcomes may require limiting 

the information that different player types receive though the signals or messages they 

receive from a correlation device or mechanism. Because of the inherently destructive 

nature of measurements in quantum mechanics, it is well suited for this task. In a quantum 

correlated equilibrium, players choose what part of the information “encoded” in the 

quantum state to read, and choosing the part meant for their actual type is required to be 

incentive compatible. This requirement makes the choice of measurement analogous to the 

choice of report to the mediator in a communication equilibrium, and the measurement 

value is analogous to the massage sent back from the mediator. A choice of action follows. 

This paper systematically explores the advantage quantum mechanisms possess over 

comparable classical mechanisms in correlated and communication equilibria. It identifies 

the specific properties of quantum mechanisms responsible for these advantages. It then 

presents a classification of the equilibrium outcomes (both type-action distributions and 

equilibrium payoffs) in correlated and communication equilibria according to the kind of 

(classical or quantum) mechanism employed.  

1 Introduction 
Quantum advantage refers to the potential use of quantum mechanical phenomena for 

achieving goals that are not achievable by classical methods. In computer science, that goal 

may be solving a problem that no classical algorithm is practically capable of solving. More 

fundamentally, quantum physics may be used for, in a sense, defying probability theory 

itself. The mathematical theory of probability is based on the concept of probability space 

(Shiryaev 1996), a main ingredient of which is a sample space, which is a set of points Ω. The 

interpretation is that each point 𝜔 ∈ Ω represents a possible “state of the world”. Knowing 

the state amounts to resolving all uncertainty concerning all – past and present – random 

occurrences. It may be theoretically impossible to ever know the state. For example, it is not 

possible to learn the outcomes of an infinite sequence of coin tosses. It is only possible to 

know, after observing the outcomes of finitely many tosses, that the actual state 𝜔 belons to 

a certain subset of Ω, an event. However, a most remarkable aspect of quantum physics is 

that it denies even the conceptual, theoretical possibility of states of the world. Such states 
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correspond to what are known as “hidden variables”. As first shown by Bell (1964), the 

existence of hidden variables is inconsistent with the actual quantitative predications of 

quantum mechanics. (For an informal exposition of Bell’s findings and their significance, see 

Albert 1994. See also below.) As these predications were repeatedly verified by 

experiments,1 the meaning of Bell’s theoretical result is that quantum phenomena involve a 

kind of uncertainty that is not captured by “classical” probability theory, where the 

employment of a sample space is standard and is never questioned.  

This paper explores the possibilities offered by quantum phenomena when applied to 

Bayesian, or incomplete information, games. This application is part of what is known as 

quantum game theory (see, for example, Eisert et al. 1999, Khan et al. 2018). Specifically, the 

present subject matter is correlated equilibria in Bayesian games (Forges 1993, Lehrer et at. 

2013, Milchtaich 2014, Bergemann and Morris 2016). Such equilibria employ a mechanism, 

or correlation device, that substitutes for direct communication between players. 

Coordination is achieved by each player observing a (generally, private) signal sent by the 

mechanism, and these signals are generally correlated. The use of a mechanism prevents the 

players from sharing any private information they possess. However, with a quantum 

mechanism, the outcome may be as if information was shared, a phenomenon dubbed 

quantum pseudo-telepathy. In the following subsections, I review two earlier notable 

applications of this phenomenon to Bayesian games and briefly explain the physics behind 

them. I then describe what I believe is a significant missing part in this domain of quantum 

game theory.  

1.1 Mermin–Peres magic square game 
A beautiful demonstration of how classically impossible equilibrium outcomes in Bayesian 

games can be achieved by using quantum pseudo-telepathy is provided by the Mermin–

Peres magic square game (Mermin 1990a, Peres 1990, Xu et al. 2022). This is a two-player 

common-interest game where one player, Alice, is randomly assigned to one of the three 

rows of a 3 × 3 table and the other player, Bob, is assigned to one of the columns. All nine 

possible assignments are equally probable, which in particular means that the players’ 

assignments, or types, are independent. Alice, who only knows her own type, has to fill her 

row by placing either +1 or −1 in each of the cells, with the proviso that the product of the 

three numbers has to be +1. Similarly for Bob’s column, except that for him the product has 

to be −1. The players’ common payoff is the product of the numbers they place in the single 

cell shared by their row and column.   

Alice and Bob can achieve an expected payoff of (8/9 × (+1) + 1/9 × (−1) =) 7/9 by 

agreeing in advance on the numbers they will put in all cells but one, say the lower-right cell, 

for example as follows:  

+1 +1 +1 

−1 −1 +1 

+1 +1 ±1 

(The only case where the payoff is not +1 is when the common cell is the corner one, where 

 
1 The 2022 Nobel Prize in Physics was awarded to Aspect, Clauser and Zeilinger for their work on “Bell 
tests” and related experimental measurements that underline the distinction between the quantum 
and classical worlds (Billings 2022).  
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Alice puts +1 and Bob puts −1.) No pair of pure strategies gives a higher expected payoff. 

The same holds for any correlated strategy, which employs a mechanism that sends a pair of 

random, correlated signals which the players receive before they fill out the cells. This is 

because each possible realization of the random signals is interpreted by the players as 

instructions for playing a particular pair of pure strategies, which gets them at most 7/9. 

However, the players can achieve a perfect payoff of +1 with certainty by using as signals 

the measurement values of two pairs of entangled qubits.   

A historically important example of a qubit is the spin state of a silver atom in the century-

old Stern–Gerlach experiment (Peres 2002, Cohen-Tannoudji et al. 2020). All atoms in this 

experiment initially travel with the same velocity along the same line, the 𝑦 axis. They then 

pass through an inhomogeneous magnetic field whose mean direction is the positive 

direction of the 𝑧 axis. Because of the inhomogeneity of the field, the atoms are deflected. 

According to classical physics, the angle of the deflection along the 𝑧 axis should be 

approximately proportional to the magnitude of the 𝑧 component of each atom’s intrinsic 

magnetic moment, and thus to have some continuous distribution. What is found instead is 

the result predicted by quantum mechanics, which is that the magnitude of the deflection is 

the same for all atoms and the only difference between individual atoms is its direction: half 

the atoms are deflected in the positive direction of the 𝑧 axis (state |0⟩, “up”) and half in the 

opposite direction (state |1⟩, “down”). Rotating the magnet 90°, so that the spin in the 𝑥 

direction is measured instead, would have given a similar result, with half the atoms 

deflected in the positive direction (state |+⟩) and half in the negative direction (state |−⟩). 

However, the first measurement 𝑆𝑧 and the second one 𝑆𝑥 are incompatible. According to 

quantum mechanics, measurement of the 𝑧 component of the spin puts the atom in the 

state (|0⟩ or |1⟩) corresponding to the outcome, and thus changes it irreversibly. There is no 

sense in which the three components of the spin have definite, objective values at any 

moment in time, as the measurement of any one of them is a destructive process. 

Correspondingly, alternating between the measurements would yield inconsistent results, 

with 𝑆𝑥 possibly giving a different outcome each time it follows 𝑆𝑧. Only consecutive 

identical measurements are guaranteed to be consistent.    

An example of a pair of entangled qubits is two particles that are created as the result of the 

decay of a spinless particle, for example, the decay of a neutral pion to an electron and a 

positron (Peres 2002). If the 𝑧 component of the spin is measured for both particles, the 

measurements are bound to give opposite results: either the first is up and the second down 

or vice versa. The same goes for the 𝑥 and 𝑦 components, indeed, for measurements of the 

spin in any common direction. This prediction of quantum theory is at the heart of the 

famous Einstein–Podolsky–Rosen paradox (Einstein et al. 1935). The two measurements can 

be instantaneous or nearly so,2 and the two particles can be arbitrarily far from one another 

at the time of measurement, which excludes any transmission of information between them. 

In their 1935 paper, EPR argued that, since the measurement of one particle could not have 

changed in any way the other particle, the latter’s three components of the spin must have 

 
2 According to relativity theory, instantaneity is a relative term. Two events that are simultaneous for 
one observer are not so for an observer moving in a particular direction relative to the first one. 
Moreover, a third observer, who moves in the opposite direction, would perceive the order of the 
events to be the opposite of that perceived by the second observer. Such subjectivity is inconsistent 
with causality (that is, it cannot be that one event caused the other) and occurs whenever the two 
events are sufficiently close in time or sufficiently distant is space so that light could not have reached 
one from the other (and this criterion is objective, not relative). 
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physical reality. However, as mentioned above, Bell showed in 1964 that this idea of “hidden 

variables” is in fact unequivocally refuted by quantum mechanics itself (and his proof turns 

out to be highly relevant for the present work; more on this below).     

And so the mechanism used for achieving the perfect outcome in the Mermin–Peres magic 

square game may take the following form (Figure 1). Pair 𝑂 and pair 𝐺 each consists of two 

spin-entangled particles, as described above. Alice and Bob can each measure a single 

component, 𝑧 or 𝑥, of the spin of a different member of pair 𝑂, and the same for pair 𝐺. For 

convenience, each player’s positive directions of the 𝑧 and 𝑥 axes are chosen as the other 

player’s negative directions. This choice of signs means that if both players measure the 𝑧 

component of their particle 𝑂 (measurement 𝑆𝑧
𝑂) or both measure the 𝑥 component 

(measurement 𝑆𝑥
𝑂), they are guaranteed to get an equal outcome: either +1, corresponding 

to state |0⟩ or |+⟩, respectively, or −1, corresponding to |1⟩ or |−⟩. The same goes for pair 

𝐺. The actual measurements that the players perform depend on the cells they have to fill 

out, as detailed in the following table, which specifies for each cell a specific measurement, 

the negative of a measurement, or the product of two measurements, which can and should 

be performed as a single measurement: 

𝑆𝑧
𝑂 𝑆𝑧

𝐺  𝑆𝑧
𝐺𝑆𝑧

𝑂 

−𝑆𝑥
𝐺  −𝑆𝑥

𝑂 𝑆𝑥
𝑂𝑆𝑥

𝐺 

𝑆𝑥
𝐺𝑆𝑧

𝑂 𝑆𝑥
𝑂𝑆𝑧

𝐺  

The players fill out the first two cells in their assigned row (Alice) or column (Bob) according 

to the outcomes of the measurements specified for these cells. The third cell does not 

actually require an additional measurement because, to conform with the sign requirements 

of the game, the number there must be the product (Alice) or the negative of the product 

(Bob) of the first two numbers. In particular, there is for each player only one legitimate way 

to complete the last row or column. The number Alice puts in the corner, blank cell must 

equal the outcome of the measurement 𝑆𝑥
𝑂𝑆𝑧

𝐺𝑆𝑥
𝐺𝑆𝑧

𝑂 and for Bob it must be −𝑆𝑥
𝑂𝑆𝑥

𝐺𝑆𝑧
𝐺𝑆𝑧

𝑂. 

And, magically, 

𝑆𝑥
𝑂𝑆𝑧

𝐺𝑆𝑥
𝐺𝑆𝑧

𝑂 = −𝑆𝑥
𝑂𝑆𝑥

𝐺𝑆𝑧
𝐺𝑆𝑧

𝑂, (1) 

which means that in this cell, too, the players will put the same number. The identity (1) 

FIGURE 1  THE MECHANISM USED FOR THE MERMIN–PERES MAGIC SQUARE GAME. ALICE (𝑨) AND BOB 

(𝑩) MEASURE ONE COMPONENT OF THE SPIN OF EACH OF TWO PARTICLES. THE SPIN STATE OF EACH 

PARTICLE IS ENTANGLED WITH THAT OF THE SIMILARLY COLORED PARTICLE (𝑶 OR 𝑮) OF THE OTHER PLAYER.  

