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Abstract 
 
This paper introduces the probabilistic formulation of continuous-time economic models: forward 
stochastic differential equations (SDE) govern the dynamics of backward-looking variables, and 
backward SDEs capture that of forward-looking variables. Deep learning streamlines the search 
for the probabilistic solution, which is less sensitive to the “curse of dimensionality.” The paper 
proposes a straightforward algorithm and assesses its accuracy by considering a multiple-country 
model with an explicit solution under symmetric states. Combining with the finite volume method, 
the algorithm can obtain global dynamics of heterogeneous-agent models with aggregate shocks, 
in which agents consider the distribution of individual states as a state variable. 
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Introduction

The curse of dimensionality is an unavoidable obstacle for anyone who attempts to build and

solve a large-scale dynamic economic model. The dimensionality constraint is particularly tight

for continuous-time macro or finance models because their equilibrium dynamics are character-

ized by systems of partial differential equations (PDEs), which is extremely difficult to solve if

the number of state variables is more than three.

With the recent success of Machine Learning, applied mathematicians have solved high-

dimensional PDEs by searching for their probabilistic solutions with deep reinforcement learning

(E, Han and Jentzen, 2017). The theoretical foundation of the probabilistic solutions of PDEs is

the development in the theory of nonlinear Backward Stochastic Differential Equations (BSDEs)

since the celebrated paper by Pardoux and Peng (1990).

This paper demonstrates that a continuous-time macro or finance model can be formulated

as a system of coupled forward-backward stochastic differential equations (FBSDEs). As in E,

Han and Jentzen (2017), I construct a reinforcement learning problem, which gives rise to the

solution of the FBSDE system. To combine the probabilistic approach with the finite volume

method, my algorithm can solve for the global solution of heterogeneous-agent models with

aggregate shocks, in which individual agents’ dynamic optimization takes into account the law

of motion for the distribution of individual states (e.g., wealth distribution) rather than its

moments.

Since most economists are unfamiliar with BSDEs, I will use an intuitive example to il-

lustrate key features of the probabilistic approach and also compare with the analytic (PDE)

approach. Suppose Xt is an uncontrolled stochastic process. In economics, we’re interested in

a forward-looking process V (Xt) given by the fixed point V (·) of the following equation.

V (Xt) = u (Xt) ∆ + E [V (Xt+∆)|Xt] , (1)

in which u(·) could be utility or discounted cash flow per unit of time and ∆ denotes the time

length of a period. In the introduction, I will focus on the key step of the fixed point searching

process, that is, how to compute the value of V (·) at a point x. The calculation involved in this

step demonstrates the main difference between the discrete-time and continuous-time settings

and that between analytic and probabilistic approaches.

In a discrete-time setting where ∆ is fixed, we need the information of the function V (·)
over its entire domain and the transition probability P (Xt+∆|Xt = x) to compute V (x) via

the mapping given by equation (1). The computation work becomes increasingly heavier when

Xt has higher dimension, which is the so-called curse of dimensionality.

In a continuous-time setting where ∆ goes to the limit zero, we can take advantage of the

powerful analysis tool, calculus or more precisely stochastic calculus. Suppose Xt is driven by

an Ito process

dXt = µ (Xt) dt+ σ (Xt) dWt, (2)

where Xt is one-dimensional to simplify the notation and Wt is a one-dimension standard
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Brownian motion. In this setting, the transition probability is captured by the Ito process. We

rearrange equation (1) and take the limit ∆→ 0

0 = u (x) + E

[
V (Xt+∆)− V (Xt)

∆

∣∣∣∣Xt = x

]
= u (x) + V ′ (x)µ (x) +

1

2
V ′′ (x)σ2 (x) (3)

The second equation above, which utilizes Taylor expansion (namely, Ito’s lemma in stochastic

calculus), yields a differential equation of function V (·). The differential equation implies we

only need the local information of V (·) around x to compute V (x). In particular, with the

finite difference method we can transform equation (3) into

0 = u (x) +
V (x+ k)− V (x− k)

2k
µ (x) +

V (x+ k) + V (x− k)− 2V (x)

2k2
σ2 (x) , k > 0

which shows how to compute V (x) given the values of V (·) at two points x + k and x − k.

When Xt is high-dimensional, the computation work becomes heavier because even the local

space around x contains many directions. The dimensionality problem is particularly trouble-

some in heterogeneous-agent models where the infinite-dimensional conditional distribution of

idiosyncratic states governs the state of an economy.

Next, I discuss the probabilistic approach to solve for V (x). First, I rewrite equation (1) as

V (x) = E [u (x) ∆ + V (Xt+∆)|Xt = x] .

Given the Ito process (2), if ∆ is sufficiently close to zero we can represent the random variable

within the expectation as

V (Xt+∆) + u (x) ∆ = V (x) + z (Wt+∆ −Wt) , (4)

where z is an unknown constant. The equation (4) is known as the Martingale Representation

Theorem in probability theory. Here, we have a pair of unknowns: V (x) and z. To solve for the

pair, we simulate two sample paths of Wt+∆: W 1
t+∆ and W 2

t+∆, and formulate a 2-by-2 linear

system

V
(
x+ µ (x) ∆ + σ (x)

(
W i
t+∆ −Wt

))
+ u (x) ∆ = V (x) + z

(
W i
t+∆ −Wt

)
, i = 1, 2.

Both the analytic (differential equation) and probabilistic approach require two evaluation

points of V (·). Their difference is that the analytic approach involves a single equation and the

probabilistic approach solves a system of two equations. Hence, the analytic approach has the

advantage in the low-dimensional case, which is why most economists are more familiar with

this approach. Nevertheless, when Xt has higher dimensions, the analytic approach demands

increasingly more evaluation points, and the probabilistic approach still needs two.

To show the intrinsic connection between the analytic and probabilistic approaches, I rear-

range equation (4)

V (Xt+∆)− V (x) + u (x) ∆ = z (Wt+∆ −Wt) ,
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and to apply Taylor expansion and drop higher order terms the equation above gives rise to[
u (x) + V ′ (x)µ (x) +

1

2
V ′′ (x)σ2 (x)

]
∆ + V ′ (x)σ (x) (Wt+∆ −Wt) = z (Wt+∆ −Wt) ,

which is equivalent to two equations: the differential equation (3) and z = V ′ (x)σ (x). It is

straightforward to see the probabilistic approach has embedded the analytic solution in the

limit when ∆→ 0.

To implement the probabilistic approach, I search for the parametric approximations of

V (·) and z(·), denoted as Ṽ (·; Θ) and z̃(·; Θ), respectively. Equation (4) suggests that the set

of parameters should solve the loss minimization problem:

min
Θ

:
1

NM

N∑
i=1

M∑
j=1

(
Ṽ (x̂i,j ; Θ) + u(xi)∆− Ṽ (xi; Θ)− z̃(·; Θ)wi,j

)2

s.t. x̂i,j = xi + µ(xi)∆ + σ(xi)wi,j

wi,j is sampled independently from N(0,∆)

xi is sampled from a prior distribution

This formulation makes the difficulty of solving the fixed-point problem (1) much less sensitive

to the dimensionality of the state variable Xt. One only needs to increase the size of the sample,

i.e., N and M , to ensure the accuracy of the probabilistic approach when the dimensionality of

Xt increases. Moreover, this formulation can make use of parallel computing as the evaluation

of each sample point is independent of others.

There are two major principles of dynamic optimization: the principle of optimality (i.e.,

dynamic programming) and the Pontryagin-type maximum principle. The dynamic program-

ming principle emphasizes the optimization over the entire state space, which is often imple-

mented via the analytic approach. In contrast, the maximum principle focuses on the op-

timization along a particular trajectory, which follows the probabilistic approach. A typical

heterogeneous-agent model has a low-dimensional individual state variable (e.g., asset holding)

and a high-dimensional aggregate state variable (e.g., the distribution of asset holdings) that

is uncontrolled. To apply the maximum principle, we only need to trace the dynamics of the

state and the (low-dimensional) co-state variables along a trajectory, which is a relatively easy

problem to solve. In order to uncover the value functions and policy functions over the entire

state space, we can simulate a large number of sample paths and employ techniques of deep

learning to approximate these functions. Notice that it adds relatively small computational

costs to have more sample trajectories as the paths are independent and parallel computing

applies.

To leverage on the probabilistic approach, I employ the finite volume method to approximate

the flow of the distribution of all agents’ states with a system of finite number of SDEs. The

idea is to discretize the state space into a finite number of intervals or cells. The law of motion

for a cell’s probability follows an SDE given the transition dynamics of agents on the boundaries

of the cell. Hence, I can establish a system of FBSDEs by combining with BSDEs that govern

dynamics of forward-looking variables. As an example, I solve for the global solution of the
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model considered by Fernández-Villaverde, Hurtado and Nuno (2022). The key feature of the

global solution is that households explicitly treat the wealth distribution as a state variable (up

to the discretization of the state space).

Literature. As a powerful tool of analyzing forward-looking phenomena, BSDEs have been

tightly connected to economics and finance problems ever since the seminal work Pardoux and

Peng (1990). In fact, Duffie and Epstein (1992) developed a result related to BSDE indepen-

dently when they establish the theoretical work on recursive utility. Along with a mathemati-

cian, Larry Epstein later generalized the recursive utility to include ambiguity aversion using

the BSDE framework (Chen and Epstein, 2002).

It was not easy to solve BSDEs numerically prior to the era of deep learning, which is

probably why economists pay little attention to the probabilistic formulation of forward-looking

problems. Recently, an influential paper in applied mathematics has demonstrated the power

of deep learning in solving high-dimensional BSDEs (E, Han and Jentzen, 2017). In fact, the

idea of formulating the solvability of FBSDEs as an optimal control problem dates back to Ma

and Yong (1995). The mere contribution of my paper is to bring the probabilistic numerical

approach to economists’ attention.

