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Abstract 
 
Resource risk is a core ingredient of models of wealth inequality in modern economies, but 
remains understudied in explanations of inequality in early human and small-scale societies that 
can inform us about the origins of inequality. Resource risk generates variation in resources and 
leads to wealth inequality via savings decisions, given the available production and storage 
technology and the institutional arrangements that govern property rights and insurance. We 
examine whether this mechanism can explain wealth inequality in a pastoralist economy where 
wealth is held in livestock, production and storage technology resembles that of early human 
societies and there is virtually no financial market penetration. Our analysis uses original survey 
data from traditional Turkana pastoralist communities in Kenya to measure wealth inequality and 
relevant shocks to resources and to inform a model of wealth accumulation under resource risk. 
The data reveal substantial wealth inequality and resource risk, including via shocks to the growth 
rate of livestock holdings, which depends on droughts. Asset accumulation decisions also show 
that livestock is not used as a buffer stock with respect to shocks to livestock. The wealth 
accumulation model accurately reproduces the empirical wealth distribution while also predicting 
the pattern of asset accumulation decisions in response to different shocks to resources observed 
in the data. These results demonstrate that resource risk and the economic decision making it 
implies explain the wealth inequality observed in the Turkana pastoralist economy we study. Our 
findings highlight the role of the resource risk mechanism as a driver of inequality in a small-scale 
economy, suggesting its importance in the origins of inequality in early human societies. 
JEL-Codes: E210, N300, O150, D310. 
Keywords: origins of inequality, risk exposure, small-scale economy, Turkana pastoralists. 
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1 Introduction

Analysis of factors driving inequality in early human societies and in economies that have changed
little over time can improve our understanding of the origins of inequality, and thus of fundamen-
tal characteristics of economies that tend to generate inequality. This motivation has led to an
extensive research literature that combines studies using archaeological evidence from prehistoric
societies and studies of historical or contemporary agrarian, pastoralist and hunter-gatherer com-
munities with similar institutions and production technology to those of early human societies (see,
e.g. analysis and reviews in Bar-Yosef (2001), Barker (2006), Borgerhoff Mulder et al. (2009), Hal-
stead (2014), Scheidel (2017), Bogaard et al. (2019), Bowles and Choi (2020) and Dow and Reed
(2023)). In this literature, the emergence of farming and agriculture in early human societies is
generally associated with increases in inequality relative to that of earlier hunter-gatherer societies.
Indeed, it is argued that the technological revolution of farming and agriculture created increased
opportunities to accumulate wealth. In particular, farming and agriculture provided enhanced stor-
age opportunities, in the form of livestock, grain storage and land, as well as more clearly defined
private property rights. In turn, this allowed individuals to more effectively move resources over
time by accumulating assets with the aim of increasing future consumption and wealth and pro-
tecting consumption from negative shocks. In this new environment, a reasonable conjecture is
that resource risk should contribute to increased levels of wealth inequality. Specifically, when it is
not possible to completely insure against idiosyncratic shocks, these lead to variation in resources,
which is propagated over time to generate wealth inequality because savings decisions are a function
of these resources. We refer to this logic as the resource risk mechanism.

The resource risk mechanism is an important ingredient of economic analysis of wealth inequal-
ity, both in industrialised economies and in small-scale societies, be they prehistoric or contempo-
rary. It underpins quantitative analysis of wealth inequality under incomplete insurance markets in
industrialised economies, following the contributions of Bewley (1986), Huggett (1993) and Aiya-
gari (1994). Models founded on the resource risk mechanism, implementing it via a multitude of
channels to account for the complexities of modern economies, have been successful in explaining
multiple aspects of wealth inequality (see e.g. Krueger et al. (2016), Benhabib and Bisin (2018)
and Hubmer et al. (2021) for reviews).1 The logic of the resource risk mechanism has also been
included in comparisons of wealth inequality between small-scale contemporary and prehistoric so-
cieties, respectively, in e.g. Borgerhoff Mulder et al. (2009) and Bogaard et al. (2019).2 However,
despite the extensive literature that builds on the resource risk mechanism to study wealth inequal-
ity quantitatively in modern economies, the extent to which it explains observed wealth inequality
in pre-modern economies is poorly understood. For example, in explaining variation in wealth
inequality between societies, Borgerhoff Mulder et al. (2009) and Bogaard et al. (2019) assume
stochastic idiosyncratic variation in resources and inputs to production as a source of inequality, but
focus their analysis on the importance of cultural incentives and production and storage technolo-
gies for the generation and propagation of wealth over time. Therefore, quantitative evidence that
shows that resource risk is important for wealth inequality in a pastoralist economy that maintains
relevant features of early human societies would support its role as a driver of the emergence of
wealth inequality.

We examine the extent to which resource risk explains wealth inequality in Turkana pastoralist
communities that maintain critical characteristics of early human economies. Pastoralism is the
most common form of livelihood in Turkana, Kenya’s largest county by land area, where about

1Complexities of modern economies that are accounted for in this literature relate to e.g. production and its
relationship with diverse and risky human and physical capital inputs, opportunity and preferences to improve
productivity and participate in income-generating activity, and market and social insurance.

2See also e.g. studies in Halstead and O’Shea (1989), Halstead (2014), Scheidel (2017), and Fochesato et al. (2021)
for the role of resource risk in shaping individual choices and societal and economic characteristics of small-scale and
prehistoric communities.
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85% of the population of 1 million lives in arid and semi-arid rural areas. Within Turkana county,
the communities that we study were chosen in consultation with local partners as communities
that maintain a traditional pastoralist lifestyle and husbandry practices, with infrastructure and
institutional arrangements that remain as close as possible to those of early pastoralists. Specifically,
these communities rely strongly on herding (primarily goats and sheep), have very limited access to
essential services and infrastructure such as roads, education, healthcare, veterinary facilities and
financial services, and limited opportunity for income generation that does not depend on livestock.
Livestock, which is privately owned, is the main form of wealth held in these communities and
constitutes the capital stock of the household business of herding; in contrast, pasture is a common
resource. Resource risk mainly takes the form of shocks to livestock and to human inputs to
production; although it depends on droughts, it affects households differentially, creating variation
in resources. Within the community, social norms provide for support to mitigate extreme adversity
(e.g. that poses a threat to survival), but this does not extend to broader insurance against negative
shocks to resources; there is no comprehensive ex post risk sharing aiming to reduce inequality nor a
central authority that collects resources for redistribution (see e.g. Anderson and Broch-Due (1999)
for an anthropological analysis of Turkana and social relationships within these communities).
Despite hardships, the societal arrangements that underpin Turkana pastoralist communities have
proved resilient over time (e.g. Kratli and Schareika (2010)). Indeed, despite being extremely risk-
exposed and having little or no access to many of the benefits of more complex societies, Turkana
pastoralists do not consider themselves to be poor (Anderson and Broch-Due (1999)).

Our analysis is based on quantitative data we collected during 2018 via a survey of 1,347 pas-
toralist households (with data on 9,179 individuals) covering the years 2017 and 2018, complemented
by findings drawn from in-depth interviews with key informants and focus group discussions with
households conducted in early 2020. Crucially, our survey data provide quantitative information
relating to a drought year (2017) and a non-drought year (2018); our sample is also sufficiently
large to allow us to estimate the skewed distributions of wealth and shocks. We collected data from
traditional rural communities located further from townships and, at the time of sampling, had
little exposure to financial or labour markets. Indeed, our data confirm that no households were
involved in crop cultivation and only 13 households had a member who received waged income; 27
households reported having savings and 7 had debt to banks or other financial institutions. We
collected detailed information on wealth, which effectively consists of livestock, on returns to live-
stock and decisions to acquire or de-accumulate livestock, and on demographic and other household
characteristics.

Our dataset reveals high wealth inequality and idiosyncratic variation in shocks among Turkana
households. For example, we find a Gini coefficient of wealth inequality of around 0.55, in line with
evidence from other pastoralist communities in e.g. Borgerhoff Mulder et al. (2009, 2010). There
is substantial variation across households in terms of the natural growth of livestock holdings (i.e.,
due to births, deaths and theft), reflecting risk to returns to the asset. The implied risk is similar
e.g. to that of returns to non-financial wealth reported for Norway (Fagereng et al. 2020). We
also find variation in shocks that reduce human time input into production. Furthermore, only a
small proportion of households generate income from market activities. Comparison between the
distributions of both wealth and shocks to livestock between 2017 and 2018 shows that these were
severely affected by the drought in 2017, which reduced mean livestock numbers and herd growth
rate, and increased their variation across households, primarily by increasing the concentration on
the left tail. Analysis of data on acquisitions and de-accumulation of livestock further reveal that
households use these processes with the aim to maintain herd size in response to shocks to livestock
holdings; in particular, we find that net acquisition of livestock increases when households receive
negative shocks to the natural growth of their herd and decreases when they receive positive shocks.
In other words, livestock holdings are not used as a buffer to respond to livestock shocks. On the
other hand, there is some evidence that livestock serves a more traditional buffer role for shocks to
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human time input into production, although the relationship is weaker.
To quantify the impact of resource risk on wealth inequality, we use our survey data to inform

a quantitative model analysis. In the model, agents make savings decisions subject to idiosyn-
cratic and aggregate-level uncertainty, given the existing technological constraints and societal and
institutional arrangements that determine production, storage and insurance against shocks to re-
sources. Using the survey data, we estimate stochastic processes that capture household-specific
resource risk as a function of aggregate risk (namely droughts) and use these processes as inputs
to the model. To obtain our results, we generate the time series of cross-sectional distributions of
wealth under the history of droughts between 1920 and 2018. We find that the model-generated
wealth distributions provide an excellent fit to the data and that model-predicted net livestock
acquisitions in response to different types of shocks match the empirical patterns. These findings
imply that household savings decisions under risk exposure can explain the observed distribution
of wealth. By demonstrating the power of the basic resource risk mechanism to explain inequality,
our findings provide additional validation to different strands of research that have relied on ele-
ments of this mechanism to explain and model wealth inequality across a range of societies (e.g.
Bewley (1986), Aiyagari (1994), Huggett (1993), Borgerhoff Mulder et al. (2009), Krueger et al.
(2016), Benhabib and Bisin (2018) and Bogaard et al. (2019), Hubmer et al. (2021)). They also
suggest that variation in resource risk can contribute to explaining differences in inequality over
time or between economies. We find that the largest contribution to wealth inequality comes from
household-specific shocks to the growth rate of livestock holdings, in effect, the return to the asset
in this economy. This finding regarding the importance for wealth inequality of asset return risk
is consistent with research that highlights the importance of risk to returns to assets (Benhabib et
al. (2015, 2017), Benhabib and Bisin (2018), and Stachurski and Toda (2019)).

Our study relates to existing research that has examined, quantitatively, resource risk, indi-
vidual and community response mechanisms and their implications, in small-scale contemporary
economies. The study populations in this literature include: agrarian or agro-pastoralist economies
where livestock is a key — but risky — asset used in production and as storage for savings (e.g.
Rosenzweig and Wolpin (1993), Udry (1995), Fafchamps et al. (1998), Lim and Townsend (1998));
pastoralists for whom livestock is typically the only asset for production and storage, and for whom
droughts have substantial and wide-ranging implications (McPeak (2004, 2006), McPeak et al.
(2011), McGuirk and Nunn (2022)); and small-scale rural settlements where informal co-insurance
community-level arrangements are found to be important in mitigating income risk (Townsend
(1994), Kinnan and Townsend (2012), Samphantharak and Townsend (2018)). Compared with this
literature, we ask a different research question, namely whether resource risk, when accounting for
(limited) community-level co-insurance, generates observed wealth inequality in a pastoralist society
that preserves production technology of early human societies and in which financial and insurance
markets of modern societies are virtually non-existent. Our analysis nonetheless contributes to the
literature on savings under risk in contexts with very limited mitigation options, which has been a
central element in a large part of the literature on agrarian and pastoralist economies. In particular,
previous work has generated mixed results regarding the use of livestock as a buffer against income
shocks. We find that in both the model and the data, livestock is not used as a buffer to smooth
income shocks that arise as a result of shocks to the asset, namely livestock; however, the model
reveals that livestock is used as a buffer against other income shocks.

The rest of the paper is organised as follows. Section 2 summarises findings from our survey
data regarding inequality, resource risk, savings decisions and co-insurance options among Turkana
pastoralists. Section 3 presents the model that links shocks to resources to wealth inequality via
savings decisions. In Section 4, we describe how we use the data to approximate the stochastic
processes determining shocks to resources. We analyse results in Section 5, discuss implications in
the context of existing research in Section 6 and conclude in Section 7. We provide further details
relating to the data and methods in the Appendix.
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2 Data and empirical results

To analyse livestock and resource risk in Turkana, we collected data via a survey of 1,347 pastoralist
households (providing data on 9,179 individuals) in Turkana County, Kenya, during November-
December 2018. The study site, comprising the sublocations Loperot, Kalapata and Napusimoru,
located within the Kalapata and Lokichar wards in rural Turkana County, was selected because
traditional pastoralist lifestyles are maintained in this area. We supplemented this dataset with
interviews and focus group discussions in the area corresponding to our survey data, conducted
in January-February of 2020, with the aim of obtaining detailed information on (co-)insurance
and risk mitigation, environmental factors, herding practices and income generation streams.3 In
particular, we organised 11 key informant interviews, 31 household interviews and three focus
group discussions (involving 16 participants across the focus groups) in Kangakipur, Loperot and
Napusimoru, in Turkana South. Our survey dataset includes information on individual-level and
household-level characteristics: household composition and demographic variables (including age,
gender, and education of household members); productive (or ‘work’) and non-productive time
for each household member, including waged work outside of the household (for 2017 and 2018);
detailed livestock numbers (of goats, sheep, etc.), livestock population dynamics (births, deaths,
theft) and livestock acquisition or reduction via household decisions (for 2017 and 2018); informa-
tion on important durable goods (e.g. vehicles); other economic activities and potential sources of
income (e.g. running a business, selling items at a market, etc.); access to financial markets; and
the home location of the household (i.e. the location of the ‘boma’ or livestock enclosure, typically
with huts). Details of the survey and data are provided in Appendix A. We use this dataset to
analyse variation between households in terms of wealth and resource risk.

2.1 The importance of livestock in Turkana and livestock inequality

For the Turkana pastoralist communities that we study, livestock is paramount and functions, in
effect, as the sole asset. Livestock provides returns in the form of milk (a dividend of the asset) and
new animals (asset growth); it is also used as the principal means to transfer resources between
periods. Livestock is the main preoccupation of the pastoralists and serves as the de facto unit
upon which transactions are based. It is also the good that is most closely linked with the quality of
life, as well as with differences in wealth between households. Goats are the most common species
of livestock owned by Turkana households (on average, 22 goats per household in 2018), and there
are also smaller numbers of sheep (on average, around 5) and of camels (on average, around 2), and
very small numbers of cattle and donkeys (see Appendix A.4 for detailed information). We measure
holdings in livestock units (LU) using conversion coefficients for the different livestock species from
FAO (2011) which express livestock in units relative to 1 US breed cow (weighing 455kg). We
report findings at the household level in livestock units per capita (i.e. per household member).

In Figure 1, we plot the empirical wealth distributions of household-level livestock ownership,
measured in livestock units per capita, separately for 2017 and 2018. To do this, for each household,
we convert livestock numbers into livestock units, aggregate across species and then normalise by
converting to per capita terms by dividing by the number of household members (see Appendices
A.3 and A.4 for details of sample selection and robustness using additional measures of wealth).
We also show in Table 1 summary statistics of the distributions of wealth. In summary, the
extent of overall inequality observed in our sample from Turkana is substantial. This is consistent
with a series of studies (e.g. Sutter (1987) and research summarised in Borgerhoff Mulder et al.
(2009, 2010)) which also document non-trivial wealth inequality in pastoralist communities; wealth
inequality measured in our sample is within the range reported in these studies. Although the

3The work reported here is part of a larger ongoing research and engagement programme focusing on risk exposure,
inequality, and mitigating options in Turkana.
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wealth inequality shown in Figure 1 and Table 1 is lower than in a typical developed country (e.g.
Davies et al. 2011), the magnitude is comparable.

Figure 1: Empirical wealth distributions in Turkana
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2017 (drought)
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0
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Note: Wealth is measured in livestock units per capita at the household level. Vertical dashed lines

indicate the mean. To avoid potential identification, the bins above 3 LU are grouped-averaged.

Table 1: Livestock ownership statistics in 2017 and 2018

2017 2018

mean∗ 0.483 0.650

[0.446, 0.520] [0.608, 0.693]

Gini∗ 0.576 0.525

[0.555, 0.597] [0.506, 0.544]

Poverty∗ 0.116 0.062

[0.098 0.133] [0.049, 0.075]

Q1∗ 0.014 0.023

[0.011, 0.017] [0.020, 0.026]

Q2∗ 0.055 0.070

[0.050, 0.060] [0.065, 0.075]

Q3 0.113 0.128

[0.104, 0.121] [0.121, 0.135]

Q4 0.220 0.223

[0.208, 0.233] [0.213, 0.234]

Q5 0.598 0.556

[0.574, 0.621] [0.536, 0.576]

Top10% 0.410 0.371

[0.383, 0.437] [0.349, 0.393]

Notes: Wealth is measured in livestock units per capita at the household level.

Poverty is defined as the proportion of households that own less than 0.05 LU

per member. Q1 to Q5 denote the share of the total value held by each of the five

quintiles of the distribution. Parentheses show the 95% confidence intervals

calculated using a bootstrap with 1000 replications, with an asterisk (∗)
denoting that the confidence intervals do not overlap.

2.2 Effects of droughts on livestock

A striking observation from Figure 1 and Table 1 is the difference in the wealth distribution between
the two years. In particular, relative to 2018, the concentration at lower livestock ownership levels
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seen in Figure 1 is substantially higher during 2017, which was a year of drought. Indeed, as can
be seen in Table 1, average livestock ownership was significantly lower during the drought year,
while poverty and inequality measures were substantially higher. Regarding poverty, we focus
our analysis on a measure of poverty that reflects a critical threshold for Turkana pastoralists.
Specifically, we define extreme poverty as the proportion of households whose end-of-year livestock
is less than 0.05 livestock units per capita; this corresponds to about three goats per household for
the median household size of six members. Given the dependency of pastoralists on their livestock,
livestock numbers of this scale imply a very low potential to generate resources that captures critical
poverty. Indeed, having fewer than three goats means that it is very difficult to grow a herd, thus,
in effect, making it difficult to sustain a pastoralist way of life. In the observed 2018 distribution,
extreme poverty of this type is relatively rare, with less than 6.2% households below the threshold.
However, for the drought year of 2017, this proportion increases to 11.6%.