 

𝑶 
𝑶 

𝑮  

𝑮 

𝑧 

𝑧 

𝑦 

𝑥 

𝑥 

𝐴 

𝐵 
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would not of course hold if the symbols in it stood for numbers. However, the symbols here 

represent not numbers but measurements, which like all measurements in quantum 

mechanics are mathematically represented by linear operators in a suitable complex Hilbert 

space (which in the case of single spin-1/2 particles such as electrons or positrons is a two-

dimensional space). The multiplication (composition) of operators, which can be 

represented as multiplication of (square) matrices, is not generally commutative. In fact, two 

operators commute if and only if they represent compatible physical quantities: measuring 

one quantity does not disturb the other. As indicated, this is not the case for the 𝑧 and 𝑥 

components of the spin of a single particle (in particular, particle 𝐺 of either player), whose 

measurements in fact anti-commute: 𝑆𝑧
𝐺𝑆𝑥

𝐺 = −𝑆𝑥
𝐺𝑆𝑧

𝐺. Hence the identity (1). Moreover, 

both sides of (1) turn up to be equal to 𝑆𝑦
𝑂𝑆𝑦

𝐺, the product of the measurements of the 𝑦 

component of the spin of the 𝑂 and 𝐺 particles. 

1.2 Greenberger–Horne–Zeilinger game 
The mechanism described in Figure 1 is more complicated than required for refuting the 

existence of hidden variables. By only invoking a single pair of entangled particles, Bell 

proved that quantum mechanics predicts a particular statistics of particle measurements 

that is classically impossible (see Section 2.3). However, as first shown by Greenberger, 

Horne and Zeilinger (1989), the use of more than two particles enables a more dramatic 

demonstration of the “spookiness” of quantum mechanics, which concerns a single run of an 

experiment. Such a demonstration does not have to involve four particles, as in Figure 1, but 

can do with three, for example, three polarization-entangled photons (Pan et al. 2000). 

Brassard et al. (2005) recast the simplified three-particle account of the GHZ scenario 

provided by Mermin (1990b) into the framework of pseudo-telepathy in a three-player 

Bayesian game.  

In the GHZ game, each of the three players is assigned a type, which can be I or II, such that 

the number of I’s is odd. The four possible type profiles are equally probable. (Equality is in 

fact not a crucial assumption. It would suffice to assume that the four probabilities are all 

positive. Either way, the players’ types are not independent.) The players, who only know 

their own type, have to choose between two actions, +1 or −1. Their common payoff is 

determined by the three players’ types and the product of their actions. If only one player 

has type I, then the payoff is 0 or 1 if the product is +1 or −1, respectively. If all types are I, 

then it is the opposite: payoff 1 if the product is +1 and 0 if it is −1.   

The best the players can do classically is to choose some fixed three actions whose product 

is −1. This gets them a payoff of 1 with probability 0.75. However, they can get 1 with 

certainty by using, for example, three spin-entangled particles whose initial state is  

|𝜓⟩ =
1

√2
(|000⟩ + |111⟩). 

Thus, if each player would measure the spin of one particle in the direction of that player’s 𝑧 

axis, the measurements would yield equal results – all particles up or all down – with both 

possibilities equally probable. What the players should measure, however, are not the 𝑧 but 

the 𝑥 or 𝑦 component of their particle: 𝑥 if their type is I and 𝑦 if it is II. Each player then has 

to choose the action that matches the outcome of the measurement, +1 or −1. It can be 

shown that these strategies guarantee a perfect payoff. For example, if all types are I, the 

outcomes of the measurements (the 𝑥 components of the spin, in this case) will all be +1 or 

only one of them will be so, and thus the product is guaranteed to be +1. This is because the 

https://en.wikipedia.org/wiki/Spin-1/2
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initial state can be presented also as  

|𝜓⟩ =
1

2
(|+ + +⟩ + |+ − −⟩ + |− + −⟩ + |− − +⟩). 

This representation shows that the only possible triplets of outcomes are those described 

above, and also that the four of them are equally probable. 

Note that, for each player, the probability of |+⟩ is 1/2 (two out of four possibilities). This is 

true not only when all players measure the 𝑥 components of the spin of their particle but 

also when the other players’ type is II and they measure the 𝑦 component. Thus, the 

outcome of the measurement does not give the player any information about the others’ 

types. This fact is a manifestation of a fundamental no-signaling principle (see footnote 2). A 

measurement of an entangled particle cannot reveal what the other players are measuring 

(Albert 1994). It can only provide information about the outcomes they (would) get, which 

can be used for choosing coordinated actions. In this respect, the quantum mechanism is 

similar to a classical mechanism that is unaware of the players’ types.   

1.3 This work 
Common-interest games, like those in the examples above, are somewhat marginal in game 

theory. This is because they do not give rise to what is arguably the most salient aspect of 

games: conflict. Game theory is all about (complete or partial) misalignment of interests, 

which is lacking here. This lack is inconsequential for examples as above because, as Section 

3.1 shows, such examples arguably do not genuinely concern games but only game forms, 

which specify the players’ types and possible actions but not the resulting payoffs. Payoff 

functions only play an incidental role in them. In other words, these examples only show 

what can and cannot be achieved mechanically, when there is no need to take into 

consideration possible conflicts of interest. 

The particular significance of common interests in the context of Bayesian games (which are 

formally defined in Section 2) is that they entail that the mechanism used in a correlated 

equilibrium, whose goal is to coordinate the players’ choice of actions, can only become 

more suitable for the job the more information it is able to pass around. There is no reason 

to hide information. But with non-aligned interests, a mechanism may be required to inform 

players selectively, with each type of each player only getting to know what it has to know in 

order to choose the indented action (Milchtaich 2014). Here, too, quantum mechanics may 

be useful. 

An example demonstrating the usefulness of quantum mechanisms for “real” games, where 

the players’ payoffs are not identical, is given in Section 3.2. It concerns a particular 

correlated equilibrium distribution that cannot be implemented by any classical mechanism 

that does not know the players’ types. The reason for the impossibility is that one type of 

player should not be able to infer from the mechanism’s message the action that the 

player’s other type is supposed to play, because this additional information would also 

partially betray the other player’s expected move and thus reveal that the action indicated 

by the message is in fact not optimal. A classical type-unaware mechanism cannot tell each 

type of player only its action. But, as shown in Section 3.3, a quantum mechanism can do 

that. 

Section 4 presents a general description of quantum mechanisms and definitions of 

quantum correlated equilibrium (QCE) and equilibrium distribution. That section and the 
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following one also make the connection with communication equilibrium, where the players 

self-report their types to the mechanism before it send its messages to them. The 

equilibrium condition that truthful reporting be incentive compatible corresponds in a QCE 

to the incentive compatibility of choosing the measurement assigned to the player’s actual 

type. Section 5.1 gives an example showing that, also in the domain of communication 

equilibria, the use of quantum mechanisms may extend the set of achievable equilibrium 

outcomes beyond what is classically possible.    

The roots of quantum advantage in correlated and communication equilibria are discussed 

in Section 6. Theorem 1 shows that, in the case of communication equilibria, the advantage 

is wholly due to the potential incompatibility of each player’s different possible 

measurements. Allowing only compatible physical measurements would eliminate the 

difference from (classical) communication equilibria where the players’ type reports do not 

affect the messages the mechanism sends to other players. Theorem 2 shows that, in the 

case of correlated equilibria, the advantage is due to the multiplicity of possible 

measurements. Quantum mechanisms where each player is only allowed one measurement 

give rise to the same correlated equilibrium outcomes as classical type-unaware 

mechanisms.  

Section 7 sheds further light on the connections between QCEs and classical correlated and 

communication equilibria by classifying the equilibrium outcomes according to the kind of 

mechanisms employed. This classification is similar to, and in a sense extends, the one 

previously obtained for classical mechanisms only (Milchtaich 2014). The seven classes 

considered here turn out to be linearly ordered by inclusion. The one corresponding to QCEs 

(quantum mechanisms) is situated somewhere in the middle, and is overshadowed only by 

classical correlated and communication equilibria where the mechanism’s messages to 

players may depend on the other players’ types (which the mechanism either knows or is 

informed about by the players themselves). It is shown that the same taxonomy applies both 

to the equilibrium distributions of types and actions (Section 7.1) and to the resulting payoff 

vectors (Section 7.2).    

With the advent of quantum computing, the vision of putting the peculiar properties of 

entangled particles and similar quantum systems to everyday use rapidly becomes a reality. 

Soon, the intricate laboratory equipment needed for maintaining and making use of such 

systems may be replaced by handheld contraptions. This will make quantum mechanisms 

seem as mundane as stoplights or other classical coordination devices. It is hoped that this 

paper will contribute to laying the foundations for the use of such devices as part of new 

solution concepts: finding equilibria where, due to conflicts of interest, none existed before. 

2 Bayesian games 
A (finite) Bayesian game, or game with incomplete information, has a finite set of players 

𝑁 = {1,2, … , 𝑛} and, for each player 𝑖, a finite set of types 𝑇𝑖, a finite set of actions 𝐴𝑖 and a 

payoff function 𝑢𝑖 = 𝑇 × 𝐴 → ℝ, where 𝑇 = 𝑇1 × 𝑇2 × ⋯ × 𝑇𝑛 and 𝐴 = 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 

are respectively the collections of all type profiles and all action profiles. The actual type 

profile is random, and can be specified either as a random element 𝒕 = (𝒕1, 𝒕2, … , 𝒕𝑛) of 𝑇 

(throughout this paper, boldface symbols represent random elements) or as a probability 

vector (𝜆𝑡)𝑡∈𝑇, the common prior. The two specifications are connected by  

𝜆𝑡 = Pr(𝒕 = 𝑡), 𝑡 ∈ 𝑇. 
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A game form is defined similarly except that the payoff functions are not specified.  

2.1 Mechanisms and correlated strategies  
A mechanism for a Bayesian game or game form is an extraneous source of messages. It 

sends to each player 𝑖 a message 𝑚𝑖  that is an element of some finite set 𝑀𝑖, the player’s 

message space. The messages that the players receive may reflect to a lesser or greater 

extent the type profile. That is, the mechanism may be type aware. They generally combine 

also a random element that is independent of the types. Formally (Milchtaich 2014), a 

(classical) mechanism is defined as a random element 𝒎 that is (statistically) independent of 

𝒕, with values that are functions from 𝑇 to 𝑀 = 𝑀1 × 𝑀2 × ⋯ × 𝑀𝑛. Thus, for each type 

profile 𝑡 ∈ 𝑇, the messages that the players receive when their types are 𝑡 are given by the 

corresponding random message profile 𝒎(𝑡) = (𝒎1(𝑡), 𝒎2(𝑡), … , 𝒎𝑛(𝑡)). As the type 

profile is itself random, the actual messages are given by the random element 𝒎(𝒕) of 𝑀.     

There are two senses in which the messages the mechanism sends may not reflect the 

players’ types. The difference between them may seem subtle but is in fact highly 

consequential; each version gives rise to a different set of possible outcomes. With a type-

unaware mechanism, the (random) message each player receives does not factor in the type 

profile: 

𝒎𝑖(𝑡) = 𝒎𝑖(𝑡′), 𝑖 ∈ 𝑁,  𝑡, 𝑡′ ∈ 𝑇.  