Broadly speaking, this paper is related to recent papers that apply deep learning to solve

high-dimensional macro and finance models. Examples in the discrete-time setting include

Azinovic, Gaegauf and Scheidegger (2022), Maliar, Maliar and Winant (2021), and Han, Yang

and E (2021); in the continuous-time setting, there are Fernández-Villaverde, Hurtado and

Nuno (2022), Duarte (2018), Gopalakrishna (2021), and Sauzet (2021). All the continuous-

time setting papers follow the analytic approach to solve PDEs with deep learning. There are

detailed comparison between the analytic and probabilistic approaches later in the paper.

My paper contributes to the continuous-time heterogeneous-agent literature (e.g., Kaplan,

Moll and Violante (2018), Achdou, Han, Lasry, Lions and Moll (2022)). I provide a numerical

method that could solve for the global solution of the equilibrium while characterizing the flow

of the distribution of heterogeneous agents in the presence of aggregate shocks. The novelty of

my numerical method is the combination of the probabilistic approach, deep learning, and the

finite volume method, which is new even in the mean-field game literature to the best of my

knowledge.

The organization of the paper follows. Section 1 presents the BSDEs characterization of

forward-looking variables over time and also discusses the finite volume method. In Section

2, I define the mathematical framework that characterizes the economic dynamics, explain the

algorithm in detail, and discuss other related algorithms. Section 3 considers a multiple-country

macro-finance model and exemplifies how to establish the FBSDE system and implement the

algorithm. And Section 4 focuses on the global solution of a heterogeneous-agent model with

aggregate shocks. In Section 5, I employ the Malliavin derivative to capture the propagation of

diffusion shocks in a continuous-time model and illustrate its probabilistic numerical scheme.
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1 Probabilistic Formulation

The purpose of this section is to formulate forward-looking elements commonly seen in economic

models as solutions to BSDEs, e.g., recursive utility, dynamic optimization, and asset pricing. To

handle heterogeneous-agent models with aggregate shocks, I approximate the flow of conditional

distribution with a finite but large number of forward SDEs. The technique I use is the finite

element method, which is widely used in the computational fluid dynamics. To simplify notation,

all variables in this section have one dimension. Since the contribution of my paper is not

on the technical side, I intentionally omit mathematical terms like measurability, filtration,

adaptedness, etc, which would make definitions more rigorous.

1.1 Introduction to BSDE

A (forward) stochastic differential equation is

dSt = b (t, St) dt+ σ (t, St) dWt

given initial S0,

where {Wt}t≥0 is a standard Brownian process (see Chapter 5 of Karatzas and Shreve (1998)

for rigorous treatment). The integral version is

St = S0 +

∫ t

0
b(s, Ss)ds+

∫ t

0
σ(s, Ss)dWs.

A BSDE, however, has a terminal condition instead of an initial one. In particular, a BSDE is

−dYt = h(t, Yt, Zt)dt− ZtdWt

YT = ξ,

where T is the terminal date, and ξ is a random variable whose realized value depends on

information available up to the terminal date (see the textbook by Zhang (2017) for the rigorous

treatment on the topic). In an integral form, the BSDE is written as

Yt = ξ +

∫ T

t
h(s, Ys, Zs)ds−

∫ T

t
ZsdWs.

Unlike the solution of the SDE, which is a stochastic process {St}t≥0, the solution of a BSDE

is a pair of stochastic processes {Yt, Zt}0≤t≤T , where the values of Yt and Zt depend on the

information realized up to time t.

To show the forward-looking nature of the BSDE solution, let us consider the valuation

of a European call option with an expiration date of T and strike price of K.1 The price of

the underlying stock is St. By the no-arbitrage principle, the option’s price is the value of a

self-financing portfolio of risk-free debt and the stock, replicating the option’s payoff. Let Yt

denote the time-t value of the portfolio. Then, Yt is supposed to satisfy the terminal condition

1This example is taken from Chapter 7 of the textbook Yong and Zhou (1999).
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YT = max{0, ST −K}. Given the risk-free rate process {rt}t≥0, the law of motion for Yt is

dYt =

(
rtYt +

(
b(t, St)

St
− rt

)
πt

)
dt+

σ(t, St)

St
πtdWt,

where πt is the position in the stock. Let Zt denote σ(t,St)
St

πt. Then, the option value and the

replicating strategy {Yt, Zt}0≤t≤T is the solution of the BSDE

dYt =

(
rtYt + (b(t, St)− rtSt)

Zt
σ(t, St)

)
dt+ ZtdWt

YT = max{0, ST −K}.

More precisely, the pair of the option value and the trading strategy {Yt, Zt}0≤t≤T is the solution

of a decoupled Forward-Backward SDE because the drift of Yt depends on St, which, in turn,

is the solution of a forward SDE. The term “decoupled” refers to the fact that the dynamics of

Xt are independent of the solution of the BSDE.

1.2 Recursive Utility

Given a consumption process {ct}t≥0, Duffie and Epstein (1992) show that an agent’s utility at

time t can be defined as

Vt = Et

[∫ ∞
t

f (cs, Vs) ds

]
,

where f is an aggregator, and Et[·] denotes the expectation conditional on information available

up to time t.2 If f (c, v) = u (c)− βv, then Vt is the standard expected discounted utility, i.e.,

Vt = Et

[∫ ∞
t

e−β(s−t)u (cs) ds

]
.

Note that ∫ t

0
f (cs, Vs) ds+ Vt = Et

[∫ ∞
0

f (cs, Vs) ds

]
is a martingale. By the Martingale Representation Theorem,3 there exists a stochastic process

(Zt)t≥0 such that ∫ t

0
f (cs, Vs) ds+ Vt = V0 +

∫ t

0
ZsdWs.

Given a time T > t,

Vt = VT +

∫ T

t
f (cs, Vs) ds−

∫ T

t
ZsdWs.

Taking VT as given, the above equation yields a BSDE with solution (Vt, Zt)0≤t<T .

In a Markov equilibrium, the consumption policy c (·) is a function of a state variable Xt,

2More generally, the aggregator f could include Zt as an argument to accommodate ambiguity aversion (Chen
and Epstein, 2002).

3See Karatzas and Shreve (1998), p. 182.
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which follows

dXt = µ (Xt) dt+ σ (Xt) dWt (5)

X0 = x.

Along with the SDE (5), the following BSDE

−dVt = f (c (Xt) , Vt) dt− ZtdWt

VT = V (XT )

gives rise to the fixed point mapping V (·) from Xt to Vt at any time t.

1.3 Stochastic Maximum Principle and the Principle of Optimality

Consider an agent who maximizes the objective function

V
(
X0, X

0
0

)
= E0

[∫ ∞
0

e−ρsf
(
Xs, X

0
s , αs

)
ds

]
where ρ is the discount factor, the control variable αt takes values in a convex set, and Xt and

X0
t are individual and aggregate state variables, respectively. The individual state variable is

driven by a controlled process

dXt = µ
(
Xt, X

0
t , αt

)
dt+ σ

(
Xt, X

0
t , αt

)
dWt + σ0

(
Xt, X

0
t , αt

)
dW 0

t ,

where Wt and W 0
t are independent standard Brownian motions. Wt and W 0

t represent id-

iosyncratic and aggregate shocks, respectively. The aggregate state variable X0
t follows an

uncontrolled process from an individual agent’s perspective

dX0
t = b

(
X0
t

)
dt+ Σ

(
X0
t

)
dW 0

t .

Given the optimal control process (α̂t)t≥0, the principle of optimality indicates that the

value function takes a recursive form

V
(
Xt, X

0
t

)
= Et

[∫ T

t
e−ρ(s−t)f

(
Xs, X

0
s , α̂s

)
ds+ e−ρ(T−t)V

(
XT , X

0
T

)]
.

One can solve the value function based on the BSDE formulation specified in Section 1.2. To

derive the optimal control process, I apply the stochastic maximum principle and define the

generalized current-value Hamiltonian

H
(
x, x0, α, y, z, z0

)
= µ

(
x, x0, α

)
y + σ

(
x, x0, α

)
z + σ0

(
x, x0, α

)
z0 + f

(
x, x0, α

)
.

The optimal control α̂t satisfies

α̂t = arg max
α

: H
(
Xt, X

0
t , α, Yt, Zt, Z

0
t

)
,
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where
(
Yt, Zt, Z

0
t

)
follows the BSDE

−dYt =

(
∂

∂x
H
(
Xt, X

0
t , α̂t, Yt, Zt, Z

0
t

)
− ρYt

)
dt− ZtdWt − Z0

t dW 0
t

YT =
∂

∂x
V
(
XT , X

0
T

)
supposing the value function is differentiable.

Remarks. There are two approaches in solving dynamic optimization: dynamic programming

and Pontryagin’s maximum principle. The former yields Hamilton-Jacobi-Bellman (HJB) equa-

tions, which involve the partial derivatives with respect to all state variables: individual and

systematic. In a heterogeneous-agent model, one has to find the derivative of a value function

with respect to an infinite-dimension variable, which poses an extremely difficult challenge. To

apply the maximum principle, we only trace dynamics of the costate or adjoint variable Yt,

whose dimensionality equals that of the individual state variable.

Since most dynamic models are time homogeneous, I apply the principle of optimality and

impose the terminal condition to YT . In fact, Yt = ∂
∂xV (Xt, X

0
t ) at any time t. See Chapter

5 of Yong and Zhou (1999) for the rigorous analysis of the connection between the dynamic

programming approach and the stochastic maximum principle approach.

If the control variable takes values in a noncovex set, one needs to establish a more general

Hamiltonian and trace adjoint variables of the second order. For detailed treatment on this,

see Chapter 3 of Yong and Zhou (1999). In economics, we often encounter constraints on states

such as the wealth of an agent cannot be negative. Nevertheless, there is still lack of general

treatment in the stochastic control literature on state constraints. The solution would be on a

case-by-case basis.