Droughts are not rare events in Turkana. In particular, rainfall data that we analyse in Appendix
A.5 reveal that limited rainfall, less than or equal to that of the drought year 2017, occurred on
average every 2-3 years over the past decades and sometimes persisted for more than one year
(consistent with findings in e.g. McPeak (2004) and McPeak et al. (2011) on droughts in northern
Kenya). These findings highlight the importance for Turkana pastoralists of the resource risk that
droughts generate. While pastoralists are also subject to further aggregate-level shocks (e.g. floods
or locust plagues), droughts are their main concern. For example, in our interview and focus group
data, participants refer to droughts as the main aggregate shock to their livelihoods. The concerns
generated by droughts are also reflected in formal government interventions under the auspices
of the National Drought Management Authority (NDMA), whose remit includes monitoring of
droughts and their impacts to allow them to prioritise interventions providing basic support where
and when it becomes critical. Existing research also acknowledges the pressures that droughts
generate for pastoralists (see e.g. McPeak (2004) and McPeak et al. (2011) for effects on livestock
and McGuirk and Nunn (2022) for implications for conflict). We focus therefore on droughts —
the effects of which on both livestock and resource risk we can capture in our data — as the main
aggregate shock in our analysis.

2.3 Household-specific resources and risk

We analyse variation between households in terms of household-specific shocks to the growth rate
of livestock holdings and the time available to use as an input in productive activities, as well as
variation in income from non-livestock sources. In Section 4, we use the information from these
three sources of variation to construct corresponding stochastic processes in the model.

2.3.1 Growth rate of livestock holdings

A first source of household-specific risk relates to stochasticity regarding herd growth, resulting
from the number of animals that were born, stolen or died from natural causes.4 To capture this
risk, we construct a random variable lt, the household-specific growth rate of livestock in livestock
units per capita for 2017 and 2018 (i.e. separately for droughts and non-droughts). To do this, we
first use the survey data to construct a variable capturing the growth rate of livestock holdings in
per capita livestock units l̃it, for each household i, for t = {2017, 2018}, 5

l̃it =

[
birthsit−stolenit−deathsit

N i
hh,t

]
[

ait−1

N i
hh,t−1

] , (1)

4On the importance of rainfall and of idiosyncratic shocks leading to variation in herd growth among pastoralists
in East Africa, see also e.g. McPeak (2004) and McPeak et al. (2011).

5For additional details of the sample and construction of this variable, see Appendix A.
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where N i
hh,t denotes the size of household i in period t and ait−1 is household i’s livestock in period

t− 1. Note that births, deaths, thefts, and at−1 are measured in LU.

Figure 2: Distributions of the household-specific component of shocks to the growth
rate of livestock holdings and of time input
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Table 2: Statistics of shock distributions

lt ht
2017 2018 2017 2018

mean -0.314 0.357 0.719 0.750

St. Dev. 0.440 0.422 0.152 0.139

skewness 1.600 1.539 -0.266 -0.338

kurtosis 12.281 9.619 2.742 2.980

Note: Statistics of the distribution of shocks to livestock

holdings growth rates and to time input (shown in Figure 2).

To capture shocks to the growth rate of livestock, we then construct the variable lit for household
i, for t = {2017, 2018}, by partialling out household characteristics from l̃it. We do this using linear
regressions on a set of dummies for the age of the head of the household (a dummy per decade
of age), dummies for the gender and education of the head, variables capturing the composition
of the household (number of adults, spouses, and children by sex) and a dummy for the location
of the boma. These characteristics are observable to the households and thus are not part of
uncertainty regarding livestock growth for a given household. The regressions are run separately
for each year. Before running these regressions, we standardise l̃it by multiplying it by the ratio of
the total standard deviation of l̃it over the standard deviation of the sublocation i.e. l̃it = li,κt

σt,l

σt,l,κ
,

where κ denotes the sublocation. This removes dependence of the variance of the shock distribution
on sublocation-specific factors that would be common across households within a sublocation and
thus not idiosyncratic.6 The results from these regressions are shown in Appendix A.6. In general,
they show that household characteristics contribute little to explaining variation in herd growth,

6The Breusch-Pagan and White tests reveal heteroskedasticity in the residuals from the non-standardised regres-
sions but do not detect heteroskedasticity after standardisation.
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suggesting that households are approximately ex ante identical in terms of herding returns and risk.
We retain the residuals from the standardised regressions as a measure of the household-specific
component of shocks to livestock growth. Finally, to construct the variable lt, we re-centre these
residuals on the unconditional mean of the net growth rates per period, about 36% in 2018 and
-31% in 2017.

In the left panel of Figure 2 we plot the distribution of the household-specific component of
livestock growth rates separately for 2017 and 2018 and, in Table 2, we report key statistics of
these distributions. The spread of the distribution, demonstrating that both losing the whole herd
(100% reduction, i.e. lt = −1) and more than doubling the herd (more than 100% growth, i.e.
lt ≥ 1) are outcomes with non-trivial probabilities, is revealing of the extent of household-specific
(or herd-specific) uncertainty regarding livestock returns. The difference in the shape and location
of the density functions between the two years confirms that droughts are periods of increased
downside risk and an increase in the asymmetry of the distribution. The uncertainty implied by
the distribution of the shocks to herd growth seen in Table 2 and Figure 2 is comparable to that
of economies with developed financial systems. For example, the statistics capturing risk are sim-
ilar to those estimated from administrative data for Norway for returns to non-financial wealth
(Fagereng et al. (2020)). This is consistent with livestock wealth being used as non-financial equity
in household-level entrepreneurial activity, namely herding. However, in contrast to the persistence
of entrepreneurial risk in economies with a more complex production structure (e.g. Quadrini
(2000), Cagetti and De Nardi (2006), Fagereng et al. (2020)), shocks to household-specific herd
growth are not persistent. In particular, the first-order autocorrelation of lt is only -0.16, suggest-
ing that the household-specific component of stochastic returns to livestock, after partialling out
aggregate-level effects associated with droughts, does not show sizeable persistence. This suggests
that unobservable household-specific characteristics that may relate to herd growth (e.g. herding
ability) matter little for the idiosyncratic variation in herd growth rates that we measure, because
these characteristics should imply persistence in household-specific livestock shocks. The risk that
we uncover is thus primarily associated with demographic stochasticity regarding the natural pro-
cesses of birth and death of animals, and losses due to theft. Note, nevertheless, that there is
persistence in shocks to herd growth, driven by the persistence of the aggregate state.

2.3.2 Household time

A second source of uncertainty regarding the household’s ability to generate resources relates to
the effective time input of its members. In particular, the effective time input may vary between
households because of variation in the demographic composition of the household or availability for
work of its members due to ill health, or the need to devote time to matters that do not directly
generate resources (e.g. caring responsibilities).

We use our survey data to construct ht, a measure of the stochastic component of household-
level time availability. We first set a member’s time input to one if an individual is between 7 and
70 years old and zero if she/he is outside this age bracket. This age range is motivated by the
observation that household members in this age bracket, when they are able to do so, use time
to contribute to household activities to generate resources. When an individual between 7 and 25
years old goes to school, they support the household when not in school and we thus adjust these
members’ time input to 0.5. The individual’s time input is then multiplied by the share of the
year he/she was available to work, based on information we have from the survey data (i.e. if an
individual was available for 11 months, we multiply his/her productivity by 11/12). If an individual
died or left the household during the year, we set their individual time input to zero. Following
this logic, we construct the variable h̃it, the per capita time input, for each household i and for
t = {2017, 2018}, defined as the sum of household members’ time input divided by the number of
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household members

h̃it =

[∑Nhh,t

n=1 h̃in,t ∗ (1−
mcn,t

12 )
]

N i
hh,t

, (2)

h̃in = 1 if 7 ≤ age ≤ 70 & not studying,

h̃in = 0.5 if 7 ≤ age ≤ 25 & studying,

h̃in = 0 if age ≤ 6 or 71 ≤ age, or if died, or left,

where h̃in is the time input of individual n and mcn is the number of months during which individual
n’s activities were curtailed.

Using h̃it, we then construct the variable hit capturing the household-specific shocks to time
input for household i, for t = {2017, 2018}, by removing the life-cycle and location-specific effects
that are observable to the household from h̃it via a Tobit regression and re-centring.7 Observable
effects are those also used to isolate shocks to the growth rate of livestock holdings (see Appendix
A.6 for results from these regressions). We keep the prediction errors from these estimations as a
measure of the household-specific shocks and re-centre them on the unconditional mean of household
time input to construct the variable hit. We show the household-specific component of time input
shocks in Figure 2 (right panel) and report key statistics of the distributions in Table 2. With the
exception of a reduction in average time input during droughts, the distributions are very similar
for the two years. We also find that there is persistence in the probability of receiving a negative
shock: households that reported h̃it < 1 in the survey for 2017 have a 98.6% probability of reporting
hit < 1 in 2018, and those reporting h̃it = 1 in 2017 had a 58.2% probability of reporting h̃it = 1 in
2018.

2.3.3 Non-livestock income

Households in our study area have some opportunities for income beyond herding. Only a very small
number of households (N=13) reported waged employment, which also generated very low levels
of income. A larger number had income from selling items at market and from small businesses.
In our sample, 197 households had income from selling items at a local market (e.g. baskets or
other artefacts). We do not have detailed information on funds generated via this income stream,
but, typically, these are relatively small amounts that are highly volatile over time and used to
complement herding activities. In addition, 117 households reported running a small business
(shops/kiosks, livestock trading, renting rooms, boda-boda). Engagement in this kind of activity
is often related to education and skills and associated with aspirations for higher standards of
living, suggesting generally higher income levels than selling items at market. For example, in our
interviews, a university student involved in a local community group and who runs a kiosk, told us
that ‘you know to go to school, you get that knowledge, be educated ... and also it opens up your
mind and also have the skills to run a business’. In total, 22 households had income from both
selling items at market and small business activities.

Households also have access to natural resources such as water, material to make tools and
construct houses and fences to keep animals, as well as trees that provide wood for charcoal used
for cooking or for roadside selling. Some households may receive remittances from relatives or
others outside of the community (e.g. family members living in a town). Furthermore, households
may receive short-term support from government sources, international organisations and non-
governmental organisations (charitable organisations), via a range of programmes, either directly
in the form of livestock or food, or via cash transfers, with the aim to support a minimum level
of consumption in extreme difficulty and to allow households to restart a herd. In drought years,

7The estimation method is motivated by the range of values that h̃i
t can take on, which is [0, 1].
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households in areas we cover are targeted for emergency response aid from programmes managed
by governmental structures and sometimes supported by NGOs. In 2018, 30% of households in our
survey reported receiving remittances from relatives, friends or other sources such as NGOs or the
government.

2.4 Livestock net acquisitions

In our survey data, we also have information on decisions regarding acquisition and reduction
of livestock. In particular, we record ‘number of animals bought/ acquired’ and ‘number sold/
permanently given away/ slaughtered’. The difference between these two categories defines, in
effect, net livestock acquisitions and we use this empirical measure to examine how these relate to
beginning-of-period livestock and shocks, exploiting the panel dimension of our sample to partial
out effects of droughts and household characteristics via household-specific effects.8 We do not
have information on whether any of the changes in the ‘bought/acquired’ and ‘sold/permanently
given away/slaughtered’ categories refer to changes in livestock for reasons we do not study in
this paper, e.g. in relation to a significant life event like marriage, separation, or relocation of
household members. To minimise the potential impact of such effects on our results, we partial out
changes in household demographic characteristics that could be related to such life events using our
survey information to include relevant variables in the statistical analysis and we trim the top and
bottom 2.5% of net savings to exclude transactions of livestock that are likely outliers with respect
to normal decision making in response to annual variation in stocks and shocks. We therefore
estimate

xit = β1a
i
t + β2 l̃

i
t + β3 l̃

i
t ∗ ait + β4h̃

i
t + β5h̃

i
t ∗ ait + βX, (3)

where i is a household index, t = {2017, 2018}, xit is net livestock acquisitions (measured in livestock
units per capita at the household level), ait is beginning of period livestock holdings and the matrixX
contains time-varying household-specific characteristics, but also household-specific time-invariant
effects, dummies for the sublocation in which the boma is located and a dummy for 2018. Detailed
results from this estimation are in Appendix A.7. Here we show, in Table 3, the estimates for the
key variables of interest and, in Figure 3, the predicted marginal effects for different livestock units
of beginning-of-period livestock, for different levels of the shock to livestock holdings growth.9

Table 3: Effects of shocks on net livestock acquisitions
β1 β2 β3 β4 β5

-0.208∗∗ 0.0148∗ -0.197∗∗ 0.103∗ -0.00746

(0.104) (0.00803) (0.0951) (0.0545) (0.0234)

Notes: The coefficients βj , j = 1, ..5 are defined in (3).

Coefficient estimates are shown below βj and standard

errors in parentheses. Further detail is in Appendix A.7.
∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01

The main pattern that emerges from Table 2 and Figure 3 is that net acquisitions are a negative
function of beginning-of-period livestock holdings and of more positive shocks to livestock holdings
growth rates. In other words, livestock is acquired when livestock holdings are low and when the
household receives large negative livestock shocks, implying that a large part (or even nearly all) of
livestock has been lost; on the contrary, livestock is sold or consumed in the case of positive shocks
and when numbers are higher. This type of behaviour suggests incentives to smooth the impact

8Our results are thus obtained by exploiting variation across households in the change in household-level livestock
net acquisitions from 2017 to 2018. Because we only observe income from market and business activities in 2018, we
cannot estimate their relationship with net acquisitions (they are part of the household-specific effects).

9The levels of livestock holdings growth shown in Figure 3 have been chosen to match the discretisation of the
range of these variables used to estimate the underlying probability distributions (see Section 4).
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of livestock shocks on herd size, rather than as a buffer. In contrast, there is some evidence that
households use livestock to smooth the impact of time input shocks on consumption. In particular,
the effect of time input on net livestock acquisitions is positive, although statistically significant only
at 10%, and does not significantly depend on beginning-of-period livestock holdings. Research that
has studied whether livestock acts as a buffer to income fluctuations in agrarian and pastoralist
economies where livestock is used to produce income, by studying livestock sales in response to
income shocks, finds mixed evidence, with most results suggesting that livestock sales do not
increase in periods of bad shocks (e.g. Rosenzweig and Wolpin (1993), Udry (1995), Fafchamps et
al. (1998), Lim and Townsend (1998), and McPeak (2004)). We return to discuss our findings in
the context of the literature in more detail after we have also presented relevant model predictions.

Figure 3: Net livestock acquisitions by at and l̃t
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Note:The figure shows predicted marginal effects of at on xt for different levels of l̃t,

estimated using (3).

2.5 Community-level support

Pastoralist communities provide some support to households to mitigate certain household-specific
shocks. Firstly, given the centrality of herding for livelihoods, help with herding is offered when
households face difficulties. For example, interviewees explained that ‘When a person is not well,
neighbours will take care of the animals or when there is an aged person the neighbours can now
come and take the camels on the other side, they take care until you regain [strength] because
you are ill, you can’t perform tasks, you explain to them and they can see why you are asking
for that kind of help’. This is consistent with our survey data, in which variation in household-
specific livestock growth l̃t is unrelated to household-specific time input h̃t, or indeed to changes
in the time input of the head or of adult males.10 Secondly, the social norms in Turkana provide
some support to households that are impacted by adverse livestock shocks via transfers of a small
number of livestock from a relative or friend in a position to help. Community-level support in
adversity has been documented for Turkana pastoralists in Anderson and Broch-Due (1999) and in
other pastoralist communities (e.g. the analysis and further references in Borgerhoff Mulder et al.
(2010), McPeak (2006) and McPeak et al. (2011)).

The data we collected via interviews confirm the existence of assistance in the form of transfers
when households face extreme livestock shocks but provide no evidence of support that extends

10As shown in Appendix A.8, these variables are not significant in regressions of l̃t that also partial out a number
of household-specific characteristics.
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to more generalised sharing of resources with those who have low levels of livestock. For example,
interviewees explained that ‘if you have been stricken by drought or the issues of raids, community
members who are close to you, they can donate goats so you can start up again’, underlining that
support is conditional on receiving a negative shock. The need for support is more common during
droughts, because, as already analysed, large negative livestock shocks are more likely. However,
these are also periods in which other community members find it hard to offer support. The
assistance offered is limited, aiming to make it possible for the herder to start a new herd if they
have lost their livestock. For example, one interviewee noted that ‘if your animals are raided or
they die, you go to your relatives, they maybe assist you and maybe give you 5, 3 or 1, just to make
you at least recover from the loss of animals’. Indeed, Anderson and Broch-Due (1999) observe that
support from other households is a means to help those facing adverse exogenous circumstances
to escape extreme poverty, not those who remain poor because of bad choices. The co-insurance
mechanisms among Turkana pastoralists are thus different in scope from those in some other small-
scale societies analysed in e.g. Borgerhoff Mulder et al. (2009, 2010) (see also reviews of relevant
research in Scheidel (2017)), where such mechanisms imply a more redistributive social model, or
in rural village economies in e.g. Townsend (1994) and Samphantharak and Townsend (2018),
where informal insurance arrangements between households allow them to insure away a larger
part of idiosyncratic risk. The limited effectiveness of between-household transfers in mitigating
the negative impact of livestock shocks in other pastoralist communities in East Africa has been
noted in McPeak (2006) and McPeak et al. (2011). To a large extent, this is likely to be due to
the importance of droughts, which create a very large non-diversifiable risk that does not allow for
substantial transfers — when they are needed — because most households are negatively affected.

3 Modelling the link between resource risk and wealth inequality

We present a model in which wealth inequality is determined by household decisions to accumulate
livestock under uncertainty regarding resources. In the model, the household is the unit of analysis
and household-level quantities are expressed in household-average per capita terms (we do not study
within-household resource allocations or household composition effects). The main resources of each
household come from their livestock, which provide them with milk and which they can consume as
meat. Additional resources can come from other economic activity and community-level or external
support schemes. Households make decisions about how much of their resources to consume and
how much to transfer to future periods via savings in a single asset, livestock. Households are
ex ante identical: they are assumed to have the same preferences, technology, opportunities to
generate resources and uncertainty regarding these. However, because they cannot fully insure
against household-specific shocks, they have different resources and make different resultant choices
regarding wealth accumulation.