This means that the player’s own type does not affect the signal,  

𝒎𝑖(𝑡) = 𝒎𝑖(𝑡𝑖
′, 𝑡−𝑖), 𝑖 ∈ 𝑁,  𝑡, 𝑡′ ∈ 𝑇 (𝑆) 

(where (𝑡𝑖
′, 𝑡−𝑖) is the type profile that takes player 𝑖’s type from 𝑡′ and the other players’ 

types from 𝑡), and neither do the types of the other players, 

𝒎𝑖(𝑡) = 𝒎𝑖(𝑡𝑖 , 𝑡−𝑖
′ ), 𝑖 ∈ 𝑁,  𝑡, 𝑡′ ∈ 𝑇. (𝑂) 

A corresponding pair of less restrictive conditions is that the message each player 𝑖 receives 

does not provide any information about that player’s type,   

𝒎𝑖(𝑡) =
𝑑

𝒎𝑖(𝑡𝑖
′, 𝑡−𝑖), 𝑖 ∈ 𝑁,  𝑡, 𝑡′ ∈ 𝑇, (�̃�) 

or about the other players’ types, 

𝒎𝑖(𝑡) =
𝑑

𝒎𝑖(𝑡𝑖 , 𝑡−𝑖
′ ), 𝑖 ∈ 𝑁,  𝑡, 𝑡′ ∈ 𝑇, (�̃�) 

where =
𝑑

 denotes equality in distribution. The last property �̃� means that the message to 

each player 𝑖 is conditionally independent of the other players’ types, given the player’s own 

type 𝑡𝑖. It corresponds to the quantum no-signaling property. 

Properties 𝑆 and �̃� limit a mechanism’s ability to provide different cues to different types of 

player. However, different types may still interpret the same message differently, with each 

type prompted to choose a different action. Thus, the action of player 𝑖 is jointly determined 

by the message and by the player’s strategy 𝜎𝑖: 𝑇𝑖 × 𝑀𝑖 → 𝐴𝑖, which specifies an action 𝑎𝑖 

for each type 𝑡𝑖  and received message 𝑚𝑖. A pair (𝒎, 𝜎) consisting of a mechanism 𝒎 and a 

profile of strategies 𝜎 = (𝜎1, 𝜎2, … , 𝜎𝑛) is a correlated strategy. The corresponding random 

action profile is the random vector 𝒂 = (𝒂1, 𝒂2, … , 𝒂𝑛) where 

𝒂𝑖 = 𝜎𝑖(𝒕𝑖 , 𝒎𝑖(𝒕)), 𝑖 ∈ 𝑁. (2) 
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Properties 𝑂 and �̃� also limit the mechanism, and consequentially restrict the possible 

random action profiles. These restrictions are not the same: those resulting form 𝑂 are more 

severe than for �̃� (Milchtaich 2014). An example showing this is given in the next subsection. 

2.2 Correlated strategy distributions 
A correlated strategy distribution (CSD) in a Bayesian game or game form is any probability 

measure 𝜂 on 𝑇 × 𝐴 whose marginal on 𝑇 coincides with the common prior 𝜆. As the latter 

specifies the probability of each type profile 𝑡, a CSD only adds the joint distribution of the 

players’ action for every 𝑡 with 𝜆𝑡 > 0. (For 𝑡 lying outside the support of the common prior, 

any joint distribution of actions is consistent with any CSD.) The example shown in Table 1 

refers to a two-player Bayesian game form where the two possible actions for each player 

are +1 and −1 and the common prior has full support, so that all type profiles are possible. 

For every CSD 𝜂 there exists a mechanism 𝒎 such that, for some strategy profile 𝜎, 𝜂 is the 

correlated strategy distribution of the correlated strategy (𝒎, 𝜎) in the sense that it is the 

joint distribution of the random type profile 𝒕 and the random action profile 𝒂 given by (2). 

Any such mechanism is said to implement 𝜂. A simple mechanism implementing the CSD in 

Table 1 is one where the message to player 1 is determined by a coin toss between +1 and 

−1 and the message to player 2 is then determined by the type profile: identical to the 

message to 1 if at least one type is not I and the opposite message if both types are I. The 

corresponding players’ strategies are simply to play according to their signal.  

In the coin-toss mechanism just described, each player’s message is equally likely to be +1 

or −1 regardless of the type profile and it therefore gives no information about the other 

player’s type; condition �̃� is satisfied. However, the CSD in Table 1 is not implementable by 

any type-unaware mechanism or even by a mechanism satisfying 𝑂 (Milchtaich 2004, 2014). 

The reason is that, for a correlated strategy (𝒎, 𝜎) in which 𝒎 has property 𝑂, the joint 

distribution of the players’ actions for every type profile 𝑡 = (𝑡1, 𝑡2) coincides with the 

distribution of (𝒂1
𝑡1 , 𝒂2

𝑡2) , where  

𝒂𝑖
𝑗

= 𝜎𝑖(𝑗, 𝒎𝑖(𝑗, 𝑗)), 𝑖 = 1,2, 𝑗 = I, II. 

The joint distribution of these four elements necessarily satisfies the following pair of Bell 

inequalities (see Brunner and Linden 2013): 

−2 ≤ −𝜌I,I + 𝜌I,II + 𝜌II,I + 𝜌II,II ≤ 2, (3) 

             Player 2 

   Type 𝐈   Type 𝐈𝐈  

Player 1 

 𝝀𝐈,𝐈 +1 −1  𝝀𝐈,𝐈𝐈 +1 −1  

Type 𝐈 
+1 0 0.5  0.5 +1 0.5 0  0.5 
−1 0.5 0  0.5 −1 0 0.5  0.5 

  0.5 0.5   0.5 0.5  
 𝝀𝐈𝐈,𝐈 +1 −1  𝝀𝐈𝐈,𝐈𝐈 +1 −1  

Type 𝐈𝐈 
+1 0.5 0  0.5 +1 0.5 0  0.5 
−1 0 0.5  0.5 −1 0 0.5  0.5 

  0.5 0.5   0.5 0.5  

TABLE 1  A CORRELATED STRATEGY DISTRIBUTION IN A TWO-PLAYER BAYESIAN GAME. EACH OF THE 𝟐 × 𝟐 

TABLES GIVES THE JOINT DISTRIBUTION (AND THE MARGINALS) OF THE PLAYERS’ ACTIONS FOR A SINGLE 

TYPE PROFILE 𝒕, WHOSE PROBABILITY 𝝀𝒕 > 𝟎 IS SPECIFIED BY THE COMMON PRIOR.  
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where 

𝜌I,II = Pr(𝒂1
I = 𝒂2

II) − Pr(𝒂1
I ≠ 𝒂2

II) = 𝔼[𝒂1
I 𝒂2

II] 

and similarly for the other 𝜌’s. (When all actions are equally likely to be +1 and −1, as in 

Table 1, the 𝜌’s are actually the correlation coefficients between the actions.) The reason 

the pair of inequalities (3) must hold is that it is easily seen to be equivalent to the pair 

Pr(𝒂1
I = 𝒂2

I ) ≤ Pr(𝒂1
I = 𝒂2

II) + Pr(𝒂1
II = 𝒂2

I ) + Pr(𝒂1
II = 𝒂2

II) 

Pr(𝒂1
I ≠ 𝒂2

I ) ≤ Pr(𝒂1
I ≠ 𝒂2

II) + Pr(𝒂1
II ≠ 𝒂2

I ) + Pr(𝒂1
II ≠ 𝒂2

II), 

and these inequalities hold because every realization (𝑎1
I , 𝑎1

II, 𝑎2
I , 𝑎2

II) necessarily satisfies an 

even number of the equalities in the first line. But the CSD described in Table 1 does not 

satisfy (3), as the expression in the middle equals 4. Therefore, this CSD is not 

implementable by any mechanism with property 𝑂, and in particular by any type-unaware 

mechanism. 

The argument used for the last impossibility result can be generalized into a necessary and 

sufficient set of conditions for a CSD in a 2 × 2 Bayesian game with two types for each player 

to be implementable by a type-unaware mechanism. More precisely, these conditions, 

which are laid out below, concern given four joint distributions of players’ actions, one for 

each type profile 𝑡. (As indicated, for 𝑡 lying outside the support of the common prior, any 

joint distribution is consistent with any CSD. Therefore, specifying a joint distribution also for 

such 𝑡 goes beyond specifying the CSD.) The same conditions are also necessary and 

sufficient for implementability by a mechanism with property 𝑂, which is therefore 

equivalent to implementability by a type-unaware mechanism.  

As explained, every correlated strategy where the mechanism has property 𝑂 induces a 

distribution over the 16 action quartets of the form (𝑎1
I , 𝑎1

II, 𝑎2
I , 𝑎2

II). This distribution can be 

viewed as a probability vector lying in the unit simplex in ℝ16. In the other direction, every 

distribution over action quartets corresponds to some correlated strategy with a type-

unaware mechanism, for example, the correlated strategy where a quartet is randomly 

drawn according to the distribution, each player 𝑖 is told (𝑎𝑖
I, 𝑎𝑖

II), and then chooses the first 

or second action depending on the player’s actual type. The joint distribution of actions for 

each type profile is a marginal of the distribution over action quartets. Specifically, each 

entry in the 2 × 2 table describing it (as in Table 1) is the sum of four elements of the 

probability vector. For example, when player 1 has type I and player 2 has type II, the 

probability that the former plays −1 and the latter plays +1 is given by  

Pr(−1, +1, +1, +1) + Pr(−1, +1, −1, +1) + Pr(−1, −1, +1, +1) + Pr(−1, −1, −1, +1). 

The collection of all possible 16 numbers in these four 2 × 2 tables is therefore a linear 

transform of the unit simplex and is thus also a polytope in ℝ16. As such, it can be described 

as the intersection of a finite number of half-spaces, in other words, as the collection of all 

points satisfying a particular set of linear equalities and (weak) inequalities. Some of these 

are obvious. The four numbers in each 2 × 2 table must be nonnegative and sum up to 1, 

and the marginals on the actions of each player type must be the same for both types of the 

other player: a “no-signaling” condition for actions. The non-obvious inequalities are called 

the Bell inequalities. They are obtained from (3) by moving the single minus sign in the 

middle expression to each of the four 𝜌’s in turn. No-signaling and the eight Bell inequalities 
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are therefore necessary and sufficient conditions for the existence of a distribution over 

action quartets such that the marginals on action pairs coincide with the given four joint 

distributions of players’ actions.3 As shown, this “marginality” condition is necessary for the 

actions to be determined by a mechanism with property 𝑂 and is sufficient for them to be 

determined by a type-unaware mechanism (that is, one satisfying both 𝑆 and 𝑂). These 

logical relations mean that the three conditions are equivalent.  

Observe that each of the three conditions is also equivalent to implementability by a 

mechanism with property 𝑂 that directly tells the players how to play, with the 

corresponding players’ strategies being to do as told. This is because, for any mechanism 𝒎 

with property 𝑂 and a corresponding strategy profile, 𝒎 can be modified by adding to it an 

element that “translates” each message according to the receiving player’s strategy and 

directly instructs the player how to act. Obviously, the modified mechanism also has 

property 𝑂.  

2.3 Quantum advantage in CSDs 
A different correlated strategy distribution in the game form considered in Table 1 is shown 

in Table 2. Bell inequalities are still not satisfied, as 

−𝜌I,I + 𝜌I,II + 𝜌II,I + 𝜌II,II = −(−1/√2) + 1/√2 + 1/√2 + 1/√2 = 2√2 > 2. 

Therefore, this CSD cannot be obtained by using any classical mechanism that does not 

know the players’ types. Whoever, it can be obtained by using a quantum mechanism. 