1.4 Homothetic Preference with a Linear Budget Constraint

In the asset pricing literature, investors are often assumed to have homothetic preferences with

linear budget constraints. In this case, the characterization of investors’ optimal choices are

simpler. Typically, investors have the Epstein-Zin preference

Vt = Et
[∫ ∞

t
f (cu, Vu) du

]
,

f (c, V ) =
1

1− ψ

{
ρc1−ψ

[(1− γ)V ](γ−ψ)/(1−γ)
− ρ (1− γ)V

}
with the budget constraint

dNt = (µ (Xt, αt)Nt − ct) dt+ σ (Xt, αt)NtdWt.

The convention is to conjecture that Vt has the functional form

Vt =
(ξtNt)

1−γ

1− γ
,
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and ξt follows a BSDE

dξt = ξt

(
µξtdt+ σξt dWt

)
since Vt does so. Next, I will derive µξt . Recall that Vt follows

−dVt = f (c (Xt) , Vt) dt− ZtdWt,

and to apply Ito’s formula to Vt as a function of ξt and Nt, we have

dVt

ξ1−γ
t N1−γ

t

= (µ (Xt, αt)− ĉt) dt+ σ (Xt, αt) dWt + µξtdt+ σξt dWt

+

(
−1

2
γ
(
σξt

)2
+ (1− γ)σξtσ (Xt, αt)−

1

2
γσ2 (Xt, αt)

)
dt,

where ĉt denotes ct
Nt

. Then

−µξt =
1

1− ψ

{
ρ

(
ĉt
ξt

)1−α
− ρ

}
+ µ (Xt, αt)− ĉt + σξtσ (Xt, αt)

− 1

2
γ
(
σξt

)2
+ (1− γ)σξtσ (Xt, αt)−

1

2
γσ2 (Xt, αt) ,

which is exactly the HJB equation when ĉt and αt are chosen optimally. Hence, as long as we can

solve the BSDE with respect to ξt, it is straightforward to find investors’ optimal consumption

and portfolio choices.

1.5 Asset Pricing

Consider an asset in a Markov equilibrium, in which the state variable Xt follows

dXt

Xt
= µ (Xt) dt+ σ (Xt) dWt.

Let m (Xt) denote the stochastic discount factor, which follows

dmt

mt
= µm (Xt) dt+ σm (Xt) dWt.

Suppose the dividend flow of the asset is a function of the state variable D (·) with a payoff

g (XT ) at the terminal date T . The asset pricing equation implies

m (Xt) p (t,Xt) = E

[∫ T

t
m (Xu)D (Xu) du+m (XT ) g (XT ) |Xt

]
(6)

at any t ≤ T , where p (t,Xt) denotes the asset price as a function of time t and the state variable

Xt.
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Next, I will link the asset price pt and its volatility ptσ
p
t with the solution of a BSDE. Note

E

[∫ T

0
m (Xu)D (Xu) du+m (XT ) g (XT ) |Xt

]
=

∫ t

0
m (Xu)D (Xu) du+m (Xt) p (t,Xt) (7)

is a martingale, which gives rise to the Euler equation

D (Xt)

p (t,Xt)
+ µpt + µm (Xt) = −σm (Xt)σ

p
t , (8)

where µpt denotes the drift of pt. Apply the Martingale Representation Theorem∫ t

0
m (Xu)D (Xu) du+m (Xt) p (t,Xt) = m (X0) p (X0) +

∫ t

0
m (Xu) p (Xu) (σmt + σpt ) dWt.

Given the terminal condition p (T,XT ) = g (XT )∫ T

0
m (Xu)D (Xu) du+m (XT ) g (XT ) = m (X0) p (X0) +

∫ T

0
m (Xu) p (Xu) (σmt + σpt ) dWt,

the difference of the two equations above yields a BSDE.

m (Xt) p (t,Xt) = m (XT ) g (XT ) +

∫ T

t
m (Xu)D (Xu) du−

∫ T

t
m (Xu) p (Xu) (σmu + σpu) dWu.

In the differential form,

−d (mtpt) = mtDtdt−mtpt (σmt + σpt ) dWt, (9)

mT pT = m (XT ) g (XT ) ,

which is a BSDE with the solution pair {mtpt,mtpt (σmt + σpt )}t≥0. And, Equation (6) is the

well-known Feynman-Kac formula that gives the solution of the BSDE above.

To apply Ito’s formula

−d (mtpt) = −mtdpt − ptmtµ
m
t dt− ptmtσ

m
t dWt −mtptσ

m
t σ

p
t dt.

Then,

−mtdpt − ptmtµ
m
t dt− ptmtσ

m
t dWt −mtptσ

m
t σ

p
t dt = mtDtdt−mtpt (σmt + σpt ) dWt

−dpt
pt

=

(
Dt

pt
+ µmt + σmt σ

p
t

)
dt− σpt dWt.

The stochastic process of the asset price and its volatility {pt, σpt } is the adapted solution of the

11



following decoupled FBSDE

dXt

Xt
= µ (Xt) dt+ σ (Xt) dWt

−dpt
pt

=

(
Dt (Xt)

pt
+ µm (Xt) + σm (Xt)σ

p
t

)
dt− σpt dWt (10)

X0 = x0

pT = g (XT )

It is decoupled because the law of motion of Xt is independent of {pt, σpt }t≥0, which is not the

case for most macro-finance models. In the continuous-time macro-finance context, the shortcut

is to postulate the law of motion for the asset price {pt}t≥0

dpt
pt

= µptdt+ σpt dWt,

and use the Euler equation (8) to derive BSDE (10).

1.6 Kolmogorov Forward Equation and Finite Volume Method

Consider an economy with a continuum of heterogeneous agents. Let Xt denote an agent’s

individual state variable and g (·, t) the density of the conditional distribution of Xt at time t.

Suppose Xt follows

dXt = µ
(
Xt, X

0
t , g (·, t)

)
dt+ σ

(
Xt, X

0
t , g (·, t)

)
dWt + σ0

(
Xt, X

0
t , g (·, t)

)
dW 0

t ,

where Wt and W 0
t are independent Brownian motions, and the former captures the idiosyncratic

risk and the latter represents the aggregate risk. Note the drift and volatility terms above depend

on density function g(·, t) instead of its value at a particular point. To highlight the difference,

I use notation g(·, t) rather than g(x, t).

The law of motion for g (·, t) is governed by the stochastic Kolmogorov forward equation

(KFE), also known as Fokker-Planck equation4

dg (x, t) = − ∂

∂x

(
µ
(
x,X0

t , g (·, t)
)
g (x, t)

)
dt− ∂

∂x

((
σ0
(
x,X0

t , g (·, t)
)

dW 0
t

)
g (x, t)

)
+

1

2

∂2

∂x2

{[(
σ
(
x,X0

t , g (·, t)
))2

+
(
σ0
(
x,X0

t , g (·, t)
))2]

g (x, t)
}

dt.

The idea of the finite volume method is to discretize the space domain of g (·, t) into a finite

number of intervals, e.g., (x0, x1) , · · · , (xN−1, xN ), and to approximate the distribution g (·, t)
with a finite number of probabilities over intervals, i.e.,

Git =

∫ xi

xi−1

g (x, t) dt.

4Readers can find an intuitive derivation of the stochastic KFE on Page 111 in the Volume II of Carmona and
Delarue (2018).
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Taking integration on both sides of the KFE over an interval (xi−1, xi),

dGit = −
(
µ
(
xi, X

0
t , g (·, t)

)
g (xi, t)− µ

(
xi−1, X

0
t , g (·, t)

)
g (xi−1, t)

)
dt

−
(
σ0
(
xi, X

0
t , g (·, t)

)
g (xi, t)− σ0

(
xi−1, X

0
t , g (·, t)

)
g (xi−1, t)

)
dW 0

t

+
1

2

∂

∂x

{[(
σ
(
xi, X

0
t , g (·, t)

))2
+
(
σ0
(
xi, X

0
t , g (·, t)

))2]
g (xi, t)

}
dt

− 1

2

∂

∂x

{[(
σ
(
xi−1, X

0
t , g (·, t)

))2
+
(
σ0
(
xi−1, X

0
t , g (·, t)

))2]
g (xi−1, t)

}
dt,

which yields a forward SDE with respect to Git. Therefore, we can approximate the flow of

the distribution g (·, t) with a system of finite forward SDEs, and the approximation is more

accurate if the intervals are finer.

Remarks. If the individual state variable has multiple dimension, the format of the space

partition is quite flexible, e.g., uneven cells, quadrilateral cells, triangular cells, etc. In the

multi-dimensional case, one must resort to the divergence theorem to simplify the right-hand

side of the stochastic KFE.

2 Deep Learning-Based Probabilistic Approach

In this section, I will define the FBSDE system that characterizes a model’s dynamics and

illustrate the algorithm in detail as well as how to apply deep learning.

2.1 Forward-Backward SDE

Consider the following system of infinite horizon coupled forward-backward stochastic differen-

tial equations:

dXt = b(Xt, Yt, Zt)dt+ σ(Xt, Yt, Zt)dWt

−dYt = h(Xt, Yt, Zt)dt− ZtdWt

X0 = x,

where x ∈ Rn,

b : Rn × Rm × Rm×d → Rn,

σ : Rn × Rm × Rm×d → Rn×d,

h : Rn × Rm × Rm×d → Rm.

Here, Wt is a standard d -dimensional Brownian motion defined on a complete probability

space
(
Ω,F , {Ft}t ≥ 0, P

)
satisfying the usual conditions.5 The solution of the FBSDEs

{Xt, Yt, Zt}t≥0 is required to be {Ft}t≥0−adapted. The well-posedness of the FBSDE above is

beyond the scope of the paper.6 I assume that the system permits a unique solution for the

5See Karatzas and Shreve (1998) for details of technical terms.
6See Chapter 8 of Zhang (2017) for a survey of papers on the well-posedness of FBSDEs.
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rest of the paper.