3.1 A model of savings under resource risk for Turkana pastoralists

We model a continuum of infinitely many households, in discrete time, with a time step of a year.
We present the resource allocation problem for a typical household in Turkana.11 Households are
herders who own and raise livestock that produces milk; in each period, subject to exogenous shocks
to their resources, they decide how much of their livestock to consume (as meat or via sales), how
much to keep and how much to buy. By buying more livestock, or by keeping some of the animals
born into their herd, they increase the capital they hold in their business, which is assumed to be
the only form of investment. In each period t, the household receives shocks from three exogenous
Markovian processes that determine the net growth rate of livestock numbers (lt) due to natural

11Given that households are ex ante identical, to simplify notation, we suppress the explicit dependence of each
household’s actions on a household index and present the problem of any household.
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demographic turnover and theft, human time input available to support the production of milk
(ht), and the amount of income from other sources (et). These other sources of income include
income derived from natural resources and external support that together define the lower bound
of available resources, as well as income from market activity. Shocks are household-specific but
also incorporate dependence on aggregate conditions, namely droughts, modelled as the binary
variable dt ∈ {0, 1} that is Markovian. We also model community-level support, captured by the
process (st), that depends on droughts and which takes the form of a transfer of a small number of
animals to households that have lost their herd, with the burden shared among other households in
the community. Acknowledging the dependence of the random variables lt, ht, et, st on dt, we can
denote their purely idiosyncratic component, conditional on a specific realisation of dt, as ldt , h

d
t ,

edt and sdt and we use this notation later when we want to highlight the effect of droughts on the
stochastic processes.

The typical household chooses plans {ct, at+1}∞t=0, i.e. sequences of consumption ct and next-
year livestock at+1, that depend on the histories of shocks received, to maximise its expected lifetime
utility

max
{ct,at+1}∞t=0

E0

{ ∞∑
t=0

βtu(ct)

}
, (4)

where u(·) is a per-period utility function and β ∈ (0, 1) discounts future outcomes, subject to the
resource constraint

ct + at+1 = (1 + lt)at + ηyd (ht, lt, at;wt) + et + st, (5)

taking initial conditions {a0, l0, h0, e0, s0} as given.
In this specification, y(·) denotes milk production, which is a function of livestock during the

year (itself a function of beginning of year livestock at and of the growth of livestock during the
year lt) and time input available to tend to the herd and obtain the milk. Given the results we
discussed in Section 2 showing that the livestock holdings growth rate is not related to household
time input, we do not also include ht in herd growth, which is only determined by lt. The variable
wt captures natural resources which may include, for example, plants and trees that provides
material to produce stools or other tools, mats or baskets, or to maintain fences or the boma. In
recent decades, there has been support from governmental, non-governmental and international
organisations (e.g. in the form of food, cash, animals to increase herd size, animal feed, provision
of water and veterinary services). The resources included in wt are limited, but they are important
to support survival when livestock fails and indeed allow the model to ensure a strictly positive
income which is required for an equilibrium in which a zero livestock state is transient. These
resources, the quantity of which depends on droughts, can provide consumption to the households
but are also an input to milk production. Therefore, we include wt in et, determining its lowest
state in drought and non-drought years, but also as an input to yt.

In (5), we express all quantities except for milk in livestock units. In particular, community-
level support in st is typically directly in the form of livestock, while et can be monetary and in
this case, we convert the monetary valuation into livestock units using livestock prices that are
taken as exogenous at the level of the communities we study. The livestock unit equivalent of a
given quantity of milk is calculated as the quantity of meat from livestock that would provide the
same number of calories. Specifically, we convert milk into livestock units, defining η ≡ ηm

ηl
, where

ηl denotes the calorie content of one unit of meat (from livestock) and ηm the calorie content of
one tonne of milk. Livestock prices are determined outside of the pastoralist communities and are
normalised to be one.12

We impose the following assumptions on the maximisation problem to ensure consistency with
ecological constraints and well-defined solutions. First, the utility function u : [0,+∞) → R is

12In Appendix D.3 we show that the main results are robust to allowing for a reduction in livestock prices during
droughts to reflect reduction in weight (e.g. reported in NDMA (2020)), so we abstract from this in (5).
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assumed to be twice continuously differentiable, strictly increasing and strictly concave. In addition,
we assume that it satisfies the conditions lim

c→0
uc(c) = +∞, lim

c→∞
uc(c) = 0 and lim

c→∞
inf −ucc(c)

uc(c)
= 0.13

Second, we define the state spaces for the exogenous processes as follows, noting that the state
spaces expressed in this paragraph are those of the union of possible outcomes in drought and
non-drought years. The random variable lt takes outcomes in the state space that is determined

by the 1 × N l vector L =
[
l
min

, ..., l
max

]
, l

min ≥ −1, where −1 corresponds to 100% herd loss.

The random variable ht takes values in the state space that is determined by the 1 × Nh vector

H =
[
h
min

, ..., h
max

]
, h

min
> 0. The random variables et and st take values, respectively, in

the state spaces determined by the 1 × N e vector E =
[
emin, ..., emax

]
, emin > 0 and 1 × N s

vector S =
[
smin, ..., smax

]
, where s is allowed to be negative to capture households that contribute

to community-level support while requiring their consumption to remain non-negative. Third,
livestock at the level of the household takes values in the set at ∈ A = [0, amax]. The upper bound
is motivated by the idea that, at the aggregate level, there is a maximum number of livestock that
can be sustained by the environment, commonly referred to as the carrying capacity, determined
by the ecosystem. It is therefore reasonable to assume an upper bound for household livestock
holdings; we denote this value, in per capita terms, by amax, which cannot exceed the carrying
capacity. Fourth, we require that the function y (ht, lt, at;wt) : H×L×A×E →

[
ymin > 0, ymax

]
is

continuous, increasing and concave, with decreasing returns to livestock and, more specifically, with
the marginal product and the average product of livestock decreasing in livestock and satisfying
the condition that lim

at→∞
∂yt
∂at

= 0, thus bounding incentives to accumulate livestock.

3.2 Our model in the context of a general framework

We now describe how our model fits within the broader framework of studies employing models that
have been used for quantitative analysis of inequality. A general representation of the problem of a
typical household that encompasses several theoretical and quantitative studies of savings decisions
and wealth inequality is given by maximising (4), given initial conditions of all state variables and
subject to a resource constraint

ct + at+1 = (1 + r(vat , v
h
t , at))at + et + st, (6)

where ct is consumption, at assets, v
a
t aggregate-level shocks, vht household-specific shocks, r(·) the

return to assets and et other stochastic income sources (e.g. through labour income); st captures
pertinent social insurance mechanisms (e.g. via government policy or some other redistributive
mechanism).

There is a long-standing and large literature that uses versions of this household problem as a
key ingredient in modelling analysis to study wealth inequality, arising through asset accumulation
decisions under imperfectly insured shocks to resources that generate variation in income across
households. An important modelling choice in this literature refers to the quantities that enter
into the function r(·). For example, models of the Bewley-Huggett-Aiyagari type (Bewley (1987)
Huggett (1993), Aiyagari (1994)) are used to study economies without aggregate shocks, assuming
that the return r is fixed over time and across households; models introduced by Imrohoroglu
(1989) and Krusell and Smith (1998) allow r to be a function of aggregate shocks; and models in
e.g. Benhabib et al. (2017), Benhabib and Bisin (2018), and Stachurski and Toda (2019) examine
the importance of household-specific stochasticity in r.

In our model, r(·) incorporates both aggregate and household-specific shock processes, while
also being a decreasing function of household-level assets via milk production. To see this, note

13Regarding these assumptions in incomplete markets models, see, e.g. Aiyagari (1994), Miao (2014) and Benhabib
et al. (2015).
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that (5) implies that:

ct + at+1 =

[
(1 + lt) +

ηy (ht, lt, at;wt)

at

]
at + et + st. (7)

The expression in square brackets in (7), determining returns to the asset, shows that the dividend
(average milk production per livestock unit) is a decreasing function of asset holdings and makes
clear that returns are risky. More specifically, in our model, the stochastic processes entering into
the relevant expressions show that both the dividend and the increase in capital stock (analogous
to capital gain) are stochastic, involving a household-specific and an aggregate-level component.

More generally, the household problem at the core of this strand of the literature has been
extensively used to analyse precautionary savings and consumption smoothing (e.g. Deaton (1991),
Zeldes (1989) and Kimball (1990)). This literature includes studies that adapt this model to the
characteristics of agrarian economies in which livestock is used in crop production (e.g. Rosenzweig
and Wolpin (1993), Fafchamps et al. (1998)) as well as to those of pastoralist economies where
livestock produces milk (McPeak (2004)), allowing dividends and thus returns to the asset to be a
linear or decreasing function of the stock. In these studies, which characterise household savings
decisions under risk and do not examine the distribution of wealth across households, the return
to the asset is stochastic, reflecting idiosyncratic and aggregate shocks.

3.3 Dynamic paths and cross-sectional distributions

We define the joint distribution zt = (lt, ht, et, st), which is assumed to follow a Markov chain,
with state space Z = L × H × E × S and transition matrix Q, the entries of which give the
conditional probabilities π (zt+1|zt). Note that the random variables lt, ht, et, st are defined in such
a way to subsume the outcomes of dt. We assume that (zt) has a unique invariant distribution ξ,
comprising the unconditional probabilities and implying partial invariant probability distributions
denoted by ξj , for j = l, h, e, s. The dynamic paths for livestock and consumption are obtained by
a dynamic programming solution to the household problem. Dynamic programming theory implies
the existence of policy functions at+1 = g (at, zt) and ct = q (at, zt), which are unique and continuous
(see Appendix B, where, to aid intuition about the workings of the model, we also analyse further
wealth accumulation and net savings with respect to the state variables in a two-period version of
the model). We examine these policy functions for the model calibration below to confirm that
the savings behaviour predicted by the model is empirically relevant. The household-level joint
distribution (at, zt) generated by the policy function and the process (zt), with transition matrix
Q, has an invariant distribution λ×ξ (see Appendix B). This theoretical distribution represents the
proportion of time that each household spends in each state in the long run. We confirm that for
the model calibration below, this theoretical distribution is unique, by verifying that all transition
probabilities in Q are positive; this also implies that λ× ξ is the same for all households.

In our analysis, we focus on the computation of cross-sectional wealth distributions. These
change over time and are determined by household choices and random shocks, as encapsulated
in the policy function g(·). Note that at+1 = g (at, zt) can be written, for each outcome of dt,
as at+1 = gd

(
at, l

d
t , h

d
t , e

d
t , s

d
t ; dt

)
, which makes clear that the function that describes livestock

choices given the household-level state variables varies over time, and in particular that the function
itself changes depending on the aggregate state dt. We are interested in the cross-sectional joint
distribution

(
at, z

d
t ; dt

)
for each time period t in the stationary regime, where initial conditions

{a0, z0} for each household are drawn randomly from λ × ξ and households use the functions
at+1 = gd

(
at, l

d
t , h

d
t , e

d
t , s

d
t ; dt

)
to generate the time series for livestock, implying that the household-

level time series is governed by the theoretical distribution λ × ξ. Although the household-level
dynamics are governed by the invariant theoretical distribution, the cross-sectional distribution
changes over time because of aggregate shocks, which imply that time-invariant cross-sectional
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distributions do not exist.14 In the stationary regime, a given history of the aggregate state, i.e.
of droughts, generates a specific time series of cross-sectional distributions. To obtain our results
below, we study the time series of cross-sectional distributions that is generated by the realised
history of the aggregate state between 1920 and 2018. The path of the cross-sectional distributions
is computed using non-stochastic simulation following Heer and Maussner (2009) and Young (2010),
starting from a guess for the initial distribution for a date preceding 1920. As discussed in Appendix
B, the start date ensures that the initial guess does not influence key properties of the time series
of the cross-sectional wealth distribution after 1920.

4 Estimation of exogenous processes and calibration

To solve the model numerically, we first use the survey data to estimate the exogenous processes.
A fundamental source of uncertainty is the possibility of drought, which is an aggregate-level
shock that, in turn, influences the dynamic paths of the four random variables that determine
the idiosyncratic, household-level shocks. We thus approximate this aggregate-level stochastic
process first and then, conditional on this, we approximate the processes determining household-
level shocks.

4.1 Droughts

To model droughts, we denote the aggregate shock in period t by dt ∈ {0, 1} and model it assuming
that it follows a Markov process. We let dt take the value one if there is a drought and zero
otherwise, with transition probabilities given by the 2×2 transition matrix Qa. Using local monthly
precipitation data, we calculate for each month during the rainy seasons (March-May and October-
December), for the period between 1920 and 2018, the deviation from the long-run mean for the
corresponding month. We then define drought years as those having precipitation during the rainy
seasons as those in the bottom 40% of the distribution of deviations, ensuring that the known
drought year, 2017, is correctly identified (for data sources and more detail, see Appendix A)).
Then, using the transitions between the two states in the data, we calculate the probabilities for
the Markov chain for the aggregate shocks in Qa (shown in Appendix C).

4.2 Growth rate of livestock holdings

The random variable lt determines the growth rate of livestock holdings and captures the net
annual change in livestock due to only stochastic natural factors. The shocks in lt contain both an
aggregate element, driven by dt, and an idiosyncratic element, denoted as (ldt ), the distribution of
which depends on the aggregate state that arises under dt. The survey data allow us to construct
the cross-sectional distributions of shocks to the livestock growth rate for 2017 (a drought year)
and 2018 (a non-drought year) separately, giving rise to two distributions of idiosyncratic shocks
shown in Figure 2. Because there is little correlation between the household-specific shocks across
periods, we model (lt) such that, conditional on the aggregate state, idiosyncratic shocks do not
have persistence. Therefore, any persistence in the shocks to livestock growth rates is driven by
the persistence of the aggregate state and not by the idiosyncratic shocks, with the latter adding
further uncertainty in the form of variability that is conditional on the aggregate state.

The random variables ldt , where d = {0, 1}, take values in the state space that is determined by

the 1×Nd,l vectors Ld =
[
l
d,min

, ..., l
d,max

]
, l

d,min ≥ −1, with probabilities given by ξd. We use the

cross-sectional distribution of the variable lit (constructed following information in Section 2) for
2017 and 2018 to estimate Ld and ξd for Nd,l = 6, applying the data-based discretisation proposed

14For examples of this type of equilibrium dynamics of household-level distributions, see, e.g. Imrohoroglu (1989)
and Heer and Maussner (2009).
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by Toda (2021), which is an automatic version of the Golub and Welsch (1969) algorithm. We
hence obtain the Markov chain (lt) as given by the state space that is determined by the 1 × N l

vector L =
[
L0 L1

]
, N l = 12, and 12 × 12 transition matrix Ql, which is constructed using ξd

and Qa. We report Ld, ξd, Qa, as well as the state space L, the invariant distribution ξl and the
transition matrix Ql for (lt) in Appendix C. We also plot in Appendix C the observed distributions
and corresponding approximations to confirm the accuracy of the approximation.

4.3 Household time input

In the model, the random variable ht corresponds to the household time input that is used for
the production of milk. This random variable depends on dt, and as discussed in Section 2, the
idiosyncratic component also has persistence, which occurs in the hit = 1 outcome. As shown in
the right-hand panel of Figure 2, the empirical distribution of hit is very similar for the two years,
both having a mass of households clustered at the outcome hit = 1, with a difference in the means.

Considering the information above, we model the stochastic process (ht) as follows. First
we calculate a Markov chain for a binary time input status, hpt = 1 for ht = 1, or hpt = 0
for ht < 1. The respective transition matrix is denoted by Qhp, and its elements are obtained
directly from the data by calculating the proportion of transitions between the two states across the
households. Second, suppose the household is in hpt = 0. In this case, it is assumed to draw a purely
idiosyncratic shock, ht ∈ (0, 1) from distribution hn,d with probability density Phn , for d = 0, 1.
Motivated by the previous results on the distributions of the residuals, the hn distribution depends
on the aggregate state because the state space differs by a constant. We then use the cross-sectional
distribution of hit, conditional on hit < 1 and demeaned for each year, to approximate the demeaned
empirical density of ht < 1, Phn using a discrete four-state probability distribution, applying the
discretisation method in Toda (2021). The discretised distribution is finally re-centred for each

period so that the means between the two periods match the difference

(
E[hi

2017]
E[hi

2018]
− 1

)
= −4%.

We plot in Appendix C the observed distribution and corresponding approximation to confirm the
accuracy of the approximation.

Combining the Markov chain Qhp with the density Phn (and the respective state spaces), we
obtain the Markov chain for household time input, with transition matrix Qh and state space H.
We report Qhp, and the probability distributions for hn,d in Appendix C, together with the state
space H and the transition matrix Qh and the invariant distribution ξh for (ht).

4.4 Calibrating non-livestock market income

The variable et, which we refer to as non-livestock income, combines the minimum level of resources
available to all households wt, and household income from market activity. The value of wt,
which is the lowest state in et, is assumed to be equivalent to two goats per household per annum
(equivalent to 0.2/6=0.0333 livestock units per capita) in drought years, reflecting e.g. income from
accessing natural resources (such as wood for charcoal) or support from relatives living outside of
the community or via external aid. Two goats allow the household to exit the zero livestock
state; moreover, their implied monetary valuation approximately corresponds to the amount of
short-term support provided to households during droughts by national government ‘emergency
response’ programmes (key informant interviews valued this support at 3800-5000 KES per month
for three months), which can be thought of as the minimum required for survival15. We then
assume that natural resources in droughts are 70% of the respective value in non-drought years
(inspired by the observation that the Forage Condition Index index falls by 31% in droughts; see
Table 1 in Matere et al. (2020)). We then assume that income from selling items at local market

15We convert values in KES to livestock units, using livestock valuations provided by local experts in Turkana; see
Appendix A.4.
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constitutes the second state in et. As discussed in Section 2, this kind of activities, in which
16% of households engage, provide complementary resources to a household and are not generally
understood as major income generation streams. Nevertheless, if a household is to be involved in
this kind of activity, it should generate the minimum amount that they would otherwise receive
from government support programmes. We thus set the income generated from this activity, at
the annual level, equal to 0.2 (LU per capita per annum), which is approximately the amount that
they would receive from government support programmes, were they to receive this amount for the
full year (i.e. 5000 KES x 12 months = 60000 KES). The third and final state of et is given by
small business income, which as explained in Section 2, is typically associated with more lucrative
activities, and applies to 9% of the households in our sample. To assign a value to this state,
we assume that it is equivalent to the wage that would be earned, on average, by 2.5 full-time
equivalent household members, using the mean wage of those reporting waged income among our
sample (30 individuals). The implied value of 0.7 (LU per capita per annum) is also consistent
with median incomes from informal enterprises in Turkana South reported in the Turkana County
integrated labour market assessment report by the International Labour Organization (2022, see
Table 27). Because only 13 households report waged income, with a median of 30000KES per year,
we do not include this in the model. Taking these different income streams into consideration, et is
modelled as a random variable with a probability distribution given by the possible outcomes End =
E + wt|d=0 =

[
0.0476 0.2476 0.7476

]
, Ed = 0.7 × E + wt|d=1 =

[
0.0333 0.1733 0.5233

]
and associated probabilities pE =

[
75% 16% 9%

]
where E =

[
0 0.2 0.7

]
.