A suitable quantum mechanism consists of a single pair of entangled particles, like either of 

the pairs in Figure 1, with each player measuring the spin of a different particle. Unlike in 

Figure 1, Alice’s 𝑥 and 𝑧 directions are rotated with respect to Bob’s, not 180°, but only 135°, 

so that her 𝑥 direction forms this angle with both his 𝑥 and 𝑧 directions and her 𝑧 direction is 

135° from his 𝑧 and 45° from his 𝑥. Suppose that Alice measures the 𝑧 component of the 

spin of her particle if her type is I and the 𝑥 component if it is II while Bob does the 

opposite: 𝑥 for type I and 𝑧 for II. The angle between the two directions of measurement is 

then 45° if both types are I and is 135° otherwise. In the former case, the correlation 

coefficient between the outcomes is − cos 45° = −1/√2, and in the latter, it is 

 
3 The necessity of the Bell inequalities is proved by the argument presenting above (which concerns 
the particular pair (3)). Their sufficiency (when the no-signaling condition also holds) was first 
established by Fine (1982), whose proof uses an alternative form of the Bell inequalities, sometimes 
called the CH inequalities after Clauser and Horne (1974). This form assumes no-signaling.  

              Player 2 
   Type 𝐈   Type 𝐈𝐈  

Player 1 

 𝝀𝐈,𝐈 +1 −1  𝝀𝐈,𝐈𝐈 +1 −1  

Type 𝐈 
+1 0.25−𝛼  0.25+𝛼  0.5 +1 0.25+𝛼  0.25−𝛼  0.5 
−1 0.25+𝛼 0.25−𝛼  0.5 −1 0.25−𝛼 0.25+𝛼  0.5 

  0.5 0.5   0.5 0.5  
 𝝀𝐈𝐈,𝐈 +1 −1  𝝀𝐈𝐈,𝐈𝐈 +1 −1  

Type 𝐈𝐈 
+1 0.25+𝛼  0.25−𝛼  0.5 +1 0.25+𝛼  0.25−𝛼  0.5 
−1 0.25−𝛼 0.25+𝛼  0.5 −1 0.25−𝛼 0.25+𝛼  0.5 

  0.5 0.5   0.5 0.5  

TABLE 2  QUANTUM ADVANTAGE IN CORRELATED STRATEGY DISTRIBUTIONS. THIS CSD, WHERE 𝜶 =

√𝟐/𝟖, IS NOT IMPLEMENTABLE BY ANY CLASSICAL TYPE-UNAWARE MECHANISM BUT IS IMPLEMENTABLE 

BY A QUANTUM MECHANISM. 
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− cos 135° = 1/√2 (Greenberger et al. 1990). These correlation coefficients and the fifty-

fifty marginals mean that, if Alice and Bob always choose the action matching the outcome 

of their measurement, then (regardless of who is player 1 and who is 2) the joint distribution 

of their actions for every type profile is as in Table 2.  

Significantly, even a quantum mechanism cannot implement the CSD specified by Table 1. 

This is because a value of 4 for the expression in the middle of (3) cannot be reached. In fact, 

the largest possible deviation from Bell inequalities is the last example’s value of 2√2 

(Tsirelson 1980). 

3 Correlated equilibria 
In the previous section, there is no reference in any of the subsections to the players’ payoff 

functions. The discussion only concerns the game form. This makes it only a first step in the 

analysis of a Bayesian game, albeit a useful one, in particular with regard to impossibilities. 

For if a counterexample shows that attaining a certain outcome with a certain kind of 

mechanism is mechanically impossible, then it also proves impossibility in the more 

complicated case where the players cannot be assigned arbitrary actions because their 

incentives need to be taken into account. The incentive-compatibility constraint is that, 

given the type 𝒕𝑖  of a player 𝑖 and the message 𝒎𝑖(𝒕) the player received, the conditional 

expectation of 𝑖’s payoff cannot be increased by replacing the action 𝒂𝑖 specified by the 

player’s strategy 𝜎𝑖  (Eq. (2)) by any action 𝑎𝑖
′ .  

Definition 1  For a Bayesian game, a correlated strategy (𝒎, 𝜎) is a correlated equilibrium if 

the corresponding random action profile 𝒂 is such that, for every player 𝑖 and action 𝑎𝑖
′ for 

that player, 

𝔼[𝑢𝑖(𝒕, 𝒂) − 𝑢𝑖(𝒕, (𝑎𝑖
′, 𝒂−𝑖)) ∣ 𝒕𝑖 , 𝒎𝑖(𝒕)] ≥ 0. 

In this case, the correlated strategy distribution is said to be a correlated equilibrium 

distribution (CED) and the 𝑛-tuple (𝔼[𝑢𝑖(𝒕, 𝒂)])𝑖=1
𝑛  of the players’ expected payoffs is a 

correlated equilibrium payoff vector (CEP). In the special cases where the mechanism 𝒎 

satisfies 𝑂 or satisfies both 𝑆 and 𝑂 (type-unaware mechanism), the correlated equilibrium 

is called a type or strategy correlated equilibrium, respectively, and the same qualifiers are 

attached to the CED and CEP. 

The qualifier ‘type’ (Cotter 1994) refers to the fact that the mechanism is allowed to send 

different messages to different types of the same player 𝑖, while ‘strategy’ (Cotter 1991) 

means that it is left for the player to interpret the mechanism’s message as a map from 𝑇𝑖 to 

𝐴𝑖, in other words, as a strategy in the Bayesian game.  

Example 1  The CHSH game (Clauser et al. 1969) is the common-interest 2 × 2 Bayesian 

game obtained by completing the specification of the game form considered in Section 2.2 

with 𝜆𝑡 = 0.25 for all 𝑡 and defining the payoff functions in the following manner: If both 

players have type I, their payoffs are both −1 if they choose the same action and 1 if they 

choose different actions. For the other three type profiles, the payoffs are 1 in the first case 

and −1 in the second. Obviously, the CSD in Table 1 is a CED in this game, with the 

correlated equilibrium payoff 1 for both players. However, these are not strategy correlated 

equilibrium distribution and payoff. This is because, with any type-unaware mechanism, the 
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expected payoff for each player, which is easily seen to be given by one-quarter the 

expression in the middle of the Bell inequalities (3), can be at most 1/2.4     

As shown in Section 2.3, the quantum mechanism consisting of a pair of spin-entangled 

particles and the players’ strategies of measuring the spin in the directions specified in that 

section and playing accordingly achieve the (quantum) highest possible expected payoff of 

1/4 × 2√2 = 1/√2. They therefore constitute a quantum correlated equilibrium in the 

CHSH game, with the CED in Table 2. Viewed in this light, Table 2 may be interpreted as 

demonstrating quantum advantage also in CEDs or, perhaps more significantly, in correlated 

equilibrium payoffs. Indeed, this is how this example is usually presented (Brunner and 

Linden 2013). Similarly, the examples of the Mermin–Peres magic square game and the GHZ 

game (Sections 1.1 and 1.2) also revolve around classically unachievable payoffs. However, 

as shown below, all these examples can also be viewed in a different light, which demotes 

payoff functions to a supporting role.  

3.1 Separating hyperplanes 
The correlated strategy distribution of a correlated strategy (𝒎, 𝜎) is, by definition, a 

probability measure 𝜂 on the (finite) product space 𝑇 × 𝐴, assigning a probability 𝜂({(𝑡, 𝑎)}) 

to every pair (𝑡, 𝑎) consisting of a type profile and an action profile. It may therefore be 

viewed as a point in ℝ|𝑇×𝐴|. Of particular interest here is the subset of all points that 

correspond to some type-unaware mechanism. The next lemma shows that this set is a 

polytype.  

Lemma 1  In every Bayesian game form, the collection of all CSDs implementable by type-

unaware mechanisms is a polytope. 

Proof. By Propositions 2 and 5 in Milchtaich (2014), this collection is a linear transform of a 

polytope. That polytope consists of all probability measures on 𝐴1
𝑇1 × 𝐴2

𝑇2 × ⋯ × 𝐴𝑛
𝑇𝑛, the set 

of strategy profiles in the game. (In the special case of a 2 × 2 game with two types for each 

player, the linear transformation is explicitly given in the last paragraph of Section 2.2.) ∎ 

It follows from the lemma, by a standard separation theorem, that a CSD is not 

implementable by a type-unaware mechanism if and only if there is a hyperplane separating 

it from all CDSs that are thus implementable. In other words, there is, in this case, a linear 

functional 𝑓 on ℝ|𝑇×𝐴| whose value at that CSD is greater than the maximum of 𝑓 in the 

polytope identified by Lemma 1. Now, the linearly of 𝑓 means that the value it returns at 

every CSD 𝜂 can be written as 

𝑓(𝜂) = ∑ 𝑏(𝑡,𝑎)

(𝑡,𝑎)∈𝑇×𝐴

𝜂({(𝑡, 𝑎)}), 

where the 𝑏’s are constant coefficients. This expression can be naturally interpreted as an 

expected payoff. Specifically, it is the expected payoff for any correlated strategy with the 

CSD 𝜂 when the players share the common payoff function 𝑢 specified by the coefficients: 

𝑢(𝑡, 𝑎) = 𝑏(𝑡,𝑎), 𝑡 ∈ 𝑇, 𝑎 ∈ 𝐴. 

 
4 The maximum of 1/2 is achieved by the trivial strategy profile where both players always play +1. 
Therefore, this strategy profile and any type-unaware mechanism together constitute a strategy 
correlated equilibrium in the CHSH game. 
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It is thus a corollary of Lemma 1 that, for every Bayesian game form, a correlated strategy 

(𝒎, 𝜎) produces (via (2)) a joint distribution of type and action profiles that is different from 

that produced by any correlated strategy (𝒎′, 𝜎′) with type-unaware mechanism if and only 

if there is some common payoff function 𝑢 for which (𝒎, 𝜎) gives a higher expected payoff 

than every such (𝒎′, 𝜎′) does. This corollary means that, as indicated, all the examples 

above, in which the players’ payoffs are always equal, can be viewed as concerning game 

forms rather than games, and correlated strategy distributions rather than correlated 

equilibria.     

3.2 Games with non-identical payoffs 
A major difference between correlated equilibria in common-interest games as above and 

those in general Bayesian games is that the latter may require a mechanism that sends 

different messages to different types of some player 𝑖, which means that condition 𝑆 does 

not hold. Specifically, the cue provided to some type 𝑡𝑖  needs to be such that it only 

indicates the action assigned to that type and not those of the other types of player 𝑖. The 

reason the actions assigned to the other types should not be disclosed is that they may tell 𝑡𝑖  

too much about the actions of the other players (as they are correlated with 𝑖’s action), so 

that it would sometimes be possible for 𝑡𝑖  to realize that the intended action is in fact not 

optimal: some alternative action can be expected to yield a higher payoff. The next example 

illustrates this possibility and demonstrates its significance.  

Example 2  In the two-player Bayesian game described in Table 3, the specified correlated 

strategy distribution is a correlated equilibrium distribution. This is because, with a 

mechanism that simply randomizes according to the specified joint distribution of actions for 

each type profile and tells each player what action to take, heeding the mechanism always 

guarantees player 1 the highest expected payoff for the player’s type (and the same is 

trivially true for player 2, who for simplicity is assumed to have a constant payoff function). 

For example, if player 1 has type I and the mechanism’s recommendation is to play −1, 

doing so yields the player an expected payoff of 25/68 × 4, whereas playing +1 would yield 

the lower payoff 9/68 × 4 + 2/68 × 15. The correlated equilibrium payoff for player 1 is 5. 