Markov Property. Given the infinite horizon setting and the time homogeneity of b(·), σ(·),
and h(·), it is straightforward to see that {Xt, Yt, Zt}t≥0 the solution of the FBSDE system

satisfies the Markov property. That is, there exist functions y(·) and z(·) that map Xt to Yt

and Zt, respectively.

2.2 Algorithm

My algorithm takes advantage of the Markov property of the FBSDE system. The basic idea

follows. I first use the feedforward neural network denoted by ŷ(·; Θ) and ẑ(·; Θ) to approximate

y(·) and z(·), respectively.7 Θ denotes the set of parameters that identifies the network. Second,

Θ is optimized such that {Xi
t , Y

i
t , Z

i
t}t≥0 sample paths simulated according the FBSDE satisfy

the Markov property, that is, Y i
t = ŷ(Xi

t ; Θ).

Fixing an arbitrary date T , the solution of the original infinite horizon FBSDE must satisfy

the following finite horizon system

dXt = b(Xt, Yt, z(Xt))dt+ σ(Xt, Yt, z(Xt))dWt,

X0 = x,

−dYt = h(Xt, Yt, z(Xt))dt− z(Xt)dWt,

YT = y(XT ).

I discretize time [0, T ] as 0 = t0 < t1 < t2 < · · · < tn = T , simulate M sample paths of

Brownian motions
{
Wi,m, i = 0, · · · , n−1

}M
m=1

as well as random initial states
{
x0,m

}M
m=1

. The

path index m is dropped later for brevity. Compute y0 = ŷ(x0; Θ). Let ∆i = ti+1 − ti and

wi = Wi+1 −Wi. Next, repeat the following procedure from i = 0 to i = n− 1.

1. Compute zi = ẑ(xi; Θ);

2. Calculate xi+1 and yi+1 according to

xi+1 = xi + b(xi, yi, zi)∆ + σ(xi, yi, zi)wi,

yi+1 = yi − h(xi, yi, zi)∆ + ziwi;

3. Compute ỹi+1 = ŷ(xi+1; Θ).

The simulated sample paths yield a loss function

Loss

(
Θ;
{
x0,m,Wi,m, i = 0, · · · , n− 1

}M
m=1

)
=

1

Mn

M∑
m=1

n∑
i=1

‖yi,m − ỹi,m‖2,

where ‖ · ‖ denotes the square norm. Popular Machine Learning libraries like PyTorch and

TensorFlow in Python have a rich set of algorithms to find the optimal Θ that minimizes the

loss function.

7See Chapter 6 of Goodfellow et al. (2016) for details of feedforward neural network.
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2.3 Connections with Related Papers

The idea of combining the probabilistic approach with deep learning comes from E et al. (2017).

In E et al. (2017), the BSDE is formulated to solve a PDE. However, it is more intuitive

to explicitly characterize the dynamics of a continuous-time macro or finance model with an

FBSDE system. The PDE approach is the mainstream in the literature only because of its

advantage in low-dimensional cases (e.g., 2 or 3 dimensions).

Regarding the algorithm, E et al. (2017) solve for y0 of a BSDE given the initial state

x0 and the terminal condition g(XT ). This approach does not apply to the infinite horizon

problem since the hypothetical terminal condition is also part of the solution. My algorithm is

closer to the one used in Raissi (2018), which approximates the solution function with the deep

neural network. The construction of the loss function follows Scheme 2 proposed by Zhang and

Cai (2020) and Algorithm 2 by Ji, Peng, Peng and Zhang (2020), which appears more robust

according to my early numerical experiments.

There is a subtle difference between the FBSDE I solve and those treated in E et al. (2017);

Raissi (2018); Zhang and Cai (2020): Zt is not an argument of σ(·) in their examples. In other

words, the volatility terms of the BSDEs do not enter the volatility terms of forward SDEs

in their examples. However, a critical feature of macro-finance models is that the volatility of

asset price influences the volatility of the aggregate economy, namely endogenous risk. Another

difference between examples in their papers and the one covered in the following section is that

I consider a more complicated model, which involves a system of coupled BSDEs rather than a

single BSDE, i.e., m > 1.

3 Implementation I: Multiple-Country Macro-Finance

I consider a multiple-country model to illustrate that the solution of coupled FBSDEs can

characterize the equilibrium dynamics of a continuous-time macro-finance model. Each country

is populated by two groups of agents: experts and savers. All agents have the logarithm

preference with the time discount factor ρ. Only experts in a country can hold the physical

assets residing in the same country, and physical assets cannot move across the border. Experts

use the physical assets to produce final goods and transform outputs into new physical assets

as capital production. The final goods produced in all countries are homogeneous. The critical

financial friction is that experts cannot issue outside equity. The international risk-free bond

market is frictionless, and so is the international trade market. All countries are identical in

terms of their technologies and agents’ preferences. The symmetric setting allows for an analytic

solution under symmetric states across different countries, which helps assess the algorithm’s

performance. I consider a 5-country case as a numerical exercise.

15



3.1 Model and Equilibrium

Given the logarithm preference, the consumption flow of an agent ct equals the time discount

factor ρ times her wealth level at time t. The law of motion for a saver’s wealth W s
t is

dW s
t

W s
t

= (rt − ρ) dt,

where rt is the risk-free rate. Without the loss of generality, I consider the optimal decisions of a

representative expert in each country. Experts across different countries are equipped with the

same linear production technology yt = akt, where kt is the efficiency units of physical assets

that an expert manages. Given the capital production function Φ (ι) and the depreciation rate

δ, the efficiency units of physical assets evolve according to

dkit
kit

=
(
Φ
(
ιit
)
− δ
)

dt+ σdZit , i = 1, · · · , J, where Φ (ι) =
1

ψ
ln (ψι+ 1)

and
{
Z1
t , · · · , ZJt

}
t≥0

is a standard J-dimensional Brownian motion. Note that Zjt and Zit are

independent for any i 6= j. I conjecture that the price of assets in country i follows

dqit
qit

= µq,it dt+
J∑
j=1

σq,i,jt dZjt .

The foreign shock influences the domestic asset price via the international bond market and

trade.

Let W i
t denote the wealth of the representative expert in country i. The law of motion for

W i
t is

dW i
t

W i
t

=
(
rt + ϕit

(
Rit − rt

)
− ρ
)

dt+

J∑
j=1

ϕit

(
1 {j = i}σ + σq,i,jt

)
︸ ︷︷ ︸

≡σW,i,j
t

dZjt ,

where Rit ≡
a− ιit
qit

+ Φ
(
ιit
)
− δ + µq,it + σσq,i,it

and ϕit is the asset-to-equity ratio of the expert.

Given the aggregate stock of physical assets Ki
t and the aggregate consumption cit, the

market clearing condition of final goods is

a
J∑
j=1

Ki
t =

J∑
j=1

cjt + ιjtK
j
t .

The market clearing of physical assets in each country implies

ϕitW
i
t = qitK

i
t .

I will focus on the Markov equilibrium with 2J − 1 endogenous state variables: ω1
t , · · · , ωJt ,

and ζ1
t , · · · , ζJ−1

t , where ωit is the ratio of the expert’s net worth to the value of physical assets
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in country i, i.e.,

ωit ≡
W i
t

qitK
i
t

,

and

ζjt ≡
qjtK

j
t∑J

h=1 q
h
tK

h
t

is the proportion of country j’s physical asset value in the world economy. Given the model

setting that only experts can manage physical assets residing in their own countries, experts’

leverage choices in equilibrium has a one-to-one mapping with state variables ωit

ϕit =
1

ωit
.

I defer the discussion of the Euler equations to the next subsection on BSDEs.

Under the symmetric states, i.e., ω1
t = · · · = ωJt and ζjt = 1/J, j = 1, · · · , J−1, the final-good

market clearing condition gives rise to the analytic solution of qjt . Given the consumption rule,

I rewrite the market clearing condition as

ρ =
J∑
j=1

a− ιjt
qjt

qjtK
j
t∑J

i=1 q
i
tK

i
t

=
a− ιJt
qJt

(
1−

J−1∑
i=1

ζit

)
+
J−1∑
i=1

a− ιit
qit

ζit .

Note that the capital production decision is static for experts, that is, ιit maximizes

Φ
(
ιit
)
− ιit
qit
,

which yields

ιit =
qit − 1

ψ
.

Therefore,

qjt =
aψ + 1

ρψ + 1
, j = 1, · · · , J,

since qit = qjt , i 6= j under symmetric states. The analytic result helps gauge the performance of

the probabilistic solution.

3.2 Backward SDEs

Euler equations for experts are

Rit − rt = ϕit

J∑
j=1

(
1 {j = i}σ + σq,i,jt

)2
, i = 1, · · · , J,
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which give rise to BSDEs w.r.t. qit, that is,

−dqit = hi
(
ωit, q

i
t,
{
σq,1,jt

}J
j=1

)
dt−

J∑
j=1

qjσq,1,jt dZjt , (11)

hi (·) ≡ aψ + 1

ψ
+
qit
ψ

ln
(
qit
)
− qit

(
1

ψ
+ δ

)
+ σqitσ

q,i,i
t − qit

ωit

J∑
j=1

(
1 {j = i}σ + σq,i,jt

)2
− qitrt.

Note that the risk-free rate is also part of the solution. Although there are no BSDE specifically

for {rt}t≥0, the final-good market clearing condition fixes the risk-free rate.