4.5 Co-insurance via transfers

As discussed in Section 2, there is community-level support in Turkana that provides co-insurance in
the form of donations by family members or friends of a small number of animals in situations where
households have received severe shocks that lead to the loss of their herd. Although we do not have
detailed information on donors and recipients, our modelling is able to account — at the aggregate
level — for the effect of community-level support in terms of mitigating the impact of negative
livestock shocks on household-level resources. The discretisation of the livestock growth process
lt implies that the worst-case shock leads to a 91% loss in droughts and 90% in non-droughts.
Therefore, we assume that community support st takes a positive value, reflecting a transfer of
livestock, if the household receives the worst-case livestock shock. We set the value of this transfer
to 0.2/6=0.0333 (2 goats per household or 0.2/6 livestock units per capita), based on information
we collected during interviews (see Section 2). The value of the transfer we use is also consistent
with McPeak (2006), who also estimates the average transfer to be about 0.15 livestock units per
household in other pastoralist communities in northern Kenya. In our model, this implies that
transfers of this type are provided to 17% households in droughts and to 0.5% in non-droughts,
consistent with the information we collected from interviews that it is mainly in droughts that
support from other households is required (see Section 2). These transfers are provided by other
households within the community, who consequently see their own assets reduced accordingly. To
implement this mechanism, we assume that households that receive positive livestock growth shocks
contribute equally to these transfers. Ensuring that total contributions equal total transfers implies
that each household with a positive livestock growth shock donates 0.0063 livestock units in non-
droughts and 0.0618 in droughts. Our modelling reflects the assumption that households that have
good luck are expected to provide some minimal support to others who, through bad luck, risk
losing their livelihoods as pastoralists.

4.6 Model parameters

To obtain the numerical results, we specify functional forms for the utility function u(ct) and for
milk production yd

(
hdt , l

d
t , at;w

d
t

)
. We use a logarithmic utility function. The production function
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of milk is given by ydt = Md(hdt )
γ
(
(1 + ldt )at + wd

t

)(1−γ)
. We then choose parameter values for

η, β, Md, γ and amax. To obtain η ≡ ηm

ηl
, we use information on the calorie content of meat

and milk.16 To calibrate γ, we take inspiration from production functions for farming. Estimates
of production functions of farming in the US from earlier decades in Griliches (1963) suggest a
γ = 0.5. Alternatively, thinking of it as being closer to a production function for the Kenyan
economy, we note that the labour share in the Kenyan economy is around 44% (Guerriero (2019)).
Given these considerations, we present results for γ = 0.5 and in Appendix D we show that our
results are robust to a range of values for γ, between 0.3 and 0.7. The parameters Md and β
are chosen so that the model quantities of yt and at are expressed in empirically relevant units.
In particular, Md scales ydt , while β affects the desire of the household to accumulate livestock
and thus the average level of at. In our sample, the average level of per capita livestock is 0.5665
livestock units (averaged over 2017 and 2018) and we choose β so that model predictions match
this value. We approximate annual household per capita production of milk in Turkana between
2006 and 2019, using information from NDMA (2020) to be about 0.146 tonnes on average, and
about 45% higher in non-drought years.17 We choose Md so that the model simulated paths imply
that milk production reproduces average milk values for wet and dry years between 2006 and 2018.
Our calibration implies values of β = 0.896, M0 = 0.267 and M1 = 0.232. We set amax equal to
25, which is well above the maximum value of household livestock holdings in livestock units per
capita we observe in the data, and higher than household livestock holdings in the model.

5 Model results

Taken together, our results show that the wealth inequality observed among Turkana pastoralists
can be explained as the outcome of resource risk and the decision-making it implies. We first
examine whether the model-generated distributions of livestock holdings correspond well to the
empirical distributions. We then analyse choices regarding savings to augment livestock holdings
and different sources of resource risk that shape the distribution of livestock.

5.1 Model generated wealth distributions match the data

The model predicted time series of cross-sectional livestock distributions generated by the household-
level stochastic processes and the history of drought years between 1920 and 2018 provide an excel-
lent match for the empirical livestock distributions. We confirm this fit using a range of evaluation
methods.

We first calculate the model-generated wealth distributions for 2017 and 2018 and compare
them to their empirical counterparts in the same years in the form of both probability density
functions and cumulative density functions.18 Figure 4 shows the model predictions (in red) for
2017 and 2018, with the empirical wealth distributions for 2017 and 2018 (in blue) overlaid. The

16In particular, 100g of meat contains approximately 143.5 calories (see Anaeto et al. (2010)), while 100ml of goat
milk contains 76.5 calories (see Collard et al. (2021)). Hence η is equal to ηm

ηl = 74.1
143.5

= 0.5329
17In particular, NDMA (2020) estimates milk production in Turkana at about 2.4 litres per household per day on

average between 2006 and 2019, being about 45% higher in wet relative to dry years. We approximate the annual
per capita equivalent using a median household size of six.

18To make the empirical and model distributions comparable, we discretise all distributions on the same equally-
spaced grid in A with 100 gridpoints (bins).
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model-generated distributions are remarkably similar to their empirical counterparts.

Figure 4: Empirical and model-generated distributions, 2017 and 2018
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The model-generated distributions are calculated by simulating the model economy using

the historical time series for droughts since 1920. For the empirical distributions, see Section 2.

Figure 5: Model generated and re-sampled empirical distributions, 2017 and 2018
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from 1000 random samples with replacement; the black line is the median. The red lines are

calculated by simulating the model economy using the historical time series for droughts since 1920.

Next, to examine sensitivity to the specific sample used to generate the empirical distributions of
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wealth, we plot, in Figure 5, the model-generated distributions (red lines) with the 80% confidence
intervals of the empirical histograms (the grey area) obtained by re-sampling 1000 times with
replacement from the data. The model predictions are within the range of plausible empirical
outcomes.

We now focus on selected distributional statistics. In Figure 6, we present key statistics of the
distributions for 2017 and 2018 for the empirical and model-predicted distributions. The model
generated statistics are very close to those calculated from the data, also implying that the model
captures the impact of droughts on wealth inequality and poverty. Note also that comparing the
model-generated statistics in Figure 6 with the confidence intervals for their empirical counterparts
in Table 1, we see that the model-generated statistics are always within the confidence intervals of
their empirical counterparts.

An additional form of evaluation of the empirical relevance of the model predictions treats the
empirical distributions for 2017 and 2018 as draws from the time series of cross-sectional wealth
distributions and thus examines whether they are consistent with the time series of cross-sectional
wealth distributions generated by the model. We simulate the model using the historical time series
of droughts since 1920 and calculate the prediction interval, point-wise, separately for drought and
non-drought periods. We plot these intervals and the observed empirical distributions in Figure 7
and find that the empirical drought and non-drought wealth distributions are within the prediction
intervals of the model-generated distributions.

Figure 6: Model-generated and empirical distributional statistics, 2017 and 2018
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Figure 7: Empirical distributions for 2017 and 2018 and model-generated
prediction intervals for droughts and non-droughts
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show the respective medians. For the empirical distributions (in red), see Section 2.

In summary, the results above show that the model-generated distributions of wealth and their
properties are very similar to those in the data.19 We next explore how household saving decisions
and different sources of household-specific risk contribute to wealth inequality.

5.2 Inspecting the resource risk mechanism: the role of livestock savings

The functions gd
(
at, l

d
t , h

d
t , e

d
t , s

d
t ; dt

)
(see Section 3), which summarise wealth accumulation across

households, encapsulate the working of the resource risk mechanism and generate the model predic-
tions regarding the livestock distributions in Section 5.1. They also reflect incentives to accumulate
or de-accumulate livestock under risk and thus conditions under which livestock acts as a buffer.
Therefore, to understand the resource risk mechanism we analyse savings behaviour implied by
the model and to evaluate its empirical relevance we examine whether model predictions regarding
savings under risk are consistent with savings behaviour observed in the data.

We illustrate key properties of the functions g(·) in panels A and B of Figure 8, which plots
at+1 against at, for different levels of household-specific shocks.20 In panel A, we plot at+1 against
at for different levels of the shocks to livestock holdings growth lt, in non-drought periods, for
households that receive the lowest non-livestock income et (which is the case for the majority of
households in our sample), for time input ht = 1 and see that it is increasing in both at and lt.
This illustrates the basic idea behind the resource risk mechanism for wealth inequality in the
model. In particular, conditional on a given level of initial livestock, households that receive more
positive lt shocks make consumption and savings choices that lead to them having higher next-
period livestock. Other things equal, this higher level of next-period livestock leads to even higher

19Further exercises to verify the empirical relevance of model predictions regarding the properties of the wealth
distributions are in Appendix D.

20See also Appendix B.3, for monotonicity properties of wealth accumulation and net savings with respect to the
state variables in a two-period version of the model.
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livestock in the following period, because at+1 is a positive function of at. Therefore, the impacts
of a more positive shock on livestock holdings accumulate over time, leading to persistently higher
wealth.

In panel B of Figure 8, we repeat panel A for households that receive the highest non-livestock
income shock et. By comparing the lines to those in panel A, we confirm that a positive et shock
also leads to higher wealth accumulation. We do not show results for lower levels of the time input
variable, ht, because its effects are quantitatively very small (i.e. panels A and B change very little),
suggesting that variation in ht should not matter much for livestock inequality (a result we return
to in Section 5.3). In Appendix D.2, we repeat panels A and B for drought periods, confirming the
same patterns. By comparing drought to non-drought periods, we see that droughts (which imply
an increased probability of more negative shocks; see Sections 2 and 4), lead to lower average at+1,
with higher variation between households.

Figure 8: Next-period livestock and net livestock acquisitions
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for different values of the state

variables. Panels C and D show xt ≡ at+1 − (1 + ldt )at for different values of the state variables.

The household’s decision rule g(·) that determines next-period wealth in panels A and B of Figure
8 is, in effect, the choice of the size of net livestock acquisitions, defined as xt ≡ at+1 − (1 + ldt )at,
which is a function of the beginning of period livestock and shocks. Net acquisitions defined in this
form refer to net acquisition of livestock over and above changes in livestock holdings as a result
of natural shocks to livestock. The savings functions xt, in effect an alternative representation of
the g(·) functions in panels A and B, are plotted in panels C and D of Figure 8, which plot xt
against at, for different levels of household-specific shocks for non-drought periods (see Appendix
D.2 for drought periods, showing similar patterns). As can be seen, net savings are a decreasing
function of livestock at, being positive for low levels of livestock and becoming (more) negative
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as livestock increases (except for the worst-case livestock shock, which we analyse below). This
behaviour implies that pastoralists aim to maintain a large enough herd size; this is required to
sustain consumption because resources are predominantly generated by livestock. When their
livestock holdings are very low, they use their available resources to increase herd size and thus
consumption potential for future periods. When their livestock holdings are higher (and when they
receive sufficiently positive lt shocks) they use some of the increase in herd size due to natural
sources to increase consumption via meat or other goods, financed by sales of livestock.21

These incentives to maintain a herd size are also seen when examining net savings as a function
of shocks to the growth rate of livestock holdings. A larger positive lt shock leads to lower net live-
stock acquisitions, implying that pastoralists in the model do not view livestock as a buffer stock
used to smooth consumption in response to livestock shocks; instead, they aim to smooth herd
size in response to negative livestock shocks, which is needed to ensure that consumption recovers
quickly. On the contrary, comparing panels C and D in Figure 8, we see that net livestock acqui-
sitions respond positively to non-livestock income shocks, consistent with consumption smoothing
behaviour (i.e. suggesting their use as a buffer): when et is higher, so are net livestock acquisitions.
In Appendix D.2, we show net livestock acquisitions as a function of time input to milk production,
ht, and see a similar pattern, suggesting that shocks that reduce time input to production require
pastoralists to reduce livestock holdings to smooth consumption. On the contrary, when time input
is higher, which increases the productivity of livestock, a larger herd size is preferred.

Figure 9: Empirical and model predicted net livestock acquisitions
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Note: Panel A shows marginal effects of beginning-of-period livestock on net livestock acquisitions

for different levels of lt, estimated using the survey data (see Figure 3). Panels B shows the

equivalent effects for model-predicted net livestock acquisitions. In both cases, effects are averaged

over the remaining variables.

We can test whether the model predictions regarding household net livestock acquisitions, which
give rise to the cross-sectional wealth distributions, are also consistent with empirical evidence on
net livestock acquisitions from the survey data presented in Section 2.4. Empirical validation of
the mechanism that links resource risk to that wealth inequality is an additional test for the re-
source risk mechanism to explain wealth inequality in the data, in addition to generating a good
fit to the empirical wealth distribution. More generally, this analysis can contribute to understand-
ing household choices in a risk-exposed environment under limited mitigation options, which we
analyse further in the next section. We compare the empirical predictions regarding net livestock
acquisitions in Figure 3 to equivalent model predictions in Figure 9. In panel A, we repeat, for

21However, note that, when net savings are negative, they are less in absolute value than the increase in herd size
due to lt, implying that at+1 increases despite negative net savings in these cases, as is shown in panels A and B,
respectively.
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convenience, the empirical predictions from Figure 3 and in panel B we plot model-predicted net
livestock acquisitions as a function of at and lt, averaged over ht, et, st and droughts.22 As can
be seen, the model predictions are very similar to the estimated relationship from the survey data.
Although slightly smaller in absolute terms, they are of comparable magnitudes and within the
90% confidence intervals (see Appendix A.7). The model prediction for the average marginal effect
of time input on net savings is positive, as in the data shown in Table 3, and although at 0.0261 it
is smaller than the respective estimate from the data (0.0985), it falls within the 90% confidence
interval [0.0121,0.1850].

We conclude that the household savings behaviour in the model that gives rise to wealth in-
equality as a function of random shocks to resources is empirically relevant. We now proceed to
examine the relative importance of different forms of resource risk in generating the observed levels
of inequality.

5.3 Inspecting the resource risk mechanism: the role of household-specific risk

We now conduct counterfactual analysis using the model to assess the contribution of the different
types of household-specific risk. For this analysis, we repeat the simulations of the model under the
historical time series of droughts for different variants of the base model we have examined so far.
In the first variant, we turn off shocks to the growth rate of livestock holdings (lt); in the second,
we turn off shocks to market income (et); and in the third, we turn off time input shocks (ht).
To ensure that there are no mean-level effects from this analysis, in all cases, we assume that all
households receive the mean value of the variable we change in droughts and non-drought years. In
the fourth variant, to assess the impact of community-level support in reducing critical poverty, we
turn off community co-insurance via st. We summarise the results from these counterfactual model
experiments in Figure 10 and Table 4. In Table 4, we present key distributional statistics from
the base model and from the counterfactual analysis. In Figure 10, we show the model-generated
distributions for 2017 and 2018 when we turn off lt and et (the distribution changes very little when
we turn off the ht and st and thus the resulting distributions are not shown); for comparison, we
also repeat the distributions generated by the base model and the empirical distributions.

The main result from Figure 10 and Table 4 is that shocks to the growth rate of livestock
holdings are the primary driver of wealth inequality and poverty. As seen by comparing columns 0
and 1 in Table 4, the Gini measures and wealth ownership at higher deciles are approximately halved
in the case where all households receive the mean livestock returns in droughts and non-drought
periods with certainty; moreover, the proportion of households in extreme poverty falls to zero,
while wealth ownership of the bottom quintile increases approximately sixfold. The contribution
of variation in income from market activity is sizeable but substantially smaller than the effects
of livestock holdings growth risk. Indeed, by comparing columns 2 and 0 in Table 4, we see
that measures of inequality reduce by about 20% when all households receive the mean income
from these sources for drought and non-drought years with certainty, whereas the reduction of the
concentration of wealth at the higher quintile is lower. Extreme poverty is also eliminated, although
the effect is mechanical because all households in this experiment receive the average value of et,
which implies that they all, in effect, have resources above the poverty line. Note also that livestock
holdings growth rate risk and non-asset income risk have diametrically opposite — and sizeable —
implications for the extent of mean savings. In particular, while average assets are nearly halved
in the absence of non-asset income risk, they are approximately doubled in the absence of livestock
growth risk. The effect of household time input into milk production, shown in column 3 of Table

22To do so, we solve the model imposing the same state space for lt between droughts and non-droughts.
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4, is very small across the distribution.

Figure 10: The contribution of different sources of risk to wealth inequality
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The model-generated distributions are calculated by simulating the model economy using

the historical time series for droughts since 1920. For the empirical distributions, see Section 2.

Table 4: Wealth inequality indices by sources of risk (model predictions)

[0] [1] [2] [3] [4]
base no livestock no market no time no co-

model growth risk income risk input risk insurance

Mean Livestock 2017 0.496 0.905 0.272 0.496 0.493

Mean Livestock 2018 0.637 1.171 0.355 0.637 0.633

Gini Livestock 2017 0.592 0.280 0.461 0.592 0.609

Gini Livestock 2018 0.570 0.274 0.422 0.569 0.584

Poverty 2017 (% households) 0.145 0.000 0.020 0.145 0.182

Poverty 2018 (% households) 0.091 0.000 0.000 0.092 0.127

Bottom 20% share of wealth 2017 0.015 0.078 0.048 0.016 0.009

Bottom 20% share of wealth 2018 0.018 0.078 0.064 0.019 0.014

Top 20% share of wealth 2017 0.614 0.352 0.515 0.613 0.626

Top 20% share of wealth 2018 0.593 0.349 0.493 0.592 0.603

Top 10% share of wealth 2017 0.438 0.199 0.354 0.437 0.447

Top 10% share of wealth 2018 0.420 0.196 0.338 0.419 0.429

Note: Poverty is defined as the proportion of households that own less than 0.05 LU per member.

The model-generated statistics are calculated by simulating the model using the historical time

series for droughts since 1920.