The mechanism just described has properties �̃� and �̃�. The message it sends to each player 

does not provide any information about either player’s type, as it is equally likely to be +1 

or −1 regardless of the type profile. But the mechanism does base its recommendations on 

the types and it is thus not type-unaware (properties 𝑆 and 𝑂). However, as the correlated 

                                                              Player 2 
                       Type 𝐈                        Type 𝐈𝐈  

Player 1 

 0.25 +1 −1  +1 −1  0.25 +1 −1  +1 −1  

Type 𝐈 
+1 0 4  9𝛽 25𝛽  0.5 +1 15 0  32𝛽 2𝛽  0.5 
−1 4 0  25𝛽 9𝛽  0.5 −1 0 0  2𝛽 32𝛽  0.5 

     0.5 0.5      0.5 0.5  
 0.25 +1 −1  +1 −1  0.25 +1 −1  +1 −1  

Type 𝐈𝐈 
+1 15  0  32𝛽 2𝛽  0.5 +1 0 4  9𝛽 25𝛽  0.5 
−1 0 0  2𝛽 32𝛽  0.5 −1 4 0  25𝛽 9𝛽  0.5 

     0.5 0.5      0.5 0.5  

TABLE 3  QUANTUM ADVANTAGE IN CORRELATED EQUILIBRIUM DISTRIBUTIONS. FOR EACH TYPE PROFILE, 
THE LEFT 𝟐 × 𝟐 TABLE IS PLAYER 1’S PAYOFF MATRIX AND THE RIGHT ONE, WHERE 𝜷 = 𝟏/𝟔𝟖, SPECIFIES  

THE JOINT DISTRIBUTION OF THE PLAYERS’ ACTIONS. PLAYER 2 HAS A CONSTANT PAYOFF OF 𝟎. SEE 

EXAMPLE 2 FOR MORE DETAILS. 
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strategy distribution satisfies the Bell inequalities (in particular, the middle expression in (3) 

is 120/68), it is also implementable by a type-unaware mechanism. An example of such a 

mechanism is the following one. Messages to player 𝑖 have the form 𝑚𝑖 = (𝑎𝑖
I, 𝑎𝑖

II), where 

the first and second components are the actions recommended for the player’s types I and 

II, respectively. Pairs of messages (𝑚1, 𝑚2) can therefore be written as (𝑎1
I , 𝑎1

II, 𝑎2
I , 𝑎2

II). This 

quartet has the value (−1, −1, −1, −1), (−1, +1, +1, −1) or (−1, −1, +1, +1) with 

probability 9/68, 23/68 and 2/68, respectively, and the same probabilities apply to the 

“opposite” three quartets, where all the signs are inverted. It is easy to check that the 

correlated strategy consisting of this mechanism and the players’ strategies of following the 

recommendations has the above correlated strategy distribution. However, although, as 

shown, this CSD is a correlated equilibrium distribution, the correlated strategy just 

described is not a correlated equilibrium. If player 1 receives the message 𝑚1 = (−1, −1), 

he can conclude that 𝑚2 is either (−1, −1) or (+1, +1). In the former case, both types of 

player 1 would increase their expected payoff from 0 to 1/2 × 4 by playing +1 rather than 

the assigned action −1. In the latter case, they would increase the payoff from 1/2 × 4 to 

1/2 × 15. Thus, playing according to the message is not optimal for both types of player 1. 

The incentive-incompatibility of the last mechanism’s recommendations points to the 

problem with trying to implement the CED in Table 3 with a type-unaware mechanism. 

However, it is not a definite proof that the problem cannot be overcome, in other words, 

that the CED in question is not a strategy CED. What would prove this is a demonstration 

that the indicated deviation is beneficial for some type of player 1 under any distribution of 

the quartets (𝑎1
I , 𝑎1

II, 𝑎2
I , 𝑎2

II) that gives the four marginals on action pairs specified in Table 

3. (There are infinitely many such distributions.) This goal can be formulated as a linear 

programming problem and tackled by a standard mathematical software package. I used 

Wolfram Mathematica for this and found that the above deviation is indeed always 

profitable, so that no type-unaware mechanism is fit for the job. It turns out, however, that a 

quantum mechanism is so. 

3.3 Quantum advantage in CEDs 
A quantum correlated equilibrium with the distribution in Table 3 can be constructed by 

again using a mechanism employing one of the two pairs of spin-entangled particles in 

Figure 1. A strategy for each player specifies two directions. The first direction indicates the 

spin component of the player’s particle measured by type I and the second direction 

indicates this for type II. The player then chooses the action (+1 or −1) coinciding with the 

outcome of the measurement. For player 2, the two directions will be Bob’s 𝑥 and 𝑧 

directions, respectively, in Figure 1. As player 2 is indifferent about the outcome, from that 

player’s perspective this choice is as good as any other. Player 1’s first direction may be 

described by the angle 𝜃 it forms with Bob’s 𝑥 direction; the angle with Bob’s 𝑧 direction is 

90° − 𝜃.5 It remains to find the optimal 𝜃, that is, the best response (with respect to the 

payoffs in Table 3) of type I of player 1 to player 2’s strategy. By symmetry, player 1’s 

optimal second direction, which is that employed by type II, is at the same angle of 𝜃 with 

Bob’s 𝑧 direction; the angle with Bob’s 𝑥 direction is 90° − 𝜃.  

 
5 This description assumes that player 1’s two directions also lay in Bob’s 𝑥𝑧 plane. For simplicity, this 
could be made an explicit restriction on the choice of strategies. However, such a restriction is in fact 
unnecessary, because no direction outside the plane outperforms all those in it. Intuitively, the latter 
are the most informative directions.  
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For every −180° < 𝜃 ≤ 180°, the correlation coefficient between the outcome of player 1’s 

measurement and that of the same type of player 2 is − cos 𝜃 (Greenberger et al. 1990). As 

both measurement values are equally likely to be +1 or −1, their joint distribution is  

 +1 −1  

+1  0.25 (1 − cos 𝜃) 0.25 (1 + cos 𝜃) 0.5 
−1  0.25 (1 + cos 𝜃) 0.25 (1 − cos 𝜃) 0.5 

 0.5 0.5  

For the other type of player 2, 𝜃 in the table is replaced with 90° − 𝜃, equivalently, cos is 

replaced with sin. Using these two conditional distributions and the fact that player 2’s two 

types are equally probable, player 1 can compute, upon getting a particular measurement 

value, the conditional expectation of the payoff for each of the two actions, +1 and −1, and 

choose the action giving the higher payoff. The player’s expected payoff is the average of 

these maximal payoffs for the two possible outcomes of measurement, an expression which 

simplifies to  

23

8
+ max {

15

8
, |

15

8
sin 𝜃 − cos 𝜃|}. 

The optimal 𝜃 is therefore determined by the first-order condition (15/8) cos 𝜃 + sin 𝜃 = 0. 

It follows that a best-response strategy for player 1 is to measure in the direction 𝜃 =

arctan(−15/8) ≈ −62° and to play according to the outcome. Plugging this 𝜃 into the 

above tables gives that the joint distributions of actions are as in Table 3. The conclusion 

proves that these quantum mechanism and strategies constitute a quantum correlated 

equilibrium having the CED in the table. This contrasts with the classical case, where, as 

shown, no type-unaware mechanism can give such a correlated equilibrium.  

4 General quantum correlated equilibria 
A general quantum state is a unit vector |𝜓⟩ in a finite-dimensional complex Hilbert space, 

the state space. It may be specified either abstractly or as a concrete state of a physical 

system.6 An observable is a Hermitian, or self-adjoint, linear operator on the state space. In 

the physical case, it represents a measurable physical quantity. An 𝑛-player quantum 

mechanism is a quantum state together with a nonempty set of observables for each player 

𝑖 such that each of 𝑖’s observables is compatible with every observable of every other player 

𝑗. Mathematically, compatibility means that the two observables are commuting operators. 

Physically, it means that the players’ measurements do not interfere with one another, and 

so the outcome for player 𝑖 is statistically the same for all choices of measurements by the 

other players and there is thus no way for 𝑖 to know what the others are measuring. The set 

of possible measurement values for an operator is its spectrum, the set of all eigenvalues. 

The probability of obtaining each outcome is determined by projecting |𝜓⟩ on the 

corresponding eigenspace: the probability is the square of the length of the projection 

(Cohen-Tannoudji et al. 2020). In the following, the set 𝑀𝑖 of all possible measurement 

 
6 A possible extension is to allow also mixed, or “random”, quantum states, which are probability 
distributions over (pure) states. However, such a formal extension would not translate to a substantial 
one. This is because a mixed state can always by purified by considering a higher-dimensional state 
space (see Hughston et al. 1993). In other words, probabilistic uncertainly about the quantum state of 
a system can always be viewed as reflecting the quantum uncertainly embodied in the (pure) 
quantum state of a larger system, of which the one under consideration is a part.  
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values for a player 𝑖 (which is the union over all the player’s observables, a potentially 

infinite set) is assumed finite.  

For an 𝑛-player Bayesian game (or game form) Γ, an 𝑛-player quantum mechanism 

determines a new game (respectively, a game form), where a strategy for a player 𝑖 has two 

components. One component specifies the (admissible) observable each type 𝑡𝑖  chooses. 

The other is a “classical” strategy as in Section 2, that is, a mapping 𝜎𝑖: 𝑇𝑖 × 𝑀𝑖 ⟶ 𝐴𝑖  that 

specifies, for each type 𝑡𝑖  and measurement value 𝑚𝑖, the action that player 𝑖 takes. 

A quantum mechanism and a corresponding profile of strategies together constitute a 

quantum correlated strategy (QCS) in Γ. A quantum CSD is any correlated strategy 

distribution (see Section 2.2) that is the joint distribution of the players’ type and action 

profiles in some QCS. Given the payoff function 𝑢𝑖 of a player 𝑖, a quantum CSD determines 

the distribution, and in particular the expectation, of the player’s payoff.  

Definition 2  For a Bayesian game, a quantum correlated strategy where the expected payoff 

for every player 𝑖 cannot be increased by changing only 𝑖’s strategy is a quantum correlated 

equilibrium (QCE), its correlated strategy distribution is a quantum CED, and the 𝑛-tuple of 

the players’ expected payoffs is a quantum CEP.  

It is shown below that a quantum CED or CEP is also a CED or CEP, respectively, according to 

Definition 1. That is, it coincides with the correlated strategy distribution or payoff vector of 

some classical correlated equilibrium (𝒎, 𝜎) as in Section 3.  