3.3 Forward SDEs

Given the optimal portfolio and capital production decisions, the law of motion for the physical

asset value in country i is

dqitK
i
t

qitK
i
t

=

−aψ + 1

ψqit
+

1

ψ
+

1

ωit

J∑
j=1

(
1 {j = i}σ + σq,i,jt

)2
+ rt


︸ ︷︷ ︸

≡µqK,i
t

dt+

J∑
j=1

(
1 {j = i}σ + σq,i,jt

)
︸ ︷︷ ︸

≡σqK,i,j
t

dZjt .

To apply Ito’s formula, I derive the laws of motion for ωit = W i

qitK
i
t

dωit = bi
(
ωit, q

i
t,
{
σq,1,jt

}J
j=1

)
dt+

J∑
j=1

(
1− ωit

) (
1 {j = i}σ + σq,i,jt

)
dZjt (12)

bi(·) ≡
(
aψ + 1

ψqit
− 1

ψ
− ρ
)
ωit +

(
1

ωit
− 1

)2

ωit

J∑
j=1

(
1 {j = i}σ + σq,i,jt

)2

The key feature of the dynamics of ωit is that the solutions of BSDEs (11) enter both its drift

and volatility terms, which is a critical feature of many macro-finance models. Next, I consider

the law of motion for ζit , i = 1, · · · , J − 1

dζit = ζitµ
ζ,i
t dt+

J∑
l=1

ζit

(
1 {l = i}σ + σq,i,lt − σH,lt

)
dZ lt, (13)

µζ,it ≡ µ
qK,i
t −

J−1∑
j=1

ζjt µ
qK,j
t −

1−
J−1∑
j=1

ζjt

µqK,Jt −
J∑
l=1

σH,lt

(
1 {l = i}σ + σq,i,l − σH,lt

)

σH,lt ≡
J−1∑
k=1

ζkt

(
1 {l = k}σ + σq,k,lt

)
+

(
1−

J−1∑
k=1

ζkt

)(
1 {l = J}σ + σq,J,lt

)

Again, the dynamics of ζit depend on the solutions of BSDEs (11), i.e.,
(
qit, σ

q,i,j
t

)
.

18



3.4 Numerical Example

The solution of the Markov equilibrium is a set of functions of state variables

qi
(
ω1
t , · · · , ωJt , ζ1

t , · · · , ζJ−1
t

)
; r
(
ω1
t , · · · , ωJt , ζ1

t , · · · , ζJ−1
t

)
;

σq,i,j
(
ω1
t , · · · , ωJt , ζ1

t , · · · , ζJ−1
t

)
, i = 1, · · · , J, j = 1, · · · , J.

Notice that the final-good market clearing condition implies

(
a+

1

ψ

)(
1−

J−1∑
i=1

ζit

)
= qJt

(
ρ+

1

ψ
−
J−1∑
i=1

aψ + 1

ψqit
ζit

)
,

which yields a mapping from {q1, · · · , qJ−1
t , ζ1

t , · · · , ζJ−1
t } to qJt . Thanks to the mapping and

Ito’s formula, I can take qJt , σ
q,J,j , j = 1, · · · , J away from the set of functions for which I need

to solve. Detailed derivations are in Appendix A.

As a numerical experiment, I implement the algorithm illustrated in Section 2.2 to solve for

the equilibrium of a 5-country version with parameter values: a = 0.1, δ = 0.05, σ = 0.023, ψ =

5, and ρ = 0.03. In the 5-country model, there are 9 endogenous state variables: ωit, i = 1, · · · , 5,

ζit , i = 1, · · · , 4, and 25 functions:

qi (·) , i = 1, · · · , 4; r (·) ;

σq,i,j (·) , i = 1, · · · , 4, j = 1, · · · , 5.

Therefore, the neural network I construct involves nine inputs and 25 outputs. The network

has three hidden layers, each with 256 inputs and 256 outputs. The activation function is

f(x) = sin(x). I utilize the TensorFlow library in Python to solve the deep reinforcement

learning problem.

The initial values of ωi0, i = 1, · · · , 5 are randomly selected from [0.2 0.8] according to a

uniform distribution; those of ζi0, i = 1, · · · , 4 are chosen from [0.03 0.26] in the same manner.

∆i = 0.001, T = 0.2, and the number of sample paths M = 20, 000. Notice that if I use the

finite difference method and pick only four grid points along each dimension, the total number

of grid points would be 49 = 262, 144.

Test Sample. I generate a separate 500 test sample paths to assess the performance of the

learning outcome. These 500 sample paths are NOT used to train the network in the search

for optimal Θ. To plug in the test sample, the value of the loss function indicates the average

discrepancy between qi and q̃i is around 5× 10−5 in absolute value.8

Symmetric Cases. Note that all countries are identical regarding their exogenous technologies

and agents’ preferences. Therefore, when the state variables across different countries are the

8qi is the value updated according to the FBSDE, and q̃i is the corresponding network output given the same
state variables.
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Table 1: Symmetric State

This table presents the equilibrium solution under five symmetric states.

ωit = 0.3, ζjt = 0.2
i = 1 i = 2 i = 3 i = 4 i = 5

qi 1.3035 1.3036 1.3039 1.3038 1.3070
σq,i,1 0.00093 −0.00025 −0.00027 −0.00027 −0.00013
σq,i,2 −0.00017 0.00101 −0.00017 −0.00018 −0.00048
σq,i,3 −0.00020 −0.00019 0.00097 −0.00018 −0.00039
σq,i,4 −0.00026 −0.00026 −0.00027 0.00086 −0.00007
σq,i,5 −0.00014 −0.00015 −0.00015 −0.00013 0.00053

ωit = 0.4, ζjt = 0.2
i = 1 i = 2 i = 3 i = 4 i = 5

qi 1.3045 1.3048 1.3046 1.3045 1.3034
σq,i,1 0.00079 −0.00021 −0.00023 −0.00023 −0.00013
σq,i,2 −0.00014 0.00086 −0.00014 −0.00015 −0.00045
σq,i,3 −0.00017 −0.00016 0.00083 −0.00015 −0.00035
σq,i,4 −0.00022 −0.00022 −0.00023 0.00073 −0.00006
σq,i,5 −0.00013 −0.00014 −0.00013 −0.00012 0.00053

ωit = 0.5, ζjt = 0.2
i = 1 i = 2 i = 3 i = 4 i = 5

qi 1.3056 1.3059 1.3053 1.3052 1.2998
σq,i,1 0.00066 −0.00018 −0.00019 −0.00018 −0.00014
σq,i,2 −0.00011 0.00072 −0.00011 −0.00012 −0.00042
σq,i,3 −0.00014 −0.00013 0.00069 −0.00012 −0.00031
σq,i,4 −0.00018 −0.00019 −0.00019 0.00060 −0.00005
σq,i,5 −0.00011 −0.00012 −0.00012 −0.00010 0.00052

ωit = 0.6, ζjt = 0.2
i = 1 i = 2 i = 3 i = 4 i = 5

qi 1.3067 1.3070 1.3060 1.3058 1.2962
σq,i,1 0.00053 −0.00014 −0.00015 −0.00014 −0.00014
σq,i,2 −0.00008 0.00058 −0.00008 −0.00008 −0.00039
σq,i,3 −0.00011 −0.00011 0.00055 −0.00009 −0.00027
σq,i,4 −0.00015 −0.00015 −0.00015 0.00047 −0.00005
σq,i,5 −0.00009 −0.00010 −0.00010 −0.00008 0.00051

ωit = 0.7, ζjt = 0.2
i = 1 i = 2 i = 3 i = 4 i = 5

qi 1.3078 1.3081 1.3067 1.3065 1.2927
σq,i,1 0.00039 −0.00010 −0.00010 −0.00010 −0.00015
σq,i,2 −0.00005 0.00044 −0.00005 −0.00005 −0.00035
σq,i,3 −0.00008 −0.00008 0.00041 −0.00006 −0.00023
σq,i,4 −0.00011 −0.00012 −0.00012 0.00035 −0.00004
σq,i,5 −0.00007 −0.00008 −0.00008 −0.00006 0.00051
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same, i.e.,

ω1
t = ω2

t = ω3
t = ω4

t = ω5
t ,

ζ1
t = ζ2

t = ζ3
t = ζ4

t = 0.2,

the endogenous variables, such as asset prices and their volatility terms, are supposed to be

identical. In particular, the asset price under any symmetric cases is 1.3043 across all countries,

given the chosen parameter values. At symmetric states, positive domestic shocks increase

the net worth of domestic experts and also the price of domestic assets. The market clearing

condition implies that the price of foreign assets must decline. Hence, at symmetric states

σq,i,jt > 0 if i = j;

σq,i,jt < 0 if i 6= j.

Table 1 displays the solutions of the FBSDE under five symmetric states: ωit = 0.3, ωit = 0.4,

ωit = 0.5, ωit = 0.6, and ωit = 0.7. Note that the training process is not guided by any information

about the symmetric property of the model. The solution appears fairly reasonable. The

accuracy declines when there are fewer data samples to learn during the training process.

The approximation of the volatility terms is challenging, as the symmetric solution is a

knife-edge case. Table 1 show that the signs of the domestic risk exposure, σq,i,it , i = 1, · · · , 5
are positive. The signs of all foreign shock exposure terms σq,i,jt , i 6= j, are negative, and their

magnitudes are close.

Dynamics. Figure 1 displays how endogenous variables of country 1 respond to the variation

in ω1
t its expert’s wealth share while other state variables stay unchanged (ωit = 0.45, i =

2, · · · , 5, ζit = 0.2, i = 1, · · · , 4). When the expert’s net worth increases, the domestic asset

price rises, and the endogenous risk due to financial amplification declines. In the economy of

five countries, the change in the financial condition of one country has limited influence on the

world’s risk-free rate. When the country-1 expert’s net worth is low, she demands a high risk

premium, which comes with a low relatively low risk-free rate. Due to the financial friction, the

aggregate risk in country 1

(
σ + σq,1,1

)2
+
(
σq,1,2

)2
+
(
σq,1,3

)2
+
(
σq,1,4

)2
+
(
σq,1,5

)2
is decreasing in the wealth share of its productive agent.