The effect of community-level support, as can be seen by comparing columns 0 and 4 in Table
4, is small in terms of inequality, but it is significant in terms of poverty and livestock ownership
for households at the lower end of the distribution. Indeed, reducing community-level support for
households that receive the worst-case livestock growth shocks increases extreme poverty by 30-
50%. There is also a reduction in wealth ownership at the bottom 20% of the distribution of about
30%. The effects of community-level support for poverty and the left tail of the wealth distribution
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highlight the significance of co-insurance mechanisms, even though they appear to be limited in
scope (see the discussion of relevant data and information from Turkana in Section 2).

6 Discussion

Overall, our results show that, for the pastoralist economy that we study, shocks to resources
generate the observed variation across households in wealth via decision-making to accumulate
assets, which is, itself, a function of resource risk and available resources. Here, we further discuss
how our analysis and results contribute to research studying aspects of risk, savings, and inequality.

6.1 Resource risk and inequality in small-scale and in early human societies

Our work is inspired by studies of contemporary societies that preserve key characteristics of early
human societies to understand the emergence of inequality in human societies (this literature is
reviewed in e.g. Halstead and O’Shea (1989), Bar-Yosef (2001), Barker (2006), Halstead (2014),
Scheidel (2017), and Dow and Reed (2023)). Our analysis contributes to this literature by empha-
sising the role of resource risk in generating wealth inequality, operating via household-level savings
decisions in response to risk and shocks to resources. We now contextualise our work with respect
to key studies from this literature.

In the influential study of Borgerhoff Mulder et al. (2009), idiosyncratic variation in resources
is assumed as an essential ingredient in the generation of wealth inequality in contemporary small-
scale societies, but its role is not explicitly examined because the focus in this work is instead on the
role of cultural norms and technologies for wealth transmission. In particular, Borgerhoff Mulder
et al. (2009) examine differences in wealth inequality between small-scale societies, focusing on the
importance of cultural incentives to accumulate wealth over time and of the storage technology that
allows for intergenerational transfers of different forms of wealth, for given stochastic variation in
resources. Although stochastic variation in resources is assumed in Borgerhoff Mulder et al.’s (2009)
model, it is critical, because without it there can be no wealth inequality. In contrast, we take as
given in the society that we study both preferences and the storage technology that determines the
ability to transfer resources over time, to focus on the importance of resource risk — the exogenous
component of variation in resources — and household savings decisions in response to risks and
shocks. Our results show that resource risk and the savings decisions it leads to can fully account
for wealth inequality among the Turkana pastoralists that we study. These findings, therefore,
provide empirical validation of the assumption of stochastic variation in resources in Borgerhoff
Mulder et al. (2009). Our results further suggest that differences in resource risk across economies
should also help to explain differences in wealth inequality, alongside other factors.

Our finding that risk to the returns to assets has such large effects on wealth inequality also has
implications for our understanding of the differences in inequality between societies. In particular,
our findings suggest that societies that are subject to either higher levels of variation in returns
to assets or where the effect of such variation on the production of resources is more pronounced,
should, other things equal, have higher inequality. First, higher risk leading to variation in returns to
assets can occur, for example, due to increased variability in climate as a result of climate change.
Second, when production is more dependent on assets relative to labour, the same variation in
assets implies greater variation in output. Indeed, archaeological evidence in Bogaard et al. (2019)
and Fochesato et al. (2021) suggests that inequality was higher in early human societies where
production depended more critically on land (the asset) relative to labour. Bogaard et al. (2019)
explain this finding by arguing that higher wealth inequality should be observed in societies where
farming depends more heavily on land and animal traction than in those where farming depends
more on labour and manure because shocks to assets (land and animals required for traction) tend
to be larger than the equivalent shocks to human capacities. Our finding of a substantially greater
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impact on wealth inequality of the variation arising from shocks to the growth rate of livestock
holdings than that arising from time input shocks is consistent with this logic.

Another strand of research on the pre-historical emergence of inequality and of its evolution
during historical times has focused extensively on the role of socio-political conditions and formal
and informal institutional arrangements that can lead to inequality between elites and common-
ers and determine property rights and co-insurance (Bar-Yosef (2001), Scheidel (2017), Ullus and
Ellenblum (2021), and Dow and Reed (2013, 2023)). These factors influence inequality but also,
in turn, adapt to changes in inequality. The link between co-insurance arrangements and resource
risk is particularly relevant to our study. On the one hand, formal and informal insurance arrange-
ments determine how much of (or even whether) the effect of idiosyncratic variation in income
translates into resources available for consumption or asset accumulation;23 on the other hand,
widespread inequality and poverty that creates social instability generate pressure for societal or
institutional change (e.g. examples in Scheidel (2017) and Ullus and Ellenblum (2021)). In our
analysis, we take institutional arrangements as given because of their relative stability over the
period we examine, accounting for the effect of existing co-insurance arrangements on wealth in-
equality. By conducting counterfactual model analysis without these arrangements, we confirm that
co-insurance arrangements in the Turkana pastoralist society are important for mitigating poverty,
or else the concentration on the left tail of the wealth distribution.

6.2 The dominance of asset return risk and unimportance of time input risk

Our finding that shocks to the returns to assets are a major driver of the wealth distribution
complements recent research on wealth inequality that highlights the importance of stochasticity
in returns to savings as a critical generator of inequality (e.g. Benhabib et al. (2015, 2017),
Benhabib and Bisin (2018), and Stachurski and Toda (2019)). Although the above studies focus
on the right tail of the wealth distribution, in the environment that we study, in which asset-
generated income is the main source of income, risk in the returns to assets is also critical for the
left tail. Because households in the model are entrepreneurs (in which the business is herding),
our results are also consistent with research that demonstrates the importance of entrepreneurial
risk for wealth inequality (e.g. Quadrini (2000), Cagetti and De Nardi (2006)). However, in the
pastoralist economy that we model, entrepreneurial risk mainly takes the form of asset return risk,
where the assets are invested in the household business, and thus differs from the stochasticity
associated with entrepreneurial ability which has been emphasised in more complex production
and market structures (see e.g. Cagetti and De Nardi (2006) for a review and Quadrini (2000) for
a model incorporating both types of entrepreneurial risk). The importance for wealth inequality of
shocks to the rate of return to assets is also consistent with findings from analysis of factors that
determine wealth accumulation in villages in Thailand in Pawasutipaisit and Townsend (2011),
which highlight the importance of variation in the rate of return across households.

In contrast, we find that shocks to time input have very little effect on wealth inequality. In
small-scale societies, this may reflect arguments in Bogaard et al. (2019) that variation in labour
input should be lower than that in assets such as land and livestock because human capacities are
less variable are less risky than returns to these assets. In Turkana, the fact that shocks to human
input have so little effect on wealth accumulation may also reflect household-level smoothing of
individual-specific shocks to time input through the reallocation of tasks to other household mem-
bers. Indeed, a variation decomposition exercise reveals that most variation in time input across

23This is exemplified in egalitarian hunter-gatherer societies (see e.g. Borgerhoff Mulder et al. (2009) and Scheidel
(2017) for examples of such societies and relevant research) and in analysis of resource risk in small-scale rural
communities where informal community co-insurance mechanisms work to, in effect, insure away a large part of the
impact of idiosyncratic negative shocks to resources (see e.g. Townsend (1994) and Samphantharak and Townsend
(2018)).
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individuals in our sample is within households as opposed to between households.24 Moreover,
as discussed in Section 2, there is evidence of co-insurance of human shocks between households,
including arrangements in which friends and neighbours help with herding or similar activities in
the case of illness. This is probably reflected in the insignificant relationship between variation in
time input and herd growth rates (discussed in Section 2.5) and could further explain the relatively
small effect of variation in time input across households, both on savings decisions (Section 5.2)
and on wealth inequality (Section 5.3). In turn, this suggests another potentially important form
of community-level co-insurance, that of providing time input to support others, that goes beyond
the transfers of resources that have been analysed in the literature (e.g. Townsend (1994), Lim and
Townsend (1998), McPeak (2006), Kinnan and Townsend (2012)).

6.3 Savings decisions under risk in agro-pastoralist and pastoralist economies

Theoretical analysis of incomplete insurance markets has established that assets can serve as a
buffer to help households smooth consumption in response to income shocks (i.e. non-asset shocks)
(e.g. Sandmo (1970), Deaton (1991), Zeldes (1989) and Kimball (1990)). The logic behind this
self-insurance mechanism is that households accumulate assets during periods of higher income in
order to have more resources to liquidate to reduce the impact of temporary negative income shocks
on consumption. By the same logic, an increase in income risk leads to increased precautionary
savings in assets. Quantitative macroeconomic studies building on the basic incomplete markets
model of Bewley-Huggett-Aiyagari, are consistent with these results. In our pastoralist model
economy, the asset is livestock and income shocks are those that lead to variation in non-livestock
income (i.e. market income). Consistent with this research, we find that households accumulate
livestock in response to positive market income shocks and de-accumulate in response to negative
income shocks (Section 5.2). Moreover, we find that households accumulate livestock in response
to an increase in the uncertainty of market income (Section 5.3).

In contrast to income (i.e. non-asset) risk, theory shows that the impact of an increase in risk
to returns to assets on asset accumulation cannot be signed because it is subject to income and
substitution effects (Sandmo (1970)). Specifically, it depends on the relative magnitudes of forces
acting in opposite directions: incentives to accumulate assets to ensure income does not drop too low
following a negative shock; and the increased loss of investment in the case of a negative shock. In
a quantitative work, these trade-offs can be evaluated, and indeed, a negative relationship between
risk and asset accumulation can emerge in developed economies (see e.g. Angeletos (2007)). We
find similar results in our model pastoralist economy, specifically that increases in uncertainty about
the growth rate of livestock holdings lead to reduced asset accumulation (Section 5.3). This implies
that households do not use livestock as a buffer against shocks to assets. This behaviour is indeed
confirmed when we examine savings in response to shocks. Specifically, households accumulate
livestock in response to negative livestock growth shocks and de-accumulate it in response to positive
ones (Section 5.2).

The question of savings under risk has also been studied in pastoralist and agro-pastoralist
economies, which have special characteristics thought to matter for savings behaviour. First, the
assets that can be used for self-insurance are effectively limited, in the case of pastoralists, to
livestock, and in agro-pastoralists, to livestock, land and grain. Second, these assets are production
assets, and thus determine household resources. Third, while the returns to these production assets
are risky, a significant source of risk is to the asset itself, in the form of death of livestock. This is
obviously of critical importance in pastoralist societies. Although inconclusive, the weight of the
evidence from small-scale agrarian and pastoralist economies seems to suggest that livestock are
not used as a buffer against shocks to household resources. Regarding agro-pastoralist economies,

24A decomposition of the Generalised Entropy Index with coefficient 2 calculated using our data shows that 81%
of inequality in time input is within household variation, while only 19% is due to between household variation.
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results in Rosenzweig and Wolpin (1993) suggest that livestock is used as a buffer against income
shocks in agrarian economies in India, but Lim and Townsend (1998) comment that the data for
these economies actually suggest that livestock is bought in bad periods and sold in good periods.
Udry (1995) and Fafchamps et al. (1998) study agro-pastoralist economies in West Africa in which
livestock is used in the production of crops and find that net livestock sales do not respond to
income shocks, suggesting that livestock, in this context, is not used as a buffer. Less is known
about savings under risk in pastoralist economies. McPeak (2004) studies pastoralist economies
in East Africa in which livestock is used to produce milk and finds that livestock sales increase in
response to herd growth, the opposite of what would be expected if used as a buffer.

By distinguishing between the sources of risk, our study reveals a negative relationship between
net livestock acquisitions and shocks to the growth rates of livestock holdings, but a positive
relationship between net livestock acquisitions and shocks to income from other sources. There
are two factors that are important in explaining the negative relationship between net livestock
acquisitions and shocks to herd growth. Firstly, the relatively high probability of large negative
shocks to the asset itself, in the form of death (or theft) of livestock, makes it less attractive to
further accumulate it when natural processes already lead to positive herd growth and/or large herd
size. Second, because livestock is the primary means to generate resources, households have a strong
incentive to maintain a sufficient herd to generate the resources they require. Indeed, we find that
households tend to acquire livestock when herd size is low and/or in the case of very large negative
livestock shocks (which imply about a 90% drop in livestock), meaning that they convert resources
they may have during these periods into livestock. Households in these difficult periods must,
therefore, have access to additional resources to start a new herd. This highlights the importance
of community-level co-insurance, alongside external support schemes, for households with limited
livestock to escape the poverty trap. The positive relationship between net livestock acquisitions
and shocks to time input and market income suggests the use of livestock as a buffer against these
shocks. That the magnitude of the response to time input shocks is small possibly reflects the
importance of other forms of community co-insurance against shocks that affect humans directly,
such as co-herding arrangements in the case of human illness. Overall, our findings highlight the
importance of distinguishing sources of risk and the mechanisms by which shocks affect assets and
production.

7 Conclusions

The theory that underpins our analysis is the incomplete insurance markets approach to wealth
inequality, key ideas of which have also been incorporated in analysis of wealth inequality in pas-
toralist and early human societies. According to the resource risk mechanism at the core of this
approach, when there is stochastic variation in resources, and where technology, institutional ar-
rangements and social norms allow for resources to be transferred over time, wealth inequality
should emerge. Our analysis provides evidence that the resource risk mechanism can, indeed, ex-
plain observed wealth inequality in the Turkana pastoralist society. To provide this evidence, we
developed a stochastic model in which pastoralist households choose livestock subject to uncer-
tainty about the growth rate of livestock holdings, time input into production, market income, and
drought occurrence, and given the available technology for resource production and storage and
existing community-level co-insurance. We collected bespoke data via a large household survey to
measure shocks and wealth inequality. We used the shocks as inputs to the model to generate the
distribution of wealth across the population and over time. We found that the model-generated
cross-sectional distributions for both drought and non-drought years match the empirical distribu-
tions. Model-predicted savings behaviour is also consistent with empirical evidence regarding net
livestock acquisitions, in particular showing that livestock is not used as a buffer against shocks
to herd size. Model-based counterfactual analysis further revealed that the main component of
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idiosyncratic resource risk that drives inequality is livestock holdings growth risk.
Our results contribute to research on the origins of inequality that has studied early human and

small-scale contemporary societies (e.g. Bar-Yosef (2001), Barker (2006), Borgerhoff Mulder et al.
(2009), Bogaard et al. (2019) and Dow and Reed (2023)). Specifically, our results provide evidence
for the importance of idiosyncratic variation in resources for wealth inequality in these economies,
thus supporting explanations in studies such as Borgerhoff Mulder et al. (2009) and Bogaard
et al. (2019). Moreover, our results contribute to the literature using quantitative analysis of
wealth inequality under incomplete insurance markets, following the contributions of Bewley (1986),
Aiyagari (1994) and Huggett (1993). Specifically, our main result that the model generates observed
wealth inequality in an economy that partials out most of the complexity of modern economies
provides support for the premise of the incomplete insurance markets approach to modelling wealth
inequality. In particular, our results confirm the importance of risk to asset returns in the generation
of observed wealth inequality in this modelling framework, in line with recent research (Benhabib et
al. (2015, 2017), Benhabib and Bisin (2018), and Stachurski and Toda (2019)). Finally, our analysis
contributes to the literature on savings and risk in agro-pastoralist and pastoralist economies (e.g.
Rosenzweig and Wolpin (1993), Udry (1995), Fafchamps et al. (1998) and McPeak (2004)), by
studying the effects of different sources of risk in a pastoralist economy in which livestock, the only
asset, is critical to production but subject to catastrophic loss. We find that incentives work to
increase livestock acquisitions in response to losses and against accumulating livestock to buffer
potential livestock losses.
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A Survey and quantitative data collected

A.1 Description of survey

The quantitative data that we use for our analysis are drawn from a survey of 1,347 households
(recording data on 9,179 individuals), conducted during November-December 2018. The survey
instrument was developed to address the questions of interest and was tailored to the specific local
context (e.g. in relation to question wording and the specific forms of shocks to use as prompts for
enumerators). Wherever relevant, standard questions from the Kenyan decadal census were used
(e.g. for additional belongings). Ethical approval for the survey was obtained from the College of
Social Sciences Ethics Committee at the University of Glasgow prior to data collection. Permission
to undertake research was also obtained from the Country Government of Turkana, Office of the
Governor.

Data were collected from three neighbouring sublocations - Loperot, Kalapata and Napusimoru
- within Kalapata and Lokichar wards, in a rural part of Turkana County. These sublocations
were selected because traditional pastoralist lifestyles are maintained in this area. For instance, we
avoided areas closer to towns, or adjacent to Lake Turkana where fishing is also common. The dates
for data collection were chosen to avoid periods during which pastoralists tend to take livestock
further afield for grazing. The year 2018 was a non-drought year, whereas 2017 was a drought year,
meaning that information collected regarding the previous year covers the effects of a drought.
Data collection was carried out by a team of enumerators (data collectors) led by Dorice Agol.
The field team, comprising enumerators and data entry clarks, was recruited through information
provided by Friends of Lake Turkana and subsequent referrals, and all individuals were interviewed
by Dorice Agol prior to recruitment. We recruited ten enumerators and four data entry clerks, with
equal gender balance. The field team was provided with two days of training covering the survey
questions to be asked (in the form of role plays), ethics, code of contact, and how to manage difficult
situations (e.g. ambiguous responses or issues related to personal safety). All enumerators were
fluent in English as well as the local language, Kiturkana, and training covered the most appropriate
way to translate the questions into the local language. Training was followed by a day spent piloting
the survey instrument in Lokichar (the nearest town to the study area), and a further half-day of
debriefing, including discussions on additional issues arising from piloting experience and how to
manage them. Final adjustments to the survey instrument were implemented to facilitate accurate
data collection.

Data collection at each sublocation started with a meeting with representatives of the local
administration (e.g. chief or village elders) to identify all the villages in each sublocation and
the number of households in each village. Two enumerators then visited each village, aiming
to cover all the households within each village, except in the case of householder absence. The
enumerators introduced the research project and survey, gaining informed consent before conducting
a structured interview with a representative (or occasionally two representatives) of each household.
The enumerator noted down responses on a pre-prepared form for later electronic data entry.
Enumerators made an assessment of the quality of data provided based on the progress of the
discussion (e.g. consistency of responses and their alignment with enumerator assessments of the
information provided on livestock, etc.) and recorded their resultant confidence in the answers
provided by householders, using three categories (high, medium, low). This allowed us to exclude
data judged by enumerators to be of ‘low’ quality. Dorice Agol accompanied enumerators to the
sublocations and was involved in the meetings with the local administration and was responsible
for assigning enumerators to villages. She also helped to ensure quality control by making spot
checks during data collection and answering questions and providing rapid feedback and general
support to enumerators. Data were entered by clerks based in Kenya into specially prepared
spreadsheets which were encrypted for secure storage and transfer. Data were checked for internal
consistency and to ensure that all information was entered in the correct formats during data entry
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and inconsistencies/information in incorrect formats were checked against paper copies and followed
up with enumerators if required.