For a given QCS, consider any classical mechanism 𝒎 such that, for every type profile 𝑡 =

(𝑡1, 𝑡2, … , 𝑡𝑛), the distribution of 𝒎(𝑡) = (𝒎1(𝑡), 𝒎2(𝑡), … , 𝒎𝑛(𝑡)) coincides with that of 

the (random) profile of measurement values that results when each player 𝑖 chooses the 

observable that the QCS specifies for player type 𝑡𝑖. It is easy to see that the CSD of the 

classical correlated strategy (𝒎, 𝜎), where 𝜎 = (𝜎1, 𝜎2, … , 𝜎𝑛) is the profile of classical 

strategies specified by the QCS, coincides with the quantum CSD. If the QCS is a QCE, then in 

particular no player 𝑖 can increase his expected payoff by choosing, when the player’s type is 

𝑡𝑖, the observable specified for another type 𝑡𝑖
′ and/or switching to a different classical 

strategy 𝜎𝑖
′: 𝑇𝑖 × 𝑀𝑖 → 𝐴𝑖. Thus, a QCE necessarily satisfies the condition that 

𝔼[𝑢𝑖(𝒕, 𝒂) − 𝑢𝑖(𝒕, 𝒂′) ∣ 𝒕𝑖] ≥ 0, (4) 

where 𝒂 is the random action profile defined by (2) and 𝒂′ = (𝒂1
′ , 𝒂2

′ , … , 𝒂𝑛
′ ) is given by  

𝒂𝑖
′ = 𝜎𝑖

′(𝒕𝑖 , 𝒎𝑖(𝑡𝑖
′, 𝒕−𝑖)),

𝒂𝑗
′ = 𝜎𝑗(𝒕𝑗 , 𝒎𝑗(𝑡𝑖

′, 𝒕−𝑖)), 𝑗 ≠ 𝑖.
(5) 

This necessary condition for QCE is also sufficient if the following “tightness” condition 

holds: every observable admissible to a player 𝑖 is assigned by the QCS to at least one of the 

player’s types. Obviously, this can be so only if the set of admissible observables is not larger 

than 𝑇𝑖. This is not the case for the example in Section 3.3, where the set has the cardinality 

of the continuum. However, restricting attention to QCSs where the observables satisfy the 

tightness condition would not affect the sets of quantum CSDs and CEDs, because 

eliminating possibilities (that is, observables) that are left unused can obviously only 

reinforce the optimality of those that are being used. A QCS satisfying the tightness 

condition is a QCE if and only if condition (4), which is formulated entirely in terms of a 

corresponding classical correlated strategy (𝒎, 𝜎), holds. 
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5 Communication equilibria 
A fundamental property of quantum mechanisms is that, as discussed in the Introduction,  

they exclude any kind of communication between players. Yet, somewhat paradoxically, 

condition (4) is precisely the definition of communication equilibrium (Milchtaich 2014). 

Such an equilibrium differs from correlated equilibrium is that the message exchange 

between the mechanism and the players is two-way. First, each player sends a message to 

the mechanism, which without loss of generality is assumed to be a type report.7 Then, 

based on the profile of reported types, messages are sent in the opposite direction. The 

mechanism in a communication equilibrium thus serves as a mediator, or is just a (possibly, 

noisy) communication protocol.  

Definition 3  For a Bayesian game, a correlated strategy (𝒎, 𝜎) that satisfies condition (4) 

(with 𝒂 and 𝒂′ given by (2) and (5)) for every player 𝑖, type 𝑡𝑖
′ and strategy 𝜎𝑖

′: 𝑇𝑖 × 𝑀𝑖 → 𝐴𝑖 

is a communication equilibrium, its correlated strategy distribution is a communication 

equilibrium distribution (MED), and the 𝑛-tuple of the players’ expected payoffs is a 

communication equilibrium payoff vector (MEP). 

A communication equilibrium has the same formal structure (𝒎, 𝜎) as a correlated 

equilibrium (Section 2) but there is an interpretation difference. Here, the type profile fed 

into the mechanism is that of the reported types, not the true ones. Correspondingly, the 

incentive-compatibility constraint for communication equilibrium, which is expressed by (4), 

differs from that for correlated equilibrium in also requiring the type reports to be truthful. 

As the proof of the following proposition shows, Definition 1 is equivalent to Definition 3 

with truthfulness assumed.   

Proposition 1  Every communication equilibrium is a correlated equilibrium, and therefore 

every MED is a CED and every MEP is a CEP.   

Proof  With truthful reports (𝑡𝑖
′ = 𝑡𝑖), inequality (4) becomes  

𝔼[𝑢𝑖(𝒕, 𝒂) − 𝑢𝑖(𝒕, (𝜎𝑖
′(𝒕𝑖 , 𝒎𝑖(𝒕)), 𝒂−𝑖)) ∣ 𝒕𝑖] ≥ 0. (6) 

Thus, a necessary condition for communication equilibrium is that (6) holds for all 𝑖 and 𝜎𝑖
′. 

For a strategy of the form  

𝜎𝑖
′(𝑡𝑖 , 𝑚𝑖) = {

𝑎𝑖
′,               𝑡𝑖 = 𝑡𝑖

∗, 𝑚𝑖 = 𝑚𝑖
∗  

𝜎𝑖(𝑡𝑖 , 𝑚𝑖),  otherwise
, 

with 𝑡𝑖
∗ and 𝑚𝑖

∗ such that Pr(𝒕𝑖 = 𝑡𝑖
∗, 𝒎𝑖(𝒕) = 𝑚𝑖

∗) > 0 and any action 𝑎𝑖
′, this requirement is 

equivalent to  

𝔼[𝑢𝑖(𝒕, 𝒂) − 𝑢𝑖(𝒕, (𝑎𝑖
′, 𝒂−𝑖)) ∣ 𝒕𝑖 = 𝑡𝑖

∗, 𝒎𝑖(𝒕) = 𝑚𝑖
∗] ≥ 0. 

The latter is the requirement in Definition 1. ∎ 

The significance of the requirement that truthful type reports be incentive compatible is 

demonstrated by the following simple example (Milchtaich 2014).  

 
7 Since the messages players send can only depend on their types, each player could in principle use a 
gadget that takes type as input and outputs any required message. Such gadgets can be viewed as 
part of the mechanism. 
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Example 3  A correlated equilibrium distribution that is not a communication equilibrium 

distribution. Two players play a 2 × 2 coordination game where their common payoff is 1 if 

they choose the same action and −1 otherwise. Player 1 has the single type I and player 2 

has two, equally likely, types, I and II. The following CSD is a CED but is not a MED: 

 Player 2 
          Type 𝐈         Type 𝐈𝐈  

Player 1 

 0.5 +1 −1  0.5 +1 −1  

Type 𝐈 
+1 0.5  0 0.5 +1 0.25  0.25 0.5 
−1 0 0.5 0.5 −1 0.25 0.25 0.5 

  0.5 0.5   0.5 0.5  

A correlated equilibrium with this distribution is one where two fair coins are flipped, a 

player of type I observes the outcome for the first coin and type II observes the second coin, 

and the players play +1 if and only if they observe heads. The reason there is no 

communication equilibrium with this distribution is that type II of player 2 would always be 

able to increase his expected payoff from 0 to 0.5 by mimicking the action of type I. That is, 

for 𝑖 = 2, the inequality in (4) does not hold when 𝒕2 = II if 𝑡2
′ = I and 𝜎2

′  is a strategy such 

that 𝜎2
′(II,⋅) = 𝜎2(I,⋅).  

As shown at the end of the previous section, the truthfulness requirement of 

communication equilibrium corresponds in a quantum correlated equilibrium to the 

requirement that no player type has an incentive to choose a different observable than that 

assigned to it by the QCE. The arguments presented there thus establish the following result. 

Proposition 2  Every quantum CED is a MED, and therefore every quantum CEP is a MEP.  

It follows from Proposition 2 (in conjunction with 1) that a quantum CED or CEP is also a 

(classical) CED or CEP, respectively, and that any CED that, like the one in Example 3, is not a 

MED is also not a quantum CED.  

5.1 Quantum advantage in MEDs 
The meaning of quantum advantage in MEDs is not as straightforward as in the cases of 

CSDs and CEDs. There, the mechanisms viewed as the classical counterparts of the quantum 

ones are the type-unaware mechanisms, that is, those satisfying 𝑆 and 𝑂. But in the context 

of communication equilibria, such mechanisms are very special, in that their messages are 

totally unaffected, not (only) by the players’ true types but (also) by the reported types.  

A more compelling identification of the classical counterparts of quantum mechanisms in 

the present context uses the analogy pointed to above between the type a player chooses to 

report to a classical mechanism and the player’s choice of observable in a quantum 

mechanism. In the latter case, the necessity of making a choice may stem from the 

destructive nature of measurements in quantum mechanics. However, a cleverly built 

classical mechanism may also be capable of encapsulating several alternative messages in a 

single object in such a way that only a single message can be read. For example, decoding 

any of several linked encoded messages may automatically render the others unreadable. 

Consider, then, a classical mechanism that – rather than waiting to the players’ type reports 

and then sending its messages – sends to each player 𝑖 an object as above and only indicates 

which of the encapsulated messages is addressed to each player type. If the messages differ, 

then the mechanism does not have property 𝑆. However, 𝑂 still holds, as the other players’ 

types have no effect on the messages to 𝑖’s different types.  
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Similarly to the terminology used for correlated equilibria (Definition 1), the CSD of a 

communication equilibrium where the mechanism has property 𝑂 may be called a type 

MED. What may reasonably be interpreted as quantum advantage in MEDs is the fact that 

there are type CEDs that are not type MEDs but are quantum CEDs. Such CEDs are 

implementable by a classical mechanism with property 𝑂 if the signal each player receives is 

completely determined by the player’s type (correlated equilibrium) but not if it can 

effectively be chosen by the player (communication equilibrium), yet they are 

implementable by a quantum mechanism, where the players may choose among the 

observables delivering the messages. 

Example 4  A type CED that is not a type MED but is a quantum CED. In a 2 × 2 coordination 

game with payoffs as in Example 3 and the common prior 𝜆 shown in Table 4, the CSD in that 

table is a type CED and is also a quantum CED (hence, by Proposition 2 ,a MED) but is not a 

type MED. These properties of the CSD hinge on the impossibility of the type profile (I, I), 

which means that if both players report their type as I, at least one report if false. The 

strongest possible deterrent against such misreporting is a payoff of −1, brought about by 

complete miscoordination of actions. A quantum mechanism is capable of implementing 

such a perfectly negative correlation for (I, I) while also producing the joint distributions 

specified by the table for the other three type profiles. For example, this is so for a pair of 

spin-entangled particles whose spin both players can measure either in the 𝑧 direction, 

which they do when their type is I (hence, 𝜌I,I = −1), or in an angle of 150° with respect to 

the 𝑧 direction, which they do when their type is II, such that the angle between the two 

players’ second directions is (360° − 2 × 150° =) 60°. Note that these correlation 

coefficients do not satisfy the Bell inequalities (3), which require 𝜌I,I ≥ 𝜌II,I + 𝜌II,I + 𝜌II,II −

2 = √3 − 5/2 = −0.768. Such high values of 𝜌I,I are insufficient for preventing type II from 

misreporting his type as I and changing his expected payoff as a result from 0.3√3/2 +

0.4(−1/2) to 0.3𝜌I,I + 0.4√3/2, as this change is nonpositive if and only if 𝜌I,I ≤ −0.955.  