3.5 Comparison with the PDE approach for Macro-Finance Models

If one solves the corresponding PDEs of the multiple-country model, the computation of en-

dogenous risk will be expensive. The standard procedure is to employ Ito’s Lemma

qitσ
q,i,j
t =

J∑
h=1

∂qit
∂ωht

(
1− ωht

)(
1{h = j}+ σq,h,jt

)
+
J−1∑
h=1

∂qit
∂ζht

ζht

(
1{h = j}+ σq,h,jt − σH,jt

)
(14)
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Figure 1: Dynamics
This figure shows asset price, asset price volatility driven by domestic shocks, the drift of asset price,
risk-free rate, risk premium, and country-wide risk in country 1 as functions of its expert wealth share
when other state variables stay constant (ωi

t = 0.45, i = 2, · · · , 5, ζit = 0.2, i = 1, · · · , 4).
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to solve for σq,i,jt where i = 1, · · · , J ; j = 1, · · · , J . Notice that σH,jt is a linear function of

σq,i,jt , i = 1, · · · , J (see equation 13). To sum up, there are J systems of linear equations, and

each system identified by the j’th shock is composed of J linear equations of the same form as

(14).

Solving PDEs directly with deep learning is costly for two reasons. First, given the partial

derivatives of q(·), it requires the inverses of J matrices to derive σq,i,jt . Second, it slows down

the updating process if the loss function of deep learning requires the differentiation of the

network with respect to input variables. Solving for endogenous risk requires the evaluation of

q̂(·; Θ)’s Jacobian matrix, and the second order terms of the PDEs themselves involve q̂(·; Θ)’s

Hessian matrix. Note that the updating process of deep learning relies on the gradient regarding

parameters Θ. With a slight abuse of notation, solving PDE directly with deep learning requires

the evaluations of two types of additional terms:

∂2q̂

∂ωi∂Θ
and

∂3q̂

∂ωi∂ωj∂Θ
.

The probabilistic approach is not subject to the two computational costs. This benefit

comes with the cost of larger networks (i.e., a larger scale of Θ) to learn since endogenous risks

terms σq,i,jt are also outputs of the neural network. Nevertheless, the strength of deep learning

is to handle large-scale problems with enormous amounts of parameters.

The two types of computational burdens are simplified in examples considered by papers that

solve high-dimensional PDEs directly with deep learning, e.g., Duarte (2018), Gopalakrishna

(2021), and Sauzet (2021). Their high-dimensional models typically have either low-dimensional

or no endogenous state variables, which reduces the dependence of the right-hand side of equa-

tion (14) on endogenous risks σq,i,jt . In their multiple-asset models (i.e., Lucas Orchard), the

absence of endogenous risk implies that no inverse of a matrix is needed, and they solve decou-

pled PDEs where the solution of one PDE does not depend on other PDEs’ solutions. Although

the example in Gopalakrishna (2021) contains three coupled PDEs, there is no need to calculate

the inverse matrix since the model has only one risky asset. The numerical example in my paper

gives rise to five coupled PDEs (qi(·), i = 1, · · · , 5) with 9 endogenous variables and an algebraic

equation (the final-good market clearing condition). Table 2 compares the differences between

the example in this paper and those solving PDEs with deep learning.

Table 2: PDEs and State Variables

Models PDEs state variables
coupled decoupled endogenous exogenous

this paper 5 9
growth model in Duarte (2018) 1 1 10
Lucas Orchard1 10 9
“222” model in Sauzet (2021) 2 1 1
the example in Gopalakrishna (2021) 3 1 3

1 Both Duarte (2018) and Sauzet (2021) consider the 10-dimensional Lucas Orchard.

Smoothness. Applying the PDE approach requires that the solution q(·) is twice differentiable
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everywhere in its domain. If the solution q(·) has kinky points, the auto-differentiation technique

that deep learning relies on seems to generate numerical errors to a certain degree. The non-

differentiable points are not rare in macro-finance models due to the effects of asset fire-sales,

e.g., the logarithmic preference version of Brunnermeier and Sannikov (2014). To my knowl-

edge, there is no conclusive result in the applied mathematics literature about whether solving

PDE directly with deep learning would yield viscosity solutions, which are less demanding for

smoothness. Economists, however, do not have to bother with the differentiability condition

because FBSDE systems do not require their solutions be differentiable.

4 Implementation II: A Continuum of Heterogeneous Agents

In this section, I combine the deep learning-based probabilistic algorithm and the finite volume

method to solve the model considered by Fernández-Villaverde et al. (2022), in which I allow all

agents to take the conditional distribution of individual characteristics as a state variable. The

economy is composed of a representative expert and a continuum of heterogeneous households.

Only the expert can hold and produce physical asset without technological illiquidity. Hence,

the price of physical asset is always one. Households only accept the risk-free debt issued by

the expert or each other.

4.1 Model

Firm. A representative firm has the production function Yt = Kα
t L

1−α
t , where Lt denotes the

effeciency units of labor from households and Kt the physical asset from the expert. Labor wage

is

wt = (1− α)
Yt
Lt

= (1− α)

(
Kt

Lt

)α
,

and the rent of physical assets is

rkt = α
Yt
Kt

= α

(
Kt

Lt

)α−1

.

The physical asset follows
dKt

Kt
= (ιt − δ) dt+ σdWt,

where ιt is the investment rate per unit of physical asset, δ the depreciation rate, and σ the

volatility of the Brownian shocks to the efficiency units of physical asset. The asset quality

shock is the only aggregate shock of the model. The investment is passively determined by the

market clearing condition of the final goods

Yt = Cet + Cht + ιtKt,

where Cet and Cht are the consumption of the expert and the household sector, respectively.

Expert. The expert has the logarithmic preference with time discount factor ρ. Given the
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risk-free rate rt, its law of motion for the expert’s net worth Nt is

dNt

Nt
=

(
rt + xt

(
rkt − δ − rt

)
− ct
Nt

)
dt+ σxtdWt,

where xt is the physical asset to net worth ratio. Hence, (xt − 1)Nt is the expert’s demand for

risk-free debt. Optimality conditions are

ct = ρNt

rkt − δ − rt = xtσ
2

Household. A household’s expected life-time discounted utility is

E0

[∫ ∞
0

e−ρt
c1−γ
t − 1

1− γ
dt

]
.

Households supply labor inelastically and the efficiency units of labor is captured by a two-state

Markov process: zt ∈ {z1, z2} , where 0 < z1 < z2. The transition intensity from state 1 to state

2 is λ1, and that from state 2 to state 1 is λ2. The wealth of a household follows

dat = (wtzt + rtat − ct)︸ ︷︷ ︸
≡s(at,zt)

dt

with the borrowing constraint at ≥ 0.

To characterize households’ consumption choices, I trace dynamics of their expected life-

time utility denoted as V i
t and the costate variable denoted as Y i

t , in which superscript i = 1,

or 2 indicates the status of a household’s labor efficiency. V i
t follows the BSDE

dV i
t = −

(
c1−γ
t − 1

1− γ
− ρV i

t

)
dt+ Uv,it dΛit + Zv,it dWt,

where Λit is the Poisson shock at state i. Note that in the presence of the jump risk, the solution

of the BSDE is
(
V i
t , U

v,i
t , Zv,it , i = 1, 2

)
. And, Y i

t follows the BSDE

dY i
t = −

(
rtY

i
t − ρY i

t

)
dt+ Uy,it dΛit + Zy,it dWt

with the solution
(
Y i
t , U

y,i
t , Zy,it , i = 1, 2

)
. The Hamiltonian is

H i (a, c, y) =
c1−γ − 1

1− γ
+ (wtzi + rta− c) y

when the state constraint is not binding. The optimal consumption cit of a household in state i

satisfies (
cit
)−γ

= Y i
t .

The key condition my algorithm will employ is the relationship between the costate variable Y i
t
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and the value function V i (at, ·), i.e.,

Y i
t =

∂V i

∂a
(at, ·) . (15)

The borrowing constraint implies that if at = 0,

wtz
i − cit ≥ 0, i = 1, 2.

In addition, Proposition 1 in Achdou, Han, Lasry, Lions and Moll (2022) shows that wtz
1 = c1

t .

Market Clearing Conditions and State Variables. Assume that the conditional distribu-

tion of households’ labor efficiency is always over time, i.e.,

P (zt = z1) =
λ2

λ1 + λ2
, and P (zt = z2) =

λ1

λ1 + λ2
;

and the aggregate labor supply is normalized to one

z1P (zt = z1) + z2P (zt = z2) = 1 = Lt.

Let G (t, a, z) denote the conditional distribution of (a, z) over households at time t, where∫ ∞
0

dG (t, a, z1) =
λ2

λ1 + λ2
and

∫ ∞
0

dG (t, a, z2) =
λ1

λ1 + λ2
.

The risk-free debt market clearing condition is

(xt − 1)Nt =
2∑
i=1

∫
adG (t, a, zi) .

The physical asset market clears when

xtNt = Kt = Nt +

2∑
i=1

∫ ∞
0

adG (t, a, zi) .