A.2 Description of survey variables used in the analysis

We collected data on both individual-level and household-level characteristics. The household
was chosen as the unit at which to examine livestock inequality because key economic decisions
concerning livestock are taken at the household level; household members share consumption and
basic accommodation within the household boma (see also, e.g. Sutter (1987)).

Variables relating to individual members of each household included the age, gender and ed-
ucation of the household member, as well as their relationship with the head, and whether they
had recently joined the household or died during the period. We recorded the number of weeks or
months that the normal activities (school, work, herding, caring) of each household member had
been interrupted due to shocks such as ill-health, flooding, drought, injury or death. For household
members who had engaged in waged or paid employment, we recorded the number of months (or
partial months) that they worked, as well as the wage for the kind of job they were involved in.
The individual or individuals in charge of making decisions about the purchase and sale of livestock
were also recorded.

Livestock numbers (wealth) and shocks to livestock were recorded at the household level, differ-
entiating between goats, sheep, cattle, camels and donkeys. For each livestock species, we recorded
the current number and the number one year previously at the end of 2017. We also collected data
relating to livestock population dynamics over the years 2017 and 2018. Specifically, we recorded
the number of animals born, the number of stillbirths, the number that died, the number that were
ill but survived, and the number stolen. We also recorded the number of livestock acquired, and
the number that households had parted with because they were sold, slaughtered for consumption,
or permanently given away. We also recorded the number currently being looked after by friends
or relatives. The questionnaire contained questions about crop cultivation, but no respondents
engaged in these activities; similarly, poultry was rare.

We recorded information on other belongings and sources of income. In addition to a gen-
eral question about any additional belongings of value, we used standard questions on household
belongings (corresponding to those in e.g. the census) to enquire about the number of bicycles,
motorcycles (including boda-boda/tuk-tuk), carts, cars, and vans/trucks owned by the household.
Respondents reported a small number of bicycles and motorcycles, but no large motorised vehicles,
cars or vans. To understand whether any individuals were self-employed in activities other than
herding, we asked about engagement in selling at market, and whether any household member had
a business. To understand market penetration of financial services, we asked whether anyone in
the household had a bank account (or mobile telephone account M-Pesa), whether anyone in the
household had savings, the existence of household debt to financial institutions (banks, microcredit,
loans), whether they had informal debt or owed anything to anyone else (e.g. to friends/relatives,
table banking, women’s groups, pastoralist groups), and similarly whether they currently had in-
formal loans to others. The majority of the questions in this category were binary in nature, given
sensitivities relating to questions about details of income. We also asked households whether they
receive support from relatives, friends, or via external programmes.

A.3 Sample for empirical analysis

The sample consists of 1,347 households, including in total 9,179 individuals (after we exclude
individuals recorded who died or left the household outside the period 2016-2018, 214 individuals
in total).25 We drop households with low data quality. The final sample consists of 1,278 households,

25We impute the age for 4 individuals, 3 ‘sons/daughters’ and one ‘in-law’. The age of the ‘sons/daughters’ imputed
is the age of the head minus 25 years, and the age of the person ‘in-law’ is set to be the same as that of the head.
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corresponding to 8,740 individuals. Numbers of households by sublocation were Kalapata (N=454),
Loperot (N=353), Napusmoru (N=471). We compute the age for 2017 and 2016 as the age in 2018
minus 1 and 2, respectively.

We calculate the total number of household members for each year and construct the household
size variable, N i

h,t, for household i, t = {2016, 2017, 2018}. Note that N i
h,t includes people if they

were recorded as having died/left during the year. The median household size is 6 members (mean
household size is 6.71 members). Heads of household were primarily male (male N=1067, mean
age 45.3, female N=211, mean age 53), and 95% of these individuals had had no formal education.

A.4 Wealth/livestock inequality

In 2018, the majority of households held a single species of livestock (n=458, mostly goats) or two
species (n=477). Fifty-eight households had no livestock, and 285 had 3 species or more.

Table A1: Livestock

numbers per type, 2018

mean P10 P50 P90 Gini

Livestock numbers
goats 22.06 4 16 46 0.46

sheep 4.68 0 0 13 0.79

cattle 0.13 0 0 0 0.99

camels 1.95 0 0 6 0.83

donkeys 0.25 0 0 0 0.95

total 29.08 5 20 60 0.48

Our headline measure of wealth inequality is based on a measure of wealth in livestock units. This
is constructed using conversion information in FAO (2011), which expresses livestock units relative
to 1 unit of US breed cow (455kg). Specifically, we calculate this measure, denoted as ai2018 for
each household i, as:

ai2018 = 0.1 ∗N i
goats,2018 + 0.1 ∗N i

sheep,2018 + 0.5 ∗N i
cattle,2018+ (8)

+ 0.7 ∗N i
camel,2018 + 0.5 ∗N i

donkeys,2018,

whereN i
v,2018 denotes the size of the herd for animal type v = {goats, sheep, cattle, camel, donkeys}

in period 2018. We then construct measures of livestock for the previous 2 years retrospectively.
In particular, for 2017 (and similarly for 2016), for each animal type, we impute the number of an-
imals as: N i

v,2017 = N i
v,2018 − Borni

v,2018 − Boughtiv,2018 + Diediv,2018 + Stoleni
v,2018 + Soldiv,2018.

Then, we use (8) to calculate wealth in 2017, which is also expressed in livestock units. We discard
households for which wealth calculated as above is negative for either 2017 (8 households) or 2016
(47 households).

To construct an alternative measure of livestock wealth, we used information on prices for cattle
(10,000 KES), goats (4,000 KES), sheep (4,500 KES), donkeys (10,000 KES) and camels (20,000
KES) gathered from local representatives in Turkana. The results regarding per capita livestock
wealth inequality using this approach are similar to those in Table 1. In Table A2 we report a range
of statistics regarding wealth inequality for different measures of wealth in 2018. In particular, we
repeat information provided for this year in Table 1 where wealth is measured in livestock units,
supplementing this with measures based on livestock counts (see Table A1) and livestock value in
KES.

For robustness, we considered the importance of the valuables for which we have information,
on the monetary measure of wealth. In particular, we have information on bicycles (14 households),
valued by local experts at 5,000 KES, and motorcycles (28 households) at 9,000 KES (assuming
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these are bought second-hand). Moreover, nearly 14% of households (N=174) reported additional
valuables, and among the 130 households providing a value for these, the median was 2,000 KES.
Wealth inequality, in terms of Gini and concentration in tails, was the same to the third significant
digit, when including this information in the calculation of wealth (see Table A2).

Table A2: Wealth Inequality in 2018

Gini Q1 Q2 Q3 Q4 Q5

Goats 0.476 2.82% 8.24% 14.59% 23.83% 50.52%

Sheep 0.792 0.00% 0.00% 1.40% 16.60% 82.01%

Cattle 0.987 0.00% 0.00% 0.00% 0.00% 100.00%

Camels 0.829 0.00% 0.00% 0.00% 11.43% 88.57%

Donkeys 0.950 0.00% 0.00% 0.00% 0.00% 100.00%

Total livestock (numbers) 0.480 2.99% 8.31% 14.13% 23.24% 51.33%

Livestock Units (LU) 0.525 2.32% 7.01% 12.81% 22.27% 55.59%

Livestock Value (KES) 0.507 2.54% 7.54% 13.41% 22.65% 53.86%

Livestock Value + Valuables (KES) 0.506 2.56% 7.59% 13.44% 22.65% 53.76%

Note: All variables per capita at the household level. See Table 1 for definitions of statistics.

We did not include savings or debt to financial institutions in our monetary measure of wealth,
as only 27 households reported having savings and only 7 had some debt to banks or other financial
institutions, despite 392 having a bank account or M-Pesa. One hundred and forty-five households
reported having other forms of debt (e.g. from friends/relatives, table banking, women’s groups,
pastoralist groups). In Turkana pastoralist communities, these debts are typically for small amounts
and only loaned over short periods. Because we did not have precise information, we did not include
them in the calculation of wealth. For similar reasons, we did not include information on the 209
households that reported being owed something by others.

A.5 Droughts

We obtain a time series of drought versus non-drought years as follows. Using monthly precipitation
data for Lodwar, we calculate for each month between 1920 and 2018 the deviation of precipitation
from the long-run mean, averaged over the years, for the corresponding month. In particular, we use
monthly precipitation data for Lodwar provided by the International Research Institute - World
Bank (IRI (2019)) from 1920 to 1960 and monthly precipitation data from www.worldclim.org,
from 1961 to 2018, for the geographical area around Lodwar (latitude: from 2.9375 to 3.1458 and
longitude: from 35.3958 to 35.6042). We calculate the average precipitation for each month of the
year for each dataset separately. Following McPeak (2004) and McPeak et al. (2014), we focus
on deviations in rainfall during the rainy seasons. There are two rainy seasons: the long rains,
March to May, and the short rains, October to December. Therefore, we calculate the difference
between the observation for each month and the corresponding average for that month and then
we calculate the sum of these deviations over the rainy seasons of each year. We calculate the 40th
percentile of these annual summed deviations of rainfall and define drought as the years when total
precipitation is less than the 40th percentile, to ensure that 2017, an acknowledged drought year, is
correctly identified as a drought year. This implies that we use a definition of a drought period that
is similar to that of the Kenya Meteorological Service (2010) which defines a normal meteorological
drought as a situation in which rainfall over an area is less than 75% of the climatological normal,
which we approximate by the median. Note that the IRI provides data until 1995, but we prefer
to use the more accurate data from www.worldclim.org. Nevertheless, our definition of droughts
gives similar results across datasets for the overlapping period.26

26There are some missing values in the IRI dataset, which we fill by interpolating between the two neighbouring
observations. We discard 1996 and 1997 because they contain too many missing values.
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A.6 The random component of livestock growth rate and time input

A.6.1 Growth rate of livestock holdings

To approximate the household-specifc risk, we construct a random variable lt, the household-specific
growth rate of livestock in livestock units per capita for 2017 and 2018 (i.e. separately for droughts
and non-droughts). We first use the survey data to construct a variable capturing the growth rate
of livestock holdings in per capita livestock units l̃it, for each household i, for t = {2017, 2018},

l̃it =

[
birthsit−stolenit−deathsit

N i
hh,t

]
[

ait−1

N i
hh,t−1

] ,

where N i
hh,t denotes the size of household i in period t and ait−1 is household i’s livestock in period

t− 1. Note that births, deaths, thefts, and at−1 are measured in LU.
From data inspection, we found that there is location-specific heteroskedasticity. To deal with

this form of heteroskedasticity, we standardise l̃it by multiplying it by the ratio of the total standard
deviation of l̃it over the standard deviation of the sublocation i.e. l̃it = li,κt

σt,l

σt,l,κ
, where κ denotes

the sublocation. After this standardisation, do not detect heteroskedasticity.
We then construct the variable lit for household i, for t = {2017, 2018}, by partialling out

household characteristics from l̃it. We regresss l̃it on a set of dummies for the age of the head of
the household (a dummy per decade of age), dummies for the gender and education of the head,
variables capturing the composition of the household (number of adults, spouses, and children
by sex) and a dummy for the location of the boma. These characteristics are observable to the
households and thus are not part of uncertainty regarding livestock growth for a given household.
We run these regressions separately for each year (see Table A3). The lit are the residuals from
these regressions and re-centred on the unconditional mean of the net growth rates per period,
about 36% in 2018 and -31% in 2017. We set any observations of lit less than -1 equal to -1 (2
observations in 2018 and 35 in 2017). The first four moments of lit distributions are shown in Table
2 in the main text.
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Table A3: First step linear regression of l̃t

(1) (2)
2017 2018

age of head: ’30s 0.018 0.000
(0.050) (0.046)

age of head: ’40s 0.002 0.042
(0.052) (0.048)

age of head: ’50s -0.034 0.033
(0.056) (0.052)

age of head: ’60s -0.088 0.103∗

(0.064) (0.058)
age of head: ’70+ -0.023 0.044

(0.073) (0.066)
male 0.153∗∗ 0.023

(0.067) (0.061)
Loperot -0.176∗∗∗ 0.066∗∗

(0.034) (0.031)
Napusimoru -0.319∗∗∗ 0.277∗∗∗

(0.032) (0.029)
Nadults
Nhh

-0.067 0.085

(0.113) (0.099)
Nboys

Nhh
-0.133 0.103

(0.112) (0.102)
Ngirls

Nhh
-0.165 0.166

(0.115) (0.105)
Nspouses -0.078 -0.052

(0.051) (0.048)
Head some educ. 0.053 -0.082

(0.061) (0.056)
Constant -0.144∗∗ 0.196∗∗∗

(0.071) (0.066)

N 1,129 1,230
R2 0.093 0.091
Adj. R2 0.083 0.082

Notes: Standard errors in parentheses. Similar to Section 2, before running these

regressions, we standardise l̃it by multiplying it by the ratio of the total standard

deviation of l̃it over the standard deviation of the sublocation i.e. l̃
∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

A.6.2 Household time

We use our survey data to construct ht, a measure of the stochastic component of household-level
time availability. We first set a member’s time input to one if an individual is between 7 and
70 years old and zero if she/he is outside this age bracket. This age range is motivated by the
observation that household members in this age bracket, when they are able to do so, use time
to contribute to household activities to generate resources. When an individual between 7 and 25
years old goes to school, they support the household when not in school and we thus adjust these
members’ time input to 0.5. The individual’s time input is then multiplied by the share of the
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year he/she was available to work, based on information we have from the survey data (i.e. if an
individual was available for 11 months, we multiply his/her productivity by 11/12). If an individual
died or left the household during the year, we set their individual time input to zero. Following
this logic, we construct the variable h̃it, the per capita time input, for each household i and for
t = {2017, 2018}, defined as the sum of household members’ time input divided by the number of
household members

h̃it =

[∑Nhh,t

n=1 h̃in,t ∗ (1−
mcn,t

12 )
]

N i
hh,t

,

h̃in = 1 if 7 ≤ age ≤ 70 & not studying,

h̃in = 0.5 if 7 ≤ age ≤ 25 & studying,

h̃in = 0 if age ≤ 6 or 71 ≤ age, or if died, or left,

where h̃in is the time input of individual n and mcn is the number of months during which individual
n’s activities were curtailed.

To apporximate the household-specific component of the time input variable, hit for t=2017,
2018, we remove the variation due to observable characteristics. In particular, we run Tobit regres-
sions (see Table A4) of h̃it on a set of dummies for the age of the head of the household (a dummy
per decade of age), dummies for the gender and education of the head, variables capturing the
composition of the household (number of adults, spouses, and children by sex) and a dummy for
the location of the boma. The estimation method is motivated by the range of values that h̃it can
take on, which is [0, 1]. We then keep the residuals and re-centre them on their unconditional means
before these regressions. If after re-centering any observation is above 1, we set it equal to 1 (56
observations in 2018 and 67 in 2017). The distributions of these recentered distributions are shown
in Figure 2. Except for a reduction in average time input during droughts, the distributions are
very similar for the two years. Thus, our calibration assumes that time input risk is time-invariant
apart from the mean.
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Table A4: First step censored regressions (Tobit) of h̃t

(1) (2)
2017 2018

age of head: ’30s 0.097∗∗∗ 0.107∗∗∗

(0.019) (0.018)
age of head: ’40s 0.233∗∗∗ 0.258∗∗∗

(0.020) (0.019)
age of head: ’50s 0.296∗∗∗ 0.298∗∗∗

(0.022) (0.021)
age of head: ’60s 0.283∗∗∗ 0.278∗∗∗

(0.024) (0.024)
age of head: ’70+ 0.074∗∗ 0.065∗∗

(0.029) (0.027)
male 0.102∗∗∗ 0.039

(0.028) (0.027)
Loperot 0.024∗ 0.029∗∗

(0.013) (0.013)
Napusimoru 0.055∗∗∗ 0.044∗∗∗

(0.012) (0.012)
Nadults
Nhh

0.040∗∗∗ 0.033∗∗∗

(0.004) (0.004)
Nboys

Nhh
-0.020∗∗∗ -0.023∗∗∗

(0.005) (0.005)
Ngirls

Nhh
-0.020∗∗∗ -0.023∗∗∗

(0.005) (0.005)
Nspouses -0.058∗∗ -0.050∗∗

(0.023) (0.022)
Head some educ. -0.002 -0.001

(0.023) (0.023)
Constant 0.533∗∗∗ 0.630∗∗∗

(0.022) (0.022)

N 1,278 1,278
Pseudo R2 1.3857 1.2033

Standard errors in parentheses
∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

A.7 Determinants of net livestock acquisitions

To estimate the marginal effects in Figure 3, we estimate equation (3), whereXt contains household-
specific dummies, location-specific dummies, a dummy for 2018 and time-varying demographic
characteristics of the household: i) an indicator for the sex of the head of the household; ii)
dummies for different age groups, {20s,30s,40s,50s,60s,70+}; iii) the share of working-age adults to
the total number of members of the household (above 16 years old and less than 70); iv) the share
of boys to the total number of members of the household (less than 16 years old); v) the share of
girls to the total number of members of the household (less than 16 years old); and vi) the number
of female spouses (if they exist) who are members of the household (above 16 years old). Results
from the estimation of (3) with different sets of control variables are reported in Table A5.
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Table A5: Linear regression with dependent variable net livestock acquisitions

(1) (2) (3) (4) (5) (6)
2018 -0.0116 -0.0112 -0.0336 -0.0105 -0.0108 -0.0113

(0.0232) (0.0226) (0.0215) (0.0232) (0.0232) (0.0232)
age of head: ’30s 0.00224 0.00138 0.00179 0.000388 0.0000947 0.00142

(0.0238) (0.0233) (0.0271) (0.0237) (0.0236) (0.0238)
age of head: ’40s 0.0193 0.0188 0.0283 0.0191 0.0183 0.0191

(0.0198) (0.0197) (0.0225) (0.0198) (0.0197) (0.0198)
age of head: ’50s 0.0192 0.0189 0.0198 0.0222 0.0189 0.0189