As shown in Section 2.2, the impossibility of satisfying the Bell inequalities means that 

incentive compatibility cannot hold with a mechanism satisfying 𝑂. Thus, the above 

quantum CED is not a type MED. It is, however, a type CED. This is because with 𝜌I,I = √3 −

5/2, for example, all eight Bell equalities hold. As shown, this means that there is a 

mechanism with property 𝑂 that tells the players how to act, which together with the 

players’ strategies of doing as told gives the joint distributions of actions in Table 4 and also 

𝜌I,I = √3 − 5/2. (The latter does not actually matter, and it does not materialize, as there is 

                                                                                    Player 2   
   Type 𝐈                                Type 𝐈𝐈 

Player 1 

 𝟎 +1 −1  𝟎. 𝟑 +1 −1  

Type 𝐈 
+1    +1 0.25 (1 + 𝜌

I,II
) 0.25 (1 − 𝜌

I,II
)  0.5 

−1    −1 0.25 (1 − 𝜌
I,II

) 0.25(1 + 𝜌I,II)  0.5 

      0.5 0.5  
 𝟎. 𝟑 +1 −1  𝟎. 𝟒 +1 −1  

Type 𝐈𝐈 
+1 0.25 (1 + 𝜌

II,I
) 0.25 (1 − 𝜌

II,I
)  0.5 +1 0.25 (1 + 𝜌

II,II
) 0.25 (1 − 𝜌

II,II
)  0.5 

−1 0.25 (1 − 𝜌
II,I

) 0.25(1 + 𝜌II,I)  0.5 −1 0.25 (1 − 𝜌
II,II

) 0.25(1 + 𝜌II,II)  0.5 

  0.5 0.5   0.5 0.5  

TABLE 4  QUANTUM ADVANTAGE IN COMMUNICATION EQUILIBRIUM DISTRIBUTIONS. THE 𝟐 × 𝟐 TABLES, 

WHERE 𝝆𝐈,𝐈𝐈 = 𝝆𝐈𝐈,𝐈 = − 𝐜𝐨𝐬 𝟏𝟓𝟎° = √𝟑/𝟐 AND 𝝆𝐈𝐈,𝐈𝐈 = − 𝐜𝐨𝐬 𝟔𝟎° = −𝟏/𝟐, SPECIFY THE JOINT 

DISTRIBUTION OF ACTIONS FOR TYPE PROFILES 𝒕 WITH 𝝀𝒕 > 𝟎. SEE EXAMPLE 4 FOR MORE DETAILS. 
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no type reporting – or misreporting – in a correlated equilibrium.) These mechanism and 

strategies constitute a correlated equilibrium (with the CED in Table 4), as it is easy to check 

that heeding the mechanism always gives a player positive expected payoff while not doing 

so would result in negative expected payoff.  

6 The roots of quantum advantage 
What are the specific features of quantum mechanisms responsible for their advantage over 

comparable classical mechanisms? Is it possible to pinpoint these characteristics? The two 

theorems in this section address these questions. Theorem 1 concerns the quantum 

advantage in communication equilibrium distributions and Theorem 2 concerns the 

advantage in correlated equilibrium distributions.  

As shown in Section 5.1, quantum correlated equilibria may allow for outcomes that cannot 

be obtained in any classical communication equilibrium in which the players’ reported types 

do not influence the signals sent to other players (property 𝑂). The following theorem 

identifies the uniquely quantum phenomenon of incomparable observables as responsible 

for this advantage. However, somewhat unintuitively, it is the incompatibility of a player’s 

own alternative observables that is responsible for this, as the observables of different 

players are always compatible by definition of quantum mechanism.   

Theorem 1  A quantum CED is a type MED if and only if it is implementable by a quantum 

mechanism where all the observables (and not only those of different players) are mutually 

compatible.   

Proof  To prove that the compatibility condition is sufficient, it suffices to show that for 

every quantum correlated equilibrium in which the quantum mechanism has compatible 

observables, there is a corresponding classical mechanism 𝒎 (see Section 4) with property 

𝑂. The compatibility of the observables means that the operators commute, and it is 

therefore possible to express the quantum state |𝜓⟩ specified by the quantum mechanism in 

an orthonormal basis {|𝜓𝑙⟩}𝑙=1
𝐿  whose elements are eigenvectors common to all the 

operators. Thus,  

|𝜓⟩ = ∑⟨𝜓𝑙|𝜓⟩|𝜓𝑙⟩

𝐿

𝑙=1

. 

Each basis element |𝜓𝑙⟩ defines a mapping from 𝑇 to 𝑀, (𝑡1, 𝑡2, … , 𝑡𝑛) ↦ (𝑚1, 𝑚2, … , 𝑚𝑛). 

Specifically, each 𝑚𝑖  is the eigenvalue corresponding to the eigenvector |𝜓𝑙⟩ of the 

observable specified by the QCE for player type 𝑡𝑖, which is also the measurement value 

obtained in state |𝜓𝑙⟩ when player 𝑖 chooses that observable. Assigning to each |𝜓𝑙⟩ the 

probability |⟨𝜓𝑙|𝜓⟩|2 makes this a random mapping 𝒎. The latter is easily seen to be a 

classical mechanism corresponding to the quantum one. The mechanism 𝒎 has property 𝑂 

because a player’s chosen observable uniquely determines the outcome (i.e., the 

corresponding eigenvalue) for every |𝜓𝑙⟩; the other players’ observables have no effect. 

To prove necessity, consider any communication equilibrium (𝒎, 𝜎) such that 𝒎 has 

property 𝑂. This property implies that, for arbitrary, fixed type profile 𝑡∗, 

𝒎(𝑡) = (𝒎1(𝑡1, 𝑡−1
∗ ), 𝒎2(𝑡2, 𝑡−2

∗ ), … , 𝒎𝑛(𝑡𝑛, 𝑡−𝑛
∗ )), 𝑡 ∈ 𝑇. 
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Suppose, without loss of generality, that the messages to every player 𝑖 are binary 

representations of nonnegative integers, specifically, 𝑀𝑖 = {0,1}𝐾𝑖  for some 𝐾𝑖 ≥ 1. 

Construct a quantum mechanism employing ∑ |𝑇𝑖|𝐾𝑖
𝑛
𝑖=1  numbered entangled qubits in a 

state that emulates 𝒎, as follows. For each player 𝑖 and type 𝑡𝑖, a 𝐾𝑖-tuple of consecutive 

qubits gives the message to that player type. Only player 𝑖 is allowed to read this message, 

by measuring the state of each of the 𝐾𝑖 bits, which is either |0⟩ or |1⟩. A player’s 

observables thus correspond one-to-one with the player’s types, and the observables are 

compatible because they address disjoint subsets of qubits. Any quantum state of the entire 

system can be written as 

|𝜓⟩ = ∑ ∑ ⋯ ∑ ⋯ ∑ 𝑎11⋯ 𝑖 ⋯ 𝑛
12⋯𝑗𝑖⋯|𝑇𝑛|

|𝑚1
1𝑚1

2 ⋯ 𝑚𝑖
𝑗𝑖 ⋯ 𝑚𝑛

|𝑇𝑛|⟩

2𝐾𝑛

𝑚𝑛
|𝑇𝑛|

=0 

2𝐾𝑖

𝑚𝑖

𝑗𝑖=0 

2𝐾2

𝑚1
2=0

2𝐾1

𝑚1
1=0

, 

where |𝑚𝑖
𝑗𝑖⟩ is the state of the 𝐾𝑖-tuple corresponding to the 𝑗𝑖th type of player 𝑖. The 

emulation of 𝒎 is achieved by choosing the coefficients according to   

|𝑎11⋯ 𝑖 ⋯ 𝑛
12⋯𝑗𝑖⋯|𝑇𝑛|

|
2

=

  = Pr ((𝒎1(1, 𝑡−1
∗ ), 𝒎1(2, 𝑡−1

∗ ), … , 𝒎𝑖(𝑗𝑖 , 𝑡−𝑖
∗ ), … , 𝒎𝑛(|𝑇𝑛|, 𝑡−𝑛

∗ )) = (𝑚1
1, 𝑚1

2, … , 𝑚𝑖
𝑗𝑖 , … , 𝑚𝑛

|𝑇𝑛|
)) .

(7) 

Consider the quantum correlated strategy with the quantum mechanism constructed above 

where the players’ strategies are to choose the observables corresponding to their true 

types and then to act according to 𝜎. This QCS emulates the communication equilibrium 

(𝒎, 𝜎) in that 𝒎 is a corresponding classical mechanism and 𝜎 is the profile of classical 

strategies specified by the QCS. As shown in Section 4, the communication equilibrium 

condition (4) (together with the tightness condition) entails that this QCS is actually a QCE. 

Thus, the correlated strategy distribution of (𝒎, 𝜎) is a quantum CED that is implementable 

by a quantum mechanism with compatible observables. ∎ 

As shown in Section 3.3, quantum correlated equilibria have an advantage over strategy 

correlated equilibria (which employ type-unaware classical mechanisms). The next theorem 

identifies the greater generality afforded by the quantum mechanisms as responsible for this 

advantage. Specifically, it shows that type-unaware classical mechanisms correspond in their 

effect to a special kind of quantum mechanisms: those where players have no choice of 

observables.  

Theorem 2  A quantum CED is a strategy CED if and only if it is implementable by a quantum 

mechanism where every player has only one observable.   

Proof  Sufficiency follows from the observation that, if all types of each player must use the 

same observable, then the classical mechanism 𝒎 constructed in the first part of the proof 

of Theorem 1 has property 𝑆 as well as 𝑂. Necessity follows from the observation that, if the 

classical mechanism 𝒎 in the second part of that proof has both properties, then the 

probability in (7) is different from zero only if 𝑚𝑖
1 = 𝑚𝑖

1 = ⋯ = 𝑚𝑖
|𝑇𝑖|

 for all 𝑖. The conclusion 

means that it is possible to modify the construction in the proof so that the quantum 

mechanism allocates a common observable to all types of player 𝑖 – a single 𝐾𝑖-tuple of 

consecutive qubits. ∎ 
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7 Classifications 
CSDs, CEDs and MEDs can be classified, and the classes partially ordered, according to the 

properties of the mechanisms capable of implementing them. With classical mechanisms, 

these classifications take the form of two-dimensional lattices (Milchtaich 2014, Fig. 1, 2 and 

3). The question is, where do quantum CEDs fit in?  

For a finite collection 𝒫 of properties of classical mechanisms, a CSD, CED or MED is 

𝒫-implementable (a 𝒫-CSD, 𝒫-CED or 𝒫-MED for short) if it is the CSD of some correlated 

strategy, correlated equilibrium or communication equilibrium, respectively, where the 

mechanism has all the properties in 𝒫. Allowing for quantum mechanisms extends the 

notion of implementability to also cover quantum implementability. This extension yields 

the concepts of quantum CSD and quantum CED introduced in this paper. Each kind of 

(classical or quantum) implantability defines an attribute of CSDs, CEDs or MEDs. It is the 

quality of being implementable by some mechanism with a particular collection of 

properties. For each of the three kinds of distributions, the various attributes are partially 

ordered according to the logical relations between them, that is, whether a particular 

attribute implies another. If the implication holds but the reverse implication does not hold 

(that is, the two attributes are not equivalent), then the second attribute is weaker than the 

first. In every Bayesian game, the class of all CSDs, CEDs or MEDs having the weaker 

attribute includes the class of those having the other, stronger attribute, while the reverse 

inclusion does not hold in general.  

This section describes a simplified, unified classification of CEDs and MEDs (with the 

unification justified by Proposition 1). It considers only the seven attributes deemed most 

relevant for this paper, and of the properties of classical mechanisms considered in 

Milchtaich (2014) uses only �̃�, 𝑂 and 𝑆 (see Section 2.1). The classification, shown in Figure 

CED

MED

Õ-MED

Quantum CED

Quantum & 
type CED

Type MED

Strategy 
CED

FIGURE 2  THE POSITION OF QUANTUM CED IN A CLASSIFICATION OF CEDS IN BAYESIAN GAMES. A CED OR 

MED IS THE JOINT DISTRIBUTION OF THE PLAYERS’ TYPES AND ACTIONS IN SOME CORRELATED OR 

COMMUNICATION EQUILIBRIUM, RESPECTIVELY. THE PROPERTIES OF THE (CLASSICAL OR QUANTUM) 

MECHANISM EMPLOYED IN SOME SUCH EQUILIBRIUM DEFINE EACH OF THE SEVEN ATTRIBUTES.  
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2, turns out to be one-dimensional. That is, the seven attributes are all comparable. The 

weakest attribute of CEDs is simply being one and the strongest attribute is being a strategy 

CED. These logical relations are proved in the following subsection. The second subsection 

shows that the same classification that applies to CEDs or MEDs (that is, to type-action 

distributions) also applies to the corresponding payoff vectors. 