The aggregate state variables are Nt and the flow of the conditional density g (t, a, z). The

stochastic KFE is

∂g (t, a, zi)

∂t
= − ∂

∂a
((wtzi + rtat − ct) g (t, a, zi))− λig (t, a, zi) + λjg (t, a, zj) , i 6= j,

where wt and rt are stochastic due to the aggregate Brownian shock that hits Nt directly. The

law of motion for Nt is

dNt

Nt
=
(
rt + xt

(
rkt − δ − rt

)
− ρ
)

dt+ σKtdWt.
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4.2 Finite Volume Method

Since it is rarely used in the economics literature, the implementation of the finite volume

method deserves detailed exposition.9 I divide the individual state space into N intervals

or cells according to N + 1 points: 0 = x0 < x1 < x2 < · · · < xN with the assumption that

G (t, xN , zi) = 1, i = 1, 2. The literature shows that G (t, ·, zi) has a mass point at x0 conditional

on state 1 (Achdou et al., 2022; Fernández-Villaverde et al., 2022). Interval n is (xn−1, xn]. I

approximate G (t, a, z1) with (N + 1) scalars, G (t, a, z2) with N scalars

Gn (t, zi) =

∫ xn

xn−1

dG (t, a, zi) =

∫ xn

xn−1

g (t, a, zi) da.

Given the KFE, the law of motion for Gn (t, zi) with 0 < n < N follows

∂Gn (t, zi)

∂t
= − (s (xn, zi) g (t, xn, zi)− s (xn−1, zi) g (t, xn−1, zi))− λiGn (t, zi) + λjG

n (t, zj) .

Note that as the wage wt and the risk-free rate rt depends on the aggregate state Nt, the KFE

above is stochastic.

Next, I discuss how to update Gn(t, zi) over time for each cases. Assuming that the proba-

bility density within an interval is constant and apply the upwind scheme.

Gn (t+ ∆, zi)−Gn (t, zi)

∆

= −
[
s (xn, zi)

(
Gn+1 (t, zi)

xn+1 − xn
1 {s (xn, zi) < 0}+

Gn (t, zi)

xn − xn−1
1 {s (xn, zi) ≥ 0}

)]
+

[
s (xn−1, zi)

(
Gn (t, zi)

xn − xn−1
1 {s (xn−1, zi) < 0}+

Gn−1 (t, zi)

xn−1 − xn−2
1 {s (xn−1, zi) ≥ 0}

)]
− λiGn (t, zi) + λjG

n (t, zj)

for 1 < n < N . For n = 0, recall that G(t, ·, z1) has a mass point at x = x0 and

G0 (t+ ∆, z1)−G0 (t, z1)

∆

= −s (x0, z1)

(
G1 (t, z1)

x1 − x0
1 {s (x0, z1) < 0}+G0 (t, z1) 1 {s (x0, z1) ≥ 0}

)
− λ1G

0 (t, z1) .

For n = 1,

G1 (t+ ∆, z1)−G1 (t, z1)

∆

= −
[
s (x1, z1)

(
G2 (t, z1)

x2 − x1
1 {s (x1, z1) < 0}+

G1 (t, z1)

x1 − x0
1 {s (x1, z1) ≥ 0}

)]
+

[
s (x0, z1)

(
G1 (t, z1)

x1 − x0
1 {s (x0, z1) < 0}+G0 (t, z1) 1 {s (x0, z1) ≥ 0}

)]
− λ1G

1 (t, z1) + λ2G
1 (t, z2) ;

9Another application of FVM in economics is Ahn (2019).
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assuming that g (t, x0, z2) = 0,

G1 (t+ ∆, z2)−G1 (t, z2)

∆

= −
[
s (x1, z2)

(
G2 (t, z2)

x2 − x1
1 {s (x1, z2) < 0}+

G1 (t, z2)

x1 − x0
1 {s (x1, z2) ≥ 0}

)]
− λ2G

1 (t, z2) + λ1

(
G0 (t, z1) +G1 (t, z1)

)
.

For n = N ,∫ xN

xN−1

∂g (t, a, zi)

∂t
=

∫ xN

xN−1

− ∂

∂a
((wtzi + rat − ct) g (t, a, zi)) da

− λi
∫ xN

xN−1

g (t, a, zi) da+ λj

∫ xN

xN−1

g (t, a, zj) da

∂GN (t, zi)

∂t
= s (xN−1, zi) g (t, xN−1, zi)− λiGN (t, zi) + λjG

N (t, zj)

Then,

GN (t+ ∆, zi)−GN (t, zi)

∆

= s (xN−1, zi)

(
GN (t, zi)

xN − xN−1
1 {s (xN−1, zi) < 0}+

GN−1 (t, zi)

xN−1 − xN−2
1 {s (xN−1, zi) ≥ 0}

)
− λiGN (t, zi) + λjG

N (t, zj)

4.3 Numerical Solution

When solving the model numerically, I use a neural network with five hidden layers and each has

256 nodes. GivenN = 50, the neural network’s inputs are at, G
1,0
t , G1,1

t , · · · , G1,50
t , G2,1

t , · · · , G2,50
t ,

Nt, and outputs are V i
t , Y

i
t , U

v,i
t , Uy,it , Zv,it , Zv,it , i = 1, 2. I simulate 10,000 economies, and in

each economy I initialize 150 households for each initial labor efficiency status, i.e., z1 or z2.

Along a simulated path, the stock of physical asset is given by

Kt = Nt +
2∑
i=1

N∑
j=1

0.5(xj−1 + xj)G
i,j
t ,

which, in turn, gives rise to rt and wt. Given the distribution Gt and Nt, the network produces

c1,j and c2,j for each xjt , j = 0, · · · , N . Then,

si,jt = wtzi + rtxj − ci,jt , i = 1, 2; j = 0, · · · , N

which are used to update Gt in the next period according to the finite volume method detailed

in Section 4.2. The dynamics of each household include its wealth status at, labor efficiency

zt, recursive utility Vt, and costate variable Yt. The later two follow BSDEs. The loss function

designed for the reinforcement learning includes the Markov property of the FBSDE solution,

equation (15), wtz
1 = c1

t , wtz
2 ≥ c2

t , and the asymptotic feature of households’ consumption
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Figure 2: Policy and Value Functions

for large at.
10 Gt is initialized based on the Beta distribution with a modification to generate

a mass point at x0 of type-1 households.

Figure 2 displays the policy and value functions of both types of households given an arbi-

trary Gt and Nt. The policy function displays very high marginal propensity to consumption

when the borrowing constraint is close to be binding. When their wealth level is higher, house-

holds’ consumption tends to be linear in their net worth.

The key idea in Fernández-Villaverde et al. (2022) is to approximate the law of motion for

the expert’s net worth Nt and the aggregate debt defined as

Bt ≡
2∑
i=1

∫ ∞
0

adG (t, a, zi) ,

and assume that households consider the approximation of the law of motion as the “reality,”

10Imposing boundary conditions will lower the chance the algorithm ends at a local optimizer. See Proposition
2 of Achdou et al. (2022) for the asymptotic behavior of households’ consumption.
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namely, the perceived law of motion. Given the global solution of the model with the distribution

Gt as a state variable, I can assess the accuracy of the assumption used in Fernández-Villaverde

et al. (2022). My numerical experiment indicates that the consumption policy functions under

two different distributions, who yield the same aggregate debt, tend to be very close with the

maximum difference at the magnitude of 10−4.

5 Propagation of Diffusion Shocks

In the continuous-time setting with diffusion shocks, a mathematical tool—Malliavin derivative—

has to be employed to capture the impacts of diffusion shocks on economic time series (e.g.

Borovička and Hansen (2016)). This section will start with the brief introduction of the tool

and the highlight of its properties relevant to the characterization of economic dynamics. Then,

I will illustrate the computation of Malliavin derivatives that also relies on the FBSDE frame-

work and deep learning.

5.1 Malliavin Derivative and Chain Rule

Recall the d-dimensional Brownian motion {Wt}t≥0 and the probability space
(
Ω,F , {Ft}t ≥

0, P
)

introduced in Section 2. Let S denote the set of random variables of the form

F = f

(∫ ∞
0
〈h1
t , dWt〉, · · · ,

∫ ∞
0
〈hnt , dWt〉

)
,

where f is an infinitely differentiable function with bounded partial derivatives of any order

and h1
t , · · · , hnt are square-integrable function mapping from Ω × [0,∞) to Rd. The Malliavin

derivative of F is defined as the d-dimensional process

DtF =
n∑
i=1

∂f

∂xi

(∫ ∞
0
〈h1
t , dWt〉, · · · ,

∫ ∞
0
〈hnt , dWt〉

)
hit.

D1,2 denotes the closure of S with respect to the norm

‖F‖1,2 =

[
E|F |2 + E

(∫ ∞
0

(DtF )2dt

)] 1
2

.

It can be shown that the Malliavin derivative has a closed extension to the space D1,2. A rela-

tively accessible reference for Malliavin derivatives is Nualart and Nualart (2018). Intuitively,

Malliavin derivative DtF captures the impact of the Brownian shock Wt+∆−Wt on the random

variable F when the length of the time interval ∆ is arbitrarily small.

Similar to the ordinary derivative, the chain rule also applies to Malliavin derivative. Sup-

pose φ : Rd → R is a continuously differentiable function with bounded partial derivatives, and

F1, · · · , Fn ∈ D1,2. Then φ(F1, · · · , Fn) ∈ D1,2 and

Dtφ(F1, · · · , Fn) =

n∑
i=1

∂φ

∂xt
(F1, · · · , Fn)DtFi.
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5.2 Malliavin Derivatives of FBSDE solutions

Following the notation in Section 2, the Malliavin derivative of the equilibrium dynamics

(D i
uXt,D i

uYt,D
i
uZt, u ≤ t ≤ T ) with respect to the i’th dimension of Wt satisfies a linear

FBSDE system

D i
uXt = D i

uXu +

∫ t

u

∂b

∂x
(Xs, Ys, Zs)D

i
uXs +

∂b

∂y
(Xs, Ys, Zs)D

i
uYs +

∂b

∂z
(Xs, Ys, Zs)D

i
uZs ds

+

∫ t

u

∂σ

∂x
(Xs, Ys, Zs)D

i
uXs +

∂σ

∂y
(Xs, Ys, Zs)D

i
uYs +

∂σ

∂z
(Xs, Ys, Zs)D

i
uZs dWs,

D i
uYt =

∂y

∂x
(XT )D i

uXT +

∫ T

t

∂h

∂x
(Xs, Ys, Zs)D

i
uXs +

∂h

∂y
(Xs, Ys, Zs)D

i
uYs +

∂h

∂z
(Xs, Ys, Zs)D

i
uZs ds

−
∫ T

t
D i
uZs dWs,

assuming that b(·), σ(·), h(·), and y(·) are continuously differentiable with uniformly bounded

derivatives. Moreover,

[
D1
uXu, · · · ,Dd

uXu

]
= σ(Xu, Yu, Zu), (16)[

D1
uYu, · · · ,Dd

uYu
]

= Zu. (17)

Equation (16) is a general result for forward SDE (see Chapter 7.5 of Nualart and Nualart

(2018)); Equation (17) is the result of Proposition 5.9 in El Karoui et al. (1997). The two equa-

tions indicate that Malliavin derivatives coincide with the volatility terms regarding the immedi-

ate impacts of diffusion shocks. The solution of the linear FBSDE system above (DuXt,DuYt,DuZt, u ≤
t ≤ T ) characterizes the propagation of the Brownian shock (W i

u+∆−W i
u) in the dynamic system

from u to T .