(0.0206) (0.0205) (0.0237) (0.0205) (0.0205) (0.0206)
age of head: ’60s 0.0168 0.0166 0.0161 0.0216 0.0170 0.0166

(0.0201) (0.0201) (0.0230) (0.0201) (0.0200) (0.0201)
age of head: ’70s 0.00757 0.00754 0.0101 0.0120 0.00958 0.00823

(0.0234) (0.0234) (0.0262) (0.0234) (0.0233) (0.0233)
male -0.00920 -0.00838 0.0704 -0.112∗∗ -0.0660 -0.0454

(0.0897) (0.0905) (0.0919) (0.0534) (0.0713) (0.0841)
Loperot 0.254∗∗ 0.252∗∗ 0.113 0.250∗∗∗ 0.229∗∗∗ 0.234∗∗

(0.117) (0.118) (0.116) (0.0779) (0.0826) (0.113)
Napusimoru 0.109 0.109 0.0914 0.000409 0.00230 0.0876

(0.0896) (0.0897) (0.117) (0.0474) (0.0491) (0.0852)

h̃t 0.103∗ 0.0981∗ 0.0857 0.0969∗ 0.0951∗ 0.107∗

(0.0545) (0.0525) (0.0564) (0.0555) (0.0559) (0.0546)
at−1 -0.208∗∗ -0.214∗∗ -0.0225∗∗∗ -0.208∗∗ -0.208∗∗ -0.208∗∗

(0.104) (0.0924) (0.00861) (0.104) (0.103) (0.104)

h̃t*at−1 -0.00746 -0.00769 -0.00641 -0.00744
(0.0234) (0.0238) (0.0234) (0.0234)

l̃t 0.0148∗ 0.0150∗ 0.0000727 0.0142∗ 0.0145∗ 0.0149∗

(0.00803) (0.00779) (0.00858) (0.00810) (0.00804) (0.00802)

l̃t*at−1 -0.197∗∗ -0.198∗∗ -0.198∗∗ -0.196∗∗ -0.197∗∗

(0.0951) (0.0942) (0.0945) (0.0944) (0.0950)
Nadults
Nhh

-0.0405 -0.0385 0.0821 0.107 -0.00429

(0.149) (0.151) (0.150) (0.0811) (0.143)
Nboys

Nhh
-0.0870 -0.0866 -0.0587 -0.0437

(0.151) (0.151) (0.164) (0.146)
Ngirls

Nhh
-0.324∗ -0.323∗ -0.243 -0.282∗

(0.177) (0.178) (0.201) (0.170)
Nspouses -0.0445 -0.0445 -0.0392

(0.0433) (0.0433) (0.0432)
Constant 0.0862 0.0889 -0.0356 0.110 0.0652 0.0696

(0.114) (0.111) (0.111) (0.0854) (0.101) (0.111)

N 2259 2259 2259 2259 2259 2259
R2 0.774 0.774 0.733 0.773 0.773 0.774
adj. R2 0.488 0.488 0.395 0.487 0.487 0.488
hh FE Yes Yes Yes Yes Yes Yes

Notes: Standard errors in parentheses. In all estimations, we include individual-specific dummies.
∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table A6: Margins at specific values of a and l̃

Margin a l̃ CI90lb CI90ub
0.1449 0 -0.9 0.0746 0.2153
0.1535 0 -0.32 0.0812 0.2258
0.1621 0 0.26 0.0872 0.2370
0.1707 0 0.84 0.0924 0.2489
0.1792 0 1.42 0.0971 0.2614
0.1878 0 2 0.1013 0.2743
0.1270 0.5 -0.9 0.0623 0.1917
0.0783 0.5 -0.32 0.0564 0.1001
0.0296 0.5 0.26 0.0078 0.0515
-0.0191 0.5 0.84 -0.0837 0.0456
-0.0677 0.5 1.42 -0.1754 0.0399
-0.1164 0.5 2 -0.2671 0.0343
0.1090 1 -0.9 0.0496 0.1684
0.0031 1 -0.32 -0.0271 0.0333
-0.1028 1 0.26 -0.2204 0.0148
-0.2088 1 0.84 -0.4144 -0.0031
-0.3147 1 1.42 -0.6084 -0.0210
-0.4206 1 2 -0.8025 -0.0388
0.0911 1.5 -0.9 0.0364 0.1457
-0.0721 1.5 -0.32 -0.1529 0.0086
-0.2353 1.5 0.26 -0.4490 -0.0216
-0.3985 1.5 0.84 -0.7455 -0.0515
-0.5617 1.5 1.42 -1.0421 -0.0813
-0.7249 1.5 2 -1.3387 -0.1110
0.0731 2 -0.9 0.0226 0.1237
-0.1473 2 -0.32 -0.2789 -0.0158
-0.3678 2 0.26 -0.6776 -0.0579
-0.5882 2 0.84 -1.0767 -0.0997
-0.8086 2 1.42 -1.4758 -0.1415
-1.0291 2 2 -1.8750 -0.1832
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A.8 The unimportance of time input h̃t for livestock growth l̃t

In Tables A7 and A8 we report results from linear regressions of l̃t on household characteristics,
location and h̃t, separately for 2017 and 2018, to confirm that the latter is insignificant. The
observable characteristics are the same as in A.6, with the only addition of the time input of the
household or the time input of the head of the household. Note the very low R2 values, suggestive
of the importance of the random component (shocks); see Section 2 for further analysis of this.

Table A7: Linear regressions with dependent variable l̃t, 2017

(1) (2) (3) (4) (5) (6) (7)
age of head: ’30s -0.005 -0.004 -0.001 0.022 0.023 0.024 0.017

(0.048) (0.048) (0.048) (0.050) (0.050) (0.050) (0.050)
age of head: ’40s -0.023 -0.023 -0.017 0.011 0.012 0.016 0.001

(0.050) (0.050) (0.051) (0.054) (0.054) (0.054) (0.052)
age of head: ’50s -0.048 -0.057 -0.052 -0.026 -0.022 -0.017 -0.036

(0.055) (0.056) (0.057) (0.059) (0.059) (0.059) (0.056)
age of head: ’60s -0.086 -0.103 -0.099 -0.084 -0.076 -0.072 -0.089

(0.060) (0.065) (0.065) (0.066) (0.066) (0.066) (0.064)
age of head: ’70+ -0.016 -0.038 -0.038 -0.038 -0.025 -0.018 -0.052

(0.064) (0.072) (0.072) (0.072) (0.072) (0.073) (0.084)
male 0.060 0.069∗ 0.070∗ 0.076∗ 0.162∗∗ 0.162∗∗ 0.156∗∗

(0.037) (0.040) (0.040) (0.040) (0.068) (0.068) (0.067)
Loperot -0.177∗∗∗ -0.175∗∗∗ -0.174∗∗∗ -0.173∗∗∗ -0.173∗∗∗ -0.173∗∗∗ -0.174∗∗∗

(0.034) (0.034) (0.034) (0.034) (0.034) (0.034) (0.034)
Napusimoru -0.317∗∗∗ -0.316∗∗∗ -0.315∗∗∗ -0.314∗∗∗ -0.318∗∗∗ -0.315∗∗∗ -0.318∗∗∗

(0.032) (0.032) (0.033) (0.033) (0.033) (0.033) (0.033)

h̃t -0.040 -0.063 -0.062 -0.072 -0.081 -0.081
(0.080) (0.087) (0.087) (0.087) (0.087) (0.087)

Nadults
Nhh

0.064 0.043 -0.055 -0.041 -0.036 -0.064

(0.095) (0.102) (0.117) (0.117) (0.117) (0.113)
Nboys

Nhh
-0.054 -0.157 -0.141 -0.135 -0.134

(0.093) (0.111) (0.112) (0.112) (0.112)
Ngirls

Nhh
-0.194∗ -0.179 -0.172 -0.164

(0.114) (0.115) (0.115) (0.115)
Nspouses -0.081 -0.081 -0.079

(0.051) (0.051) (0.051)
Head some educ. 0.053 0.054

(0.061) (0.061)

Head’s h̃t -0.050
(0.074)

Constant -0.168∗∗ -0.165∗∗ -0.154∗∗ -0.088 -0.094 -0.104 -0.098
(0.069) (0.070) (0.072) (0.082) (0.082) (0.083) (0.098)

R2 0.088 0.089 0.089 0.091 0.093 0.094 0.094
Adj. R2 0.081 0.081 0.080 0.082 0.083 0.083 0.082

Notes: Standard errors in parentheses. Similar to Section 2, before running these regressions, we standardise l̃t by

multiplying it by the ratio of the total standard deviation of l̃it over the standard deviation of the sublocation i.e. l̃
∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table A8: Linear regressions with dependent variable l̃t, 2018

(1) (2) (3) (4) (5) (6) (7)
age of head: ’30s 0.027 0.027 0.026 0.008 0.009 0.008 0.002

(0.045) (0.045) (0.046) (0.047) (0.047) (0.047) (0.046)
age of head: ’40s 0.090∗ 0.090∗ 0.089∗ 0.065 0.066 0.060 0.044

(0.048) (0.048) (0.048) (0.051) (0.051) (0.051) (0.048)
age of head: ’50s 0.081 0.078 0.076 0.055 0.059 0.052 0.037

(0.051) (0.053) (0.053) (0.055) (0.055) (0.055) (0.052)
age of head: ’60s 0.140∗∗ 0.134∗∗ 0.134∗∗ 0.122∗∗ 0.127∗∗ 0.121∗∗ 0.107∗

(0.056) (0.060) (0.060) (0.060) (0.060) (0.060) (0.058)
age of head: 70+ 0.058 0.050 0.050 0.052 0.060 0.049 0.105

(0.059) (0.066) (0.066) (0.066) (0.066) (0.066) (0.084)
male -0.034 -0.030 -0.030 -0.032 0.028 0.029 0.021

(0.034) (0.036) (0.036) (0.036) (0.062) (0.062) (0.061)
Loperot 0.069∗∗ 0.070∗∗ 0.069∗∗ 0.069∗∗ 0.069∗∗ 0.068∗∗ 0.062∗∗

(0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.031)
Napusimoru 0.285∗∗∗ 0.285∗∗∗ 0.284∗∗∗ 0.284∗∗∗ 0.282∗∗∗ 0.280∗∗∗ 0.275∗∗∗

(0.029) (0.029) (0.029) (0.029) (0.029) (0.029) (0.029)

h̃t -0.083 -0.094 -0.094 -0.086 -0.095 -0.095
(0.080) (0.087) (0.088) (0.088) (0.088) (0.088)

Nadults
Nhh

0.024 0.030 0.115 0.124 0.118 0.077

(0.082) (0.088) (0.104) (0.104) (0.104) (0.100)
Nboys

Nhh
0.016 0.102 0.110 0.101 0.101

(0.086) (0.102) (0.102) (0.102) (0.102)
Ngirls

Nhh
0.164 0.172 0.161 0.160

(0.105) (0.105) (0.105) (0.105)
Nspouses -0.057 -0.056 -0.053

(0.048) (0.048) (0.048)
Head some educ. -0.082 -0.081

(0.056) (0.056)

Head’s h̃t 0.090
(0.075)

Constant 0.297∗∗∗ 0.300∗∗∗ 0.297∗∗∗ 0.237∗∗∗ 0.236∗∗∗ 0.251∗∗∗ 0.114
(0.070) (0.071) (0.073) (0.083) (0.083) (0.083) (0.095)

R2 0.088 0.088 0.088 0.090 0.091 0.092 0.093
Adjusted R2 0.081 0.080 0.080 0.081 0.081 0.082 0.082

Notes: Standard errors in parentheses. Similar to Section 2, before running these regressions, we standardise l̃t by

multiplying it by the ratio of the total standard deviation of l̃it over the standard deviation of the sublocation i.e. l̃
∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

B Model properties

B.1 Existence of optimal paths and policy functions

The optimisation problem of the household is given by:

max
{at+1}∞t=0

E0

{ ∞∑
t=0

βtu(ct)

}
, (9)
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given {a0, l0, h0, e0, s0}, subject to
ct ≥ 0, (10)

at ∈ [0, amax], (11)

zt = (lt, ht, et, st) ∈ Z = L×H × E × S, (12)

at+1 ∈ Γa (at, lt, ht, et, st) =
[
0, amax

t+1

]
, (13)

where
ct = (1 + lt)at + ηy (ht, lt, at;wt) + et + st − at+1, (14)

amax
t+1 = (1 + lt)at + ηy (ht, lt, at;wt) + et + st. (15)

To obtain the dynamic programming formulation of the household’s problem, use the joint
distribution zt (with the appropriate Markov chain associated with transition matrix π (zt+1|zt)),
and let v (at, zt) denote the optimal value of the objective function starting from state (at, zt). The
Bellman equation is:

v (at, zt) =

= max
at+1∈Γa

{
u (·) + β

∑
zt+1∈Z

π (zt+1|zt) v (at+1, zt+1)

}
.

(16)

The assumptions on u(ct), the continuity of ct in (at, at+1, lt, ht, et, st) and the concavity of ct
in (at, at+1) for given lt, ht, et, st, imply that the function u(at, at+1, lt, ht, et, st) : A2 × Z → R is
continuous, twice differentiable, increasing in (at) and concave in (at, at+1) for given lt, ht, et, st.
In addition, note that the state space A× Z is compact (closed and bounded) and convex, as the
Cartesian product of sets with these properties.

Further, note that amax
t+1 is continuous and increasing in (at, lt, et, st) and the set

[
0, amax

t+1

]
is

compact, convex and non-empty. To see the latter, recall that (1+lt)at ≥ 0,and ηymin+emin+smin >
0, so that amax

t+1 > 0. Hence, the correspondence Γa (at, lt, ht, et, st) is compact-valued, convex-valued
and nonempty-valued. Moreover, the correspondence Γa (at, lt, ht, et, st) : A × Z →

[
0, amax

t+1

]
is

continuous (see e.g. Exercise 3.13 in Stokey et al. (1989)).
The graph of Γa (at, lt, ht, et, st) is given by

AΓa =
{
(at, lt, ht, et, st, at+1) ∈ A× Z ×

[
0, amax

t+1

]
: at+1 ∈ Γa (at, lt, ht, et, st)

}
,

which is closed, given continuity of the correspondences and boundedness and closedness of tar-
get sets (Closed Graph Theorem). For given zt = (lt, ht, et, st) ∈ Z, take at, a

′
t ∈ A, at+1 ∈

Γa (at, lt, ht, et, st) and a′t+1 ∈ Γa (a′t, lt, ht, et, st). Then, for any θ ∈ [0, 1], we have that θat+1 +
(1− θ) a′t+1 ∈ Γa (aθt, lt, ht, et, st), where aθt = θat + (1− θ) a′t. To see this, note that since
at+1 ∈ Γa (at, lt, ht, et, st), it must be that

at+1 ≤ amax
t+1 (at, lt, ht, et, st) = (1 + lt)at + ηy (ht, lt, at;wt) + et + st,

and, similarly, a′t+1 ∈ Γa (a′t, lt, ht, et, st) implies that

a′t+1 ≤ amax
t+1

(
a′t, lt, ht, et, st

)
= (1 + lt)a

′
t + ηy

(
ht, lt, a

′
t;wt

)
+ et + st,

so that

θat+1 + (1− θ) a′t+1 ≤ θamax
t+1 (at, lt, ht, et, st) + (1− θ) amax

t+1

(
a′t, lt, ht, et, st

)
= θ [(1 + lt)at + ηy (ht, lt, at;wt) et + st] + (1− θ)

[
((1 + lt)a

′
t + ηy

(
ht, lt, a

′
t;wt

)
+ et + st

]
≤ (1 + lt)

(
θat + (1− θ) a′t

)
+ ηy

(
ht, lt, (

(
θat + (1− θ) a′t

)
);wt

)
et + st

= amax
t+1 (aθt, lt, ht, et, st) ,
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where the second inequality follows from the concavity of y(at; ·). Therefore, θat+1+(1− θ) a′t+1 ∈
Γa (aθt, lt, ht, et, st) and the constraint defined by Γa (at, lt, ht, et, st) is convex.

The above analysis implies that Theorems 9.6 and 9.8 in Stokey et al. (1989) (or, Theorem 16.4
in Acemoglu (2009)) apply, delivering existence, uniqueness and continuity of the policy function
at+1 = g (at, lt, ht, et, st) that solves (16) and generates the stochastic process that solves the opti-
misation problem in (9)-(15). Furthermore, Theorem 9.13 in Stokey et al. (1989) implies that the
joint distribution on (at, lt, ht, et, st) is Markovian, and Theorem 9.14 that it has the Feller prop-
erty. Therefore, and since A×Z is compact, Theorem 12.10 in Stokey et al. (1989) implies that an
invariant unconditional distribution on (at, lt, ht, et, st) exists. To solve the problem numerically,
we follow Maliar and Maliar (2013) and employ the Envelope Condition Method (ECM), adjusted
to handle the occasional hitting of the lower bound of assets.

B.2 Computation and the unimportance of the initial distribution

To obtain the time series of cross-sectional distributions that is generated by the realised history
of the aggregate state between 1920 and 2018, we work as follows. To simulate the time series of
cross-sectional distributions, we follow Young (2010) and Heer and Maussner (2009, Chapter 5.2).
The key idea is the following. Define the distribution (at, l

d
t , h

d
t , e

d
t , s

d
t ; dt) at time period t as a

histogram with mass on each point (histogram bins). To compute the distribution in t+ 1 we use
the transition probabilities of the exogenous Markov chains and the policy function for next period
assets. In particular, the transition of the mass on each point is determined by

P
[
(at, l

d
t , h

d
t , e

d
t , s

d
t ; dt), (at+1, l

d
t+1, h

d
t+1, e

d
t+1, s

d
t+1); dt+1)

]
=

= π
(
ldt+1, h

d
t+1, e

d
t+1, s

d
t+1); dt+1|ldt , hdt , edt , sdt ; dt

)
1[gd

(
at, l

d
t , h

d
t , e

d
t , s

d
t ; dt

)
= at+1],

(17)

where 1[gd(·)] is a binary operator taking the value one if the statement is true and zero otherwise,
and the notation in (17) implies that the transition probabilities π(·) and the policy function gd(·)
depend on the aggregate state d.