7.1 Classification of distributions 
It is a simple observation that a MED can be a quantum CED only if it is �̃�-implementable. 

This is because the compatibility of different players’ observables in a quantum mechanism 

entails that players do not get from their measurements any information about the others’ 

types, which for a corresponding classical mechanism 𝒎 spells the no-signaling property �̃�. 

Thus, we have the following extension of Proposition 2:  

Proposition 3  Every quantum CED is an �̃�-MED. 

The converse is false; not every �̃�-MED is a quantum CED. For example, the correlated 

strategy described in Section 2.2, which uses a coin-toss mechanism that has property �̃�, is 

obviously a communication equilibrium in the common-interest CHSH game (Example 1). But 

the MED, which is shown in Table 1, is not a quantum CED because it violates Tsirelson’s 

bound (see Section 2.3).  

The next, one-step more exclusive, class in the classifications of classical CEDs and MEDs 

(Milchtaich 2014) is the 𝑂-CEDs and 𝑂-MEDs, in other words, the type CEDs and MEDs. 

Property 𝑂 goes beyond �̃� by requiring the messages to the players to be completely 

unaffected by the (reported) types of the other players. The next result illustrates the 

significance of this difference.  

Proposition 4  In a Bayesian 2 × 2 game with two types for every player and a common prior 

with full support, an �̃�-implementable CSD, CED or MED is 𝑂-implementable if and only if it 

satisfies the Bell inequalities. 

Proof  Consider any �̃�-CSD, �̃�-CED or �̃�-MED 𝜂. As shown in Milchtaich (2014, Sections 4.4 

and 4.5), by a version of the revelation principle, there exists, respectively, a correlated 

strategy, correlated equilibrium or communication equilibrium (𝒎, 𝜎) with the distribution 

𝜂 such that (i) the players’ message spaces coincide with their action spaces, and (ii) the 

strategies are to act according to the received message, that is, 

𝜎𝑖(𝑗, 𝑚𝑖) = 𝑚𝑖 , 𝑖 = 1,2, 𝑗 = I, II. 

With such strategies, the joint distribution of actions for each type profile 𝑡 coincides with 

the distribution of 𝒎(𝑡). Now, inspection of the correlated and communication equilibrium 

conditions shows that they are left unaffected by a replacement of 𝒎 with any other 

mechanism �̃� that has the same message distributions, that is,   

�̃�(𝑡) =
𝑑

𝒎(𝑡), 𝑡 ∈ 𝑇. 

What remains to be determined is whether some such �̃� has property 𝑂. As shown in 

Section 2.2, this is so if and only if 𝜂 satisfies the Bell inequalities and the no-signaling 

condition. The latter condition is automatically implied by the assumed �̃�-implementability 

of 𝜂. This leaves the Bell inequalities as a necessary and sufficient condition for 

𝑂-implementability. ∎ 
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A quantum CED is not necessarily a type CED, and vice versa. For example, as shown in 

Section 3, the CSD in Table 2 is a quantum CED in the CHSH game, but it follows from 

Proposition 4 that is not even an 𝑂-CSD. The CED in Example 3 is a type CED as the indicated 

two-coin mechanism has property 𝑂, but is not even a MED. These examples point to the 

existence of an additional, distinct class: quantum CEDs that are also type CEDs. Example 4 

shows this class does not coincide with the class of type MEDs. In fact, it (properly) includes 

the latter class. This fact follows from Proposition 1, which shows that every type MED is a 

type CED, and from the next proposition, which shows that it is also a quantum CED.  

Proposition 5  Every type MED (= 𝑂-MED) is a quantum CED. 

Proof  This result is established by the second part of the proof of Theorem 1, which in fact 

proves more than the necessity of the condition in the theorem. It shows that every classical 

mechanism with property 𝑂 can be emulated by a quantum mechanism with mutually 

compatible observables. It follows that the class of quantum CEDs implementable by a 

quantum mechanism where all the observables are compatible coincides with the class of all 

type MEDs.  ∎ 

The next rung in the classifications of CEDs and MEDs are the classes of 𝑆, 𝑂-CEDs and 

𝑆, 𝑂-MEDs, that is, those implementable by type-unaware mechanisms. These two are 

actually the same class: the strategy CEDs. This is because, with a mechanism that totally 

ignores the players’ types, there is no difference between communication and correlated 

equilibrium. The distinction of this class from 𝑂-CEDs and 𝑂-MEDs is proved by the next 

example (Milchtaich 2014).  

Example 5  A type MED (and type CED) that is not a strategy CED (= 𝑆, 𝑂-CED). Consider the 

common-interest Bayesian game with the payoffs specified by the left 2 × 2 tables below.  

                                                              Player 2 
                       Type 𝐈                        Type 𝐈𝐈  

Player 1 

 0.25 +1 −1  +1 −1  0.25 +1 −1  +1 −1  

Type 𝐈 
+1 2 0  0.5 0  0.5 +1 3 0  0.25 0.25  0.5 
−1 0 2  0 0.5  0.5 −1 0 0  0.25 0.25  0.5 

     0.5 0.5      0.5 0.5  
 0.25 +1 −1  +1 −1  0.25 +1 −1  +1 −1  

Type 𝐈𝐈 
+1 3  0  0.25 0.25  0.5 +1 2 0  0.5 0  0.5 
−1 0 0  0.25 0.25  0.5 −1 0 2  0 0.5  0.5 

     0.5 0.5      0.5 0.5  

The CSD shown in the right 2 × 2 tables is a type MED (hence, a type CED) in this game. It is 

implementable by the two-coin mechanism described in Example 3, which has property 𝑂. 

Together with the strategies of playing +1 if and only if heads is observed, this mechanism 

constitutes a communication equilibrium, as it is easy to check that misreporting the type 

would reduce a player’s payoff from (1/2 × 2 + 1/8 × 3 =) 1.375 to (1/4 × 2 +

1/4 × 3 =) 1.25.  

This type MED is not a strategy CED; no implementing type-unaware mechanism exists. The 

reason is that, since the players’ actions are perfectly correlated whenever they have the 

same type, any message 𝑚1 that a type-unaware mechanism sends to player 1, thereby 

causing the player’s two types to choose particular actions, must always be accompanied by 

a message to player 2 that elicit the same pair of actions from that player’s types. Either the 

two types’ actions are different or they are the same. The first possibility is excluded by the 
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equilibrium assumption, because the type of player 1 prompted by 𝑚1 to play −1 will get 

1/2 × 2 from doing so but 1/2 × 3 from choosing +1, a profitable deviation. This leaves 

only the second case, in which the two players always choose the same action. However, the 

conclusion contradicts the fact that there is probability 0.5 that the players’ actions differ 

when their types differ.  

7.2 Classification of payoff vectors 
There exists a parallel classification of CEPs and MEPs, which pertains to the 𝑛-tuple of the 

players’ expected payoffs rather than the joint distribution of their types and actions. In 

every  Bayesian game, the joint distribution of types and actions uniquely determines the 

expected payoffs. However, this mapping if obviously not one-to-one, which is significant for 

the question of implementability. For example, the expected payoff of both players in the 

CED in Example 3 is 0.25. And although this CED is not a MED, hence not a quantum CED, the 

CEP is a MEP, a quantum CEP and even a strategy CEP. A type-unaware classical mechanism 

implementing the 0.25 payoffs is one where the players receive binary signals with this 

correlation coefficient. If the same were true for every CEP, then the move from 

distributions to payoff vectors would result in a merger of the seven classes in Figure 2. But 

in fact, as the following theorem shows, no two classes merge; the classification remains 

untucked. 

Theorem 3  For every two classes of correlated (or communication) equilibrium distributions 

in Figure 2, the corresponding collections of correlated equilibrium payoff vectors are 

generally not identical. Thus, the classification of CEPs and MEPs mirrors that of CEDs and 

MEDs.  

Proof  The argument is similar to that in the proof of Theorem 3 in Milchtaich (2014). It 

shows that if a CED has one attribute 𝒜 of those in Figure 2 (say, it is an �̃�-MED) but not 

another attribute ℬ (say, it is not a quantum CED and a type CED), then there is in some 

other game a CED with attribute 𝒜 whose payoff vector differs from that of every CED with 

attribute ℬ.   

That other Bayesian game is the extension of the original game obtained by adding as 

“dummy players” all the elements of 𝑇 × 𝐴. Each such player (𝑡, 𝑎) has only one possible 

type and a single action and thus cannot affect the true, original players but is only affected 

by them. Specifically, the dummy player’s payoff function 𝑢(𝑡,𝑎) is defined as the indicator 

function 1(𝑡,𝑎), which means that the expected payoff is the probability that the true players’ 

type profile is 𝑡 and their action profile is 𝑎. Incorporation of the unique types and actions of 

the dummy players extends every CSD 𝜂 in the original game in a trivial manner to a CSD �̂� in 

the extended game, and this extension is clearly a bijective mapping. The payoff vector of 

�̂� extends that of 𝜂 by adding the expected payoffs of the dummy players, which (being the 

probabilities of type-action pairs) coincide with 𝜂. It follows that no other CSD in the 

extended game has the same payoff vector as �̂�. To complete the proof, it remains to show 

that a CED 𝜂 in the original game and its extension �̂� have the same set of attributes (of 

those in Figure 2).  

First, every attribute 𝒜 of 𝜂 is also shared by �̂�. This is because every correlated strategy 

(𝒎, 𝜎) whose CSD is 𝜂 can be extended to a correlated strategy (�̂�, �̂�) with the CSD �̂� by 

sending to the dummy players some constant messages and assigning them their single 

strategies. The two correlated strategies – one in the original game and the other in the 
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extended game – clearly share the same properties in {𝑆, �̃�, 𝑂, �̃�}, and if one of them is a 

correlated or a communication equilibrium, then the other is also so. For quantum 

correlated strategies, an extension with a similar function is obtained by allowing every 

dummy player only the trivial observable, i.e., the identity operator on the state space. 

These players’ “measurements” then have no effect on the true players. 

Second, every attribute ℬ of �̂� is also shared by 𝜂. The argument is similar to that in the 

previous paragraph, except for the possible complication arising from interactions between 

the mechanism and the dummy players, which need to be nullified first. For a given classical 

correlated strategy (�̂�, �̂�) whose CSD is �̂�, this means that any non-constant signals that the 

mechanism �̂� sends to dummy players need to be replaced with constant signals. This 

replacement is clearly inconsequential, and it turns the correlated strategy into one that is 

the extension, and thus shares all the properties, of a correlated strategy in the original 

game. For a given quantum correlated strategy whose CSD is �̂�, the possible complication is 

that the quantum mechanism may allow some dummy players non-trivial observables. 

Depending on the outcomes of these players’ measurements, the true players may be left 

with the system in several possible quantum states – a mixed state. However, as indicated in 

footnote 6, measurements performed on a system in a mixed state are functionally the same 

as (that is, their outcomes are statistically indistinguishable from) local measurements in 

some larger system that is in a pure state. That state and the possible measurements 

indicated by the true players’ observables constitute a quantum mechanism, which together 

with these players’ given strategies constitute a QCS in the original game. It is easy to see 

the latter is a QCE if and only if the given CQS in the extended game is so. ∎ 
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