Malliavin derivatives are no longer time-homogeneous, and the time t will serve as a state

variable. The Malliavin derivatives of equilibrium state variables D i
uXt would also serve as

state variables. As the FBSDEs that (D i
uXt,D i

uYt,D
i
uZt) follow are independent of those

(Dj
uXt,D

j
uYt,D

j
uZt) follow given that i 6= j, the state variables of (D i

uYt,D
i
uZt) are time t,

the equilibrium state variable Xt, and its Malliavin derivative D i
uXt.

5.3 Computation

While numerically solving for (Dj
uXt,D

j
uYt,D

j
uZt, u ≤ t ≤ T ), I focus on the mapping denoted

by Σ :
(
t,Xt,D

j
uXt

)
→ Dj

uZt, which is approximated by a feedforward neural network denoted

as Σ̂(·; Θ). Note that when t = u, the initial state Xu is fixed, and the parametric approximation

Σ̂ reduces to m× d variables Dj
uZu.

As in Section 2.2, I discretize time [u, T ] as u = t0 < t1 < t2 < · · · < tn = T and simulate M

sample paths of Brownian motions {Wi,m, i = 0, · · · , n− 1}Mm=1. According to the equilibrium

FBSDE, I first generate M sample paths of {xi,m, yi,m, zi,m}. The sample path index m will be

dropped later. Equations (16) and (17) yield Dj
ux0 and Dj

uy0, respectively. Next, repeat the

following procedure from i = 0 to i = n− 1.

1. compute Dj
uzi given the network Σ̂(·; Θ), xi, and Dj

uxi;
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2. calculate Dj
uxi+1 and Dj

uyi+1 according to

Dj
uxi+1 = Dj

uxi +
∂b

∂x

∣∣∣∣
i

Dj
uxi∆i +

∂b

∂y

∣∣∣∣
i

Dj
uyi∆i +

∂b

∂z

∣∣∣∣
i

Dj
uzi∆i

+
∂σ

∂x

∣∣∣∣
i

Dj
uxiwi +

∂σ

∂y

∣∣∣∣
i

Dj
uyiwi +

∂σ

∂z

∣∣∣∣
i

Dj
uziwi

Dj
uyi+1 = Dj

uyi −
∂h

∂x

∣∣∣∣
i

Dj
uxi∆i −

∂h

∂y

∣∣∣∣
i

Dj
uyi∆i −

∂h

∂z

∣∣∣∣
i

Dj
uzi∆i + Dj

uziwi

The loss function is

Loss
(

Θ; {Wi,m, i = 0, · · · , n− 1}Mm=1

)
=

1

Mn

M∑
m=1

N∑
i=1

‖Dj
uyi −

∂y

∂x
(xi)D

j
uxi‖2,

which is motivated by the chain rule as well as the terminal condition.
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Figure 3: Propagation of Diffusion Shock
This figure displays the impacts of the Brownian shock to country 1 at t = 0 on the asset prices in
countries 1 and 2 from t = 0 to t = 5 at three initial states: (ωi

0 = 0.3, ζj0 = 0.2), (ωi
0 = 0.5, ζj0 = 0.2),

and (ωi
0 = 0.7, ζj0 = 0.2)

Example. I use Malliavin derivatives to characterize the propagation of Brownian shocks in

the economy introduced in Section 3. Figure 3 depicts the impacts of country 1’s Brownian

shock at t = 0 on the domestic asset price q1
t and country 2’s asset price q2

t from t = 0 to

t = 5. In the figure, solid curves correspond to the zero-probability scenario that the economy

only experiences the one-off shock, i.e., no further shocks between t = 0 and t = 5; dotted,
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dashed, dash-dotted lines are the mean, 40 and 60 percentiles of Malliavin derivatives in a

20, 000 simulated sample. Figure 3 shows that the short-term impacts of the Brownian shock

are relatively large due to the significant financial amplification effect when the experts’ wealth

levels are low. Nevertheless, the impacts gradually decay in a relatively long term. If experts

have good financial conditions (ωi0 = 0.7), the Brownian shock’s effects are small but still

persistent.

Impulse Response. The impulse response function (IRF) characterizes the propagation of an

exogenous shock along the sample path of the one-off shock displayed in Figure 3. By contrast,

Malliavin derivatives capture the propagation along arbitrary sample paths. It is easier to solve

for the impulse response function since the one-off shock sample path bypasses the computation

of D i
0Zt. Nevertheless, Figure 3 shows that IRF does not capture the expected impacts of the

Brownian shock at t = 0 on endogenous variables from t = 0 to t = 5. The numerical example

indicates that IRF’s deviation from the expected impact increases over time up to 2 percent at

time t = 5 given initial state (ωi0 = 0.3, ζj0 = 0.2). This is a natural result for a model with

nonlinear dynamics.

6 Final Remarks

This paper shows that the equilibrium of a continuous-time macro or finance model is char-

acterized by a system of coupled infinite-horizon FBSDEs. Unlike the conventional analytic

approach that transforms the FBSDEs into PDEs, I highlight that it is straightforward to solve

high-dimensional FBSDEs with deep reinforcement learning directly. The idea comes from the

applied mathematics literature where the problem of solving high-dimensional PDEs is refor-

mulated as (F)BSDEs, which in turn are solved with reinforcement learning. The algorithm I

provide is easy to implement, whose difficulty level is equivalent to simulating economic dynam-

ics given the equilibrium solution. Combining with the finite volume method, my algorithm can

solve the global dynamics of heterogeneous-agent model with aggregate shocks. In addition, the

paper employs Malliavin derivatives to capture the propagation of Brownian shocks.
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Appendix

A Derivations Related to Market Clearing Condition

I will derive the relationship between qJt and qjt , j = 1, · · · , J−1, based on the clearing condition

of the final-good market.

ρ

J∑
j=1

qjtK
i
t =

J∑
j=1

(
a− ιjt

)
Kj
t

ρ =

J∑
j=1

a− ιjt
qjt

qjtK
j
t∑J

i=1 q
i
tK

i
t

=
a− ιJt
qJt

(
1−

J−1∑
i=1

ζit

)
+

J−1∑
i=1

a− ιit
qit

ζit

(
a+

1

ψ

)(
1−

J−1∑
i=1

ζit

)
= qJt

(
ρ+

1

ψ

(
1−

J−1∑
i=1

ζit

)
−
J−1∑
i=1

(
aψ + 1

ψqit
− 1

ψ

)
ζit

)

= qJt

(
ρ+

1

ψ
−
J−1∑
i=1

aψ + 1

ψqit
ζit

)

Let

k
(
q1, q2, · · · , qJ−1, ζ1, ζ2, · · · , ζJ−1

)
≡ ρ+

1

ψ
−
J−1∑
i=1

aψ + 1

ψqi
ζit
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∂k

∂qi
=
aψ + 1

ψ

ζit

(qi)2

∂k

∂ζi
= −aψ + 1

ψqi

Given

qJt = k−1

(
1−

J−1∑
i=1

ζit

)(
a+

1

ψ

)

∂qJ

∂qi
= −k−2

(
1−

J−1∑
i=1

ζit

)
∂k

∂qi

(
a+

1

ψ

)
∂qJ

∂ζi
= k−2

(
−k −

(
1−

J−1∑
i=1

ζit

)
∂k

∂ζi

)(
a+

1

ψ

)

Given σq,i,j , i = 1, · · · , J − 1, we can derive σq,J,j by Ito’s formula

qJt σ
q,J,j
t =

J−1∑
h=1

∂qJ

∂qh
qht σ

q,h,j
t +

J−1∑
h=1

∂qJ

∂ζh
ζht σ

ζ,h,j
t

=
J−1∑
h=1

∂qJ

∂qh
qht σ

q,h,j
t +

J−1∑
h=1

∂qJ

∂ζh
ζht

J∑
u=1

aζ,h,ju

(
1 {j = u}σ + σq,u,jt

)
=

J−1∑
h=1

∂qJ

∂qh
qht σ

q,h,j
t +

J−1∑
h=1

∂qJ

∂ζh
ζht a

ζ,h,j
j σ +

J−1∑
h=1

∂qJ

∂ζh
ζht

J∑
u=1

aζ,h,ju σq,u,jt

(
qJ −

J−1∑
h=1

∂qJ

∂ζh
ζhaζ,h,jJ

)
σq,J,jt =

J−1∑
h=1

∂qJ

∂qh
qht σ

q,h,j
t +

J−1∑
h=1

∂qJ

∂ζh
ζht a

ζ,h,j
j σ +

J−1∑
h=1

∂qJ

∂ζh
ζht

J−1∑
u=1

aζ,h,ju σq,u,jt
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