We simulate the cross-sectional distribution forward using (17) for 90 exogenous states and 250
grid points of assets, starting from a guess regarding the initial distribution (a0, l

d0
0 , hd00 , ed00 , sd00 ; d0)

for the year 1820, using a random path for dt obtained from the estimated Markov chain until
1920 and the historical time series of droughts after 1920. Effects from the initial distribution
assumed are negligible after about 30 years. As shown in Figure B1, starting from very different
guesses, including from extreme distributional assumptions, leads to near-identical paths for average
livestock after 1850, confirming ergodicity of the stationary regime. Using more plausible guesses
for the initial distribution, such as the theoretical invariant distribution, leads to near-identical
paths after the first 15 years. Indeed, given the stationarity of the time series of distributions
(see Section 3), starting from the theoretical distribution for either drought or non-drought years
leads to time paths that have similar statistical properties to the remaining series from the very
beginning. We conclude, therefore, that any impact of the time series of the distributions prior to
1920 has negligible effects on the time series we compute after 1920.
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Figure B1: The unimportance of the initial distribution
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Note: Model generated outcomes from different initial distributions and using the historical time series of

droughts and non-droughts since 1920.

Figure B2: The unimportance of the initial distribution
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Note: Model generated outcomes from different initial distributions and using the historical time series of

droughts and non-droughts since 1920.
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Figure B3: The unimportance of the initial distribution
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Note: Model generated outcomes from different initial distributions and using the historical time series of

droughts and non-droughts since 1920.

B.3 Monotonicity of choices

We examine the monotonicity of choices regarding next period assets and net savings with respect
to current assets and exogenous states in a two-period version of the model, where the first-order
condition necessary for optimality is given by:

u′ (ct) ≥ βEt

[(
(1 + lt+1) +

∂yt+1

∂at+1

)
u′ (ct+1)

]
, (18)

which holds with equality if at+1 > 0 , where ct is determined by (14)) and at+2 is given.
Proposition 1
Consider the policy function at+1 = g (at, lt, ht, et, st): (a) g (at; ·) is non-decreasing and when

at+1 > 0, it is increasing; (b) If (lt) is i.i.d., then g (lt; ·) is non-decreasing and when at+1 > 0, it is
increasing; (c) If (ht) is i.i.d., then g (ht; ·) is non-decreasing and when at+1 > 0, it is increasing;
(d) If (et) is i.i.d., then g (et; ·) is non-decreasing and when at+1 > 0, it is increasing.

Proof
(a) For given (lt, ht, et, st), consider first any at ∈ A for which at+1 = 0, satisfying (18) with

strict inequality. For any a′t < at, it must be that a′t+1 = 0. To see this, suppose a′t+1 > 0; then
(18) must be satisfied with equity. However, because a′t < at, there is a decrease in ct (see (14)) and
thus an increase in u′ (ct). Hence, the left-hand side (lhs) of (18) must decrease and the right-hand
side (rhs) of (18) must increase. If a′t+1 > at+1 = 0, then this will increase the left-hand side
(lhs) of (18) by decreasing ct and will decrease the right-hand side (rhs) of (18) by increasing ct+1

and decreasing ∂yt+1

∂at+1
. Therefore, it must be that a′t+1 = at+1 = 0, so that (18) holds with strict

inequality. For any a′t > at, a
′
t+1 ≥ at+1, because of the lower bound on livestock.

Then consider any at ∈ A such that at+1 > 0 satisfies (18) with equality. Take any a′t > at.
This implies an increase in ct (see (14)) and thus a reduction in u′ (ct). For (18) to hold for a′t, it
must be that a′t+1 > at+1. This will increase the left-hand side (lhs) of (18) by decreasing ct and
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will decrease the right-hand side (rhs) of (18) by increasing ct+1 and decreasing ∂yt+1

∂at+1
. Take any

a′t < at. This implies a decrease in ct (see (14)) and thus an increase in u′ (ct). If a
′
t+1 > 0, for (18)

to hold for a′t, it must be that a′t+1 < at+1. This will decrease the left-hand side (lhs) of (18) by
increasing ct and will increase the right-hand side (rhs) of (18) by decreasing ct+1 and increasing
∂yt+1

∂at+1
.

(b) For given (at, ht, et, st), consider first any lt ∈ L for which at+1 = 0, satisfying (18) with
strict inequality. For any l′t < lt, it must be that a′t+1 = 0. To see this, suppose a′t+1 > 0; then
(18) must be satisfied with equity. However, because l′t < lt, there is a decrease in ct (see (14)) and
thus an increase in u′ (ct). Hence, the left-hand side (lhs) of (18) must decrease and the right-hand
side (rhs) of (18) must increase. If a′t+1 > at+1 = 0, then this will increase the left-hand side
(lhs) of (18) by decreasing ct and will decrease the right-hand side (rhs) of (18) by increasing ct+1

and decreasing ∂yt+1

∂at+1
. Therefore, it must be that a′t+1 = at+1 = 0, so that (18) holds with strict

inequality. For any l′t > lt, a
′
t+1 ≥ at+1, because of the lower bound on livestock.

Then consider any lt ∈ L such that at+1 > 0 satisfies (18) with equality. Take any l′t > lt.
This implies an increase in ct (see (14)) and thus a reduction in u′ (ct). For (18) to hold for a′t, it
must be that a′t+1 > at+1. This will increase the left-hand side (lhs) of (18) by decreasing ct and

will decrease the right-hand side (rhs) of (18) by increasing ct+1 and decreasing ∂yt+1

∂at+1
. Note that

because (lt) is i.i.d., it does not influence the rhs of (18). Take any l′t < lt. This implies a decrease
in ct (see (14)) and thus an increase in u′ (ct). If a′t+1 > 0, for (18) to hold for l′t, it must be that
a′t+1 < at+1. This will decrease the left-hand side (lhs) of (18) by increasing ct and will increase

the right-hand side (rhs) of (18) by decreasing ct+1 and increasing ∂yt+1

∂at+1
.

(c)-(d) Similar arguments to those in (b) apply. ■
Note that for the calibration of the model to the survey data for the Turkana pastoralists, con-

ditional on the aggregate state, the idiosyncratic components of (lt), (ht) and (et) are independent
of one another and of (st) (which is determined by (lt)) and those of (lt) and (et) also do not
have persistence over time. Therefore, the results in Proposition 1 are reflected in the patterns of
the policy function shown, for example, in Section 5.2 and in Appendix D for non-droughts and
droughts separately.

Proposition 2
Consider net savings out of livestock income, defined as xst ≡ at+1 − (1 + lt)at − ηyt =

gs (at, lt, ht, et, st): (a) g
s (at; ·) is decreasing; (b) If (lt) is i.i.d., then gs (lt; ·) is decreasing.

Proof
(a) Consider any at ∈ A for given (lt, ht, et, st) such that at+1 > 0. Then, by Proposition 1, an

increase (a reduction) in at to a′t+ should be met by an increase (a reduction) in at+1. Therefore,
both at+1 and (1+lt)at+ηyt in xst change in the same direction. However, the change in at+1 should
be less than the change in (1 + lt)at + ηyt, implying that xst ≡ at+1 − (1 + lt)at − ηyt will decrease
when at increases and vice versa. Consider an increase in at and in at+1 (similar arguments apply
when at and at+1 decrease). If at+1 increased by more than (1 + lt)at + ηyt, then the left-hand
side (lhs) of (18) will increase, while the right-hand side (rhs) of (18) decreases, meaning that (18)
cannot hold.

For any at for which at+1 = 0, by Proposition 1 a reduction at will leave at+1 unchanged,
implying that xst increases. An increase in at to a′t implies that a′t+1 ≥ at+1 = 0. If a′t+1 = at+1 = 0,
then xst decreases. If a′t+1 > 0, then (18) must hold with equity. If at+1 increased by more than
(1 + lt)at + ηyt, then the left-hand side (lhs) of (18) will increase, while the right-hand side (rhs)
of (18) decreases, meaning that (18) cannot hold. Therefore, at+1 must increased by less than
(1 + lt)at + ηyt.

In summary, net savings xst are a decreasing function of at for all at ∈ A.
(b) Similar arguments to those in (a) apply. ■
Proposition 3
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Consider net livestock acquisition, defined as xt ≡ at+1 − (1 + lt)at = ga (at, lt, ht, et, st): (a) If
(et) is i.i.d., then ga (et; ·) is non-decreasing and when at+1 > 0, it is increasing.

Proof
(a) Consider any et ∈ E for given (at, lt, ht, st) such that at+1 > 0. Then, by Proposition 1, an

increase (a reduction) in et to e′t should be met by an increase (a reduction) in at+1, which implies
that xt ≡ at+1 − (1 + lt)at will also increase (reduce).

For any et for which at+1 = 0, by Proposition 1 a reduction et will leave at+1 unchanged,
implying also that xt remains unchanged. An increase in et to e′t implies that a′t+1 ≥ at+1 = 0,
implying that xt does not decrease.

(b) Similar arguments to those in (a) apply. ■

C Stochastic process approximation

We summarise the estimated matrices for the stochastic processes.

Qz =

[
πa (0|0)⊗

(
ξ0′ ⊗ J1×6

)′
πa (1|0)⊗

(
ξ1′ ⊗ J1×6

)′
πa (0|1)⊗

(
ξ0′ ⊗ J1×6

)′
πa (1|1)⊗

(
ξ1′ ⊗ J1×6

)′ ]
12×12

⊗

[
Qh

5×5
⊗
(
p′E ⊗ J1×3

)′
3×3

]
︸ ︷︷ ︸

180×180

Qa =

 0 1
0 0.54 0.46

1 0.69 0.31


L1 -0.9288 -0.4713 0.0208 1.0135 2.0357 3.8220

s1 0.0333 0.0000 -0.0138 -0.0138 -0.0138 -0.0138

ξ1 0.1668 0.4304 0.3724 0.0266 0.0029 0.0009

L0 -0.8234 -0.0373 0.4406 1.1552 2.2836 3.8501

s0 0.0333 0.0000 -0.0004 -0.0004 -0.0004 -0.0004

ξ0 0.0075 0.3533 0.5236 0.1066 0.0083 0.0008

Qh =


0.0175 0.2689 0.5182 0.1814 0.0140

0.0175 0.2689 0.5182 0.1814 0.0140

0.0175 0.2689 0.5182 0.1814 0.0140

0.0175 0.2689 0.5182 0.1814 0.0140

0.0074 0.1140 0.2196 0.0769 0.5821


ξh =

[
0.0171 0.2639 0.5086 0.1780 0.0324

]
H0 =

[
0.3275 0.5710 0.7727 0.9370 1.0000

]
H1 =

[
0.2979 0.5414 0.7431 0.9074 1.0000

]
pE =

[
0.75 0.16 0.09

]
To confirm the accuracy of the approximation of the random variables for livestock holdings

growth and household time input, we show in Figures C1 and C2 the empirical distributions and
associated approximations.
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Figure C1: Accuracy of the approximation of livestock holdings growth lt
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Note: Approximation of the empirical distribution applies the

data-based discretisation proposed by Toda (2021).

Figure C2: Accuracy of the approximation of household time input, for ht < 1
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Note: Approximation of the empirical distribution applies the

data-based discretisation proposed by Toda (2021).

D Additional results and robustness

D.1 Additional results on model fit

We also test whether the differences between droughts and non-droughts in key distributional
statistics are statistically significant in the model-generated distributions as they are in the empirical
distributions. Working as in the Monte Carlo exercise that delivers the results in Table D1, we
calculate for each simulated time series the average of the statistic of interest for droughts and
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non-droughts separately (for the last 99 years) and then the difference between these averages for
droughts and non-droughts. In Figure D2, we show the histograms of these differences, which make
clear that the differences between droughts and non-droughts are statistically significant.

Figure D1: Monte Carlo exercise
Histograms of differences between droughts and non-droughts
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D.2 Additional results for policy functions

Figure D2: Next-period livestock and net livestock acquisitions, by lt
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variables. Panels C and D show xt ≡ at+1 − (1 + ldt )at for different values of the state variables.

Figure D3: Next-period livestock and net livestock acquisitions, by ht
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55



D.3 Results for drought-dependent livestock price

We solve a version of the model where the price of the livestock depends on droughts. In particular,
the budget constraint of the household (5) becomes:

ct + pdt at+1 = (1 + lt)p
d
t at + ηy (ht, lt, at;wt) + et + pdt st, (19)

where pdt is 13% higher during non-droughts compared to droughts (as e.g. reported in NDMA
(2020)) and normalised to be one across droughts and non-droughts. The model predictions are
summarised below.

Figure D4: Empirical and model-generated distributions, 2017 and 2018
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The model-generated distributions are calculated by simulating the model economy using

the historical time series for droughts since 1920. For the empirical distributions, see Section 2.

β = 0.880, M0 = 0.267, M1 = 0.228
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Figure D5: Empirical and model-predicted net livestock savings
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Note: Panels A and C show predicted marginal effects of beginning-of-period livestock

on net savings for different levels of lt and ht, estimated using the survey data. Panels

B and D show the equivalent effects for model-predicted net savings. In both cases, ef-

fects are averaged over the remaining variables.

Table D1: Wealth inequality indices by sources of risk (model predictions)

[0] [1] [2] [3] [4]
base no livestock no market no time no co-

model growth risk income risk input risk insurance

Mean Livestock 2017 0.495 0.771 0.244 0.495 0.494

Mean Livestock 2018 0.638 0.998 0.319 0.638 0.637

Gini Livestock 2017 0.583 0.313 0.426 0.583 0.598

Gini Livestock 2018 0.568 0.308 0.397 0.567 0.580

Poverty 2017 (% households) 0.120 0.003 0.002 0.119 0.148

Poverty 2018 (% households) 0.076 0.001 0.000 0.076 0.106

Bottom 20% share of wealth 2017 0.018 0.067 0.060 0.018 0.013

Bottom 20% share of wealth 2018 0.020 0.067 0.072 0.020 0.016

Top 20% share of wealth 2017 0.609 0.375 0.493 0.605 0.618

Top 20% share of wealth 2018 0.594 0.368 0.475 0.594 0.603

Top 10% share of wealth 2017 0.436 0.215 0.337 0.436 0.444

Top 10% share of wealth 2018 0.425 0.214 0.325 0.423 0.432

Note: Poverty is defined as the proportion of households that own less than 0.05 LU per member.

The model-generated statistics are calculated by simulating the model using the historical time

series for droughts since 1920.

57



D.4 Results for γ = 0.7

Figure D6: Empirical and model-generated distributions, 2017 and 2018, γ = 0.7

0 1 2 3 4 5

livestock units

0

0.05

0.1

0.15

0.2

2017 (drought)

0 1 2 3 4 5

livestock units

0

0.05

0.1

0.15

0.2

2018 (non-drought)

empirical pdf
model pdf

0 1 2 3 4 5

livestock units

0

0.2

0.4

0.6

0.8

1
2017 (drought)

0 1 2 3 4 5

livestock units

0

0.2

0.4

0.6

0.8

1
2018 (non-drought)

empirical cdf
model cdf

Note: The upper row shows the empirical and the model implied pdf’s, while the lower row

shows the empirical and the model implied cdf’s. β = 0.920, M0 = 0.253, M1 = 0.205

Figure D7: Empirical and model predicted net livestock savings, γ = 0.7
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Note: Panels A and C show predicted marginal effects of beginning-of-period livestock

on net savings for different levels of lt and ht, estimated using the survey data. Panels

B and D show the equivalent effects for model-predicted net savings. In both cases, ef-

fects are averaged over the remaining variables.
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Table D2: Wealth inequality indices by sources of risk (model predictions), γ = 0.7

[0] [1] [2] [3] [4]
base no livestock no market no time no co-

model growth risk income risk input risk insurance

Mean Livestock 2017 0.495 0.938 0.277 0.494 0.492
Mean Livestock 2018 0.638 1.217 0.363 0.636 0.634
Gini Livestock 2017 0.593 0.286 0.457 0.593 0.609
Gini Livestock 2018 0.569 0.281 0.417 0.569 0.582
Poverty 2017 (% households) 0.139 0.000 0.012 0.140 0.176
Poverty 2018 (% households) 0.074 0.000 0.000 0.072 0.115
Bottom 20% share of wealth 2017 0.017 0.075 0.049 0.017 0.011
Bottom 20% share of wealth 2018 0.020 0.078 0.066 0.021 0.015
Top 20% share of wealth 2017 0.616 0.355 0.512 0.614 0.626
Top 20% share of wealth 2018 0.594 0.353 0.489 0.591 0.604
Top 10% share of wealth 2017 0.441 0.201 0.352 0.438 0.449
Top 10% share of wealth 2018 0.422 0.199 0.336 0.422 0.430

Note: Poverty is defined as the proportion of households that own less than 0.05 LU per member.

The model-generated statistics are calculated by simulating the model using the historical time

series for droughts since 1920.

D.5 Results for γ = 0.3

Figure D8: Model fit, distributions, γ = 0.3
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Note: The upper row shows the empirical and the model implied pdf’s, while the lower row

shows the empirical and the model implied cdf’s. β = 0.872, M0 = 0.275, M1 = 0.253
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Figure D9: Empirical and model predicted net livestock savings, γ = 0.3
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Note: Panels A and C show predicted marginal effects of beginning-of-period livestock

on net savings for different levels of lt and ht, estimated using the survey data. Panels

B and D show the equivalent effects for model-predicted net savings. In both cases, ef-

fects are averaged over the remaining variables.

Table D3: Wealth inequality indices by sources of risk (model predictions), γ = 0.3

[0] [1] [2] [3] [4]
base no livestock no market no time no co-

model growth risk income risk input risk insurance

Mean Livestock 2017 0.496 0.936 0.233 0.497 0.493

Mean Livestock 2018 0.637 1.216 0.305 0.638 0.634

Gini Livestock 2017 0.617 0.293 0.471 0.616 0.634

Gini Livestock 2018 0.595 0.287 0.434 0.595 0.611

Poverty 2017 (% households) 0.177 0.004 0.077 0.177 0.211

Poverty 2018 (% households) 0.131 0.002 0.000 0.130 0.160

Bottom 20% share of wealth 2017 0.011 0.070 0.048 0.011 0.005

Bottom 20% share of wealth 2018 0.013 0.071 0.063 0.013 0.008

Top 20% share of wealth 2017 0.635 0.354 0.526 0.634 0.647

Top 20% share of wealth 2018 0.615 0.354 0.504 0.615 0.626

Top 10% share of wealth 2017 0.458 0.203 0.365 0.457 0.467

Top 10% share of wealth 2018 0.441 0.199 0.348 0.441 0.450

Note: Poverty is defined as the proportion of households that own less than 0.05 LU per member.

The model-generated statistics are calculated by simulating the model using the historical time

series for droughts since 1920.
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